WO2020105292A1 - 遠心式送風機 - Google Patents

遠心式送風機

Info

Publication number
WO2020105292A1
WO2020105292A1 PCT/JP2019/039149 JP2019039149W WO2020105292A1 WO 2020105292 A1 WO2020105292 A1 WO 2020105292A1 JP 2019039149 W JP2019039149 W JP 2019039149W WO 2020105292 A1 WO2020105292 A1 WO 2020105292A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
opening
impeller
flow passage
sectional area
Prior art date
Application number
PCT/JP2019/039149
Other languages
English (en)
French (fr)
Inventor
翔 小坂
修三 小田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980075760.XA priority Critical patent/CN113056613B/zh
Publication of WO2020105292A1 publication Critical patent/WO2020105292A1/ja
Priority to US17/317,957 priority patent/US20210262485A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00457Ventilation unit, e.g. combined with a radiator
    • B60H1/00471The ventilator being of the radial type, i.e. with radial expulsion of the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00085Assembling, manufacturing or layout details of air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/162Double suction pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/424Double entry casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Definitions

  • the present disclosure relates to a one-sided suction type centrifugal blower.
  • a one-sided suction type centrifugal blower capable of simultaneously sucking air in a vehicle compartment and air outside the vehicle compartment.
  • air taken in from an air intake housing hereinafter referred to as an inside / outside air box
  • ventilation is provided on the outside in the radial direction of the impeller. It is designed to be blown out into the road.
  • the ventilation passage on the radially outer side of the impeller is partitioned by a partition wall into one upper ventilation passage in the axial direction of the impeller and the other lower ventilation passage in the axial direction of the impeller.
  • a separation cylinder is provided inside the impeller in the radial direction for separating the air taken in from the inside / outside air box into the upper ventilation passage and the lower ventilation passage.
  • the separation cylinder extends from the air introduction plate provided in a part of the region between the impeller and the filter, and from the air inlet portion formed in the air introduction plate to the radially outer side through the radially inner side of the impeller. It has a cylindrical portion of a shape.
  • this centrifugal blower is configured so that the air taken in from the inside / outside air box passes through the entire area of the filter.
  • the distance between the trailing edge of the blade of the impeller and the inner wall of the scroll casing is the shortest in the vicinity of the nose portion, and in the circumferential direction from the nose portion. It is constructed so that it gradually becomes farther toward one side. Therefore, the pressure loss of the air blown from the impeller to the ventilation passage is large in the vicinity of the nose portion and gradually decreases from the nose portion toward one side in the circumferential direction. Therefore, the amount of air suctioned by the impeller is small in the vicinity of the nose portion and gradually increases from the nose portion toward one side in the circumferential direction.
  • the centrifugal blower described in Patent Document 1 has a flow path (that is, formed between the air introduction plate and the bell mouth) from each space on the outer left and right of the tubular portion of the separation tube to the back side of the separation tube. There is no description about the flow of air flowing around the flow path).
  • the flow passage cross-sectional area of the opening on the left side of the tubular portion of the separation cylinder and the flow passage cross-sectional area of the opening on the right side of the tubular portion have the same size.
  • the amount of air sucked into the impeller by way of the opening on the side far from the nose portion increases, and the amount of air sucked by the impeller by way of the opening on the side close to the nose portion decreases.
  • the pressure loss of the entire filter may increase. ..
  • the present disclosure aims to provide a centrifugal blower capable of reducing the pressure loss of a filter.
  • a one-sided suction type centrifugal blower that is applied to an inside / outside air two-layer flow type air conditioner and is capable of simultaneously sucking air into a vehicle compartment and outside the vehicle compartment while distinguishing the air.
  • An inside / outside air box having an outside air introduction port for introducing air outside the vehicle compartment and an inside air introduction port for introducing air inside the vehicle compartment,
  • a filter that collects foreign matter contained in the air introduced into the inside / outside air box,
  • An impeller that is rotated by driving a motor, sucks in air that has passed through the filter from one side in the rotation axis direction, and blows it out radially outward,
  • a scroll casing that encloses the outer side in the radial direction of the impeller and forms a ventilation passage in which the flow passage area gradually increases from the nose portion provided in a part of the outer periphery toward one in the circumferential direction,
  • An annular bell mouth which is provided on one end surface of the scroll casing in the rotational axis direction of the impeller and forms an air inlet for the impeller,
  • a partition wall that partitions the ventilation passage formed on the outer side in the radial direction of the impeller into one upper ventilation passage in the axial direction of the impeller and
  • a separation cylinder having The air flowing from the filter to the air introduction plate flows from the air inlet part to the inside of the tubular part to the lower ventilation passage via the impeller, and the air flowing from the filter to the region excluding the air introduction plate passes to the outside of the tubular part. It is configured to flow to the upper ventilation path via an impeller, Of the flow paths through which air flows from the filter to the upper ventilation path, the flow path on the side close to the nose part with the separation cylinder sandwiched in the cross section of the flow path on the virtual plane that includes the outer edge of the air introduction plate and is parallel to the rotation axis of the impeller.
  • the cross section is called the first opening and the flow path cross section on the side far from the nose part is called the second opening
  • the flow path cross-sectional area of the first opening is configured to be larger than the flow path cross-sectional area of the second opening. ..
  • the amount of air sucked into the impeller from the flow path on the back side of the separation cylinder via the first opening is increased, and the amount of air is sucked from the flow path on the back side of the separation cylinder to the impeller via the second opening. It is possible to reduce the amount of air flow. Therefore, by bringing the air volume passing through the first opening and the air volume passing through the second opening close to each other, the air volume passing through the region of the filter immediately above the first opening and the area immediately above the second opening. It is possible to bring the amount of air passing through the area of the filter closer to. Therefore, the amount of air passing through each region of the filter becomes closer to uniform, so that the pressure loss of the entire filter can be reduced.
  • the flow passage on the back side of the separation cylinder refers to a flow passage formed between one end face of the scroll casing in the rotation axis direction of the impeller and the bell mouth, and the air introduction plate.
  • the air blowing efficiency means the air blowing amount of the centrifugal fan with respect to the electric power supplied to the motor that rotates the impeller.
  • FIG. 2 is a sectional view taken along line II-II of FIG. 1.
  • FIG. 3 is a sectional view taken along line III-III in FIGS. 1 and 2.
  • It is a perspective view of the state which removed the inside and outside air box of the centrifugal type blower concerning a 1st embodiment. It is explanatory drawing for demonstrating a 1st opening part and a 2nd opening part in the centrifugal fan which concerns on 1st Embodiment. It is a perspective view of the state which removed the inside and outside air box of the centrifugal type blower concerning a 2nd embodiment.
  • a centrifugal fan concerning a 5th embodiment it is an explanatory view for explaining the 1st opening and the 2nd opening. It is a perspective view of the state which removed the inside and outside air box of the centrifugal type blower concerning a 6th embodiment. In a centrifugal fan concerning a 6th embodiment, it is an explanatory view for explaining the 1st opening and the 2nd opening. It is a perspective view of the state which removed the inside and outside air box of the centrifugal type blower concerning a 7th embodiment. It is explanatory drawing for demonstrating the 1st opening part and the 2nd opening part in the centrifugal fan which concerns on 7th Embodiment.
  • the centrifugal blower 1 of the present embodiment is applied to an inside / outside air two-layer flow type vehicle air conditioner.
  • the centrifugal blower 1 is a blower capable of simultaneously sucking and blowing out air while distinguishing air inside the vehicle (hereinafter referred to as inside air) and air outside the vehicle (hereinafter referred to as outside air).
  • the centrifugal blower 1 includes an inside / outside air box 10, a filter 20, an impeller 30, a scroll casing 40, a bell mouth 50, a partition wall 44, a separation cylinder 60, and the like.
  • the inside / outside air box 10 is arranged above the centrifugal blower 1.
  • the inside / outside air box 10 has an outside air introduction port 11, a first inside air introduction port 12 and a second inside air introduction port 13 in this order from the front side of the vehicle. Outside air is introduced into the outside air inlet 11. Inside air is introduced into the first inside air inlet 12 and the second inside air inlet 13.
  • a first switching door 14 and a second switching door 15 are provided inside the inside / outside air box 10.
  • the first switching door 14 can selectively open and close the outside air introduction port 11 and the first inside air introduction port 12.
  • the second switching door 15 can open and close the second inside air introduction port 13.
  • the first switching door 14 and the second switching door 15 are, for example, rotary doors.
  • the filter 20 is provided below the inside / outside air box 10.
  • the filter 20 collects foreign matter contained in the air introduced into the inside / outside air box 10 (that is, outside air and inside air).
  • the filter 20 is configured, for example, by folding a filter material for dust removal having a predetermined air permeability into a pleated shape.
  • the filter 20 is formed so that the pleats are folded in the direction in which the outside air introduction port 11, the first inside air introduction port 12, and the second inside air introduction port 13 are arranged (for example, the vehicle front-rear direction).
  • the filter 20 has fold-shaped folds extending in a direction (eg, the vehicle width direction) orthogonal to the direction in which the outside air inlet 11, the first inside air inlet 12 and the second inside air inlet 13 are arranged. There is.
  • the inside / outside air box 10 and the filter 20 are formed in a substantially rectangular outer shape when viewed from above.
  • the impeller 30 is a centrifugal fan that is rotated by the drive of the motor 31.
  • the impeller 30 has a main plate 33 fixed to the shaft 32 of the motor 31 and a plurality of blades 34 fixed to the main plate 33.
  • the impeller 30 is configured to suck the air that has passed through the filter 20 from one side in the rotation axis direction and blow it out to the outside in the radial direction.
  • a blade partition wall 35 is provided between the plurality of blades 34 for partitioning the wind flowing in the axially upper region of the blade 34 and the wind flowing in the axially lower region of the blade 34. There is.
  • the scroll casing 40 surrounds the outer side of the impeller 30 in the radial direction.
  • the scroll casing 40 has a nose portion 41 on a part of its outer circumference.
  • the scroll casing 40 forms an air passage 42 in which the flow passage area gradually increases from the nose portion 41 toward one side in the circumferential direction.
  • the air passage 42 is mainly formed between the inner wall of the scroll casing 40 and the trailing edge 36 of the blade 34 of the impeller 30.
  • a portion of the ventilation passage 42 having the largest flow passage area communicates with an air conditioning casing (not shown) included in the air conditioning device. Therefore, the air blown from the ventilation passage 42 of the scroll casing 40 is introduced into the air conditioning casing.
  • an evaporator for adjusting the temperature and humidity of the air, a heater core, an air mix door, etc. are arranged in the air conditioning casing.
  • the conditioned air, the temperature and humidity of which are adjusted in the air conditioning casing, is configured to be blown into the vehicle compartment from the face outlet, the foot outlet, the defroster outlet, and the like.
  • An annular bell mouth 50 that forms an air inlet to the impeller 30 is provided on one end surface 49 (hereinafter, referred to as the upper surface 49 of the scroll casing 40) of the scroll casing 40 in the rotation axis direction of the impeller 30. Has been. The air that has passed through the filter 20 is sucked into the impeller 30 from the bell mouth 50.
  • a mounting frame 43 for mounting the inside / outside air box 10 and the filter 20 described above is provided on the upper surface 49 of the scroll casing 40. That is, the inside / outside air box 10 and the filter 20 are mounted on the mounting frame 43.
  • a partition wall 44 that partitions the ventilation passage 42 into one region in the axial direction of the impeller 30 and the other region in the axial direction of the impeller 30 is provided inside the scroll casing 40.
  • the partition wall 44 is provided at a position corresponding to the blade partition wall 35 provided between the blades 34 of the impeller 30.
  • a region of the ventilation passage 42 above the partition wall 44 will be referred to as an upper ventilation passage 45, and a region of the ventilation passage 42 below the partition wall 44 will be referred to as a lower ventilation passage 46.
  • the separation cylinder 60 is provided from the area between the filter 20 and the impeller 30 to the area inside the impeller 30 in the radial direction.
  • the separation cylinder 60 has an air introduction plate 61 provided in a part of a region between the impeller 30 and the filter 20, and an air inlet portion 62 formed in the air introduction plate 61, which is located inside the impeller 30 in the radial direction. It has a tubular portion 63 having a shape that extends through to the outside in the radial direction.
  • the air introduction plate 61 has a substantially rectangular outer shape when viewed from above.
  • the air introduction plate 61 covers almost half the area of the bell mouth 50.
  • the second switching door 15 of the inside / outside air box 10 has the second inside air introduction port 13. Is provided at a position corresponding to the end portion 16 of the second switching door 15 on the filter 20 side when fully opened.
  • the position corresponding to the end portion 16 of the second switching door 15 on the filter 20 side can also be referred to as the lower side of the end portion 16 of the second switching door 15.
  • the air introduction plate 61 and the tubular portion 63 are connected in a funnel shape.
  • the tubular portion 63 has a tubular shape in a region inside the impeller 30 in the radial direction.
  • the end portion 68 of the tubular portion 63 on the side opposite to the air introduction plate 61 is provided at a position corresponding to the blade partition wall 35 provided between the blades 34 of the impeller 30.
  • the position corresponding to the blade partition wall 35 can also be referred to as the radially inner side of the blade partition wall 35.
  • the centrifugal blower 1 lowers the air introduced into the inside / outside air box 10 and passing through the predetermined region of the filter 20 from one axial direction of the impeller 30 via the inside of the separation cylinder 60. It is possible to flow to the ventilation path 46. Further, the centrifugal blower 1 can flow the air passing through the other region of the filter 20 from one axial direction of the impeller 30 to the upper ventilation passage 45 via the outside of the separation cylinder 60. That is, the centrifugal blower 1 is a one-sided suction blower.
  • the predetermined area of the filter 20 is, for example, an area on the vehicle rear side of the position of the filter 20 where the end 16 of the second switching door 15 abuts.
  • the other area of the filter 20 is, for example, an area on the vehicle front side of the position of the filter 20 with which the end portion 16 of the second switching door 15 abuts.
  • FIG. 1 shows a state in which the first switching door 14 closes the first inside air introducing port 12 while opening the outside air introducing port 11, and the second switching door 15 opens the second inside air introducing port 13. ..
  • the centrifugal blower 1 can simultaneously inhale and blow out while separating the inside air and the outside air.
  • the inside air introduced from the second inside air introduction port 13 is formed in the air introduction plate 61 after passing through a region of the filter 20 located substantially directly above the air introduction plate 61. Flowing from the air inlet portion 62 passing through the inside of the tubular portion 63 to the lower ventilation passage 46 via the impeller 30.
  • the outside air introduced from the outside air introduction port 11 passes through the region of the filter 20 except a portion directly above the air introduction plate 61, and then the air introduction plate 61 is removed. It flows from the space to the upper ventilation passage 45 through the outside of the tubular portion 63 and the impeller 30.
  • the air introduction plate 61 is removed. It flows from the space to the upper ventilation passage 45 through the outside of the tubular portion 63 and the impeller 30.
  • arrow B in FIG. 1 and the arrow D in FIG. 3 a part of the air flowing in the region excluding the air introduction plate 61 is radially sucked into the impeller 30 as it is.
  • the flow path 47 on the back side of the separation cylinder 60 is a flow path formed in a gap between the upper surface 49 of the scroll casing 40 and the bell mouth 50, and the air introduction plate 61.
  • the outer edge 64 of the air introduction plate 61 is included in the flow path through which air flows from the filter 20 to the upper ventilation passage 45, and is parallel to the rotary shaft 301 of the impeller 30.
  • the virtual plane VS is defined.
  • the flow passage cross section on the virtual plane VS in the flow passage cross section on the virtual plane VS, the flow passage cross section on the side closer to the nose portion 41 with the separation cylinder 60 interposed therebetween is referred to as a first opening 71,
  • the flow path cross section on the side far from the nose portion 41 will be referred to as the second opening 72.
  • the first opening 71 is hatched with a broken line
  • the second opening 72 is hatched with a dot-dash line, although it is not a cross section for the sake of explanation. This also applies to FIGS. 7, 9, 12, 14, 16, and 18 referred to in second to eighth embodiments described later.
  • the center 101 of the inside / outside air box 10 has a first opening with respect to the rotation shaft 301 of the impeller 30 and the center axis 601 of the tubular portion 63 of the separation tube 60.
  • the position is shifted to the side of the portion 71. Therefore, the flow passage cross-sectional area of the first opening 71 is configured to be larger than the flow passage cross-sectional area of the second opening 72.
  • the flow passage cross-sectional area of the region of the first opening 71 on the air introduction plate 61 side of the impeller 30 is the same as the region of the second opening 72 on the air introduction plate 61 side of the impeller 30.
  • the area is larger than the flow passage cross-sectional area.
  • the ventilation passage 42 formed on the outer side in the radial direction of the impeller 30 is configured such that the flow passage area gradually increases from the nose portion 41 toward one side in the circumferential direction. That is, the distance between the trailing edge 36 of the blade 34 of the impeller 30 and the inner wall of the scroll casing 40 is the smallest in the vicinity of the nose portion 41, and gradually increases from the nose portion 41 toward one side in the circumferential direction. Therefore, the pressure loss of the air flowing from the impeller 30 to the ventilation passage 42 is large in the vicinity of the nose portion 41 and gradually decreases from the nose portion 41 toward one side in the circumferential direction.
  • the flow passage cross-sectional area of the first opening 71 and the flow passage cross-sectional area of the second opening 72 are the same, the amount of air sucked into the impeller 30 via the first opening 71 is small. Therefore, the amount of air sucked into the impeller 30 via the second opening 72 increases. In that case, the amount of air passing through the filter 20 is smaller in the region immediately above the first opening 71, and the amount of air passing through the region immediately above the second opening 72 is larger. In this way, when the variation in the air volume passing through each region of the filter 20 increases, the pressure loss of the filter 20 as a whole increases. As a result, there is a concern that the blowing efficiency of the blower 1 may decrease.
  • the center 101 of the inside / outside air box 10 is shifted toward the first opening 71 side with respect to the rotation shaft 301 of the impeller 30 and the center axis 601 of the tubular portion 63 of the separation tube 60, and
  • the flow passage cross-sectional area of the first opening 71 is configured to be larger than the flow passage cross-sectional area of the second opening 72. Accordingly, compared to the case where the flow passage cross-sectional area of the first opening 71 and the flow passage cross-sectional area of the second opening 72 are the same, the amount of air sucked into the impeller 30 via the first opening 71. It is possible to reduce the amount of air sucked into the impeller 30 via the second opening 72.
  • the air volume passing through the first opening 71 and the air volume passing through the second opening 72 close to each other the air volume passing through the region of the filter 20 immediately above the first opening 71 and the second opening It is possible to bring the amount of air passing through the region of the filter 20 immediately above the portion 72 close to each other. Therefore, the amount of air passing through each region of the filter 20 becomes closer to uniform, and the pressure loss of the filter 20 as a whole can be reduced. As a result, it is possible to improve the blowing efficiency of the blower.
  • the center 101 of the inside / outside air box 10 is configured to be displaced toward the first opening 71 side with respect to the rotation shaft 301 of the impeller 30 and the center axis 601 of the tubular portion 63 of the separation tube 60. .. Therefore, the flow passage cross-sectional area of the first opening 71 and the second opening 71 are increased without increasing the size of the impeller 30 in the centrifugal fan 1 in the rotation axis direction (for example, the size in the height direction of the centrifugal fan 1). It is possible to adjust the flow passage cross-sectional area of the portion 72.
  • the flow passage cross-sectional areas of the first opening 71 and the second opening 72 are changed without largely changing the configuration of the inside / outside air box 10 and the configuration of the separation tube 60 from the conventional centrifugal blower. It is possible to adjust.
  • the conventional centrifugal blower means that the center 101 of the inside / outside air box 10, the rotation shaft 301 of the impeller 30, and the center shaft 601 of the separation cylinder 60 are aligned with each other.
  • the lower ventilation passage is passed from the inside / outside air box 10 through the inside of the separation tube 60. It does not affect the flow of air through 46.
  • the second to eighth embodiments will be described.
  • the second to eighth embodiments are different from the first embodiment in the configuration of the separation cylinder 60 or the inside / outside air box 10, and other aspects are the same as those in the first embodiment. Therefore, the first embodiment Only the parts different from the above will be explained.
  • the air introduction plate 61 included in the separation cylinder 60 is located on the first surface 71 side located on the first opening 71 side and on the second opening 72 side. And a step surface 67 that connects the first surface 65 and the second surface 66.
  • the second surface 66 is arranged closer to the bell mouth 50 than the first surface 65.
  • the center 101 of the inside / outside air box 10 is displaced toward the first opening 71 side with respect to the rotation shaft 301 of the impeller 30 and the center axis 601 of the tubular portion 63 of the separation tube 60. It is in.
  • the flow passage cross-sectional area of the region of the first opening 71 closer to the air introduction plate 61 than the impeller 30 has the air introduction from the impeller 30 of the second opening 72. It is configured to be larger than the flow passage cross-sectional area of the region on the plate 61 side. Therefore, the flow passage cross-sectional area of the first opening 71 is configured to be larger than the flow passage cross-sectional area of the second opening 72. Therefore, the second embodiment can also achieve the same operational effects as the first embodiment.
  • the air introduction plate 61 included in the separation cylinder 60 is closer to the bell mouth 50 at a portion closer to the second opening 72 than a portion closer to the first opening 71. Thus, it is inclined with respect to the bell mouth 50. Also in the third embodiment, the center 101 of the inside / outside air box 10 is displaced toward the first opening 71 side with respect to the rotation shaft 301 of the impeller 30 and the center axis 601 of the tubular portion 63 of the separation tube 60. It is in.
  • the flow passage cross-sectional area of the region of the first opening 71 on the air introduction plate 61 side of the impeller 30 has the air introduction from the impeller 30 of the second opening 72. It is configured to be larger than the flow passage cross-sectional area of the region on the plate 61 side. Therefore, the flow passage cross-sectional area of the first opening 71 is configured to be larger than the flow passage cross-sectional area of the second opening 72. Therefore, also in the third embodiment, the same operational effects as those in the first embodiment and the like can be obtained.
  • the flow passage cross-sectional area of the region of the first opening 71 on the air introduction plate 61 side of the impeller 30 has the air introduction from the impeller 30 of the second opening 72. It is configured to be larger than the flow passage cross-sectional area of the region on the plate 61 side. Therefore, the flow passage cross-sectional area of the first opening 71 is configured to be larger than the flow passage cross-sectional area of the second opening 72. Therefore, the fourth embodiment can also achieve the same operational effects as the first embodiment and the like.
  • a portion of the air inlet plate 61 radially outside the air inlet portion 62 is formed in the above-described slope shape, so that the air flowing in the flow passage 47 on the back side of the separation cylinder 60 in the circumferential direction. The pressure loss of can be reduced.
  • the radius of curvature R1 of the portion of the connecting portion between the air introduction plate 61 and the tubular portion 63 of the separation tube 60 on the first opening 71 side is: It is formed to be smaller than the radius of curvature R2 of the portion on the second opening 72 side.
  • the center 101 of the inside / outside air box 10 is displaced toward the first opening 71 side with respect to the rotation shaft 301 of the impeller 30 and the center axis 601 of the tubular portion 63 of the separation tube 60. It is in.
  • the flow passage cross-sectional area of the region of the first opening 71 closer to the air introduction plate 61 than the impeller 30 has the air introduction from the impeller 30 of the second opening 72. It is configured to be larger than the flow passage cross-sectional area of the region on the plate 61 side. Therefore, the flow passage cross-sectional area of the first opening 71 is configured to be larger than the flow passage cross-sectional area of the second opening 72. Therefore, the fifth embodiment can also achieve the same operational effects as the first embodiment and the like.
  • the flow passage cross-sectional area of the first opening 71 is configured to be larger than the flow passage cross-sectional area of the second opening 72.
  • the flow passage cross-sectional area of the region of the first opening 71 on the air introducing plate 61 side of the impeller 30 is the flow passage cross-sectional area of the region of the second opening 72 on the air introducing plate 61 side of the impeller 30. It is made larger than the cross-sectional area.
  • the flow passage cross-sectional area of the region of the first opening 71 on the radially inner side of the impeller 30 is also larger than the flow passage cross-sectional area of the region of the second opening 72 on the radially inner side of the impeller 30. .. Therefore, the sixth embodiment can also achieve the same operational effects as those of the first embodiment and the like.
  • the inside / outside air box 10 and the air introduction plate 61 are partly located outside the outer edge of the scroll casing 40.
  • An arcuate outer flow path 48 is formed in a region radially outside the outer circumference of the scroll casing 40.
  • the outer flow path 48 is formed so as to include a region opposite to the air introduction plate 61 with respect to the upper surface 49 of the scroll casing 40 and the bell mouth 50, radially outside the outer periphery of the scroll casing 40.
  • the flow passage cross-sectional area of the first opening 71 is configured to be larger than the flow passage cross-sectional area of the second opening 72. Therefore, the seventh embodiment can also achieve the same effects as the first embodiment and the like.
  • the center 101 of the inside / outside air box 10 is located at a position displaced toward the first opening 71 side with respect to the rotation shaft 301 of the impeller 30. Furthermore, in the eighth embodiment, the central axis 601 of the tubular portion 63 of the separation tube 60 is located at a position displaced toward the second opening 72 side with respect to the rotary shaft 301 of the impeller 30.
  • the flow passage cross-sectional area of the first opening 71 is larger than the flow passage cross-sectional area of the second opening 72.
  • the flow passage cross-sectional area of the region of the first opening 71 on the air introducing plate 61 side of the impeller 30 is the flow passage cross-sectional area of the region of the second opening 72 on the air introducing plate 61 side of the impeller 30. It is made larger than the cross-sectional area.
  • the flow passage cross-sectional area of the region of the first opening 71 on the radially inner side of the impeller 30 is also larger than the flow passage cross-sectional area of the region of the second opening 72 on the radially inner side of the impeller 30. .. Therefore, the eighth embodiment can also achieve the same operational effects as the first embodiment and the like.
  • the shape, the positional relationship, etc., the shape thereof when referring to the shapes of the components and the like, the positional relationship, etc., unless otherwise explicitly stated and in principle, the shape, the positional relationship, etc., the shape thereof, It is not limited to the positional relationship or the like. That is, in the description of each of the above-described embodiments, terms such as “upper”, “lower”, “left”, “right”, “vehicle front”, and “vehicle rear” are used for convenience in the description of each embodiment. The direction in which the centrifugal blower is installed in a vehicle or the like is not limited.
  • the centrifugal blower 1 adjusts the positions of the first switching door 14 and the second switching door 15 of the inside / outside air box 10 so that only the outside air or only the inside air flows through both the upper ventilation passage 45 and the lower ventilation passage 46. It is also possible, or it is possible to allow the air in which the inside air and the outside air are mixed to flow.
  • the nose portion 41 and the air conditioning casing are arranged on the right side in the vehicle width direction of the scroll casing 40, but the invention is not limited to this.
  • the centrifugal blower 1 may have a configuration in which the nose portion 41 and the air conditioning casing are arranged on the left side of the scroll casing 40 in the vehicle width direction.
  • the inside / outside air box 10 has been described as having the outside air introduction port 11, the first inside air introduction port 12, and the second inside air introduction port 13 in this order from the vehicle front side. , But is not limited to this.
  • the outside air introduction port 11, the first inside air introduction port 12, and the second inside air introduction port 13 may be arranged in the vehicle width direction, or may be arranged sequentially from the vehicle rear side, or , May be arranged diagonally.
  • the one-side suction centrifugal fan applied to the inside / outside air two-layer air-conditioning device is provided with the vehicle interior air and the vehicle exterior air. It is possible to inhale at the same time while classifying.
  • This centrifugal blower includes an inside / outside air box, a filter, an impeller, a scroll casing, a bell mouth, a partition wall, and a separation cylinder.
  • the inside / outside air box has an outside air introduction port for introducing the air outside the vehicle compartment and an inside air introduction port for introducing the air inside the vehicle compartment.
  • the filter collects foreign matter contained in the air introduced into the inside / outside air box.
  • the impeller rotates by driving a motor, sucks air that has passed through the filter from one side in the rotation axis direction and blows it out to the outside in the radial direction.
  • the scroll casing surrounds the outer side of the impeller in the radial direction, and forms a ventilation passage in which the flow passage area gradually increases from the nose portion provided in a part of the outer periphery toward one side in the circumferential direction.
  • a bell mouth that forms an air inlet to the impeller is formed in an annular shape and is provided on one end surface of the scroll casing in the rotational axis direction of the impeller.
  • the partition wall partitions the ventilation passage formed on the radially outer side of the impeller into one upper ventilation passage in the axial direction of the impeller and the other lower ventilation passage in the axial direction of the impeller.
  • the separation cylinder extends from the air introduction plate provided in a part of the region between the impeller and the filter, and from the air inlet portion formed in the air introduction plate to the radially outer side through the radially inner side of the impeller. It has a cylindrical portion of a shape.
  • the air flowing from the filter to the air introduction plate flows from the air inlet part through the inside of the tubular part to the lower ventilation passage via the impeller, and the air flowing from the filter to the region excluding the air introduction plate is It is configured so as to flow to the upper ventilation passage through the outside of the shaped portion and via the impeller.
  • the flow passage cross section on the virtual plane parallel to the rotation axis of the impeller including the outer edge of the air introduction plate in the flow passage through which air flows from the filter to the upper ventilation passage the side close to the nose part with the separation cylinder interposed therebetween.
  • the flow passage cross section of is called the first opening
  • the flow passage cross section on the side far from the nose portion is called the second opening.
  • the flow passage cross-sectional area of the first opening is larger than the flow passage cross-sectional area of the second opening.
  • the center of the inside / outside air box is at a position displaced toward the first opening with respect to the rotation axis of the impeller and the center axis of the tubular portion of the separation tube.
  • the flow passage cross-sectional area of the region of the first opening portion closer to the air introduction plate than the impeller is made larger than the flow passage cross-sectional area of the region of the second opening portion closer to the air introduction plate.
  • the configuration of the inside / outside air box and the configuration of the separation cylinder are significantly changed without increasing the size of the impeller of the centrifugal blower in the rotation axis direction (for example, the height direction of the centrifugal blower). Without this, it is possible to adjust the flow passage cross-sectional areas of the first opening and the second opening.
  • the air introduction plate has a first surface located on the first opening side and a second surface located on the second opening side and closer to the bell mouth than the first surface. And a stepped surface connecting the first surface and the second surface.
  • the air introduction plate is inclined with respect to the bell mouth so that the portion on the second opening side is closer to the bell mouth than the portion on the first opening side.
  • the flow passage cross-sectional area of the region of the first opening portion closer to the air introduction plate than the impeller is made larger than the flow passage cross-sectional area of the region of the second opening portion closer to the air introduction plate. Is possible.
  • the portion of the air inlet plate radially outside the air inlet portion is formed in a slope shape such that the inclination rate with respect to the bell mouth is constant in the circumferential direction of the air inlet portion.
  • the radius of curvature of the portion on the side of the first opening is smaller than the radius of curvature of the portion on the side of the second opening in the connecting portion between the air introduction plate and the tubular portion. ..
  • the flow passage cross-sectional area of the region of the first opening portion closer to the air introduction plate than the impeller is made larger than the flow passage cross-sectional area of the region of the second opening portion closer to the air introduction plate. Is possible.
  • the central axis of the tubular portion of the separation tube is at a position displaced toward the second opening with respect to the rotation axis of the impeller and the center of the inside / outside air box.
  • the flow passage cross-sectional area of the first opening can be made larger than the flow passage cross-sectional area of the second opening. According to this, without increasing the size of the centrifugal fan in the rotation axis direction (for example, the height direction) of the impeller and the direction perpendicular to the rotation axis direction of the impeller (for example, the width direction), It is possible to adjust the flow passage cross-sectional areas of the first opening and the second opening.
  • the center of the inside / outside air box is located at a position deviated to the side of the first opening with respect to the rotation axis of the impeller, and the center axis of the tubular portion of the separation cylinder is the impeller. At a position displaced toward the second opening side with respect to the rotation axis of the.
  • the flow passage cross-sectional area of the first opening can be made larger than the flow passage cross-sectional area of the second opening.
  • the outer edges of the inside / outside air box and the air introduction plate are located outside the outer edge of the scroll casing.
  • the outer flow passage is formed so as to include a region radially outside the outer circumference of the scroll casing and a region opposite to the air introduction plate with respect to the bell mouth. Then, a part of the air that has passed through the filter is configured to be sucked into the impeller from the first opening via the outer flow path. Thereby, the flow passage cross-sectional area of the first opening can be made larger than the flow passage cross-sectional area of the second opening.

Abstract

フィルタ(20)から分離筒(60)の空気導入板(61)に流れる空気は、分離筒(60)の筒状部(63)の内側を通り、羽根車(30)を介して下通風路(46)に流れる。また、フィルタ(20)から分離筒(60)の空気導入板(61)を除く領域に流れる空気は、分離筒(60)の筒状部(63)の外側を通り、羽根車(30)を介して上通風路(45)に流れる。ここで、フィルタ(20)から上通風路(45)に空気が流れる流路のうち空気導入板(61)の外縁(64)を含み羽根車(30)の回転軸(301)に平行な仮想平面(VS)を定義する。仮想平面(VS)上の流路断面において、分離筒(60)を挟んでノーズ部(41)に近い側の流路断面を第1開口部(71)、ノーズ部(41から遠い側の流路断面を第2開口部(72)と呼ぶ。第1開口部(71)の流路断面積は、第2開口部(72)の流路断面積より大きく構成されている。

Description

遠心式送風機 関連出願への相互参照
 本出願は、2018年11月19日に出願された日本特許出願番号2018-216354号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、片側吸込式の遠心式送風機に関するものである。
 従来、車室内空気と車室外空気を区分しつつ同時に吸入することが可能な片側吸込式の遠心式送風機が知られている。
 特許文献1に記載の遠心式送風機は、空気取り入れハウジング(以下、内外気箱という)から取り入れられた空気が、フィルタを経由して羽根車の内側に吸い込まれ、羽根車の径方向外側の通風路に吹き出されるように構成されている。羽根車の径方向外側の通風路は、仕切壁により、羽根車の軸方向の一方の上通風路と軸方向の他方の下通風路とに仕切られている。羽根車の径方向内側には、内外気箱から取り入れられた空気を上通風路と下通風路に分離して流すための分離筒が設けられている。分離筒は、羽根車とフィルタとの間の領域の一部に設けられる空気導入板、およびその空気導入板に形成される空気入口部から羽根車の径方向内側を通って径方向外側に拡がる形状の筒状部を有する。この構成により、内外気箱から取り入れられた空気のうちフィルタの所定の領域を通過したものは、空気導入板に設けられる空気入口部から筒状部の内側を通り、羽根車を介して下通風路に流れる。一方、内外気箱から取り入れられた空気のうちフィルタの他の領域を通過したものは、空気導入板を通らず筒状部の外側を通り、羽根車を介して上通風路に流れる。これにより、この遠心式送風機は、内外気箱から取り入れられた空気がフィルタの全領域を通過するように構成されている。
国際公開第2018/074339号
 ところで、一般に、遠心式送風機では、羽根車の径方向外側の通風路は、羽根車の翼の後縁とスクロールケーシングの内壁との距離が、ノーズ部近傍が最も狭く、ノーズ部から周方向の一方に向かい次第に遠くなるように構成される。そのため、羽根車から通風路へ吹き出される空気の圧力損失は、ノーズ部近傍が大きく、ノーズ部から周方向の一方に向かって次第に小さくなる。したがって、羽根車による空気の吸込み量は、ノーズ部近傍が少なく、ノーズ部から周方向の一方に向かって次第に多くなる。
 このことに関し、特許文献1に記載の遠心式送風機は、分離筒が有する筒状部の外側左右それぞれの空間から分離筒の裏側の流路(すなわち、空気導入板とベルマウスとの間に形成される流路)に回り込む空気の流れに関する記載はされていない。そして、特許文献1では、分離筒が有する筒状部より左側の開口部の流路断面積と、筒状部より右側の開口部の流路断面積とが同じ大きさになっている。この場合、ノーズ部から遠い側の開口部を経由して羽根車に吸い込まれる風量が多くなり、ノーズ部に近い側の開口部を経由して羽根車に吸い込まれる風量が少なくなる。それにより、分離筒が有する筒状部の外側左右それぞれの開口部の直上に位置するフィルタの各領域を通過する風量にばらつきが生じると、フィルタ全体としての圧力損失が大きくなることが懸念される。
 本開示は、フィルタの圧力損失を低減することの可能な遠心式送風機を提供することを目的とする。
 本開示の1つの観点によれば、内外気二層流式の空調装置に適用され、車室内空気と車室外空気を区分しつつ同時に吸入することが可能な片側吸込式の遠心式送風機であって、
 車室外空気が導入される外気導入口と車室内空気が導入される内気導入口とを有する内外気箱と、
 内外気箱に導入された空気に含まれる異物を捕集するフィルタと、
 モータの駆動により回転し、フィルタを通過した空気を回転軸方向の一方から吸入し、径方向外側に吹き出す羽根車と、
 羽根車の径方向外側を囲い、外周の一部に設けられたノーズ部から周方向の一方に向かい次第に流路面積が拡大する通風路を形成するスクロールケーシングと、
 スクロールケーシングのうち羽根車の回転軸方向の一方の端面に設けられ、羽根車への空気の吸込口を形成する環状のベルマウスと、
 羽根車の径方向外側に形成される通風路を羽根車の軸方向の一方の上通風路と軸方向の他方の下通風路とに仕切る仕切壁と、
 羽根車とフィルタとの間の領域の一部に設けられる空気導入板、および空気導入板に形成される空気入口部から羽根車の径方向内側を通って径方向外側に拡がる形状の筒状部を有する分離筒と、を備え、
 フィルタから空気導入板に流れる空気が空気入口部から筒状部の内側を通り羽根車を介して下通風路に流れ、フィルタから空気導入板を除く領域に流れる空気が筒状部の外側を通り羽根車を介して上通風路に流れるように構成されており、
 フィルタから上通風路に空気が流れる流路のうち空気導入板の外縁を含み羽根車の回転軸に平行な仮想平面上の流路断面において、分離筒を挟んでノーズ部に近い側の流路断面を第1開口部、ノーズ部から遠い側の流路断面を第2開口部と呼ぶとき、第1開口部の流路断面積は第2開口部の流路断面積より大きく構成されている。
 これによれば、第1開口部を経由して分離筒の裏側の流路から羽根車に吸い込まれる風量を増やし、第2開口部を経由して分離筒の裏側の流路から羽根車に吸い込まれる風量を減らすことが可能である。そのため、第1開口部を経由する風量と、第2開口部を経由する風量とを近づけることで、第1開口部の直上付近のフィルタの領域を通過する風量と、第2開口部の直上付近のフィルタの領域を通過する風量とを近づけることが可能である。したがって、フィルタの各領域を通過する風量が均一に近づくので、フィルタ全体としての圧力損失を低減することができる。その結果、送風機の送風効率を向上することが可能である。なお、分離筒の裏側の流路とは、スクロールケーシングのうち羽根車の回転軸方向の一方の端面およびベルマウスと、空気導入板との間に形成される流路をいう。また、送風効率とは、羽根車を回転させるモータに供給する電力に対する遠心式送風機の送風量をいう。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係る遠心式送風機の断面図である。 図1のII―II線の断面図である。 図1および図2のIII―III線の断面図である。 第1実施形態に係る遠心式送風機の内外気箱を除いた状態の斜視図である。 第1実施形態に係る遠心式送風機において、第1開口部と第2開口部を説明するための説明図である。 第2実施形態に係る遠心式送風機の内外気箱を除いた状態の斜視図である。 第2実施形態に係る遠心式送風機において、第1開口部と第2開口部を説明するための説明図である。 第3実施形態に係る遠心式送風機の内外気箱を除いた状態の斜視図である。 第3実施形態に係る遠心式送風機において、第1開口部と第2開口部を説明するための説明図である。 第4実施形態に係る遠心式送風機の内外気箱を除いた状態の斜視図である。 第5実施形態に係る遠心式送風機の内外気箱を除いた状態の斜視図である。 第5実施形態に係る遠心式送風機において、第1開口部と第2開口部を説明するための説明図である。 第6実施形態に係る遠心式送風機の内外気箱を除いた状態の斜視図である。 第6実施形態に係る遠心式送風機において、第1開口部と第2開口部を説明するための説明図である。 第7実施形態に係る遠心式送風機の内外気箱を除いた状態の斜視図である。 第7実施形態に係る遠心式送風機において、第1開口部と第2開口部を説明するための説明図である。 第8実施形態に係る遠心式送風機の内外気箱を除いた状態の斜視図である。 第8実施形態に係る遠心式送風機において、第1開口部と第2開口部を説明するための説明図である。
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。
 (第1実施形態)
 第1実施形態について図面を参照しつつ説明する。本実施形態の遠心式送風機1は、内外気二層流式の車両用空調装置に適用される。この遠心式送風機1は、車室内空気(以下、内気という)と車室外空気(以下、外気という)を区分しつつ同時に吸入して吹き出すことの可能な送風機である。
 図1~図4に示すように、遠心式送風機1は、内外気箱10、フィルタ20、羽根車30、スクロールケーシング40、ベルマウス50、仕切壁44および分離筒60などを備えている。
 内外気箱10は、遠心式送風機1の上部に配置されている。内外気箱10は、車両前方側から順に、外気導入口11、第1内気導入口12および第2内気導入口13を有している。外気導入口11には、外気が導入される。第1内気導入口12と第2内気導入口13には、内気が導入される。内外気箱10の内側には、第1切替ドア14と第2切替ドア15とが設けられている。第1切替ドア14は、外気導入口11と第1内気導入口12とを選択的に開閉可能である。第2切替ドア15は、第2内気導入口13を開閉可能である。第1切替ドア14と第2切替ドア15は、例えばロータリドアにより構成されている。
 フィルタ20は、内外気箱10の下部に設けられている。フィルタ20は、内外気箱10に導入された空気(すなわち、外気および内気)に含まれる異物を捕集する。フィルタ20は、例えば、所定の通気性を有する除塵用濾材がひだ形状に折り曲げられて構成されている。フィルタ20は、外気導入口11と第1内気導入口12と第2内気導入口13が並ぶ方向(例えば、車両前後方向)に、ひだ形状が折り重なるように形成されている。換言すれば、フィルタ20は、外気導入口11と第1内気導入口12と第2内気導入口13が並ぶ方向に対し直交する方向(例えば、車幅方向)に、ひだ形状の折り目が延びている。なお、内外気箱10とフィルタ20は、上方から視て、その外形が略矩形状に形成されている。
 羽根車30は、モータ31の駆動により回転する遠心ファンである。羽根車30は、モータ31のシャフト32に固定される主板33、および、その主板33に固定される複数の翼34を有している。羽根車30は、フィルタ20を通過した空気を回転軸方向の一方から吸入し、径方向外側に吹き出すように構成されている。なお、複数の翼34同士の間には、翼34のうち軸方向上側の領域を流れる風と、翼34のうち軸方向下側の領域を流れる風とを仕切る翼仕切壁35が設けられている。
 スクロールケーシング40は、羽根車30の径方向外側を囲っている。スクロールケーシング40は、その外周の一部にノーズ部41を有している。そして、スクロールケーシング40は、そのノーズ部41から周方向の一方に向かい次第に流路面積が拡大する通風路42を形成している。通風路42は、主に、スクロールケーシング40の内壁と羽根車30の翼34の後縁36との間に形成される。通風路42のうち流路面積が最大となる箇所は、空調装置が備える図示しない空調ケーシングに連通する。そのため、スクロールケーシング40の通風路42から吹き出された空気は、その空調ケーシングに導入される。
 なお、図示していないが、その空調ケーシング内には、空気の温度および湿度を調整するためのエバポレータ、ヒータコアおよびエアミックスドアなどが配置されている。そして、その空調ケーシング内で温度および湿度が調整された空調風は、フェイス吹出口、フット吹出口およびデフロスタ吹出口などから車室内に吹き出されるように構成されている。
 スクロールケーシング40のうち羽根車30の回転軸方向の一方の端面49(以下、スクロールケーシング40の上面49という)には、羽根車30への空気の吸込口を形成する環状のベルマウス50が設けられている。フィルタ20を通過した空気は、ベルマウス50から羽根車30に吸い込まれる。
 また、スクロールケーシング40の上面49には、上述した内外気箱10とフィルタ20を取り付けるための取付枠43が設けられている。すなわち、この取付枠43の上に、内外気箱10とフィルタ20が取り付けられる。
 また、スクロールケーシング40の内側には、通風路42を、羽根車30の軸方向の一方の領域と、羽根車30の軸方向の他方の領域とに仕切る仕切壁44が設けられている。仕切壁44は、羽根車30の翼34同士の間に設けられる翼仕切壁35に対応する位置に設けられている。以下の説明では、通風路42のうち仕切壁44より上側の領域を上通風路45と呼び、通風路42のうち仕切壁44より下側の領域を下通風路46と呼ぶこととする。
 分離筒60は、フィルタ20と羽根車30との間の領域から羽根車30の径方向内側の領域に亘って設けられている。分離筒60は、羽根車30とフィルタ20との間の領域の一部に設けられる空気導入板61と、その空気導入板61に形成される空気入口部62から羽根車30の径方向内側を通って径方向外側に拡がる形状の筒状部63を有している。
 図3に示すように、空気導入板61は、上方から視て、外形が略矩形状に形成されている。そして、その空気導入板61は、ベルマウス50のほぼ半分の領域を覆っている。具体的には図1に示すように、空気導入板61のうち羽根車30の回転軸301側に配置される外縁64は、内外気箱10の第2切替ドア15が第2内気導入口13を全開にしたとき、第2切替ドア15のフィルタ20側の端部16に対応する位置に設けられている。なお、第2切替ドア15のフィルタ20側の端部16に対応する位置とは、第2切替ドア15の端部16の下側ということもできる。
 空気導入板61と筒状部63とは漏斗状に接続されている。筒状部63は、羽根車30の径方向内側の領域において筒状となっている。そして、筒状部63のうち空気導入板61とは反対側の端部68は、羽根車30の翼34同士の間に設けられた翼仕切壁35に対応する位置に設けられている。なお、翼仕切壁35に対応する位置とは、翼仕切壁35の径方向内側ということもできる。
 上述した構成において、遠心式送風機1は、内外気箱10に導入されてフィルタ20の所定の領域を通過した空気を、羽根車30の軸方向の一方から分離筒60の内側を経由して下通風路46に流すことが可能である。また、この遠心式送風機1は、フィルタ20の他の領域を通過した空気を羽根車30の軸方向の一方から分離筒60の外側を経由して上通風路45に流すことが可能である。すなわち、この遠心式送風機1は、片側吸込式の送風機である。なお、フィルタ20の所定の領域とは、例えば、フィルタ20のうち第2切替ドア15の端部16が当接する位置よりも車両後方側の領域である。また、フィルタ20の他の領域とは、例えば、フィルタ20のうち第2切替ドア15の端部16が当接する位置よりも車両前方側の領域である。
 図1では、第1切替ドア14が外気導入口11を開放しつつ第1内気導入口12を閉塞し、且つ、第2切替ドア15が第2内気導入口13を開放した状態を示している。このような状態で、遠心式送風機1は、内気と外気とを区分しつつ同時に吸入して吹き出すことが可能である。
 図1の矢印Aに示すように、第2内気導入口13から導入される内気は、フィルタ20のうち空気導入板61の略直上に位置する領域を通過した後、空気導入板61に形成される空気入口部62から筒状部63の内側を通り羽根車30を介して下通風路46に流れる。
 一方、図1の矢印B、Cに示すように、外気導入口11から導入される外気は、フィルタ20のうち空気導入板61の略直上を除く領域を通過した後、空気導入板61を除く空間から筒状部63の外側を通り羽根車30を介して上通風路45に流れる。
 詳細には、図1の矢印Bおよび図3の矢印Dに示すように、空気導入板61を除く領域を流れる空気の一部は、そのまま羽根車30に放射状に吸い込まれる。また、図1の矢印Cおよび図3の矢印E、Fに示すように、空気導入板61を除く領域を流れる空気の他の一部は、分離筒60が有する筒状部63の外側左右それぞれの空間から分離筒60の裏側の流路47に回り込んで羽根車30に吸い込まれる。なお、分離筒60の裏側の流路47とは、スクロールケーシング40の上面49およびベルマウス50と、空気導入板61との隙間に形成される流路である。
 ここで、図1に示すように、本実施形態では、フィルタ20から上通風路45に空気が流れる流路の中で空気導入板61の外縁64を含み羽根車30の回転軸301に平行な仮想平面VSを定義する。そして、図5に示すように、本実施形態では、その仮想平面VS上の流路断面において、分離筒60を挟んでノーズ部41に近い側の流路断面を第1開口部71と呼び、ノーズ部41から遠い側の流路断面を第2開口部72と呼ぶこととする。
 図5では、説明のため、断面ではないが、説明の便宜上、第1開口部71に破線のハッチングを付し、第2開口部72に一点鎖線ハッチングを付している。なお、このことは、後述する第2~第8実施形態で参照する図7、9、12、14、16、18でも同様である。
 図4および図5に示すように、本実施形態では、内外気箱10の中心101は、羽根車30の回転軸301および分離筒60が有する筒状部63の中心軸601に対し第1開口部71側にずれた位置にある。そのため、第1開口部71の流路断面積は、第2開口部72の流路断面積より大きく構成されている。詳細には、本実施形態では、第1開口部71のうち羽根車30より空気導入板61側の領域の流路断面積が、第2開口部72のうち羽根車30より空気導入板61側の領域の流路断面積より大きく構成されている。
 次に、本実施形態の遠心式送風機1において、第1開口部71の流路断面積を第2開口部72の流路断面積より大きく構成したことの意義を説明する。
 上述したように、羽根車30の径方向外側に形成される通風路42は、ノーズ部41から周方向の一方に向かい次第に流路面積が拡大するように構成されている。すなわち、羽根車30の翼34の後縁36とスクロールケーシング40の内壁との距離は、ノーズ部41近傍が最も狭く、ノーズ部41から周方向の一方に向かい次第に遠くなる。そのため、羽根車30から通風路42に流れる空気の圧力損失は、ノーズ部41近傍が大きく、ノーズ部41から周方向の一方に向かって次第に小さくなる。そのため、仮に、第1開口部71の流路断面積と第2開口部72の流路断面積とが同一である場合、第1開口部71を経由して羽根車30に吸い込まれる風量が少なくなり、第2開口部72を経由して羽根車30に吸い込まれる風量が多くなる。その場合、フィルタ20を通過する風量は、第1開口部71の直上付近の領域を通過する風量が少なくなり、第2開口部72の直上付近の領域を通過する風量が多くなる。このように、フィルタ20の各領域を通過する風量のばらつきが大きくなると、フィルタ20全体としての圧力損失が大きくなる。その結果、送風機1の送風効率が低下することが懸念される。
 そこで、本実施形態では、内外気箱10の中心101を、羽根車30の回転軸301および分離筒60が有する筒状部63の中心軸601に対し、第1開口部71側にずらし、第1開口部71の流路断面積を第2開口部72の流路断面積より大きく構成している。これにより、第1開口部71の流路断面積と第2開口部72の流路断面積とが同一である場合と比べて、第1開口部71を経由して羽根車30に吸い込まれる風量を増やし、第2開口部72を経由して羽根車30に吸い込まれる風量を減らすことが可能である。そのため、第1開口部71を経由する風量と、第2開口部72を経由する風量とを近づけることで、第1開口部71の直上付近のフィルタ20の領域を通過する風量と、第2開口部72の直上付近のフィルタ20の領域を通過する風量とを近づけることが可能である。したがって、フィルタ20の各領域を通過する風量が均一に近づくので、フィルタ20全体としての圧力損失を低減することができる。その結果、送風機の送風効率を向上することが可能である。
 また、本実施形態では、内外気箱10の中心101を、羽根車30の回転軸301および分離筒60が有する筒状部63の中心軸601に対し第1開口部71側にずらす構成としている。そのため、遠心式送風機1における羽根車30の回転軸方向の体格(例えば、遠心式送風機1の高さ方向の体格)を大きくすることなく、第1開口部71の流路断面積と第2開口部72の流路断面積を調整することが可能である。
 また、本実施形態では、内外気箱10の構成および分離筒60の構成を、従来の遠心式送風機から大きく変更することなく、第1開口部71と第2開口部72の流路断面積を調整することが可能である。なお、従来の遠心式送風機とは、内外気箱10の中心101と羽根車30の回転軸301と分離筒60の中心軸601とが一致しているものをいう。
 また、本実施形態では、内外気箱10の構成および分離筒60の構成を、従来の遠心式送風機から大きく変更していないので、内外気箱10から分離筒60の内側を通って下通風路46に流れる空気の流れに影響を及ぼすこともない。
 (第2~第8実施形態)
 第2~第8実施形態について説明する。第2~第8実施形態は、第1実施形態に対して分離筒60または内外気箱10の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 (第2実施形態)
 図6および図7に示すように、第2実施形態では、分離筒60が有する空気導入板61は、第1開口部71側に位置する第1面65と、第2開口部72側に位置する第2面66と、その第1面65と第2面66とを接続する段差面67とを有している。第2面66は、第1面65よりもベルマウス50の近くに配置されている。なお、第2実施形態でも、内外気箱10の中心101は、羽根車30の回転軸301および分離筒60が有する筒状部63の中心軸601に対し第1開口部71側にずれた位置にある。
 上述した構成により、第2実施形態においても、第1開口部71のうち羽根車30より空気導入板61側の領域の流路断面積は、第2開口部72のうち羽根車30より空気導入板61側の領域の流路断面積より大きく構成されている。したがって、第1開口部71の流路断面積は、第2開口部72の流路断面積より大きく構成されている。よって、第2実施形態も、第1実施形態と同様の作用効果を奏することができる。
 (第3実施形態)
 図8および図9に示すように、第3実施形態では、分離筒60が有する空気導入板61は、第1開口部71側の部位より第2開口部72側の部位がベルマウス50に近づくように、ベルマウス50に対して傾斜している。なお、第3実施形態でも、内外気箱10の中心101は、羽根車30の回転軸301および分離筒60が有する筒状部63の中心軸601に対し第1開口部71側にずれた位置にある。
 上述した構成により、第3実施形態においても、第1開口部71のうち羽根車30より空気導入板61側の領域の流路断面積は、第2開口部72のうち羽根車30より空気導入板61側の領域の流路断面積より大きく構成されている。したがって、第1開口部71の流路断面積は、第2開口部72の流路断面積より大きく構成されている。よって、第3実施形態も、第1実施形態等と同様の作用効果を奏することができる。
 (第4実施形態)
 図10に示すように、第4実施形態も、分離筒60が有する空気導入板61は、第1開口部71側の部位より第2開口部72側の部位がベルマウス50に近づくように、ベルマウス50に対して傾斜している。さらに、第4実施形態では、図10の矢印Sに示すように、空気導入板61のうち空気入口部62の径方向外側の部位は、空気入口部62の周方向においてベルマウス50に対する傾斜率が一定となるようなスロープ状に形成されている。なお、第4実施形態でも、内外気箱10の中心101は、羽根車30の回転軸301および分離筒60が有する筒状部63の中心軸601に対し第1開口部71側にずれた位置にある。
 上述した構成により、第4実施形態においても、第1開口部71のうち羽根車30より空気導入板61側の領域の流路断面積は、第2開口部72のうち羽根車30より空気導入板61側の領域の流路断面積より大きく構成されている。したがって、第1開口部71の流路断面積は、第2開口部72の流路断面積より大きく構成されている。よって、第4実施形態も、第1実施形態等と同様の作用効果を奏することができる。
 さらに、第4実施形態では、空気導入板61のうち空気入口部62の径方向外側の部位を上述したスロープ状に形成することで、分離筒60の裏側の流路47を周方向に流れる風の圧力損失を低減することができる。
 (第5実施形態)
 図11および図12に示すように、第5実施形態では、分離筒60が有する空気導入板61と筒状部63との接続部のうち第1開口部71側の部位の曲率半径R1は、第2開口部72側の部位の曲率半径R2よりも小さく形成されている。なお、第5実施形態でも、内外気箱10の中心101は、羽根車30の回転軸301および分離筒60が有する筒状部63の中心軸601に対し第1開口部71側にずれた位置にある。
 上述した構成により、第5実施形態においても、第1開口部71のうち羽根車30より空気導入板61側の領域の流路断面積は、第2開口部72のうち羽根車30より空気導入板61側の領域の流路断面積より大きく構成されている。したがって、第1開口部71の流路断面積は、第2開口部72の流路断面積より大きく構成されている。よって、第5実施形態も、第1実施形態等と同様の作用効果を奏することができる。
 (第6実施形態)
 図13および図14に示すように、第6実施形態では、内外気箱10の中心101と羽根車30の回転軸301とは、ほぼ重なる位置にある。そして、第6実施形態では、分離筒60が有する筒状部63の中心軸601は、羽根車30の回転軸301および内外気箱10の中心101に対し第2開口部72側にずれた位置にある。
 上述した構成により、第6実施形態においても、第1開口部71の流路断面積は、第2開口部72の流路断面積より大きく構成されている。詳細には、第1開口部71のうち羽根車30より空気導入板61側の領域の流路断面積は、第2開口部72のうち羽根車30より空気導入板61側の領域の流路断面積より大きく構成されている。また、第1開口部71のうち羽根車30の径内側の領域の流路断面積も、第2開口部72のうち羽根車30の径内側の領域の流路断面積より大きく構成されている。したがって、第6実施形態も、第1実施形態等と同様の作用効果を奏することができる。
 (第7実施形態)
 図15および図16に示すように、第7実施形態では、内外気箱10および空気導入板61は、その一部が、スクロールケーシング40の外縁よりも外側に位置している。そして、スクロールケーシング40の外周より径方向外側の領域には、円弧状の外側流路48が形成されている。外側流路48は、スクロールケーシング40の外周より径方向外側において、スクロールケーシング40の上面49およびベルマウス50に対し空気導入板61とは反対側の領域を含むように形成されている。これにより、第7実施形態では、フィルタ20を通過した空気の一部が、第1開口部71から外側流路48を経由して羽根車30に吸い込まれるように流れる。
 上述した構成により、第7実施形態においても、第1開口部71の流路断面積は、第2開口部72の流路断面積より大きく構成されている。したがって、第7実施形態も、第1実施形態等と同様の作用効果を奏することができる。
 (第8実施形態)
 図17および図18に示すように、第8実施形態では、内外気箱10の中心101は、羽根車30の回転軸301に対し第1開口部71側にずれた位置にある。さらに、第8実施形態では、分離筒60が有する筒状部63の中心軸601は、羽根車30の回転軸301に対し第2開口部72側にずれた位置にある。
 上述した構成により、第8実施形態においても、第1開口部71の流路断面積は、第2開口部72の流路断面積より大きく構成されている。詳細には、第1開口部71のうち羽根車30より空気導入板61側の領域の流路断面積は、第2開口部72のうち羽根車30より空気導入板61側の領域の流路断面積より大きく構成されている。また、第1開口部71のうち羽根車30の径内側の領域の流路断面積も、第2開口部72のうち羽根車30の径内側の領域の流路断面積より大きく構成されている。したがって、第8実施形態も、第1実施形態等と同様の作用効果を奏することができる。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。すなわち、上記各実施形態の説明において「上」、「下」、「左」、「右」、「車両前方」および「車両後方」等の用語は各実施形態の説明において便宜上用いたものであり、遠心送風機が車両等に設置される方向を限定したものではない。
 例えば、上記第1実施形態の説明では、上通風路45に外気が流れ、下通風路46に内気が流れる状態について説明したが、これに限られるものではない。遠心式送風機1は、内外気箱10の第1切替ドア14と第2切替ドア15の位置調整により、上通風路45と下通風路46の両方に、外気のみ又は内気のみが流れるようにすることも可能であるし、内気と外気とを混合した空気が流れるようにすることも可能である。
 また、例えば、上記第1実施形態の説明では、スクロールケーシング40の車幅方向右側にノーズ部41と空調ケーシングを配置したが、これに限られるものではない。遠心式送風機1は、スクロールケーシング40の車幅方向左側にノーズ部41と空調ケーシングを配置する構成としてもよい。
 また、例えば、上記第1実施形態の説明では、内外気箱10は、車両前方側から順に、外気導入口11、第1内気導入口12および第2内気導入口13を有するものとして説明したが、これに限られるものではない。内外気箱10は、外気導入口11、第1内気導入口12および第2内気導入口13を、車幅方向に配置してもよく、または、車両後方側から順に配置してもよく、または、斜めに配置してもよい。
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、内外気二層流式の空調装置に適用される片側吸込式の遠心式送風機は、車室内空気と車室外空気を区分しつつ同時に吸入することが可能である。この遠心式送風機は、内外気箱、フィルタ、羽根車、スクロールケーシング、ベルマウス、仕切壁および分離筒を備える。内外気箱は、車室外空気が導入される外気導入口と車室内空気が導入される内気導入口とを有する。フィルタは、内外気箱に導入された空気に含まれる異物を捕集する。羽根車は、モータの駆動により回転し、フィルタを通過した空気を回転軸方向の一方から吸入し、径方向外側に吹き出す。スクロールケーシングは、羽根車の径方向外側を囲い、外周の一部に設けられたノーズ部から周方向の一方に向かい次第に流路面積が拡大する通風路を形成する。羽根車への空気の吸込口を形成するベルマウスは、環状に形成され、スクロールケーシングのうち羽根車の回転軸方向の一方の端面に設けられる。仕切壁は、羽根車の径方向外側に形成される通風路を羽根車の軸方向の一方の上通風路と軸方向の他方の下通風路とに仕切る。分離筒は、羽根車とフィルタとの間の領域の一部に設けられる空気導入板、およびその空気導入板に形成される空気入口部から羽根車の径方向内側を通って径方向外側に拡がる形状の筒状部を有する。この遠心式送風機は、フィルタから空気導入板に流れる空気が空気入口部から筒状部の内側を通り羽根車を介して下通風路に流れ、フィルタから空気導入板を除く領域に流れる空気が筒状部の外側を通り羽根車を介して上通風路に流れるように構成されている。ここで、フィルタから上通風路に空気が流れる流路のうち空気導入板の外縁を含み羽根車の回転軸に平行な仮想平面上の流路断面において、分離筒を挟んでノーズ部に近い側の流路断面を第1開口部、ノーズ部から遠い側の流路断面を第2開口部と呼ぶ。このとき、第1開口部の流路断面積は、第2開口部の流路断面積より大きく構成されている。
 第2の観点によれば、内外気箱の中心は、羽根車の回転軸および分離筒が有する筒状部の中心軸に対し第1開口部側にずれた位置にある。これにより、第1開口部のうち羽根車より空気導入板側の領域の流路断面積を、第2開口部のうち羽根車より空気導入板側の領域の流路断面積より大きく構成することが可能である。
 これによれば、遠心式送風機における羽根車の回転軸方向(例えば、遠心式送風機の高さ方向)の体格を大きくすることなく、また、内外気箱の構成および分離筒の構成を大きく変更することなく、第1開口部と第2開口部の流路断面積を調整することが可能である。
 第3の観点によれば、空気導入板は、第1開口部側に位置する第1面と、第2開口部側に位置し第1面よりもベルマウスに近くに配置される第2面と、第1面と第2面とを接続する段差面とを有している。これにより、第1開口部のうち羽根車より空気導入板側の領域の流路断面積を、第2開口部のうち羽根車より空気導入板側の領域の流路断面積より大きく構成することが可能である。
 第4の観点によれば、空気導入板は、第1開口部側の部位より第2開口部側の部位がベルマウスに近づくようにベルマウスに対して傾斜している。これにより、第1開口部のうち羽根車より空気導入板側の領域の流路断面積を、第2開口部のうち羽根車より空気導入板側の領域の流路断面積より大きく構成することが可能である。
 第5の観点によれば、空気導入板のうち空気入口部の径方向外側の部位は、空気入口部の周方向においてベルマウスに対する傾斜率が一定となるようなスロープ状に形成されている。これにより、分離筒の裏側の流路を周方向に流れる風の圧力損失を低減することができる。
 第6の観点によれば、空気導入板と筒状部との接続部のうち第1開口部側の部位の曲率半径は、第2開口部側の部位の曲率半径よりも小さく形成されている。これにより、第1開口部のうち羽根車より空気導入板側の領域の流路断面積を、第2開口部のうち羽根車より空気導入板側の領域の流路断面積より大きく構成することが可能である。
 第7の観点によれば、分離筒が有する筒状部の中心軸は、羽根車の回転軸および内外気箱の中心に対し第2開口部側にずれた位置にある。これにより、第1開口部の流路断面積を、第2開口部の流路断面積より大きく構成することが可能である。
 これによれば、遠心式送風機における羽根車の回転軸方向(例えば、高さ方向)の体格、および羽根車の回転軸方向に垂直な方向(例えば、幅方向)の体格を大きくすることなく、第1開口部と第2開口部の流路断面積を調整することが可能である。
 第8の観点によれば、内外気箱の中心は、羽根車の回転軸に対し第1開口部側にずれた位置にあり、且つ、分離筒が有する筒状部の中心軸は、羽根車の回転軸に対し第2開口部側にずれた位置にある。これにより、第1開口部の流路断面積を、第2開口部の流路断面積より大きく構成することが可能である。
 第9の観点によれば、内外気箱および空気導入板の外縁は、スクロールケーシングの外縁よりも外側に位置している。そして、スクロールケーシングの外周より径方向外側の領域、且つ、ベルマウスに対し空気導入板とは反対側の領域を含むように外側流路が形成されている。そして、フィルタを通過した空気の一部が第1開口部から外側流路を経由して羽根車に吸い込まれるように構成されている。これにより、第1開口部の流路断面積を第2開口部の流路断面積よりも大きくすることが可能である。

Claims (9)

  1.  内外気二層流式の空調装置に適用され、車室内空気と車室外空気を区分しつつ同時に吸入することが可能な片側吸込式の遠心式送風機であって、
     車室外空気が導入される外気導入口(11)と車室内空気が導入される内気導入口(12、13)とを有する内外気箱(10)と、
     前記内外気箱に導入された空気に含まれる異物を捕集するフィルタ(20)と、
     モータ(31)の駆動により回転し、前記フィルタを通過した空気を回転軸方向の一方から吸入し、径方向外側に吹き出す羽根車(30)と、
     前記羽根車の径方向外側を囲い、外周の一部に設けられたノーズ部(41)から周方向の一方に向かい次第に流路面積が拡大する通風路(42)を形成するスクロールケーシング(40)と、
     前記スクロールケーシングのうち前記羽根車の回転軸方向の一方の端面(49)に設けられ、前記羽根車への空気の吸込口を形成する環状のベルマウス(50)と、
     前記羽根車の径方向外側に形成される前記通風路を前記羽根車の軸方向の一方の上通風路(45)と軸方向の他方の下通風路(46)とに仕切る仕切壁(44)と、
     前記羽根車と前記フィルタとの間の領域の一部に設けられる空気導入板(61)、および前記空気導入板に形成される空気入口部(62)から前記羽根車の径方向内側を通って径方向外側に拡がる形状の筒状部(63)を有する分離筒(60)と、を備え、
     前記フィルタから前記空気導入板に流れる空気が前記空気入口部から前記筒状部の内側を通り前記羽根車を介して前記下通風路に流れ、前記フィルタから前記空気導入板を除く領域に流れる空気が前記筒状部の外側を通り前記羽根車を介して前記上通風路に流れるように構成されており、
     前記フィルタから前記上通風路に空気が流れる流路のうち前記空気導入板の外縁(64)を含み前記羽根車の回転軸に平行な仮想平面(VS)上の流路断面において、前記分離筒を挟んで前記ノーズ部に近い側の流路断面を第1開口部(71)、前記ノーズ部から遠い側の流路断面を第2開口部(72)と呼ぶとき、前記第1開口部の流路断面積は前記第2開口部の流路断面積より大きく構成されている遠心式送風機。
  2.  前記内外気箱の中心(101)は、前記羽根車の回転軸(301)および前記分離筒が有する前記筒状部の中心軸(601)に対し前記第1開口部側にずれた位置にあり、
     前記第1開口部のうち前記羽根車より前記空気導入板側の領域の流路断面積は、前記第2開口部のうち前記羽根車より前記空気導入板側の領域の流路断面積より大きく構成されている、請求項1に記載の遠心式送風機。
  3.  前記空気導入板は、前記第1開口部側に位置する第1面(65)と、前記第2開口部側に位置し前記第1面よりも前記ベルマウスに近くに配置される第2面(66)と、前記第1面と前記第2面とを接続する段差面(67)とを有しており、
     前記第1開口部のうち前記羽根車より前記空気導入板側の領域の流路断面積は、前記第2開口部のうち前記羽根車より前記空気導入板側の領域の流路断面積より大きく構成されている、請求項1または2に記載の遠心式送風機。
  4.  前記空気導入板は、前記第1開口部側の部位より前記第2開口部側の部位が前記ベルマウスに近づくように前記ベルマウスに対して傾斜しており、
     前記第1開口部のうち前記羽根車より前記空気導入板側の領域の流路断面積は、前記第2開口部のうち前記羽根車より前記空気導入板側の領域の流路断面積より大きく構成されている、請求項1または2に記載の遠心式送風機。
  5.  前記空気導入板のうち前記空気入口部の径方向外側の部位は、前記空気入口部の周方向において前記ベルマウスに対する傾斜率が一定となるようなスロープ状に形成されている、請求項4に記載の遠心式送風機。
  6.  前記空気導入板と前記筒状部との接続部のうち前記第1開口部側の部位の曲率半径(R1)は、前記第2開口部側の部位の曲率半径(R2)よりも小さく形成されており、
     前記第1開口部のうち前記羽根車より前記空気導入板側の領域の流路断面積は、前記第2開口部のうち前記羽根車より前記空気導入板側の領域の流路断面積より大きく構成されている、請求項1または2に記載の遠心式送風機。
  7.  前記分離筒が有する前記筒状部の中心軸は、前記羽根車の回転軸および前記内外気箱の中心に対し前記第2開口部側にずれた位置にあり、
     前記第1開口部の流路断面積は、前記第2開口部の流路断面積より大きく構成されている、請求項1または2に記載の遠心式送風機。
  8.  前記内外気箱の中心は、前記羽根車の回転軸に対し前記第1開口部側にずれた位置にあり、且つ、前記分離筒が有する前記筒状部の中心軸は、前記羽根車の回転軸に対し前記第2開口部側にずれた位置にあり、
     前記第1開口部の流路断面積は、前記第2開口部の流路断面積より大きく構成されている、請求項1、2または7に記載の遠心式送風機。
  9.  前記内外気箱および前記空気導入板の外縁は、前記スクロールケーシングの外縁よりも外側に位置しており、
     前記スクロールケーシングの外周より径方向外側の領域、且つ、前記ベルマウスに対し前記空気導入板とは反対側の領域を含むように外側流路(48)が形成されており、
     前記フィルタを通過した空気の一部が前記第1開口部から前記外側流路を経由して前記羽根車に吸い込まれるように構成されている、請求項1ないし8のいずれか1つに記載の遠心式送風機。
PCT/JP2019/039149 2018-11-19 2019-10-03 遠心式送風機 WO2020105292A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980075760.XA CN113056613B (zh) 2018-11-19 2019-10-03 离心式送风机
US17/317,957 US20210262485A1 (en) 2018-11-19 2021-05-12 Centrifugal blower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018216354A JP7159804B2 (ja) 2018-11-19 2018-11-19 遠心式送風機
JP2018-216354 2018-11-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/317,957 Continuation US20210262485A1 (en) 2018-11-19 2021-05-12 Centrifugal blower

Publications (1)

Publication Number Publication Date
WO2020105292A1 true WO2020105292A1 (ja) 2020-05-28

Family

ID=70774014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039149 WO2020105292A1 (ja) 2018-11-19 2019-10-03 遠心式送風機

Country Status (4)

Country Link
US (1) US20210262485A1 (ja)
JP (1) JP7159804B2 (ja)
CN (1) CN113056613B (ja)
WO (1) WO2020105292A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035792A (ja) * 2016-09-02 2018-03-08 株式会社ヴァレオジャパン 車両用空調装置のための遠心送風機
WO2018074339A1 (ja) * 2016-10-18 2018-04-26 株式会社ヴァレオジャパン 遠心送風機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3843928B2 (ja) * 2002-10-15 2006-11-08 株式会社デンソー 遠心式送風機
KR20140007579A (ko) * 2012-07-09 2014-01-20 주식회사 두원공조 차량의 공기조화장치용 인테이크 시스템
FR3014029B1 (fr) * 2013-12-04 2015-12-18 Valeo Systemes Thermiques Pulseur d'aspiration destine a un dispositif de chauffage, ventilation et/ou climatisation d'un vehicule automobile
JP2018178830A (ja) * 2017-04-11 2018-11-15 株式会社ヴァレオジャパン 遠心送風機
JP7147499B2 (ja) * 2018-11-19 2022-10-05 株式会社デンソー 遠心式送風機
JP7070361B2 (ja) * 2018-11-19 2022-05-18 株式会社デンソー 送風機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035792A (ja) * 2016-09-02 2018-03-08 株式会社ヴァレオジャパン 車両用空調装置のための遠心送風機
WO2018074339A1 (ja) * 2016-10-18 2018-04-26 株式会社ヴァレオジャパン 遠心送風機

Also Published As

Publication number Publication date
CN113056613A (zh) 2021-06-29
JP2020084817A (ja) 2020-06-04
CN113056613B (zh) 2023-03-21
JP7159804B2 (ja) 2022-10-25
US20210262485A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP3843928B2 (ja) 遠心式送風機
WO2020230563A1 (ja) 遠心送風機
JP2019044739A (ja) 車両用空調装置のための遠心送風機
WO2020105293A1 (ja) 遠心式送風機
US20220282735A1 (en) Blower
WO2020105292A1 (ja) 遠心式送風機
WO2020105294A1 (ja) 送風機
CN114837968B (zh) 离心送风机
CN114761693B (zh) 离心送风机
WO2021090648A1 (ja) 送風機
JP7255448B2 (ja) 送風機
WO2021106405A1 (ja) 送風機およびフィルタ装置
WO2020162133A1 (ja) 遠心送風機
WO2021187175A1 (ja) 遠心送風機
WO2021085086A1 (ja) 送風機
WO2020095563A1 (ja) 遠心送風機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887024

Country of ref document: EP

Kind code of ref document: A1