WO2020105224A1 - X-ray phase imaging system - Google Patents

X-ray phase imaging system

Info

Publication number
WO2020105224A1
WO2020105224A1 PCT/JP2019/030293 JP2019030293W WO2020105224A1 WO 2020105224 A1 WO2020105224 A1 WO 2020105224A1 JP 2019030293 W JP2019030293 W JP 2019030293W WO 2020105224 A1 WO2020105224 A1 WO 2020105224A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
ray source
grating
cooling fan
imaging apparatus
Prior art date
Application number
PCT/JP2019/030293
Other languages
French (fr)
Japanese (ja)
Inventor
貴弘 土岐
木村 健士
太郎 白井
直樹 森本
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020558082A priority Critical patent/JP7074206B2/en
Publication of WO2020105224A1 publication Critical patent/WO2020105224A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the present invention relates to an X-ray phase imaging apparatus, and to an X-ray phase imaging apparatus including a cooling fan that cools an X-ray source.
  • an X-ray phase imaging apparatus equipped with a cooling fan that cools an X-ray source is known.
  • Such an X-ray phase imaging apparatus is disclosed in, for example, Japanese Patent Laid-Open No. 2012-110395.
  • the X-ray imaging system disclosed in Japanese Unexamined Patent Publication No. 2012-110395 includes an X-ray source, a flat panel detector arranged in the irradiation direction of the X-ray source, and an X-ray between the X-ray source and the flat panel detector.
  • a plurality of grids including a multi-slit provided near the source and a grid arranged between the multi-slit and the flat panel detector; and an arithmetic processing unit that arithmetically processes image data to generate a phase contrast image. It has and.
  • the phase contrast image includes an absorption image, a phase differential image, and a dark field image.
  • the absorption image is an image formed based on the attenuation of X-rays that occurs when the X-rays pass through the subject.
  • the phase differential image is an image formed based on the phase shift of X-rays that occurs when the X-rays pass through the subject.
  • the dark field image is a Visibility image obtained by a change in Visibility based on small-angle scattering of an object.
  • the dark field image is also called a small-angle scattered image. "Visibility" is definition.
  • the X-ray source disclosed in JP 2012-110395A has an X-ray tube cooler for cooling the X-ray source.
  • the X-ray cooler cools the X-ray source by driving a fan.
  • the X-ray cooler described in Japanese Unexamined Patent Publication No. 2012-110395 is provided directly (in contact) with the X-ray source. Therefore, the X-ray source vibrates due to the vibration generated when the fan of the X-ray cooler is driven. When the X-ray source vibrates, the image quality of the phase contrast image deteriorates. Therefore, the X-ray imaging system disclosed in Japanese Patent Laid-Open No. 2012-110395 is configured to stop air cooling by the X-ray cooler when the X-ray source vibrates by the X-ray cooler. There is.
  • the present invention has been made to solve the above problems, and is to provide an X-ray phase imaging apparatus capable of imaging while cooling the X-ray source.
  • an X-ray phase imaging apparatus includes an X-ray source, a detector that detects X-rays emitted from the X-ray source, an X-ray source and a detector. Between the X-ray source and the image processing unit that generates a phase contrast image based on the intensity distribution of the X-ray detected by the detector.
  • a cooling fan that cools the X-ray source by blowing air and a windbreak member that blocks the wind from the cooling fan that is directed toward the plurality of grids.
  • a cooling fan that is provided separately from the X-ray source and cools the X-ray source by blowing air to the X-ray source, and a cooling fan.
  • the windshield member is provided to shield the winds heading in the direction of the plurality of grids.
  • the cooling fan is provided apart from the X-ray source
  • the grid may vibrate due to the air flowing from the cooling fan toward the grid.
  • the grating vibrates, the quality of the obtained image deteriorates.
  • the cooling fan cools the X-ray source toward the plurality of grids
  • the wind from the cooling fan is shielded by the windbreak member. Therefore, it is possible to prevent the plurality of grids from vibrating due to the wind. As a result, it is possible to suppress deterioration of the image quality of the obtained image even when the X-ray source is imaged while being cooled.
  • the X-ray phase imaging apparatus capable of imaging while cooling the X-ray source.
  • FIG. 1 is a schematic diagram showing an overall configuration of an X-ray phase imaging apparatus according to an embodiment.
  • FIG. 6 is a perspective view of a grating moving mechanism included in the X-ray phase imaging apparatus according to the embodiment. It is a perspective view for explaining the structure of the windbreak member according to one embodiment. It is a schematic diagram for demonstrating arrangement
  • FIG. 3 is a schematic diagram of an absorption image acquired by an X-ray phase imaging apparatus according to one embodiment. It is a schematic diagram of the phase differential image acquired by the X-ray phase imaging apparatus by one Embodiment.
  • FIG. 3 is a schematic diagram of a dark field image acquired by the X-ray phase imaging apparatus according to one embodiment.
  • FIG. 7 is a schematic diagram for explaining a phase contrast image according to a comparative example.
  • FIG. 6 is a schematic diagram for explaining a phase contrast image according to an embodiment. It is a schematic diagram for demonstrating the structure of the windbreak member by a 1st modification.
  • FIGS. 1 to 11 A configuration of an X-ray phase imaging apparatus 100 according to an embodiment will be described with reference to FIGS. 1 to 11.
  • the X-ray phase imaging apparatus 100 is an apparatus that images the inside of the subject 20 by utilizing the Talbot (30albot) effect.
  • the X-ray phase imaging apparatus 100 is configured to image the subject 20 while translating any one of the plurality of gratings in the grating periodic direction (Y direction).
  • the X-ray phase imaging apparatus 100 includes an X-ray source 1, a detector 2, a plurality of gratings, an image processing unit 6, a cooling fan 7, a windbreak member 8, and a control unit.
  • a unit 9, a storage unit 10, and a lattice moving mechanism 11 are provided.
  • the plurality of lattices includes a first lattice 3, a second lattice 4, and a third lattice 5.
  • the direction from the X-ray source 1 toward the first grating 3 is the Z2 direction
  • the opposite direction is the Z1 direction.
  • a horizontal direction in a plane orthogonal to the Z direction is defined as an X direction, a direction toward the back of the paper surface of FIG.
  • X2 direction a direction toward the front side of the paper surface of FIG. 1 is defined as an X1 direction.
  • the vertical direction in the plane orthogonal to the Z direction is the Y direction
  • the upward direction of the paper surface of FIG. 1 is the Y1 direction
  • the downward direction of the paper surface of FIG. 1 is the Y2 direction.
  • the X-ray source 1 is configured to generate X-rays by applying a high voltage and irradiate the generated X-rays toward the first grating 3.
  • the X-ray source 1 includes a cathode (not shown) for generating an electron beam, an anode for generating an X-ray when the electron beam collides, and a voltage between the cathode and the anode.
  • This is an X-ray generator including a voltage applying unit (not shown) for applying, and a cathode, an anode, and a voltage applying unit provided in a housing (not shown).
  • the detector 2 is configured to detect X-rays, convert the detected X-rays into an electric signal, and read the converted electric signal as an image signal.
  • the detector 2 is, for example, an FPD (Flat Panel Detector).
  • the detector 2 is composed of a plurality of conversion elements (not shown) and pixel electrodes (not shown) arranged on the plurality of conversion elements.
  • the plurality of conversion elements and the pixel electrodes are arranged in an array in the X direction and the Y direction at a predetermined cycle (pixel pitch).
  • the detector 2 is also configured to output the acquired image signal to the image processing unit 6.
  • the first grating 3 has a plurality of X-ray transmitting portions 3a and X-ray absorbing portions 3b arranged in the Y direction at a predetermined cycle (pitch) 30.
  • Each X-ray transmitting portion 3a and X-ray absorbing portion 3b is formed so as to extend linearly. Further, each X-ray transmitting portion 3a and X-ray absorbing portion 3b are formed so as to extend in parallel.
  • the first grating 3 is a so-called multi-slit.
  • the first grating 3 is arranged between the X-ray source 1 and the second grating 4.
  • lattice 3 is comprised so that the X-ray which passed each X-ray transmission part 3a may be used as a linear light source.
  • the pitch of the three gratings (the first grating 3, the second grating 4, and the third grating 5) and the distance between the gratings satisfy certain conditions, the X-rays emitted from the X-ray source 1 It is possible to increase coherence. This is called the low effect. Thereby, the interference intensity can be maintained even if the tube size of the X-ray source 1 is large.
  • the second grating 4 has a plurality of slits 4a arranged at a predetermined period (pitch) 31 in the Y direction, and an X-ray phase changing portion 4b.
  • Each of the slits 4a and the X-ray phase changing portion 4b is formed so as to extend linearly. Further, each slit 4a and X-ray phase changing portion 4b are formed so as to extend in parallel.
  • the second grating 4 is a so-called phase grating.
  • the second grating 4 is arranged between the X-ray source 1 and the third grating 5 and is irradiated with X-rays from the X-ray source 1.
  • the second grating 4 is provided to form a self-image (not shown) of the second grating 4 by the Talbot effect.
  • an image (self-image) of the grating is formed at a position separated from the grating by a predetermined distance (Talbot distance). This is called the Talbot effect.
  • the third grating 5 has a plurality of X-ray transmitting portions 5a and X-ray absorbing portions 5b arranged in the Y direction at a predetermined cycle (pitch) 32. Each X-ray transmitting portion 5a and X-ray absorbing portion 5b is formed so as to extend linearly. Further, each X-ray transmitting portion 5a and X-ray absorbing portion 5b is formed so as to extend in parallel.
  • the third grating 5 is a so-called absorption grating.
  • the first grating 3, the second grating 4, and the third grating 5 have different roles, but the X-ray transmissive portion 3a, the slit 4a, and the X-ray transmissive portion 5a respectively transmit X-rays.
  • the X-ray absorbing portion 3b and the X-ray absorbing portion 5b each have a role of shielding X-rays, and the X-ray phase changing portion 4b changes the phase of the X-rays due to the difference in the refractive index with the slit 4a.
  • the third grating 5 is arranged between the second grating 4 and the detector 2 and is irradiated with the X-ray that has passed through the second grating 4.
  • the third grating 5 is arranged at a position away from the second grating 4 by the Talbot distance.
  • the third grating 5 interferes with the self-image of the second grating 4 to form moire fringes 16 (see FIG. 5) on the detection surface of the detector 2.
  • the X-ray phase imaging apparatus 100 is configured by the so-called Talbot-Lau interferometer.
  • the image processing unit 6 is configured to generate the phase contrast image 41 (see FIG. 7) based on the image signal output from the detector 2. In the present embodiment, the image processing unit 6 generates, for example, the absorption image 42 (see FIG. 7), the phase differential image 43 (see FIG. 8) and the dark field image 44 (see FIG. 9) as the phase contrast image 41. ..
  • the image processing unit 6 includes a processor such as a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) configured for image processing.
  • the cooling fan 7 is configured to cool the X-ray source 1 by sending air to the X-ray source 1 under the control of the control unit 9.
  • the cooling fan 7 includes a blade member (not shown), a motor (not shown), and the like.
  • the cooling fan 7 generates wind 50 (see FIG. 4) by rotating the blade member with a motor.
  • the cooling fan 7 is provided separately from the X-ray source 1.
  • the cooling fan 7 is provided separately from the X-ray source 1 means that the cooling fan 7 and the X-ray source 1 are not directly connected (not in contact) with each other, and cooling is performed. This means that the fan 7 and the X-ray source 1 are not indirectly connected via the common fixing member.
  • the X-ray source 1 and the cooling fan 7 are individually held by a fixing member (not shown). Further, the cooling fan 7 is a fan different from a fan provided inside the housing of the X-ray source 1 for exhausting heated air. That is, the cooling fan 7 is a fan provided for cooling the focal point 1a of the X-ray from the outside of the X-ray apparatus, separately from the fan provided inside the housing of the X-ray apparatus.
  • the windbreak member 8 is configured to shield the wind 51 from the cooling fan 7 toward the direction of the plurality of grids 51 (see FIG. 4). As shown in FIG. 1, the windbreak member 8 and the plurality of lattices are held by separate fixing members 12, fixing members 13, fixing members 14, and fixing members 15, respectively.
  • the fixing member 12, the fixing member 13, the fixing member 14, and the fixing member 15 are each configured to extend in the Y direction.
  • the fixing member 12, the fixing member 13, the fixing member 14, and the fixing member 15 respectively hold the first lattice 3, the second lattice 4, the third lattice 5, and the windbreak member 8 from the Y2 direction. Is configured to.
  • the fixing member 12 the fixing member 13, the fixing member 14, and the fixing member 15 hold the first lattice 3, the second lattice 4, the third lattice 5, and the windbreak member 8? It may be formed in various shapes.
  • the fixing member 15 that holds the windbreak member 8 and the fixing members 12, fixing members 13 and 14 that hold the respective lattices generate vibrations caused by the wind 50 hitting the windbreak member 8. They are arranged at positions separated from each other so that they do not propagate to each other.
  • the fixing member 15 that holds the windbreak member 8 is provided at a position separated from the X-ray source 1. That is, the windbreak member 8 is provided separately from the X-ray source 1 and is provided at a position separated from the X-ray source 1 (X-ray device). Further, each fixing member is fixed to a housing (not shown) of the X-ray phase imaging apparatus 100.
  • the control unit 9 is configured to control the cooling fan 7 to blow air to the X-ray source 1. Further, the control unit 9 is configured to control the lattice moving mechanism 11 to move the second lattice 4.
  • the control unit 9 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the storage unit 10 is configured to store the program executed by the control unit 9, the phase contrast image 41 generated by the image processing unit 6, and the like.
  • the storage unit 10 includes, for example, an HDD (Hard Disk Drive) and a non-volatile memory.
  • the lattice moving mechanism 11 is configured to move the second lattice 4 under the control of the control unit 9. Further, the lattice moving mechanism 11 holds the second lattice 4 via the fixing member 13.
  • the lattice moving mechanism 11 includes an X direction, a Y direction, a Z direction, a rotation direction (Rz) about an axis line in the Z direction, a rotation direction (Rx) about an axis line in the X direction, and a Y direction.
  • the second grating 4 is configured to be movable in the rotation direction (Ry) around the axis of.
  • the grid moving mechanism 11 includes an X-direction direct-acting mechanism 110, a Y-direction direct-acting mechanism 111, a Z-direction direct-acting mechanism 112, a direct-acting mechanism connecting portion 113, and a stage supporting portion driving portion 114.
  • the stage support unit 115, the stage drive unit 116, and the stage 117 are included.
  • the X direction translation mechanism 110 is configured to be movable in the X direction.
  • the X-direction translation mechanism 110 includes, for example, a motor.
  • the Y-direction translation mechanism 111 is configured to be movable in the Y-direction.
  • the Y-direction translation mechanism 111 includes, for example, a motor.
  • the Z direction translation mechanism 112 is configured to be movable in the Z direction.
  • the Z-direction translation mechanism 112 includes, for example, a motor.
  • the lattice moving mechanism 11 is configured to move the second lattice 4 in the X direction by the operation of the X-direction linear moving mechanism 110. Further, the lattice moving mechanism 11 is configured to move the second lattice 4 in the Y direction by the operation of the Y-direction linear moving mechanism 111. Further, the lattice moving mechanism 11 is configured to move the first lattice 3 in the Z direction by the operation of the Z-direction translation mechanism 112.
  • the stage support unit 115 supports the stage 117 from below (Y2 direction).
  • the stage drive unit 116 is configured to reciprocate the stage 117 in the X direction.
  • the stage 117 has a bottom portion formed in a convex curved surface shape toward the stage supporting portion 115, and is configured to reciprocate in the X direction to rotate about the Z direction axis (Rz direction).
  • the stage support driving unit 114 is configured to reciprocate the stage support 115 in the Z direction.
  • the bottom of the stage support 115 is formed in a convex curved surface shape toward the linear motion mechanism connection 113, and when it is reciprocated in the Z direction, the stage support 115 rotates about the axis in the X direction (Rx direction). Is configured.
  • the linear motion mechanism connecting portion 113 is provided in the X-direction linear motion mechanism 110 so as to be rotatable around an axis line in the Y direction (Ry direction). Therefore, the lattice moving mechanism 11 can rotate the lattice around the central axis in the Y direction.
  • the windbreak member 8 has a plate-like shape. Further, the windbreak member 8 has an opening 80 through which X-rays emitted from the X-ray source 1 pass.
  • the windbreak member 8 includes, for example, an X-ray absorbing member 81.
  • the X-ray absorbing member 81 contains, for example, a heavy metal such as lead or tungsten.
  • the opening 80 is an opening formed in the X-ray absorbing member 81. That is, the windbreak member 8 is formed by providing the opening 80 in the X-ray absorbing member 81 having a plate shape.
  • the windshield member 8 is formed such that the size of the windshield member 8 in the XY plane is substantially equal to the size of the first lattice 3 in the XY plane.
  • the size of the windshield member 8 in the XY plane is substantially equal to the size of the first grating 3 in the XY plane when the windshield member 8 and the first grating 3 are arranged side by side in the optical axis 60 direction.
  • the region formed by the XY plane of the windbreak member 8 can substantially cover the region formed by the XY plane of the first lattice 3.
  • FIG. 4 is a schematic view of the X-ray source 1, the first grating 3, the cooling fan 7, and the windshield member 8 as viewed from the Y1 direction.
  • the cooling fan 7 includes a blower port 7a.
  • the cooling fan 7 is arranged at a position where air is blown from a direction (X direction) intersecting the optical axis 60 of the X-ray.
  • the cooling fan 7 is arranged between the X-ray source 1 and the windshield member 8.
  • the X-ray source 1 is configured to irradiate the irradiation range 63 surrounded by the straight line 61 and the straight line 62 with the X-ray, and the cooling fan 7 is outside the irradiation range 63 of the X-ray. Moreover, it is arranged between the X-ray source 1 and the first grating 3. Specifically, the cooling fan 7 is arranged between the X-ray source 1 and the first grating 3 in a direction orthogonal to the optical axis 60 so that the blower port 7a faces the X-ray focal point 1a. ing.
  • the cooling fan 7 is configured to cool the X-ray source 1 by applying the wind 50 to the X-ray focal point 1a of the X-ray source 1.
  • the X-ray source 1 and the cooling fan 7 are shown small for convenience. In reality, the sizes of the X-ray source 1 and the cooling fan 7 are larger than those of the windbreak member 8 and the first grid 3. Therefore, in the present embodiment, even if the cooling fan 7 is not arranged between the X-ray source 1 and the windshield member 8 in the entire housing of the cooling fan 7, the blower port 7a is connected to the X-ray source 1. If it is arranged between the windshield member 8 and the windshield member 8, it is assumed that the cooling fan 7 is arranged between the X-ray source 1 and the windshield member 8.
  • the windbreak member 8 is arranged between the X-ray source 1 and the plurality of grids. Specifically, the windbreak member 8 is arranged at least on the optical axis 60 of the X-ray and between the X-ray source 1 and the first grating 3. The windbreak member 8 is configured to block the wind 51 from the cooling fan 7 that is reflected by the X-ray source 1 and is directed toward the first grating 3.
  • the windbreak member 8 and the X-ray source 1 are arranged on the optical axis 60 of the X-ray and between the X-ray source 1 and the first grating 3.
  • the distance 33 between them is smaller than the distance 34 between the windshield member 8 and the first grid 3.
  • the X-ray phase imaging apparatus 100 acquires the moire fringe image 40 at each step as shown in FIG. 5 by translating the second grating 4 by the grating moving mechanism 11.
  • the image processing unit 6 acquires the step curve 46 as shown in FIG. 6 based on the pixel value of the same pixel 17 in the moire fringe image 40 at each step. 6 shows an example of the step curve 47 acquired without arranging the subject 20 and an example of the step curve 48 acquired with the subject 20 arranged as the step curve 46.
  • the example of the step curve 46 shown in FIG. 6 is a graph showing the relationship between each step and the intensity of the pixel value. Plots indicated by circles in FIG. 6 represent values obtained when the subject 20 is photographed without being placed. In addition, the plots shown by square marks in FIG. 6 show values when the subject 20 is arranged and photographed.
  • the image processing unit 6 measures the average intensity (Cs) of X-rays when the subject 20 is placed and imaged, and the average intensity (Xs) of the X-rays when the subject 20 is not placed (
  • the absorption image 42 is generated by the ratio with Cr).
  • the image processing unit 6 sets a predetermined phase difference ( ⁇ ) between the step curve 47 acquired by capturing the subject 20 without arranging it and the step curve 48 acquired by arranging the subject 20 and capturing the image.
  • the phase differential image 43 is generated by multiplying the number obtained by the calculation of
  • the image processing unit 6 generates the dark-field image 44 based on the ratio of the Visibility (Vr) when the subject 20 is imaged without being arranged and the Visibility (Vs) when the subject 20 is arranged and imaged. ..
  • Vr can be obtained by the ratio of the amplitude (Ar) of the step curve 47 and the average intensity (Cr).
  • Vs can be obtained by the ratio of the amplitude (As) of the step curve 48 and the average intensity (Cs).
  • FIG. 7 to 9 are schematic diagrams of the phase contrast image 41.
  • the image processing unit 6 uses the acquired step curve 47 and step curve 48 to obtain the absorption image 42 shown in FIG. 7, the phase differential image 43 shown in FIG. 8, and the dark field image shown in FIG. 44 and.
  • FIG. 10 is a schematic diagram of a phase contrast image 45 according to a comparative example when the image is captured without disposing the windshield member 8.
  • the example illustrated in FIG. 10 is an example in which the subject 20 including the rectangular internal structure 22 (the internal structure 23, the internal structure 24, and the internal structure 25) is imaged.
  • the wind 51 reflected by the X-ray source 1 reaches the first grating 3.
  • the first grating 3 vibrates.
  • the image quality of the phase contrast image 45 deteriorates.
  • the shape of the step curve 46 collapses, so that in the phase contrast image 45 according to the comparative example, the contour 21 of the subject 20 is blurred or the internal structure 22 is unclear. ..
  • the outline 21 of the subject 20 is illustrated by a double line to represent the blur of the outline 21 of the subject 20.
  • the internal structure 23, the internal structure 24, and the internal structure 25 are illustrated by double lines, and the corners of the rectangular shape are illustrated by circles to represent the blurring of the internal structure 22.
  • the wind 51 reflected by the X-ray source 1 is the wind that is rebounded by the X-ray source 1 toward the first grating 3 and the wind that is redirected by the X-ray source 1 toward the first grating 3. including.
  • FIG. 11 is a schematic diagram of the phase contrast image 41 captured by this embodiment.
  • the windshield member 8 since the windshield member 8 is arranged, it is possible to prevent the wind 51 reflected by the X-ray source 1 from reaching the first grating 3. Therefore, it is possible to suppress the vibration of the first grid 3 caused by the wind 51 flowing from the cooling fan 7 toward the grid. Therefore, like the phase contrast image 41 shown in FIG. 11, it is possible to acquire an image in which each internal structure 22 is clearly depicted and the contour 21 of the subject 20 is clearly depicted.
  • the X-ray phase imaging apparatus 100 includes the X-ray source 1, the detector 2 that detects the X-rays emitted from the X-ray source 1, the X-ray source 1, and the detector 2. Based on the plurality of gratings (the first grating 3, the second grating 4, and the third grating 5) arranged between and the X-ray intensity distribution detected by the detector 2, the phase contrast image 41 And an image processing unit 6 for generating X, and a cooling fan 7 provided separately from the X-ray source 1 for cooling the X-ray source 1 by blowing air to the X-ray source 1, and a wind 50 from the cooling fan 7.
  • the windshield member 8 for shielding the wind 51 heading in the direction of the plurality of lattices (the first lattice 3, the second lattice 4, and the third lattice 5) is provided.
  • the cooling fan 7 can prevent the X-ray source 1 from vibrating.
  • an image can be taken while cooling the X-ray source 1.
  • the cooling fan 7 Since the wind 50 and the wind 51 from the wind are shielded by the windbreak member 8, the plurality of grids (the first grid 3, the second grid 4, and the third grid 5) vibrate by the wind 50 and the wind 51. Can be suppressed. As a result, even when the X-ray source 1 is imaged while being cooled, it is possible to suppress deterioration of the image quality of the obtained phase contrast image 41.
  • the windbreak member 8 and the plurality of lattices are separate fixing members (fixing members). 12, fixed member 13, fixed member 14 and fixed member 15). Accordingly, unlike the configuration in which the windshield member 8 and the plurality of lattices (the first lattice 3, the second lattice 4, and the third lattice 5) are held by the same fixing member, the windshield member 8 It is possible to suppress the vibration from propagating to the lattices (the first lattice 3, the second lattice 4, and the third lattice 5) via the same fixing member.
  • the winds 50 and 51 from the cooling fan 7 directly hit the plurality of grids (the first grid 3, the second grid 4, and the third grid 5), so that the grids (the first grid 3, the second grid 5).
  • 4 and the third lattice 5) can be suppressed from vibrating, and the lattice (the first lattice 3) by the vibration of the windshield member 8 generated by the wind 50 and the wind 51 from the cooling fan 7.
  • the second grating 4 and the third grating 5) can be suppressed from vibrating, so that the grating (the first grating 3, the second grating 4 and the third grating 5) vibrates. This can be suppressed more.
  • the cooling fan 7 is arranged at a position where the air is blown from the direction (X direction) intersecting the optical axis 60 of the X-ray, and the windshield member 8 is the X-ray. It is arranged between the source 1 and the plurality of gratings (first grating 3, second grating 4 and third grating 5). As a result, even when the wind 50 from the cooling fan 7 is reflected by the X-ray source 1 and heads in the direction of the lattices (the first lattice 3, the second lattice 4, and the third lattice 5), the windshield member.
  • the 8 can block the wind 51 heading in the direction of the plurality of grids (the first grid 3, the second grid 4, and the third grid 5). As a result, it is possible to suppress the wind 51 from hitting the plurality of lattices (the first lattice 3, the second lattice 4, and the third lattice 5).
  • the cooling fan 7 is arranged between the X-ray source 1 and the windshield member 8. Thereby, it is possible to shield the wind 51 that is reflected by the X-ray source 1 and travels in the direction of the lattices (the first lattice 3, the second lattice 4, and the third lattice 5), and at the same time, the cooling fan 7 is provided. It is possible to shield the wind 50 from the direction of the lattice (the first lattice 3, the second lattice 4, and the third lattice 5). As a result, it is possible to further prevent the winds 50 and 51 from hitting the lattices (the first lattice 3, the second lattice 4, and the third lattice 5).
  • the plurality of gratings reduce the coherence of X-rays emitted from the X-ray source 1.
  • the cooling fan 7 includes a first grating 3 for enhancing and a second grating 4 for forming a self-image, and the cooling fan 7 is outside the X-ray irradiation range 63 and between the X-ray source 1 and the first grating 3.
  • the windshield member 8 is arranged at least on the X-ray optical axis 60 and between the X-ray source 1 and the first grating 3.
  • the first grating 3 is arranged at a position closest to the X-ray source 1 among the plurality of gratings (the first grating 3, the second grating 4, and the third grating 5), and the period of the grating is 30 is smaller than the cycles of the other gratings (the cycle 31 of the second grating 4 and the cycle 32 of the third grating 5). Therefore, even if the vibration generated in the first grating 3 is small, the influence on the image quality of the phase contrast image 41 is larger than that of the other gratings (the second grating 4 and the third grating 5). Therefore, with the configuration as described above, it is possible to prevent the wind 50 from the cooling fan 7 from hitting the first grid 3. As a result, it is possible to prevent the first grating 3 from vibrating due to the wind 50 from the cooling fan 7, and thus it is possible to suppress deterioration of the image quality of the phase contrast image 41.
  • the windbreak member 8 has a plate-like shape, and the wind 50 from the cooling fan 7 is reflected by the X-ray source 1 to be the first windshield 50. It is configured so as to shield the wind 51 heading in the direction of the grid 3. Thereby, the windshield member 8 can prevent the wind 50 from the cooling fan 7 and the wind 51 reflected by the X-ray source 1 from hitting the first grating 3. As a result, it is possible to further suppress the occurrence of vibration in the first grating 3, and it is possible to further suppress deterioration of the image quality of the phase contrast image 41.
  • the windshield member 8 is provided on the optical axis 60 of the X-rays and between the X-ray source 1 and the first grating 3.
  • the distance 33 between the X-ray source 1 and the X-ray source 1 is arranged at a position smaller than the distance 34 between the windshield member 8 and the first grating 3.
  • the windshield member 8 can be arranged in the vicinity of the X-ray source 1, so that the wind 51 reflected by the X-ray source 1 can be shielded before being diffused.
  • the size of the windshield member 8 can be reduced as compared with the configuration in which the windshield member 8 is arranged near the first lattice 3.
  • the windbreak member 8 is located on the optical axis 60 of the X-rays and with the X-ray source 1 and the plurality of gratings (first grating 3, second grating 4, and , And the third grating 5), and has an opening 80 through which the X-rays emitted from the X-ray source 1 pass.
  • the windshield member 8 does not have the opening 80, it is possible to suppress the attenuation of X-rays due to the windshield member 8.
  • the windbreak member 8 includes the X-ray absorbing member 81, and the opening 80 is an opening formed in the X-ray absorbing member 81.
  • the X-rays emitted from the X-ray source 1 the X-rays that are emitted to the areas other than the opening 80 are absorbed by the X-ray absorbing member 81. Therefore, it is possible to prevent X-rays from being transmitted from other than the opening 80. Therefore, it is possible to use the X-ray source 1 having the focus size such that the irradiation range 63 of the X-rays emitted from the X-ray source 1 is larger than the opening 80. As a result, the degree of freedom in selecting the X-ray source 1 can be improved.
  • the windbreak member 8 is configured by providing the opening 80 in the X-ray absorbing member 81 having a plate shape
  • the present invention is not limited to this.
  • a windbreak member 8a as shown in FIG. 12 may be provided instead of the windbreak member 8 of FIG. 1.
  • the windbreak member 8a may include an X-ray absorbing member 81 and an X-ray transmitting member 82.
  • the windshield member 8a may be formed by an X-ray absorbing member 81 having an opening 80 and an X-ray transmitting member 82 provided so as to surround the X-ray absorbing member 81.
  • the X-ray transmission member 82 includes, for example, resin or glass.
  • a windbreak member 8b as shown in FIG. 13 may be provided instead of the windbreak member 8 shown in FIG. 1.
  • the windbreak member 8b may not have the opening 80.
  • the windshield member 8b is preferably formed by the X-ray transmitting member 82. Even when the windshield member 8b is formed by the X-ray transmission member 82, the X-rays are slightly attenuated by the windshield member 8b, so that the configuration in which the opening 80 is provided is preferable.
  • the windshield member 8b is formed by the X-ray transmitting member 82 and has the opening 80
  • the X-rays are diffracted due to the difference in the refractive index between the opening 80 and the windshield member 8b.
  • a cooling fan 70 may be provided as shown in FIG.
  • the cooling fan 70 may be provided with a duct 71 for adjusting the direction of the wind 52 diffused from the cooling fan 70 and blowing the air in a predetermined direction.
  • the duct 71 is provided in the cooling fan 70 in a state of being in contact with the periphery of the blower port 70a of the cooling fan 70.
  • the cooling fan 7 may be arranged between the windshield member 8 and the first grid 3.
  • the cooling fan 7 may be arranged between the windshield member 8 and the first grid 3.
  • the air 53 directed from the cooling fan 7 directly to the first grid 3 is shielded and the air 54 from the cooling fan 7 is provided.
  • the plurality of lattices (the first lattice 3, the second lattice 4, and the third lattice 5) are held in the Y2 direction by the fixing member 12, the fixing member 13, and the fixing member 14.
  • the present invention is not limited to this.
  • the fixing member 12, the fixing member 13, and the fixing member 14 shown in FIG. 1, as shown in FIG. 16, the X-ray phase imaging apparatus 100 includes a fixing member 120, a fixing member 130, and a fixing member 140.
  • a beam portion 18 that holds the fixing member and the lattice moving mechanism 11 from the Y1 direction is provided, and is configured to hold the plurality of lattices (the first lattice 3, the second lattice 4, and the third lattice 5) from the Y1 direction.
  • the windbreak member 8 may be held by the fixing member 15 fixed to the bottom surface of the X-ray phase imaging apparatus 100 or the like.
  • the present invention is not limited to this.
  • the pixel pitch of the detector is smaller than the period of the self-image, the self-image can be directly resolved by the detector. Therefore, when the detector 2 shown in FIG. 1 is provided with a detector 2 having a pixel pitch smaller than the cycle of the self-image, a plurality of detectors 2 are provided as in the X-ray phase imaging apparatus 100 shown in FIG.
  • the grating may include the first grating 3 and the second grating 4.
  • the size of the windshield member 8 in the XY plane is approximately equal to the size of the first grating 3 in the XY plane, but the present invention is not limited to this.
  • the size of the windshield member 8 in the XY plane is larger than the size of the first grating 3 in the XY plane. It may be small.
  • the size of the windbreak member 8 may be any size as long as it can shield the wind 51 hitting the first grid 3.
  • the windshield member 8 is arranged on the optical axis 60 of X-rays and between the X-ray source 1 and the first grating 3 .
  • the invention is not limited to this.
  • the windshield member 8 may be disposed between the subject 20 and the lattice.
  • the present invention is not limited to this. Not limited.
  • a windshield member for shielding the wind from the air conditioner or the like may be further provided.
  • the windshield member 8 has a plate-like shape and is arranged between the X-ray source 1 and the first grating 3.
  • the present invention is not limited to this.
  • the windbreak member 8 may have a curved shape.
  • the windbreak member 8 has a box shape, and is configured to block the wind 50 (wind 51) from the cooling fan 7 by disposing the first lattice 3 inside. It may have been done.
  • the windshield member 8 may have any shape as long as it can shield the wind 50 (wind 51) from the cooling fan 7.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

This X-ray phase imaging system (100) includes an X-ray source (1), a detector (2), a plurality of lattices, an image processing unit (6) that generates a phase contrast image, a cooling fan (7) that is disposed so as to be spaced apart from the X-ray source and cools the X-ray source by blowing air to the X-ray source, and a windshield member (8) that blocks wind (51) going toward the lattices out of wind (50) sent from the cooling fan (7).

Description

X線位相イメージング装置X-ray phase imaging system
 本発明は、X線位相イメージング装置に関し、X線源を冷却する冷却ファンを備えるX線位相イメージング装置に関する。 The present invention relates to an X-ray phase imaging apparatus, and to an X-ray phase imaging apparatus including a cooling fan that cools an X-ray source.
 従来、X線源を冷却する冷却ファンを備えるX線位相イメージング装置が知られている。このようなX線位相イメージング装置は、たとえば、特開2012-110395号公報に開示されている。 Conventionally, an X-ray phase imaging apparatus equipped with a cooling fan that cools an X-ray source is known. Such an X-ray phase imaging apparatus is disclosed in, for example, Japanese Patent Laid-Open No. 2012-110395.
 特開2012-110395号公報のX線撮影システムは、X線源と、X線源の照射方向に配置されたフラットパネル検出器と、X線源とフラットパネル検出器との間において、X線源の近傍に設けられたマルチスリットと、マルチスリットとフラットパネル検出器との間に配置された格子とを含む複数の格子と、画像データを演算処理して位相コントラスト画像を生成する演算処理部とを備えている。なお、位相コントラスト画像とは、吸収像と、位相微分像と、暗視野像とを含んでいる。吸収像とは、X線が被写体を通過した際に生じるX線の減衰に基づいて画像化した像である。また、位相微分像とは、X線が被写体を通過した際に発生するX線の位相のずれをもとに画像化した像である。また、暗視野像とは、物体の小角散乱に基づくVisibilityの変化によって得られる、Visibility像のことである。また、暗視野像は、小角散乱像とも呼ばれる。「Visibility」とは、鮮明度のことである。 The X-ray imaging system disclosed in Japanese Unexamined Patent Publication No. 2012-110395 includes an X-ray source, a flat panel detector arranged in the irradiation direction of the X-ray source, and an X-ray between the X-ray source and the flat panel detector. A plurality of grids including a multi-slit provided near the source and a grid arranged between the multi-slit and the flat panel detector; and an arithmetic processing unit that arithmetically processes image data to generate a phase contrast image. It has and. The phase contrast image includes an absorption image, a phase differential image, and a dark field image. The absorption image is an image formed based on the attenuation of X-rays that occurs when the X-rays pass through the subject. The phase differential image is an image formed based on the phase shift of X-rays that occurs when the X-rays pass through the subject. Further, the dark field image is a Visibility image obtained by a change in Visibility based on small-angle scattering of an object. The dark field image is also called a small-angle scattered image. "Visibility" is definition.
 また、特開2012-110395号公報のX線源は、X線源を冷却するためのX線管冷却器を有している。X線冷却器は、ファンを駆動させることにより、X線源を冷却している。特開2012-110395号公報に記載されているX線冷却器は、X線源に直接(接触して)設けられている。そのため、X線冷却器のファンを駆動させた際に生じる振動によって、X線源が振動する。X線源が振動した場合、位相コントラスト画像の画質が劣化する。そこで、特開2012-110395号公報に記載されているX線撮影システムは、X線冷却器によってX線源が振動している場合に、X線冷却器による空冷を停止するように構成されている。 Further, the X-ray source disclosed in JP 2012-110395A has an X-ray tube cooler for cooling the X-ray source. The X-ray cooler cools the X-ray source by driving a fan. The X-ray cooler described in Japanese Unexamined Patent Publication No. 2012-110395 is provided directly (in contact) with the X-ray source. Therefore, the X-ray source vibrates due to the vibration generated when the fan of the X-ray cooler is driven. When the X-ray source vibrates, the image quality of the phase contrast image deteriorates. Therefore, the X-ray imaging system disclosed in Japanese Patent Laid-Open No. 2012-110395 is configured to stop air cooling by the X-ray cooler when the X-ray source vibrates by the X-ray cooler. There is.
特開2012-110395号公報JP, 2012-110395, A
 しかしながら、特開2012-110395号公報では、X線源の振動を抑制するために、X線冷却器の駆動を停止する構成であるため、X線源を冷却しながら撮像することができないという不都合がある。そのため、X線源を冷却しながら撮像できるようにすることが望まれている。 However, in Japanese Patent Laid-Open No. 2012-110395, since the driving of the X-ray cooler is stopped in order to suppress the vibration of the X-ray source, it is not possible to take an image while cooling the X-ray source. There is. Therefore, it is desired to be able to image while cooling the X-ray source.
 この発明は、上記のような課題を解決するためになされたものであり、X線源を冷却しながら撮像することが可能なX線位相イメージング装置を提供することである。 The present invention has been made to solve the above problems, and is to provide an X-ray phase imaging apparatus capable of imaging while cooling the X-ray source.
 上記目的を達成するために、この発明の一の局面におけるX線位相イメージング装置は、X線源と、X線源から照射されたX線を検出する検出器と、X線源と検出器との間に配置された複数の格子と、検出器により検出されたX線の強度分布に基づいて、位相コントラスト画像を生成する画像処理部と、X線源から離間して設けられ、X線源に対して送風することによりX線源を冷却する冷却ファンと、冷却ファンからの風のうち、複数の格子の方向に向かう風を遮蔽する風よけ部材と、を備える。 In order to achieve the above object, an X-ray phase imaging apparatus according to one aspect of the present invention includes an X-ray source, a detector that detects X-rays emitted from the X-ray source, an X-ray source and a detector. Between the X-ray source and the image processing unit that generates a phase contrast image based on the intensity distribution of the X-ray detected by the detector. A cooling fan that cools the X-ray source by blowing air and a windbreak member that blocks the wind from the cooling fan that is directed toward the plurality of grids.
 この発明の一の局面におけるX線位相イメージング装置では、上記のように、X線源から離間して設けられ、X線源に対して送風することによりX線源を冷却する冷却ファンと、冷却ファンからの風のうち、複数の格子の方向に向かう風を遮蔽する風よけ部材を備える。これにより、冷却ファンによってX線源が振動することを抑制することができる。その結果、X線源を冷却しながら撮像することができる。ここで、冷却ファンをX線源から離間して設けた場合、冷却ファンから格子に向かう風によって、格子が振動する場合がある。格子が振動すると、得られる画像の画質が劣化する。そこで、上記のように構成することにより、冷却ファンによってX線源を冷却する際の風が複数の格子の方向に向かった場合でも、冷却ファンからの風が風よけ部材によって遮蔽されるため、複数の格子が風によって振動することを抑制することができる。その結果、X線源を冷却しながら撮像する場合でも、得られる画像の画質が劣化することを抑制することができる。 In the X-ray phase imaging apparatus according to one aspect of the present invention, as described above, a cooling fan that is provided separately from the X-ray source and cools the X-ray source by blowing air to the X-ray source, and a cooling fan. Among the winds from the fan, the windshield member is provided to shield the winds heading in the direction of the plurality of grids. As a result, it is possible to prevent the X-ray source from vibrating due to the cooling fan. As a result, an image can be taken while cooling the X-ray source. Here, when the cooling fan is provided apart from the X-ray source, the grid may vibrate due to the air flowing from the cooling fan toward the grid. When the grating vibrates, the quality of the obtained image deteriorates. Therefore, by configuring as described above, even when the cooling fan cools the X-ray source toward the plurality of grids, the wind from the cooling fan is shielded by the windbreak member. Therefore, it is possible to prevent the plurality of grids from vibrating due to the wind. As a result, it is possible to suppress deterioration of the image quality of the obtained image even when the X-ray source is imaged while being cooled.
 本発明によれば、上記のように、X線源を冷却しながら撮像することが可能なX線位相イメージング装置を提供することができる。 According to the present invention, as described above, it is possible to provide the X-ray phase imaging apparatus capable of imaging while cooling the X-ray source.
一実施形態によるX線位相イメージング装置の全体構成を示す模式図である。FIG. 1 is a schematic diagram showing an overall configuration of an X-ray phase imaging apparatus according to an embodiment. 一実施形態によるX線位相イメージング装置が備える格子移動機構の斜視図である。FIG. 6 is a perspective view of a grating moving mechanism included in the X-ray phase imaging apparatus according to the embodiment. 一実施形態による風よけ部材の構造を説明するための斜視図である。It is a perspective view for explaining the structure of the windbreak member according to one embodiment. 一実施形態によるX線源、第1格子、冷却ファンおよび風よけ部材の配置を説明するための模式図である。It is a schematic diagram for demonstrating arrangement | positioning of the X-ray source, 1st grating | lattice, a cooling fan, and a windbreak member by one Embodiment. タルボ干渉計において格子を並進移動させながらモアレ縞画像を取得する方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of acquiring a moire fringe image, moving a grating in translation in a Talbot interferometer. タルボ干渉計において、取得されたステップカーブから位相コントラスト画像を生成する方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of generating a phase contrast image from the acquired step curve in a Talbot interferometer. 一実施形態によるX線位相イメージング装置によって取得される吸収像の模式図である。FIG. 3 is a schematic diagram of an absorption image acquired by an X-ray phase imaging apparatus according to one embodiment. 一実施形態によるX線位相イメージング装置によって取得される位相微分像の模式図である。It is a schematic diagram of the phase differential image acquired by the X-ray phase imaging apparatus by one Embodiment. 一実施形態によるX線位相イメージング装置によって取得される暗視野像の模式図である。FIG. 3 is a schematic diagram of a dark field image acquired by the X-ray phase imaging apparatus according to one embodiment. 比較例による位相コントラスト画像を説明するための模式図である。FIG. 7 is a schematic diagram for explaining a phase contrast image according to a comparative example. 一実施形態による位相コントラスト画像を説明するための模式図である。FIG. 6 is a schematic diagram for explaining a phase contrast image according to an embodiment. 第1変形例による風よけ部材の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the windbreak member by a 1st modification. 第2変形例による風よけ部材の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the windbreak member by a 2nd modification. 第3変形例による冷却ファンの構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the cooling fan by a 3rd modification. 第4変形例によるX線源、第1格子、冷却ファンおよび風よけ部材の配置を説明するための模式図である。It is a schematic diagram for demonstrating arrangement | positioning of the X-ray source by a 4th modification, a 1st grating | lattice, a cooling fan, and a windbreak member. 第5変形例によるX線位相イメージング装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the X-ray phase imaging apparatus by the 5th modification. 第6変形例によるX線位相イメージング装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the X-ray phase imaging apparatus by the 6th modification.
 以下、本発明を具体化した実施形態を図面に基づいて説明する。 An embodiment of the present invention will be described below with reference to the drawings.
 図1~図11を参照して、一実施形態によるX線位相イメージング装置100の構成について説明する。 A configuration of an X-ray phase imaging apparatus 100 according to an embodiment will be described with reference to FIGS. 1 to 11.
 (X線位相イメージング装置の構成)
 まず、図1を参照して、本発明の本実施形態によるX線位相イメージング装置100の構成について説明する。
(Structure of X-ray phase imaging apparatus)
First, the configuration of an X-ray phase imaging apparatus 100 according to this embodiment of the present invention will be described with reference to FIG.
 図1に示すように、X線位相イメージング装置100は、タルボ(30albot)効果を利用して、被写体20の内部を画像化する装置である。X線位相イメージング装置100は、複数の格子のうち、いずれか1つを、格子の周期方向(Y方向)に並進移動させながら被写体20を撮像するように構成されている。 As shown in FIG. 1, the X-ray phase imaging apparatus 100 is an apparatus that images the inside of the subject 20 by utilizing the Talbot (30albot) effect. The X-ray phase imaging apparatus 100 is configured to image the subject 20 while translating any one of the plurality of gratings in the grating periodic direction (Y direction).
 図1に示すように、X線位相イメージング装置100は、X線源1と、検出器2と、複数の格子と、画像処理部6と、冷却ファン7と、風よけ部材8と、制御部9と、記憶部10と、格子移動機構11と、を備えている。複数の格子は、第1格子3と第2格子4と第3格子5とを含む。なお、本明細書において、X線源1から第1格子3の方向に向かう方向をZ2方向、その逆向きの方向をZ1方向とする。また、Z方向と直交する面内の左右方向をX方向とし、図1の紙面の奥に向かう方向をX2方向、図1の紙面の手前側に向かう方向をX1方向とする。また、Z方向と直交する面内の上下方向をY方向とし、図1の紙面の上方向をY1方向、図1の紙面の下方向をY2方向とする。 As shown in FIG. 1, the X-ray phase imaging apparatus 100 includes an X-ray source 1, a detector 2, a plurality of gratings, an image processing unit 6, a cooling fan 7, a windbreak member 8, and a control unit. A unit 9, a storage unit 10, and a lattice moving mechanism 11 are provided. The plurality of lattices includes a first lattice 3, a second lattice 4, and a third lattice 5. In this specification, the direction from the X-ray source 1 toward the first grating 3 is the Z2 direction, and the opposite direction is the Z1 direction. Further, a horizontal direction in a plane orthogonal to the Z direction is defined as an X direction, a direction toward the back of the paper surface of FIG. 1 is defined as an X2 direction, and a direction toward the front side of the paper surface of FIG. 1 is defined as an X1 direction. The vertical direction in the plane orthogonal to the Z direction is the Y direction, the upward direction of the paper surface of FIG. 1 is the Y1 direction, and the downward direction of the paper surface of FIG. 1 is the Y2 direction.
 X線源1は、高電圧が印加されることにより、X線を発生させるとともに、発生されたX線を第1格子3に向けて照射するように構成されている。なお、本実施形態において、X線源1は、電子線を発生させるための陰極(図示せず)、電子線が衝突することによりX線を発生させる陽極、陰極と陽極との間に電圧を印加する電圧印加部(図示せず)などを含み、陰極、陽極および電圧印加部が筐体(図示せず)に備えられたX線発生装置である。 The X-ray source 1 is configured to generate X-rays by applying a high voltage and irradiate the generated X-rays toward the first grating 3. In the present embodiment, the X-ray source 1 includes a cathode (not shown) for generating an electron beam, an anode for generating an X-ray when the electron beam collides, and a voltage between the cathode and the anode. This is an X-ray generator including a voltage applying unit (not shown) for applying, and a cathode, an anode, and a voltage applying unit provided in a housing (not shown).
 検出器2は、X線を検出するとともに、検出されたX線を電気信号に変換し、変換された電気信号を画像信号として読み取るように構成されている。検出器2は、たとえば、FPD(Flat Panel Detector)である。検出器2は、複数の変換素子(図示せず)と複数の変換素子上に配置された画素電極(図示せず)とにより構成されている。複数の変換素子および画素電極は、所定の周期(画素ピッチ)で、X方向およびY方向にアレイ状に配列されている。また、検出器2は、取得した画像信号を、画像処理部6に出力するように構成されている。 The detector 2 is configured to detect X-rays, convert the detected X-rays into an electric signal, and read the converted electric signal as an image signal. The detector 2 is, for example, an FPD (Flat Panel Detector). The detector 2 is composed of a plurality of conversion elements (not shown) and pixel electrodes (not shown) arranged on the plurality of conversion elements. The plurality of conversion elements and the pixel electrodes are arranged in an array in the X direction and the Y direction at a predetermined cycle (pixel pitch). The detector 2 is also configured to output the acquired image signal to the image processing unit 6.
 第1格子3は、Y方向に所定の周期(ピッチ)30で配列される複数のX線透過部3aおよびX線吸収部3bを有する。各X線透過部3aおよびX線吸収部3bはそれぞれ、直線状に延びるように形成されている。また、各X線透過部3aおよびX線吸収部3bはそれぞれ、平行に延びるように形成されている。第1格子3は、いわゆる、マルチスリットである。 The first grating 3 has a plurality of X-ray transmitting portions 3a and X-ray absorbing portions 3b arranged in the Y direction at a predetermined cycle (pitch) 30. Each X-ray transmitting portion 3a and X-ray absorbing portion 3b is formed so as to extend linearly. Further, each X-ray transmitting portion 3a and X-ray absorbing portion 3b are formed so as to extend in parallel. The first grating 3 is a so-called multi-slit.
 第1格子3は、X線源1と第2格子4との間に配置されている。第1格子3は、各X線透過部3aを通過したX線を線光源とするように構成されている。3枚の格子(第1格子3、第2格子4、および、第3格子5)のピッチと格子間の距離とが一定の条件を満たすことにより、X線源1から照射されるX線の可干渉性を高めることが可能である。これを、ロー効果という。これにより、X線源1の管球の焦点サイズが大きくても干渉強度を保持できる。 The first grating 3 is arranged between the X-ray source 1 and the second grating 4. The 1st grating | lattice 3 is comprised so that the X-ray which passed each X-ray transmission part 3a may be used as a linear light source. When the pitch of the three gratings (the first grating 3, the second grating 4, and the third grating 5) and the distance between the gratings satisfy certain conditions, the X-rays emitted from the X-ray source 1 It is possible to increase coherence. This is called the low effect. Thereby, the interference intensity can be maintained even if the tube size of the X-ray source 1 is large.
 第2格子4は、Y方向に所定の周期(ピッチ)31で配列される複数のスリット4a、および、X線位相変化部4bを有している。各スリット4aおよびX線位相変化部4bはそれぞれ、直線状に延びるように形成されている。また、各スリット4aおよびX線位相変化部4bはそれぞれ、平行に延びるように形成されている。第2格子4は、いわゆる位相格子である。 The second grating 4 has a plurality of slits 4a arranged at a predetermined period (pitch) 31 in the Y direction, and an X-ray phase changing portion 4b. Each of the slits 4a and the X-ray phase changing portion 4b is formed so as to extend linearly. Further, each slit 4a and X-ray phase changing portion 4b are formed so as to extend in parallel. The second grating 4 is a so-called phase grating.
 第2格子4は、X線源1と、第3格子5との間に配置されており、X線源1からX線が照射される。第2格子4は、タルボ効果により、第2格子4の自己像(図示せず)を形成するために設けられている。なお、可干渉性を有するX線が、スリットが形成された格子を通過すると、格子から所定の距離(タルボ距離)離れた位置に、格子の像(自己像)が形成される。これをタルボ効果という。 The second grating 4 is arranged between the X-ray source 1 and the third grating 5 and is irradiated with X-rays from the X-ray source 1. The second grating 4 is provided to form a self-image (not shown) of the second grating 4 by the Talbot effect. When the X-ray having coherence passes through the slit-formed grating, an image (self-image) of the grating is formed at a position separated from the grating by a predetermined distance (Talbot distance). This is called the Talbot effect.
 第3格子5は、Y方向に所定の周期(ピッチ)32で配列される複数のX線透過部5aおよびX線吸収部5bを有する。各X線透過部5aおよびX線吸収部5bはそれぞれ、直線状に延びるように形成されている。また、各X線透過部5aおよびX線吸収部5bはそれぞれ、平行に延びるように形成されている。第3格子5は、いわゆる、吸収格子である。第1格子3、第2格子4、および第3格子5は、それぞれ異なる役割を持つ格子であるが、X線透過部3a、スリット4aおよびX線透過部5aは、それぞれ、X線を透過させる。また、X線吸収部3bおよびX線吸収部5bは、それぞれ、X線を遮蔽する役割を担っており、X線位相変化部4bはスリット4aとの屈折率の違いによってX線の位相を変化させる。 The third grating 5 has a plurality of X-ray transmitting portions 5a and X-ray absorbing portions 5b arranged in the Y direction at a predetermined cycle (pitch) 32. Each X-ray transmitting portion 5a and X-ray absorbing portion 5b is formed so as to extend linearly. Further, each X-ray transmitting portion 5a and X-ray absorbing portion 5b is formed so as to extend in parallel. The third grating 5 is a so-called absorption grating. The first grating 3, the second grating 4, and the third grating 5 have different roles, but the X-ray transmissive portion 3a, the slit 4a, and the X-ray transmissive portion 5a respectively transmit X-rays. .. Further, the X-ray absorbing portion 3b and the X-ray absorbing portion 5b each have a role of shielding X-rays, and the X-ray phase changing portion 4b changes the phase of the X-rays due to the difference in the refractive index with the slit 4a. Let
 第3格子5は、第2格子4と検出器2との間に配置されており、第2格子4を通過したX線が照射される。また、第3格子5は、第2格子4からタルボ距離離れた位置に配置される。第3格子5は、第2格子4の自己像と干渉して、検出器2の検出表面上にモアレ縞16(図5参照)を形成する。このように、本実施形態におけるX線位相イメージング装置100は、いわゆるタルボ・ロー干渉計により構成される。 The third grating 5 is arranged between the second grating 4 and the detector 2 and is irradiated with the X-ray that has passed through the second grating 4. The third grating 5 is arranged at a position away from the second grating 4 by the Talbot distance. The third grating 5 interferes with the self-image of the second grating 4 to form moire fringes 16 (see FIG. 5) on the detection surface of the detector 2. As described above, the X-ray phase imaging apparatus 100 according to the present embodiment is configured by the so-called Talbot-Lau interferometer.
 画像処理部6は、検出器2から出力された画像信号に基づいて、位相コントラスト画像41(図7参照)を生成するように構成されている。本実施形態では、画像処理部6は、たとえば、位相コントラスト画像41として、吸収像42(図7参照)、位相微分像43(図8参照)および暗視野像44(図9参照)を生成する。画像処理部6は、たとえば、GPU(Graphics Processing Unit)または画像処理用に構成されたFPGA(Field-Programmable Gate Array)などのプロセッサを含む。 The image processing unit 6 is configured to generate the phase contrast image 41 (see FIG. 7) based on the image signal output from the detector 2. In the present embodiment, the image processing unit 6 generates, for example, the absorption image 42 (see FIG. 7), the phase differential image 43 (see FIG. 8) and the dark field image 44 (see FIG. 9) as the phase contrast image 41. .. The image processing unit 6 includes a processor such as a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) configured for image processing.
 冷却ファン7は、制御部9の制御の下、X線源1に対して送風することによりX線源1を冷却するように構成されている。冷却ファン7は、羽部材(図示せず)、モータ(図示せず)などを含む。冷却ファン7は、モータによって羽部材を回転させることにより、風50(図4参照)を生じさせる。図1に示すように、冷却ファン7は、X線源1から離間して設けられている。なお、冷却ファン7が、X線源1から離間して設けられているとは、冷却ファン7とX線源1とが、互いに直接接続していない(接触していない)こと、および、冷却ファン7とX線源1とが、共通の固定部材を介して間接的に接続されていないことを意味する。すなわち、X線源1と冷却ファン7とは、それぞれ個別に固定部材(図示せず)に保持されている。また、冷却ファン7は、X線源1の筐体内部において、熱せられた空気を排気するために設けられるファンとは異なるファンである。すなわち、冷却ファン7は、X線装置の筐体内部に設けられるファンとは別に、X線装置の外部からX線の焦点1aを冷却するために設けられるファンである。 The cooling fan 7 is configured to cool the X-ray source 1 by sending air to the X-ray source 1 under the control of the control unit 9. The cooling fan 7 includes a blade member (not shown), a motor (not shown), and the like. The cooling fan 7 generates wind 50 (see FIG. 4) by rotating the blade member with a motor. As shown in FIG. 1, the cooling fan 7 is provided separately from the X-ray source 1. Note that the cooling fan 7 is provided separately from the X-ray source 1 means that the cooling fan 7 and the X-ray source 1 are not directly connected (not in contact) with each other, and cooling is performed. This means that the fan 7 and the X-ray source 1 are not indirectly connected via the common fixing member. That is, the X-ray source 1 and the cooling fan 7 are individually held by a fixing member (not shown). Further, the cooling fan 7 is a fan different from a fan provided inside the housing of the X-ray source 1 for exhausting heated air. That is, the cooling fan 7 is a fan provided for cooling the focal point 1a of the X-ray from the outside of the X-ray apparatus, separately from the fan provided inside the housing of the X-ray apparatus.
 風よけ部材8は、冷却ファン7からの風50のうち、複数の格子の方向に向かう風51(図4参照)を遮蔽するように構成されている。図1に示すように、風よけ部材8と複数の格子とは、それぞれ別々の固定部材12、固定部材13、固定部材14および固定部材15に保持されている。固定部材12、固定部材13、固定部材14および固定部材15は、それぞれ、Y方向に延びるように構成されている。固定部材12、固定部材13、固定部材14および固定部材15は、ぞれぞれ、第1格子3、第2格子4、第3格子5および風よけ部材8を、それぞれ、Y2方向から保持するように構成されている。固定部材12、固定部材13、固定部材14および固定部材15は、第1格子3、第2格子4、第3格子5、および風よけ部材8を保持することが可能であれば、どのような形状に形成されていてもよい。なお、風よけ部材8を保持する固定部材15と、各格子を保持する固定部材12、固定部材13および固定部材14とは、風よけ部材8に風50が当たることにより生じる振動が格子に伝搬しないようにするため、互いに離間した位置に配置されている。また、風よけ部材8を保持する固定部材15は、X線源1から離間した位置に設けられている。すなわち、風よけ部材8は、X線源1とは別体であり、かつ、X線源1(X線装置)から離間した位置に設けられている。また、各固定部材は、それぞれ、X線位相イメージング装置100の筐体(図示せず)に固定されている。 The windbreak member 8 is configured to shield the wind 51 from the cooling fan 7 toward the direction of the plurality of grids 51 (see FIG. 4). As shown in FIG. 1, the windbreak member 8 and the plurality of lattices are held by separate fixing members 12, fixing members 13, fixing members 14, and fixing members 15, respectively. The fixing member 12, the fixing member 13, the fixing member 14, and the fixing member 15 are each configured to extend in the Y direction. The fixing member 12, the fixing member 13, the fixing member 14, and the fixing member 15 respectively hold the first lattice 3, the second lattice 4, the third lattice 5, and the windbreak member 8 from the Y2 direction. Is configured to. How can the fixing member 12, the fixing member 13, the fixing member 14, and the fixing member 15 hold the first lattice 3, the second lattice 4, the third lattice 5, and the windbreak member 8? It may be formed in various shapes. Note that the fixing member 15 that holds the windbreak member 8 and the fixing members 12, fixing members 13 and 14 that hold the respective lattices generate vibrations caused by the wind 50 hitting the windbreak member 8. They are arranged at positions separated from each other so that they do not propagate to each other. The fixing member 15 that holds the windbreak member 8 is provided at a position separated from the X-ray source 1. That is, the windbreak member 8 is provided separately from the X-ray source 1 and is provided at a position separated from the X-ray source 1 (X-ray device). Further, each fixing member is fixed to a housing (not shown) of the X-ray phase imaging apparatus 100.
 制御部9は、冷却ファン7を制御して、X線源1に対して送風するように構成されている。また、制御部9は、格子移動機構11を制御して、第2格子4を移動させるように構成されている。制御部9は、たとえば、CPU(Central Processing Unit)、ROM(Read Only Memory)およびRAM(Random Access Memory)などを含む。 The control unit 9 is configured to control the cooling fan 7 to blow air to the X-ray source 1. Further, the control unit 9 is configured to control the lattice moving mechanism 11 to move the second lattice 4. The control unit 9 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
 記憶部10は、制御部9が実行するプログラム、画像処理部6が生成した位相コントラスト画像41などを保存するように構成されている。記憶部10は、たとえば、HDD(Hard Disk Drive)や不揮発性のメモリなどを含む。 The storage unit 10 is configured to store the program executed by the control unit 9, the phase contrast image 41 generated by the image processing unit 6, and the like. The storage unit 10 includes, for example, an HDD (Hard Disk Drive) and a non-volatile memory.
 格子移動機構11は、制御部9の制御の下、第2格子4を移動可能に構成されている。また、格子移動機構11は、固定部材13を介して、第2格子4を保持している。 The lattice moving mechanism 11 is configured to move the second lattice 4 under the control of the control unit 9. Further, the lattice moving mechanism 11 holds the second lattice 4 via the fixing member 13.
 (格子移動機構)
 図2に示すように、格子移動機構11は、X方向、Y方向、Z方向、Z方向の軸線周りの回転方向(Rz)、X方向の軸線周りの回転方向(Rx)、および、Y方向の軸線周りの回転方向(Ry)に第2格子4を移動可能に構成されている。具体的には、格子移動機構11は、X方向直動機構110と、Y方向直動機構111と、Z方向直動機構112と、直動機構接続部113と、ステージ支持部駆動部114と、ステージ支持部115と、ステージ駆動部116と、ステージ117とを含む。X方向直動機構110は、X方向に移動可能に構成されている。X方向直動機構110は、たとえば、モータなどを含む。Y方向直動機構111は、Y方向に移動可能に構成されている。Y方向直動機構111は、たとえば、モータなどを含む。Z方向直動機構112は、Z方向に移動可能に構成されている。Z方向直動機構112は、たとえば、モータなどを含む。
(Lattice moving mechanism)
As shown in FIG. 2, the lattice moving mechanism 11 includes an X direction, a Y direction, a Z direction, a rotation direction (Rz) about an axis line in the Z direction, a rotation direction (Rx) about an axis line in the X direction, and a Y direction. The second grating 4 is configured to be movable in the rotation direction (Ry) around the axis of. Specifically, the grid moving mechanism 11 includes an X-direction direct-acting mechanism 110, a Y-direction direct-acting mechanism 111, a Z-direction direct-acting mechanism 112, a direct-acting mechanism connecting portion 113, and a stage supporting portion driving portion 114. The stage support unit 115, the stage drive unit 116, and the stage 117 are included. The X direction translation mechanism 110 is configured to be movable in the X direction. The X-direction translation mechanism 110 includes, for example, a motor. The Y-direction translation mechanism 111 is configured to be movable in the Y-direction. The Y-direction translation mechanism 111 includes, for example, a motor. The Z direction translation mechanism 112 is configured to be movable in the Z direction. The Z-direction translation mechanism 112 includes, for example, a motor.
 格子移動機構11は、X方向直動機構110の動作により、第2格子4をX方向に移動させるように構成されている。また、格子移動機構11は、Y方向直動機構111の動作により、第2格子4をY方向に移動させるように構成されている。また、格子移動機構11は、Z方向直動機構112の動作により、第1格子3をZ方向に移動させるように構成されている。 The lattice moving mechanism 11 is configured to move the second lattice 4 in the X direction by the operation of the X-direction linear moving mechanism 110. Further, the lattice moving mechanism 11 is configured to move the second lattice 4 in the Y direction by the operation of the Y-direction linear moving mechanism 111. Further, the lattice moving mechanism 11 is configured to move the first lattice 3 in the Z direction by the operation of the Z-direction translation mechanism 112.
 ステージ支持部115は、ステージ117を下方(Y2方向)から支持している。ステージ駆動部116は、ステージ117をX方向に往復移動させるように構成されている。ステージ117は、底部がステージ支持部115に向けて凸曲面状に形成されており、X方向に往復移動されることにより、Z方向の軸線周り(Rz方向)に回動するように構成されている。また、ステージ支持部駆動部114は、ステージ支持部115をZ方向に往復移動させるように構成されている。また、ステージ支持部115は底部が直動機構接続部113に向けて凸曲面状に形成されており、Z方向に往復移動されることにより、X方向の軸線周り(Rx方向)に回動するように構成されている。また、直動機構接続部113は、Y方向の軸線周り(Ry方向)に回動可能にX方向直動機構110に設けられている。したがって、格子移動機構11は、格子をY方向の中心軸線周りに回動させることができる。 The stage support unit 115 supports the stage 117 from below (Y2 direction). The stage drive unit 116 is configured to reciprocate the stage 117 in the X direction. The stage 117 has a bottom portion formed in a convex curved surface shape toward the stage supporting portion 115, and is configured to reciprocate in the X direction to rotate about the Z direction axis (Rz direction). There is. In addition, the stage support driving unit 114 is configured to reciprocate the stage support 115 in the Z direction. Further, the bottom of the stage support 115 is formed in a convex curved surface shape toward the linear motion mechanism connection 113, and when it is reciprocated in the Z direction, the stage support 115 rotates about the axis in the X direction (Rx direction). Is configured. Further, the linear motion mechanism connecting portion 113 is provided in the X-direction linear motion mechanism 110 so as to be rotatable around an axis line in the Y direction (Ry direction). Therefore, the lattice moving mechanism 11 can rotate the lattice around the central axis in the Y direction.
 (風よけ部材の構成)
 図3に示すように、風よけ部材8は、板状形状を有している。また、風よけ部材8は、X線源1から照射されるX線が通過する開口部80を有している。本実施形態では、風よけ部材8は、たとえば、X線吸収部材81を含む。X線吸収部材81は、たとえば、鉛、タングステンなどの重金属を含む。図3に示すように、開口部80は、X線吸収部材81に形成された開口である。すなわち、風よけ部材8は、板状形状を有するX線吸収部材81に開口部80を設けることによって形成されている。また、風よけ部材8は、風よけ部材8のXY平面における大きさが、第1格子3のXY平面における大きさと略等しくなるように形成されている。なお、風よけ部材8のXY平面における大きさが第1格子3のXY平面における大きさと略等しいとは、風よけ部材8と第1格子3とを光軸60方向に並べて配置した際に、風よけ部材8のXY平面で形成される領域が、第1格子3のXY平面で形成される領域を略覆うことが可能であることを意味する。
(Structure of windbreak member)
As shown in FIG. 3, the windbreak member 8 has a plate-like shape. Further, the windbreak member 8 has an opening 80 through which X-rays emitted from the X-ray source 1 pass. In the present embodiment, the windbreak member 8 includes, for example, an X-ray absorbing member 81. The X-ray absorbing member 81 contains, for example, a heavy metal such as lead or tungsten. As shown in FIG. 3, the opening 80 is an opening formed in the X-ray absorbing member 81. That is, the windbreak member 8 is formed by providing the opening 80 in the X-ray absorbing member 81 having a plate shape. Further, the windshield member 8 is formed such that the size of the windshield member 8 in the XY plane is substantially equal to the size of the first lattice 3 in the XY plane. The size of the windshield member 8 in the XY plane is substantially equal to the size of the first grating 3 in the XY plane when the windshield member 8 and the first grating 3 are arranged side by side in the optical axis 60 direction. In addition, it means that the region formed by the XY plane of the windbreak member 8 can substantially cover the region formed by the XY plane of the first lattice 3.
 (冷却ファンおよび風よけ部材の配置)
 図4は、X線源1、第1格子3、冷却ファン7および風よけ部材8を、Y1方向から見た際の模式図である。図4に示すように、冷却ファン7は、送風口7aを含む。冷却ファン7は、X線の光軸60と交差する方向(X方向)から送風する位置に配置されている。具体的には、冷却ファン7は、X線源1と風よけ部材8との間に配置されている。本実施形態では、X線源1は、直線61および直線62で囲まれた照射範囲63にX線を照射するように構成されており、冷却ファン7は、X線の照射範囲63外で、かつ、X線源1と第1格子3との間に配置されている。具体的には、冷却ファン7は、送風口7aがX線の焦点1aの方向を向くように、X線源1と第1格子3との間において、光軸60と直交する向きに配置されている。冷却ファン7は、X線源1におけるX線の焦点1aに対して風50を当てることにより、X線源1を冷却するように構成されている。なお、図4に示す例では、便宜上、X線源1および冷却ファン7を小さく図示している。実際には、X線源1および冷却ファン7の大きさは、風よけ部材8および第1格子3よりも大きい。そのため、本実施形態では、冷却ファン7の筐体全体が、冷却ファン7がX線源1と風よけ部材8との間に配置されていない場合でも、送風口7aがX線源1と風よけ部材8との間に配置されていれば、冷却ファン7がX線源1と風よけ部材8との間に配置されているとする。
(Arrangement of cooling fan and windshield member)
FIG. 4 is a schematic view of the X-ray source 1, the first grating 3, the cooling fan 7, and the windshield member 8 as viewed from the Y1 direction. As shown in FIG. 4, the cooling fan 7 includes a blower port 7a. The cooling fan 7 is arranged at a position where air is blown from a direction (X direction) intersecting the optical axis 60 of the X-ray. Specifically, the cooling fan 7 is arranged between the X-ray source 1 and the windshield member 8. In the present embodiment, the X-ray source 1 is configured to irradiate the irradiation range 63 surrounded by the straight line 61 and the straight line 62 with the X-ray, and the cooling fan 7 is outside the irradiation range 63 of the X-ray. Moreover, it is arranged between the X-ray source 1 and the first grating 3. Specifically, the cooling fan 7 is arranged between the X-ray source 1 and the first grating 3 in a direction orthogonal to the optical axis 60 so that the blower port 7a faces the X-ray focal point 1a. ing. The cooling fan 7 is configured to cool the X-ray source 1 by applying the wind 50 to the X-ray focal point 1a of the X-ray source 1. Note that in the example shown in FIG. 4, the X-ray source 1 and the cooling fan 7 are shown small for convenience. In reality, the sizes of the X-ray source 1 and the cooling fan 7 are larger than those of the windbreak member 8 and the first grid 3. Therefore, in the present embodiment, even if the cooling fan 7 is not arranged between the X-ray source 1 and the windshield member 8 in the entire housing of the cooling fan 7, the blower port 7a is connected to the X-ray source 1. If it is arranged between the windshield member 8 and the windshield member 8, it is assumed that the cooling fan 7 is arranged between the X-ray source 1 and the windshield member 8.
 風よけ部材8は、X線源1と複数の格子との間に配置されている。具体的には、風よけ部材8は、少なくとも、X線の光軸60上で、かつ、X線源1と第1格子3との間に配置されている。風よけ部材8は、冷却ファン7からの風50のうち、X線源1によって反射することにより第1格子3の方向に向かう風51を遮蔽するように構成されている。 The windbreak member 8 is arranged between the X-ray source 1 and the plurality of grids. Specifically, the windbreak member 8 is arranged at least on the optical axis 60 of the X-ray and between the X-ray source 1 and the first grating 3. The windbreak member 8 is configured to block the wind 51 from the cooling fan 7 that is reflected by the X-ray source 1 and is directed toward the first grating 3.
 図4に示すように、風よけ部材8は、X線の光軸60上で、かつ、X線源1と第1格子3との間において、風よけ部材8とX線源1との間の距離33が、風よけ部材8と第1格子3との間の距離34よりも小さくなる位置に配置されている。 As shown in FIG. 4, the windbreak member 8 and the X-ray source 1 are arranged on the optical axis 60 of the X-ray and between the X-ray source 1 and the first grating 3. The distance 33 between them is smaller than the distance 34 between the windshield member 8 and the first grid 3.
 (位相コントラスト画像の生成) (Generation of phase contrast image)
 次に、図5~図9を参照して、画像処理部6が位相コントラスト画像41を生成する構成について説明する。 Next, a configuration in which the image processing unit 6 generates the phase contrast image 41 will be described with reference to FIGS.
 本実施形態では、X線位相イメージング装置100は、格子移動機構11によって第2格子4を並進移動させることにより、図5に示すような各ステップのモアレ縞画像40を取得する。画像処理部6は、各ステップのモアレ縞画像40における同一画素17の画素値に基づいて、図6に示すようなステップカーブ46を取得する。なお、図6には、ステップカーブ46として、被写体20を配置せずに取得したステップカーブ47の例、および、被写体20を配置して取得したステップカーブ48の例を示している。図6に示すステップカーブ46の例は、各ステップと画素値の強度との関係を示すグラフである。図6中の丸印で示すプロットは、被写体20を配置せずに撮影した際の値を示している。また、図6中の四角印で示すプロットは、被写体20を配置して撮影した際の値を示している。 In the present embodiment, the X-ray phase imaging apparatus 100 acquires the moire fringe image 40 at each step as shown in FIG. 5 by translating the second grating 4 by the grating moving mechanism 11. The image processing unit 6 acquires the step curve 46 as shown in FIG. 6 based on the pixel value of the same pixel 17 in the moire fringe image 40 at each step. 6 shows an example of the step curve 47 acquired without arranging the subject 20 and an example of the step curve 48 acquired with the subject 20 arranged as the step curve 46. The example of the step curve 46 shown in FIG. 6 is a graph showing the relationship between each step and the intensity of the pixel value. Plots indicated by circles in FIG. 6 represent values obtained when the subject 20 is photographed without being placed. In addition, the plots shown by square marks in FIG. 6 show values when the subject 20 is arranged and photographed.
 図6に示すように、画像処理部6は、被写体20を配置して撮像した際のX線の平均強度(Cs)と、被写体20を配置せずに撮像した際のX線の平均強度(Cr)との比によって、吸収像42を生成する。また、画像処理部6は、被写体20を配置せずに撮像することにより取得したステップカーブ47と、被写体20を配置して撮像することにより取得したステップカーブ48との位相差(Δφ)を所定の算出によって求められた数を乗算することにより、位相微分像43を生成する。また、画像処理部6は、被写体20を配置せずに撮像した際のVisibility(Vr)と被写体20を配置して撮像した際のVisibility(Vs)との比によって、暗視野像44を生成する。Vrは、ステップカーブ47の振幅(Ar)と平均強度(Cr)との比によって求めることができる。また、Vsは、ステップカーブ48の振幅(As)と平均強度(Cs)との比によって求めることができる。 As shown in FIG. 6, the image processing unit 6 measures the average intensity (Cs) of X-rays when the subject 20 is placed and imaged, and the average intensity (Xs) of the X-rays when the subject 20 is not placed ( The absorption image 42 is generated by the ratio with Cr). Further, the image processing unit 6 sets a predetermined phase difference (Δφ) between the step curve 47 acquired by capturing the subject 20 without arranging it and the step curve 48 acquired by arranging the subject 20 and capturing the image. The phase differential image 43 is generated by multiplying the number obtained by the calculation of In addition, the image processing unit 6 generates the dark-field image 44 based on the ratio of the Visibility (Vr) when the subject 20 is imaged without being arranged and the Visibility (Vs) when the subject 20 is arranged and imaged. .. Vr can be obtained by the ratio of the amplitude (Ar) of the step curve 47 and the average intensity (Cr). Further, Vs can be obtained by the ratio of the amplitude (As) of the step curve 48 and the average intensity (Cs).
 図7~図9は、位相コントラスト画像41の模式図である。画像処理部6は、上記のように、取得したステップカーブ47およびステップカーブ48に基づいて、図7に示す吸収像42と、図8に示す位相微分像43と、図9に示す暗視野像44とを生成する。 7 to 9 are schematic diagrams of the phase contrast image 41. As described above, the image processing unit 6 uses the acquired step curve 47 and step curve 48 to obtain the absorption image 42 shown in FIG. 7, the phase differential image 43 shown in FIG. 8, and the dark field image shown in FIG. 44 and.
 (比較例)
 図10は、風よけ部材8を配置せずに撮像された際の比較例による位相コントラスト画像45の模式図である。図10に示す例は、矩形形状を有する内部構造22(内部構造23、内部構造24および内部構造25)を含む被写体20を撮像した例である。比較例では、風よけ部材8を配置せずに撮像しているため、X線源1で反射した風51が第1格子3に到達する。この場合、第1格子3に振動が生じる。第1格子3に振動した場合、位相コントラスト画像45の画質が劣化する。具体的には、第1格子3が振動した場合、ステップカーブ46の形状が崩れるため、比較例による位相コントラスト画像45では、被写体20の輪郭21がぼけたり、内部構造22が不鮮明になったりする。なお、図10に示す例では、被写体20の輪郭21を二重線で図示することにより、被写体20の輪郭21のぼけを表している。また、図10に示す例では、内部構造23、内部構造24および内部構造25を、二重線で図示するとともに、矩形形状の角部分を丸く図示することにより、内部構造22の不鮮明さを表している。また、X線源1で反射した風51とは、X線源1によってはね返ることにより第1格子3に向かう風、および、X線源1によって方向が変えられることにより第1格子3に向かう風を含む。
(Comparative example)
FIG. 10 is a schematic diagram of a phase contrast image 45 according to a comparative example when the image is captured without disposing the windshield member 8. The example illustrated in FIG. 10 is an example in which the subject 20 including the rectangular internal structure 22 (the internal structure 23, the internal structure 24, and the internal structure 25) is imaged. In the comparative example, since the image is captured without disposing the windshield member 8, the wind 51 reflected by the X-ray source 1 reaches the first grating 3. In this case, the first grating 3 vibrates. When the first grating 3 vibrates, the image quality of the phase contrast image 45 deteriorates. Specifically, when the first grating 3 vibrates, the shape of the step curve 46 collapses, so that in the phase contrast image 45 according to the comparative example, the contour 21 of the subject 20 is blurred or the internal structure 22 is unclear. .. In the example shown in FIG. 10, the outline 21 of the subject 20 is illustrated by a double line to represent the blur of the outline 21 of the subject 20. In addition, in the example shown in FIG. 10, the internal structure 23, the internal structure 24, and the internal structure 25 are illustrated by double lines, and the corners of the rectangular shape are illustrated by circles to represent the blurring of the internal structure 22. ing. Further, the wind 51 reflected by the X-ray source 1 is the wind that is rebounded by the X-ray source 1 toward the first grating 3 and the wind that is redirected by the X-ray source 1 toward the first grating 3. including.
 図11は、本実施形態によって撮像された位相コントラスト画像41の模式図である。本実施形態では、風よけ部材8を配置しているため、X線源1で反射した風51が第1格子3に到達することを抑制することができる。したがって、冷却ファン7から格子に向かう風51によって第1格子3に振動が生じることを抑制することができる。そのため、図11に示す位相コントラスト画像41のように、各内部構造22がそれぞれ鮮明に描写されるとともに、被写体20の輪郭21が鮮明に描写された画像を取得することができる。 FIG. 11 is a schematic diagram of the phase contrast image 41 captured by this embodiment. In the present embodiment, since the windshield member 8 is arranged, it is possible to prevent the wind 51 reflected by the X-ray source 1 from reaching the first grating 3. Therefore, it is possible to suppress the vibration of the first grid 3 caused by the wind 51 flowing from the cooling fan 7 toward the grid. Therefore, like the phase contrast image 41 shown in FIG. 11, it is possible to acquire an image in which each internal structure 22 is clearly depicted and the contour 21 of the subject 20 is clearly depicted.
 (本実施形態の効果)
 本実施形態では、以下のような効果を得ることができる。
(Effect of this embodiment)
In this embodiment, the following effects can be obtained.
 本実施形態では、上記のように、X線位相イメージング装置100は、X線源1と、X線源1から照射されたX線を検出する検出器2と、X線源1と検出器2との間に配置された複数の格子(第1格子3、第2格子4、および、第3格子5)と、検出器2により検出されたX線の強度分布に基づいて、位相コントラスト画像41を生成する画像処理部6と、X線源1から離間して設けられ、X線源1に対して送風することによりX線源1を冷却する冷却ファン7と、冷却ファン7からの風50のうち、複数の格子(第1格子3、第2格子4、および、第3格子5)の方向に向かう風51を遮蔽する風よけ部材8と、を備える。これにより、冷却ファン7によってX線源1が振動することを抑制することができる。その結果、X線源1を冷却しながら撮像することができる。また、冷却ファン7によってX線源1を冷却する際の風50が複数の格子(第1格子3、第2格子4、および、第3格子5)の方向に向かった場合でも、冷却ファン7からの風50および風51が風よけ部材8によって遮蔽されるため、複数の格子(第1格子3、第2格子4、および、第3格子5)が風50および風51によって振動することを抑制することができる。その結果、X線源1を冷却しながら撮像する場合でも、得られる位相コントラスト画像41の画質が劣化することを抑制することができる。 In the present embodiment, as described above, the X-ray phase imaging apparatus 100 includes the X-ray source 1, the detector 2 that detects the X-rays emitted from the X-ray source 1, the X-ray source 1, and the detector 2. Based on the plurality of gratings (the first grating 3, the second grating 4, and the third grating 5) arranged between and the X-ray intensity distribution detected by the detector 2, the phase contrast image 41 And an image processing unit 6 for generating X, and a cooling fan 7 provided separately from the X-ray source 1 for cooling the X-ray source 1 by blowing air to the X-ray source 1, and a wind 50 from the cooling fan 7. Among them, the windshield member 8 for shielding the wind 51 heading in the direction of the plurality of lattices (the first lattice 3, the second lattice 4, and the third lattice 5) is provided. As a result, the cooling fan 7 can prevent the X-ray source 1 from vibrating. As a result, an image can be taken while cooling the X-ray source 1. Further, even when the wind 50 when cooling the X-ray source 1 by the cooling fan 7 is directed toward the plurality of grids (the first grid 3, the second grid 4, and the third grid 5), the cooling fan 7 Since the wind 50 and the wind 51 from the wind are shielded by the windbreak member 8, the plurality of grids (the first grid 3, the second grid 4, and the third grid 5) vibrate by the wind 50 and the wind 51. Can be suppressed. As a result, even when the X-ray source 1 is imaged while being cooled, it is possible to suppress deterioration of the image quality of the obtained phase contrast image 41.
 また、本実施形態では、上記のように、風よけ部材8と複数の格子(第1格子3、第2格子4、および、第3格子5)とは、それぞれ別々の固定部材(固定部材12、固定部材13、固定部材14および固定部材15)に保持されている。これにより、風よけ部材8と複数の格子(第1格子3、第2格子4、および、第3格子5)とを同一の固定部材に保持する構成とは異なり、風よけ部材8の振動が同一の固定部材を介して格子(第1格子3、第2格子4、および、第3格子5)に伝搬することを抑制することができる。その結果、冷却ファン7からの風50および風51が複数の格子(第1格子3、第2格子4、および、第3格子5)に直接当たることによって格子(第1格子3、第2格子4、および、第3格子5)が振動することを抑制することが可能であるとともに、冷却ファン7からの風50および風51によって生じた風よけ部材8の振動によって格子(第1格子3、第2格子4、および、第3格子5)が振動することを抑制することが可能となるので、格子(第1格子3、第2格子4、および、第3格子5)に振動が生じることをより抑制することができる。 Further, in the present embodiment, as described above, the windbreak member 8 and the plurality of lattices (the first lattice 3, the second lattice 4, and the third lattice 5) are separate fixing members (fixing members). 12, fixed member 13, fixed member 14 and fixed member 15). Accordingly, unlike the configuration in which the windshield member 8 and the plurality of lattices (the first lattice 3, the second lattice 4, and the third lattice 5) are held by the same fixing member, the windshield member 8 It is possible to suppress the vibration from propagating to the lattices (the first lattice 3, the second lattice 4, and the third lattice 5) via the same fixing member. As a result, the winds 50 and 51 from the cooling fan 7 directly hit the plurality of grids (the first grid 3, the second grid 4, and the third grid 5), so that the grids (the first grid 3, the second grid 5). 4 and the third lattice 5) can be suppressed from vibrating, and the lattice (the first lattice 3) by the vibration of the windshield member 8 generated by the wind 50 and the wind 51 from the cooling fan 7. , The second grating 4 and the third grating 5) can be suppressed from vibrating, so that the grating (the first grating 3, the second grating 4 and the third grating 5) vibrates. This can be suppressed more.
 また、本実施形態では、上記のように、冷却ファン7は、X線の光軸60と交差する方向(X方向)から送風する位置に配置されており、風よけ部材8は、X線源1と複数の格子(第1格子3、第2格子4、および、第3格子5)との間に配置されている。これにより、冷却ファン7からの風50がX線源1によって反射することにより格子(第1格子3、第2格子4、および、第3格子5)の方向に向かう場合でも、風よけ部材8によって複数の格子(第1格子3、第2格子4、および、第3格子5)の方向に向かう風51を遮蔽することができる。その結果、複数の格子(第1格子3、第2格子4、および、第3格子5)に風51が当たることを抑制することができる。 Further, in the present embodiment, as described above, the cooling fan 7 is arranged at a position where the air is blown from the direction (X direction) intersecting the optical axis 60 of the X-ray, and the windshield member 8 is the X-ray. It is arranged between the source 1 and the plurality of gratings (first grating 3, second grating 4 and third grating 5). As a result, even when the wind 50 from the cooling fan 7 is reflected by the X-ray source 1 and heads in the direction of the lattices (the first lattice 3, the second lattice 4, and the third lattice 5), the windshield member. 8 can block the wind 51 heading in the direction of the plurality of grids (the first grid 3, the second grid 4, and the third grid 5). As a result, it is possible to suppress the wind 51 from hitting the plurality of lattices (the first lattice 3, the second lattice 4, and the third lattice 5).
 また、本実施形態では、上記のように、冷却ファン7は、X線源1と風よけ部材8との間に配置されている。これにより、X線源1によって反射することにより格子(第1格子3、第2格子4、および、第3格子5)の方向に向かう風51を遮蔽することが可能であるとともに、冷却ファン7から格子(第1格子3、第2格子4、および、第3格子5)の方向に向かう風50を遮蔽することができる。その結果、格子(第1格子3、第2格子4、および、第3格子5)に風50および風51が当たることをより一層抑制することができる。 Further, in the present embodiment, as described above, the cooling fan 7 is arranged between the X-ray source 1 and the windshield member 8. Thereby, it is possible to shield the wind 51 that is reflected by the X-ray source 1 and travels in the direction of the lattices (the first lattice 3, the second lattice 4, and the third lattice 5), and at the same time, the cooling fan 7 is provided. It is possible to shield the wind 50 from the direction of the lattice (the first lattice 3, the second lattice 4, and the third lattice 5). As a result, it is possible to further prevent the winds 50 and 51 from hitting the lattices (the first lattice 3, the second lattice 4, and the third lattice 5).
 また、本実施形態では、上記のように、複数の格子(第1格子3、第2格子4、および、第3格子5)は、X線源1から照射されるX線の可干渉性を高める第1格子3と、自己像を形成するための第2格子4とを含み、冷却ファン7は、X線の照射範囲63外で、かつ、X線源1と第1格子3との間に配置されており、風よけ部材8は、少なくとも、X線の光軸60上で、かつ、X線源1と第1格子3との間に配置されている。ここで、第1格子3は、複数の格子(第1格子3、第2格子4、および、第3格子5)のうち、最もX線源1に近い位置に配置されるとともに、格子の周期30が他の格子の周期(第2格子4の周期31、および、第3格子5の周期32)よりも小さい。したがって、第1格子3に生じる振動がわずかであったとしても、位相コントラスト画像41の画質に対する影響が、他の格子(第2格子4、および、第3格子5)よりも大きい。そこで、上記のように構成することにより、冷却ファン7からの風50が第1格子3に当たることを抑制することができる。その結果、冷却ファン7からの風50によって第1格子3が振動することを抑制することが可能となるので、位相コントラスト画像41の画質が劣化することを抑制することができる。 Further, in the present embodiment, as described above, the plurality of gratings (the first grating 3, the second grating 4, and the third grating 5) reduce the coherence of X-rays emitted from the X-ray source 1. The cooling fan 7 includes a first grating 3 for enhancing and a second grating 4 for forming a self-image, and the cooling fan 7 is outside the X-ray irradiation range 63 and between the X-ray source 1 and the first grating 3. The windshield member 8 is arranged at least on the X-ray optical axis 60 and between the X-ray source 1 and the first grating 3. Here, the first grating 3 is arranged at a position closest to the X-ray source 1 among the plurality of gratings (the first grating 3, the second grating 4, and the third grating 5), and the period of the grating is 30 is smaller than the cycles of the other gratings (the cycle 31 of the second grating 4 and the cycle 32 of the third grating 5). Therefore, even if the vibration generated in the first grating 3 is small, the influence on the image quality of the phase contrast image 41 is larger than that of the other gratings (the second grating 4 and the third grating 5). Therefore, with the configuration as described above, it is possible to prevent the wind 50 from the cooling fan 7 from hitting the first grid 3. As a result, it is possible to prevent the first grating 3 from vibrating due to the wind 50 from the cooling fan 7, and thus it is possible to suppress deterioration of the image quality of the phase contrast image 41.
 また、本実施形態では、上記のように、風よけ部材8は、板状形状を有しているとともに、冷却ファン7からの風50のうち、X線源1によって反射することにより第1格子3の方向に向かう風51を遮蔽するように構成されている。これにより、風よけ部材8によって、冷却ファン7からの風50およびX線源1によって反射した風51が第1格子3に当たることを抑制することができる。その結果、第1格子3に振動が生じることをより抑制することが可能となるので、位相コントラスト画像41の画質が劣化することをより抑制することができる。 Further, in the present embodiment, as described above, the windbreak member 8 has a plate-like shape, and the wind 50 from the cooling fan 7 is reflected by the X-ray source 1 to be the first windshield 50. It is configured so as to shield the wind 51 heading in the direction of the grid 3. Thereby, the windshield member 8 can prevent the wind 50 from the cooling fan 7 and the wind 51 reflected by the X-ray source 1 from hitting the first grating 3. As a result, it is possible to further suppress the occurrence of vibration in the first grating 3, and it is possible to further suppress deterioration of the image quality of the phase contrast image 41.
 また、本実施形態では、上記のように、風よけ部材8は、X線の光軸60上で、かつ、X線源1と第1格子3との間において、風よけ部材8とX線源1との間の距離33が、風よけ部材8と第1格子3との間の距離34よりも小さくなる位置に配置されている。これにより、風よけ部材8をX線源1の近傍に配置することが可能となるので、X線源1によって反射した風51が拡散する前に遮蔽することができる。その結果、第1格子3の近傍に風よけ部材8を配置する構成と比較して、風よけ部材8の大きさを小さくすることができる。 Further, in the present embodiment, as described above, the windshield member 8 is provided on the optical axis 60 of the X-rays and between the X-ray source 1 and the first grating 3. The distance 33 between the X-ray source 1 and the X-ray source 1 is arranged at a position smaller than the distance 34 between the windshield member 8 and the first grating 3. As a result, the windshield member 8 can be arranged in the vicinity of the X-ray source 1, so that the wind 51 reflected by the X-ray source 1 can be shielded before being diffused. As a result, the size of the windshield member 8 can be reduced as compared with the configuration in which the windshield member 8 is arranged near the first lattice 3.
 また、本実施形態では、上記のように、風よけ部材8は、X線の光軸60上で、かつ、X線源1と複数の格子(第1格子3、第2格子4、および、第3格子5)との間に配置されるとともに、X線源1から照射されるX線が通過する開口部80を有している。これにより、風よけ部材8が開口部80を有していない構成と異なり、風よけ部材8によるX線の減衰が生じることを抑制することができる。その結果、検出器2で検出されるX線の線量が風よけ部材8によって減少することを抑制することが可能となるので、位相コントラスト画像41のコントラストが低下することを抑制することができる。 Further, in the present embodiment, as described above, the windbreak member 8 is located on the optical axis 60 of the X-rays and with the X-ray source 1 and the plurality of gratings (first grating 3, second grating 4, and , And the third grating 5), and has an opening 80 through which the X-rays emitted from the X-ray source 1 pass. Thus, unlike the configuration in which the windshield member 8 does not have the opening 80, it is possible to suppress the attenuation of X-rays due to the windshield member 8. As a result, it is possible to prevent the X-ray dose detected by the detector 2 from being reduced by the windshield member 8, and thus it is possible to prevent the contrast of the phase contrast image 41 from being reduced. ..
 また、本実施形態では、上記のように、風よけ部材8は、X線吸収部材81を含み、開口部80は、X線吸収部材81に形成された開口である。これにより、X線源1から照射されたX線のうち、開口部80以外に照射されるX線は、X線吸収部材81によって吸収される。そのため、X線が開口部80以外から透過することを抑制することができる。したがって、X線源1から照射されるX線の照射範囲63が開口部80より大きくなるような焦点サイズのX線源1を用いることができる。その結果、X線源1の選択の自由度を向上させることができる。 Further, in the present embodiment, as described above, the windbreak member 8 includes the X-ray absorbing member 81, and the opening 80 is an opening formed in the X-ray absorbing member 81. As a result, of the X-rays emitted from the X-ray source 1, the X-rays that are emitted to the areas other than the opening 80 are absorbed by the X-ray absorbing member 81. Therefore, it is possible to prevent X-rays from being transmitted from other than the opening 80. Therefore, it is possible to use the X-ray source 1 having the focus size such that the irradiation range 63 of the X-rays emitted from the X-ray source 1 is larger than the opening 80. As a result, the degree of freedom in selecting the X-ray source 1 can be improved.
 (変形例)
 なお、今回開示された実施形態および作用、効果の記載は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく、請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
(Modification)
In addition, it should be thought that the description of the embodiment, the operation, and the effect disclosed this time is an exemplification in all respects and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of the claims, and further includes meanings equivalent to the scope of the claims and all modifications (modifications) within the scope.
 たとえば、上記実施形態では、風よけ部材8が、板状形状を有するX線吸収部材81に開口部80を設けることにより構成される例を示したが、本発明はこれに限られない。たとえば、図1の風よけ部材8に代えて、図12に示すような風よけ部材8aを設けてもよい。風よけ部材8aは、X線吸収部材81と、X線透過部材82とを含んでいてもよい。具体的には、風よけ部材8aは、開口部80を有するX線吸収部材81と、X線吸収部材81を取り囲むように設けられたX線透過部材82とによって形成されていてもよい。X線透過部材82は、たとえば、樹脂またはガラスなどを含む。 For example, in the above-described embodiment, an example in which the windbreak member 8 is configured by providing the opening 80 in the X-ray absorbing member 81 having a plate shape is shown, but the present invention is not limited to this. For example, instead of the windbreak member 8 of FIG. 1, a windbreak member 8a as shown in FIG. 12 may be provided. The windbreak member 8a may include an X-ray absorbing member 81 and an X-ray transmitting member 82. Specifically, the windshield member 8a may be formed by an X-ray absorbing member 81 having an opening 80 and an X-ray transmitting member 82 provided so as to surround the X-ray absorbing member 81. The X-ray transmission member 82 includes, for example, resin or glass.
 また、上記実施形態では、風よけ部材8が開口部80を有する構成の例を示したが、本発明はこれに限られない。たとえば、図1に示す風よけ部材8に代えて、図13に示すような風よけ部材8bを設けてもよい。風よけ部材8bは、開口部80を有していなくてもよい。なお、風よけ部材8bが開口部80を有していない構成の場合、風よけ部材8bは、X線透過部材82によって形成されることが好ましい。なお、風よけ部材8bをX線透過部材82によって形成する場合でも、風よけ部材8bによるX線の減衰がわずかに生じるため、開口部80を設ける構成の方が好ましい。また、風よけ部材8bがX線透過部材82によって形成されるとともに、開口部80を有する構成の場合、開口部80と風よけ部材8bとの屈折率の違いなどにより、X線が回折することを抑制するため、開口部80を通過したX線のみが検出器2によって検出されるように、X線の照射範囲63を調整することが好ましい。 Further, in the above embodiment, an example of the configuration in which the windbreak member 8 has the opening 80 has been shown, but the present invention is not limited to this. For example, instead of the windbreak member 8 shown in FIG. 1, a windbreak member 8b as shown in FIG. 13 may be provided. The windbreak member 8b may not have the opening 80. When the windshield member 8b does not have the opening 80, the windshield member 8b is preferably formed by the X-ray transmitting member 82. Even when the windshield member 8b is formed by the X-ray transmission member 82, the X-rays are slightly attenuated by the windshield member 8b, so that the configuration in which the opening 80 is provided is preferable. Further, in the case where the windshield member 8b is formed by the X-ray transmitting member 82 and has the opening 80, the X-rays are diffracted due to the difference in the refractive index between the opening 80 and the windshield member 8b. In order to suppress the above, it is preferable to adjust the X-ray irradiation range 63 so that only the X-rays that have passed through the opening 80 are detected by the detector 2.
 また、上記実施形態では、冷却ファン7からX線源1の焦点1aに向けて直接風50を送風する構成の例を示したが、本発明はこれに限られない。たとえば、図1に示す冷却ファン7に代えて、図14に示すよう冷却ファン70を備えていてもよい。冷却ファン70は、冷却ファン70から拡散する風52の向きを調整し、所定の方向に送風するためのダクト71が設けられていてもよい。冷却ファン70にダクト71を設けることにより、冷却ファン70からの風52を集約してX線源1の焦点1aに対して送ることが可能となるので、X線源1の冷却効率を向上させることができる。なお、ダクト71は、冷却ファン70の送風口70aの周囲に接触した状態で、冷却ファン70に設けられている。 In the above embodiment, the example in which the cooling fan 7 blows the air 50 directly toward the focal point 1a of the X-ray source 1 has been shown, but the present invention is not limited to this. For example, instead of the cooling fan 7 shown in FIG. 1, a cooling fan 70 may be provided as shown in FIG. The cooling fan 70 may be provided with a duct 71 for adjusting the direction of the wind 52 diffused from the cooling fan 70 and blowing the air in a predetermined direction. By providing the duct 71 in the cooling fan 70, the air 52 from the cooling fan 70 can be collected and sent to the focal point 1a of the X-ray source 1, so that the cooling efficiency of the X-ray source 1 is improved. be able to. The duct 71 is provided in the cooling fan 70 in a state of being in contact with the periphery of the blower port 70a of the cooling fan 70.
 また、上記実施形態では、冷却ファン7がX線源1と風よけ部材8との間に配置される構成の例を示したが、本発明はこれに限られない。たとえば、図15に示すように、冷却ファン7は、風よけ部材8と第1格子3との間に配置されていてもよい。なお、冷却ファン7を、風よけ部材8と第1格子3との間に配置する場合、冷却ファン7から直接第1格子3に向かう風53を遮蔽するとともに、冷却ファン7からの風54が風よけ部材8によって反射し、第1格子3の方向に向かうことを抑制するために、第2風よけ部材8cをさらに設けることが好ましい。 Further, in the above embodiment, an example of the configuration in which the cooling fan 7 is arranged between the X-ray source 1 and the windbreak member 8 has been shown, but the present invention is not limited to this. For example, as shown in FIG. 15, the cooling fan 7 may be arranged between the windshield member 8 and the first grid 3. When the cooling fan 7 is arranged between the windshield member 8 and the first grid 3, the air 53 directed from the cooling fan 7 directly to the first grid 3 is shielded and the air 54 from the cooling fan 7 is provided. It is preferable to further provide a second windshield member 8c in order to suppress the reflection of the windshield member 8 by the windshield member 8 toward the first lattice 3.
 また、上記実施形態では、複数の格子(第1格子3、第2格子4、および、第3格子5)が固定部材12、固定部材13、および固定部材14によって、Y2方向から保持される構成の例を示したが、本発明はこれに限られない。たとえば、図1に示す固定部材12、固定部材13および固定部材14に代えて、図16に示すように、X線位相イメージング装置100は、固定部材120、固定部材130、固定部材140と、各固定部材および格子移動機構11をY1方向から保持する梁部18を備え、複数の格子(第1格子3、第2格子4、および、第3格子5)をY1方向から保持するように構成されていてもよい。すなわち、複数の格子(第1格子3、第2格子4、および、第3格子5)を吊り下げることによって保持する構成であってもよい。この場合、風よけ部材8は、X線位相イメージング装置100の底面などに固定された固定部材15によって保持すればよい。 In addition, in the above-described embodiment, the plurality of lattices (the first lattice 3, the second lattice 4, and the third lattice 5) are held in the Y2 direction by the fixing member 12, the fixing member 13, and the fixing member 14. However, the present invention is not limited to this. For example, instead of the fixing member 12, the fixing member 13, and the fixing member 14 shown in FIG. 1, as shown in FIG. 16, the X-ray phase imaging apparatus 100 includes a fixing member 120, a fixing member 130, and a fixing member 140. A beam portion 18 that holds the fixing member and the lattice moving mechanism 11 from the Y1 direction is provided, and is configured to hold the plurality of lattices (the first lattice 3, the second lattice 4, and the third lattice 5) from the Y1 direction. May be. That is, a configuration may be adopted in which a plurality of lattices (the first lattice 3, the second lattice 4, and the third lattice 5) are suspended and held. In this case, the windbreak member 8 may be held by the fixing member 15 fixed to the bottom surface of the X-ray phase imaging apparatus 100 or the like.
 また、上記実施形態では、複数の格子として、第1格子3、第2格子4および第3格子5を備える構成の例を示したが、本発明はこれに限られない。たとえば、検出器の画素ピッチの大きさが、自己像の周期よりも小さければ、検出器によって自己像を直接解像することができる。そのため、図1に示す検出器2に代えて、画素ピッチの大きさが自己像の周期よりも小さい検出器2を備える場合には、図17に示すX線位相イメージング装置100のように、複数の格子として、第1格子3および第2格子4を備える構成であってもよい。 Further, in the above embodiment, an example of the configuration including the first lattice 3, the second lattice 4, and the third lattice 5 as the plurality of lattices is shown, but the present invention is not limited to this. For example, if the pixel pitch of the detector is smaller than the period of the self-image, the self-image can be directly resolved by the detector. Therefore, when the detector 2 shown in FIG. 1 is provided with a detector 2 having a pixel pitch smaller than the cycle of the self-image, a plurality of detectors 2 are provided as in the X-ray phase imaging apparatus 100 shown in FIG. The grating may include the first grating 3 and the second grating 4.
 また、上記実施形態では、風よけ部材8のXY平面における大きさが、第1格子3のXY平面における大きさと略等しくなる構成の例を示したが、本発明はこれに限られない。X線源1によって反射された風51が、第1格子3の一部分にしか当たらない場合には、風よけ部材8のXY平面における大きさは、第1格子3のXY平面における大きさよりも小さくてもよい。第1格子3に当たる風51を遮蔽することが可能であれば、風よけ部材8の大きさはどの様な大きさであってもよい。 In the above embodiment, the size of the windshield member 8 in the XY plane is approximately equal to the size of the first grating 3 in the XY plane, but the present invention is not limited to this. When the wind 51 reflected by the X-ray source 1 hits only a part of the first grating 3, the size of the windshield member 8 in the XY plane is larger than the size of the first grating 3 in the XY plane. It may be small. The size of the windbreak member 8 may be any size as long as it can shield the wind 51 hitting the first grid 3.
 また、上記実施形態では、風よけ部材8が、X線の光軸60上で、かつ、X線源1と第1格子3との間に配置される構成の例を示したが、本発明はこれに限られない。たとえば、被写体20に対して風50を当てながら撮像する場合、風よけ部材8は、被写体20と格子との間に配置されてもよい。 Further, in the above embodiment, an example of the configuration in which the windshield member 8 is arranged on the optical axis 60 of X-rays and between the X-ray source 1 and the first grating 3 has been shown. The invention is not limited to this. For example, when the subject 20 is imaged while applying the wind 50, the windshield member 8 may be disposed between the subject 20 and the lattice.
 また、上記実施形態では、冷却ファン7からの風50およびX線源1によって反射した風51を遮蔽するために風よけ部材8が設けられる構成の例を示したが、本発明はこれに限られない。たとえば、風よけ部材8に加えて、空調などからの風を遮蔽するための風よけ部材をさらに設けてもよい。 Further, in the above embodiment, an example of the configuration in which the wind shield member 8 is provided to shield the wind 50 from the cooling fan 7 and the wind 51 reflected by the X-ray source 1 has been shown, but the present invention is not limited to this. Not limited. For example, in addition to the windshield member 8, a windshield member for shielding the wind from the air conditioner or the like may be further provided.
 また、上記実施形態では、風よけ部材8が板状形状を有しており、X線源1と第1格子3との間に配置する構成の例を示したが、本発明はこれに限られない。たとえば、風よけ部材8は、湾曲した形状を有していていもよい。また、たとえば、風よけ部材8は、箱型の形状を有しており、内部に第1格子3を配置することにより、冷却ファン7からの風50(風51)を遮蔽するように構成されていてもよい。冷却ファン7からの風50(風51)を遮蔽することが可能であれば、風よけ部材8は、どのような形状を有していてもよい。 Further, in the above-described embodiment, the windshield member 8 has a plate-like shape and is arranged between the X-ray source 1 and the first grating 3. However, the present invention is not limited to this. Not limited. For example, the windbreak member 8 may have a curved shape. Further, for example, the windbreak member 8 has a box shape, and is configured to block the wind 50 (wind 51) from the cooling fan 7 by disposing the first lattice 3 inside. It may have been done. The windshield member 8 may have any shape as long as it can shield the wind 50 (wind 51) from the cooling fan 7.
 1 X線源
 2 検出器
 3 第1格子(複数の格子)
 4 第2格子(複数の格子)
 5 第3格子(複数の格子)
 6 画像処理部
 7 冷却ファン
 8、8a、8b、8c 風よけ部材
 12、13、14、15 固定部材
 20 被写体
 33 風よけ部材とX線源との間の距離
 34 風よけ部材と第1格子との間の距離
 41 位相コントラスト画像
 50 風(冷却ファンからの風)
 51 X線源によって反射することにより第1格子の方向に向かう風
 60 X線の光軸
 63 X線の照射範囲
 80 開口部
 81 X線吸収部材
 100 X線位相イメージング装置
1 X-ray source 2 Detector 3 First grating (plural gratings)
4 Second grid (plural grids)
5 3rd lattice (plural lattices)
6 image processing unit 7 cooling fan 8, 8a, 8b, 8c windshield member 12, 13, 14, 15 fixing member 20 subject 33 distance between windshield member and X-ray source 34 windshield member and first Distance between 1 grid 41 Phase contrast image 50 Wind (Wind from cooling fan)
51 Wind that is reflected by the X-ray source and heads in the direction of the first grating 60 Optical axis of X-ray 63 Irradiation range of X-ray 80 Opening 81 X-ray absorbing member 100 X-ray phase imaging device

Claims (9)

  1.  X線源と、
     前記X線源から照射されたX線を検出する検出器と、
     前記X線源と前記検出器との間に配置された複数の格子と、
     前記検出器により検出されたX線の強度分布に基づいて、位相コントラスト画像を生成する画像処理部と、
     前記X線源から離間して設けられ、前記X線源に対して送風することにより前記X線源を冷却する冷却ファンと、
     前記冷却ファンからの風のうち、前記複数の格子の方向に向かう風を遮蔽する風よけ部材と、を備える、X線位相イメージング装置。
    X-ray source,
    A detector for detecting X-rays emitted from the X-ray source,
    A plurality of gratings arranged between the X-ray source and the detector;
    An image processing unit that generates a phase contrast image based on the intensity distribution of the X-ray detected by the detector;
    A cooling fan which is provided apart from the X-ray source and cools the X-ray source by blowing air to the X-ray source;
    An X-ray phase imaging apparatus, comprising: a windbreak member that shields the wind from the cooling fan that is directed toward the plurality of grids.
  2.  前記風よけ部材と前記複数の格子とは、それぞれ別々の固定部材に保持されている、請求項1に記載のX線位相イメージング装置。 The X-ray phase imaging apparatus according to claim 1, wherein the windshield member and the plurality of gratings are held by separate fixing members.
  3.  前記冷却ファンは、X線の光軸と交差する方向から送風する位置に配置されており、
     前記風よけ部材は、前記X線源と前記複数の格子との間に配置されている、請求項1に記載のX線位相イメージング装置。
    The cooling fan is arranged at a position to blow air from a direction intersecting with the X-ray optical axis,
    The X-ray phase imaging apparatus according to claim 1, wherein the windbreak member is disposed between the X-ray source and the plurality of gratings.
  4.  前記冷却ファンは、前記X線源と前記風よけ部材との間に配置されている、請求項3に記載のX線位相イメージング装置。 The X-ray phase imaging apparatus according to claim 3, wherein the cooling fan is arranged between the X-ray source and the windbreak member.
  5.  前記複数の格子は、前記X線源から照射されるX線の可干渉性を高める第1格子と、自己像を形成するための第2格子とを含み、
     前記冷却ファンは、X線の照射範囲外で、かつ、前記X線源と前記第1格子との間に配置されており、
     前記風よけ部材は、少なくとも、X線の光軸上で、かつ、前記X線源と前記第1格子との間に配置されている、請求項1に記載のX線位相イメージング装置。
    The plurality of gratings include a first grating that enhances coherence of X-rays emitted from the X-ray source, and a second grating that forms a self-image,
    The cooling fan is arranged outside the X-ray irradiation range and between the X-ray source and the first grating,
    The X-ray phase imaging apparatus according to claim 1, wherein the windbreak member is disposed at least on the optical axis of X-rays and between the X-ray source and the first grating.
  6.  前記風よけ部材は、板状形状を有しているとともに、前記冷却ファンからの風のうち、前記X線源によって反射することにより前記第1格子の方向に向かう風を遮蔽するように構成されている、請求項5に記載のX線位相イメージング装置。 The windbreak member has a plate shape, and is configured to shield the wind from the cooling fan that is directed toward the first lattice by being reflected by the X-ray source. The X-ray phase imaging apparatus according to claim 5, which is provided.
  7.  前記風よけ部材は、X線の光軸上で、かつ、前記X線源と前記第1格子との間において、前記風よけ部材と前記X線源との間の距離が、前記風よけ部材と前記第1格子との間の距離よりも小さくなる位置に配置されている、請求項5に記載のX線位相イメージング装置。 The windshield member is on the optical axis of X-rays, and between the X-ray source and the first grating, the distance between the windshield member and the X-ray source is the windshield. The X-ray phase imaging apparatus according to claim 5, wherein the X-ray phase imaging apparatus is arranged at a position smaller than a distance between the shelter member and the first grating.
  8.  前記風よけ部材は、X線の光軸上で、かつ、前記X線源と前記複数の格子との間に配置されるとともに、前記X線源から照射されるX線が通過する開口部を有している、請求項1に記載のX線位相イメージング装置。 The windshield member is arranged on the optical axis of X-rays and between the X-ray source and the plurality of gratings, and an opening through which X-rays emitted from the X-ray source pass. The X-ray phase imaging apparatus according to claim 1, further comprising:
  9.  前記風よけ部材は、X線吸収部材を含み、
     前記開口部は、前記X線吸収部材に形成された開口である、請求項8に記載のX線位相イメージング装置。
    The windbreak member includes an X-ray absorbing member,
    The X-ray phase imaging apparatus according to claim 8, wherein the opening is an opening formed in the X-ray absorbing member.
PCT/JP2019/030293 2018-11-20 2019-08-01 X-ray phase imaging system WO2020105224A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020558082A JP7074206B2 (en) 2018-11-20 2019-08-01 X-ray phase imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018217576 2018-11-20
JP2018-217576 2018-11-20

Publications (1)

Publication Number Publication Date
WO2020105224A1 true WO2020105224A1 (en) 2020-05-28

Family

ID=70774187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030293 WO2020105224A1 (en) 2018-11-20 2019-08-01 X-ray phase imaging system

Country Status (2)

Country Link
JP (1) JP7074206B2 (en)
WO (1) WO2020105224A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427788A (en) * 1977-08-03 1979-03-02 Toshiba Corp X-ray apparatus
JP2012095865A (en) * 2010-11-02 2012-05-24 Fujifilm Corp Radiographic apparatus and radiographic system
JP2012110395A (en) * 2010-11-19 2012-06-14 Fujifilm Corp Radiographic system
JP2012120651A (en) * 2010-12-07 2012-06-28 Fujifilm Corp Radiographic apparatus and radiographic system
JP2013180040A (en) * 2012-03-01 2013-09-12 Konica Minolta Inc Joint imaging apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053095A1 (en) 2008-11-04 2010-05-14 株式会社エヌ・ティ・ティ・ドコモ Mobile station and mobile communication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427788A (en) * 1977-08-03 1979-03-02 Toshiba Corp X-ray apparatus
JP2012095865A (en) * 2010-11-02 2012-05-24 Fujifilm Corp Radiographic apparatus and radiographic system
JP2012110395A (en) * 2010-11-19 2012-06-14 Fujifilm Corp Radiographic system
JP2012120651A (en) * 2010-12-07 2012-06-28 Fujifilm Corp Radiographic apparatus and radiographic system
JP2013180040A (en) * 2012-03-01 2013-09-12 Konica Minolta Inc Joint imaging apparatus

Also Published As

Publication number Publication date
JP7074206B2 (en) 2022-05-24
JPWO2020105224A1 (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP6308997B2 (en) X-ray detector and X-ray system
US20150071402A1 (en) X-ray imaging system
US10720300B2 (en) X-ray source for 2D scanning beam imaging
JP2014178130A (en) X-ray imaging device and x-ray imaging system
JP2007130460A (en) Grid for removing scattered x-ray and x-ray equipment
JP2008200361A (en) Radiographic system
US9239304B2 (en) X-ray imaging apparatus
WO2020095482A1 (en) X-ray phase imaging system
JP6881682B2 (en) X-ray imaging device
JP2009085667A (en) X-ray inspection device
WO2020105224A1 (en) X-ray phase imaging system
US20160064109A1 (en) X-ray imaging apparatus
CN108720855B (en) X-ray phase imaging device
WO2014080552A1 (en) X-ray generating apparatus, x-ray detecting apparatus, x-ray imaging system, and x-ray imaging method
US20120134463A1 (en) Radiation tube and radiation imaging system
JP2007322384A (en) X-ray tomographic imaging unit and method
JP2019066283A (en) Radiation phase difference imaging device
WO2020039654A1 (en) X-ray phase imaging device
WO2020054150A1 (en) Grating adjustment method
KR20180121534A (en) A radiographic image generating device
JP2014223091A (en) Radiographic apparatus and image processing method
JP6780592B2 (en) X-ray phase difference imaging device
JP2012007935A (en) X-ray diffraction apparatus
WO2020079919A1 (en) X-ray phase imaging device
JP7147346B2 (en) X-ray phase imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887805

Country of ref document: EP

Kind code of ref document: A1