WO2020054150A1 - Grating adjustment method - Google Patents

Grating adjustment method Download PDF

Info

Publication number
WO2020054150A1
WO2020054150A1 PCT/JP2019/022487 JP2019022487W WO2020054150A1 WO 2020054150 A1 WO2020054150 A1 WO 2020054150A1 JP 2019022487 W JP2019022487 W JP 2019022487W WO 2020054150 A1 WO2020054150 A1 WO 2020054150A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
adjusting
light
reflection
adjustment
Prior art date
Application number
PCT/JP2019/022487
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 森本
木村 健士
太郎 白井
貴弘 土岐
哲 佐野
日明 堀場
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020546695A priority Critical patent/JP6935854B2/en
Publication of WO2020054150A1 publication Critical patent/WO2020054150A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/08Auxiliary means for directing the radiation beam to a particular spot, e.g. using light beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers

Definitions

  • the present invention relates to a method for adjusting a grating, and particularly to a method for adjusting a grating used in an X-ray phase imaging apparatus that generates a phase contrast image including at least one of an absorption image, a phase differential image, and a dark field image.
  • an X-ray source an X-ray emitted from the X-ray source, a first grating for forming a self-image, and an X-ray passing through the first grating are emitted.
  • An X-ray phase imaging apparatus including a second grating and a detector that detects an X-ray that has passed through the second grating is disclosed.
  • a phase contrast image including an absorption image, a phase differential image, and a dark-field image is generated based on an X-ray intensity signal detected by a detection unit.
  • an adjusting mechanism for adjusting the position of the first grating or the second grating and an adjusting mechanism for adjusting the position of the first grating based on the moiré fringe detected by the detection unit.
  • a control unit for adjusting the displacement or the displacement of the second grating is provided.
  • the X-ray phase imaging apparatus disclosed in WO2018 / 016369 is configured to adjust the displacement of the first grating or the displacement of the second grating in the following four directions.
  • the four directions are around the first orthogonal direction (first direction) of the X-ray irradiation axis direction, the rotation direction around the X-ray irradiation axis direction, and the in-plane direction orthogonal to the X-ray irradiation axis direction.
  • the first rotation direction and the second rotation direction among the four directions are used. It is known that the displacement of the grating (the first grating or the second grating) in the rotation direction has relatively little effect on the occurrence of unintended moire fringes. Therefore, the displacement of the grating in the first rotation direction and the second rotation direction (parallelism between the first grating and the second grating in the in-plane direction orthogonal to the X-ray irradiation axis direction) may be reduced, for example, before the device is shipped.
  • the moire fringes are less likely to occur even if the grating is slightly displaced in the first rotation direction and the second rotation direction after the adjustment. In this case, when the apparatus is used, it is considered possible to omit the adjustment of the displacement of the grating in the first rotation direction and the second rotation direction for suppressing the generation of unintended moire fringes.
  • the apparatus can be used without performing imaging for acquiring moiré fringes as in the case of adjusting the misregistration of the grating in the first rotational direction and the second rotational direction based on the moiré fringes detected by the detection unit.
  • a simple method for adjusting only once before shipment is desired.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an X-ray phase imaging apparatus which has a parallelism in an in-plane direction orthogonal to the X-ray irradiation axis direction. Is to provide a grid adjustment method that can easily adjust the grid.
  • a method for adjusting a grating is arranged between an X-ray source and a detection unit to form a self-image by X-rays emitted from the X-ray source.
  • a second grating for causing interference with the self-image of the first grating, and an absorption image, a phase differential image, and a dark field based on an X-ray detection signal detected by the detection unit.
  • an adjusting light source arranged between a first grating and a second grating is used for adjusting.
  • the first reflection adjusting light reflected by the first reflection adjusting light and the second reflection adjusting light reflected by the first reflection adjusting light or the second grating are both passed through the opening.
  • the first reflection adjusting light reflected by one of the first grating and the second grating and the first reflection adjusting light are the first reflection adjusting light.
  • the first rotation direction in the in-plane direction orthogonal to the X-ray irradiation axis direction
  • the second reflection adjustment light reflected by either the grating or the second grating passes through the opening.
  • the first lattice and the second lattice in the second rotational direction the rotational direction around the second direction orthogonal to the first direction among the in-plane directions). Adjusting step.
  • the first grating and the second reflection adjustment light are viewed from the first direction.
  • the two gratings are substantially parallel (that is, the displacement between the first grating and the second grating in the first rotation direction is suppressed).
  • the first grating and the second grating may be viewed from the second direction.
  • the grid is substantially parallel (that is, the displacement between the first grid and the second grid in the second rotation direction is suppressed).
  • the misalignment between the first grating and the second grating in the first rotation direction and the second rotation direction is such that both the first reflection adjustment light and the second reflection adjustment light pass through the opening. Is adjusted, it is possible to suppress the displacement between the first grating and the second grating in the first rotation direction and the second rotation direction. As a result, the state in which light passes through the opening and the state in which light does not pass can be easily discriminated visually or by a photodetector having a relatively simple configuration. The degree of parallelism in the direction can be easily adjusted.
  • the displacement of the grating is adjusted depending on whether or not the light has passed through the opening, it is not necessary to adjust the grating using a level or a goniometer, and imaging is performed to obtain moire fringes. No need.
  • the adjustment light includes a laser beam.
  • the laser beam has high directivity (travels linearly without spreading)
  • the reflection adjusting light does not pass through the opening. That is, light with low directivity may pass through the opening even when the first grating and the second grating are misaligned. Therefore, by using the laser beam as described above, it is possible to suppress the first grating and the second grating from passing through the opening when the first grating and the second grating are misaligned. Misalignment between the second grating and the second grating can be adjusted.
  • the adjustment light includes visible light.
  • this structure it is possible to adjust the displacement between the first grating and the second grating while visually observing the positions of the first reflection adjusting light and the second reflection adjusting light.
  • an in-plane orthogonal to the X-ray irradiation axis direction is used. The degree of parallelism in the direction can be adjusted more easily.
  • the opening includes a slit, and the slit extends in the first direction when the step of adjusting the positional shift in the first rotation direction is performed.
  • the liquid crystal display is disposed so as to extend in the second direction.
  • the step of adjusting the displacement between the first grating and the second grating in the second rotation direction when the step of adjusting the displacement between the first grating and the second grating in the second rotation direction is performed, the first reflection adjusting light and the second reflection adjusting light do not interfere with each other. It is necessary to adjust the position shift so that the first reflection adjustment light and the second reflection adjustment light are both shifted in the second direction and pass through the opening. Therefore, according to the above configuration, when the step of adjusting the displacement in the first rotation direction is performed, the first reflection adjustment light and the second reflection adjustment light are shifted from each other in the first direction. In this state, it is possible to adjust the misalignment between the first grating and the second grating in the first rotation direction so that both of them pass through a slit arranged to extend in the first direction.
  • the first reflection adjustment light and the second reflection adjustment light are shifted from each other in the second direction in the second direction. It is possible to adjust the displacement between the first grating and the second grating in the second rotation direction so as to pass through a slit arranged so as to extend in the vertical direction.
  • the step of irradiating the adjustment light when the step of adjusting the displacement in the first rotation direction is performed, the step of irradiating the light incident surface of the member with the slit in the first direction is performed. Including a step of irradiating the adjustment light in the inclined direction, and in a case where the step of adjusting the displacement in the second rotation direction is performed, the step of tilting in the second direction with respect to the light incident surface of the member having the slit is performed. Irradiating the adjusting light in the set direction. According to this structure, when the step of adjusting the displacement in the first rotation direction is performed, the adjustment light is inclined in the first direction with respect to the light incident surface of the member having the slit.
  • the first reflection adjusting light and the second reflection adjusting light can be made to enter the slit-formed member while being shifted from each other in the first direction.
  • the step of adjusting the displacement in the first rotation direction is performed, the first reflection adjustment light and the second reflection adjustment light are surely displaced from each other in the first direction, and It can be in a state of passing through a slit arranged to extend in the first direction.
  • the step of adjusting the displacement in the second rotation direction is performed, the light incident surface of the member in which the slit is formed is irradiated with the adjustment light in a direction inclined in the second direction.
  • the first reflection adjusting light and the second reflection adjusting light can be surely made incident on the member provided with the slit in a state shifted from each other in the second direction.
  • the first reflection adjustment light and the second reflection adjustment light are surely displaced from each other in the second direction. It can be in a state of passing through a slit arranged to extend in the second direction.
  • the step of adjusting the displacement includes the first reflection adjustment light and one of the first grating and the second grating so that the first reflection adjustment light passes through the opening.
  • the second reflection adjusting light passes through the opening. Adjusting the misalignment between one of the first and second gratings and one of the first and second gratings.
  • the first reflection adjusting light and the The second reflection adjusting light can be made to pass through the opening.
  • the step of adjusting the displacement preferably includes the step of adjusting the second rotation so that both the first reflection adjustment light and the second reflection adjustment light pass through the opening.
  • a step of adjusting the displacement between the first grating and the second grating in the first rotation direction, and a step of adjusting the displacement of the first grating and the second grating in the second rotation direction can be performed simply by changing the directions of the adjustment light source and the opening between the substantially first direction and the substantially second direction.
  • the position shift in both the first rotation direction and the second rotation direction can be adjusted by the common adjustment light source and the opening, so that the configuration for adjusting the position shift can be simplified.
  • the opening is provided between the first grating and the second grating in the irradiation axis direction. It is located in the center.
  • the distance between the opening and the grating (the first grating or the second grating) is relatively short, even if the first grating and the second grating are misaligned, the reflected light (the first reflection adjustment) is used. Light or the second reflection adjustment light) may pass through the opening. Therefore, according to the above configuration, the distance between the first reflection adjusting light and the opening and the distance between the second reflection adjusting light and the opening are relatively large. Is displaced, the reflected light (the first reflection adjustment light or the second reflection adjustment light) passes through the opening, causing the first grating and the second grating to move away from each other. It is possible to prevent the position from being unable to be properly adjusted.
  • the step of adjusting the positional shift is generated by diffracting the grating pattern when the grating pattern is formed on a surface on which the adjustment light is reflected. Adjusting the displacement using the first reflection adjustment light having the highest intensity among the plurality of first reflection adjustment lights, and forming a grid pattern on the surface where the first reflection adjustment light is reflected. If so, the method includes a step of adjusting the displacement using the second reflection adjustment light having the highest intensity among the plurality of second reflection adjustment lights generated by being diffracted by the grating pattern.
  • the plurality of first reflection adjusting lights and the second reflection adjusting lights are respectively formed by the lattice patterns formed on the surface on which the adjusting light is reflected and the surface on which the first reflection adjusting light is reflected. Even when the light for use is generated, the displacement between the first grating and the second grating can be easily adjusted by using the first reflection adjustment light and the second reflection adjustment light having the highest intensity (clearness). can do.
  • the step of adjusting the displacement preferably includes the step of adjusting the first reflection adjusting light, the second reflection adjusting light, and the second reflection adjusting light to the first grating and the second reflection adjusting light.
  • the method further includes the step of adjusting the displacement based on the third reflection adjusting light that is multiply reflected by the two gratings.
  • the displacement can be adjusted so that the multiply reflected third reflection adjusting light passes through the opening. Therefore, only the first reflection adjusting light and the second reflection adjusting light can be adjusted.
  • the position shift between the first grating and the second grating can be adjusted more precisely.
  • the width of the opening is preferably set to be equal to or larger than the spot diameter of the adjustment light. According to this structure, it is possible to prevent the adjustment light emitted from the adjustment light source from being blocked by a portion other than the opening of the member having the opening. As a result, the intensity of the first reflection adjustment light and the second reflection adjustment light is prevented from being reduced (darkened), so that the first reflection adjustment light and the second reflection adjustment light pass through the opening. It can be easily determined whether or not this has been done.
  • the parallelism in the in-plane direction orthogonal to the X-ray irradiation axis direction can be easily adjusted.
  • FIG. 1 is a diagram illustrating an overall configuration of an X-ray phase imaging apparatus using a grating adjustment method according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a grating position adjusting mechanism of the X-ray phase imaging apparatus using the grating adjusting method according to one embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a grid adjustment method according to an embodiment of the present invention.
  • FIG. 6 is a diagram for explaining a procedure of a grid adjustment method according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a relationship between a spot diameter of an adjustment light source and a width of a slit.
  • FIG. 9 is a diagram for explaining a procedure of a grid adjustment method according to a first modification of one embodiment of the present invention. It is a figure for explaining an opening by a 2nd modification of one embodiment of the present invention. It is a figure for explaining the adjustment method of the lattice by the 3rd modification of one embodiment of the present invention. It is a figure for explaining the adjustment method of the lattice by the 4th modification of one embodiment of the present invention.
  • the X-ray phase imaging apparatus 100 includes a plurality of gratings G including an X-ray tube 11, a detecting unit 12, a first grating G1, a second grating G2, and a third grating G3. , A processing unit 13 and a lattice position adjusting mechanism 14.
  • the X-ray tube 11 is an example of the “X-ray source” in the claims.
  • the X-ray tube 11, the third grating G3, the first grating G1, the second grating G2, and the detecting unit 12 connect the X-ray tube 11 and the detecting unit 12 with each other. They are arranged in this order in the irradiation axis direction of the line (optical axis direction, Z direction).
  • the direction from the X-ray tube 11 to the detection unit 12 is defined as a Z2 direction, and the opposite direction is defined as a Z1 direction.
  • the direction in which each of the plurality of lattices G extends in the in-plane direction orthogonal to the Z direction is defined as the X direction.
  • the direction of the grating pitch (described later) of each of the plurality of gratings G (the direction orthogonal to the Z direction and the X direction) in the in-plane direction orthogonal to the Z direction is defined as the Y direction.
  • the X direction and the Y direction are examples of the “first direction” and the “second direction” in the claims, respectively.
  • the X-ray tube 11 is an X-ray generator capable of generating X-rays when a high voltage is applied.
  • the X-ray tube 11 is configured to irradiate the generated X-ray in the Z2 direction.
  • the detection unit 12 detects the X-rays emitted from the X-ray tube 11 and converts the detected X-rays into an electric signal.
  • the detection unit 12 is, for example, an FPD (Flat @ Panel @ Detector).
  • the detection unit 12 includes a plurality of conversion elements (not shown) and pixel electrodes (not shown) arranged on the plurality of conversion elements. The plurality of conversion elements and the pixel electrodes are arranged in the X direction and the Y direction at a predetermined cycle (pixel pitch).
  • the detection signal (electric signal) converted by the detection unit 12 is sent to an image processing unit 13b (described later) included in the processing unit 13.
  • the first grating G1 has a grating pattern (a plurality of slits G1a and an X-ray phase changing portion G1b) arranged at a predetermined period (grating pitch) d1 in the Y direction.
  • the grating pattern is provided on the X-ray tube 11 side (Z1 side) of the first grating G1.
  • Each slit G1a and the X-ray phase change portion G1b are formed to extend linearly in the X direction.
  • the first grating G1 is a so-called phase grating.
  • the first grating G1 is disposed between the X-ray tube 11 and the second grating G2, and is provided to form a self-image (by the Talbot effect) by the X-rays emitted from the X-ray tube 11. I have. Note that the Talbot effect is such that when the coherent X-ray passes through the first grating G1 in which the slit G1a is formed, the first grating G1 is located at a predetermined distance (Talbot distance) from the first grating G1. (Self image) is formed.
  • the second grating G2 has a grating pattern (a plurality of X-ray transmitting portions G2a and X-ray absorbing portions G2b) arranged at a predetermined period (grating pitch) d2 in the Y direction.
  • the grating pattern is provided on the X-ray tube 11 side (Z1 side) of the second grating G2.
  • Each of the X-ray transmitting portions G2a and the X-ray absorbing portions G2b is formed so as to extend linearly in the X direction.
  • the second grating G2 is a so-called absorption grating.
  • the second grating G2 is disposed between the first grating G1 and the detection unit 12, and is configured to interfere with the self-image formed by the first grating G1.
  • the second grating G2 is arranged at a position away from the first grating G1 by the Talbot distance in order to cause the self-image and the second grating G2 to interfere with each other. That is, in the X-ray phase imaging apparatus 100, the interference fringes (Moire fringes) generated by the interference between the self-image and the second grating G2 are detected by the detection unit 12 as X-rays.
  • the third grating G3 has a plurality of slits G3a and X-ray absorbing portions G3b arranged at a predetermined period (pitch) d3. Each of the slits G3a and the X-ray absorbing portion G3b is formed so as to extend linearly in the X direction.
  • the third grating G3 is arranged between the X-ray tube 11 and the first grating G1, and is irradiated with X-rays from the X-ray tube 11.
  • the third grating G3 is configured to use the X-rays that have passed through each slit G3a as a line light source corresponding to the position of each slit G3a. That is, the third grating G3 is provided to increase the coherence of the X-rays emitted from the X-ray tube 11.
  • the processing unit 13 includes a control unit 13a and an image processing unit 13b.
  • the control unit 13a is configured to control the operation of the lattice position adjustment mechanism 14.
  • Control unit 13a includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the image processing unit 13b is configured to generate an image such as a phase contrast image based on the detection signal sent from the detection unit 12.
  • the image processing unit 13b includes, for example, a processor such as a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) configured for image processing.
  • a processor such as a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) configured for image processing.
  • the phase contrast image includes at least one of an absorption image, a phase differential image, and a dark field image.
  • the absorption image is an X-ray image formed based on the difference in the degree of X-ray absorption.
  • the phase differential image is an X-ray image formed based on the phase shift of the X-ray.
  • the dark-field image is a visibility image obtained by changing the visibility based on small-angle scattering of an object.
  • the dark-field image is also called a small-angle scattering image. “Visibility” refers to sharpness.
  • the lattice position adjusting mechanism 14 is provided on each of the first lattice G1 and the second lattice G2. As shown in FIG. 2, the grating position adjusting mechanism 14 rotates the grating G in the X direction, the Y direction, the Z direction, the rotation direction Rz around the Z direction, the rotation direction Rx around the X direction, and the rotation around the Y direction. It is configured to be movable in the direction Ry.
  • the lattice position adjustment mechanism 14 includes an X-direction translation mechanism 14a, a Z-direction translation mechanism 14b, a Y-direction translation mechanism 14c, a translation mechanism connection section 14d, a stage support driving section 14e, and a stage support section. 14f, a stage driving unit 14g, and a stage 14h.
  • the rotation direction Rx and the rotation direction Ry are examples of the “first rotation direction” and the “second rotation direction” in the claims, respectively.
  • the X-direction translation mechanism 14a, the Z-direction translation mechanism 14b, and the Y-direction translation mechanism 14c are configured to be movable in the X, Z, and Y directions, respectively.
  • the X-direction translation mechanism 14a, the Z-direction translation mechanism 14b, and the Y-direction translation mechanism 14c include, for example, a stepping motor.
  • the lattice position adjusting mechanism 14 moves the lattice G in the X direction, the Z direction, and the Y direction by the operations of the X direction linear moving mechanism 14a, the Z direction linear moving mechanism 14b, and the Y direction linear moving mechanism 14c, respectively. It is configured.
  • the stage support 14f supports the stage 14h for mounting (or holding) the grid G from the Z2 direction.
  • the stage drive unit 14g is configured to reciprocate the stage 14h in the X direction.
  • the stage 14h has a bottom portion formed in a convex curved shape toward the stage support portion 14f, and is configured to rotate in the rotation direction Ry by reciprocating in the X direction.
  • the stage support driving unit 14e is configured to reciprocate the stage support 14f in the Y direction.
  • the linear motion mechanism connecting portion 14d is provided on the X direction linear motion mechanism 14a so as to be rotatable in the rotation direction Rz.
  • the stage support portion 14f has a bottom formed in a convex curved shape toward the linear motion mechanism connection portion 14d, and is configured to rotate in the rotation direction Rx by being reciprocated in the Y direction.
  • the grid position adjusting mechanism 14 may have a mechanism for holding the grid G, such as a chuck mechanism or a hand mechanism, for example.
  • the adjusting method of the grating G is such that the adjusting light source 21 disposed between the first grating G1 and the second grating G2 is moved to the vicinity of the adjusting light source 21.
  • a step of irradiating the adjustment light L toward the second grating G2 via the slit 22a arranged so that the relative position with respect to the light source 21 is fixed is provided.
  • the method of adjusting the grating G includes the first reflection adjusting light L1 reflected by the second grating G2, and the second reflection adjusting light L2 reflected by the first grating G1.
  • the slit 22a is an example of the “opening” in the claims.
  • the slit 22a is arranged so as to extend in the X direction when a step of adjusting the displacement in the rotation direction Rx is performed.
  • the step of irradiating the adjustment light L when the step of adjusting the displacement in the rotation direction Rx is performed, the step of tilting in the X direction with respect to the light incident surface 22b of the shielding member 22 in which the slit 22a is formed. Irradiating the adjustment light L in the set direction.
  • the slit 22a is arranged to extend in the Y direction when a step of adjusting the displacement in the rotation direction Ry is performed.
  • the step of irradiating the adjustment light L is performed in a direction inclined in the Y direction with respect to the light incident surface 22b of the member in which the slit 22a is formed, when the step of adjusting the displacement in the rotation direction Ry is performed. And a step of irradiating the light L for adjustment.
  • the shielding member 22 is an example of the “member in which the slit is formed” in the claims.
  • the step of adjusting the displacement includes adjusting the displacement of the second grating G2 and the slit 22a so that the first reflection adjusting light L1 passes through the slit 22a. Including. Further, in the step of adjusting the displacement, after performing the step of adjusting the displacement so that the first reflection adjusting light L1 passes through the slit 22a, the second reflection adjusting light L2 passes through the slit 22a. As described above, the method includes the step of adjusting the displacement between the first grating G1 and the second grating G2.
  • the step of adjusting the displacement is performed in such a manner that the first reflection adjusting light L1 and the second reflection adjusting light L2 both pass through the slit 22a in the rotation direction Ry.
  • a step of adjusting the displacement from G2 is included.
  • the step of adjusting the displacement is performed after the step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Ry, and then the adjusting light source 21 and the slit 22a. Is rotated approximately 90 degrees around the Z direction, the first grating G1 in the rotation direction Rx and the first grating G1 in the rotation direction Rx so that the first reflection adjustment light L1 and the second reflection adjustment light L2 both pass through the slit 22a.
  • the method includes a step of adjusting a positional deviation from the second grating G2.
  • an adjustment unit 20 for adjusting the displacement between the first grating G1 and the second grating G2 is provided between the first grating G1 and the second grating G2. Be placed.
  • the adjustment unit 20 includes an adjustment light source 21 and a shielding member 22.
  • the adjustment light source 21 is configured to emit the adjustment light L.
  • the adjustment light L is laser light and visible light.
  • the adjustment light source 21 is a laser pointer.
  • the laser diameter is, for example, 5 mm or less.
  • the shielding member 22 has a slit 22a formed at the center. As shown in FIG. 6, the width W2 of the slit 22a is set to be equal to or larger than the spot diameter W1 of the adjustment light L.
  • the shielding member 22 is made of, for example, an opaque plate.
  • the adjustment unit 20 uses the first grating G1 and the second grating G2 in the step of irradiating the adjustment light L and the step of adjusting the displacement. It is located at the center between the two.
  • the adjustment unit 20 is adjusted so that the light incident surface 22b of the shielding member 22 in which the slit 22a is formed is oriented in the Z direction. Be placed. That is, the adjustment unit 20 is arranged so that the slit 22a extends substantially in the Y direction.
  • the adjustment light L emitted from the adjustment light source 21 travels in a direction inclined at an inclination angle ⁇ with respect to a direction (Z direction) orthogonal to the light incident surface 22b when viewed from the X direction.
  • FIG. 3 illustrates an example in which the adjustment light L (L0) emitted from the adjustment light source 21 is emitted in a direction inclined at an inclination angle ⁇ toward the Z1 side with respect to the Z direction.
  • the adjustment light L0 is irradiated on the Z2 side. That is, the adjustment light L0 is incident on the surface G2c (see FIG. 1) of the second grating G2 on the X-ray tube 11 side (Z1 side) in the direction inclined to the Z2 side with respect to the Z direction when viewed from the X direction. Therefore, the first reflection adjusting light L1 reflected by the second grating G2 is reflected in a direction inclined toward the Z1 side with respect to the Z direction. When viewed from the X direction, the first reflection adjusting light L1 is directed to the surface G1d (see FIG.
  • the surface G1d of the first grating G1 on the detecting unit 12 side (Z2 side) and the surface G2c of the second grating G2 on the X-ray tube 11 side (Z1 side) are laser beams. It is made of a material that easily reflects light.
  • a thin film of Al or the like may be deposited in advance.
  • a grating pattern is formed on the X-ray tube 11 side (Z1 side) of the second grating G2. That is, a grating pattern is formed on the surface G2c of the second grating G2 on the X-ray tube 11 side (Z1 side) where the first reflection adjusting light L1 is reflected.
  • the light is diffracted by the lattice pattern to generate a plurality of lights. Since no grating pattern is formed on the detection unit 12 side (Z2 side) of the second grating G2, light diffraction by the grating pattern does not occur in the second reflection adjusting light L2.
  • the step of adjusting the displacement is performed by the first reflection adjusting light L1 having the highest intensity among the plurality of first reflection adjusting lights L1 generated by being diffracted by the second grating G2. And adjusting the positional deviation using the method.
  • the first reflection adjustment light L1 having the highest intensity is the first reflection adjustment light L1 (so-called zero-order diffracted light) having a reflection angle equal to the incident angle of the adjustment light L0. In the drawing, only the 0th-order diffracted light of the first reflection adjusting light L1 is shown.
  • the first grating G1 and the second grating G2 are viewed from the Y direction. It is in a non-parallel state. Further, the shielding member 22 disposed between the first grating G1 and the second grating G2, and the first grating G1 and the second grating G2 are in a non-parallel state when viewed from the Y direction. That is, the adjustment light L0 is incident obliquely with respect to the direction orthogonal to the surface G2c (see FIG.
  • the first reflection adjustment light L1 is reflected in a direction different from the direction in which the adjustment light L0 is incident. Therefore, the first reflection adjusting light L1 does not pass through the slit 22a, and is blocked by a portion of the shielding member 22 where the slit 22a is not formed.
  • the shielding member 22 (adjustment unit 20) is rotated at an angle Ry in the rotation direction Ry such that the shielding member 22 and the second lattice G2 are substantially parallel when viewed from the Y direction.
  • the shielding member 22 and the second grating G2 are in a substantially parallel state, so that the first reflection adjustment light L1 is reflected in substantially the same direction as the direction in which the adjustment light L0 is incident. Is done.
  • the first reflection adjusting light L1 passes through the slit 22a and is incident on the detection unit 12 side (Z2 side) of the first grating G1.
  • the rotation of the adjustment unit 20 is performed while visually observing the first reflection adjustment light L1 such that the first reflection adjustment light L1 passes through the slit 22a.
  • the rotation of the adjustment unit 20 and the rotation of the first grating G1 described later are performed by the user operating the grating position adjustment mechanism 14. Accordingly, unlike the case where the control unit 13a or the like operates the lattice position adjustment mechanism 14 by making a determination by itself so that the first reflection adjustment light L1 passes through the slit 22a, the load on the control unit 13a is reduced. Can be reduced.
  • the above process causes the shielding member 22 and the second grating G2 to become substantially parallel.
  • the first grating G1, the shielding member 22, and the second grating G2 are in a non-parallel state when viewed from the Y direction. That is, the first reflection adjusting light L1 is incident obliquely with respect to a direction orthogonal to the surface G1d (see FIG. 1) of the first grating G1 on the detection unit 12 side (Z2 side) when viewed from the Y direction. Therefore, the second reflection adjusting light L2 is reflected in a direction different from the direction in which the first reflection adjusting light L1 is incident. Therefore, the second reflection adjusting light L2 does not pass through the slit 22a, and is blocked by a portion of the shielding member 22 where the slit 22a is not formed.
  • the first grating G1 is rotated in the rotation direction Ry so that the first grating G1 is substantially parallel to the shielding member 22 and the second grating G2 when viewed from the Y direction.
  • the first grating G1, the shielding member 22, and the second grating G2 are substantially parallel to each other when viewed from the Y direction, so that the first reflection adjusting light L1 is incident on the second reflection adjusting light L2.
  • the light is reflected in substantially the same direction as the direction in which it was performed. Therefore, the second reflection adjusting light L2 passes through the slit 22a and is incident on the X-ray tube 11 side (Z1 side) of the second grating G2.
  • the rotation of the first grating G1 is performed while visually observing the second reflection adjusting light L2 so that the second reflection adjusting light L2 passes through the slit 22a.
  • the above steps (the step of rotating the adjustment unit 20 so that the first reflection adjustment light L1 passes through the slit 22a, and the step of rotating the adjustment reflection light L2 through the slit 22a)
  • the first grating G1 is rotated such that the first reflection adjusting light L1 and the second reflection adjusting light L2 both pass through the slit 22a when viewed from the Y direction.
  • the displacement between G1 and the second grating G2 is adjusted.
  • the first grating G1 and the second grating G2 become substantially parallel when viewed from the Y direction (that is, the displacement of the first grating G1 and the second grating G2 in the rotation direction Ry is suppressed).
  • the adjustment unit 20 is rotated by about 90 degrees around the Z direction.
  • a process similar to the above-described adjustment of the positional deviation between the first grating G1 and the second grating G2 in the rotation direction Ry is also performed in the rotation direction Rx. That is, when viewed from the X direction, the positions of the first grating G1 and the second grating G2 are such that the first reflection adjusting light L1 and the second reflection adjusting light L2 both pass through the slit 22a. Adjust the gap.
  • the first grating G1 and the second grating G2 become substantially parallel when viewed from the X direction (that is, the displacement of the first grating G1 and the second grating G2 in the rotation direction Rx is suppressed).
  • the displacement between the first grating G1 and the second grating G2 in the rotation direction Rx and the rotation direction Ry is suppressed, and the occurrence of unintended moire fringes is suppressed.
  • the first reflection adjusting light L1 reflected by the second grating G2 and the first reflection adjusting light L1 are reflected by the first grating G1.
  • the method includes a step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Rx and the rotation direction Ry such that the second reflection adjusting light L2 passes through the slit 22a.
  • the first grating G1 and the second grating G2 in the rotation direction Rx and the rotation direction Ry are such that both the first reflection adjustment light L1 and the second reflection adjustment light L2 pass through the slit 22a.
  • the positional deviation of the first lattice G1 and the second lattice G2 in the rotational direction Rx and the rotational direction Ry can be suppressed.
  • the state in which the light passes through the slit 22a and the state in which the light does not pass can be easily visually discriminated, so that the parallelism in the in-plane direction orthogonal to the X-ray irradiation axis direction (Z direction) can be easily determined.
  • Z direction X-ray irradiation axis direction
  • the adjustment light L is laser light. Accordingly, if a laser beam having high directivity is used, it is possible to prevent the first grating G1 and the second grating G2 from passing through the slit 22a when the first grating G1 and the second grating G2 are misaligned. In addition, it is possible to adjust the displacement between the first grating G1 and the second grating G2.
  • the adjustment light L is visible light. This makes it possible to adjust the displacement between the first grating G1 and the second grating G2 while visually observing the positions of the first reflection adjusting light L1 and the second reflection adjusting light L2.
  • the X-ray irradiation axis direction (Z direction) can be adjusted without using a photodetector or the like for detecting light in a wavelength band other than visible light as in the case of using light in a wavelength band other than visible light.
  • the parallelism in the orthogonal in-plane direction can be adjusted more easily.
  • the slit 22a is arranged to extend in the X direction, and the displacement in the rotation direction Ry is adjusted.
  • the step is performed, it is arranged to extend in the Y direction. Accordingly, when the step of adjusting the displacement in the rotation direction Rx is performed, the first reflection adjustment light L1 and the second reflection adjustment light L2 are both shifted in the X direction, and are both shifted in the X direction. It is possible to adjust the displacement between the first grating G1 and the second grating G2 in the rotation direction Rx so as to pass through the slit 22a arranged so as to extend in the vertical direction.
  • the first reflection adjustment light L1 and the second reflection adjustment light L2 are shifted in the Y direction, and are both shifted in the Y direction.
  • the displacement between the first grating G1 and the second grating G2 in the rotation direction Ry can be adjusted so as to pass through the slit 22a arranged to extend.
  • the step of irradiating the adjustment light L is a step of adjusting the displacement in the rotation direction Rx
  • the light of the shielding member 22 in which the slit 22a is formed is used.
  • the shielding member 22 having the slit 22a formed therein And irradiating the light incident surface 22b with the adjustment light L in a direction inclined in the Y direction.
  • the adjustment light L is directed in the direction inclined in the X direction with respect to the light incident surface 22b of the shielding member 22 in which the slit 22a is formed. Since the irradiation is performed, the first reflection adjusting light L1 and the second reflection adjusting light L2 can be made incident on the shielding member 22 in which the slit 22a is formed in a state where they are shifted from each other in the X direction. As a result, when the step of adjusting the displacement in the rotation direction Rx is performed, the first reflection adjustment light L1 and the second reflection adjustment light L2 are surely displaced from each other in the X direction.
  • the adjustment light L is irradiated in the direction inclined in the Y direction onto the light incident surface 22b of the shielding member 22 in which the slit 22a is formed. Therefore, the first reflection adjusting light L1 and the second reflection adjusting light L2 can be surely made incident on the shielding member 22 in which the slit 22a is formed in a state shifted from each other in the Y direction. As a result, when the step of adjusting the displacement in the rotation direction Ry is performed, the first reflection adjustment light L1 and the second reflection adjustment light L2 are surely displaced from each other in the Y direction. It can be in a state of passing through the slit 22a arranged to extend in the Y direction.
  • the step of adjusting the position shift adjusts the position shift between the second grating G2 and the slit 22a such that the first reflection adjusting light L1 passes through the slit 22a. And a step of adjusting the displacement so that the first reflection adjusting light L1 passes through the slit 22a, and then the first grating is adjusted so that the second reflection adjusting light L2 passes through the slit 22a. Adjusting the misalignment between G1 and the second grating G2.
  • the first reflection adjusting light L1 is made to pass through the slit 22a, and then the first grating G1 and the second grating
  • the step of adjusting the positional deviation from G2 it is possible to ensure that the first reflection adjustment light L1 and the second reflection adjustment light L2 both pass through the slit 22a.
  • the step of adjusting the displacement is performed in the rotational direction Ry such that both the first reflection adjusting light L1 and the second reflection adjusting light L2 pass through the slit 22a.
  • the adjustment light source After performing the steps of adjusting the displacement between the first grating G1 and the second grating G2 and adjusting the displacement between the first grating G1 and the second grating G2 in the rotational direction Ry, the adjustment light source The first reflection adjustment light L1 and the second reflection adjustment light L2 both pass through the slit 22a in a state where the first reflection adjustment light L1 and the second reflection adjustment light L2 are rotated by approximately 90 degrees around the X-ray irradiation axis direction (Z direction).
  • the step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Rx and the step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Ry are: It can be performed simply by changing the directions of the adjustment light source 21 and the slit 22a between the substantially X direction and the substantially Y direction. As a result, the common adjustment light source 21 and the slit 22a can adjust the displacement in both the rotation direction Rx and the rotation direction Ry, so that the configuration for adjusting the displacement can be simplified.
  • the slit 22a is formed by the first grating G1 and the second grating G in the irradiation axis direction (Z direction). It is arranged at the center between G2.
  • the distance between the first reflection adjusting light L1 and the slit 22a and the distance between the second reflection adjusting light L2 and the slit 22a are relatively large, so that the first grating G1 and the second grating G2 are misaligned.
  • the reflected light (the first reflection adjusting light L1 or the second reflection adjusting light L2) passes through the slit 22a, and the first grating G1 and the second grating G2 Can be prevented from being unable to appropriately adjust the positional deviation of the image.
  • a grating pattern is formed on the surface G2c where the first reflection adjusting light L1 is reflected, and the grating is diffracted by the grating pattern.
  • the method includes a step of adjusting the displacement using the first reflection adjusting light L1 having the highest intensity among the plurality of generated first reflection adjusting lights L1. Accordingly, even when a plurality of first reflection adjusting lights L1 are generated by the lattice pattern formed on the surface G2c on which the first reflection adjusting light L1 is reflected, the first reflection having the highest intensity (clearness). By using the adjustment light L1, the displacement between the first grating G1 and the second grating G2 can be easily adjusted.
  • the width W2 of the slit 22a is set to be equal to or larger than the spot diameter W1 of the adjustment light L. Accordingly, it is possible to prevent the adjustment light L emitted from the adjustment light source 21 from being blocked by a portion other than the slit 22a of the shielding member 22 in which the slit 22a is formed. As a result, the intensity of the first reflection adjusting light L1 and the second reflection adjusting light L2 is prevented from being reduced (darkened), so that the first reflection adjusting light L1 and the second reflection adjusting light L2 are reduced. It can be easily determined whether or not the sheet has passed through the slit 22a.
  • the adjustment light L was laser light
  • the present invention is not limited to this.
  • a type of light other than laser light may be used as the adjustment light L. Note that when a light source that emits non-directional light is used, it is preferable that the non-directional light be changed to directional light and irradiated by a member for condensing the light. .
  • the adjustment light L was visible light
  • the present invention is not limited to this.
  • the adjustment light L may be configured to use light in a wavelength band other than visible light.
  • a configuration may be adopted in which a photodetector or the like for detecting light in a wavelength band other than visible light is used.
  • the control unit may be configured to automatically rotate the adjustment unit 20 and the first grating G1 based on the detection result of the photodetector.
  • the shielding member 22 (adjustment unit 20) is rotated by the angle Ry (S) in the rotation direction Ry such that the shielding member 22 and the second grid G2 are substantially parallel to each other.
  • the present invention is not limited to this.
  • the second grating G2 is rotated by the angle Ry (G2) in the rotation direction Ry such that the shielding member 22 and the second grating G2 are substantially parallel. It may be configured as follows.
  • the present invention is not limited to this.
  • the shielding member 22 and the second grating G2 are rotated by a predetermined angle in the rotation direction Ry such that the first grating G1, the shielding member 22, and the second grating G2 are in a substantially parallel state. You may comprise.
  • the present invention is not limited to this.
  • a plurality of rectangular holes may be applied as the “opening” of the present invention, as in a shielding member 222 according to a modification shown in FIG.
  • the shielding member 222 has an opening 222a in which a plurality of rectangular holes are arranged in a line.
  • the slit 22a is formed with the first grating G1 and the second grating G2 in the X-ray irradiation axis direction (Z direction).
  • the slit 22a is provided between the first grating G1 and the second grating G2 in the X-ray irradiation axis direction (Z direction).
  • You may comprise so that it may be arrange
  • the position of the slit 22a between the first grating G1 and the second grating G2 may be changed in the step of adjusting the displacement between the first grating G1 and the second grating G2.
  • the positional deviation between the first grating G1 and the second grating G2 is adjusted so that the first reflection adjusting light L1 and the second reflection adjusting light L2 both pass through the slit 22a.
  • the present invention is not limited to this.
  • the first reflection adjusting light L1, the second reflection adjusting light L2, and the second reflection adjusting light L2 are formed by the first grating G1 and the second grating G1.
  • the position shift may be adjusted based on the third reflection adjusting light L3 that is multiple-reflected by G2.
  • the first reflection adjusting light L1 reflected by the second grating G2 and the second reflection adjusting light L2 where the first reflection adjusting light L1 is reflected by the first grating G1 are:
  • the present invention is not limited to this.
  • the configuration may be such that the positional deviation between the first grating G1 and the second grating G2 is adjusted so that the two-reflection adjusting light L2 passes through the slit 22a.
  • an example in which the positional deviation between the first lattice G1 and the second lattice G2 in the rotational direction Rx is adjusted after the positional deviation between the first lattice G1 and the second lattice G2 in the rotational direction Ry is adjusted.
  • the present invention is not limited to this.
  • the positional deviation between the first grating G1 and the second lattice G2 in the rotation direction Rx is adjusted, the positional deviation between the first grating G1 and the second lattice G2 in the rotational direction Ry is adjusted. You may. Further, it may be configured such that only the displacement between the first grating G1 and the second grating G2 in any one of the rotation direction Rx and the rotation direction Ry is adjusted.
  • the adjustment method of the grating G is used in the X-ray phase imaging apparatus 100 in which the grating pattern is provided on the X-ray tube 11 side (Z1 side) of the grating G has been described.
  • the present invention is not limited to this.
  • the adjustment method of the grating G may be used in the X-ray phase imaging apparatus 100 in which the grating pattern is provided on the detection unit 12 side (Z2 side) of the grating G.
  • the slit 22a is disposed so as to extend along the Y direction in the step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Ry.
  • the present invention is not limited to this.
  • the slit 22a in the step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Ry, the slit 22a may be arranged along a direction inclined with respect to the Y direction. In this case, the positions of the first grating G1 and the second grating G2 in the rotation direction Rx need to be aligned.
  • the plurality of gratings G are arranged between the X-ray tube 11 and the first grating G1, and the third grating G for increasing the coherence of the X-ray emitted from the X-ray tube 11 is provided.
  • G3 is included
  • the present invention is not limited to this. In the present invention, the third grating G3 may not be included.
  • the present invention is not limited to this.
  • an absorption grating may be used instead of the phase grating.
  • a region (a non-interferometer) where a stripe pattern simply occurs due to optical conditions such as a distance, and a region where a self-image due to the Talbot effect occurs (an interferometer) are generated.
  • X-ray tube (X-ray source) 12 Detector 21 Light source for adjustment 22 Shielding member (member with slit formed) 22a slit (opening) 22b Light incident surface (of a member having a slit formed therein) 100 X-ray phase imaging device G1 First grating G2 Second grating G3 Third grating L Adjusting light L1 First reflection adjusting light L2 Second reflection adjusting light L3 Third reflection adjustment light W1 Spot diameter (of adjustment light) W2 (of opening)

Abstract

This grating adjustment method comprises a step for adjusting the positional deviation between a first grating (G1) and a second grating (G2) in rotation direction (Rx) and rotation direction (Ry) such that first reflection adjustment light (L1) reflected by the second grating (G2) and second reflection adjustment light (L2) resulting from the reflection of the first reflection adjustment light (L1) by the first grating (G1) both pass through an opening part (22a).

Description

格子の調整方法How to adjust the grid
 本発明は、格子の調整方法に関し、特に、吸収像、位相微分像および暗視野像のうちの少なくとも1つを含む位相コントラスト画像を生成するX線位相イメージング装置に用いられる格子の調整方法に関する。 The present invention relates to a method for adjusting a grating, and particularly to a method for adjusting a grating used in an X-ray phase imaging apparatus that generates a phase contrast image including at least one of an absorption image, a phase differential image, and a dark field image.
 従来、吸収像、位相微分像および暗視野像のうちの少なくとも1つを含む位相コントラスト画像を生成するX線位相イメージング装置に用いられる格子の調整方法が知られている。このようなX線位相イメージング装置は、たとえば、国際公開第2018/016369号に開示されている。 Conventionally, there has been known a method of adjusting a grating used in an X-ray phase imaging apparatus that generates a phase contrast image including at least one of an absorption image, a phase differential image, and a dark field image. Such an X-ray phase imaging device is disclosed, for example, in WO2018 / 016369.
 国際公開第2018/016369号には、X線源と、X線源からX線が照射されて、自己像を形成するための第1格子と、第1格子を通過したX線が照射される第2格子と、第2格子を通過したX線を検出する検出部と、を備えたX線位相イメージング装置が開示されている。国際公開第2018/016369号のX線位相イメージング装置では、検出部で検出されたX線の強度信号に基づいて、吸収像、位相微分像および暗視野像を含む位相コントラスト画像が生成される。 In WO2018 / 016369, an X-ray source, an X-ray emitted from the X-ray source, a first grating for forming a self-image, and an X-ray passing through the first grating are emitted. An X-ray phase imaging apparatus including a second grating and a detector that detects an X-ray that has passed through the second grating is disclosed. In the X-ray phase imaging apparatus disclosed in WO2018 / 016369, a phase contrast image including an absorption image, a phase differential image, and a dark-field image is generated based on an X-ray intensity signal detected by a detection unit.
 国際公開第2018/016369号のX線位相イメージング装置では、第1格子または第2格子の位置を調整する調整機構と、検出部により検出されたモアレ縞に基づいて、調整機構により第1格子の位置ずれまたは第2格子の位置ずれを調整する制御部と、を備えている。これにより、国際公開第2018/016369号のX線位相イメージング装置では、意図しないモアレ縞が発生した場合に、意図しないモアレ縞をなくすように第1格子の位置ずれまたは第2格子の位置ずれ(第1格子と第2格子と位置ずれ)を調整することによって、意図しないモアレ縞に起因した撮像画像の画質の低下を抑制している。なお、国際公開第2018/016369号のX線位相イメージング装置では、以下の4つの方向における第1格子の位置ずれまたは第2格子の位置ずれを調整するように構成されている。4つの方向とは、X線の照射軸方向、X線の照射軸方向回りの回転方向、X線の照射軸方向と直交する面内方向のうちの、第1直交方向(第1方向)回りの回転方向(第1回転方向)、および、面内方向のうちの第1直交方向と直交する第2直交方向(第2方向)回りの回転方向(第2回転方向)である。 In the X-ray phase imaging apparatus disclosed in WO2018 / 016369, an adjusting mechanism for adjusting the position of the first grating or the second grating, and an adjusting mechanism for adjusting the position of the first grating based on the moiré fringe detected by the detection unit. A control unit for adjusting the displacement or the displacement of the second grating. Thereby, in the X-ray phase imaging apparatus of WO2018 / 016369, when an unintended moiré fringe is generated, the first lattice or the second lattice is misaligned so as to eliminate the unintentional moiré fringe. By adjusting the first grid and the second grid (displacement between the first grid and the second grid), it is possible to prevent the image quality of the captured image from deteriorating due to unintended moire fringes. The X-ray phase imaging apparatus disclosed in WO2018 / 016369 is configured to adjust the displacement of the first grating or the displacement of the second grating in the following four directions. The four directions are around the first orthogonal direction (first direction) of the X-ray irradiation axis direction, the rotation direction around the X-ray irradiation axis direction, and the in-plane direction orthogonal to the X-ray irradiation axis direction. And a rotation direction (second rotation direction) about a second orthogonal direction (second direction) orthogonal to the first orthogonal direction in the in-plane direction.
国際公開第2018/016369号International Publication No. WO2018 / 016369
 ここで、国際公開第2018/016369号には記載されていないが、国際公開第2018/016369号のような従来のX線位相イメージング装置では、4つの方向のうち、第1回転方向および第2回転方向における格子(第1格子または第2格子)の位置ずれは、意図しないモアレ縞の発生に対して、比較的影響が少ないことが知られている。したがって、第1回転方向および第2回転方向における格子の位置ずれ(X線の照射軸方向と直交する面内方向における第1格子と第2格子との平行度)を、たとえば、装置の出荷前に一度だけ調整して固定すれば、調整後に第1回転方向および第2回転方向において格子が多少位置ずれしても意図しないモアレ縞が発生しにくい。この場合、装置の使用時には、意図しないモアレ縞の発生を抑制するための第1回転方向および第2回転方向における格子の位置ずれの調整を省略することが可能であると考えられる。 Here, although not described in WO2018 / 016369, in a conventional X-ray phase imaging apparatus such as WO2018 / 016369, the first rotation direction and the second rotation direction among the four directions are used. It is known that the displacement of the grating (the first grating or the second grating) in the rotation direction has relatively little effect on the occurrence of unintended moire fringes. Therefore, the displacement of the grating in the first rotation direction and the second rotation direction (parallelism between the first grating and the second grating in the in-plane direction orthogonal to the X-ray irradiation axis direction) may be reduced, for example, before the device is shipped. If the grid is adjusted once and fixed, the moire fringes are less likely to occur even if the grating is slightly displaced in the first rotation direction and the second rotation direction after the adjustment. In this case, when the apparatus is used, it is considered possible to omit the adjustment of the displacement of the grating in the first rotation direction and the second rotation direction for suppressing the generation of unintended moire fringes.
 そこで、第1回転方向および第2回転方向における格子の位置ずれを、検出部により検出されたモアレ縞に基づいて調整する場合のようにモアレ縞を取得するための撮像を行うことなく、装置の出荷前に一度だけ調整するための簡易な方法が望まれている。 Therefore, without performing imaging for acquiring moiré fringes as in the case of adjusting the misregistration of the grating in the first rotational direction and the second rotational direction based on the moiré fringes detected by the detection unit, the apparatus can be used. A simple method for adjusting only once before shipment is desired.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、X線位相イメージング装置において、X線の照射軸方向と直交する面内方向における平行度を簡易に調整することが可能な格子の調整方法を提供することである。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an X-ray phase imaging apparatus which has a parallelism in an in-plane direction orthogonal to the X-ray irradiation axis direction. Is to provide a grid adjustment method that can easily adjust the grid.
 上記目的を達成するために、この発明の一の局面における格子の調整方法は、X線源と検出部との間に配置され、X線源から照射されるX線により自己像を形成するための第1格子と、第1格子の自己像と干渉させるための第2格子と、を含むとともに、検出部で検出されたX線の検出信号に基づいて、吸収像、位相微分像および暗視野像のうちの少なくとも1つを含む位相コントラスト画像を生成するX線位相イメージング装置に用いられる格子の調整方法において、第1格子と第2格子との間に配置された調整用光源から、調整用光源の近傍に調整用光源との相対位置が固定されるように配置された開口部を介して、第1格子または第2格子のいずれか一方に向かって調整用光を照射する工程と、第1格子または第2格子のいずれか一方により反射された第1反射調整用光と、第1反射調整用光が第1格子または第2格子のいずれか他方により反射された第2反射調整用光とが、ともに開口部を通過するように、X線源と検出部とを結ぶX線の照射軸方向と直交する面内方向のうちの第1方向回りの第1回転方向、および、面内方向のうちの第1方向と直交する第2方向回りの第2回転方向のうちの少なくとも一方における、第1格子と第2格子との位置ずれを調整する工程と、を備える。 In order to achieve the above object, a method for adjusting a grating according to one aspect of the present invention is arranged between an X-ray source and a detection unit to form a self-image by X-rays emitted from the X-ray source. , A second grating for causing interference with the self-image of the first grating, and an absorption image, a phase differential image, and a dark field based on an X-ray detection signal detected by the detection unit. In a method of adjusting a grating used in an X-ray phase imaging apparatus that generates a phase contrast image including at least one of images, an adjusting light source arranged between a first grating and a second grating is used for adjusting. Irradiating the adjustment light toward one of the first grating and the second grating through an opening arranged so that the relative position to the adjustment light source is fixed near the light source; Either the first grid or the second grid The first reflection adjusting light reflected by the first reflection adjusting light and the second reflection adjusting light reflected by the first reflection adjusting light or the second grating are both passed through the opening. A first rotation direction about a first direction in an in-plane direction orthogonal to an X-ray irradiation axis direction connecting the X-ray source and the detection unit, and a first direction in the in-plane direction. Adjusting the misalignment between the first grating and the second grating in at least one of the second rotation directions about the second direction.
 この発明の一の局面による格子の調整方法では、上記のように、第1格子または第2格子のいずれか一方により反射された第1反射調整用光と、第1反射調整用光が第1格子または第2格子のいずれか他方により反射された第2反射調整用光とが、ともに開口部を通過するように、第1回転方向(X線の照射軸方向と直交する面内方向のうちの第1方向回りの回転方向)および第2回転方向(上記面内方向のうちの第1方向と直交する第2方向回りの回転方向)における、第1格子と第2格子との位置ずれを調整する工程を備える。ここで、第1方向から見て、第1反射調整用光と第2反射調整用光とが、ともに開口部を通過する状態となった場合、第1方向から見て、第1格子と第2格子とが略平行となる(すなわち、第1回転方向における第1格子と第2格子との位置ずれが抑制される)。また、第2方向から見て、第1反射調整用光と第2反射調整用光とが、ともに開口部を通過する状態となった場合、第2方向から見て、第1格子と第2格子とが略平行となる(すなわち、第2回転方向における第1格子と第2格子との位置ずれが抑制される)。したがって、第1反射調整用光および第2反射調整用光が、ともに開口部を通過する状態となるように、第1回転方向および第2回転方向における第1格子と第2格子との位置ずれを調整することにより、第1回転方向および第2回転方向における第1格子と第2格子との位置ずれを抑制することができる。その結果、光が開口部を通過した状態と通過しない状態とは、目視や比較的簡素な構成の光検出器によって容易に判別することができるので、X線の照射軸方向と直交する面内方向における平行度を簡易に調整することができる。また、光が開口部を通過したか否かにより格子の位置ずれを調整するので、格子を水準器や角度計を使用して調整する必要がないとともに、モアレ縞を取得するための撮像を行う必要がない。 In the grating adjustment method according to one aspect of the present invention, as described above, the first reflection adjusting light reflected by one of the first grating and the second grating and the first reflection adjusting light are the first reflection adjusting light. The first rotation direction (in the in-plane direction orthogonal to the X-ray irradiation axis direction) so that the second reflection adjustment light reflected by either the grating or the second grating passes through the opening. Of the first lattice and the second lattice in the second rotational direction (the rotational direction around the second direction orthogonal to the first direction among the in-plane directions). Adjusting step. Here, when the first reflection adjustment light and the second reflection adjustment light both pass through the opening when viewed from the first direction, the first grating and the second reflection adjustment light are viewed from the first direction. The two gratings are substantially parallel (that is, the displacement between the first grating and the second grating in the first rotation direction is suppressed). Further, when the first reflection adjusting light and the second reflection adjusting light both pass through the opening when viewed from the second direction, the first grating and the second grating may be viewed from the second direction. The grid is substantially parallel (that is, the displacement between the first grid and the second grid in the second rotation direction is suppressed). Therefore, the misalignment between the first grating and the second grating in the first rotation direction and the second rotation direction is such that both the first reflection adjustment light and the second reflection adjustment light pass through the opening. Is adjusted, it is possible to suppress the displacement between the first grating and the second grating in the first rotation direction and the second rotation direction. As a result, the state in which light passes through the opening and the state in which light does not pass can be easily discriminated visually or by a photodetector having a relatively simple configuration. The degree of parallelism in the direction can be easily adjusted. In addition, since the displacement of the grating is adjusted depending on whether or not the light has passed through the opening, it is not necessary to adjust the grating using a level or a goniometer, and imaging is performed to obtain moire fringes. No need.
 上記一の局面による格子の調整方法において、好ましくは、調整用光は、レーザ光を含む。ここで、レーザ光は、高い指向性を有する(ほとんど広がらずに直線的に進む)ので、第1格子と第2格子とが位置ずれしている場合には、第1反射調整用光または第2反射調整用光は開口部を通過しない。すなわち、指向性の低い光では、第1格子と第2格子とが位置ずれしている場合でも開口部を通過してしまう場合がある。したがって、上記のようにレーザ光を用いれば、第1格子と第2格子とが位置ずれしている場合に開口部を通過してしまうのを抑制することができるので、精度よく、第1格子と第2格子との位置ずれを調整することができる。 に お い て In the method of adjusting a grating according to the one aspect, preferably, the adjustment light includes a laser beam. Here, since the laser beam has high directivity (travels linearly without spreading), if the first grating and the second grating are misaligned, the first reflection adjusting light or the second (2) The reflection adjusting light does not pass through the opening. That is, light with low directivity may pass through the opening even when the first grating and the second grating are misaligned. Therefore, by using the laser beam as described above, it is possible to suppress the first grating and the second grating from passing through the opening when the first grating and the second grating are misaligned. Misalignment between the second grating and the second grating can be adjusted.
 上記一の局面による格子の調整方法において、好ましくは、調整用光は、可視光を含む。このように構成すれば、第1反射調整用光および第2反射調整用光の位置を目視によって観察しながら、第1格子と第2格子との位置ずれを調整することができる。その結果、可視光以外の波長帯域の光を用いる場合のように可視光以外の波長帯域の光を検出するための光検出器等を用いることなく、X線の照射軸方向と直交する面内方向における平行度をより簡易に調整することができる。 に お い て In the method of adjusting a grating according to the one aspect, preferably, the adjustment light includes visible light. According to this structure, it is possible to adjust the displacement between the first grating and the second grating while visually observing the positions of the first reflection adjusting light and the second reflection adjusting light. As a result, without using a photodetector or the like for detecting light in a wavelength band other than visible light as in the case of using light in a wavelength band other than visible light, an in-plane orthogonal to the X-ray irradiation axis direction is used. The degree of parallelism in the direction can be adjusted more easily.
 上記一の局面による格子の調整方法において、好ましくは、開口部は、スリットを含み、スリットは、第1回転方向における位置ずれを調整する工程が行われる場合には、第1方向に延びるように配置され、第2回転方向における位置ずれを調整する工程が行われる場合には、第2方向に延びるように配置される。ここで、第1回転方向における第1格子と第2格子との位置ずれを調整する工程が行われる場合には、第1反射調整用光と第2反射調整用光とが互いに干渉しないように、第1反射調整用光と第2反射調整用光とが、互いに第1方向にずれた状態で、ともに開口部を通過させるように位置ずれを調整する必要がある。また、第2回転方向における第1格子と第2格子との位置ずれを調整する工程が行われる場合には、第1反射調整用光と第2反射調整用光とが互いに干渉しないように、第1反射調整用光と第2反射調整用光とが、互いに第2方向にずれた状態で、ともに開口部を通過させるように位置ずれを調整する必要がある。したがって、上記のように構成すれば、第1回転方向における位置ずれを調整する工程が行われる場合には、第1反射調整用光および第2反射調整用光が、互いに第1方向にずれた状態で、ともに、第1方向に延びるように配置されたスリットを通過する状態となるように、第1回転方向における第1格子と第2格子との位置ずれを調整することができる。また、第2回転方向における位置ずれを調整する工程が行われる場合には、第1反射調整用光および第2反射調整用光が、互いに第2方向にずれた状態で、ともに、第2方向に延びるように配置されたスリットを通過する状態となるように、第2回転方向における第1格子と第2格子との位置ずれを調整することができる。 In the grid adjusting method according to the one aspect, preferably, the opening includes a slit, and the slit extends in the first direction when the step of adjusting the positional shift in the first rotation direction is performed. In the case where a step of adjusting the positional deviation in the second rotation direction is performed, the liquid crystal display is disposed so as to extend in the second direction. Here, when the step of adjusting the positional deviation between the first grating and the second grating in the first rotation direction is performed, the first reflection adjusting light and the second reflection adjusting light do not interfere with each other. It is necessary to adjust the positional shift so that the first reflection adjustment light and the second reflection adjustment light are both shifted in the first direction and pass through the opening. Further, when the step of adjusting the displacement between the first grating and the second grating in the second rotation direction is performed, the first reflection adjusting light and the second reflection adjusting light do not interfere with each other. It is necessary to adjust the position shift so that the first reflection adjustment light and the second reflection adjustment light are both shifted in the second direction and pass through the opening. Therefore, according to the above configuration, when the step of adjusting the displacement in the first rotation direction is performed, the first reflection adjustment light and the second reflection adjustment light are shifted from each other in the first direction. In this state, it is possible to adjust the misalignment between the first grating and the second grating in the first rotation direction so that both of them pass through a slit arranged to extend in the first direction. In the case where the step of adjusting the displacement in the second rotation direction is performed, the first reflection adjustment light and the second reflection adjustment light are shifted from each other in the second direction in the second direction. It is possible to adjust the displacement between the first grating and the second grating in the second rotation direction so as to pass through a slit arranged so as to extend in the vertical direction.
 この場合、好ましくは、調整用光を照射する工程は、第1回転方向における位置ずれを調整する工程が行われる場合には、スリットが形成された部材の光入射面に対して第1方向に傾斜した方向に調整用光を照射する工程を含み、第2回転方向における位置ずれを調整する工程が行われる場合には、スリットが形成された部材の光入射面に対して第2方向に傾斜した方向に調整用光を照射する工程を含む。このように構成すれば、第1回転方向における位置ずれを調整する工程が行われる場合には、スリットが形成された部材の光入射面に対して、第1方向に傾斜した方向に調整用光を照射するので、第1反射調整用光と第2反射調整用光とを、互いに第1方向にずれた状態で、スリットが形成された部材に入射させることができる。その結果、第1回転方向における位置ずれを調整する工程が行われる場合に、第1反射調整用光および第2反射調整用光が、確実に、互いに第1方向にずれた状態で、ともに、第1方向に延びるように配置されたスリットを通過する状態にすることができる。また、第2回転方向における位置ずれを調整する工程が行われる場合には、スリットが形成された部材の光入射面に対して、第2方向に傾斜した方向に調整用光を照射するので、第1反射調整用光と第2反射調整用光とを、確実に、互いに第2方向にずれた状態で、スリットが形成された部材に入射させることができる。その結果、第2回転方向における位置ずれを調整する工程が行われる場合に、第1反射調整用光および第2反射調整用光が、確実に、互いに第2方向にずれた状態で、ともに、第2方向に延びるように配置されたスリットを通過する状態にすることができる。 In this case, preferably, in the step of irradiating the adjustment light, when the step of adjusting the displacement in the first rotation direction is performed, the step of irradiating the light incident surface of the member with the slit in the first direction is performed. Including a step of irradiating the adjustment light in the inclined direction, and in a case where the step of adjusting the displacement in the second rotation direction is performed, the step of tilting in the second direction with respect to the light incident surface of the member having the slit is performed. Irradiating the adjusting light in the set direction. According to this structure, when the step of adjusting the displacement in the first rotation direction is performed, the adjustment light is inclined in the first direction with respect to the light incident surface of the member having the slit. Therefore, the first reflection adjusting light and the second reflection adjusting light can be made to enter the slit-formed member while being shifted from each other in the first direction. As a result, when the step of adjusting the displacement in the first rotation direction is performed, the first reflection adjustment light and the second reflection adjustment light are surely displaced from each other in the first direction, and It can be in a state of passing through a slit arranged to extend in the first direction. Further, in the case where the step of adjusting the displacement in the second rotation direction is performed, the light incident surface of the member in which the slit is formed is irradiated with the adjustment light in a direction inclined in the second direction. The first reflection adjusting light and the second reflection adjusting light can be surely made incident on the member provided with the slit in a state shifted from each other in the second direction. As a result, when the step of adjusting the displacement in the second rotation direction is performed, the first reflection adjustment light and the second reflection adjustment light are surely displaced from each other in the second direction. It can be in a state of passing through a slit arranged to extend in the second direction.
 上記一の局面による格子の調整方法において、好ましくは、位置ずれを調整する工程は、第1反射調整用光が、開口部を通過するように、第1格子または第2格子のいずれか一方と、開口部との位置ずれを調整する工程と、第1反射調整用光が開口部を通過するように位置ずれを調整する工程を行った後に、第2反射調整用光が、開口部を通過するように、第1格子または第2格子のいずれか他方と、第1格子または第2格子のいずれか一方との位置ずれを調整する工程と、を含む。このように構成すれば、第1格子または第2格子のいずれか一方と、開口部との位置ずれを調整する工程を行うことによって、第1反射調整用光が、開口部を通過する状態にした後に、第1格子または第2格子のいずれか他方と、第1格子または第2格子のいずれか一方との位置ずれを調整する工程を行うことによって、確実に、第1反射調整用光および第2反射調整用光が、ともに開口部を通過する状態にすることができる。 In the grating adjustment method according to the one aspect, preferably, the step of adjusting the displacement includes the first reflection adjustment light and one of the first grating and the second grating so that the first reflection adjustment light passes through the opening. After performing the step of adjusting the positional deviation from the opening and the step of adjusting the positional deviation so that the first reflection adjusting light passes through the opening, the second reflection adjusting light passes through the opening. Adjusting the misalignment between one of the first and second gratings and one of the first and second gratings. According to this structure, by performing the step of adjusting the positional deviation between one of the first grating and the second grating and the opening, the first reflection adjusting light passes through the opening. After that, by performing the step of adjusting the displacement between the other one of the first grating and the second grating and either the first grating or the second grating, the first reflection adjusting light and the The second reflection adjusting light can be made to pass through the opening.
 上記一の局面による格子の調整方法において、好ましくは、位置ずれを調整する工程は、第1反射調整用光と第2反射調整用光とが、ともに開口部を通過するように、第2回転方向における、第1格子と第2格子との位置ずれを調整する工程と、第2回転方向における第1格子と第2格子との位置ずれを調整する工程を行った後に、調整用光源および開口部を照射軸方向回りに略90度回転した状態で、第1反射調整用光と第2反射調整用光とが、ともに開口部を通過するように、第1回転方向における、第1格子と第2格子との位置ずれを調整する工程と、を含む。このように構成すれば、第1回転方向における第1格子と第2格子との位置ずれを調整する工程と、第2回転方向における第1格子と第2格子との位置ずれを調整する工程とを、調整用光源および開口部の向きを略第1方向と略第2方向との間で変更するだけで行うことができる。その結果、共通の調整用光源および開口部によって、第1回転方向および第2回転方向の両方における位置ずれを調整することができるので、位置ずれを調整するための構成を簡略化することができる。 In the grating adjustment method according to the above aspect, the step of adjusting the displacement preferably includes the step of adjusting the second rotation so that both the first reflection adjustment light and the second reflection adjustment light pass through the opening. After performing the step of adjusting the displacement between the first grating and the second grating in the direction, and the step of adjusting the displacement of the first grating and the second grating in the second rotation direction, the adjustment light source and the aperture are adjusted. The first grating in the first rotation direction and the first grating in the first rotation direction such that the first reflection adjustment light and the second reflection adjustment light both pass through the opening in a state where the portion is rotated approximately 90 degrees around the irradiation axis direction. Adjusting the misalignment with the second grating. According to this structure, a step of adjusting the displacement between the first grating and the second grating in the first rotation direction, and a step of adjusting the displacement of the first grating and the second grating in the second rotation direction. Can be performed simply by changing the directions of the adjustment light source and the opening between the substantially first direction and the substantially second direction. As a result, the position shift in both the first rotation direction and the second rotation direction can be adjusted by the common adjustment light source and the opening, so that the configuration for adjusting the position shift can be simplified. .
 上記一の局面による格子の調整方法において、好ましくは、調整用光を照射する工程および位置ずれを調整する工程において、開口部は、照射軸方向における、第1格子と第2格子との間の中央部に配置されている。ここで、開口部と格子(第1格子または第2格子)との距離が比較的近い場合、第1格子と第2格子とが位置ずれしていても、反射された光(第1反射調整用光または第2反射調整用光)が開口部を通過してしまう場合がある。したがって、上記のように構成すれば、第1反射調整用光と開口部との距離および第2反射調整用光と開口部との距離が比較的大きくなるので、第1格子と第2格子とが位置ずれしていた場合に、反射された光(第1反射調整用光または第2反射調整用光)が開口部を通過してしまうことに起因して第1格子と第2格子との位置ずれを適切に調整できなくなるのを抑制することができる。 In the method of adjusting a grating according to the one aspect, preferably, in the step of irradiating the adjustment light and the step of adjusting the displacement, the opening is provided between the first grating and the second grating in the irradiation axis direction. It is located in the center. Here, when the distance between the opening and the grating (the first grating or the second grating) is relatively short, even if the first grating and the second grating are misaligned, the reflected light (the first reflection adjustment) is used. Light or the second reflection adjustment light) may pass through the opening. Therefore, according to the above configuration, the distance between the first reflection adjusting light and the opening and the distance between the second reflection adjusting light and the opening are relatively large. Is displaced, the reflected light (the first reflection adjustment light or the second reflection adjustment light) passes through the opening, causing the first grating and the second grating to move away from each other. It is possible to prevent the position from being unable to be properly adjusted.
 上記一の局面による格子の調整方法において、好ましくは、位置ずれを調整する工程は、調整用光が反射される面に格子パターンが形成されている場合、格子パターンにより回折されることにより生成された複数の第1反射調整用光において、最も強度の高い第1反射調整用光を用いて位置ずれを調整する工程を含むとともに、第1反射調整用光が反射される面に格子パターンが形成されている場合、格子パターンにより回折されることにより生成された複数の第2反射調整用光において、最も強度の高い第2反射調整用光を用いて位置ずれを調整する工程を含む。このように構成すれば、調整用光が反射される面および第1反射調整用光が反射される面に形成された格子パターンにより、それぞれ、複数の第1反射調整用光および第2反射調整用光が生成された場合でも、最も強度(鮮明度)の高い第1反射調整用光および第2反射調整用光を用いることにより、第1格子と第2格子との位置ずれを容易に調整することができる。 In the grating adjustment method according to the one aspect, preferably, the step of adjusting the positional shift is generated by diffracting the grating pattern when the grating pattern is formed on a surface on which the adjustment light is reflected. Adjusting the displacement using the first reflection adjustment light having the highest intensity among the plurality of first reflection adjustment lights, and forming a grid pattern on the surface where the first reflection adjustment light is reflected. If so, the method includes a step of adjusting the displacement using the second reflection adjustment light having the highest intensity among the plurality of second reflection adjustment lights generated by being diffracted by the grating pattern. According to this structure, the plurality of first reflection adjusting lights and the second reflection adjusting lights are respectively formed by the lattice patterns formed on the surface on which the adjusting light is reflected and the surface on which the first reflection adjusting light is reflected. Even when the light for use is generated, the displacement between the first grating and the second grating can be easily adjusted by using the first reflection adjustment light and the second reflection adjustment light having the highest intensity (clearness). can do.
 上記一の局面による格子の調整方法において、好ましくは、位置ずれを調整する工程は、第1反射調整用光と、第2反射調整用光と、第2反射調整用光が第1格子および第2格子により多重反射された第3反射調整用光とに基づいて、位置ずれを調整する工程をさらに含む。このように構成すれば、多重反射された第3反射調整用光が開口部を通過するように位置ずれを調整することができるので、第1反射調整用光および第2反射調整用光のみに基づいて位置ずれを調整する場合と比較して、第1格子と第2格子との位置ずれをより精密に調整することができる。 In the grating adjustment method according to the one aspect, the step of adjusting the displacement preferably includes the step of adjusting the first reflection adjusting light, the second reflection adjusting light, and the second reflection adjusting light to the first grating and the second reflection adjusting light. The method further includes the step of adjusting the displacement based on the third reflection adjusting light that is multiply reflected by the two gratings. According to this structure, the displacement can be adjusted so that the multiply reflected third reflection adjusting light passes through the opening. Therefore, only the first reflection adjusting light and the second reflection adjusting light can be adjusted. Compared to the case of adjusting the position shift based on the position shift, the position shift between the first grating and the second grating can be adjusted more precisely.
 上記一の局面による格子の調整方法において、好ましくは、開口部の幅は、調整用光のスポット径以上となるように設定されている。このように構成すれば、調整用光源から照射された調整用光が、開口部が形成された部材の開口部以外の部分に遮られるのを抑制することができる。その結果、第1反射調整用光および第2反射調整用光の強度が小さくなる(暗くなる)のが抑制されるので、第1反射調整用光および第2反射調整用光が開口部を通過した否かを容易に判別することができる。 In the grating adjustment method according to the above aspect, the width of the opening is preferably set to be equal to or larger than the spot diameter of the adjustment light. According to this structure, it is possible to prevent the adjustment light emitted from the adjustment light source from being blocked by a portion other than the opening of the member having the opening. As a result, the intensity of the first reflection adjustment light and the second reflection adjustment light is prevented from being reduced (darkened), so that the first reflection adjustment light and the second reflection adjustment light pass through the opening. It can be easily determined whether or not this has been done.
 本発明によれば、上記のように、X線位相イメージング装置において、X線の照射軸方向と直交する面内方向における平行度を簡易に調整することができる。 According to the present invention, as described above, in the X-ray phase imaging apparatus, the parallelism in the in-plane direction orthogonal to the X-ray irradiation axis direction can be easily adjusted.
本発明の一実施形態による格子の調整方法が用いられるX線位相イメージング装置の全体構成を示した図である。1 is a diagram illustrating an overall configuration of an X-ray phase imaging apparatus using a grating adjustment method according to an embodiment of the present invention. 本発明の一実施形態による格子の調整方法が用いられるX線位相イメージング装置の格子位置調整機構を説明するための図である。FIG. 3 is a diagram for explaining a grating position adjusting mechanism of the X-ray phase imaging apparatus using the grating adjusting method according to one embodiment of the present invention. 本発明の一実施形態による格子の調整方法を説明するための図である。FIG. 5 is a diagram for explaining a grid adjustment method according to an embodiment of the present invention. 本発明の一実施形態による格子の調整方法の手順を説明するための図である。FIG. 6 is a diagram for explaining a procedure of a grid adjustment method according to an embodiment of the present invention. 調整用光源のスポット径とスリットの幅との関係を説明するための図である。FIG. 3 is a diagram for explaining a relationship between a spot diameter of an adjustment light source and a width of a slit. 第2回転方向における第1格子と第2格子との位置ずれを調整する工程におけるスリットの向き、および、第1回転方向における第1格子と第2格子との位置ずれを調整する工程におけるスリットの向きを説明するための図である。The direction of the slit in the step of adjusting the positional deviation between the first lattice and the second lattice in the second rotational direction, and the direction of the slit in the step of adjusting the positional deviation between the first lattice and the second lattice in the first rotational direction. It is a figure for explaining direction. 本発明の一実施形態の第1変形例による格子の調整方法の手順を説明するための図である。FIG. 9 is a diagram for explaining a procedure of a grid adjustment method according to a first modification of one embodiment of the present invention. 本発明の一実施形態の第2変形例による開口部を説明するための図である。It is a figure for explaining an opening by a 2nd modification of one embodiment of the present invention. 本発明の一実施形態の第3変形例による格子の調整方法を説明するための図である。It is a figure for explaining the adjustment method of the lattice by the 3rd modification of one embodiment of the present invention. 本発明の一実施形態の第4変形例による格子の調整方法を説明するための図である。It is a figure for explaining the adjustment method of the lattice by the 4th modification of one embodiment of the present invention.
 以下、本発明を具体化した実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 まず、図1および図2を参照して、本発明の一実施形態による格子Gの調整方法が用いられるX線位相イメージング装置100の構成について説明する。 First, the configuration of the X-ray phase imaging apparatus 100 using the adjustment method of the grating G according to one embodiment of the present invention will be described with reference to FIGS.
 図1に示すように、X線位相イメージング装置100は、X線管11と、検出部12と、第1格子G1と、第2格子G2と、第3格子G3と、を含む複数の格子Gと、処理ユニット13と、格子位置調整機構14と、を備えている。なお、X線管11は、特許請求の範囲の「X線源」の一例である。 As shown in FIG. 1, the X-ray phase imaging apparatus 100 includes a plurality of gratings G including an X-ray tube 11, a detecting unit 12, a first grating G1, a second grating G2, and a third grating G3. , A processing unit 13 and a lattice position adjusting mechanism 14. The X-ray tube 11 is an example of the “X-ray source” in the claims.
 X線位相イメージング装置100では、X線管11と、第3格子G3と、第1格子G1と、第2格子G2と、検出部12とが、X線管11と検出部12とを結ぶX線の照射軸方向(光軸方向、Z方向)に、この順に並んで配置されている。本明細書では、X線管11から検出部12に向かう方向をZ2方向、その逆方向をZ1方向とする。また、Z方向と直交する面内方向のうちの複数の格子Gそれぞれの格子が延びる方向をX方向とする。また、Z方向と直交する面内方向のうちの複数の格子Gそれぞれの格子ピッチ(後述する)の方向(Z方向およびX方向と直交する方向)をY方向とする。なお、X方向およびY方向は、それぞれ、特許請求の範囲の「第1方向」および「第2方向」の一例である。 In the X-ray phase imaging apparatus 100, the X-ray tube 11, the third grating G3, the first grating G1, the second grating G2, and the detecting unit 12 connect the X-ray tube 11 and the detecting unit 12 with each other. They are arranged in this order in the irradiation axis direction of the line (optical axis direction, Z direction). In this specification, the direction from the X-ray tube 11 to the detection unit 12 is defined as a Z2 direction, and the opposite direction is defined as a Z1 direction. The direction in which each of the plurality of lattices G extends in the in-plane direction orthogonal to the Z direction is defined as the X direction. Further, the direction of the grating pitch (described later) of each of the plurality of gratings G (the direction orthogonal to the Z direction and the X direction) in the in-plane direction orthogonal to the Z direction is defined as the Y direction. The X direction and the Y direction are examples of the “first direction” and the “second direction” in the claims, respectively.
 X線管11は、高電圧が印加されることにより、X線を発生させることが可能なX線発生装置である。X線管11は、発生させたX線をZ2方向に照射するように構成されている。 The X-ray tube 11 is an X-ray generator capable of generating X-rays when a high voltage is applied. The X-ray tube 11 is configured to irradiate the generated X-ray in the Z2 direction.
 検出部12は、X線管11から照射されたX線を検出するとともに、検出されたX線を電気信号に変換する。検出部12は、たとえば、FPD(Flat Panel Detector)である。検出部12は、複数の変換素子(図示せず)と複数の変換素子上に配置された画素電極(図示せず)とにより構成されている。複数の変換素子および画素電極は、所定の周期(画素ピッチ)で、X方向およびY方向に並んで配置されている。検出部12で変換された検出信号(電気信号)は、処理ユニット13が備える画像処理部13b(後述する)に送られる。 The detection unit 12 detects the X-rays emitted from the X-ray tube 11 and converts the detected X-rays into an electric signal. The detection unit 12 is, for example, an FPD (Flat @ Panel @ Detector). The detection unit 12 includes a plurality of conversion elements (not shown) and pixel electrodes (not shown) arranged on the plurality of conversion elements. The plurality of conversion elements and the pixel electrodes are arranged in the X direction and the Y direction at a predetermined cycle (pixel pitch). The detection signal (electric signal) converted by the detection unit 12 is sent to an image processing unit 13b (described later) included in the processing unit 13.
 第1格子G1は、Y方向に所定の周期(格子ピッチ)d1で配列される格子パターン(複数のスリットG1aおよびX線位相変化部G1b)を有している。第1格子G1では、格子パターンは、第1格子G1のX線管11側(Z1側)に設けられている。各スリットG1aおよびX線位相変化部G1bは、X方向に直線状に延びるように形成されている。第1格子G1は、いわゆる位相格子である。第1格子G1は、X線管11と第2格子G2との間に配置されており、X線管11から照射されたX線により(タルボ効果によって)自己像を形成するために設けられている。なお、タルボ効果は、可干渉性を有するX線が、スリットG1aが形成された第1格子G1を通過すると、第1格子G1から所定の距離(タルボ距離)離れた位置に、第1格子G1の像(自己像)が形成されることを意味する。 The first grating G1 has a grating pattern (a plurality of slits G1a and an X-ray phase changing portion G1b) arranged at a predetermined period (grating pitch) d1 in the Y direction. In the first grating G1, the grating pattern is provided on the X-ray tube 11 side (Z1 side) of the first grating G1. Each slit G1a and the X-ray phase change portion G1b are formed to extend linearly in the X direction. The first grating G1 is a so-called phase grating. The first grating G1 is disposed between the X-ray tube 11 and the second grating G2, and is provided to form a self-image (by the Talbot effect) by the X-rays emitted from the X-ray tube 11. I have. Note that the Talbot effect is such that when the coherent X-ray passes through the first grating G1 in which the slit G1a is formed, the first grating G1 is located at a predetermined distance (Talbot distance) from the first grating G1. (Self image) is formed.
 第2格子G2は、Y方向に所定の周期(格子ピッチ)d2で配列される格子パターン(複数のX線透過部G2aおよびX線吸収部G2b)を有している。第2格子G2では、格子パターンは、第2格子G2のX線管11側(Z1側)に設けられている。各X線透過部G2aおよびX線吸収部G2bは、それぞれ、X方向に直線状に延びるように形成されている。第2格子G2は、いわゆる、吸収格子である。第2格子G2は、第1格子G1と検出部12との間に配置されており、第1格子G1により形成された自己像に干渉するように構成されている。第2格子G2は、自己像と第2格子G2とを干渉させるために、第1格子G1からタルボ距離だけ離れた位置に配置されている。すなわち、X線位相イメージング装置100では、自己像と第2格子G2とが干渉することにより生成された干渉縞(モアレ縞)が、X線として検出部12で検出される。 The second grating G2 has a grating pattern (a plurality of X-ray transmitting portions G2a and X-ray absorbing portions G2b) arranged at a predetermined period (grating pitch) d2 in the Y direction. In the second grating G2, the grating pattern is provided on the X-ray tube 11 side (Z1 side) of the second grating G2. Each of the X-ray transmitting portions G2a and the X-ray absorbing portions G2b is formed so as to extend linearly in the X direction. The second grating G2 is a so-called absorption grating. The second grating G2 is disposed between the first grating G1 and the detection unit 12, and is configured to interfere with the self-image formed by the first grating G1. The second grating G2 is arranged at a position away from the first grating G1 by the Talbot distance in order to cause the self-image and the second grating G2 to interfere with each other. That is, in the X-ray phase imaging apparatus 100, the interference fringes (Moire fringes) generated by the interference between the self-image and the second grating G2 are detected by the detection unit 12 as X-rays.
 第3格子G3は、所定の周期(ピッチ)d3で配列される複数のスリットG3aおよびX線吸収部G3bを有している。各スリットG3aおよびX線吸収部G3bは、それぞれ、X方向に直線状に延びるように形成されている。第3格子G3は、X線管11と第1格子G1との間に配置されており、X線管11からX線が照射される。第3格子G3は、各スリットG3aを通過したX線を、各スリットG3aの位置に対応する線光源とするように構成されている。すなわち、第3格子G3は、X線管11から照射されたX線の可干渉性を高めるために設けられている。 The third grating G3 has a plurality of slits G3a and X-ray absorbing portions G3b arranged at a predetermined period (pitch) d3. Each of the slits G3a and the X-ray absorbing portion G3b is formed so as to extend linearly in the X direction. The third grating G3 is arranged between the X-ray tube 11 and the first grating G1, and is irradiated with X-rays from the X-ray tube 11. The third grating G3 is configured to use the X-rays that have passed through each slit G3a as a line light source corresponding to the position of each slit G3a. That is, the third grating G3 is provided to increase the coherence of the X-rays emitted from the X-ray tube 11.
 処理ユニット13は、制御部13aと、画像処理部13bと、を備えている。 The processing unit 13 includes a control unit 13a and an image processing unit 13b.
 制御部13aは、格子位置調整機構14の動作を制御するように構成されている。制御部13aは、たとえば、CPU(Central Processing Unit)、ROM(Read Only Memory)およびRAM(Random Access Memory)などを含む。 The control unit 13a is configured to control the operation of the lattice position adjustment mechanism 14. Control unit 13a includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
 画像処理部13bは、検出部12から送られた検出信号に基づいて、位相コントラスト画像等の画像を生成するように構成されている。画像処理部13bは、たとえば、GPU(Graphics Processing Unit)や画像処理用に構成されたFPGA(Field-Programmable Gate Array)などのプロセッサを含む。 The image processing unit 13b is configured to generate an image such as a phase contrast image based on the detection signal sent from the detection unit 12. The image processing unit 13b includes, for example, a processor such as a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) configured for image processing.
 位相コントラスト画像は、吸収像、位相微分像および暗視野像の少なくとも1つを含む。吸収像は、X線の吸収度合の差に基づいて画像化したX線画像である。位相微分像は、X線の位相のずれに基づいて画像化したX線画像である。暗視野像は、物体の小角散乱に基づくVisibilityの変化によって得られる、Visibility像のことである。また、暗視野像は、小角散乱像とも呼ばれる。「Visibility」とは、鮮明度のことである。 The phase contrast image includes at least one of an absorption image, a phase differential image, and a dark field image. The absorption image is an X-ray image formed based on the difference in the degree of X-ray absorption. The phase differential image is an X-ray image formed based on the phase shift of the X-ray. The dark-field image is a visibility image obtained by changing the visibility based on small-angle scattering of an object. The dark-field image is also called a small-angle scattering image. “Visibility” refers to sharpness.
 格子位置調整機構14は、第1格子G1および第2格子G2にそれぞれ設けられている。図2に示すように、格子位置調整機構14は、格子Gを、X方向、Y方向、Z方向、Z方向回りの回転方向Rz、X方向回りの回転方向Rx、および、Y方向回りの回転方向Ryに移動可能に構成されている。格子位置調整機構14は、X方向直動機構14aと、Z方向直動機構14bと、Y方向直動機構14cと、直動機構接続部14dと、ステージ支持部駆動部14eと、ステージ支持部14fと、ステージ駆動部14gと、ステージ14hと、を含む。なお、回転方向Rxおよび回転方向Ryは、それぞれ、特許請求の範囲の「第1回転方向」および「第2回転方向」の一例である。 The lattice position adjusting mechanism 14 is provided on each of the first lattice G1 and the second lattice G2. As shown in FIG. 2, the grating position adjusting mechanism 14 rotates the grating G in the X direction, the Y direction, the Z direction, the rotation direction Rz around the Z direction, the rotation direction Rx around the X direction, and the rotation around the Y direction. It is configured to be movable in the direction Ry. The lattice position adjustment mechanism 14 includes an X-direction translation mechanism 14a, a Z-direction translation mechanism 14b, a Y-direction translation mechanism 14c, a translation mechanism connection section 14d, a stage support driving section 14e, and a stage support section. 14f, a stage driving unit 14g, and a stage 14h. The rotation direction Rx and the rotation direction Ry are examples of the “first rotation direction” and the “second rotation direction” in the claims, respectively.
 X方向直動機構14a、Z方向直動機構14bおよびY方向直動機構14cは、それぞれ、X方向、Z方向およびY方向に移動可能に構成されている。X方向直動機構14a、Z方向直動機構14bおよびY方向直動機構14cは、たとえば、ステッピングモータなどを含む。格子位置調整機構14は、X方向直動機構14a、Z方向直動機構14bおよびY方向直動機構14cの動作により、それぞれ、格子Gを、X方向、Z方向およびY方向に移動させるように構成されている。 The X-direction translation mechanism 14a, the Z-direction translation mechanism 14b, and the Y-direction translation mechanism 14c are configured to be movable in the X, Z, and Y directions, respectively. The X-direction translation mechanism 14a, the Z-direction translation mechanism 14b, and the Y-direction translation mechanism 14c include, for example, a stepping motor. The lattice position adjusting mechanism 14 moves the lattice G in the X direction, the Z direction, and the Y direction by the operations of the X direction linear moving mechanism 14a, the Z direction linear moving mechanism 14b, and the Y direction linear moving mechanism 14c, respectively. It is configured.
 ステージ支持部14fは、格子Gを載置(または保持)させるためのステージ14hをZ2方向から支持している。ステージ駆動部14gは、ステージ14hをX方向に往復移動させるように構成されている。ステージ14hは、底部がステージ支持部14fに向けて凸曲面状に形成されており、X方向に往復移動されることにより、回転方向Ryに回動するように構成されている。また、ステージ支持部駆動部14eは、ステージ支持部14fをY方向に往復移動させるように構成されている。また、直動機構接続部14dは、回転方向Rzに回動可能にX方向直動機構14aに設けられている。また、ステージ支持部14fは底部が直動機構接続部14dに向けて凸曲面状に形成されており、Y方向に往復移動されることにより、回転方向Rxに回動するように構成されている。なお、格子位置調整機構14は、たとえば、チャック機構やハンド機構等の格子Gを保持するための機構を有していてもよい。 The stage support 14f supports the stage 14h for mounting (or holding) the grid G from the Z2 direction. The stage drive unit 14g is configured to reciprocate the stage 14h in the X direction. The stage 14h has a bottom portion formed in a convex curved shape toward the stage support portion 14f, and is configured to rotate in the rotation direction Ry by reciprocating in the X direction. Further, the stage support driving unit 14e is configured to reciprocate the stage support 14f in the Y direction. The linear motion mechanism connecting portion 14d is provided on the X direction linear motion mechanism 14a so as to be rotatable in the rotation direction Rz. The stage support portion 14f has a bottom formed in a convex curved shape toward the linear motion mechanism connection portion 14d, and is configured to rotate in the rotation direction Rx by being reciprocated in the Y direction. . Note that the grid position adjusting mechanism 14 may have a mechanism for holding the grid G, such as a chuck mechanism or a hand mechanism, for example.
 (第1格子と第2格子との位置ずれの調整方法)
 次に、図3~図6を参照しながら、格子Gの調整方法(第1格子G1と第2格子G2との位置ずれの調整方法)について説明する。
(Adjustment method of misalignment between the first grating and the second grating)
Next, a method for adjusting the grating G (a method for adjusting the displacement between the first grating G1 and the second grating G2) will be described with reference to FIGS.
 図3に示すように、本実施形態では、格子Gの調整方法は、第1格子G1と第2格子G2との間に配置された調整用光源21から、調整用光源21の近傍に調整用光源21との相対位置が固定されるように配置されたスリット22aを介して、第2格子G2に向かって調整用光Lを照射する工程を備える。また、格子Gの調整方法は、第2格子G2により反射された第1反射調整用光L1と、第1反射調整用光L1が第1格子G1により反射された第2反射調整用光L2とが、ともにスリット22aを通過するように、回転方向Rxおよび回転方向Ryにおける、第1格子G1と第2格子G2との位置ずれを調整する工程を備える。なお、スリット22aは、特許請求の範囲の「開口部」の一例である。 As shown in FIG. 3, in the present embodiment, the adjusting method of the grating G is such that the adjusting light source 21 disposed between the first grating G1 and the second grating G2 is moved to the vicinity of the adjusting light source 21. A step of irradiating the adjustment light L toward the second grating G2 via the slit 22a arranged so that the relative position with respect to the light source 21 is fixed is provided. In addition, the method of adjusting the grating G includes the first reflection adjusting light L1 reflected by the second grating G2, and the second reflection adjusting light L2 reflected by the first grating G1. However, there is provided a step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Rx and the rotation direction Ry so that both pass through the slit 22a. The slit 22a is an example of the “opening” in the claims.
 詳細には、スリット22aは、回転方向Rxにおける位置ずれを調整する工程が行われる場合には、X方向に延びるように配置される。そして、調整用光Lを照射する工程は、回転方向Rxにおける位置ずれを調整する工程が行われる場合には、スリット22aが形成された遮蔽部材22の光入射面22bに対してX方向に傾斜した方向に調整用光Lを照射する工程を含む。また、スリット22aは、回転方向Ryにおける位置ずれを調整する工程が行われる場合には、Y方向に延びるように配置される。そして、調整用光Lを照射する工程は、回転方向Ryにおける位置ずれを調整する工程が行われる場合には、スリット22aが形成された部材の光入射面22bに対してY方向に傾斜した方向に調整用光Lを照射する工程を含む。なお、遮蔽部材22は、特許請求の範囲の「スリットが形成された部材」の一例である。 Specifically, the slit 22a is arranged so as to extend in the X direction when a step of adjusting the displacement in the rotation direction Rx is performed. In the step of irradiating the adjustment light L, when the step of adjusting the displacement in the rotation direction Rx is performed, the step of tilting in the X direction with respect to the light incident surface 22b of the shielding member 22 in which the slit 22a is formed. Irradiating the adjustment light L in the set direction. In addition, the slit 22a is arranged to extend in the Y direction when a step of adjusting the displacement in the rotation direction Ry is performed. The step of irradiating the adjustment light L is performed in a direction inclined in the Y direction with respect to the light incident surface 22b of the member in which the slit 22a is formed, when the step of adjusting the displacement in the rotation direction Ry is performed. And a step of irradiating the light L for adjustment. In addition, the shielding member 22 is an example of the “member in which the slit is formed” in the claims.
 また、図4に示すように、位置ずれを調整する工程は、第1反射調整用光L1が、スリット22aを通過するように、第2格子G2とスリット22aとの位置ずれを調整する工程を含む。また、位置ずれを調整する工程は、第1反射調整用光L1がスリット22aを通過するように位置ずれを調整する工程を行った後に、第2反射調整用光L2が、スリット22aを通過するように、第1格子G1と第2格子G2との位置ずれを調整する工程を含む。 Further, as shown in FIG. 4, the step of adjusting the displacement includes adjusting the displacement of the second grating G2 and the slit 22a so that the first reflection adjusting light L1 passes through the slit 22a. Including. Further, in the step of adjusting the displacement, after performing the step of adjusting the displacement so that the first reflection adjusting light L1 passes through the slit 22a, the second reflection adjusting light L2 passes through the slit 22a. As described above, the method includes the step of adjusting the displacement between the first grating G1 and the second grating G2.
 また、位置ずれを調整する工程は、第1反射調整用光L1と第2反射調整用光L2とが、ともにスリット22aを通過するように、回転方向Ryにおける、第1格子G1と第2格子G2との位置ずれを調整する工程を含む。また、図6に示すように、位置ずれを調整する工程は、回転方向Ryにおける第1格子G1と第2格子G2との位置ずれを調整する工程を行った後に、調整用光源21およびスリット22aをZ方向回りに略90度回転した状態で、第1反射調整用光L1と第2反射調整用光L2とが、ともにスリット22aを通過するように、回転方向Rxにおける、第1格子G1と第2格子G2との位置ずれを調整する工程を含む。 Further, the step of adjusting the displacement is performed in such a manner that the first reflection adjusting light L1 and the second reflection adjusting light L2 both pass through the slit 22a in the rotation direction Ry. A step of adjusting the displacement from G2 is included. Further, as shown in FIG. 6, the step of adjusting the displacement is performed after the step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Ry, and then the adjusting light source 21 and the slit 22a. Is rotated approximately 90 degrees around the Z direction, the first grating G1 in the rotation direction Rx and the first grating G1 in the rotation direction Rx so that the first reflection adjustment light L1 and the second reflection adjustment light L2 both pass through the slit 22a. The method includes a step of adjusting a positional deviation from the second grating G2.
 具体的には、図3に示すように、まず、第1格子G1と第2格子G2との間に、第1格子G1と第2格子G2との位置ずれを調整するための調整ユニット20が配置される。調整ユニット20は、調整用光源21と、遮蔽部材22と、を備えている。調整用光源21は、調整用光Lを照射することが可能に構成されている。調整用光Lは、レーザ光、かつ、可視光である。たとえば、調整用光源21は、レーザポインタである。また、レーザ径は、たとえば、5mm以下である。遮蔽部材22は、中央部にスリット22aが形成されている。図6に示すように、スリット22aの幅W2は、調整用光Lのスポット径W1以上となるように設定されている。遮蔽部材22は、たとえば、不透明な板により構成されている。 Specifically, as shown in FIG. 3, first, an adjustment unit 20 for adjusting the displacement between the first grating G1 and the second grating G2 is provided between the first grating G1 and the second grating G2. Be placed. The adjustment unit 20 includes an adjustment light source 21 and a shielding member 22. The adjustment light source 21 is configured to emit the adjustment light L. The adjustment light L is laser light and visible light. For example, the adjustment light source 21 is a laser pointer. The laser diameter is, for example, 5 mm or less. The shielding member 22 has a slit 22a formed at the center. As shown in FIG. 6, the width W2 of the slit 22a is set to be equal to or larger than the spot diameter W1 of the adjustment light L. The shielding member 22 is made of, for example, an opaque plate.
 図3に示すように、調整ユニット20では、調整用光源21から照射された調整用光Lがスリット22aを通過するように、調整用光源21と遮蔽部材22との相対位置が固定されている。また、調整用光Lが光入射面22bに対して傾斜角度αで傾斜して入射するように、調整用光源21と遮蔽部材22との相対位置が固定されている。なお、本実施形態では、調整ユニット20(調整用光源21およびスリット22a)は、調整用光Lを照射する工程、および、位置ずれを調整する工程において、第1格子G1と第2格子G2との間の中央部に配置される。 As shown in FIG. 3, in the adjustment unit 20, the relative position between the adjustment light source 21 and the shielding member 22 is fixed such that the adjustment light L emitted from the adjustment light source 21 passes through the slit 22a. . Further, the relative position between the adjustment light source 21 and the shielding member 22 is fixed such that the adjustment light L is incident on the light incident surface 22b at an inclination angle α. In the present embodiment, the adjustment unit 20 (the adjustment light source 21 and the slit 22a) uses the first grating G1 and the second grating G2 in the step of irradiating the adjustment light L and the step of adjusting the displacement. It is located at the center between the two.
 回転方向Ryにおける第1格子G1と第2格子G2との位置ずれを調整する工程において、まず、スリット22aが形成された遮蔽部材22の光入射面22bがZ方向を向くように調整ユニット20が配置される。すなわち、スリット22aが略Y方向に延びるように調整ユニット20が配置される。この状態で、調整用光源21により照射された調整用光Lは、X方向から見て、光入射面22bと直交する方向(Z方向)に対して傾斜角度αで傾斜した方向に進む。なお、図3の例では、調整用光源21から照射された調整用光L(L0)がZ方向に対してZ1側に傾斜角度αで傾斜した方向に照射された例を示している。 In the step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Ry, first, the adjustment unit 20 is adjusted so that the light incident surface 22b of the shielding member 22 in which the slit 22a is formed is oriented in the Z direction. Be placed. That is, the adjustment unit 20 is arranged so that the slit 22a extends substantially in the Y direction. In this state, the adjustment light L emitted from the adjustment light source 21 travels in a direction inclined at an inclination angle α with respect to a direction (Z direction) orthogonal to the light incident surface 22b when viewed from the X direction. Note that the example of FIG. 3 illustrates an example in which the adjustment light L (L0) emitted from the adjustment light source 21 is emitted in a direction inclined at an inclination angle α toward the Z1 side with respect to the Z direction.
 回転方向Ryにおける第1格子G1と第2格子G2との位置ずれを調整する工程において、調整用光L0は、Z2側に照射される。すなわち、調整用光L0は、X方向から見て、第2格子G2のX線管11側(Z1側)の面G2c(図1参照)にZ方向に対してZ2側に傾斜した方向に入射するので、第2格子G2により反射された第1反射調整用光L1は、Z方向に対してZ1側に傾斜した方向に反射される。そして、第1反射調整用光L1は、X方向から見て、第1格子G1の検出部12側(Z2側)の面G1d(図1参照)にZ方向に対してZ1側に傾斜した方向に入射するので、第1格子G1により反射された第2反射調整用光L2は、Z方向に対してZ2側に傾斜した方向に反射される。なお、図3では、回転方向Ryにおける第1格子G1と第2格子G2との位置ずれが抑制されて、第1反射調整用光L1および第2反射調整用光L2が、スリット22aを通過する状態を示している。 In the step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Ry, the adjustment light L0 is irradiated on the Z2 side. That is, the adjustment light L0 is incident on the surface G2c (see FIG. 1) of the second grating G2 on the X-ray tube 11 side (Z1 side) in the direction inclined to the Z2 side with respect to the Z direction when viewed from the X direction. Therefore, the first reflection adjusting light L1 reflected by the second grating G2 is reflected in a direction inclined toward the Z1 side with respect to the Z direction. When viewed from the X direction, the first reflection adjusting light L1 is directed to the surface G1d (see FIG. 1) of the first grating G1 on the detection unit 12 side (Z2 side) in a direction inclined toward the Z1 side with respect to the Z direction. , The second reflection adjusting light L2 reflected by the first grating G1 is reflected in a direction inclined toward the Z2 side with respect to the Z direction. In FIG. 3, the displacement between the first grating G1 and the second grating G2 in the rotation direction Ry is suppressed, and the first reflection adjusting light L1 and the second reflection adjusting light L2 pass through the slit 22a. The state is shown.
 ここで、X線位相イメージング装置100では、第1格子G1の検出部12側(Z2側)の面G1d、および、第2格子G2のX線管11側(Z1側)の面G2cは、レーザ光を反射しやすい材質により構成されている。なお、この面G1dおよび面G2cがレーザ光を反射しにくい材質で構成されている場合には、Alなどを予め薄く蒸着しておけばよい。 Here, in the X-ray phase imaging apparatus 100, the surface G1d of the first grating G1 on the detecting unit 12 side (Z2 side) and the surface G2c of the second grating G2 on the X-ray tube 11 side (Z1 side) are laser beams. It is made of a material that easily reflects light. When the surface G1d and the surface G2c are made of a material that does not easily reflect laser light, a thin film of Al or the like may be deposited in advance.
 また、上述したように、X線位相イメージング装置100では、第2格子G2のX線管11側(Z1側)に、格子パターンが形成されている。すなわち、第1反射調整用光L1が反射される第2格子G2のX線管11側(Z1側)の面G2cに格子パターンが形成されている。格子パターンが形成された面G2cに光が入射すると、光が格子パターンにより回折され複数の光が生成される。なお、第2格子G2の検出部12側(Z2側)には、格子パターンが形成されていないので、第2反射調整用光L2には、格子パターンによる光の回折は生じない。 As described above, in the X-ray phase imaging apparatus 100, a grating pattern is formed on the X-ray tube 11 side (Z1 side) of the second grating G2. That is, a grating pattern is formed on the surface G2c of the second grating G2 on the X-ray tube 11 side (Z1 side) where the first reflection adjusting light L1 is reflected. When light is incident on the surface G2c on which the lattice pattern is formed, the light is diffracted by the lattice pattern to generate a plurality of lights. Since no grating pattern is formed on the detection unit 12 side (Z2 side) of the second grating G2, light diffraction by the grating pattern does not occur in the second reflection adjusting light L2.
 そこで、本実施形態では、位置ずれを調整する工程は、第2格子G2により回折されることにより生成された複数の第1反射調整用光L1において、最も強度の高い第1反射調整用光L1を用いて位置ずれを調整する工程を含む。最も強度の高い第1反射調整用光L1とは、調整用光L0の入射角と等しい反射角を有する第1反射調整用光L1(いわゆる、0次回折光)である。なお、図面では、第1反射調整用光L1のうち0次回折光のみを示している。 Therefore, in the present embodiment, the step of adjusting the displacement is performed by the first reflection adjusting light L1 having the highest intensity among the plurality of first reflection adjusting lights L1 generated by being diffracted by the second grating G2. And adjusting the positional deviation using the method. The first reflection adjustment light L1 having the highest intensity is the first reflection adjustment light L1 (so-called zero-order diffracted light) having a reflection angle equal to the incident angle of the adjustment light L0. In the drawing, only the 0th-order diffracted light of the first reflection adjusting light L1 is shown.
 図4(A)に示すように、回転方向Ryにおける第1格子G1と第2格子G2との位置ずれの調整前において、第1格子G1と第2格子G2とは、Y方向から見て、非平行の状態となっている。また、第1格子G1と第2格子G2との間に配置した遮蔽部材22と、第1格子G1および第2格子G2とは、Y方向から見て、非平行の状態となっている。すなわち、調整用光L0は、Y方向から見て、第2格子G2のX線管11側(Z1側)の面G2c(図1参照)と直交する方向に対して傾斜して入射するので、第1反射調整用光L1は、調整用光L0が入射した方向とは異なる方向に反射される。したがって、第1反射調整用光L1は、スリット22aを通過せずに、遮蔽部材22のスリット22aが形成されていない部分に遮られる。 As shown in FIG. 4A, before adjusting the positional deviation between the first grating G1 and the second grating G2 in the rotation direction Ry, the first grating G1 and the second grating G2 are viewed from the Y direction. It is in a non-parallel state. Further, the shielding member 22 disposed between the first grating G1 and the second grating G2, and the first grating G1 and the second grating G2 are in a non-parallel state when viewed from the Y direction. That is, the adjustment light L0 is incident obliquely with respect to the direction orthogonal to the surface G2c (see FIG. 1) of the second grating G2 on the X-ray tube 11 side (Z1 side) when viewed from the Y direction. The first reflection adjustment light L1 is reflected in a direction different from the direction in which the adjustment light L0 is incident. Therefore, the first reflection adjusting light L1 does not pass through the slit 22a, and is blocked by a portion of the shielding member 22 where the slit 22a is not formed.
 そこで、図4(B)に示すように、Y方向から見て、遮蔽部材22と第2格子G2とが略平行になるように、遮蔽部材22(調整ユニット20)を回転方向Ryにおいて角度Ry(S)だけ回転させる。これにより、Y方向から見て、遮蔽部材22と第2格子G2とが略平行な状態となるので、第1反射調整用光L1は、調整用光L0が入射した方向と略同じ方向に反射される。したがって、第1反射調整用光L1は、スリット22aを通過して、第1格子G1の検出部12側(Z2側)に入射する。なお、調整ユニット20の回転は、第1反射調整用光L1がスリット22aを通過する状態となるように、第1反射調整用光L1を目視により観察しながら行われる。また、調整ユニット20の回転および後述する第1格子G1の回転は、ユーザが格子位置調整機構14を操作することにより行われる。これにより、第1反射調整用光L1がスリット22aを通過する状態となるように、制御部13aなどが自信で判断して格子位置調整機構14を動作させる場合と異なり、制御部13aの負荷を低減することができる。 Therefore, as shown in FIG. 4B, the shielding member 22 (adjustment unit 20) is rotated at an angle Ry in the rotation direction Ry such that the shielding member 22 and the second lattice G2 are substantially parallel when viewed from the Y direction. Rotate by (S). Thereby, when viewed from the Y direction, the shielding member 22 and the second grating G2 are in a substantially parallel state, so that the first reflection adjustment light L1 is reflected in substantially the same direction as the direction in which the adjustment light L0 is incident. Is done. Accordingly, the first reflection adjusting light L1 passes through the slit 22a and is incident on the detection unit 12 side (Z2 side) of the first grating G1. The rotation of the adjustment unit 20 is performed while visually observing the first reflection adjustment light L1 such that the first reflection adjustment light L1 passes through the slit 22a. The rotation of the adjustment unit 20 and the rotation of the first grating G1 described later are performed by the user operating the grating position adjustment mechanism 14. Accordingly, unlike the case where the control unit 13a or the like operates the lattice position adjustment mechanism 14 by making a determination by itself so that the first reflection adjustment light L1 passes through the slit 22a, the load on the control unit 13a is reduced. Can be reduced.
 上記の工程(第1反射調整用光L1がスリット22aを通過する状態となるように調整ユニット20の回転させる工程)により、遮蔽部材22と第2格子G2とが略平行の状態となった一方、第1格子G1と、遮蔽部材22および第2格子G2とは、Y方向から見て、非平行の状態となっている。すなわち、第1反射調整用光L1は、Y方向から見て、第1格子G1の検出部12側(Z2側)の面G1d(図1参照)と直交する方向に対して傾斜して入射するので、第2反射調整用光L2は、第1反射調整用光L1が入射した方向とは異なる方向に反射される。したがって、第2反射調整用光L2は、スリット22aを通過せずに、遮蔽部材22のスリット22aが形成されていない部分に遮られる。 The above process (the process of rotating the adjustment unit 20 so that the first reflection adjustment light L1 passes through the slit 22a) causes the shielding member 22 and the second grating G2 to become substantially parallel. , The first grating G1, the shielding member 22, and the second grating G2 are in a non-parallel state when viewed from the Y direction. That is, the first reflection adjusting light L1 is incident obliquely with respect to a direction orthogonal to the surface G1d (see FIG. 1) of the first grating G1 on the detection unit 12 side (Z2 side) when viewed from the Y direction. Therefore, the second reflection adjusting light L2 is reflected in a direction different from the direction in which the first reflection adjusting light L1 is incident. Therefore, the second reflection adjusting light L2 does not pass through the slit 22a, and is blocked by a portion of the shielding member 22 where the slit 22a is not formed.
 そこで、図4(C)に示すように、Y方向から見て、第1格子G1と遮蔽部材22および第2格子G2とが略平行になるように、第1格子G1を回転方向Ryにおいて角度Ry(G1)だけ回転させる。これにより、Y方向から見て、第1格子G1と遮蔽部材22および第2格子G2とが略平行な状態となるので、第2反射調整用光L2は、第1反射調整用光L1が入射した方向と略同じ方向に反射される。したがって、第2反射調整用光L2は、スリット22aを通過して、第2格子G2のX線管11側(Z1側)に入射する。なお、第1格子G1の回転は、第2反射調整用光L2がスリット22aを通過する状態となるように、第2反射調整用光L2を目視により観察しながら行われる。 Therefore, as shown in FIG. 4C, the first grating G1 is rotated in the rotation direction Ry so that the first grating G1 is substantially parallel to the shielding member 22 and the second grating G2 when viewed from the Y direction. Rotate by Ry (G1). Accordingly, the first grating G1, the shielding member 22, and the second grating G2 are substantially parallel to each other when viewed from the Y direction, so that the first reflection adjusting light L1 is incident on the second reflection adjusting light L2. The light is reflected in substantially the same direction as the direction in which it was performed. Therefore, the second reflection adjusting light L2 passes through the slit 22a and is incident on the X-ray tube 11 side (Z1 side) of the second grating G2. The rotation of the first grating G1 is performed while visually observing the second reflection adjusting light L2 so that the second reflection adjusting light L2 passes through the slit 22a.
 以上の工程(第1反射調整用光L1がスリット22aを通過する状態となるように調整ユニット20の回転させる工程、および、第2反射調整用光L2がスリット22aを通過する状態となるように第1格子G1の回転させる工程)により、Y方向から見て、第1反射調整用光L1と第2反射調整用光L2とが、ともにスリット22aを通過する状態となるように、第1格子G1と第2格子G2との位置ずれを調整する。これにより、Y方向から見て、第1格子G1と第2格子G2とが略平行となる(すなわち、回転方向Ryにおける第1格子G1と第2格子G2との位置ずれが抑制される)。 The above steps (the step of rotating the adjustment unit 20 so that the first reflection adjustment light L1 passes through the slit 22a, and the step of rotating the adjustment reflection light L2 through the slit 22a) The first grating G1 is rotated such that the first reflection adjusting light L1 and the second reflection adjusting light L2 both pass through the slit 22a when viewed from the Y direction. The displacement between G1 and the second grating G2 is adjusted. Thereby, the first grating G1 and the second grating G2 become substantially parallel when viewed from the Y direction (that is, the displacement of the first grating G1 and the second grating G2 in the rotation direction Ry is suppressed).
 次に、図6に示すように、調整ユニット20を、Z方向回りに略90度回転させる。この状態で、上記の回転方向Ryにおける第1格子G1と第2格子G2との位置ずれの調整と同様の工程を、回転方向Rxに対しても行う。すなわち、X方向から見て、第1反射調整用光L1と第2反射調整用光L2とが、ともにスリット22aを通過する状態となるように、第1格子G1と第2格子G2との位置ずれを調整する。これにより、X方向から見て、第1格子G1と第2格子G2とが略平行となる(すなわち、回転方向Rxにおける第1格子G1と第2格子G2との位置ずれが抑制される)。以上により、回転方向Rxおよび回転方向Ryにおける第1格子G1と第2格子G2との位置ずれが抑制され、意図しないモアレ縞が発生するのが抑制される。 Next, as shown in FIG. 6, the adjustment unit 20 is rotated by about 90 degrees around the Z direction. In this state, a process similar to the above-described adjustment of the positional deviation between the first grating G1 and the second grating G2 in the rotation direction Ry is also performed in the rotation direction Rx. That is, when viewed from the X direction, the positions of the first grating G1 and the second grating G2 are such that the first reflection adjusting light L1 and the second reflection adjusting light L2 both pass through the slit 22a. Adjust the gap. Thereby, the first grating G1 and the second grating G2 become substantially parallel when viewed from the X direction (that is, the displacement of the first grating G1 and the second grating G2 in the rotation direction Rx is suppressed). As described above, the displacement between the first grating G1 and the second grating G2 in the rotation direction Rx and the rotation direction Ry is suppressed, and the occurrence of unintended moire fringes is suppressed.
 (実施形態の効果)
 本実施形態では、以下のような効果を得ることができる。
(Effects of the embodiment)
In the present embodiment, the following effects can be obtained.
 本実施形態では、上記のように、格子Gの調整方法は、第2格子G2により反射された第1反射調整用光L1と、第1反射調整用光L1が第1格子G1により反射された第2反射調整用光L2とが、ともにスリット22aを通過するように、回転方向Rxおよび回転方向Ryにおける、第1格子G1と第2格子G2との位置ずれを調整する工程を備える。これにより、第1反射調整用光L1および第2反射調整用光L2が、ともにスリット22aを通過する状態となるように、回転方向Rxおよび回転方向Ryにおける第1格子G1と第2格子G2との位置ずれを調整することにより、回転方向Rxおよび回転方向Ryにおける第1格子G1と第2格子G2との位置ずれを抑制することができる。その結果、光がスリット22aを通過した状態と通過しない状態とは、目視によって容易に判別することができるので、X線の照射軸方向(Z方向)と直交する面内方向における平行度を簡易に調整することができる。また、光がスリット22aを通過したか否かにより格子Gの位置ずれを調整するので、格子Gを水準器や角度計を使用して調整する必要がないとともに、モアレ縞を取得するための撮像を行う必要がない。 In the present embodiment, as described above, in the method of adjusting the grating G, the first reflection adjusting light L1 reflected by the second grating G2 and the first reflection adjusting light L1 are reflected by the first grating G1. The method includes a step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Rx and the rotation direction Ry such that the second reflection adjusting light L2 passes through the slit 22a. Thereby, the first grating G1 and the second grating G2 in the rotation direction Rx and the rotation direction Ry are such that both the first reflection adjustment light L1 and the second reflection adjustment light L2 pass through the slit 22a. By adjusting the positional deviation of the first lattice G1 and the second lattice G2 in the rotational direction Rx and the rotational direction Ry, the positional deviation can be suppressed. As a result, the state in which the light passes through the slit 22a and the state in which the light does not pass can be easily visually discriminated, so that the parallelism in the in-plane direction orthogonal to the X-ray irradiation axis direction (Z direction) can be easily determined. Can be adjusted. Further, since the displacement of the grating G is adjusted depending on whether or not the light has passed through the slit 22a, there is no need to adjust the grating G using a level or a goniometer, and imaging for obtaining moire fringes. No need to do.
 また、本実施形態では、上記のように、調整用光Lを、レーザ光とする。これにより、高い指向性を有するレーザ光を用いれば、第1格子G1と第2格子G2とが位置ずれしている場合にスリット22aを通過してしまうのを抑制することができるので、精度よく、第1格子G1と第2格子G2との位置ずれを調整することができる。 In the present embodiment, as described above, the adjustment light L is laser light. Accordingly, if a laser beam having high directivity is used, it is possible to prevent the first grating G1 and the second grating G2 from passing through the slit 22a when the first grating G1 and the second grating G2 are misaligned. In addition, it is possible to adjust the displacement between the first grating G1 and the second grating G2.
 また、本実施形態では、上記のように、調整用光Lを、可視光とする。これにより、第1反射調整用光L1および第2反射調整用光L2の位置を目視によって観察しながら、第1格子G1と第2格子G2との位置ずれを調整することができる。その結果、可視光以外の波長帯域の光を用いる場合のように可視光以外の波長帯域の光を検出するための光検出器等を用いることなく、X線の照射軸方向(Z方向)と直交する面内方向における平行度をより簡易に調整することができる。 In the present embodiment, as described above, the adjustment light L is visible light. This makes it possible to adjust the displacement between the first grating G1 and the second grating G2 while visually observing the positions of the first reflection adjusting light L1 and the second reflection adjusting light L2. As a result, the X-ray irradiation axis direction (Z direction) can be adjusted without using a photodetector or the like for detecting light in a wavelength band other than visible light as in the case of using light in a wavelength band other than visible light. The parallelism in the orthogonal in-plane direction can be adjusted more easily.
 また、本実施形態では、上記のように、スリット22aを、回転方向Rxにおける位置ずれを調整する工程が行われる場合には、X方向に延びるように配置させ、回転方向Ryにおける位置ずれを調整する工程が行われる場合には、Y方向に延びるように配置させる。これにより、回転方向Rxにおける位置ずれを調整する工程が行われる場合には、第1反射調整用光L1および第2反射調整用光L2が、互いにX方向にずれた状態で、ともに、X方向に延びるように配置されたスリット22aを通過する状態となるように、回転方向Rxにおける第1格子G1と第2格子G2との位置ずれを調整することができる。また、回転方向Ryにおける位置ずれを調整する工程が行われる場合には、第1反射調整用光L1および第2反射調整用光L2が、互いにY方向にずれた状態で、ともに、Y方向に延びるように配置されたスリット22aを通過する状態となるように、回転方向Ryにおける第1格子G1と第2格子G2との位置ずれを調整することができる。 Further, in the present embodiment, as described above, when the step of adjusting the displacement in the rotation direction Rx is performed, the slit 22a is arranged to extend in the X direction, and the displacement in the rotation direction Ry is adjusted. When the step is performed, it is arranged to extend in the Y direction. Accordingly, when the step of adjusting the displacement in the rotation direction Rx is performed, the first reflection adjustment light L1 and the second reflection adjustment light L2 are both shifted in the X direction, and are both shifted in the X direction. It is possible to adjust the displacement between the first grating G1 and the second grating G2 in the rotation direction Rx so as to pass through the slit 22a arranged so as to extend in the vertical direction. Further, when the step of adjusting the displacement in the rotation direction Ry is performed, the first reflection adjustment light L1 and the second reflection adjustment light L2 are shifted in the Y direction, and are both shifted in the Y direction. The displacement between the first grating G1 and the second grating G2 in the rotation direction Ry can be adjusted so as to pass through the slit 22a arranged to extend.
 また、本実施形態では、上記のように、調整用光Lを照射する工程は、回転方向Rxにおける位置ずれを調整する工程が行われる場合には、スリット22aが形成された遮蔽部材22の光入射面22bに対してX方向に傾斜した方向に調整用光Lを照射する工程を含み、回転方向Ryにおける位置ずれを調整する工程が行われる場合には、スリット22aが形成された遮蔽部材22の光入射面22bに対してY方向に傾斜した方向に調整用光Lを照射する工程を含む。これにより、回転方向Rxにおける位置ずれを調整する工程が行われる場合には、スリット22aが形成された遮蔽部材22の光入射面22bに対して、X方向に傾斜した方向に調整用光Lを照射するので、第1反射調整用光L1と第2反射調整用光L2とを、互いにX方向にずれた状態で、スリット22aが形成された遮蔽部材22に入射させることができる。その結果、回転方向Rxにおける位置ずれを調整する工程が行われる場合に、第1反射調整用光L1および第2反射調整用光L2が、確実に、互いにX方向にずれた状態で、ともに、X方向に延びるように配置されたスリット22aを通過する状態にすることができる。また、回転方向Ryにおける位置ずれを調整する工程が行われる場合には、スリット22aが形成された遮蔽部材22の光入射面22bに対して、Y方向に傾斜した方向に調整用光Lを照射するので、第1反射調整用光L1と第2反射調整用光L2とを、確実に、互いにY方向にずれた状態で、スリット22aが形成された遮蔽部材22に入射させることができる。その結果、回転方向Ryにおける位置ずれを調整する工程が行われる場合に、第1反射調整用光L1および第2反射調整用光L2が、確実に、互いにY方向にずれた状態で、ともに、Y方向に延びるように配置されたスリット22aを通過する状態にすることができる。 Further, in the present embodiment, as described above, when the step of irradiating the adjustment light L is a step of adjusting the displacement in the rotation direction Rx, the light of the shielding member 22 in which the slit 22a is formed is used. In the case where the step of irradiating the incident surface 22b with the adjustment light L in a direction inclined in the X direction is performed, and the step of adjusting the displacement in the rotation direction Ry is performed, the shielding member 22 having the slit 22a formed therein And irradiating the light incident surface 22b with the adjustment light L in a direction inclined in the Y direction. Accordingly, when the step of adjusting the displacement in the rotation direction Rx is performed, the adjustment light L is directed in the direction inclined in the X direction with respect to the light incident surface 22b of the shielding member 22 in which the slit 22a is formed. Since the irradiation is performed, the first reflection adjusting light L1 and the second reflection adjusting light L2 can be made incident on the shielding member 22 in which the slit 22a is formed in a state where they are shifted from each other in the X direction. As a result, when the step of adjusting the displacement in the rotation direction Rx is performed, the first reflection adjustment light L1 and the second reflection adjustment light L2 are surely displaced from each other in the X direction. It can be set to pass through the slit 22a arranged to extend in the X direction. Further, when the step of adjusting the displacement in the rotation direction Ry is performed, the adjustment light L is irradiated in the direction inclined in the Y direction onto the light incident surface 22b of the shielding member 22 in which the slit 22a is formed. Therefore, the first reflection adjusting light L1 and the second reflection adjusting light L2 can be surely made incident on the shielding member 22 in which the slit 22a is formed in a state shifted from each other in the Y direction. As a result, when the step of adjusting the displacement in the rotation direction Ry is performed, the first reflection adjustment light L1 and the second reflection adjustment light L2 are surely displaced from each other in the Y direction. It can be in a state of passing through the slit 22a arranged to extend in the Y direction.
 また、本実施形態では、上記のように、位置ずれを調整する工程は、第1反射調整用光L1が、スリット22aを通過するように、第2格子G2とスリット22aとの位置ずれを調整する工程と、第1反射調整用光L1がスリット22aを通過するように位置ずれを調整する工程を行った後に、第2反射調整用光L2が、スリット22aを通過するように、第1格子G1と第2格子G2との位置ずれを調整する工程と、を含む。これにより、第2格子G2とスリット22aとの位置ずれを調整する工程を行うことによって、第1反射調整用光L1が、スリット22aを通過する状態にした後に、第1格子G1と第2格子G2との位置ずれを調整する工程を行うことによって、確実に、第1反射調整用光L1および第2反射調整用光L2が、ともにスリット22aを通過する状態にすることができる。 Further, in the present embodiment, as described above, the step of adjusting the position shift adjusts the position shift between the second grating G2 and the slit 22a such that the first reflection adjusting light L1 passes through the slit 22a. And a step of adjusting the displacement so that the first reflection adjusting light L1 passes through the slit 22a, and then the first grating is adjusted so that the second reflection adjusting light L2 passes through the slit 22a. Adjusting the misalignment between G1 and the second grating G2. Thus, by performing the step of adjusting the displacement between the second grating G2 and the slit 22a, the first reflection adjusting light L1 is made to pass through the slit 22a, and then the first grating G1 and the second grating By performing the step of adjusting the positional deviation from G2, it is possible to ensure that the first reflection adjustment light L1 and the second reflection adjustment light L2 both pass through the slit 22a.
 また、本実施形態では、上記のように、位置ずれを調整する工程は、第1反射調整用光L1と第2反射調整用光L2とが、ともにスリット22aを通過するように、回転方向Ryにおける、第1格子G1と第2格子G2との位置ずれを調整する工程と、回転方向Ryにおける第1格子G1と第2格子G2との位置ずれを調整する工程を行った後に、調整用光源21およびスリット22aをX線の照射軸方向(Z方向)回りに略90度回転した状態で、第1反射調整用光L1と第2反射調整用光L2とが、ともにスリット22aを通過するように、回転方向Rxにおける、第1格子G1と第2格子G2との位置ずれを調整する工程と、を含む。これにより、回転方向Rxにおける第1格子G1と第2格子G2との位置ずれを調整する工程と、回転方向Ryにおける第1格子G1と第2格子G2との位置ずれを調整する工程とを、調整用光源21およびスリット22aの向きを略X方向と略Y方向との間で変更するだけで行うことができる。その結果、共通の調整用光源21およびスリット22aにより、回転方向Rxおよび回転方向Ryの両方における位置ずれを調整することができるので、位置ずれを調整するための構成を簡略化することができる。 Further, in the present embodiment, as described above, the step of adjusting the displacement is performed in the rotational direction Ry such that both the first reflection adjusting light L1 and the second reflection adjusting light L2 pass through the slit 22a. After performing the steps of adjusting the displacement between the first grating G1 and the second grating G2 and adjusting the displacement between the first grating G1 and the second grating G2 in the rotational direction Ry, the adjustment light source The first reflection adjustment light L1 and the second reflection adjustment light L2 both pass through the slit 22a in a state where the first reflection adjustment light L1 and the second reflection adjustment light L2 are rotated by approximately 90 degrees around the X-ray irradiation axis direction (Z direction). And adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Rx. Thereby, the step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Rx and the step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Ry are: It can be performed simply by changing the directions of the adjustment light source 21 and the slit 22a between the substantially X direction and the substantially Y direction. As a result, the common adjustment light source 21 and the slit 22a can adjust the displacement in both the rotation direction Rx and the rotation direction Ry, so that the configuration for adjusting the displacement can be simplified.
 また、本実施形態では、上記のように、調整用光Lを照射する工程および位置ずれを調整する工程において、スリット22aを、照射軸方向(Z方向)における、第1格子G1と第2格子G2との間の中央部に配置させる。これにより、第1反射調整用光L1とスリット22aとの距離および第2反射調整用光L2とスリット22aとの距離が比較的大きくなるので、第1格子G1と第2格子G2とが位置ずれしていた場合に、反射された光(第1反射調整用光L1または第2反射調整用光L2)がスリット22aを通過してしまうことに起因して第1格子G1と第2格子G2との位置ずれを適切に調整できなくなるのを抑制することができる。 In the present embodiment, as described above, in the step of irradiating the adjustment light L and the step of adjusting the positional deviation, the slit 22a is formed by the first grating G1 and the second grating G in the irradiation axis direction (Z direction). It is arranged at the center between G2. As a result, the distance between the first reflection adjusting light L1 and the slit 22a and the distance between the second reflection adjusting light L2 and the slit 22a are relatively large, so that the first grating G1 and the second grating G2 are misaligned. In this case, the reflected light (the first reflection adjusting light L1 or the second reflection adjusting light L2) passes through the slit 22a, and the first grating G1 and the second grating G2 Can be prevented from being unable to appropriately adjust the positional deviation of the image.
 また、本実施形態では、上記のように、位置ずれを調整する工程は、第1反射調整用光L1が反射される面G2cに格子パターンが形成されており、格子パターンにより回折されることにより生成された複数の第1反射調整用光L1において、最も強度の高い第1反射調整用光L1を用いて位置ずれを調整する工程を含む。これにより、第1反射調整用光L1が反射される面G2cに形成された格子パターンにより複数の第1反射調整用光L1が生成された場合でも、最も強度(鮮明度)の高い第1反射調整用光L1を用いることにより、第1格子G1と第2格子G2との位置ずれを容易に調整することができる。 Further, in the present embodiment, as described above, in the step of adjusting the position shift, a grating pattern is formed on the surface G2c where the first reflection adjusting light L1 is reflected, and the grating is diffracted by the grating pattern. The method includes a step of adjusting the displacement using the first reflection adjusting light L1 having the highest intensity among the plurality of generated first reflection adjusting lights L1. Accordingly, even when a plurality of first reflection adjusting lights L1 are generated by the lattice pattern formed on the surface G2c on which the first reflection adjusting light L1 is reflected, the first reflection having the highest intensity (clearness). By using the adjustment light L1, the displacement between the first grating G1 and the second grating G2 can be easily adjusted.
 また、本実施形態では、上記のように、スリット22aの幅W2を、調整用光Lのスポット径W1以上となるように設定する。これにより、調整用光源21から照射された調整用光Lが、スリット22aが形成された遮蔽部材22のスリット22a以外の部分に遮られるのを抑制することができる。その結果、第1反射調整用光L1および第2反射調整用光L2の強度が小さくなる(暗くなる)のが抑制されるので、第1反射調整用光L1および第2反射調整用光L2がスリット22aを通過した否かを容易に判別することができる。 In the present embodiment, as described above, the width W2 of the slit 22a is set to be equal to or larger than the spot diameter W1 of the adjustment light L. Accordingly, it is possible to prevent the adjustment light L emitted from the adjustment light source 21 from being blocked by a portion other than the slit 22a of the shielding member 22 in which the slit 22a is formed. As a result, the intensity of the first reflection adjusting light L1 and the second reflection adjusting light L2 is prevented from being reduced (darkened), so that the first reflection adjusting light L1 and the second reflection adjusting light L2 are reduced. It can be easily determined whether or not the sheet has passed through the slit 22a.
 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification]
It should be understood that the embodiments disclosed this time are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description of the embodiments, and includes all equivalents (modifications) within the scope and meaning equivalent to the claims.
 たとえば、上記実施形態では、調整用光Lを、レーザ光とした例を示したが、本発明はこれに限られない。本発明では、調整用光Lとして、レーザ光以外の種類の光を用いるように構成してもよい。なお、指向性を有さない光を発する光源を用いる場合は、光を集光するための部材により、指向性を有さない光を、指向性を有する光に変化させて照射することが好ましい。 For example, in the above embodiment, an example was described in which the adjustment light L was laser light, but the present invention is not limited to this. In the present invention, a type of light other than laser light may be used as the adjustment light L. Note that when a light source that emits non-directional light is used, it is preferable that the non-directional light be changed to directional light and irradiated by a member for condensing the light. .
 また、上記実施形態では、調整用光Lを、可視光とした例を示したが、本発明はこれに限られない。本発明では、調整用光Lとして、可視光以外の波長帯域の光を用いるように構成してもよい。その場合、可視光以外の波長帯域の光を検出するための光検出器等を用いるように構成すればよい。この場合、光検出器の検出結果に基づいて、調整ユニット20および第1格子G1の回転が、制御部により自動で行われるように構成してもよい。 Also, in the above embodiment, an example was described in which the adjustment light L was visible light, but the present invention is not limited to this. In the present invention, the adjustment light L may be configured to use light in a wavelength band other than visible light. In that case, a configuration may be adopted in which a photodetector or the like for detecting light in a wavelength band other than visible light is used. In this case, the control unit may be configured to automatically rotate the adjustment unit 20 and the first grating G1 based on the detection result of the photodetector.
 また、上記実施形態では、遮蔽部材22と第2格子G2とが略平行となるように、遮蔽部材22(調整ユニット20)を回転方向Ryにおいて角度Ry(S)だけ回転させる例を示したが、本発明はこれに限られない。本発明では、図7に示す第1変形例のように、遮蔽部材22と第2格子G2とが略平行となるように、第2格子G2を回転方向Ryにおいて角度Ry(G2)だけ回転させるように構成してもよい。 In the above-described embodiment, an example has been described in which the shielding member 22 (adjustment unit 20) is rotated by the angle Ry (S) in the rotation direction Ry such that the shielding member 22 and the second grid G2 are substantially parallel to each other. However, the present invention is not limited to this. In the present invention, as in the first modification shown in FIG. 7, the second grating G2 is rotated by the angle Ry (G2) in the rotation direction Ry such that the shielding member 22 and the second grating G2 are substantially parallel. It may be configured as follows.
 また、上記実施形態では、第1格子G1と、遮蔽部材22および第2格子G2とが略平行な状態となるように、第1格子G1を回転方向Ryにおいて角度Ry(G1)だけ回転させる例を示したが、本発明はこれに限られない。本発明では、第1格子G1と、遮蔽部材22および第2格子G2とが略平行な状態となるように、遮蔽部材22および第2格子G2を回転方向Ryにおいて所定の角度だけ回転させるように構成してもよい。 Further, in the above-described embodiment, an example in which the first grating G1 is rotated by the angle Ry (G1) in the rotation direction Ry such that the first grating G1, the shielding member 22, and the second grating G2 are substantially parallel. However, the present invention is not limited to this. In the present invention, the shielding member 22 and the second grating G2 are rotated by a predetermined angle in the rotation direction Ry such that the first grating G1, the shielding member 22, and the second grating G2 are in a substantially parallel state. You may comprise.
 また、上記実施形態では、本発明の「開口部」として1つのスリット22aが適用される例を示したが、本発明はこれに限られない。本発明では、図8に示す変形例による遮蔽部材222のように、本発明の「開口部」として、複数の矩形状の孔部を適用してもよい。なお、図8に示す例では、遮蔽部材222は、複数の矩形状孔部が一列に並ぶように配置された開口部222aを有する。 In the above embodiment, the example in which one slit 22a is applied as the “opening” of the present invention has been described, but the present invention is not limited to this. In the present invention, a plurality of rectangular holes may be applied as the “opening” of the present invention, as in a shielding member 222 according to a modification shown in FIG. In the example shown in FIG. 8, the shielding member 222 has an opening 222a in which a plurality of rectangular holes are arranged in a line.
 また、上記実施形態では、調整用光Lを照射する工程および位置ずれを調整する工程において、スリット22aを、X線の照射軸方向(Z方向)における、第1格子G1と第2格子G2との間の中央部に配置させた例を示したが、本発明はこれに限られない。本発明では、調整用光Lを照射する工程および位置ずれを調整する工程において、スリット22aを、X線の照射軸方向(Z方向)における、第1格子G1と第2格子G2との間の中央部以外に配置させるように構成してもよい。その場合、第1格子G1または第2格子G2とスリット22aとが著しく近接しないように、スリット22aを配置させるのが好ましい。また、第1反射調整用光L1が、スリット22aを通過するように、第2格子G2とスリット22aとの位置ずれを調整する工程と、第2反射調整用光L2が、スリット22aを通過するように、第1格子G1と第2格子G2との位置ずれを調整する工程とで、第1格子G1と第2格子G2との間におけるスリット22aの位置を変更してもよい。 Further, in the above embodiment, in the step of irradiating the adjustment light L and the step of adjusting the positional deviation, the slit 22a is formed with the first grating G1 and the second grating G2 in the X-ray irradiation axis direction (Z direction). Although the example in which it is arranged at the central portion between the above is shown, the present invention is not limited to this. In the present invention, in the step of irradiating the adjustment light L and the step of adjusting the positional deviation, the slit 22a is provided between the first grating G1 and the second grating G2 in the X-ray irradiation axis direction (Z direction). You may comprise so that it may be arrange | positioned other than a center part. In that case, it is preferable to dispose the slit 22a so that the first grating G1 or the second grating G2 does not approach the slit 22a significantly. In addition, a step of adjusting the displacement between the second grating G2 and the slit 22a so that the first reflection adjusting light L1 passes through the slit 22a, and a step of passing the second reflection adjusting light L2 through the slit 22a. As described above, the position of the slit 22a between the first grating G1 and the second grating G2 may be changed in the step of adjusting the displacement between the first grating G1 and the second grating G2.
 また、上記実施形態では、第1反射調整用光L1と第2反射調整用光L2とが、ともにスリット22aを通過するように、第1格子G1と第2格子G2との位置ずれを調整するように構成した例を示したが、本発明はこれに限られない。本発明では、図9に示す第3変形例のように、第1反射調整用光L1と、第2反射調整用光L2と、第2反射調整用光L2が第1格子G1および第2格子G2により多重反射された第3反射調整用光L3とに基づいて、位置ずれを調整するように構成してもよい。図9では、多重反射された第3反射調整用光L3として、第2反射調整用光L2が第2格子G2により反射された第3反射調整用光L31と、第3反射調整用光L31が第1格子G1により反射された第3反射調整用光L32と、を示している。これにより、多重反射された第3反射調整用光L3がスリット22aを通過するように位置ずれを調整することができるので、第1反射調整用光L1および第2反射調整用光L2のみに基づいて位置ずれを調整する場合と比較して、第1格子G1と第2格子G2との位置ずれをより精密に調整することができる。 Further, in the above embodiment, the positional deviation between the first grating G1 and the second grating G2 is adjusted so that the first reflection adjusting light L1 and the second reflection adjusting light L2 both pass through the slit 22a. Although an example configured as described above has been described, the present invention is not limited to this. In the present invention, as in the third modification shown in FIG. 9, the first reflection adjusting light L1, the second reflection adjusting light L2, and the second reflection adjusting light L2 are formed by the first grating G1 and the second grating G1. The position shift may be adjusted based on the third reflection adjusting light L3 that is multiple-reflected by G2. In FIG. 9, the third reflection adjusting light L31 in which the second reflection adjusting light L2 is reflected by the second grating G2 and the third reflection adjusting light L31 as the multiple reflection third reflection adjusting light L3. And third reflection adjusting light L32 reflected by the first grating G1. This makes it possible to adjust the displacement so that the multiple reflection of the third reflection adjusting light L3 passes through the slit 22a, so that it is based on only the first reflection adjusting light L1 and the second reflection adjusting light L2. It is possible to more precisely adjust the positional deviation between the first grating G1 and the second lattice G2, as compared with the case where the positional deviation is adjusted by adjusting the position.
 また、上記実施形態では、第2格子G2により反射された第1反射調整用光L1と、第1反射調整用光L1が第1格子G1により反射された第2反射調整用光L2とが、ともにスリット22aを通過するように、第1格子G1と第2格子G2との位置ずれを調整する例を示したが、本発明はこれに限られない。本発明では、図10に示す第4変形例のように、第1格子G1により反射された第1反射調整用光L1と、第1反射調整用光L1が第2格子G2により反射された第2反射調整用光L2とが、ともにスリット22aを通過するように、第1格子G1と第2格子G2との位置ずれを調整するように構成してもよい。 Further, in the above embodiment, the first reflection adjusting light L1 reflected by the second grating G2 and the second reflection adjusting light L2 where the first reflection adjusting light L1 is reflected by the first grating G1 are: Although the example in which the positional shift between the first grating G1 and the second grating G2 is adjusted so that both pass through the slit 22a has been described, the present invention is not limited to this. In the present invention, as in a fourth modification shown in FIG. 10, the first reflection adjusting light L1 reflected by the first grating G1 and the first reflection adjusting light L1 reflected by the second grating G2. The configuration may be such that the positional deviation between the first grating G1 and the second grating G2 is adjusted so that the two-reflection adjusting light L2 passes through the slit 22a.
 また、上記実施形態では、回転方向Ryにおける第1格子G1と第2格子G2との位置ずれを調整した後に、回転方向Rxにおける第1格子G1と第2格子G2との位置ずれを調整する例を示したが、本発明はこれに限られない。本発明では、回転方向Rxにおける第1格子G1と第2格子G2との位置ずれを調整した後に、回転方向Ryにおける第1格子G1と第2格子G2との位置ずれを調整するように構成してもよい。また、回転方向Rxまたは回転方向Ryのいずれか1方向における第1格子G1と第2格子G2との位置ずれのみを調整するように構成してもよい。 Further, in the above embodiment, an example in which the positional deviation between the first lattice G1 and the second lattice G2 in the rotational direction Rx is adjusted after the positional deviation between the first lattice G1 and the second lattice G2 in the rotational direction Ry is adjusted. However, the present invention is not limited to this. In the present invention, after the positional deviation between the first grating G1 and the second lattice G2 in the rotation direction Rx is adjusted, the positional deviation between the first grating G1 and the second lattice G2 in the rotational direction Ry is adjusted. You may. Further, it may be configured such that only the displacement between the first grating G1 and the second grating G2 in any one of the rotation direction Rx and the rotation direction Ry is adjusted.
 また、上記実施形態では、格子Gの調整方法を、格子パターンが、格子GのX線管11側(Z1側)に設けられているX線位相イメージング装置100に用いた例を示したが、本発明はこれに限られない。本発明では、格子Gの調整方法を、格子パターンが、格子Gの検出部12側(Z2側)に設けられているX線位相イメージング装置100に用いてもよい。 Further, in the above embodiment, the example in which the adjustment method of the grating G is used in the X-ray phase imaging apparatus 100 in which the grating pattern is provided on the X-ray tube 11 side (Z1 side) of the grating G has been described. The present invention is not limited to this. In the present invention, the adjustment method of the grating G may be used in the X-ray phase imaging apparatus 100 in which the grating pattern is provided on the detection unit 12 side (Z2 side) of the grating G.
 また、上記実施形態では、回転方向Ryにおける第1格子G1と第2格子G2との位置ずれを調整する工程において、スリット22aを、Y方向に沿って延びるように配置させた例を示したが、本発明はこれに限られない。本発明では、回転方向Ryにおける第1格子G1と第2格子G2との位置ずれを調整する工程において、スリット22aを、Y方向に対して傾斜した方向に沿って配置させてもよい。なお、この場合、第1格子G1と第2格子G2との回転方向Rxにおける位置が揃っている必要がある。 In the above-described embodiment, an example has been described in which the slit 22a is disposed so as to extend along the Y direction in the step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Ry. However, the present invention is not limited to this. In the present invention, in the step of adjusting the displacement between the first grating G1 and the second grating G2 in the rotation direction Ry, the slit 22a may be arranged along a direction inclined with respect to the Y direction. In this case, the positions of the first grating G1 and the second grating G2 in the rotation direction Rx need to be aligned.
 また、上記実施形態では、複数の格子Gは、X線管11と第1格子G1との間に配置され、X線管11から照射されたX線の可干渉性を高めるための第3格子G3を含むように構成した例を示したが、本発明はこれに限られない。本発明では、第3格子G3を含まないように構成してもよい。 Further, in the above embodiment, the plurality of gratings G are arranged between the X-ray tube 11 and the first grating G1, and the third grating G for increasing the coherence of the X-ray emitted from the X-ray tube 11 is provided. Although an example in which G3 is included is shown, the present invention is not limited to this. In the present invention, the third grating G3 may not be included.
 また、上記実施形態では、タルボ効果による自己像を形成するために、第1格子G1を位相格子とした例を示したが、本発明はこれに限られない。本発明では、自己像は縞模様であればよいので、位相格子の代わりに吸収格子を用いてもよい。吸収格子を用いると、距離などの光学条件により単純に縞模様が発生する領域(非干渉計)と、タルボ効果による自己像が生じる領域(干渉計)とが生じる。 Also, in the above embodiment, an example was described in which the first grating G1 was a phase grating in order to form a self-image by the Talbot effect, but the present invention is not limited to this. In the present invention, since the self-image only needs to be a stripe pattern, an absorption grating may be used instead of the phase grating. When an absorption grating is used, a region (a non-interferometer) where a stripe pattern simply occurs due to optical conditions such as a distance, and a region where a self-image due to the Talbot effect occurs (an interferometer) are generated.
 11 X線管(X線源)
 12 検出部
 21 調整用光源
 22 遮蔽部材(スリットが形成された部材)
 22a スリット(開口部)
 22b (スリットが形成された部材の)光入射面
 100 X線位相イメージング装置
 G1 第1格子
 G2 第2格子
 G3 第3格子
 L 調整用光
 L1 第1反射調整用光
 L2 第2反射調整用光
 L3 第3反射調整用光
 W1 (調整用光の)スポット径
 W2 (開口部の)幅
11 X-ray tube (X-ray source)
12 Detector 21 Light source for adjustment 22 Shielding member (member with slit formed)
22a slit (opening)
22b Light incident surface (of a member having a slit formed therein) 100 X-ray phase imaging device G1 First grating G2 Second grating G3 Third grating L Adjusting light L1 First reflection adjusting light L2 Second reflection adjusting light L3 Third reflection adjustment light W1 Spot diameter (of adjustment light) W2 (of opening)

Claims (11)

  1.  X線源と検出部との間に配置され、前記X線源から照射されるX線により自己像を形成するための第1格子と、前記第1格子の自己像と干渉させるための第2格子と、を含むとともに、前記検出部で検出された前記X線の検出信号に基づいて、吸収像、位相微分像および暗視野像のうちの少なくとも1つを含む位相コントラスト画像を生成するX線位相イメージング装置に用いられる格子の調整方法において、
     前記第1格子と前記第2格子との間に配置された調整用光源から、前記調整用光源の近傍に前記調整用光源との相対位置が固定されるように配置された開口部を介して、前記第1格子または前記第2格子のいずれか一方に向かって調整用光を照射する工程と、
     前記第1格子または前記第2格子のいずれか一方により反射された第1反射調整用光と、前記第1反射調整用光が前記第1格子または前記第2格子のいずれか他方により反射された第2反射調整用光とが、ともに前記開口部を通過するように、前記X線源と前記検出部とを結ぶ前記X線の照射軸方向と直交する面内方向のうちの第1方向回りの第1回転方向、および、前記面内方向のうちの前記第1方向と直交する第2方向回りの第2回転方向のうちの少なくとも一方における、前記第1格子と前記第2格子との位置ずれを調整する工程と、を備える、格子の調整方法。
    A first grating disposed between the X-ray source and the detection unit for forming a self-image by X-rays emitted from the X-ray source; and a second grating for causing interference with the self-image of the first grating. And a X-ray generating a phase contrast image including at least one of an absorption image, a phase differential image, and a dark-field image based on the X-ray detection signal detected by the detection unit. In a method for adjusting a grating used in a phase imaging apparatus,
    From an adjusting light source arranged between the first grating and the second grating, via an opening arranged so that a relative position with respect to the adjusting light source is fixed near the adjusting light source. Irradiating the adjustment light toward one of the first grating and the second grating;
    The first reflection adjusting light reflected by one of the first grating and the second grating, and the first reflection adjusting light are reflected by the other of the first grating and the second grating. The second reflection adjustment light is transmitted through the opening so that the first direction of the in-plane direction orthogonal to the X-ray irradiation axis direction that connects the X-ray source and the detection unit is rotated. Positions of the first grid and the second grid in at least one of a first rotation direction of the first rotation direction and a second rotation direction around a second direction orthogonal to the first direction among the in-plane directions. Adjusting the displacement.
  2.  前記調整用光は、レーザ光を含む、請求項1に記載の格子の調整方法。 The grating adjusting method according to claim 1, wherein the adjusting light includes a laser beam.
  3.  前記調整用光は、可視光を含む、請求項1に記載の格子の調整方法。 The grating adjustment method according to claim 1, wherein the adjustment light includes visible light.
  4.  前記開口部は、スリットを含み、
     前記スリットは、前記第1回転方向における前記位置ずれを調整する工程が行われる場合には、前記第1方向に延びるように配置され、前記第2回転方向における前記位置ずれを調整する工程が行われる場合には、前記第2方向に延びるように配置される、請求項1に記載の格子の調整方法。
    The opening includes a slit,
    When the step of adjusting the displacement in the first rotation direction is performed, the slit is disposed so as to extend in the first direction, and the step of adjusting the displacement in the second rotation direction is performed. The method according to claim 1, wherein, if performed, the grid is arranged to extend in the second direction.
  5.  前記調整用光を照射する工程は、前記第1回転方向における前記位置ずれを調整する工程が行われる場合には、前記スリットが形成された部材の光入射面に対して前記第1方向に傾斜した方向に前記調整用光を照射する工程を含み、前記第2回転方向における前記位置ずれを調整する工程が行われる場合には、前記スリットが形成された部材の光入射面に対して前記第2方向に傾斜した方向に前記調整用光を照射する工程を含む、請求項4に記載の格子の調整方法。 In the step of irradiating the adjustment light, when the step of adjusting the positional shift in the first rotation direction is performed, the adjustment light is inclined in the first direction with respect to a light incident surface of the member in which the slit is formed. Irradiating the adjustment light in the direction in which the slit is formed, and when the step of adjusting the displacement in the second rotational direction is performed, the light incident surface of the member in which the slit is formed is formed in the second direction. The method of adjusting a grating according to claim 4, further comprising a step of irradiating the adjustment light in two inclined directions.
  6.  前記位置ずれを調整する工程は、
      前記第1反射調整用光が、前記開口部を通過するように、前記第1格子または前記第2格子のいずれか一方と、前記開口部との位置ずれを調整する工程と、
      前記第1反射調整用光が前記開口部を通過するように前記位置ずれを調整する工程を行った後に、前記第2反射調整用光が、前記開口部を通過するように、前記第1格子または前記第2格子のいずれか他方と、前記第1格子または前記第2格子のいずれか一方との位置ずれを調整する工程と、を含む、請求項1に記載の格子の調整方法。
    The step of adjusting the displacement is:
    A step of adjusting a displacement between one of the first grating and the second grating and the opening so that the first reflection adjustment light passes through the opening;
    After performing the step of adjusting the displacement so that the first reflection adjustment light passes through the opening, the first grating is configured to allow the second reflection adjustment light to pass through the opening. The method according to claim 1, further comprising: adjusting a positional shift between one of the second grating and the other of the first grating and the second grating.
  7.  前記位置ずれを調整する工程は、
      前記第1反射調整用光と前記第2反射調整用光とが、ともに前記開口部を通過するように、前記第2回転方向における、前記第1格子と前記第2格子との位置ずれを調整する工程と、
      前記第2回転方向における前記第1格子と前記第2格子との位置ずれを調整する工程を行った後に、前記調整用光源および前記開口部を前記照射軸方向回りに略90度回転した状態で、前記第1反射調整用光と前記第2反射調整用光とが、ともに前記開口部を通過するように、前記第1回転方向における、前記第1格子と前記第2格子との位置ずれを調整する工程と、を含む、請求項1に記載の格子の調整方法。
    The step of adjusting the displacement is:
    Adjusting the displacement between the first grating and the second grating in the second rotation direction such that the first reflection adjusting light and the second reflection adjusting light both pass through the opening. The process of
    After performing the step of adjusting the displacement between the first grating and the second grating in the second rotation direction, the adjustment light source and the opening are rotated by approximately 90 degrees around the irradiation axis direction. And displacing the first grating and the second grating in the first rotation direction such that the first reflection adjusting light and the second reflection adjusting light both pass through the opening. The method for adjusting a grating according to claim 1, comprising: adjusting.
  8.  前記調整用光を照射する工程および前記位置ずれを調整する工程において、前記開口部は、前記照射軸方向における、前記第1格子と前記第2格子との間の中央部に配置されている、請求項1に記載の格子の調整方法。 In the step of irradiating the adjustment light and the step of adjusting the displacement, the opening is disposed at a central portion between the first grating and the second grating in the irradiation axis direction. The method for adjusting a grating according to claim 1.
  9.  前記位置ずれを調整する工程は、前記調整用光が反射される面に格子パターンが形成されている場合、前記格子パターンにより回折されることにより生成された複数の前記第1反射調整用光において、最も強度の高い前記第1反射調整用光を用いて前記位置ずれを調整する工程を含むとともに、前記第1反射調整用光が反射される面に格子パターンが形成されている場合、前記格子パターンにより回折されることにより生成された複数の前記第2反射調整用光において、最も強度の高い前記第2反射調整用光を用いて前記位置ずれを調整する工程を含む、請求項1に記載の格子の調整方法。 The step of adjusting the displacement is performed, when a grating pattern is formed on a surface on which the adjusting light is reflected, in a plurality of the first reflection adjusting lights generated by being diffracted by the grating pattern. Adjusting the position shift using the first reflection adjustment light having the highest intensity, and when a grid pattern is formed on a surface on which the first reflection adjustment light is reflected, the grid 2. The method according to claim 1, further comprising the step of adjusting the displacement using the second reflection adjustment light having the highest intensity among the plurality of second reflection adjustment lights generated by being diffracted by the pattern. 3. How to adjust the grid.
  10.  前記位置ずれを調整する工程は、前記第1反射調整用光と、前記第2反射調整用光と、前記第2反射調整用光が前記第1格子および前記第2格子により多重反射された第3反射調整用光とに基づいて、前記位置ずれを調整する工程をさらに含む、請求項1に記載の格子の調整方法。 The step of adjusting the position shift includes the first reflection adjustment light, the second reflection adjustment light, and the second reflection adjustment light in which the second reflection adjustment light is multiple-reflected by the first grating and the second grating. The grating adjustment method according to claim 1, further comprising a step of adjusting the displacement based on the three reflection adjustment lights.
  11.  前記開口部の幅は、前記調整用光のスポット径以上となるように設定されている、請求項1に記載の格子の調整方法。 The grating adjustment method according to claim 1, wherein the width of the opening is set to be equal to or larger than the spot diameter of the adjustment light.
PCT/JP2019/022487 2018-09-11 2019-06-06 Grating adjustment method WO2020054150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020546695A JP6935854B2 (en) 2018-09-11 2019-06-06 How to adjust the grid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-169440 2018-09-11
JP2018169440 2018-09-11

Publications (1)

Publication Number Publication Date
WO2020054150A1 true WO2020054150A1 (en) 2020-03-19

Family

ID=69777540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022487 WO2020054150A1 (en) 2018-09-11 2019-06-06 Grating adjustment method

Country Status (2)

Country Link
JP (1) JP6935854B2 (en)
WO (1) WO2020054150A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3821810A1 (en) * 2019-11-13 2021-05-19 Koninklijke Philips N.V. Active gratings position tracking in gratings-based phase-contrast and dark-field imaging

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524727A (en) * 2012-08-17 2015-08-27 コーニンクレッカ フィリップス エヌ ヴェ Dealing with misalignment in differential phase contrast imaging
WO2018016369A1 (en) * 2016-07-20 2018-01-25 株式会社島津製作所 X-ray phase difference imaging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524727A (en) * 2012-08-17 2015-08-27 コーニンクレッカ フィリップス エヌ ヴェ Dealing with misalignment in differential phase contrast imaging
WO2018016369A1 (en) * 2016-07-20 2018-01-25 株式会社島津製作所 X-ray phase difference imaging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3821810A1 (en) * 2019-11-13 2021-05-19 Koninklijke Philips N.V. Active gratings position tracking in gratings-based phase-contrast and dark-field imaging
WO2021094202A1 (en) * 2019-11-13 2021-05-20 Koninklijke Philips N.V. Active gratings position tracking in gratings-based phase-contrast and dark-field imaging
US11506617B2 (en) 2019-11-13 2022-11-22 Koninklijke Philips N.V. Active gratings position tracking in gratings-based phase-contrast and dark-field imaging

Also Published As

Publication number Publication date
JPWO2020054150A1 (en) 2021-08-30
JP6935854B2 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
US11311260B2 (en) X-ray phase imaging apparatus
US20140270060A1 (en) X-ray talbot interferometer and x-ray talbot imaging system
JPWO2018016369A1 (en) X-ray phase contrast imaging device
US20140286475A1 (en) Interferometer and object information acquisition system
JPH0151801B2 (en)
EP2510522A1 (en) Non- parallel grating arrangement with on-the-fly phase stepping, x-ray system and use
US9123451B2 (en) Imaging apparatus and imaging method
US20140286477A1 (en) Radiation photographing apparatus
WO2020054150A1 (en) Grating adjustment method
WO2019220689A1 (en) X-ray imaging device
US10643760B2 (en) Method of producing diffraction grating
US20210148839A1 (en) X-ray phase image capturing system
US10209207B2 (en) X-ray talbot interferometer
US10786217B2 (en) X-ray phase-contrast imaging apparatus
EP0402876A2 (en) Radiographic apparatus
WO2020039654A1 (en) X-ray phase imaging device
EP3462166A2 (en) Radiation phase contrast imaging apparatus
JP7040625B2 (en) X-ray phase imaging system
JP7226171B2 (en) X-ray phase imaging system
JP6813107B2 (en) X-ray phase difference imaging system
JP7131625B2 (en) X-ray phase imaging system
WO2019123758A1 (en) X-ray phase difference image pickup system
JP5787597B2 (en) Imaging device
JP7060090B2 (en) Optical imaging device and image processing method
WO2019167324A1 (en) X-ray phase difference imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546695

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860097

Country of ref document: EP

Kind code of ref document: A1