WO2020105339A1 - Push switch - Google Patents

Push switch

Info

Publication number
WO2020105339A1
WO2020105339A1 PCT/JP2019/041341 JP2019041341W WO2020105339A1 WO 2020105339 A1 WO2020105339 A1 WO 2020105339A1 JP 2019041341 W JP2019041341 W JP 2019041341W WO 2020105339 A1 WO2020105339 A1 WO 2020105339A1
Authority
WO
WIPO (PCT)
Prior art keywords
push switch
contact member
movable contact
metal
stroke
Prior art date
Application number
PCT/JP2019/041341
Other languages
French (fr)
Japanese (ja)
Inventor
晃 金子
俊彦 田澤
克敏 舂井
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to JP2020558175A priority Critical patent/JP7183298B2/en
Publication of WO2020105339A1 publication Critical patent/WO2020105339A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • H01H13/26Snap-action arrangements depending upon deformation of elastic members
    • H01H13/48Snap-action arrangements depending upon deformation of elastic members using buckling of disc springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/50Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a single operating member
    • H01H13/52Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a single operating member the contact returning to its original state immediately upon removal of operating force, e.g. bell-push switch

Definitions

  • the present invention relates to a push switch.
  • the operation stroke amount in the stroke operation region is the operation stroke amount obtained by adding the elastic deformation amount of the rubber stem to the operation stroke amount of the movable contact member. Therefore, there is a limit when it is desired to shorten the stroke (main stroke) for causing the movable contact member to perform the reversing operation.
  • the purpose is to provide a push switch that can easily realize a short stroke.
  • a push switch includes a housing having an opening, a housing communicating with the opening, a fixed contact member attached to the housing, and disposed inside the housing.
  • a movable contact member having a dome portion that is arranged inside the storage portion closer to the opening than the fixed contact member, protrudes in a dome shape toward the opening, and is movable in a reverse direction;
  • a plate spring that is provided on the side opposite to the fixed contact member and that is elastically deformable in the reversing direction of the movable contact member, and that projects from the opening and that connects the movable contact member to the fixed contact through the plate spring.
  • a pressing member made of a hard material that can be pressed to the member side is included.
  • FIG. 3 is a perspective view showing push switch 100 of the first embodiment. 3 is an exploded view of the push switch 100.
  • FIG. It is a figure which shows metal plates 120A and 120B.
  • 6 is a diagram showing an FS characteristic of the push switch 100.
  • FIG. 6 is a diagram showing an FS characteristic of the push switch 100.
  • FIG. 6 is a diagram showing an FS characteristic of the push switch 100.
  • FIG. 6 is a diagram showing an FS characteristic of the push switch 100.
  • FIG. 6 is a diagram showing an FS characteristic of the push switch 100.
  • FIG. 6 is a diagram showing an FS characteristic of the push switch 100.
  • FIG. It is a figure which shows the frequency distribution of the level of the operation sound when turning on / off the push switch 100. It is a figure which shows the frequency distribution of the level of the operation sound when turning on / off the push switch 100.
  • FIG. 1 is a perspective view showing a push switch 100 according to the first embodiment.
  • FIG. 2 is an exploded view of the push switch 100.
  • the XYZ coordinate system will be defined and described below. Further, in the following, for convenience of description, the Z-axis negative direction side is referred to as the lower side or the lower side, and the Z-axis positive direction side is referred to as the upper side or the upper side, but they do not represent a general vertical relationship.
  • the push switch 100 includes a housing 110, metal plates 120A and 120B, a metal contact 130A, leaf springs 130B and 130C, a metal spring 140, a pressing member 150, and a frame 160.
  • the metal plates 120A and 120B will be described below with reference to FIG.
  • FIG. 3 is a diagram showing the metal plates 120A and 120B.
  • the push switch 100 is switched between ON (conduction state) and OFF (non-conduction state) by changing the electrical conduction state between the metal plate 120A and the metal plate 120B by the metal contact 130A.
  • the metal contact 130A is in contact with the metal plate 120B (peripheral fixed contact 121B), but is not in contact with the metal plate 120A (central fixed contact 121A). .. That is, the metal plate 120A and the metal plate 120B are not electrically connected, and the push switch 100 is off (non-conductive state).
  • the push switch 100 starts pressing the pressing member 150 downward from the initial position (see FIG. 1) where the pressing member 150 is not pressed downward, only the metal spring 140 elastically deforms first and the leaf spring 130B and 130C and the metal contact 130A enter the operation region where they are not elastically deformed.
  • the downward stroke (displacement) of the pressing member 150 in this operation region is referred to as a prestroke.
  • the metal contact 130A does not perform the reversing operation and does not contact the metal plate 120A, so the push switch 100 is off (non-conducting state).
  • the push switch 100 makes a transition from the prestroke operation region to the main stroke operation state.
  • the central portion of the metal spring 140 presses the central portions of the leaf springs 130C and 130B downward, and the central portions of the leaf springs 130C and 130B contact the metal contact 130A. Press the center of the downward. Then, when the leaf springs 130C and 130B and the metal contact 130A perform a reversing operation, the metal contact 130A contacts the metal plate 120A, and the metal plate 120A and the metal plate 120B are electrically connected via the metal contact 130A. Then, the push switch 100 is turned on (conductive state).
  • the elastic deformation amount of the elastic member for the prestroke (metal spring 140) in the operation area of the main stroke can be reduced. It is possible to achieve a shorter stroke in the operation region of the main stroke than when using a member (stem).
  • the housing 110 is made of resin and holds the metal plates 120A and 120B.
  • the housing 110 and the metal plates 120A and 120B are integrally manufactured by insert molding.
  • the housing 110 has an opening 111 and a storage portion 112 that communicates with the opening 111.
  • the opening 111 is formed on the surface on the Z axis positive direction side.
  • the storage portion 112 is formed downward from the opening.
  • the opening portion 111 and the storage portion 112 have a rectangular shape in which four corners (four corner portions) are chamfered in a plan view, and the length in the X axis direction and the length in the Y axis direction are substantially equal. That is, here, the opening portion 111 and the storage portion 112 are square in a plan view.
  • the central fixed contact 121A of the metal plate 120A and the peripheral fixed contact 121B of the metal plate 120B are arranged on the bottom of the storage section 112 and are exposed in the storage section 112. Inside the storage part 112, the metal contact 130A and the leaf springs 130B and 130C are arranged in this order on the upper side of the central fixed contact 121A and the peripheral fixed contact 121B (see FIG. 2), and the metal spring 140 and the pressing force are further applied thereto.
  • the member 150 is overlaid.
  • the metal spring 140 is housed in the housing portion 112, and the projecting portion 152 of the pressing member 150 projects upward from the opening portion 111 (see FIG. 1).
  • the metal plate 120A has a central fixed contact 121A and a terminal 122A.
  • the metal plate 120A is made of copper, for example.
  • the central fixed contact 121A is exposed at the central portion of the bottom of the storage section 112, and when the pressing member 150 is not pressed downward, it does not contact the metal contact 130A and the pressing member 150 moves downward.
  • the metal contact 130A is pressed in the direction and performs a reversing operation, the metal contact 130A contacts the metal contact 130A.
  • the terminal 122A projects toward the negative side of the housing 110 in the X-axis direction.
  • the metal plate 120B has a peripheral fixed contact 121B and a terminal 122B.
  • the metal plate 120B is made of copper, for example.
  • the peripheral fixed contact 121B is exposed on the peripheral edge of the bottom of the storage part 112, and in the state where the pressing member 150 is not pressed downward (see FIG. 1), the metal contact 130A is in the X-axis direction.
  • the end portions on both sides are in contact with the end portions on both sides in the Y-axis direction, and even when the pressing member 150 is pressed downward, the metal contact 130A is also contacted.
  • the terminal 122B projects to the X axis positive direction side of the housing 110.
  • the metal contact 130A is a metal spring made of a metal member, and has a base 131A and a dome portion 132A protruding upward in a dome shape and capable of reversing operation (see FIG. 2).
  • the base 131A has a rectangular shape that matches the shapes and sizes of the opening 111 and the storage 112 in a plan view, and is located around the dome portion 132A.
  • the base 131A is in contact with the peripheral fixed contact 121B.
  • the shape of the base 131A is not a rectangular shape as described above, but may be, for example, a shape that is independently extended in a leg shape from the outer peripheral portion of the dome portion 132A toward the four corners of the storage portion 112. Good.
  • the dome portion 132A is located in the central portion of the base 131A, and is capable of reversing from a state of being convex upward to a state of being convex downward with respect to the base 131A. That is, the reversing operation direction of the dome portion 132A is the direction in which the direction in which the dome portion 132A is convex changes, and the direction in which the dome portion 132A is convex is changed from the convex state to the downward side.
  • the metal contact 130A is an example of a movable contact member.
  • the metal contact 130A is made of stainless steel, for example.
  • the metal contact 130A is arranged such that the top of the dome portion 132A is located above the central fixed contact 121A and the base 131A is in contact with the peripheral fixed contact 121B. Therefore, in the dome portion 132A, when the dome portion 132A is pressed from the upper side to invert and convex downward, the inverted dome portion 132A contacts the central fixed contact 121A, and the metal contact 130A becomes the central fixed contact 121A.
  • the peripheral fixed contact 121B is made conductive.
  • the metal contact 130A has a lower surface plated with silver. This is because the lower surface comes into contact with the central fixed contact 121A and the peripheral fixed contact 121B through which current flows. In addition, the operation feeling can be given to the operator by inverting the dome portion 132A.
  • Such a metal contact 130A is produced by forming a dome portion 132A by punching on a sheet metal formed into a substantially rectangular shape in plan view.
  • the leaf spring 130B has a configuration in which silver plating is removed from the metal contact 130A. Therefore, the leaf spring 130B has a base portion 131B and a dome portion 132B. The leaf spring 130B is arranged so as to overlap the metal contact 130A.
  • the leaf spring 130C has the same configuration as the leaf spring 130B, it has a base portion 131C and a dome portion 132C.
  • the leaf spring 130C is arranged so as to overlap the leaf spring 130B.
  • the metal spring 140 is a metal leaf spring having four leg portions 141 and a central portion 142.
  • the central portion 142 is located at the center of the four leg portions 141 and is a circular flat plate portion in plan view.
  • the four leg portions 141 extend outward from the central portion 142 at equal intervals (intervals of 90 degrees) in a plan view and obliquely downward from the central portion 142 in a side view. ..
  • the metal spring 140 as described above is manufactured by forming the leg portions 141 by punching a sheet metal cut into a substantially cross shape. Moreover, since each leg part 141 extends toward the four corners of the storage part 112, the leg part 141 can be lengthened.
  • Each leg 141 has a bent portion 141A.
  • the leg portion 141 has a shape that extends obliquely downward from the central portion 142 toward the bent portion 141A, is bent at the bent portion 141A, and extends obliquely upward toward the tip.
  • the height of the leg portion 141 (the length in the Z-axis direction from the bent portion 141A to the root connected to the central portion 142) is the height of the dome portion 132C of the leaf spring 130C (the top of the dome portion 132C with respect to the base portion 131C). Height) is set higher than. Further, the positions of the four bent portions 141A are outside the dome portion 132C of the leaf spring 130C in plan view.
  • the four bent portions 141A have the base portion 131C. It has such a shape that it contacts the upper surfaces of the four corners, a gap is formed between the central portion 142 and the dome portion 132C, and a gap is formed between the leg portion 141 and the dome portion 132C.
  • the bent portions 141A of the four leg portions 141 of the metal springs 140 respectively contact the upper surfaces of the four corners of the base portion 131C of the leaf springs 130C.
  • the central portion 142 is separated from the dome portion 132C of the leaf spring 130C.
  • the metal spring 140 elastically deforms so that the leg portions 141 are spread outward from the central portion 142, so that the central portion is the dome portion of the leaf spring 130C. It approaches 132C.
  • the metal spring 140 is elastically deformed, and the operation until the portion of the leg 141 closer to the central portion 142 than the bent portion 141A or the central portion 142 comes into contact with the dome portion 132C of the leaf spring 130C.
  • the area becomes the operation area of the prestroke.
  • the metal spring 140 When the metal spring 140 is further pressed downward by the pressing member 150, the metal spring 140 transitions to the operation region of the main stroke in which the dome portion 132C of the leaf spring 130C is pressed downward.
  • the pressing member 150 has a base 151 and a protrusion 152, and the base 151 and the lower end side of the protrusion 152 are housed in the housing 112.
  • the base 151 is a disk-shaped portion provided around the lower end of the truncated cone-shaped protrusion 152, and the protrusion 152 protrudes from the upper surface of the central portion of the base 151.
  • the pressing member 150 is a so-called stem.
  • the pressing member 150 is made of a hard material, and is made of, for example, a synthetic resin, a metal, a ceramic, or the like that hardly causes elastic deformation. That is, the hard material is a synthetic resin, a metal, a ceramic, or the like that hardly elastically deforms, and ideally a material having no elasticity. In the push switch 100, in order to suppress an increase in stroke due to elastic deformation of the pressing member 150 in the operation region of the main stroke, the pressing member 150 is made of a hard material that hardly elastically deforms.
  • the frame 160 has a base 161 and legs 162.
  • the base 161 has a rectangular shape in a plan view and has an opening 161A.
  • the base 161 is arranged so as to overlap the upper surface of the housing 110, and the opening 161A has an opening diameter that allows the protrusion 152 of the pressing member 150 to be inserted therethrough.
  • Two leg portions 162 are provided on each side of the base portion 161 in the Y-axis direction.
  • the leg portions 162 project in the Z-axis negative direction, and the tips are bent in the X-axis direction and inward in a plan view. It has 162A.
  • Each leg 162 is in close contact with the side surface of the housing 110, and the engagement portion 162A is engaged with a protrusion on the side surface of the housing 110.
  • the metal contact 130A, the leaf springs 130B and 130C, and the metal spring 140 shown in FIG. 2 are housed in the housing portion 112 of the housing 110, and the pressing member 150 is arranged on the metal spring 140.
  • the push switch 100 is completed as shown in FIG.
  • engaging portions that engage with the recesses on the side surface of the housing 110 may be provided on both sides of the base 161 in the X-axis direction.
  • the push switch 100 having the above-described configuration can be used as a switch for various operation systems in a vehicle cabin, for example.
  • the protrusion 152 of the pressing member 150 may be covered with a thin resin sheet or the like.
  • the push switch 100 is pressed more than the initial position shown in FIG.
  • the member 150 may be attached with the member 150 pushed slightly downward. In such a case, the pressing member 150 may be attached while being pressed downward within the range of the prestroke.
  • the pressing member 150 may be attached in a downwardly pressed state as described above to absorb individual differences of the push switch 100.
  • FIGS 4A to 4F are diagrams showing FS (Force-Stroke) characteristics of the push switch 100.
  • the horizontal axis is the stroke (S) for pushing the pressing member 150 downward, and the vertical axis is the force (F) required for pushing the pressing member 150 downward.
  • Force (F) is the operating load.
  • FIG. 4A shows the FS characteristics of only the metal spring 140 and the pressing member 150
  • FIG. 4B shows the FS characteristics of only the metal contact 130A and the leaf springs 130B and 130C
  • FIG. 4C shows the FS of the entire push switch 100. Show the characteristics.
  • FIG. 4D shows the FS characteristics of the pressing member alone of the comparison push switch
  • FIG. 4E shows the FS characteristics of only the metal contact 130A and the leaf springs 130B and 130C
  • FIG. 4F shows the comparison push switch.
  • the FS characteristics as a whole are shown.
  • the FS characteristics of FIG. 4B and FIG. 4E are the same.
  • the FS characteristics of only the metal spring 140 and the pressing member 150 show that the operating load rises linearly from the stroke of 0.0 mm to about 0.55 mm and reaches the stroke of about 0.55 mm. Then, even if the operating load was increased further, the stroke showed a characteristic of being substantially constant. Since the pressing member 150 is made of a hard material that hardly elastically deforms, it can be confirmed that the FS characteristic shown in FIG. 4A is almost the FS characteristic of only the metal spring 140. Furthermore, it was confirmed that when the metal spring 140 comes into contact with a rigid body that prevents its elastic deformation, the operation stroke does not increase any further.
  • the FS characteristic of only the metal contact 130A and the leaf springs 130B and 130C is that the operating load is substantially zero until the stroke reaches about 0.35 mm, and the stroke is about 0.47 mm. It was shown that the operation load reached a peak, the stroke had a minimum value at a stroke of about 0.6 mm, and the stroke could not be further pressed at a stroke of about 0.6 mm. This means that the metal contact 130A and the dome portions 132A, 132B, 132C of the leaf springs 130B, 130C start to reverse at a stroke of about 0.47 mm, and become completely reversed at a stroke of about 0.6 mm. It is shown that.
  • the completely inverted state is a state in which the push switch 100 is turned on. From FIG. 4B, it was also confirmed that when the metal contact 130A and the leaf springs 130B and 130C contact the rigid body that prevents the elastic deformation, the operation stroke does not increase any more.
  • FIG. 4C is an FS characteristic of the entire push switch 100. A characteristic obtained by combining the FS characteristics of FIG. 4A and FIG. 4B so that the metal contact 130A starts to press the leaf spring 130C at a stroke of about 0.34 mm. It has become. The prestroke ends and the main stroke begins about 0.34 mm, and the main stroke completes about 0.59 mm.
  • the stroke required to be turned on in the operation area of the main stroke can be set to 0.25 mm, and a short stroke can be realized. This is because the pressing member 150 hardly elastically deformed in the operation region of the main stroke.
  • the FS characteristic of only the pressing member made of a material other than a hard material and elastically deformed has an operating load from a stroke of about 0.0 mm to about 0.3 mm. After rising up in a non-linear manner, the operating load is slightly reduced until the stroke is about 0.65 mm. When the stroke is about 0.65 mm or more, the operating load sharply increases. However, as compared with FIG. 4A, the manner of increase is gradual. This is because when the stroke is about 0.65 mm, the rigid member comes into contact with the rigid body to temporarily stop the elastic deformation, and then the pressing member is crushed to elastically deform.
  • FIG. 4F shows the FS characteristics of the entire push switch for comparison.
  • the FS characteristics of FIGS. 4D and 4E are combined so that the pressing member contacts the leaf spring 130C at a position where the stroke is about 0.4 mm. It is a characteristic.
  • the stroke required to turn on in the operation area of the main stroke is about 0.33 mm, which is about 30% longer than the push switch 100.
  • the stroke of the push switch for comparison is lengthened because not only the metal contact 130A and the leaf springs 130B and 130C are elastically deformed but also the pressing member is elastically deformed in the operation region of the main stroke. is there. That is, since the pressing member is crushed before the metal contact 130A and the leaf springs 130B and 130C start elastically deforming, the stroke becomes longer.
  • the rising of the operating load immediately after the start of the main stroke in FIG. 4F (immediately after 0.4 mm) is gentler than the rising of the operating load in FIG. 4E because the components of the crushed pressing member are combined. This is because
  • 5A and 5B are diagrams showing frequency distributions of operation sound levels when the push switch 100 is turned on / off.
  • the push switch 100 one having a reduction rate of the minimum value with respect to the maximum value of the FS characteristic of 20% or 30% was prepared. The larger the reduction rate, the stronger the click feeling that the operator obtains when operating the pressing member 150 by hand.
  • the operation sound level of the push switch for comparison including the pressing member that realizes the prestroke by elastically deforming as in the conventional case is also shown.
  • the level of the operation sound when the push switch 100 is turned on is the level of the operation sound generated when the pressing member 150 is pressed downward until the push switch 100 is turned on in the operation region of the main stroke. The same applies to the push switch for comparison.
  • the level of the operation sound when the push switch 100 is turned off means that the push member 100 is opened (typically, the hand pushing the push member 150 is released) and the push member 150 is turned on when the push switch 100 is on. Is the level of the operation sound when is returned to the initial position.
  • the levels of the operation sound when the push switch 100 is turned on are substantially equal for the reduction rate of 20% and 30%, and the comparison push switches are also of substantially the same level. It was
  • the level of the operation sound when turning off the push switch 100 is reduced in both the push switches 100 whose reduction rates are 20% and 30% as compared with the push switch for comparison. It is considered that the reason why the operation sound at the time of turning off is reduced is that the load applied to the metal spring 140 when the pressing member 150 returns to the initial position is distributed to the four legs 141.
  • the operation sound when the push switch 100 is turned on is at the same level as that of the comparison push switch, and the operation sound when the push switch 100 is turned off is the same as that of the comparison push switch. It turned out that it is reduced more than the push switch.
  • the pre-stroke metal spring 140 is provided between the stacked body of the metal contact 130A, the leaf springs 130B and 130C, and the pressing member 150, and the pressing member 150 is hard. It was found that by using a stem made of a material that hardly elastically deforms, the stroke to be turned on in the operation region of the main stroke can be significantly shortened as compared with the push switch for comparison.
  • Such a short stroke can be relatively easily realized by the metal spring 140 for prestroke and the pressing member 150 made of a hard material and hardly elastically deformed.
  • the metal spring 140 realizes the prestroke, and the metal spring 140 is completely crushed in the operation region of the main stroke to be hardly deformed and the pressing member is pressed. Since 150 is made of a hard material that is hardly elastically deformed, it is possible to realize a short stroke relatively easily.
  • the pressing member 150 is hardly elastically deformed, it is possible to operate with a stable stroke for a long period of time.
  • the metal spring 140 since the metal spring 140 has the four leg portions 141, it is possible to increase the operation load in the operation region of the prestroke. Further, since the load due to the operation load is distributed to the four legs 141, it is possible to prolong the service life and reduce the operation noise at the time of turning off.
  • the leg 141 of the metal spring 140 is elastically deformed, but the central portion 142 may be elastically deformed.
  • the central portion 142 may be a dome shape that is convex upward in a non-pressed state, and may have a configuration capable of reversing operation.
  • the leg 141 may be elastically deformable or may not be elastically deformed.
  • the leg portion 141 of the metal spring 140 extends obliquely downward from the central portion 142 in a side view, but the leg portion 141 has the same height as the central portion 142 in the Z-axis direction. It may extend in the horizontal direction (direction of the XY plane). In this case, for example, by providing a spacer between the base 131C of the leaf spring 130C and the leg 141, a gap may be created between the metal spring 140 and the leaf spring 130C in a non-pressed state. Good.
  • the bent portions 141A of the legs 141 of the metal spring 140 contact the upper surfaces of the four corners of the base 131C. Since the metal spring 140 is manufactured by punching a sheet metal by punching processing, the side surface is a punched surface. In this manner, in the configuration in which the bent portion 141A contacts the upper surface of the base 131C, the side surface (punched surface) of the metal spring 140 contacts the upper surface of the base 131C when the metal spring 140 is pressed downward. Therefore, it is possible to suppress the generation of shavings from the side surface (punched surface) along with the operation of the metal spring 140, and it is possible to suppress the occurrence of electrical contact failure due to the shavings.
  • the above has been described. With such a configuration, even if the protruding portion 152 of the pressing member 150 is pressed in an oblique direction, the four leg portions 141 are likely to be uniformly loaded. Further, with such a configuration, the metal spring 140 can be stably arranged between the leaf spring 130C and the pressing member 150.
  • the leg portion 141 may be bent horizontally at the bent portion 141A.
  • the tip end side of the bent portion 141A of the leg portion 141 is separated from the upper surface of the base portion 131C of the leaf spring 130C.
  • Side surface (punched surface) does not contact the upper surface of the base 131C, and it is possible to suppress generation of shavings from the side surface (punched surface) due to the operation of the metal spring 140. The occurrence of electrical contact failure can be suppressed.
  • the leg 141 of the metal spring 140 is bent at the bent portion 141A.
  • the leg 141 is not bent, and the tip of the leg 141 contacts the upper surface of the base 131C of the leaf spring 130C. May be.
  • the tip is also a part of the side surface (punched surface), but in the case where the influence of the generation of shavings hardly occurs, such a configuration may be adopted.
  • the metal spring 140 has four legs 141, but the number of legs 141 may be three, or two if the stability of the operation can be ensured. Good.
  • the shape in which the opening 111 and the accommodating portion 112 are square in a plan view has been described, but it may be a rectangle long in the X-axis direction or the Y-axis direction.
  • the length of the leg portion 141 can be made longer, and a larger amount of prestroke can be taken. Therefore, the operation load can be easily set according to the specifications of the push switch 100.
  • the push switch 100 has been described as including the leaf springs 130B and 130C that are stacked on the metal contact 130A.
  • the leaf springs 130B and 130C are provided to increase the operation load in the operation area of the main stroke. For this reason, when the leaf springs 130B and 130C are unnecessary, the push switch 100 may not include the leaf springs 130B and 130C, may include one spring (only the leaf spring 130B), and may include three or more springs. But it's okay.
  • the bottom surface of the base 151 of the pressing member 150 is flat, but a protrusion may be provided at the center of the bottom surface of the base 151. Providing such a protrusion makes it easier for the pressing member 150 to press the central portion 142 of the metal spring 140.

Abstract

The objective of the present invention is to provide a push switch with which a short stroke can be achieved easily. This push switch includes: a housing having an opening portion and an accommodating portion communicating with the opening portion; a fixed contact point member which is attached to the housing and which is disposed inside the accommodating portion; a movable contact point member which is disposed closer to the opening portion than the fixed contact point member inside the accommodating portion, and which has a dome portion that projects in a dome shape toward the opening portion and that is capable of performing an inversion action; a leaf spring which is provided on the opposite side of the movable contact point member to the fixed contact point member, and which is capable of deforming elastically in the inversion action direction of the movable contact point member; and a pressing member which is made from a hard material, projects from the opening portion, and is capable of pressing the movable contact point member toward the fixed contact point member by way of the leaf spring.

Description

プッシュスイッチPush switch
 本発明は、プッシュスイッチに関する。 The present invention relates to a push switch.
 従来より、ドーム型の可動接点部材を押圧するために、ラバー製のステムを用いたプッシュスイッチがある。ラバー製のステムが押圧されると、可動接点部材が撓み始める前にラバー製のステムのみが弾性変形して潰される動作領域があり、この動作領域がプリストロークの領域として利用されている(例えば、特許文献1参照)。 Conventionally, there is a push switch that uses a rubber stem to press the dome-shaped movable contact member. When the rubber stem is pressed, there is an operation region in which only the rubber stem is elastically deformed and crushed before the movable contact member starts to bend, and this operation region is used as a prestroke region (for example, , Patent Document 1).
特開2011-113652号公報JP, 2011-113652, A
 ところで、ラバー製のステムがさらに押圧されてプリストロークの動作領域が終わり、可動接点部材が反転動作を開始するメインストロークの動作領域に入っても、ラバー製のステムの弾性変形が生じるので、メインストロークの動作領域における操作ストローク量は、可動接点部材の操作ストローク量にラバー製のステムの弾性変形量を加えたものが操作ストローク量になる。このため、可動接点部材に反転動作を行わせるためのストローク(メインストローク)のショートストローク化を図りたい場合には限界があった。 By the way, even if the rubber stem is further pressed to end the pre-stroke operation area and enters the main stroke operation area where the movable contact member starts the reversing operation, the rubber stem is elastically deformed. The operation stroke amount in the stroke operation region is the operation stroke amount obtained by adding the elastic deformation amount of the rubber stem to the operation stroke amount of the movable contact member. Therefore, there is a limit when it is desired to shorten the stroke (main stroke) for causing the movable contact member to perform the reversing operation.
 そこで、ショートストローク化を容易に実現できるプッシュスイッチを提供することを目的とする。 Therefore, the purpose is to provide a push switch that can easily realize a short stroke.
 本発明の実施の形態のプッシュスイッチは、開口部と、前記開口部に連通する収納部とを有する筐体と、前記筐体に取り付けられ、前記収納部の内部に配置される固定接点部材と、前記収納部の内部で前記固定接点部材よりも前記開口部側に配置され、前記開口部側にドーム状に突出し、反転動作可能なドーム部を有する可動接点部材と、前記可動接点部材に対して前記固定接点部材とは反対側に設けられ、前記可動接点部材の反転動作方向に弾性変形可能な板ばねと、前記開口部から突出し、前記板ばねを介して前記可動接点部材を前記固定接点部材側に押圧可能な硬質材料製の押圧部材とを含む。 A push switch according to an embodiment of the present invention includes a housing having an opening, a housing communicating with the opening, a fixed contact member attached to the housing, and disposed inside the housing. A movable contact member having a dome portion that is arranged inside the storage portion closer to the opening than the fixed contact member, protrudes in a dome shape toward the opening, and is movable in a reverse direction; And a plate spring that is provided on the side opposite to the fixed contact member and that is elastically deformable in the reversing direction of the movable contact member, and that projects from the opening and that connects the movable contact member to the fixed contact through the plate spring. A pressing member made of a hard material that can be pressed to the member side is included.
 ショートストローク化を容易に実現できるプッシュスイッチを提供することができる。 We can provide a push switch that can easily realize a short stroke.
実施の形態1のプッシュスイッチ100を示す斜視図である。FIG. 3 is a perspective view showing push switch 100 of the first embodiment. プッシュスイッチ100の分解図である。3 is an exploded view of the push switch 100. FIG. 金属プレート120A、120Bを示す図である。It is a figure which shows metal plates 120A and 120B. プッシュスイッチ100のFS特性を示す図である。6 is a diagram showing an FS characteristic of the push switch 100. FIG. プッシュスイッチ100のFS特性を示す図である。6 is a diagram showing an FS characteristic of the push switch 100. FIG. プッシュスイッチ100のFS特性を示す図である。6 is a diagram showing an FS characteristic of the push switch 100. FIG. プッシュスイッチ100のFS特性を示す図である。6 is a diagram showing an FS characteristic of the push switch 100. FIG. プッシュスイッチ100のFS特性を示す図である。6 is a diagram showing an FS characteristic of the push switch 100. FIG. プッシュスイッチ100のFS特性を示す図である。6 is a diagram showing an FS characteristic of the push switch 100. FIG. プッシュスイッチ100をオン/オフする際の操作音のレベルの周波数分布を示す図である。It is a figure which shows the frequency distribution of the level of the operation sound when turning on / off the push switch 100. プッシュスイッチ100をオン/オフする際の操作音のレベルの周波数分布を示す図である。It is a figure which shows the frequency distribution of the level of the operation sound when turning on / off the push switch 100.
 以下、本発明のプッシュスイッチを適用した実施の形態について説明する。 An embodiment to which the push switch of the present invention is applied will be described below.
 <実施の形態>
 図1は、実施の形態1のプッシュスイッチ100を示す斜視図である。図2は、プッシュスイッチ100の分解図である。以下では、XYZ座標系を定義して説明する。また、以下では、説明の便宜上、Z軸負方向側を下側又は下、Z軸正方向側を上側又は上と称すが、普遍的な上下関係を表すものではない。
<Embodiment>
FIG. 1 is a perspective view showing a push switch 100 according to the first embodiment. FIG. 2 is an exploded view of the push switch 100. The XYZ coordinate system will be defined and described below. Further, in the following, for convenience of description, the Z-axis negative direction side is referred to as the lower side or the lower side, and the Z-axis positive direction side is referred to as the upper side or the upper side, but they do not represent a general vertical relationship.
 プッシュスイッチ100は、筐体110、金属プレート120A、120B、メタルコンタクト130A、リーフスプリング130B、130C、メタルスプリング140、押圧部材150、及びフレーム160を含む。以下では、金属プレート120A、120Bについては、単独で示す図3も用いて説明する。図3は、金属プレート120A、120Bを示す図である。 The push switch 100 includes a housing 110, metal plates 120A and 120B, a metal contact 130A, leaf springs 130B and 130C, a metal spring 140, a pressing member 150, and a frame 160. The metal plates 120A and 120B will be described below with reference to FIG. FIG. 3 is a diagram showing the metal plates 120A and 120B.
 プッシュスイッチ100は、メタルコンタクト130Aによって金属プレート120Aと金属プレート120Bとの電気的な導通状態が変化することでオン(導通状態)とオフ(非導通状態)とが切り替わる。 The push switch 100 is switched between ON (conduction state) and OFF (non-conduction state) by changing the electrical conduction state between the metal plate 120A and the metal plate 120B by the metal contact 130A.
 プッシュスイッチ100は、オフ(非導通状態)の時には、メタルコンタクト130Aは金属プレート120B(周辺固定接点121B)には接触しているが、金属プレート120A(中央固定接点121A)には接触していない。すなわち、金属プレート120Aと金属プレート120Bとは電気的に接続されておらず、プッシュスイッチ100はオフ(非導通状態)である。 When the push switch 100 is off (non-conductive state), the metal contact 130A is in contact with the metal plate 120B (peripheral fixed contact 121B), but is not in contact with the metal plate 120A (central fixed contact 121A). .. That is, the metal plate 120A and the metal plate 120B are not electrically connected, and the push switch 100 is off (non-conductive state).
 また、プッシュスイッチ100は、押圧部材150を下方向に押圧していない初期位置(図1参照)から押圧部材150を下方向に押圧し始めると、まずメタルスプリング140のみが弾性変形し、リーフスプリング130B、130Cとメタルコンタクト130Aは弾性変形しない動作領域に入る。この動作領域における押圧部材150の下方向のストローク(変位)をプリストロークと称す。プリストロークの状態では、メタルコンタクト130Aは反転動作せず、金属プレート120Aに接触していないため、プッシュスイッチ100はオフ(非導通状態)である。 Further, when the push switch 100 starts pressing the pressing member 150 downward from the initial position (see FIG. 1) where the pressing member 150 is not pressed downward, only the metal spring 140 elastically deforms first and the leaf spring 130B and 130C and the metal contact 130A enter the operation region where they are not elastically deformed. The downward stroke (displacement) of the pressing member 150 in this operation region is referred to as a prestroke. In the pre-stroke state, the metal contact 130A does not perform the reversing operation and does not contact the metal plate 120A, so the push switch 100 is off (non-conducting state).
 また、メタルスプリング140の中央部がリーフスプリング130Cに接触し始めると、プッシュスイッチ100は、プリストロークの動作領域からメインストロークの動作状態に遷移する。 Further, when the central portion of the metal spring 140 starts to contact the leaf spring 130C, the push switch 100 makes a transition from the prestroke operation region to the main stroke operation state.
 メインストロークの動作領域で押圧部材150を下方向に押圧すると、メタルスプリング140の中央部がリーフスプリング130C、130Bの中央部を下方向に押圧し、リーフスプリング130C、130Bの中央部がメタルコンタクト130Aの中央部を下方向に押圧する。そして、リーフスプリング130C、130Bとメタルコンタクト130Aとが反転動作を行うと、メタルコンタクト130Aが金属プレート120Aに接触して、金属プレート120Aと金属プレート120Bとがメタルコンタクト130Aを介して電気的に接続され、プッシュスイッチ100がオン(導通状態)になる。 When the pressing member 150 is pressed downward in the operation region of the main stroke, the central portion of the metal spring 140 presses the central portions of the leaf springs 130C and 130B downward, and the central portions of the leaf springs 130C and 130B contact the metal contact 130A. Press the center of the downward. Then, when the leaf springs 130C and 130B and the metal contact 130A perform a reversing operation, the metal contact 130A contacts the metal plate 120A, and the metal plate 120A and the metal plate 120B are electrically connected via the metal contact 130A. Then, the push switch 100 is turned on (conductive state).
 プリストロークを実現するためにメタルスプリング140を用いると、メインストロークの動作領域におけるプリストローク用の弾性部材(メタルスプリング140)の弾性変形量を減らすことができるため、従来のようにラバー製の押圧部材(ステム)を用いる場合よりも、メインストロークの動作領域のショートストローク化を図ることができる。以下、プッシュスイッチ100の構成の詳細について説明する。 When the metal spring 140 is used to realize the prestroke, the elastic deformation amount of the elastic member for the prestroke (metal spring 140) in the operation area of the main stroke can be reduced. It is possible to achieve a shorter stroke in the operation region of the main stroke than when using a member (stem). Hereinafter, details of the configuration of the push switch 100 will be described.
 筐体110は、樹脂製であり、金属プレート120A、120Bを保持する。筐体110と金属プレート120A、120Bは、インサート成型によって一体的に作製される。筐体110は、開口部111と、開口部111に連通する収納部112とを有する。開口部111は、Z軸正方向側の面に形成されている。収納部112は、開口部から下側に向かって形成されている。開口部111及び収納部112は、平面視で四隅(4つの角部)が面取りされた矩形状であり、X軸方向の長さとY軸方向の長さとが略等しい。すなわち、ここでは開口部111及び収納部112は、平面視で正方形である。 The housing 110 is made of resin and holds the metal plates 120A and 120B. The housing 110 and the metal plates 120A and 120B are integrally manufactured by insert molding. The housing 110 has an opening 111 and a storage portion 112 that communicates with the opening 111. The opening 111 is formed on the surface on the Z axis positive direction side. The storage portion 112 is formed downward from the opening. The opening portion 111 and the storage portion 112 have a rectangular shape in which four corners (four corner portions) are chamfered in a plan view, and the length in the X axis direction and the length in the Y axis direction are substantially equal. That is, here, the opening portion 111 and the storage portion 112 are square in a plan view.
 収納部112の底部には金属プレート120Aの中央固定接点121Aと、金属プレート120Bの周辺固定接点121Bとが配置され、収納部112内に表出している。収納部112内では、中央固定接点121Aと周辺固定接点121Bの上側に、メタルコンタクト130Aとリーフスプリング130B、130Cがこの順に重ねて配置され(図2参照)、さらにその上にメタルスプリング140と押圧部材150が重ねられている。メタルスプリング140は、収納部112に収納され、押圧部材150の突出部152は開口部111から上方向に突出している(図1参照)。 The central fixed contact 121A of the metal plate 120A and the peripheral fixed contact 121B of the metal plate 120B are arranged on the bottom of the storage section 112 and are exposed in the storage section 112. Inside the storage part 112, the metal contact 130A and the leaf springs 130B and 130C are arranged in this order on the upper side of the central fixed contact 121A and the peripheral fixed contact 121B (see FIG. 2), and the metal spring 140 and the pressing force are further applied thereto. The member 150 is overlaid. The metal spring 140 is housed in the housing portion 112, and the projecting portion 152 of the pressing member 150 projects upward from the opening portion 111 (see FIG. 1).
 金属プレート120Aは、図3に示すように、中央固定接点121Aと、端子122Aとを有する。金属プレート120Aは、一例として銅製である。中央固定接点121Aは、収納部112の底部の中央部に表出しており、押圧部材150が下方向に押圧されていない状態では、メタルコンタクト130Aには接触しておらず、押圧部材150が下方向に押圧されてメタルコンタクト130Aが反転動作を行うと、メタルコンタクト130Aに接触する。端子122Aは、筐体110のX軸負方向側に突出している。 As shown in FIG. 3, the metal plate 120A has a central fixed contact 121A and a terminal 122A. The metal plate 120A is made of copper, for example. The central fixed contact 121A is exposed at the central portion of the bottom of the storage section 112, and when the pressing member 150 is not pressed downward, it does not contact the metal contact 130A and the pressing member 150 moves downward. When the metal contact 130A is pressed in the direction and performs a reversing operation, the metal contact 130A contacts the metal contact 130A. The terminal 122A projects toward the negative side of the housing 110 in the X-axis direction.
 金属プレート120Bは、周辺固定接点121Bと、端子122Bとを有する。金属プレート120Bは、一例として銅製である。周辺固定接点121Bは、収納部112の底部の周縁部に表出しており、押圧部材150が下方向に押圧されていない初期位置にある状態(図1参照)において、メタルコンタクト130AのX軸方向両側の端部と、Y軸方向両側の端部とに接触しており、押圧部材150が下方向に押圧された状態においてもメタルコンタクト130Aに接触する。端子122Bは、筐体110のX軸正方向側に突出している。 The metal plate 120B has a peripheral fixed contact 121B and a terminal 122B. The metal plate 120B is made of copper, for example. The peripheral fixed contact 121B is exposed on the peripheral edge of the bottom of the storage part 112, and in the state where the pressing member 150 is not pressed downward (see FIG. 1), the metal contact 130A is in the X-axis direction. The end portions on both sides are in contact with the end portions on both sides in the Y-axis direction, and even when the pressing member 150 is pressed downward, the metal contact 130A is also contacted. The terminal 122B projects to the X axis positive direction side of the housing 110.
 メタルコンタクト130Aは、金属部材製の金属ばねであり、基部131Aと、上側にドーム状に突出し反転動作可能なドーム部132Aを有する(図2参照)。 The metal contact 130A is a metal spring made of a metal member, and has a base 131A and a dome portion 132A protruding upward in a dome shape and capable of reversing operation (see FIG. 2).
 基部131Aは、平面視で開口部111及び収納部112の形状及びサイズに合わせた矩形形状を有し、ドーム部132Aの周囲に位置する。基部131Aは、周辺固定接点121Bに接触している。なお、基部131Aの形状は、上述のような矩形形状ではなく、例えば、ドーム部132Aの外周部から収納部112の四隅方向へ各々独立して脚状に延設されたような形状であってもよい。 The base 131A has a rectangular shape that matches the shapes and sizes of the opening 111 and the storage 112 in a plan view, and is located around the dome portion 132A. The base 131A is in contact with the peripheral fixed contact 121B. The shape of the base 131A is not a rectangular shape as described above, but may be, for example, a shape that is independently extended in a leg shape from the outer peripheral portion of the dome portion 132A toward the four corners of the storage portion 112. Good.
 ドーム部132Aは、基部131Aの中央部に位置し、基部131Aに対して上側に凸の状態から下側に凸の状態に反転動作可能である。すなわち、ドーム部132Aの反転動作方向は、ドーム部132Aが凸となる向きが変化する方向であり、上側に凸の状態から下側に凸の状態に変化する方向である。メタルコンタクト130Aは、可動接点部材の一例である。メタルコンタクト130Aは、一例として、ステンレス製である。 The dome portion 132A is located in the central portion of the base 131A, and is capable of reversing from a state of being convex upward to a state of being convex downward with respect to the base 131A. That is, the reversing operation direction of the dome portion 132A is the direction in which the direction in which the dome portion 132A is convex changes, and the direction in which the dome portion 132A is convex is changed from the convex state to the downward side. The metal contact 130A is an example of a movable contact member. The metal contact 130A is made of stainless steel, for example.
 メタルコンタクト130Aは、ドーム部132Aの頂部が中央固定接点121Aの上方に位置するとともに、基部131Aが周辺固定接点121Bに接触した状態で配置されている。そのため、ドーム部132Aは、ドーム部132Aが上側から押圧されて反転動作して下側に凸になると、反転したドーム部132Aが中央固定接点121Aに接触し、メタルコンタクト130Aが中央固定接点121Aと周辺固定接点121Bを導通させる。メタルコンタクト130Aは、下面に銀めっきが施されている。下面は、電流が流れる中央固定接点121A及び周辺固定接点121Bと接触するからである。また、ドーム部132Aが反転動作することで、操作者に操作感触を与えることができる。 The metal contact 130A is arranged such that the top of the dome portion 132A is located above the central fixed contact 121A and the base 131A is in contact with the peripheral fixed contact 121B. Therefore, in the dome portion 132A, when the dome portion 132A is pressed from the upper side to invert and convex downward, the inverted dome portion 132A contacts the central fixed contact 121A, and the metal contact 130A becomes the central fixed contact 121A. The peripheral fixed contact 121B is made conductive. The metal contact 130A has a lower surface plated with silver. This is because the lower surface comes into contact with the central fixed contact 121A and the peripheral fixed contact 121B through which current flows. In addition, the operation feeling can be given to the operator by inverting the dome portion 132A.
 このようなメタルコンタクト130Aは、平面視で略矩形状に成型された板金にパンチング処理でドーム部132Aを形成することによって作製される。 Such a metal contact 130A is produced by forming a dome portion 132A by punching on a sheet metal formed into a substantially rectangular shape in plan view.
 リーフスプリング130Bは、メタルコンタクト130Aから銀めっきを取り除いた構成を有する。このため、リーフスプリング130Bは、基部131Bとドーム部132Bと有する。リーフスプリング130Bは、メタルコンタクト130Aに重ねて配置される。 The leaf spring 130B has a configuration in which silver plating is removed from the metal contact 130A. Therefore, the leaf spring 130B has a base portion 131B and a dome portion 132B. The leaf spring 130B is arranged so as to overlap the metal contact 130A.
 リーフスプリング130Cは、リーフスプリング130Bと同一の構成を有するため、基部131Cとドーム部132Cと有する。リーフスプリング130Cは、リーフスプリング130Bに重ねて配置される。 Since the leaf spring 130C has the same configuration as the leaf spring 130B, it has a base portion 131C and a dome portion 132C. The leaf spring 130C is arranged so as to overlap the leaf spring 130B.
 メタルスプリング140は、4本の脚部141と、中央部142とを有する金属製の板ばねである。中央部142は、4本の脚部141の中央に位置し、平面視で円形の平板状の部分である。 The metal spring 140 is a metal leaf spring having four leg portions 141 and a central portion 142. The central portion 142 is located at the center of the four leg portions 141 and is a circular flat plate portion in plan view.
 4本の脚部141は、平面視で中央部142から等間隔(90度間隔)で外側に向かうように、かつ、側面視で中央部142から斜め下方向に向かうように延在している。このようなメタルスプリング140は、略十字状に切断された板金にパンチング処理で脚部141を形成することによって作製される。また、各脚部141は、収納部112の四隅に向かって延在しているため、脚部141を長くすることができる。 The four leg portions 141 extend outward from the central portion 142 at equal intervals (intervals of 90 degrees) in a plan view and obliquely downward from the central portion 142 in a side view. .. The metal spring 140 as described above is manufactured by forming the leg portions 141 by punching a sheet metal cut into a substantially cross shape. Moreover, since each leg part 141 extends toward the four corners of the storage part 112, the leg part 141 can be lengthened.
 各脚部141は、折り曲げ部141Aを有する。脚部141は、中央部142から折り曲げ部141Aに向かって斜め下方向に延在し、折り曲げ部141Aで折り曲げられ、先端に向かって斜め上方向に延在する形状を有する。 Each leg 141 has a bent portion 141A. The leg portion 141 has a shape that extends obliquely downward from the central portion 142 toward the bent portion 141A, is bent at the bent portion 141A, and extends obliquely upward toward the tip.
 脚部141の高さ(折り曲げ部141Aから中央部142に接続される付け根までのZ軸方向の長さ)は、リーフスプリング130Cのドーム部132Cの高さ(基部131Cに対するドーム部132Cの頂部の高さ)よりも高く設定されている。また、4個の折り曲げ部141Aの位置は、平面視でリーフスプリング130Cのドーム部132Cよりも外側にある。 The height of the leg portion 141 (the length in the Z-axis direction from the bent portion 141A to the root connected to the central portion 142) is the height of the dome portion 132C of the leaf spring 130C (the top of the dome portion 132C with respect to the base portion 131C). Height) is set higher than. Further, the positions of the four bent portions 141A are outside the dome portion 132C of the leaf spring 130C in plan view.
 メタルスプリング140は、平面視で4本の脚部141と、リーフスプリング130Cの基部131Cの四隅との位置を合わせてリーフスプリング130Cに重ねられた状態で、4個の折り曲げ部141Aが基部131Cの四隅の上面に接触し、中央部142とドーム部132Cとの間に隙間が生じ、かつ、脚部141とドーム部132Cとの間に隙間が生じる形状を有する。 In the metal spring 140, when the four leg portions 141 and the four corners of the base portion 131C of the leaf spring 130C are aligned with each other in a plan view and overlapped with the leaf spring 130C, the four bent portions 141A have the base portion 131C. It has such a shape that it contacts the upper surfaces of the four corners, a gap is formed between the central portion 142 and the dome portion 132C, and a gap is formed between the leg portion 141 and the dome portion 132C.
 このため、メタルスプリング140を平面視で位置を合わせてリーフスプリング130Cに重ねると、メタルスプリング140は、4本の脚部141の折り曲げ部141Aがリーフスプリング130Cの基部131Cの四隅の上面にそれぞれ当接した状態で、中央部142がリーフスプリング130Cのドーム部132Cから離間した状態になる。 Therefore, when the metal springs 140 are aligned with each other in plan view and overlapped with the leaf springs 130C, the bent portions 141A of the four leg portions 141 of the metal springs 140 respectively contact the upper surfaces of the four corners of the base portion 131C of the leaf springs 130C. In the contact state, the central portion 142 is separated from the dome portion 132C of the leaf spring 130C.
 メタルスプリング140は、押圧部材150によって中央部142が下方向に押圧されると、脚部141が中央部142から外側に押し広げられるように弾性変形するので、中央部がリーフスプリング130Cのドーム部132Cに近づく。 When the central portion 142 is pressed downward by the pressing member 150, the metal spring 140 elastically deforms so that the leg portions 141 are spread outward from the central portion 142, so that the central portion is the dome portion of the leaf spring 130C. It approaches 132C.
 このようにメタルスプリング140が弾性変形して、脚部141の折り曲げ部141Aよりも中央部142側の部分、又は、中央部142のどちらかがリーフスプリング130Cのドーム部132Cに接触するまでの動作領域が、プリストロークの動作領域になる。 In this way, the metal spring 140 is elastically deformed, and the operation until the portion of the leg 141 closer to the central portion 142 than the bent portion 141A or the central portion 142 comes into contact with the dome portion 132C of the leaf spring 130C. The area becomes the operation area of the prestroke.
 メタルスプリング140は、押圧部材150によってさらに下方に押圧されると、リーフスプリング130Cのドーム部132Cを下方に押し下げるメインストロークの動作領域に遷移する。 When the metal spring 140 is further pressed downward by the pressing member 150, the metal spring 140 transitions to the operation region of the main stroke in which the dome portion 132C of the leaf spring 130C is pressed downward.
 押圧部材150は、基部151と突出部152とを有し、基部151と突出部152の下端側とが収納部112に収納される。基部151は、円錐台形の突出部152の下端の周囲に設けられた円盤状の部分であり、基部151の中央部の上面から突出部152が突出している。押圧部材150は、所謂ステムである。 The pressing member 150 has a base 151 and a protrusion 152, and the base 151 and the lower end side of the protrusion 152 are housed in the housing 112. The base 151 is a disk-shaped portion provided around the lower end of the truncated cone-shaped protrusion 152, and the protrusion 152 protrudes from the upper surface of the central portion of the base 151. The pressing member 150 is a so-called stem.
 押圧部材150は、硬質材料製であり、一例として、弾性変形が殆ど生じない合成樹脂、金属、又はセラミック等で作製される。すなわち、硬質材料とは、弾性変形が殆ど生じない合成樹脂、金属、又はセラミック等であり、理想的には弾性を有しない材料である。プッシュスイッチ100は、メインストロークの動作領域において、押圧部材150の弾性変形によるストロークの増大を抑制するために、押圧部材150を弾性変形が殆ど生じない硬質材料製にしている。 The pressing member 150 is made of a hard material, and is made of, for example, a synthetic resin, a metal, a ceramic, or the like that hardly causes elastic deformation. That is, the hard material is a synthetic resin, a metal, a ceramic, or the like that hardly elastically deforms, and ideally a material having no elasticity. In the push switch 100, in order to suppress an increase in stroke due to elastic deformation of the pressing member 150 in the operation region of the main stroke, the pressing member 150 is made of a hard material that hardly elastically deforms.
 フレーム160は、基部161及び脚部162を有する。基部161は、平面視で矩形状であり、開口部161Aを有する。基部161は、筐体110の上面に重ねて配置され、開口部161Aは、押圧部材150の突出部152を挿通させることができる開口径を有する。 The frame 160 has a base 161 and legs 162. The base 161 has a rectangular shape in a plan view and has an opening 161A. The base 161 is arranged so as to overlap the upper surface of the housing 110, and the opening 161A has an opening diameter that allows the protrusion 152 of the pressing member 150 to be inserted therethrough.
 脚部162は、基部161のY軸方向両側に2本ずつ設けられており、それぞれZ軸負方向へ突出し、先端がX軸方向かつ、平面視で内側を向く方向に折り曲げられた係合部162Aを有する。各脚部162は、筐体110の側面に密着し、係合部162Aは筐体110の側面の突起に係合する。 Two leg portions 162 are provided on each side of the base portion 161 in the Y-axis direction. The leg portions 162 project in the Z-axis negative direction, and the tips are bent in the X-axis direction and inward in a plan view. It has 162A. Each leg 162 is in close contact with the side surface of the housing 110, and the engagement portion 162A is engaged with a protrusion on the side surface of the housing 110.
 図2に示すメタルコンタクト130A、リーフスプリング130B、130C、メタルスプリング140を筐体110の収納部112に収納し、メタルスプリング140の上に押圧部材150を配置した状態で、筐体110の上からフレーム160を被せて固定すると、図1に示すようにプッシュスイッチ100が完成する。 The metal contact 130A, the leaf springs 130B and 130C, and the metal spring 140 shown in FIG. 2 are housed in the housing portion 112 of the housing 110, and the pressing member 150 is arranged on the metal spring 140. When the frame 160 is covered and fixed, the push switch 100 is completed as shown in FIG.
 この状態で、メタルコンタクト130A、リーフスプリング130B、130C、メタルスプリング140、及び押圧部材150は、ガタつかないように保持されている。 In this state, the metal contact 130A, the leaf springs 130B and 130C, the metal spring 140, and the pressing member 150 are held so as not to rattle.
 なお、基部161のX軸方向の両側に、筐体110の側面の凹部に係合する係合部を設けてもよい。 Note that engaging portions that engage with the recesses on the side surface of the housing 110 may be provided on both sides of the base 161 in the X-axis direction.
 以上のような構成を有するプッシュスイッチ100は、一例として、車両の室内における各種操作系のスイッチとして用いることが可能である。このような場合には、押圧部材150の突出部152を薄い樹脂シート等で覆われてもよい。 The push switch 100 having the above-described configuration can be used as a switch for various operation systems in a vehicle cabin, for example. In such a case, the protrusion 152 of the pressing member 150 may be covered with a thin resin sheet or the like.
 また、車両の走行によって生じる振動によってプッシュスイッチ100のメタルコンタクト130A、リーフスプリング130B、130C、メタルスプリング140、及び押圧部材150がガタつかないようにするために、図1に示す初期位置よりも押圧部材150を少し下方に押し込んだ状態で取り付けられることがある。このような場合には、プレストロークの範囲内で押圧部材150を下方向に押圧した状態で取り付ければよい。なお、このように押圧部材150を下方向に押圧した状態で取り付けることにより、プッシュスイッチ100の個体差を吸収するようにしてもよい。 Further, in order to prevent the metal contact 130A, the leaf springs 130B and 130C, the metal spring 140, and the pressing member 150 of the push switch 100 from rattling due to the vibration generated by the traveling of the vehicle, the push switch 100 is pressed more than the initial position shown in FIG. The member 150 may be attached with the member 150 pushed slightly downward. In such a case, the pressing member 150 may be attached while being pressed downward within the range of the prestroke. The pressing member 150 may be attached in a downwardly pressed state as described above to absorb individual differences of the push switch 100.
 図4A乃至図4Fは、プッシュスイッチ100のFS(Force-Stroke)特性を示す図である。横軸が押圧部材150を下方に押し込むストローク(S)であり、縦軸が押圧部材150を下方に押し込む際に必要な力(F)である。力(F)は操作荷重である。 4A to 4F are diagrams showing FS (Force-Stroke) characteristics of the push switch 100. The horizontal axis is the stroke (S) for pushing the pressing member 150 downward, and the vertical axis is the force (F) required for pushing the pressing member 150 downward. Force (F) is the operating load.
 図4Aは、メタルスプリング140及び押圧部材150だけでのFS特性を示し、図4Bは、メタルコンタクト130Aとリーフスプリング130B、130CだけでのFS特性を示し、図4Cは、プッシュスイッチ100全体のFS特性を示す。 4A shows the FS characteristics of only the metal spring 140 and the pressing member 150, FIG. 4B shows the FS characteristics of only the metal contact 130A and the leaf springs 130B and 130C, and FIG. 4C shows the FS of the entire push switch 100. Show the characteristics.
 また、比較用のプッシュスイッチとして、メタルスプリング140及び押圧部材150の代わりに、従来のように弾性変形することによってプリストロークを実現する押圧部材を含むプッシュスイッチのFS特性を示す。図4Dは、比較用のプッシュスイッチの押圧部材単独でのFS特性を示し、図4Eは、メタルコンタクト130Aとリーフスプリング130B、130CだけでのFS特性を示し、図4Fは、比較用のプッシュスイッチ全体でのFS特性を示す。なお、図4Bと図4EのFS特性は等しい。 Further, as a push switch for comparison, instead of the metal spring 140 and the pressing member 150, the FS characteristics of a push switch including a pressing member that realizes a prestroke by elastically deforming as in the conventional case are shown. FIG. 4D shows the FS characteristics of the pressing member alone of the comparison push switch, FIG. 4E shows the FS characteristics of only the metal contact 130A and the leaf springs 130B and 130C, and FIG. 4F shows the comparison push switch. The FS characteristics as a whole are shown. The FS characteristics of FIG. 4B and FIG. 4E are the same.
 図4Aに示すように、メタルスプリング140及び押圧部材150だけでのFS特性は、ストロークが0.0mmから約0.55mmくらいまでは操作荷重が線形的に立ち上がり、ストロークが約0.55mmに達すると、操作荷重をそれ以上増やしても、ストロークは略一定になる特性を示した。押圧部材150は、弾性変形が殆ど生じない硬質材料製であることから、図4Aに示すFS特性は殆どメタルスプリング140だけのFS特性であることを確認できた。さらに、メタルスプリング140はその弾性変形を妨げる剛体に接触すると、それ以上操作ストロークが増えないことも確認できた。 As shown in FIG. 4A, the FS characteristics of only the metal spring 140 and the pressing member 150 show that the operating load rises linearly from the stroke of 0.0 mm to about 0.55 mm and reaches the stroke of about 0.55 mm. Then, even if the operating load was increased further, the stroke showed a characteristic of being substantially constant. Since the pressing member 150 is made of a hard material that hardly elastically deforms, it can be confirmed that the FS characteristic shown in FIG. 4A is almost the FS characteristic of only the metal spring 140. Furthermore, it was confirmed that when the metal spring 140 comes into contact with a rigid body that prevents its elastic deformation, the operation stroke does not increase any further.
 また、図4Bに示すように、メタルコンタクト130Aとリーフスプリング130B、130CだけでのFS特性は、ストロークが約0.35mmに達するまでは操作荷重が略ゼロであり、ストロークが約0.47mmで操作荷重がピークになり、ストロークが約0.6mmで操作荷重が極小値を取り、ストロークが約0.6mmの時点でそれ以上押圧できない状態になることを示した。これは、ストロークが約0.47mmの時点でメタルコンタクト130Aとリーフスプリング130B、130Cのドーム部132A、132B、132Cが反転し始め、ストロークが約0.6mmの時点で完全に反転した状態になることを示している。完全に反転した状態は、プッシュスイッチ100がオンになる状態である。図4Bからは、メタルコンタクト130Aとリーフスプリング130B、130Cがその弾性変形を妨げる剛体に接触すると、それ以上操作ストロークが増えないことも確認できた。 Further, as shown in FIG. 4B, the FS characteristic of only the metal contact 130A and the leaf springs 130B and 130C is that the operating load is substantially zero until the stroke reaches about 0.35 mm, and the stroke is about 0.47 mm. It was shown that the operation load reached a peak, the stroke had a minimum value at a stroke of about 0.6 mm, and the stroke could not be further pressed at a stroke of about 0.6 mm. This means that the metal contact 130A and the dome portions 132A, 132B, 132C of the leaf springs 130B, 130C start to reverse at a stroke of about 0.47 mm, and become completely reversed at a stroke of about 0.6 mm. It is shown that. The completely inverted state is a state in which the push switch 100 is turned on. From FIG. 4B, it was also confirmed that when the metal contact 130A and the leaf springs 130B and 130C contact the rigid body that prevents the elastic deformation, the operation stroke does not increase any more.
 また、図4Cは、プッシュスイッチ100全体のFS特性であり、ストロークが約0.34mm付近でメタルコンタクト130Aがリーフスプリング130Cを押圧し始めるように、図4Aと図4BのFS特性を合成した特性になっている。プレストロークが終了してメインストロークが開始するのは、約0.34mmであり、メインストロークが完了するのは、約0.59mmである。 Further, FIG. 4C is an FS characteristic of the entire push switch 100. A characteristic obtained by combining the FS characteristics of FIG. 4A and FIG. 4B so that the metal contact 130A starts to press the leaf spring 130C at a stroke of about 0.34 mm. It has become. The prestroke ends and the main stroke begins about 0.34 mm, and the main stroke completes about 0.59 mm.
 このため、プッシュスイッチ100では、メインストロークの動作領域でオンにするのに必要なストロークを0.25mmにすることができ、ショートストローク化を実現できることが分かった。これは、メインストロークの動作領域において、押圧部材150の弾性変形が殆ど生じなかったためである。 Therefore, with the push switch 100, it was found that the stroke required to be turned on in the operation area of the main stroke can be set to 0.25 mm, and a short stroke can be realized. This is because the pressing member 150 hardly elastically deformed in the operation region of the main stroke.
 一方、比較用のプッシュスイッチでは、図4Dに示すように、硬質材料ではない材料からなり弾性変形する押圧部材だけでのFS特性は、ストロークが0.0mmから約0.3mmくらいまで操作荷重が非線形的に立ち上がった後に、ストロークが約0.65mmくらいまでは操作荷重が少し低下している。ストロークが約0.65mm以上になると、操作荷重が急激に増大している。ただし、図4Aと比較すると、その増大の仕方は緩やかである。これはストロークが約0.65mmの位置で剛体に接触して弾性変形が一旦止められた後に、押圧部材が押しつぶされることにより弾性変形しているためである。 On the other hand, in the push switch for comparison, as shown in FIG. 4D, the FS characteristic of only the pressing member made of a material other than a hard material and elastically deformed has an operating load from a stroke of about 0.0 mm to about 0.3 mm. After rising up in a non-linear manner, the operating load is slightly reduced until the stroke is about 0.65 mm. When the stroke is about 0.65 mm or more, the operating load sharply increases. However, as compared with FIG. 4A, the manner of increase is gradual. This is because when the stroke is about 0.65 mm, the rigid member comes into contact with the rigid body to temporarily stop the elastic deformation, and then the pressing member is crushed to elastically deform.
 図4Eに示すメタルコンタクト130Aとリーフスプリング130B、130CだけでのFS特性は図4Bと同一であるため、説明を省略する。 The FS characteristics of only the metal contact 130A and the leaf springs 130B and 130C shown in FIG. 4E are the same as those in FIG. 4B, so the description thereof will be omitted.
 また、図4Fは、比較用のプッシュスイッチ全体のFS特性であり、ストロークが約0.4mmの位置で押圧部材がリーフスプリング130Cに接触するように、図4Dと図4EのFS特性を合成した特性になっている。プレストロークが終了してメインストロークが開始するのは、約0.39mmであり、比較用のプッシュスイッチがオンになるのは、約0.72mmである。 Further, FIG. 4F shows the FS characteristics of the entire push switch for comparison. The FS characteristics of FIGS. 4D and 4E are combined so that the pressing member contacts the leaf spring 130C at a position where the stroke is about 0.4 mm. It is a characteristic. The pre-stroke ends and the main stroke starts about 0.39 mm, and the comparison push switch turns on about 0.72 mm.
 このため、比較用のプッシュスイッチでは、メインストロークの動作領域でオンにするのに必要なストロークは約0.33mmであり、プッシュスイッチ100よりもストロークが約30%長いことが分かった。このように比較用のプッシュスイッチでストロークが長くなったのは、メインストロークの動作領域において、メタルコンタクト130Aおよびリーフスプリング130B、130Cが弾性変形するだけでなく、押圧部材の弾性変形が生じたためである。すなわち、メタルコンタクト130Aおよびリーフスプリング130B、130Cが弾性変形を開始する前に、押圧部材が押しつぶされるため、その分のストロークが長くなっている。図4Fのメインストロークが始まった直後(0.4mm直後)の操作荷重の立ち上がり方が、図4Eの操作荷重の立ち上がり方に対して緩やかなのは、押圧部材が押しつぶされた分の成分が合成されているためである。 Therefore, in the push switch for comparison, the stroke required to turn on in the operation area of the main stroke is about 0.33 mm, which is about 30% longer than the push switch 100. In this way, the stroke of the push switch for comparison is lengthened because not only the metal contact 130A and the leaf springs 130B and 130C are elastically deformed but also the pressing member is elastically deformed in the operation region of the main stroke. is there. That is, since the pressing member is crushed before the metal contact 130A and the leaf springs 130B and 130C start elastically deforming, the stroke becomes longer. The rising of the operating load immediately after the start of the main stroke in FIG. 4F (immediately after 0.4 mm) is gentler than the rising of the operating load in FIG. 4E because the components of the crushed pressing member are combined. This is because
 図5A及び図5Bは、プッシュスイッチ100をオン/オフする際の操作音のレベルの周波数分布を示す図である。プッシュスイッチ100としては、FS特性の極大値に対する極小値の低下率が20%のものと30%のものを準備した。この低下率が大きいほど、押圧部材150を手で操作したときに操作者が得るクリック感が強いことになる。 5A and 5B are diagrams showing frequency distributions of operation sound levels when the push switch 100 is turned on / off. As the push switch 100, one having a reduction rate of the minimum value with respect to the maximum value of the FS characteristic of 20% or 30% was prepared. The larger the reduction rate, the stronger the click feeling that the operator obtains when operating the pressing member 150 by hand.
 また、ここでは比較用に、メタルスプリング140及び押圧部材150の代わりに、従来のように弾性変形することによってプリストロークを実現する押圧部材を含む比較用のプッシュスイッチの操作音のレベルも示す。 Also, here, for comparison, instead of the metal spring 140 and the pressing member 150, the operation sound level of the push switch for comparison including the pressing member that realizes the prestroke by elastically deforming as in the conventional case is also shown.
 なお、プッシュスイッチ100をオンする際の操作音のレベルとは、メインストロークの動作領域において、プッシュスイッチ100がオンになるまで押圧部材150を下方に押圧したときに生じる操作音のレベルである。これは比較用のプッシュスイッチにおいても同様である。 The level of the operation sound when the push switch 100 is turned on is the level of the operation sound generated when the pressing member 150 is pressed downward until the push switch 100 is turned on in the operation region of the main stroke. The same applies to the push switch for comparison.
 また、プッシュスイッチ100をオフする際の操作音のレベルとは、プッシュスイッチ100がオンの状態において、押圧部材150を開放し(典型的には押圧部材150を押す手を離し)、押圧部材150が初期位置に戻るときの操作音のレベルである。 Further, the level of the operation sound when the push switch 100 is turned off means that the push member 100 is opened (typically, the hand pushing the push member 150 is released) and the push member 150 is turned on when the push switch 100 is on. Is the level of the operation sound when is returned to the initial position.
 図5Aに示すように、プッシュスイッチ100をオンする際の操作音のレベルは、低下率が20%のものと30%のもので略等しく、また、比較用のプッシュスイッチも略等しいレベルであった。 As shown in FIG. 5A, the levels of the operation sound when the push switch 100 is turned on are substantially equal for the reduction rate of 20% and 30%, and the comparison push switches are also of substantially the same level. It was
 また、図5Bに示すように、プッシュスイッチ100をオフする際の操作音のレベルは、比較用のプッシュスイッチに比べて、低下率が20%と30%の両方のプッシュスイッチ100において低減されていることが分かった。このようにオフにする際の操作音が低減されたのは、押圧部材150が初期位置に戻る際にメタルスプリング140に掛かる負荷が4本の脚部141に分散されたためと考えられる。 Further, as shown in FIG. 5B, the level of the operation sound when turning off the push switch 100 is reduced in both the push switches 100 whose reduction rates are 20% and 30% as compared with the push switch for comparison. I found out that It is considered that the reason why the operation sound at the time of turning off is reduced is that the load applied to the metal spring 140 when the pressing member 150 returns to the initial position is distributed to the four legs 141.
 このように、ショートストローク化を図っても、プッシュスイッチ100をオンする際の操作音は、比較用のプッシュスイッチと同レベルであり、プッシュスイッチ100をオフする際の操作音は、比較用のプッシュスイッチよりも低減されていることが分かった。 As described above, even if the short stroke is achieved, the operation sound when the push switch 100 is turned on is at the same level as that of the comparison push switch, and the operation sound when the push switch 100 is turned off is the same as that of the comparison push switch. It turned out that it is reduced more than the push switch.
 以上のように、実施の形態によれば、メタルコンタクト130A、リーフスプリング130B、130Cの積層体と、押圧部材150との間に、プリストローク用のメタルスプリング140を設けるとともに、押圧部材150を硬質材料製で殆ど弾性変形しないステムにしたことにより、比較用のプッシュスイッチと比べて、メインストロークの動作領域においてオンするまでのストロークを大幅に短くできることが分かった。 As described above, according to the embodiment, the pre-stroke metal spring 140 is provided between the stacked body of the metal contact 130A, the leaf springs 130B and 130C, and the pressing member 150, and the pressing member 150 is hard. It was found that by using a stem made of a material that hardly elastically deforms, the stroke to be turned on in the operation region of the main stroke can be significantly shortened as compared with the push switch for comparison.
 このようなショートストローク化は、プリストローク用のメタルスプリング140と、硬質材料製で殆ど弾性変形しない押圧部材150とによって、比較的容易に実現することができる。 Such a short stroke can be relatively easily realized by the metal spring 140 for prestroke and the pressing member 150 made of a hard material and hardly elastically deformed.
 したがって、ショートストローク化を容易に実現できるプッシュスイッチ100を提供することができる。 Therefore, it is possible to provide the push switch 100 that can easily realize the short stroke.
 比較用のプッシュスイッチのように、弾性変形する押圧部材を含む場合には、図4Dに示すように操作荷重に応じて押圧部材は変形し続けるため、ショートストローク化を実現することは容易ではない。 When a pressing member that elastically deforms is included like the push switch for comparison, the pressing member continues to deform according to the operation load as shown in FIG. 4D, and thus it is not easy to realize a short stroke. ..
 これに対して、実施の形態のプッシュスイッチ100は、メタルスプリング140でプリストロークを実現し、メインストロークの動作領域ではメタルスプリング140が完全に押し潰されて殆ど変形しない状態になるとともに、押圧部材150を殆ど弾性変形しない硬質材料製にしたため、比較的容易にショートストローク化を実現することができる。 On the other hand, in the push switch 100 of the embodiment, the metal spring 140 realizes the prestroke, and the metal spring 140 is completely crushed in the operation region of the main stroke to be hardly deformed and the pressing member is pressed. Since 150 is made of a hard material that is hardly elastically deformed, it is possible to realize a short stroke relatively easily.
 また、押圧部材150を殆ど弾性変形しないため、長期にわたって安定したストロークでの操作が可能になる。 Also, since the pressing member 150 is hardly elastically deformed, it is possible to operate with a stable stroke for a long period of time.
 また、以上では、メタルスプリング140が4本の脚部141を有するため、プリストロークの動作領域における操作荷重を大きくすることができる。また、操作荷重による負荷が4本の脚部141に分散されるため、長寿命化を図るとともに、オフ時の操作音を低減することができる。 Further, in the above, since the metal spring 140 has the four leg portions 141, it is possible to increase the operation load in the operation region of the prestroke. Further, since the load due to the operation load is distributed to the four legs 141, it is possible to prolong the service life and reduce the operation noise at the time of turning off.
 また、以上では、メタルスプリング140の脚部141が弾性変形する形態について説明したが、中央部142が弾性変形してもよい。例えば、中央部142が非押圧状態で上に凸のドーム型であり、反転動作可能な構成であってもよい。この場合には、脚部141は弾性変形可能でも、弾性変形しない構成であってもよい。 In the above, the leg 141 of the metal spring 140 is elastically deformed, but the central portion 142 may be elastically deformed. For example, the central portion 142 may be a dome shape that is convex upward in a non-pressed state, and may have a configuration capable of reversing operation. In this case, the leg 141 may be elastically deformable or may not be elastically deformed.
 また、以上では、メタルスプリング140の脚部141が中央部142から側面視で斜め下方向に延在する形態について説明したが、脚部141は、中央部142とZ軸方向において等しい高さで水平方向(XY平面の方向)に延在していてもよい。この場合には、例えば、リーフスプリング130Cの基部131Cと脚部141との間に、スペーサを設けることによって、非押圧状態でメタルスプリング140とリーフスプリング130Cとの間に隙間が生じるようにすればよい。 In the above description, the leg portion 141 of the metal spring 140 extends obliquely downward from the central portion 142 in a side view, but the leg portion 141 has the same height as the central portion 142 in the Z-axis direction. It may extend in the horizontal direction (direction of the XY plane). In this case, for example, by providing a spacer between the base 131C of the leaf spring 130C and the leg 141, a gap may be created between the metal spring 140 and the leaf spring 130C in a non-pressed state. Good.
 また、以上では、メタルスプリング140の脚部141の折り曲げ部141Aが基部131Cの四隅の上面に接触する形態について説明した。メタルスプリング140は、板金をパンチング処理で打ち抜くことによって作製されるため、側面は打ち抜かれた面である。このように、折り曲げ部141Aが基部131Cの上面に接触する構成では、メタルスプリング140が下方に押圧された際に、メタルスプリング140の側面(打ち抜かれた面)が基部131Cの上面に接触することはないので、メタルスプリング140の動作に伴って、側面(打ち抜かれた面)から削れ粉が発生することを抑制でき、削れ粉による電気的な接触不良の発生を抑制することができる。 In the above description, the bent portions 141A of the legs 141 of the metal spring 140 contact the upper surfaces of the four corners of the base 131C. Since the metal spring 140 is manufactured by punching a sheet metal by punching processing, the side surface is a punched surface. In this manner, in the configuration in which the bent portion 141A contacts the upper surface of the base 131C, the side surface (punched surface) of the metal spring 140 contacts the upper surface of the base 131C when the metal spring 140 is pressed downward. Therefore, it is possible to suppress the generation of shavings from the side surface (punched surface) along with the operation of the metal spring 140, and it is possible to suppress the occurrence of electrical contact failure due to the shavings.
 また、以上では、メタルスプリング140の脚部141が中央部142から折り曲げ部141Aに向かって斜め下方向に延在し、折り曲げ部141Aで折り曲げられ、先端に向かって斜め上方向に延在する形状を有する形態について説明した。このような構成では、押圧部材150の突出部152が斜め方向から押圧されても、4本の脚部141に均等に荷重が掛かり易い。また、このような構成により、リーフスプリング130Cと押圧部材150との間で、メタルスプリング140を安定的に配置することができる。 Further, in the above, the shape in which the leg portion 141 of the metal spring 140 extends obliquely downward from the central portion 142 toward the bent portion 141A, is bent at the bent portion 141A, and extends obliquely upward toward the tip end. The above has been described. With such a configuration, even if the protruding portion 152 of the pressing member 150 is pressed in an oblique direction, the four leg portions 141 are likely to be uniformly loaded. Further, with such a configuration, the metal spring 140 can be stably arranged between the leaf spring 130C and the pressing member 150.
 しかしながら、脚部141は、折り曲げ部141Aで水平方向に折り曲げられていてもよい。このような構成の場合には、メタルスプリング140が下方に押圧された際に、脚部141の折り曲げ部141Aよりも先端側は、リーフスプリング130Cの基部131Cの上面から離間するので、メタルスプリング140の側面(打ち抜かれた面)が基部131Cの上面に接触することはなく、メタルスプリング140の動作に伴って、側面(打ち抜かれた面)から削れ粉が発生することを抑制でき、削れ粉による電気的な接触不良の発生を抑制することができる。 However, the leg portion 141 may be bent horizontally at the bent portion 141A. In the case of such a configuration, when the metal spring 140 is pressed downward, the tip end side of the bent portion 141A of the leg portion 141 is separated from the upper surface of the base portion 131C of the leaf spring 130C. Side surface (punched surface) does not contact the upper surface of the base 131C, and it is possible to suppress generation of shavings from the side surface (punched surface) due to the operation of the metal spring 140. The occurrence of electrical contact failure can be suppressed.
 また、以上では、メタルスプリング140の脚部141が折り曲げ部141Aで折り曲げられている形態について説明したが、脚部141は折り曲げられておらず、先端がリーフスプリング130Cの基部131Cの上面に接触していてもよい。先端も側面(打ち抜かれた面)の一部であるが、削れ粉の発生による影響が殆ど生じないような場合には、このような構成であってもよい。 In the above description, the leg 141 of the metal spring 140 is bent at the bent portion 141A. However, the leg 141 is not bent, and the tip of the leg 141 contacts the upper surface of the base 131C of the leaf spring 130C. May be. The tip is also a part of the side surface (punched surface), but in the case where the influence of the generation of shavings hardly occurs, such a configuration may be adopted.
 また、以上では、メタルスプリング140の脚部141が4本ある形態について説明したが、脚部141は3本であってもよいし、動作の安定性が確保できるのであれば2本であってもよい。 In the above description, the metal spring 140 has four legs 141, but the number of legs 141 may be three, or two if the stability of the operation can be ensured. Good.
 また、以上では、開口部111及び収納部112は平面視で正方形である形態について説明したが、X軸方向又はY軸方向に長い長方形であってもよい。この場合には、脚部141の長さをより長くすることができ、プリストロークの量をより多く取ることができる。このため、プッシュスイッチ100の仕様等に応じて、操作荷重を設定し易い構成にすることができる。 Also, in the above description, the shape in which the opening 111 and the accommodating portion 112 are square in a plan view has been described, but it may be a rectangle long in the X-axis direction or the Y-axis direction. In this case, the length of the leg portion 141 can be made longer, and a larger amount of prestroke can be taken. Therefore, the operation load can be easily set according to the specifications of the push switch 100.
 また、以上では、プッシュスイッチ100が、メタルコンタクト130Aに重ねられるリーフスプリング130B、130Cを含む形態について説明した。リーフスプリング130B、130Cは、メインストロークの動作領域における操作荷重を大きくするために設けられている。このため、リーフスプリング130B、130Cが不要な場合には、プッシュスイッチ100は、リーフスプリング130B、130Cを含まなくてもよく、1枚だめ(リーフスプリング130Bだけ)を含んでもよく、3枚以上含んでもよい。 Also, in the above, the push switch 100 has been described as including the leaf springs 130B and 130C that are stacked on the metal contact 130A. The leaf springs 130B and 130C are provided to increase the operation load in the operation area of the main stroke. For this reason, when the leaf springs 130B and 130C are unnecessary, the push switch 100 may not include the leaf springs 130B and 130C, may include one spring (only the leaf spring 130B), and may include three or more springs. But it's okay.
 また、以上では、押圧部材150の基部151の下面が平坦である形態について説明したが、基部151の下面の中央に突起を設けてもよい。このような突起を設けると、押圧部材150でメタルスプリング140の中央部142を押圧し易くなる。 In the above description, the bottom surface of the base 151 of the pressing member 150 is flat, but a protrusion may be provided at the center of the bottom surface of the base 151. Providing such a protrusion makes it easier for the pressing member 150 to press the central portion 142 of the metal spring 140.
 以上、本発明の例示的な実施の形態のプッシュスイッチについて説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。 Although the push switch according to the exemplary embodiment of the present invention has been described above, the present invention is not limited to the specifically disclosed embodiment, without departing from the scope of the claims, Various modifications and changes are possible.
 なお、本国際出願は、2018年11月20日に出願した日本国特許出願2018-217434に基づく優先権を主張するものであり、その全内容は本国際出願にここでの参照により援用されるものとする。 This international application claims priority based on Japanese Patent Application 2018-217434 filed on Nov. 20, 2018, the entire contents of which are incorporated herein by reference. I shall.
 100 プッシュスイッチ
 110 筐体
 120A、120B 金属プレート
 130A メタルコンタクト
 130B、130C リーフスプリング
 140 メタルスプリング
 150 押圧部材
 160 フレーム
100 push switch 110 housing 120A, 120B metal plate 130A metal contact 130B, 130C leaf spring 140 metal spring 150 pressing member 160 frame

Claims (8)

  1.  開口部と、前記開口部に連通する収納部とを有する筐体と、
     前記筐体に取り付けられ、前記収納部の内部に配置される固定接点部材と、
     前記収納部の内部で前記固定接点部材よりも前記開口部側に配置され、前記開口部側にドーム状に突出し、反転動作可能なドーム部を有する可動接点部材と、
     前記可動接点部材に対して前記固定接点部材とは反対側に設けられ、前記可動接点部材の反転動作方向に弾性変形可能な板ばねと、
     前記開口部から突出し、前記板ばねを介して前記可動接点部材を前記固定接点部材側に押圧可能な硬質材料製の押圧部材と
     を含む、プッシュスイッチ。
    A housing having an opening and a storage portion communicating with the opening,
    A fixed contact member attached to the housing and arranged inside the storage unit;
    A movable contact member having a dome portion that is arranged inside the storage portion closer to the opening than the fixed contact member, protrudes in a dome shape toward the opening, and can be reversed.
    A leaf spring provided on the side opposite to the fixed contact member with respect to the movable contact member, and elastically deformable in the reversing operation direction of the movable contact member;
    A push switch made of a hard material that protrudes from the opening and can press the movable contact member toward the fixed contact member via the leaf spring.
  2.  前記板ばねは、反転動作しない板ばねである、請求項1記載のプッシュスイッチ。 The push switch according to claim 1, wherein the leaf spring is a leaf spring that does not perform a reversing operation.
  3.  前記板ばねは、
     本体部と、
     前記本体部から平面視で外側に延在し、前記本体部に対して弾性変形する複数の脚部と
     を有する、請求項1又は2記載のプッシュスイッチ。
    The leaf spring is
    Body part,
    The push switch according to claim 1 or 2, further comprising a plurality of legs extending outward from the main body in a plan view and elastically deforming with respect to the main body.
  4.  前記複数の脚部は、前記押圧部材が押圧されていない初期位置にある状態で、前記可動接点部材に係合しており、前記押圧部材が押圧されることによって弾性変形する、請求項3記載のプッシュスイッチ。 The said several leg part is engaging with the said movable contact member in the state in which the said pressing member is in the initial position which is not pressed, and is elastically deformed by pressing the said pressing member. Push switch.
  5.  前記複数の脚部は、側面視で前記本体部から前記可動接点部材に向かって斜め方向に延在する、請求項3又は4記載のプッシュスイッチ。 The push switch according to claim 3 or 4, wherein the plurality of legs extend obliquely from the body toward the movable contact member in a side view.
  6.  前記収納部は平面視で矩形状であり、
     前記複数の脚部は4本あり、
     前記4本の脚部は、それぞれ、平面視で前記収納部の4つの角部に向かって延在する、請求項3乃至5のいずれか一項記載のプッシュスイッチ。
    The storage portion has a rectangular shape in a plan view,
    The plurality of legs are four,
    The push switch according to any one of claims 3 to 5, wherein each of the four legs extends toward four corners of the storage section in a plan view.
  7.  前記収納部は平面視で長方形であり、
     前記4本の脚部は、それぞれ、平面視で前記収納部の4つの角部まで延在する、請求項6記載のプッシュスイッチ。
    The storage portion is rectangular in plan view,
    The push switch according to claim 6, wherein each of the four legs extends to four corners of the storage portion in a plan view.
  8.  前記複数の脚部は、先端側で前記可動接点部材の面が前記可動接点部材側に突出するように折り曲げられる折り曲げ部、又は、先端側で前記可動接点部材の面が前記可動接点部材側に突出するように湾曲される湾曲部を有し、
     前記折り曲げ部又は前記湾曲部が前記可動接点部材に係合する、請求項3乃至7のいずれか一項記載のプッシュスイッチ。
    The plurality of legs is a bent portion that is bent so that the surface of the movable contact member projects toward the movable contact member side at the tip end side, or the surface of the movable contact member at the tip end side faces the movable contact member side. Has a curved portion that is curved so as to protrude,
    The push switch according to claim 3, wherein the bent portion or the curved portion engages with the movable contact member.
PCT/JP2019/041341 2018-11-20 2019-10-21 Push switch WO2020105339A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020558175A JP7183298B2 (en) 2018-11-20 2019-10-21 push switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018217434 2018-11-20
JP2018-217434 2018-11-20

Publications (1)

Publication Number Publication Date
WO2020105339A1 true WO2020105339A1 (en) 2020-05-28

Family

ID=70774098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041341 WO2020105339A1 (en) 2018-11-20 2019-10-21 Push switch

Country Status (2)

Country Link
JP (1) JP7183298B2 (en)
WO (1) WO2020105339A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119675U (en) * 1978-02-10 1979-08-22
JPS55102724U (en) * 1979-01-13 1980-07-17
JPH0289737U (en) * 1988-10-05 1990-07-17
JPH03214521A (en) * 1990-01-17 1991-09-19 Japan Aviation Electron Ind Ltd Bipolar single throw tactile switch
JPH11162286A (en) * 1997-10-29 1999-06-18 C & K Components Inc Switch assembly
JP2005100714A (en) * 2003-09-22 2005-04-14 Shinmei Electric Co Ltd Two-step tactile switch
JP2012230926A (en) * 2012-08-30 2012-11-22 Panasonic Corp Push switch

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119678U (en) * 1978-02-10 1979-08-22
JP2001118457A (en) 1999-10-20 2001-04-27 Otax Co Ltd Pushbutton switch
CN200986869Y (en) 2006-12-01 2007-12-05 富士康(昆山)电脑接插件有限公司 Push-button switch
JP5470521B2 (en) 2010-06-08 2014-04-16 アルプス電気株式会社 Switch device
CN202042403U (en) 2011-02-28 2011-11-16 珠海市惟达电子有限公司 Push switch
CN204884966U (en) 2015-07-22 2015-12-16 珠海市惟达电子有限公司 Push switch

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119675U (en) * 1978-02-10 1979-08-22
JPS55102724U (en) * 1979-01-13 1980-07-17
JPH0289737U (en) * 1988-10-05 1990-07-17
JPH03214521A (en) * 1990-01-17 1991-09-19 Japan Aviation Electron Ind Ltd Bipolar single throw tactile switch
JPH11162286A (en) * 1997-10-29 1999-06-18 C & K Components Inc Switch assembly
JP2005100714A (en) * 2003-09-22 2005-04-14 Shinmei Electric Co Ltd Two-step tactile switch
JP2012230926A (en) * 2012-08-30 2012-11-22 Panasonic Corp Push switch

Also Published As

Publication number Publication date
JPWO2020105339A1 (en) 2021-09-30
JP7183298B2 (en) 2022-12-05

Similar Documents

Publication Publication Date Title
US10529505B2 (en) Push switch
US20080099321A1 (en) Switch
US20210125800A1 (en) Push switch
WO2020105339A1 (en) Push switch
CN215451206U (en) Movable member and input device
CN112204690B (en) push switch
JP7125492B2 (en) push switch
EP1014405B1 (en) Push switch
US11462370B2 (en) Push switch
JP3762564B2 (en) Push switch
JP2019008949A (en) switch
JP2012230926A (en) Push switch
JP5136941B2 (en) Press switch
JP2009266701A (en) Push-operation type electronic component and push-switch
WO2024070010A1 (en) Pressing input device
EP1918957A1 (en) A surface-mounted switch
WO2022196329A1 (en) Switch device
US20220375700A1 (en) Push switch
WO2021246105A1 (en) Push switch and push switch system
JP2022068659A (en) Push switch
EP4343804A1 (en) Switch
CN212392166U (en) Switch structure
JP3827467B2 (en) Push switch
WO2013011802A1 (en) Contact member
JP2023013670A (en) push switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558175

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887535

Country of ref document: EP

Kind code of ref document: A1