WO2020103640A1 - 一种配变台区感知终端装置及感知方法 - Google Patents

一种配变台区感知终端装置及感知方法

Info

Publication number
WO2020103640A1
WO2020103640A1 PCT/CN2019/113113 CN2019113113W WO2020103640A1 WO 2020103640 A1 WO2020103640 A1 WO 2020103640A1 CN 2019113113 W CN2019113113 W CN 2019113113W WO 2020103640 A1 WO2020103640 A1 WO 2020103640A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
control module
power
input
voltage
Prior art date
Application number
PCT/CN2019/113113
Other languages
English (en)
French (fr)
Inventor
王永生
邓士伟
傅萌
冯燕钧
何朝伟
耿树军
Original Assignee
江苏智臻能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏智臻能源科技有限公司 filed Critical 江苏智臻能源科技有限公司
Publication of WO2020103640A1 publication Critical patent/WO2020103640A1/zh

Links

Classifications

    • H02J13/0075
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/126Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission

Definitions

  • the invention relates to a distribution transformer station area sensing terminal device and method, which belong to the technical field of smart power grid and smart power consumption.
  • China's power grid With the construction of a strong smart grid, the reliability of China's power grid continues to improve, and the grid company's own assessment requirements for power supply services also increase year by year.
  • China's residential power consumption is increasing very fast, and the residential user station area also presents problems such as large number of users, complex individual power consumption behavior, difficulty in locating faults, and low level of power grid status monitoring.
  • the level of automatic fault location is low.
  • the topology of the low-voltage residential power supply station area is very complex, involving 10kV incoming lines, transformers, power distribution boxes, branch boxes, power supply cables, meter boxes, and internal circuits of users. It is difficult to locate the fault point effectively from the user's repair telephone, relying on manual faults It is very difficult to locate and eliminate, and the current troubleshooting takes an average of up to 3 hours.
  • the internal faults caused by users are ranked first in the total number of repairs (accounting for 57%).
  • the faults include the burnout of the outlet circuit breaker (leakage switch) of the energy meter, short circuit or open circuit of the line behind the meter, leakage or short circuit of household appliances, etc.
  • the responsibility for the maintenance of the above faults belongs to the users themselves, but most users will still report for repairs through 95598; the second row of the total protection switch trip in the station area (23%), the main cause of the failure is leakage, short circuit, etc. Including fuse failure (8%), transformer failure (6%), household device failure (5%), line failure 4%, etc. It is very important to define the responsibility of users for power outages and repairs, which can effectively avoid disputes, and at the same time can provide users with diagnostic advice on power safety, greatly improving user satisfaction.
  • the low level of perception of the power grid status in the Taiwan area increases the difficulty of operation and maintenance.
  • Power quality monitoring equipment has limited coverage and poor real-time performance. Generally speaking, the power quality monitoring equipment is only installed at the transformer outlets in residential areas, and the power quality data collection and analysis capabilities at the end of the power grid (resident user inlets) are insufficient. There are more common three-phase imbalances, high load rates, Problems such as low voltage and excessive reactive power, and the lack of an intelligent data analysis system give an overall management plan.
  • An object of the present invention is to provide a terminal station and a sensing method for a distribution substation area, so as to solve the problems mentioned in the background art.
  • the present invention discloses a distribution transformer station area sensing terminal device and method.
  • the specific technical solutions are as follows:
  • a distribution terminal area sensing terminal device includes a main control module, a sampling input control module and a power supply control module.
  • the main control module, sampling input control module and power supply control module are arranged in a vertical three-layer stacking manner.
  • the main control module is located at the top, which realizes data analysis and processing, and sends the processing results through the communication interface;
  • the sampling input control module is located in the middle, and the sampling input control module and the main control module use a pin connection, through which the sampling signal and the power signal are input to the main control module, and at the same time, the pin is connected to the power control module.
  • the power supply comes from the power control module below.
  • the power control module is located at the bottom layer, realizes the input conversion of the AC power supply, and realizes the function of the backup power supply.
  • the main control module includes a microprocessor MCU, a timer circuit and a reset circuit, a multi-function human-machine interface circuit, a plug-in communication interface circuit, and a sampling secondary filter circuit.
  • the microcontroller MCU and the timer circuit and the The reset circuit, the multi-function human-machine interface circuit, the plug-in communication interface circuit and the sampling secondary filter circuit are connected to realize data analysis and processing, and the result is output through the plug-in communication interface circuit or the multi-function man-machine interface circuit.
  • the timer circuit and the reset circuit realize the reset of the entire hardware system, and monitor the system running state in real time during the entire operation period, and trigger the timer circuit in time when the system fails, and actively reset the system to realize the system restart.
  • the sampling two-stage filter circuit performs two-stage filtering on the sampled input signal to realize signal adjustment.
  • the multifunctional human-machine interface circuit accomplishes several human-machine interface functions, such as liquid crystal display, key processing, system debugging interface, and data storage interface;
  • the plug-in communication interface circuit uses a plug-in method, unified terminal definitions, and installs communication cards of several communication methods, such as GPRS communication module, 4G module and NB-IOT module. Through this method, the application field realizes flexible applications Configuration for easy on-site application.
  • the sampling input module includes a current and voltage sampling input circuit, a signal filtering circuit and a signal conditioning circuit;
  • the current and voltage sampling input circuit realizes multi-channel current and voltage input collection, which matches the external transformer input to realize the access of current and voltage signals; the signal filtering circuit filters the input current and voltage signals; the signal conditioning circuit pairs The input signal is picked up and amplified to meet the requirements of acquisition accuracy.
  • the power control module includes a three-phase redundant power supply circuit, a wide voltage power conversion circuit, and a backup power supply circuit;
  • the three-phase redundant power supply circuit realizes the input of the three-phase power supply, and ensures that the terminal can still work normally when any two phases are powered off;
  • the wide voltage power conversion circuit realizes the power conversion work after the front-end power input. It can accept a wide range of 500V voltage input, meet the application of different working conditions on site, and can provide the normal working voltage of the system work;
  • the normal operating voltage is input to the backup power circuit.
  • the backup power circuit uses a super capacitor as a backup power source to achieve fast and large-capacity energy storage.
  • the super capacitor provides backup power to ensure that the terminal works normally for a short time. During this period, the terminal reports power loss information and saves important data.
  • the sampling input control module is installed and fixed on the bottom plate.
  • a distribution transformer station area sensing method which is based on the foregoing distribution transformer station area sensing terminal device and includes the following steps:
  • Step 1 Real-time monitoring of voltage and current signals: the current and voltage sampling input circuit is connected to the household line to monitor the household voltage and current in real time, and pass the collected voltage and current information to the signal filtering circuit and signal conditioning circuit;
  • Step 2 Conditioning and filtering: The signal filtering circuit and the signal conditioning circuit filter and pick up and amplify the voltage and current signals, and transmit the filtered, picked up and amplified input signals to the microprocessor MCU;
  • Step 3 Determine whether the data is valid: the microprocessor MCU first determines whether the data is valid, if it is invalid data, go to step 1, if there is valid data, go to step 4;
  • Step 4 Data analysis: The microcontroller MCU is connected to the timer circuit and the reset circuit, the multi-function human-machine interface circuit, the plug-in communication interface circuit and the sampling secondary filter circuit respectively, and the effective data is subjected to fuzzy recognition based on transient characteristics Algorithm analysis, calculation, analysis and processing, and output the processed data;
  • Step 5 Data output: The data from step 4 is output to the communication interface circuit or the multi-function human-machine interface circuit to realize the monitoring and diagnosis of the full state of the station area, automatic identification of the topology of the station area, and active reporting of power outages.
  • the invention is compact in structure and powerful in function, and realizes the function of the station-aware terminal through only three function boards.
  • multi-channel sampling input circuit it realizes multi-channel current and voltage input collection; it has a plug-in communication interface circuit that uses a plug-in method and a unified terminal definition, and can install multiple communication communication cards, such as GPRS communication module, 4G module and NB-IOT module, in this way, the application site can realize flexible application configuration, which is convenient for on-site application; with redundant power input, any two-phase power-off equipment can be guaranteed when connected to a three-phase four-wire power supply The system works normally.
  • the invention has a multi-function human-machine interface circuit to complete a variety of human-machine interface functions, such as liquid crystal display, key processing, system debugging interface and data storage interface; it has a backup power supply composed of super capacitors, and its power storage and release is fast, when the terminal After the power is completely cut off, the terminal can still work normally for a short time. At this time, the normal communication is guaranteed, so that the power cut information is normally sent.
  • the invention can realize the monitoring and diagnosis of the full state of the station area, automatic identification of the topology of the station area, active power failure reporting technology and other advanced power consumption Test function.
  • FIG. 1 is a structural block diagram of the present invention
  • FIG. 2 is a block diagram of the structure of the main control module in the present invention.
  • FIG. 3 is a block diagram of the structure of the sampling input module in the present invention.
  • Fig. 5 is a control flowchart of the present invention.
  • FIG. 1 is a structural block diagram of the present invention.
  • the terminal station sensing terminal device of the distribution substation includes a main control module, a sampling input control module, and a power supply control module.
  • the terminal adopts a three-layer structure as a whole, and each module is arranged in a stacking manner.
  • the main control module Located at the top of the terminal is the main control module, which realizes the analysis and processing of data, and sends the processing results through the communication interface, which is connected to the sampling input control module through the pin; the sampling input control module is located in the middle layer.
  • the sampling input control module and the main control module adopt pin connection, through which the sampling signal and the power signal are input to the main control module, and the pin is connected to the power control module at the same time, and the power supply comes from the lower power control module ;
  • the power input module which realizes the input conversion of AC power and realizes a series of functions such as backup power.
  • the main control module includes a microprocessor MCU, a timer circuit and a reset circuit, a multi-function human-machine interface circuit, a plug-in communication interface circuit, and a sampling secondary filter circuit.
  • the English name of the timer circuit is Watchdog Timer, abbreviated as WDT circuit, and Chinese translation is watchdog.
  • the microcontroller MCU is connected to various functional circuits to realize data analysis and processing, and outputs the results through a plug-in communication interface circuit or a multi-function human-machine interface circuit.
  • the timer circuit and the reset circuit output a reset signal to the microprocessor MCU to realize the reset of the entire hardware system, and monitor the system running status in real time during the entire operation period.
  • the timer circuit When the system fails, the timer circuit is triggered to actively reset the system to implement the system Restart. After filtering and conditioning, the sampling signal of the sampling input module is output to the secondary filtering circuit of the main control module through the pin. This circuit performs secondary filtering on the sampling input signal to realize signal adjustment, and sends the final sampling signal output to the micro Processor MCU.
  • the multi-function human-machine interface circuit is connected to the microprocessor to complete various human-machine interface functions, such as liquid crystal display, key processing, system debugging interface, and data storage interface.
  • the plug-in communication interface circuit is connected to the processor through the photoelectric isolation circuit, and adopts the connector mode, unified pin definition, and can install a variety of communication mode communication cards, such as GPRS communication module, 4G module and NB- IOT module.
  • the sampling input module includes a current and voltage sampling input circuit, a signal filtering circuit, and a signal conditioning circuit.
  • the multi-channel sampling input circuit realizes multi-channel current and voltage input acquisition, which matches the external transformer input to realize the access of current and voltage signals; the signal filtering circuit filters the input current and voltage signals; the signal conditioning circuit The signal is picked up and amplified to meet the requirements of acquisition accuracy.
  • the power supply control module includes a three-phase redundant power supply circuit, a wide-voltage power supply conversion circuit, and a backup power supply circuit.
  • the three-phase redundant power supply circuit realizes the input of the three-phase power supply, and ensures that the terminal can still work normally when any two phases are powered off.
  • the wide voltage power conversion circuit realizes the power conversion work after the front-end power input. It can accept a wide range of 580V voltage input, meet the application of different working conditions on site, and can provide the normal working voltage of the system.
  • the normal operating voltage is input to the backup power circuit.
  • the backup power circuit uses a super capacitor as a backup power source to achieve fast and large-capacity energy storage. When the terminal loses power, the super capacitor provides backup power to ensure that the terminal works normally for a short time. During this period, the terminal reports power loss information and saves important data.
  • the present method for distribution substation sensing which is based on the terminal substation sensing terminal device according to any of the preceding claims, includes the following steps:
  • Step 1 Real-time monitoring of voltage and current signals: the current and voltage sampling input circuit is connected to the household line to monitor the household voltage and current in real time, and pass the collected voltage and current information to the signal filtering circuit and signal conditioning circuit;
  • Step 2 Conditioning and filtering: The signal filtering circuit and the signal conditioning circuit filter and pick up and amplify the voltage and current signals, and transmit the filtered, picked up and amplified input signals to the microprocessor MCU;
  • Step 3 Determine whether the data is valid: the microprocessor MCU first determines whether the data is valid, if it is invalid data, go to step 1, if there is valid data, go to step 4;
  • Step 4 Data analysis: The microcontroller MCU is connected to the timer circuit (WDT circuit) and the reset circuit, the multi-function human-machine interface circuit, the plug-in communication interface circuit and the sampling secondary filter circuit, based on the effective data Analysis, calculation, analysis and processing of fuzzy recognition algorithm of state features, and output the processed data;
  • WDT circuit timer circuit
  • the reset circuit the multi-function human-machine interface circuit
  • the plug-in communication interface circuit and the sampling secondary filter circuit
  • Step 5 Data output: The data from step 4 is output to the communication interface circuit or the multi-function human-machine interface circuit to realize the monitoring and diagnosis of the full state of the station area, automatic identification of the topology of the station area, and active reporting of power outages.

Abstract

本发明公开了一种配变台区感知终端装置及方法,该装置包括主控制模块、采样输入控制模块和电源控制模块,主控制模块实现数据的分析与处理,并通过通讯接口将处理结果上送;采样输入控制模块与主控制模块采用插针连接,通过此插针实现采样信号和电源信号向主控制模块的输入,同时通过插针与电源控制摸连接,其供电电源来自于电源控制模块;电源控制模块实现交流电源的输入转换,并实现备用电源功能。该方法包括实时监测电压电流信号,调理滤波,判断数据是否有效,数据分析,和数据输出。本发明通过三个功能板就实现台区感知终端的功能,实现台区全状态的监测和诊断、台区拓扑自动识别、停电主动上报技术等用电高级量测功能。

Description

一种配变台区感知终端装置及感知方法 技术领域
本发明涉及一种配变台区感知终端装置及方法,属于智能电网、智能用电技术领域。
背景技术
随着坚强智能电网的建设,我国电网的可靠性不断提高,电网公司自身对供电服务的考核要求也逐年提高。我国居民用电增速极快,居民用户台区又呈现出用户数量大、个体用电行为复杂、故障定位难度大、电网状态监测水平低等问题。
目前,居民台区故障主动感知水平低,故障排除时间长,居民台区停电故障处理的技术水平还处于被动抢修阶段,同时还存在定位不准、事故责任认定水平低等问题。
被动抢修造成复电慢、报修电话工作量大。智能电表在客户失电时仅对停电事件做记录,复电后再统一上报停电和复电事件,所以公司无法在第一时间开展抢修工作,只能被动等待用户拨打95598报修电话之后再开展抢修,造成故障处理时间大幅延长,而且同一台区的大量停电用户都会拨打抢修电话,引起了不必要的报修电话处理工作量。
故障自动化定位水平低。低压居民供电台区的拓扑非常复杂,涉及10kV进线、变压器、配电箱、分支箱、供电电缆、表箱和用户内部电路,仅仅从用户的报修电话难以有效定位故障点,依靠人工的故障定位和排除难度很大,目前故障排查平均耗时高达3小时。
故障原因分析和责任界定难度大。据统计,用户内部引发的故障报修排报修总数的第1位(占57%),故障包括电能表出线断路器(漏电开关)烧坏、表后线路短路或断路、家用电器漏电或短路等,以上故障的维修责任归用户自己,但大多数用户仍然会通过95598报修;台区总保护开关跳闸排第2位(占23%),故障原因主要是台区线路漏电、短路等;其它故障还包括熔断器故障(占8%)、变压器故障(6%)、接户装置故障(5%)、线路故障4%等。对用户停电报修的责任界定非常重要,可以有效避免纠纷,同时又可为用户提供用电安全方面的诊断意见,大幅提高用户满意度。
台区电网状态感知水平低,增加了运维难度。
从服务和运维的角度,公司最关心的台区电网状态量包括电能质量、线路阻抗、用户相别等,目前居民台区的电能质量感知和分析主要存在以下问题:
电能质量监测装备的覆盖度有限,实时性差。一般而言,居民台区只在变压器出线处安装电能质量监测设备,对电网末端(居民用户进线)的电能质量数据采集和分析能力不足,存在比较普遍的三相不平衡、负载率高、电压低、无功过大等问题,同时缺乏智能数据分析系统给出整体治理方案。
线路阻抗、用户相别等状态量的在线监测还缺乏有效技术手段。过大的接触电阻、中性线断线、保险丝老化、线路老化等问题都会引起线路阻抗显著变化,及时检修可以减少网络损耗,防止发生电气火灾和人员触电等严重事故;用户所属相别由电表安装人员手工记录,一旦建档之后就很难发现错误,对公司的网损分析和三相不平衡治理工作造成了困惑。上述线路阻抗、用户相别等状态量还缺乏专门的装备和系统来就行监测和分析。
为解决上述问题,国内外开展了大量配变台区监测终端的研究和实践,但多数为解决各自关心的问题,开发了大量独立的终端设备和系统,但检测技术的不完备性、检测算法实际应用效果差、装置设备本身过大、安装复杂、系统孤立等问题给电力公司运维带来了巨大的压力。
技术问题
本发明的目的在于提供一种配变台区感知终端装置及感知方法,以解决上述背景技术中提出的问题。
技术解决方案
为了解决上述存在的问题,本发明公开了一种配变台区感知终端装置及方法,其具体技术方案如下:
一种配变台区感知终端装置,包括主控制模块、采样输入控制模块和电源控制模块,所述主控制模块、采样输入控制模块和电源控制模块呈垂直三层堆叠方式布置。
所述主控制模块位于最上面,实现数据的分析与处理,并通过通讯接口将处理结果上送;
所述采样输入控制模块位于中间,采样输入控制模块与主控制模块采用插针连接,通过此插针实现采样信号和电源信号向主控制模块的输入,同时通过插针与电源控制摸连接,其供电电源来自于下边的电源控制模块。
所述电源控制模块位于底层,实现交流电源的输入转换,并实现备用电源功能。
所述主控制模块包括微处理器MCU、定时器电路及复位电路、多功能人机接口电路、插拔式通讯接口电路和采样二次滤波电路,所述微控制器MCU分别与定时器电路及复位电路、多功能人机接口电路、插拔式通讯接口电路和采样二次滤波电路连接,实现数据的分析与处理,并将结果通过插拔式通讯接口电路或多功能人机接口电路输出。
所述定时器电路及复位电路实现整个硬件系统的复位,并在整个运行期间实时监测系统运行状态,并在系统故障时,及时触发定时器电路,主动复位系统,实现系统重启。
所述采样二级滤波电路对采样输入信号进行二级滤波,实现信号调整。
所述多功能人机接口电路完成若干种人机接口功能,如液晶显示、按键处理、系统调试接口以及数据存储接口;
所述插拔式通讯接口电路采用接插件方式,统一端子定义,安装若干种通讯方式的通讯卡,如GPRS通讯模块、4G模块以及NB-IOT模块,通过此种方式,应用现场实现灵活的应用配置,便于现场的应用。
所述采样输入模块包括电流电压采样输入电路、信号滤波电路和信号调理电路;
所述电流电压采样输入电路实现多通道的电流电压输入采集,其匹配外部的互感器输入,实现电流、电压信号的接入;信号滤波电路对输入的电流、电压信号进行滤波;信号调理电路对输入的信号进行拾取及放大,满足采集精度的需求。
所述电源控制模块包含三相冗余供电电路、宽电压电源转换电路和备用电源电路;
所述三相冗余供电电路实现三相电源的输入,并保证在任意两相掉电的情况下,终端仍能正常供电工作;
所述宽电压电源转换电路实现前端电源输入后的电源转换工作,其能接受500V的宽范围的电压输入,满足现场不同工作情况下的应用,并能提供系统工作的正常工作电压;
正常工作电压输入到备用电源电路,备用电源电路采用超级电容作为备用电源,实现快速、大容量的电能存储,当终端失电后,超级电容提供后备电源,保证维持终端短时正常工作,在此期间,终端上报失电信息,保存重要数据等功能。
所述采样输入控制模块安装固定在底板上。
一种配变台区感知方法,该方法基于上述的配变台区感知终端装置,包括以下步骤:
步骤1:实时监测电压电流信号:电流电压采样输入电路接在入户线上,用于实时监测入户的电压和电流,并将采集到的电压电流信息传递给信号滤波电路和信号调理电路;
步骤2:调理滤波:信号滤波电路和信号调理电路将电压电流信号进行滤波和拾取及放大,并将经过滤波和拾取及放大输入的信号传送到微处理器MCU;
步骤3:判断数据是否有效:微处理器MCU首先判断数据是否有效,如果为无效数据,进入步骤1,如果有有效数据,进入步骤4;
步骤4:数据分析:微控制器MCU分别与定时器电路及复位电路、多功能人机接口电路、插拔式通讯接口电路和采样二次滤波电路连接,将有效数据进行基于暂态特征模糊识别算法分析计算分析与处理,并将处理后的数据输出;
步骤5:数据输出:来自步骤4的数据输出至通讯接口电路或多功能人机接口电路,实现台区全状态的监测和诊断、台区拓扑自动识别、停电主动上报。
有益效果
本发明结构紧凑,功能强大,仅通过三个功能板就实现台区感知终端的功能。其通过多通道采样输入电路,实现了多通道的电流电压输入采集;具有的插拔式通讯接口电路采用接插件方式,统一端子定义,可以安装多种通讯方式的通讯卡,如GPRS通讯模块、4G模块以及NB-IOT模块,通过此种方式,应用现场可实现灵活的应用配置,便于现场应用;具有冗余电源输入,接入三相四线电源时,任意两相断电设备均能保证系统正常工作。
本发明具有多功能人机接口电路完成多种人机接口功能,如液晶显示、按键处理、系统调试接口以及数据存储接口;具备由超级电容构成的后备电源,其电量存储及释放快,当终端完全断电后,仍可维持终端短时正常工作,此时保证正常通信,从而将断电信息正常上送。
本发明通过采集实时电流、电压数据,经过特有基于暂态特征模糊识别算法分析计算处理,即可实现台区全状态的监测和诊断、台区拓扑自动识别、停电主动上报技术等用电高级量测功能。
附图说明
图1是本发明的结构框图,
图2是本发明中的主控制模块结构框图,
图3是本发明中的采样输入模块结构框图,
图4是本发明中的电源控制模块结构框图,
图5是本发明的控制流程图。
本发明的实施方式
下面结合附图和具体实施方式,进一步阐明本发明。应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。
图1是本发明的结构框图,结合附图可见,本配变台区感知终端装置,包括:主控制模块、采样输入控制模块、电源控制模块。终端整体采用三层结构,各个模块采用堆叠方式布置。位于终端的最上边的是主控制模块,其实现数据的分析与处理,并通过通讯接口将处理结果上送,其通过插针与采样输入控制模块相连;位于中间层的是采样输入控制模块,采样输入控制模块与主控制模块采用插针连接,通过此插针实现采样信号和电源信号向主控制模块的输入,同时通过插针与电源控制摸连接,其供电电源来自于下边的电源控制模块;位于最下边的是电源输入模块,其实现交流电源的输入转换,并实现备用电源等一系列功能。
结合图2,主控制模块包括微处理器MCU、定时器电路及复位电路、多功能人机接口电路、插拔式通讯接口电路、采样二次滤波电路等。定时器电路的英文名称为Watchdog Timer,缩写为WDT电路,中文翻译为看门狗。所述的微控制器MCU连接各个功能电路,实现数据的分析与处理,并将结果通过插拔式通讯接口电路或多功能人机接口电路输出。定时器电路及复位电路输出复位信号到微处理器MCU,实现整个硬件系统的复位,并在整个运行期间实时监测系统运行状态,当系统发生故障时,触发定时器电路,主动复位系统,实现系统重启。采样输入模块的采样信号经过滤波、调理后,通过插针输出至主控制模块的二级滤波电路,此电路对采样输入信号进行二级滤波,实现信号调整,并将最终采样信号输出送至微处理器MCU。多功能人机接口电路连接至微处理器,完成多种人机接口功能,如液晶显示、按键处理、系统调试接口以及数据存储接口。所述的插拔式通讯接口电路通过光电隔离电路连接至为处理器,并采用接插件方式,统一引脚定义,可以安装多种通讯方式的通讯卡,如GPRS通讯模块、4G模块以及NB-IOT模块。
结合图3,采样输入模块包含电流电压采样输入电路、信号滤波电路、信号调理电路。多通道采样输入电路实现多通道的电流电压输入采集,其匹配外部的互感器输入,实现电流、电压信号的接入;信号滤波电路对输入的电流、电压信号进行滤波;信号调理电路对输入的信号进行拾取及放大,满足采集精度的需求。
结合图4,电源控制模块包含三相冗余供电电路、宽电压电源转换电路、备用电源电路。三相冗余供电电路实现三相电源的输入,并保证在任意两相掉电的情况下,终端仍能正常供电工作。
宽电压电源转换电路实现前端电源输入后的电源转换工作,其能接受580V的宽范围的电压输入,满足现场不同工作情况下的应用,并能提供系统工作的正常工作电压。正常工作电压输入到备用电源电路,备用电源电路采用超级电容作为备用电源,实现快速、大容量的电能存储,当终端失电后,超级电容提供后备电源,保证维持终端短时正常工作,在此期间,终端上报失电信息,保存重要数据等功能。
结合图5可见,本配变台区感知方法,该方法基于上述任一权利要求所述的配变台区感知终端装置,包括以下步骤:
步骤1:实时监测电压电流信号:电流电压采样输入电路接在入户线上,用于实时监测入户的电压和电流,并将采集到的电压电流信息传递给信号滤波电路和信号调理电路;
步骤2:调理滤波:信号滤波电路和信号调理电路将电压电流信号进行滤波和拾取及放大,并将经过滤波和拾取及放大输入的信号传送到微处理器MCU;
步骤3:判断数据是否有效:微处理器MCU首先判断数据是否有效,如果为无效数据,进入步骤1,如果有有效数据,进入步骤4;
步骤4:数据分析:微控制器MCU分别与定时器电路(WDT电路)及复位电路、多功能人机接口电路、插拔式通讯接口电路和采样二次滤波电路连接,将有效数据进行基于暂态特征模糊识别算法分析计算分析与处理,并将处理后的数据输出;
步骤5:数据输出:来自步骤4的数据输出至通讯接口电路或多功能人机接口电路,实现台区全状态的监测和诊断、台区拓扑自动识别、停电主动上报。
本发明方案所公开的技术手段不仅限于上述技术手段所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (6)

  1. 一种配变台区感知终端装置,其特征在于包括主控制模块、采样输入控制模块和电源控制模块,所述主控制模块、采样输入控制模块和电源控制模块呈垂直三层堆叠方式布置,
    所述主控制模块位于最上面,实现数据的分析与处理,并通过通讯接口将处理结果上送至后台主站系统;
    所述采样输入控制模块位于中间,采样输入控制模块与主控制模块采用插针连接,通过此插针实现采样信号和电源信号向主控制模块的输入,同时通过插针与电源控制摸连接,其供电电源来自于下边的电源控制模块;
    所述电源控制模块位于底层,实现交流电源的输入转换,并实现备用电源功能。
  2. 根据权利要求1所述的一种配变台区感知终端装置,其特征在于所述主控制模块包括微处理器MCU、定时器电路及复位电路、多功能人机接口电路、插拔式通讯接口电路和采样二次滤波电路,所述微控制器MCU分别与定时器电路及复位电路、多功能人机接口电路、插拔式通讯接口电路和采样二次滤波电路连接,实现数据的分析与处理,并将结果输出至通讯接口电路或多功能人机接口电路;
    所述定时器电路及复位电路实现整个硬件系统的复位,并在整个运行期间实时监测系统运行状态,并在系统故障时,及时触发定时器电路,主动复位系统,实现系统重启;
    所述采样二级滤波电路对采样输入信号进行二级滤波,实现信号调整;
    所述多功能人机接口电路完成若干种人机接口功能,如液晶显示、按键处理、系统调试接口以及数据存储接口;
    所述插拔式通讯接口电路采用接插件方式,统一端子定义,安装若干种通讯方式的通讯卡,如GPRS通讯模块、4G模块以及NB-IOT模块,通过此种方式,应用现场实现灵活的应用配置,便于现场的应用。
  3. 根据权利要求1所述的一种配变台区感知终端装置,其特征在于所述采样输入模块包括电流电压采样输入电路、信号滤波电路和信号调理电路;
    所述电流电压采样输入电路实现多通道的电流电压输入采集,其匹配外部的互感器输入,实现电流、电压信号的接入;
    所述信号滤波电路对输入的电流、电压信号进行滤波;
    所述信号调理电路对输入的信号进行拾取及放大,满足采集精度的需求。
  4. 根据权利要求1所述的一种配变台区感知终端装置,其特征在于所述电源控制模块包括三相冗余供电电路、宽电压电源转换电路和备用电源电路;
    所述三相冗余供电电路实现三相电源的输入,并保证在任意两相掉电的情况下,终端仍能正常供电工作;
    所述宽电压电源转换电路实现前端电源输入后的电源转换工作,其能接受500V的宽范围的电压输入,满足现场不同工作情况下的应用,并能提供系统工作的正常工作电压;
    正常工作电压输入到备用电源电路,备用电源电路采用超级电容作为备用电源,实现快速、大容量的电能存储,当终端失电后,超级电容提供后备电源,保证维持终端短时正常工作,在此期间,终端上报失电信息,保存数据。
  5. 根据权利要求1所述的一种配变台区感知终端装置,其特征在于所述采样输入控制模块安装固定在底板上。
  6. 一种配变台区感知方法,该方法基于上述任一权利要求所述的配变台区感知终端装置,其特征在于,包括以下步骤:
    步骤1:实时监测电压电流信号:电流电压采样输入电路接在入户线上,用于实时监测入户的电压和电流,并将采集到的电压电流信息传递给信号滤波电路和信号调理电路;
    步骤2:调理滤波:信号滤波电路和信号调理电路将电压电流信号进行滤波和拾取及放大,并将经过滤波和拾取及放大输入的信号传送到微处理器MCU;
    步骤3:判断数据是否有效:微处理器MCU首先判断数据是否有效,如果为无效数据,进入步骤1,如果有有效数据,进入步骤4;
    步骤4:数据分析:微控制器MCU分别与定时器电路及复位电路、多功能人机接口电路、插拔式通讯接口电路和采样二次滤波电路连接,将有效数据进行基于暂态特征模糊识别算法分析计算分析与处理,并将处理后的数据输出;
    步骤5:数据输出:来自步骤4的数据输出至通讯接口电路或多功能人机接口电路,实现台区全状态的监测和诊断、台区拓扑自动识别、停电主动上报。
PCT/CN2019/113113 2018-11-23 2019-10-24 一种配变台区感知终端装置及感知方法 WO2020103640A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811408044.2 2018-11-23
CN201811408044.2A CN109599941A (zh) 2018-11-23 2018-11-23 一种配变台区感知终端装置及方法

Publications (1)

Publication Number Publication Date
WO2020103640A1 true WO2020103640A1 (zh) 2020-05-28

Family

ID=65959575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113113 WO2020103640A1 (zh) 2018-11-23 2019-10-24 一种配变台区感知终端装置及感知方法

Country Status (2)

Country Link
CN (1) CN109599941A (zh)
WO (1) WO2020103640A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112162174A (zh) * 2020-09-03 2021-01-01 国电南瑞科技股份有限公司 基于营配一体的台区故障定位方法及系统
CN113033666A (zh) * 2021-03-26 2021-06-25 国网上海市电力公司 一种融合采集业务和负荷设计规则的台区户变识别方法
CN113033666B (zh) * 2021-03-26 2024-04-26 国网上海市电力公司 一种融合采集业务和负荷设计规则的台区户变识别方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109599941A (zh) * 2018-11-23 2019-04-09 江苏智臻能源科技有限公司 一种配变台区感知终端装置及方法
CN111123005A (zh) * 2019-12-26 2020-05-08 深圳供电局有限公司 配电房用户出线处电能质量监测系统
CN112615368A (zh) * 2020-12-11 2021-04-06 国网辽宁省电力有限公司鞍山供电公司 一种基于分布式感知的台区拓扑生成方法及感知终端装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201611372U (zh) * 2010-02-22 2010-10-20 江苏省电力公司张家港市供电公司 便携式配变综合测试仪
CN204167920U (zh) * 2014-04-01 2015-02-18 西安智网电子科技有限公司 一种智能配变终端
CN206490503U (zh) * 2017-02-13 2017-09-12 云南电网有限责任公司电力科学研究院 一种配置可灵活增减的配电自动化装置
CN109599941A (zh) * 2018-11-23 2019-04-09 江苏智臻能源科技有限公司 一种配变台区感知终端装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101354408B (zh) * 2008-07-31 2010-08-18 南京能瑞自动化设备有限公司 基于台区集中服务终端的电能采集与运行管理系统及方法
CN201805274U (zh) * 2009-12-23 2011-04-20 中国电力科学研究院 一种多功能智能化配变终端控制装置
CN204536459U (zh) * 2015-05-07 2015-08-05 烟台东方威思顿电气股份有限公司 一种配用电协同优化智能装置
CN108333961A (zh) * 2017-12-29 2018-07-27 国网浙江省电力公司丽水供电公司 一种新型配电网数据采集终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201611372U (zh) * 2010-02-22 2010-10-20 江苏省电力公司张家港市供电公司 便携式配变综合测试仪
CN204167920U (zh) * 2014-04-01 2015-02-18 西安智网电子科技有限公司 一种智能配变终端
CN206490503U (zh) * 2017-02-13 2017-09-12 云南电网有限责任公司电力科学研究院 一种配置可灵活增减的配电自动化装置
CN109599941A (zh) * 2018-11-23 2019-04-09 江苏智臻能源科技有限公司 一种配变台区感知终端装置及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112162174A (zh) * 2020-09-03 2021-01-01 国电南瑞科技股份有限公司 基于营配一体的台区故障定位方法及系统
CN112162174B (zh) * 2020-09-03 2024-04-26 国电南瑞科技股份有限公司 基于营配一体的台区故障定位方法及系统
CN113033666A (zh) * 2021-03-26 2021-06-25 国网上海市电力公司 一种融合采集业务和负荷设计规则的台区户变识别方法
CN113033666B (zh) * 2021-03-26 2024-04-26 国网上海市电力公司 一种融合采集业务和负荷设计规则的台区户变识别方法

Also Published As

Publication number Publication date
CN109599941A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN202059185U (zh) 微电网并离网控制装置
CN110673079B (zh) 一种台区末端感知系统及方法
CN202737576U (zh) 一种用于低压配电网的智能测控装置
WO2020103640A1 (zh) 一种配变台区感知终端装置及感知方法
CN109687590B (zh) 一种分级停复电上报方法、系统
CN104753085A (zh) 一种分布式光伏接入远程在线监测系统
CN103023149A (zh) 一种基于iec61850标准的智能配电终端及智能配电系统
CN104635198B (zh) 故障发现及时的电能计量装置远程监测诊断方法
CN104283319A (zh) 智能配变终端
CN101499650A (zh) 基于gprs的小电流接地选线保护装置及保护方法
CN101873010A (zh) 配电系统智能监控终端
CN115112970B (zh) 一种继电保护操作回路出口压板状态监测方法及系统
CN104678348A (zh) 效率较高的电能计量装置远程监测诊断方法
CN218498873U (zh) 一种智能移动保电终端
CN201993432U (zh) 基于行波及工频量原理的输电线路单端行波故障测距装置
CN104714206B (zh) 一种故障发现及时的电能计量装置远程监测诊断方法
CN113075447A (zh) 一种400v低压配网智能检测装置及方法
CN201717677U (zh) 配电变压器故障监控终端
CN201294152Y (zh) 一种电压互感器微机监测与消谐装置
CN110994787A (zh) 一种低压配网自动化设备及系统
CN104614700A (zh) 一种实时性好的电能计量装置远程监测诊断方法
CN104656050A (zh) 一种节省人力的电能计量装置远程监测诊断方法
CN113328501B (zh) 一种能源站直流屏电池模组柔性连接装置与架构
CN114188941A (zh) 一种台区智能融合终端系统及其应用方法
CN208580491U (zh) 基于双模通讯的电能表系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887437

Country of ref document: EP

Kind code of ref document: A1