WO2020103586A1 - 一种堆叠系统中多主检测方法及堆叠系统 - Google Patents

一种堆叠系统中多主检测方法及堆叠系统

Info

Publication number
WO2020103586A1
WO2020103586A1 PCT/CN2019/110110 CN2019110110W WO2020103586A1 WO 2020103586 A1 WO2020103586 A1 WO 2020103586A1 CN 2019110110 W CN2019110110 W CN 2019110110W WO 2020103586 A1 WO2020103586 A1 WO 2020103586A1
Authority
WO
WIPO (PCT)
Prior art keywords
master detection
master
port group
state
detection
Prior art date
Application number
PCT/CN2019/110110
Other languages
English (en)
French (fr)
Inventor
李金涛
孟非
王治平
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020103586A1 publication Critical patent/WO2020103586A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability

Definitions

  • Embodiments of the present invention relate to but are not limited to a multi-master detection method and stacking system in a stacking system.
  • the stacking system is a network virtualization technology, which is to combine multiple physical devices that can be run separately into a logical device, discover each other through a protocol, and select a master device through a certain mechanism, and other devices assume the forwarding role. .
  • the entire stacking system maintains the stability of the stacking system through heartbeat keepalive messages between the control planes of the member devices.
  • the stacking system mainly has the following advantages: 1.
  • the stacking system manages all member devices in a unified manner, which simplifies management; 2.
  • the various control protocols running in the stacking system form are not aware of the existence of multiple member devices, simplifying the network; 3
  • the stacking system supports cross-device link aggregation, which can achieve protocol-level and device-level cross-device link backup, which improves forwarding reliability.
  • an embodiment of the present invention provides a multi-master detection method in a stacked system, including: detecting the state of the multi-master detection port group and the first multi-master detection timer state of the multi-master detection port group;
  • the multi-primary detection packet redundancy backup group is started and the multi-primary detection packet is sent and received through the stacked port group Text.
  • An embodiment of the present invention also provides a stacking system, including: a detection unit configured to detect a multi-master detection port group state and a first multi-master detection timer state of the multi-master detection port group; a management unit configured to be a multi-master When the state of all ports in the detection port group is DOWN or the state of the first multi-master detection timer is overtime, the redundant backup group of the multi-master detection message is started and the multi-master detection message is sent and received through the stacked port group.
  • An embodiment of the present invention also provides a stacking system, including a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor to implement the above Multi-master monitoring method.
  • An embodiment of the present invention further provides a computer-readable storage medium, wherein the computer-readable storage medium stores an information processing program, and when the information processing program is executed by a processor, the steps of the multi-master monitoring method described above are implemented.
  • embodiments of the present invention provide a multi-master detection method and a stack system in a stacking system, where the multi-master detection method includes: detecting the state of the multi-master detection port group and the first multi-master detection port group Main detection timer status; when all ports in the multi-primary detection port group are DOWN or the first multi-primary detection timer state is overtime, the multi-primary detection packet redundancy backup group starts to pass through the stacking port
  • the group sends and receives multi-master detection messages. In this way, not only can the redundant protection of the multi-master detection message of the stacking system be realized, but also the bandwidth of the idle stacking port group can be fully utilized, which improves the utilization efficiency of physical resources.
  • Figure 1 is a schematic structural diagram of an existing stacking system
  • FIG. 2 is a schematic flowchart of a multi-master detection method in a stacking system according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic flowchart of a multi-master detection method in a stacking system provided by Embodiment 2 of the present invention.
  • FIG. 4 is a schematic flowchart of a multi-master detection method in a stacking system provided by Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of a stacking system according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic structural diagram of a stacking system according to Embodiment 5 of the present invention.
  • FIG. 1 is a schematic structural diagram of an existing stacking system.
  • the first type is the cascading port (cascading link group) of the control plane. Heartbeat keepalive packets form a stacking system;
  • the second type is the stacking port (stacking link group) of the forwarding plane (also called the service plane), which is set to transmit service data packets between each member device in the stacking system;
  • Three are multi-master detection ports (multi-master detection link group) of the forwarding plane, which are set to multi-master detection.
  • the multi-primary detection packet can only be transmitted through the multi-primary detection port group on the forwarding plane. Once the multi-primary detection port, cable, etc. fails and the multi-primary detection packet processing times out, then the stacking system is abnormally split. , Two or more devices with the same IP will appear in the network, which will seriously affect the normal operation of the network.
  • the present disclosure provides a new multi-master detection technical solution.
  • the multi-master detection message is transmitted by using the stack port of the forwarding plane.
  • the redundant protection can also make full use of the bandwidth of idle stack port groups, which improves the utilization efficiency of physical resources.
  • the multi-master detection method includes:
  • Step 201 Detect the state of the multi-master detection port group and the state of the first multi-master detection timer of the multi-master detection port group;
  • Step 202 When all the ports in the multi-primary detection port group are DOWN or the first multi-primary detection timer is in the timeout state, the redundant backup group of the multi-primary detection message is started to start sending and receiving multiple messages through the stacked port group Main detection message.
  • the method before the redundant backup group of the multi-master detection message starts to send and receive the multi-master detection message through the stack port group, the method further includes:
  • the method further includes:
  • the method further includes:
  • the state of the second multi-master detection timer is a timeout state
  • the state of the first multi-master detection timer is judged
  • the method further includes:
  • the second multi-master detection timer is deleted.
  • the state of the first multi-master detection timer is a timeout state
  • the control plane sends a start start message to the stack port group to start the multi-master detection
  • the message redundancy backup group starts to send and receive multi-master detection messages through the stack port group;
  • the control plane sends a first stop stop message to the stack port group to stop the multi-master
  • a redundant backup group of detection messages sends and receives multi-master detection messages through the stack port group;
  • the stack port When the state of the second multi-master detection timer is overtime, the stack port sends a second stop stop message to the control plane, and after receiving the second stop message, the control plane determines The first multi-master detection timer state; when the first multi-master detection timer state returns to the normal state, the control plane sends a first stop stop message to the stack port group to stop the multi-master detection message
  • the redundant backup group sends and receives multi-master detection messages through the stack port group.
  • the multi-master detection message detection function is switched to the stack port group operation according to the multi-master detection port state and the multi-master detection message timer state in the stacking system. Not only can the redundant protection of multi-master detection packets in the stacking system be realized, but also the bandwidth of idle stack port groups can be fully utilized, which improves the efficiency of the utilization of physical resources.
  • a stacking port group mainly uses multiple large-bandwidth ports for bundling when deploying a network.
  • only a small number of services need to be forwarded across member devices through the stacking port group. Therefore, a part of the bandwidth of the stack port group is idle, and a multi-primary detection packet redundancy backup group is generated on the basis of the stack port group to transmit the multi-primary detection packet, which can not only realize the redundant protection of the multi-primary detection packet of the stacking system. It can also make full use of the bandwidth of idle stack port groups, which improves the utilization efficiency of physical resources.
  • the technical solution provided in the second embodiment of the present invention requires that the forwarding plane of the stacking system has a stack port and uses the stacking ports of the forwarding plane to transmit the multi-master detection message, that is, the existing stack port group in the stacking system is used to generate the multi-master detection message Redundant backup group, according to the state of the multi-primary detection port and the state of the multi-primary detection packet timer in the stacking system, the multi-primary detection packet detection function is switched to the stack port group operation.
  • FIG. 3 is a schematic flowchart of a multi-master detection method in a stacking system provided by Embodiment 2 of the present invention. As shown in FIG. 3, the multi-master detection method includes:
  • Step 301 Configure a stack port group on the stack system
  • sending and receiving (transmitting and receiving) of the multi-master detection message through the multi-master detection port group is an existing technology and will not be repeated here.
  • Multi-primary detection port group The processing priority of multi-primary detection packets is higher than other packets sent to the CPU. Multi-primary detection packets are the key to the back-up of the entire stack system that is abnormally split. Ports of various speed types can be added to the stack port group. Members added to the stack port group can no longer be used by other services.
  • Step 302 Configure a redundant backup group of multi-master detection messages on the stacking system and associate it with the stacking port group;
  • the multi-master detection message redundant backup group can be configured on the stacking system through the configuration unit and bound to the configured stacking port group.
  • Step 303 Detect the state of the multi-master detection port group and the state of the first multi-master detection timer of the multi-master detection port group;
  • the stack system When the stack system detects that the state of the multi-primary detection port group is UP and the state of the first multi-primary detection timer of the multi-primary detection port group is normal, it continues to transmit the multi-primary detection report through the multi-primary detection port group of the forwarding plane This is the prior art and will not be repeated here.
  • Step 304 When the stacking system detects that all the ports in the multi-primary detection port group are DOWN or the first multi-primary detection timer of the multi-primary detection port group is in the timeout state, redundant backup of the multi-primary detection message is started
  • the group begins to send and receive multi-master detection packets through the stack port group;
  • the multi-master detection message After the status of all ports in the multi-master detection port group is DOWN, the multi-master detection message cannot be received within a preset timing period, and the first multi-master detection timer enters a timeout state.
  • Step 305 the redundant backup group of the multi-master detection message starts to send and receive the multi-master detection message to ensure the normal operation of the stacking system;
  • control plane can send a message to the stack port group after detecting that the multi-primary detection port is down or the keep-alive timer (first multi-primary detection timer) times out, which is maintained by the stack port group and protects the stack port group.
  • the status of the live timer informs the control plane.
  • the control plane of the master device may also directly send the multi-master detection message to the stack port group, and then send the stack port group to the control plane of the backup device.
  • Step 306 when the stacking system detects that the state of the multi-primary detection port is UP and the state of the first multi-primary detection timer of the multi-primary detection port is normal, stopping the redundant backup group of the multi-primary detection message from passing through the stacking port
  • the group sends and receives multi-master detection messages, and resumes sending and receiving multi-master detection messages through the multi-master detection port group;
  • the stacking system detects that the status of the multi-primary detection port becomes UP, the heartbeat message of the multi-primary detection port can be sent normally, and the state of the multi-primary detection timer changes to normal, so the redundant backup group of the multi-primary detection message stops Send heartbeat packets, and resume sending and receiving multi-master detection packets by the multi-master detection port group to ensure the normal operation of the stacking system.
  • the technical solution provided in the second embodiment of the present invention by creating a redundant backup group of multi-master detection messages on the stacking system, when the multi-master detection ports or cables in the existing stacking system fail, the multi-master detection messages are processed Overtime, the multi-master detection message of the stacking system is automatically switched to the redundant backup group to continue detection, so as to better ensure the normal transmission and processing of the multi-master detection message, so that the stacking system can run stably.
  • Embodiment 3 of the present invention uses the stack port group of the stacking system to create a redundant backup group of multi-master detection messages.
  • the multi-master detection port group or cable in the existing stacking system fails, the multi-master detection
  • the multi-master detection function of the stack system automatically switches to the multi-master detection message redundant backup group, which ensures the stability of the stack system, fully utilizes the idle bandwidth of the stack port group in the stack system, and improves user satisfaction.
  • the multi-master detection method includes:
  • Step 401 when the stacking system detects that all ports in the multi-primary detection port group are DOWN or the first multi-primary detection timer of the multi-primary detection port group is in the timeout state, redundant backup of the multi-primary detection message is started
  • the group begins to send and receive multi-master detection packets through the stack port group;
  • the control plane of the master device When the control plane of the master device detects that the first multi-primary detection packet timer of the multi-primary detection port group has timed out due to a link failure, it creates and starts the second multi-primary detection packet timer of the stacking port group.
  • the multi-master detection message is sent from the multi-master detection message redundant backup group to the stack port group.
  • the stack port group receives the multi-master detection message from the redundant backup group, it is directly sent to the control plane of the backup device.
  • the control plane continues to maintain multi-master detection packets, but the packet path has changed.
  • the control plane sends a "start" message to the stack port group.
  • the purpose is to allow the stack port group to continue to maintain the multi-master detection packets sent regularly.
  • the stack port group Receiving the "start” message from the control plane, replying to the control plane with "ack” confirmation, and simultaneously starting the timer of the stack port group associated with the redundant backup group of the multi-master detection message (second multi-master detection timer) , Send multi-master detection message, the subsequent multi-master detection is done independently by the stack port group.
  • the stack port group needs to periodically report the control plane "status” message, and the control plane responds with an "ack” message for confirmation. This process maintains the connectivity between the control plane and the stack port group.
  • Step 402 when the stacking system detects that the state of the second multi-master detection timer of the stack port group is the timeout state, it judges the state of the first multi-master detection timer again, and when the state of the first multi-master detection timer changes to the normal state, Step 403 is executed; when the state of the first multi-master detection timer is still overtime, step 404 is executed;
  • the multi-master detection timer can be run on the redundant backup group in addition to the multi-master detection port group; when the multi-master detection message is sent, the timer works periodically, and one multi-master is sent every timer period Test the message.
  • the multi-master detection message is received, the multi-master detection message is not received within a certain timer period, and the timer enters a timeout state.
  • the multi-master detection message is received before entering the timer timeout state, the timer is still in the normal state.
  • Step 403 stop the stack port group from sending the multi-master detection message, and resume sending and receiving the multi-master detection message by the multi-master detection port group;
  • the first multi-master detection timer when the first multi-master detection timer receives the multi-master detection message due to link restoration, change the state of the first multi-master detection message timer to normal, and delete the second multi-master detection timer to stop forwarding
  • the plane sends multi-master detection packets and starts to send multi-master detection packets through the multi-master detection port group.
  • the keep-alive timer is set to the normal state, and a first "stop" message is sent to the stack port group to make the stack
  • the port group stops sending multi-master detection packets.
  • the stack port group should delete the second multi-master detection timer, stop sending multi-master detection packets, and return an "ack" confirmation message.
  • Step 403 Perform a stack splitting process.
  • the stack port group when the stack port group fails to cause the second multi-master detection timer to expire, it sends a second "stop" message to the control plane of the master device. After receiving the second "stop” message, the control plane determines the control plane The state of the keep-alive timer (first multi-master detection timer) determines that the control plane keep-alive timer (first multi-master detection timer) is in the timeout state, and then performs a stack splitting process and returns an "ack" message. After the stacking system splits, select one of the members to continue working. The other members should stop all forwarding work and close all ports except the stacking ports.
  • Embodiment 3 of the present invention uses the stack port group of the stacking system to create a redundant backup group of multi-master detection messages.
  • the multi-master detection port group or cable in the existing stacking system fails, the multi-master detection
  • the multi-master detection function of the stack system automatically switched to the multi-master detection message redundant backup group, which ensured the stability of the stack system.
  • the price paid was only to occupy the idle bandwidth of the stack port group in the stack system, and it did not increase.
  • the burden of the equipment also makes full use of the idle bandwidth of the stack port group in the stacking system, which improves user satisfaction.
  • Embodiment 4 of the present invention provides a stacking system, which uses a stacking port group of the stacking system to create a redundant backup group of multi-primary detection packets.
  • a multi-primary detection port group or cable in the stacking system fails, the multi-primary detection
  • the multi-master detection function of the stack system automatically switches to the multi-master detection message redundant backup group, which ensures the stability of the stack system, fully utilizes the idle bandwidth of the stack port group in the stack system, and improves user satisfaction.
  • the stacking system includes:
  • the detection unit is set to detect the state of the multi-master detection port group and the state of the first multi-master detection timer of the multi-master detection port group;
  • the management unit is configured to start the redundant backup group of the multi-primary detection message and start to pass through the stacking port group when all the ports in the multi-primary detection port group are in DOWN state or the first multi-primary detection timer state is in the timeout state. Send and receive multi-master detection messages.
  • the stacking system also includes:
  • the configuration unit is configured to configure the stacking port group on the stacking system; it is also configured to configure the multi-master detection message redundant backup group on the stacking system and redundantly backup the multi-master detection message The group is associated with the stack port group.
  • the management unit is further configured to stop the multi-master detection message redundant backup group from passing when the multi-master detection port group status is UP and the first multi-master detection timer status is normal state
  • the stack port group sends and receives multi-master detection messages, and resumes sending and receiving multi-master detection messages through the multi-master detection port group.
  • the detection unit is further configured to detect the state of the second multi-master detection timer of the stack port group
  • the management unit is further configured to determine the state of the first multi-master detection timer when the state of the second multi-master detection timer is overtime;
  • the management unit is further configured to create and start a second multi-master detection timer for the stack port group; and stop the multi-master detection message redundant backup group to send and receive multi-master through the stack port group When detecting a message, delete the second multi-master detection timer.
  • the state of the first multi-master detection timer is a timeout state
  • the state of the first multi-master detection timer returns to the normal state.
  • the stacking system also includes:
  • the message sending unit is set to send a start start message to the stack port group by the control plane when the status of all ports in the multi-master detection port group is DOWN or the state of the first multi-master detection timer is overtime. Start the redundant backup group of multi-master detection messages and start to send and receive multi-master detection messages through the stack port group;
  • the control plane sends a first stop stop message to the stack port group to stop the multi-master
  • a redundant backup group of detection messages sends and receives multi-master detection messages through the stack port group;
  • the stack port When the state of the second multi-master detection timer is overtime, the stack port sends a second stop stop message to the control plane, and after receiving the second stop message, the control plane determines The first multi-master detection timer state; when the first multi-master detection timer state returns to the normal state, the control plane sends a first stop stop message to the stack port group to stop the multi-master detection message
  • the redundant backup group sends and receives multi-master detection messages through the stack port group.
  • Embodiment 4 of the present invention by configuring a redundant backup port group of multi-master detection messages on the switch stacking system, when the switch stacking system, multi-master detection ports or cables fail, the multi-master detection messages are processed Overtime, the multi-master detection function of the stacking system automatically switches to the redundant backup group operation of the forwarding plane to better ensure the stability of the stacking system, and also fully utilizes the idle bandwidth of the stacking port group in the stacking system to improve user satisfaction .
  • FIG. 6 is a schematic structural diagram of a stacking system according to Embodiment 5 of the present invention. As shown in Figure 6, the stacking system includes:
  • the configuration module is configured to configure a stack port group on the stacking system and create a multi-master detection message redundant backup group, and associate the multi-master detection message redundant backup group to the stack port group;
  • the stack port group can be configured on the stacking system through the human-computer interaction interface, and the redundant backup group of the multi-master detection message is associated with the stack port group.
  • the message transceiver module is configured to receive or send multi-master detection messages from member devices on the stacking system;
  • the message sending and receiving module constructs and sends the message according to the set timer interval, and at the same time sends the received multi-master detection message to the CPU for processing.
  • the redundant backup group of the multi-primary detection packet is started and the multi-primary is sent and received through the stacked port group Detection message; when the state of the multi-primary detection port group is UP and the state of the first multi-primary detection timer is normal state, stop sending and receiving of the redundant backup group of the multi-primary detection message through the stacking port group Multi-master detection message, and resumes sending and receiving multi-master detection message through the multi-master detection port group.
  • the multi-master detection message can be sent and received through the message sending and receiving module.
  • the message processing module is configured to process the multi-master detection message received by the message receiving and sending module on the stacking system
  • the multi-master detection timer module is set to process the multi-master detection packet sending interval and the multi-master detection packet timeout calculation on the stacking system;
  • the multi-master detection timer can be run on the redundant backup group in addition to the multi-master detection port group; when the multi-master detection message is sent, the timer works periodically, and one multi-master is sent every timer period Test the message.
  • the multi-master detection message is received, the multi-master detection message is not received within a certain timer period, and the timer enters a timeout state.
  • the multi-master detection message is received before entering the timer timeout state, the timer is still in the normal state.
  • Message interaction module set up for the message delivery of the multi-master detection port group and stack port group of the stacking system
  • the "start” message, "status” message, "stop” message, and "ack” message between the control plane and the stack ports can be sent through the message interaction module.
  • the control plane will send a "start” message to the stack port group.
  • the purpose is to allow the stack port group to continue to maintain the scheduled sending of multi-master detection packets.
  • the stack port group receives To the "start” message sent to the control plane, reply “ack” confirmation to the control plane, and at the same time start the redundant backup port group timer, and send the multi-master detection message.
  • the subsequent multi-master detection is done independently by the stack port group.
  • the stack port group needs to periodically report the control plane "status" message, and the control plane responds with an "ack” message for confirmation. This process maintains the connectivity between the control plane and the stack port group.
  • the multi-master detection timer times out due to a fault in the stack port group, it sends a "stop" message to the control plane. After receiving the "stop” message, the control plane determines the timeout status of the control plane keep-alive timer, and then performs the stack splitting process And return the "ack" message.
  • control plane When the control plane receives the multi-primary detection message before the multi-primary detection timer expires, it sets the keep-alive timer to the normal state and sends a "stop" message to the stack port group to stop the stack port group from sending the multi-master detection message. Text.
  • the stack port group should delete the multi-master detection timer, stop sending multi-master detection packets, and return an "ack" confirmation message.
  • the message interaction module may not directly deliver the message, but directly send and send the multi-master detection message.
  • the stacking system module is set up to establish and split the stacking system of each member device.
  • the detection unit in the foregoing fourth embodiment may be implemented by the multi-master detection timer module in the fifth embodiment, and the management unit in the foregoing fourth embodiment may be implemented by the message transceiving module and the message interaction module in the fifth embodiment.
  • the configuration unit in Example 4 may be implemented by the configuration module in Example 5.
  • Embodiment 5 of the present invention generates a multi-master detection message redundancy group on the basis of a stack port group to transmit a multi-master detection message. Not only can the redundant protection of the multi-master detection message in the stacking system be realized, but also the The idle stack port group makes full use of the bandwidth, which improves the utilization efficiency of physical resources.
  • An embodiment of the present invention also provides a stacking system, including a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor to implement the above The multi-master detection method as described in any one.
  • An embodiment of the present invention also provides a computer-readable storage medium having an information processing program stored on the computer-readable storage medium.
  • the information processing program is executed by a processor to implement any of the multi-master detection methods described above A step of.
  • computer storage media includes both volatile and nonvolatile implemented in any method or technology for storing information such as computer readable instructions, data structures, program modules, or other data Sex, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium for storing desired information and accessible by a computer.
  • the communication medium generally contains computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .
  • Embodiments of the present invention provide a multi-master detection method and a stack system in a stacking system, where the multi-master detection method includes: detecting a multi-master detection port group state and a first multi-master detection timer state of the multi-master detection port group; When all the ports in the multi-primary detection port group are DOWN or the first multi-primary detection timer is in the timeout state, the multi-primary detection packet redundancy backup group is started and the multi-primary detection packet is sent and received through the stacked port group Text. In this way, not only can the redundant protection of the multi-master detection message of the stacking system be realized, but also the bandwidth of the idle stacking port group can be fully utilized, which improves the utilization efficiency of physical resources.

Abstract

本发明实施例公开了一种堆叠系统中多主检测方法及堆叠系统,其中该多主检测方法包括:检测多主检测端口组状态和多主检测端口组的第一多主检测定时器状态;当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文。如此,不仅可以实现堆叠系统多主检测报文的冗余保护,还可以将闲置的堆叠端口组带宽充分利用,提高了物理资源的利用效率。

Description

一种堆叠系统中多主检测方法及堆叠系统 技术领域
本发明实施例涉及但不限于一种堆叠系统中多主检测方法及堆叠系统。
背景技术
堆叠系统是一种网络虚拟化技术,就是把多台可以单独运行的物理设备组合成一台逻辑设备,彼此之间通过协议发现对方,并通过一定的机制选择一台主设备,其它设备担任转发角色。整个堆叠系统通过各成员设备控制平面之间的心跳保活报文来维护堆叠系统的稳定。
堆叠系统主要有以下优势:1、堆叠系统对所有成员设备进行统一管理,简化了管理;2、堆叠系统形中运行的各种控制协议感知不到多个成员设备的存在,简化了网络;3、堆叠系统支持跨设备的链路聚合,可以实现协议级和设备级跨设备链路备份,提高了转发可靠性。
但是当控制平面的心跳报文收发超时,则堆叠系统会分裂为各个成员独立运行,由于原来堆叠系统内各个成员共用IP和Mac,因此分裂后,网络中将出现两台或两台以上的IP、基Mac相同的设备,严重影响网络的正常运行。
发明内容
有鉴于此,本发明实施例提供了一种堆叠系统中多主检测方法,包括:检测多主检测端口组状态和多主检测端口组的第一多主检测定时器状态;
当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文。
本发明实施例还提供了一种堆叠系统,包括:检测单元,设置为检测多主检测端口组状态和多主检测端口组的第一多主检测定时器状态;管理 单元,设置为当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文。
本发明实施例还提供了一种堆叠系统,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述的多主监测方法。
本发明实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有信息处理程序,所述信息处理程序被处理器执行时实现上述多主监测方法的步骤。
与相关技术相比,本发明实施例提供了一种堆叠系统中多主检测方法及堆叠系统,其中该多主检测方法包括:检测多主检测端口组状态和多主检测端口组的第一多主检测定时器状态;当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文。如此,不仅可以实现堆叠系统多主检测报文的冗余保护,还可以将闲置的堆叠端口组带宽充分利用,提高了物理资源的利用效率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为现有堆叠系统的结构示意图;
图2为本发明实施例一提供的堆叠系统中多主检测方法的流程示意图;
图3为本发明实施例二提供的堆叠系统中多主检测方法的流程示意图;
图4为本发明实施例三提供的堆叠系统中多主检测方法的流程示意图;
图5为本发明实施例四提供的堆叠系统的结构示意图;
图6为本发明实施例五提供的堆叠系统的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1为现有堆叠系统的结构示意图。在现有的交换机堆叠组网方案中,涉及堆叠应用的端口有三种,如图3所示,第一种是控制平面的级联端口(级联链路组),设置为传输管理堆叠系统的心跳保活报文,形成堆叠系统;第二种是转发平面(也称为业务平面)的堆叠端口(堆叠链路组),设置为传输堆叠系统中各成员设备间的业务数据报文;第三种是转发平面的多主检测端口(多主检测链路组),设置为多主检测。当堆叠系统异常分裂后,备设备会自动退避,以免影响主设备的正常转发。由于现有堆叠系统中多主检测报文只能通过转发平面的多主检测端口组传输,一旦多主检测端口、线缆等出现故障导致多主检测报文处理超时,那么堆叠系统异常分裂时,网络中将会出现两台或两台以上同IP的设备,严重影响网络的正常运行。
为此,本公开提供了一种新的多主检测技术方案,当多主检测端口故障时,利用转发平面的堆叠端口传输多主检测报文,如此,不仅可以实现堆叠系统多主检测报文的冗余保护,还可以将闲置的堆叠端口组带宽充分利用,提高了物理资源的利用效率。
实施例一
图2为本发明实施例一提供的堆叠系统中多主检测方法的流程示意图。如图2所示,该多主检测方法,包括:
步骤201,检测多主检测端口组状态和多主检测端口组的第一多主检测定时器状态;
步骤202,当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文。
其中,在多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文之前,该方法还包括:
在堆叠系统上配置所述堆叠端口组;
在所述堆叠系统上配置所述多主检测报文冗余备份组,并将所述多主检测报文冗余备份组关联到所述堆叠端口组。
其中,在多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文之后,该方法还包括:
当所述多主检测端口组状态恢复为UP且所述第一多主检测定时器状态恢复为正常状态时,停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文,并恢复通过所述多主检测端口组收发多主检测报文。
其中,在通过堆叠端口组收发多主检测报文之后,该方法还包括:
检测所述堆叠端口组的第二多主检测定时器状态;
当所述第二多主检测定时器状态为超时状态时,判断所述第一多主检测定时器状态;
当所述第一多主检测定时器状态为正常状态时,停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文,并恢复通过所述多主检测端口组收发多主检测报文;
当所述第一多主检测定时器状态仍为超时状态时,进行堆叠分裂流程。
其中,当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,该方法还包括:
为所述堆叠端口组创建并启动第二多主检测定时器;
并在停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文时,删除所述第二多主检测定时器。
其中,当多主检测端口组没有在预设定时器周期内接收到多主检测报文时,所述第一多主检测定时器状态为超时状态;
当多主检测端口组故障在预设定时器周期内接收到多主检测报文时,所述第一多主检测定时器状态为正常状态。
其中,当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,由控制平面向所述堆叠端口组发送启动start消息,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文;
当所述多主检测端口组状态恢复为UP且所述第一多主检测定时器状态恢复为正常状态时,由控制平面向所述堆叠端口组发送第一停止stop消息,停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文;
当所述第二多主检测定时器状态为超时状态时,由所述堆叠端口向所述控制平面发送第二停止stop消息,所述控制平面收到所述第二stop消息后,判断所述第一多主检测定时器状态;当所述第一多主检测定时器状态恢复为正常状态时,由控制平面向所述堆叠端口组发送第一停止stop消息,停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文。
本发明实施例一提供的技术方案,根据堆叠系统中多主检测端口状态及多主检测报文定时器状态将多主检测报文检测功能切换至堆叠端口组运行。不仅可以实现堆叠系统多主检测报文的冗余保护,还可以将闲置的 堆叠端口组带宽充分利用,提高了物理资源的利用效率。
下面通过两个具体的实施例详细阐述上述技术方案。
实施例二
堆叠系统中堆叠端口组在部署网络组网时主要采用多个大带宽端口进行捆绑,而实际运行中只有少量业务需要通过堆叠端口组进行跨成员设备转发。因此,堆叠端口组带宽是有一部分闲置的,在堆叠端口组基础上生成多主检测报文冗余备份组传输多主检测报文,不仅可以实现堆叠系统多主检测报文的冗余保护,还可以将闲置的堆叠端口组带宽充分利用,提高了物理资源的利用效率。
本发明实施例二提供的技术方案,要求堆叠系统的转发平面存在堆叠端口,并利用转发平面的堆叠端口传输多主检测报文,即利用堆叠系统中现有的堆叠端口组生成多主检测报文冗余备份组,根据堆叠系统中多主检测端口状态及多主检测报文定时器状态将多主检测报文检测功能切换至堆叠端口组运行。
图3为本发明实施例二提供的堆叠系统中多主检测方法的流程示意图。如图3所示,该多主检测方法,包括:
步骤301,在堆叠系统上配置堆叠端口组;
其中,现有堆叠系统中,通过多主检测端口组(包含一个或者多个多主检测端口)发送接收(收发)多主检测报文,为现有技术,在此不再赘述。
多主检测端口组多主检测报文的处理优先级高于其它上送CPU的报文,多主检测报文是整个堆叠系统异常分裂后备设备退避的关键。各速率类型的端口均可以加入到堆叠端口组内。加入到堆叠端口组内的成员不能再被其它业务使用。
步骤302,在堆叠系统上配置多主检测报文冗余备份组并关联到所述堆叠端口组;
其中,可以通过配置单元在堆叠系统上配置多主检测报文冗余备份组并绑定到配置的堆叠端口组上。
步骤303,检测多主检测端口组状态和多主检测端口组的第一多主检测定时器状态;
其中,当堆叠系统检测到多主检测端口组状态为UP且多主检测端口组的第一多主检测定时器状态为正常状态,则继续通过转发平面的多主检测端口组传输多主检测报文,此为现有技术,在此不再赘述。
步骤304,当堆叠系统检测到多主检测端口组内所有的端口状态均为DOWN或多主检测端口组的第一多主检测定时器状态为超时状态时,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文;
其中,多主检测端口组内所有端口状态为DOWN后,多主检测报文预设定时周期内接收不到,第一多主检测定时器进入超时状态。
步骤305,多主检测报文冗余备份组开始发送接收多主检测报文,保障堆叠系统正常运行;
其中,控制平面在检测到多主检测端口DOWN或者保活定时器(第一多主检测定时器)超时后可以向堆叠端口组发送消息,由堆叠端口组自己维护,并将堆叠端口组的保活定时器(第一多主检测定时器)状态通知控制平面。也可以由主设备的控制平面直接将多主检测报文发送到堆叠端口组,再由堆叠端口组上送到备设备的控制平面。
步骤306,当堆叠系统检测多主检测端口状态为UP且多主检测端口的第一多主检测定时器状态为正常状态时,停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文,并恢复通过所述多主检测端口组收发多主检测报文;
其中,当堆叠系统检测到多主检测端口状态变为UP后,多主检测端口的心跳报文能够正常发出,多主检测定时器状态转为正常,如此多主检测报文冗余备份组停止发送心跳报文,并且恢复由多主检测端口组发送接收多主检测报文,保障堆叠系统正常运行。
本发明实施例二提供的技术方案,通过在堆叠系统上创建多主检测报文的冗余备份组,当现有堆叠系统中多主检测端口或者线缆等出现故障导致多主检测报文处理超时,堆叠系统多主检测报文自动切换至冗余备份组继续检测,更好的保障多主检测报文正常传输处理,使堆叠系统可以稳定运行。
实施例三
本发明实施例三提供的技术方案,利用堆叠系统的堆叠端口组创建多主检测报文的冗余备份组,当现有堆叠系统中多主检测端口组或者线缆等出现故障导致多主检测报文处理超时,堆叠系统多主检测功能自动切换至多主检测报文冗余备份组,保证了堆叠系统的稳定性,充分利用堆叠系统中堆叠端口组闲置带宽,提高了用户满意度。
图4为本发明实施例三提供的堆叠系统中多主检测方法的流程示意图。如图4所示,该多主检测方法,包括:
步骤401,当堆叠系统检测到多主检测端口组内所有的端口状态均为DOWN或多主检测端口组的第一多主检测定时器状态为超时状态时,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文;
其中,当主设备的控制平面检测到因链路故障导致多主检测端口组的第一多主检测报文定时器超时,则创建并启动堆叠端口组的第二多主检测报文定时器,同时将多主检测报文由多主检测报文冗余备份组发向堆叠端口组,当堆叠端口组从冗余备份组接收到多主检测报文后直接上送到备设备的控制平面,这样控制平面仍然继续维护多主检测报文,只是报文路径发生了变化。
具体而言,当多主检测端口组发生故障导致定时器超时,控制平面会向堆叠端口组发送“start”消息,目的是让堆叠端口组继续维护多主检测报文的定时发送,堆叠端口组收到控制平面发来的“start”消息,向控制平面回复“ack”确认,并同时启动多主检测报文冗余备份组关联的堆叠端口组的定时器(第二多主检测定时器),发送多主检测报文,后面的多 主检测由堆叠端口组独立完成。堆叠端口组需要定期上报控制平面“status”消息,控制平面回应“ack”消息进行确认,这个过程来维护控制平面和堆叠端口组的连通性。
步骤402,当堆叠系统检测到堆叠端口组的第二多主检测定时器状态为超时状态时,再次判断第一多主检测定时器状态,当第一多主检测定时器状态转为正常状态,则执行步骤403;当第一多主检测定时器状态仍为超时状态,则执行步骤404;
其中,多主检测定时器除了在多主检测端口组运行,也会可选的在冗余备份组上运行;多主检测报文发送时,定时器周期工作,每定时器周期发送一个多主检测报文。多主检测报文接收时,一定定时器周期内未接收到多主检测报文,定时器进入超时状态。进入定时器超时状态前内接收到了多主检测报文,则定时器仍处于正常状态。
步骤403,使堆叠端口组停止发送多主检测报文,恢复由多主检测端口组收发多主检测报文;
其中,当第一多主检测定时器因链路恢复接收到了多主检测报文后,更改第一多主检测报文定时器状态为正常,并删除第二多主检测定时器,停止向转发平面发送多主检测报文,并开始通过多主检测端口组发送多主检测报文。
具体而言,当主设备的控制平面在多主检测定时器超时前收到了多主检测报文,则将保活定时器置为正常状态,向堆叠端口组发送第一“stop”消息,使堆叠端口组停止发送多主检测报文。堆叠端口组应删除第二多主检测定时器,并停止发送多主检测报文,返回“ack”确认消息。
步骤403,进行堆叠分裂流程。
具体而言,当堆叠端口组因故障导致第二多主检测定时器超时,会向主设备的控制平面发送第二“stop”消息,控制平面接收到第二“stop”消息后,判断控制平面保活定时器(第一多主检测定时器)的状态,判断控制平面保活定时器(第一多主检测定时器)状态为超时状态,则进行堆 叠分裂流程,并返回“ack”消息。堆叠系统分裂后,选择其中一个成员继续工作,其它成员应停止所有转发工作,并关闭除堆叠口外的所有端口。
本发明实施例三提供的技术方案,利用堆叠系统的堆叠端口组创建多主检测报文的冗余备份组,当现有堆叠系统中多主检测端口组或者线缆等出现故障导致多主检测报文处理超时,堆叠系统多主检测功能自动切换至多主检测报文冗余备份组,保证了堆叠系统的稳定性,付出的代价是仅仅是占用堆叠系统中堆叠端口组闲置带宽,并没有增加设备的负担,也充分利用堆叠系统中堆叠端口组闲置带宽,提高了用户满意度。
实施例四
本发明实施例四提供了一种堆叠系统,利用堆叠系统的堆叠端口组创建多主检测报文的冗余备份组,当堆叠系统中多主检测端口组或者线缆等出现故障导致多主检测报文处理超时,堆叠系统多主检测功能自动切换至多主检测报文冗余备份组,保证了堆叠系统的稳定性,充分利用堆叠系统中堆叠端口组闲置带宽,提高了用户满意度。
图5为本发明实施例四提供的堆叠系统的结构示意图。如图5所示,该堆叠系统包括:
检测单元,设置为检测多主检测端口组状态和多主检测端口组的第一多主检测定时器状态;
管理单元,设置为当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文。
其中,该堆叠系统还包括:
配置单元,设置为在堆叠系统上配置所述堆叠端口组;还设置为在所述堆叠系统上配置所述多主检测报文冗余备份组,并将所述多主检测报文冗余备份组关联到所述堆叠端口组。
其中,所述管理单元,还设置为当所述多主检测端口组状态为UP且所述第一多主检测定时器状态为正常状态时,停止所述多主检测报文冗余 备份组通过所述堆叠端口组收发多主检测报文,并恢复通过所述多主检测端口组收发多主检测报文。
其中,所述检测单元,还设置为检测所述堆叠端口组的第二多主检测定时器状态;
所述管理单元,还设置为当所述第二多主检测定时器状态为超时状态时,判断所述第一多主检测定时器状态;
当所述第一多主检测定时器状态恢复为正常状态时,停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文,并恢复通过所述多主检测端口组收发多主检测报文;
当所述第一多主检测定时器状态仍为超时状态时,进行堆叠分裂流程。
其中,所述管理单元,还设置为为所述堆叠端口组创建并启动第二多主检测定时器;并在停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文时,删除所述第二多主检测定时器。
其中,当多主检测端口组没有在预设定时器周期内接收到多主检测报文时,所述第一多主检测定时器状态为超时状态;
当多主检测端口组在预设定时器周期内接收到多主检测报文时,所述第一多主检测定时器状态恢复为正常状态。
其中,该堆叠系统,还包括:
消息发送单元,设置为当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,由控制平面向所述堆叠端口组发送启动start消息,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文;
当所述多主检测端口组状态恢复为UP且所述第一多主检测定时器状态恢复为正常状态时,由控制平面向所述堆叠端口组发送第一停止stop消息,停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文;
当所述第二多主检测定时器状态为超时状态时,由所述堆叠端口向所述控制平面发送第二停止stop消息,所述控制平面收到所述第二stop消息后,判断所述第一多主检测定时器状态;当所述第一多主检测定时器状态恢复为正常状态时,由控制平面向所述堆叠端口组发送第一停止stop消息,停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文。
本发明实施例四提供的技术方案,通过在交换机堆叠系统上配置多主检测报文冗余备份端口组,当交换机堆叠系统,多主检测端口或者线缆等出现故障导致多主检测报文处理超时,堆叠系统多主检测功能自动切换至转发平面的冗余备份组运行,更好的保障堆叠系统的稳定性,同时还充分利用了堆叠系统中堆叠端口组闲置带宽,提高了用户的满意度。
下面通过一个具体的实施例详细阐述上述技术方案。
实施例五
图6为本发明实施例五提供的堆叠系统的结构示意图。如图6所示,该堆叠系统包括:
配置模块,设置为在堆叠系统上配置堆叠端口组及创建多主检测报文冗余备份组,并将所述多主检测报文冗余备份组关联到所述堆叠端口组;
其中,可以通过人机交互界面,在堆叠系统上配置堆叠端口组,多主检测报文冗余备份组关联到堆叠端口组。
报文收发模块,设置为堆叠系统上接收或者发送来自成员设备的多主检测报文;
其中,报文收发模块根据设置的定时器间隔进行报文的构造和发送,同时对于接收到的多主检测报文上送CPU处理。
其中,当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文;当所述多主检测端口组状态为UP且所述第一多主检测定时器状态为正常状态时,停止所述多主检测报文冗余备 份组通过所述堆叠端口组收发多主检测报文,并恢复通过所述多主检测端口组收发多主检测报文。上述过程中,都可以通过报文收发模块进行多主检测报文的收发。
报文处理模块,设置为堆叠系统上对报文收发模块接收到的多主检测报文进行处理;
其中,如何处理多主检测报文为现有技术,在此不再赘述。
多主检测定时器模块,设置为堆叠系统上处理多主检测报文发送时间间隔和多主检测报文超时计算;
其中,多主检测定时器除了在多主检测端口组运行,也会可选的在冗余备份组上运行;多主检测报文发送时,定时器周期工作,每定时器周期发送一个多主检测报文。多主检测报文接收时,一定定时器周期内未接收到多主检测报文,定时器进入超时状态。进入定时器超时状态前内接收到了多主检测报文,则定时器仍处于正常状态。
消息交互模块,设置为堆叠系统的多主检测端口组和堆叠端口组的消息传递;
其中,控制平面、堆叠端口之间的“start”消息、“status”消息、“stop”消息、“ack”消息都可以通过消息交互模块进行发送。具体的,当多主检测端口组发生故障导致定时器超时,控制平面会向堆叠端口组发送“start”消息,目的是让堆叠端口组继续维护多主检测报文的定时发送,堆叠端口组收到控制平面发来的“start”消息,向控制平面回复“ack”确认,并同时启动冗余备份端口组定时器,发送多主检测报文,后面的多主检测由堆叠端口组独立完成。堆叠端口组需要定期上报控制平面“status”消息,控制平面回应“ack”消息进行确认,这个过程来维护控制平面和堆叠端口组的连通性。当堆叠端口组因故障导致多主检测定时器超时,会向控制平面发送“stop”消息,控制平面接收到“stop”消息后,判断控制平面保活定时器的超时状态,则进行堆叠分裂流程,并返回“ack”消息。当控制平面在多主检测定时器超时前收到了多主检测报文,则将保活定时器置 为正常状态,向堆叠端口组发送“stop”消息,使堆叠端口组停止发送多主检测报文。堆叠端口组应删除多主检测定时器,并停止发送多主检测报文,返回“ack”确认消息。
可选的,消息交互模块也可以不进行消息的传递,而直接进行多主检测报文的下发和上送。
堆叠系统模块,设置为各成员设备的堆叠系统建立和分裂。
上述实施例四中的检测单元可以由实施例五中的多主检测定时器模块实现,上述实施例四中的管理单元可以由实施例五中的报文收发模块和消息交互模块实现,上述实施例四中的配置单元可以由实施例五中的配置模块实现。
本发明实施例五提供的技术方案,在堆叠端口组基础上生成多主检测报文冗余组传输多主检测报文,不仅可以实现堆叠系统多主检测报文的冗余保护,还可以将闲置的堆叠端口组带宽充分利用,提高了物理资源的利用效率。
本发明实施例还提供了一种堆叠系统,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述任一项所述的多主检测方法。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有信息处理程序,所述信息处理程序被处理器执行时实现上述任一项所述多主检测方法的步骤。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软 件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本发明实施例提供了一种堆叠系统中多主检测方法及堆叠系统,其中该多主检测方法包括:检测多主检测端口组状态和多主检测端口组的第一多主检测定时器状态;当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文。如此,不仅可以实现堆叠系统多主检测报文的冗余保护,还可以将闲置的堆叠端口组带宽充分利用,提高了物理资源的利用效率。

Claims (10)

  1. 一种堆叠系统中多主检测方法,包括:
    检测多主检测端口组状态和多主检测端口组的第一多主检测定时器状态;
    当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文。
  2. 根据权利要求1所述的多主检测方法,其中,在多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文之前,该方法还包括:
    在堆叠系统上配置所述堆叠端口组;
    在所述堆叠系统上配置所述多主检测报文冗余备份组,并将所述多主检测报文冗余备份组关联到所述堆叠端口组。
  3. 根据权利要求2所述的多主检测方法,其中,在多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文之后,该方法还包括:
    当所述多主检测端口组状态为UP且所述第一多主检测定时器状态为正常状态时,停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文,并恢复通过所述多主检测端口组收发多主检测报文。
  4. 根据权利要求2所述的多主检测方法,其中,在通过堆叠端口组收发多主检测报文之后,该方法还包括:
    检测所述堆叠端口组的第二多主检测定时器状态;
    当所述第二多主检测定时器状态为超时状态时,判断所述第一多主检测定时器状态;
    当所述第一多主检测定时器状态为正常状态时,停止所述多主检测报 文冗余备份组通过所述堆叠端口组收发多主检测报文,并恢复通过所述多主检测端口组收发多主检测报文;
    当所述第一多主检测定时器状态仍为超时状态时,进行堆叠分裂流程。
  5. 根据权利要求4所述的多主检测方法,其中,当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,该方法还包括:
    为所述堆叠端口组创建并启动第二多主检测定时器;
    并在停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文时,删除所述第二多主检测定时器。
  6. 根据权利要求1所述的多主检测方法,其中,
    当多主检测端口组没有在预设定时器周期内接收到多主检测报文时,所述第一多主检测定时器状态为超时状态;
    当多主检测端口组在预设定时器周期内接收到多主检测报文时,所述第一多主检测定时器状态为正常状态。
  7. 根据权利要求1、3或4所述的多主检测方法,其中,
    当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,由控制平面向所述堆叠端口组发送启动start消息,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文;
    当所述多主检测端口组状态恢复为UP且所述第一多主检测定时器状态恢复为正常状态时,由控制平面向所述堆叠端口组发送第一停止stop消息,停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文;
    当所述第二多主检测定时器状态为超时状态时,由所述堆叠端口向所述控制平面发送第二停止stop消息,所述控制平面收到所述第二stop消息后,判断所述第一多主检测定时器状态;当所述第一多主检测定时器状态恢复为正常状态时,由控制平面向所述堆叠端口组发送第一停止stop消息,停止所述多主检测报文冗余备份组通过所述堆叠端口组收发多主检测报文。
  8. 一种堆叠系统,包括:
    检测单元,设置为检测多主检测端口组状态和多主检测端口组的第一多主检测定时器状态;
    管理单元,设置为当多主检测端口组内所有的端口状态均为DOWN或所述第一多主检测定时器状态为超时状态时,启动多主检测报文冗余备份组开始通过堆叠端口组收发多主检测报文。
  9. 一种堆叠系统,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的多主监测方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质上存储有信息处理程序,所述信息处理程序被处理器执行时实现如权利要求1至7中任一项所述多主监测方法的步骤。
PCT/CN2019/110110 2018-11-23 2019-10-09 一种堆叠系统中多主检测方法及堆叠系统 WO2020103586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811414958.XA CN111224803B (zh) 2018-11-23 2018-11-23 一种堆叠系统中多主检测方法及堆叠系统
CN201811414958.X 2018-11-23

Publications (1)

Publication Number Publication Date
WO2020103586A1 true WO2020103586A1 (zh) 2020-05-28

Family

ID=70773661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110110 WO2020103586A1 (zh) 2018-11-23 2019-10-09 一种堆叠系统中多主检测方法及堆叠系统

Country Status (2)

Country Link
CN (1) CN111224803B (zh)
WO (1) WO2020103586A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115396385B (zh) * 2021-05-19 2023-07-21 中国移动通信集团浙江有限公司 堆叠交换机快速恢复业务的方法、装置及计算设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006184A (zh) * 2010-11-09 2011-04-06 福建星网锐捷网络有限公司 堆叠链路管理方法、装置及网络设备
CN102164056A (zh) * 2011-03-17 2011-08-24 杭州华三通信技术有限公司 堆叠链路聚合故障检测方法和堆叠设备
CN102307137A (zh) * 2011-07-13 2012-01-04 北京星网锐捷网络技术有限公司 管理报文发送和接收方法、装置、堆叠交换机和堆叠系统
WO2016146022A1 (en) * 2015-03-13 2016-09-22 Hangzhou H3C Technologies Co., Ltd. Preventing multiple conflicting stacks

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546322B (zh) * 2013-10-28 2017-09-22 新华三技术有限公司 堆叠链路故障处理方法和设备
CN105656645B (zh) * 2014-11-12 2019-08-06 新华三技术有限公司 堆叠系统的故障处理的决策方法和装置
CN105743801A (zh) * 2014-12-08 2016-07-06 中兴通讯股份有限公司 一种堆叠系统的流量转发的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006184A (zh) * 2010-11-09 2011-04-06 福建星网锐捷网络有限公司 堆叠链路管理方法、装置及网络设备
CN102164056A (zh) * 2011-03-17 2011-08-24 杭州华三通信技术有限公司 堆叠链路聚合故障检测方法和堆叠设备
CN102307137A (zh) * 2011-07-13 2012-01-04 北京星网锐捷网络技术有限公司 管理报文发送和接收方法、装置、堆叠交换机和堆叠系统
WO2016146022A1 (en) * 2015-03-13 2016-09-22 Hangzhou H3C Technologies Co., Ltd. Preventing multiple conflicting stacks

Also Published As

Publication number Publication date
CN111224803B (zh) 2023-08-04
CN111224803A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
US9705735B2 (en) System and method using RSVP hello suppression for graceful restart capable neighbors
US7940678B2 (en) Method for triggering failure detection in bidirectional forwarding detection
US20200267069A1 (en) Link switching method, link switching device, network communication system, and computer-readable storage medium
US9385944B2 (en) Communication system, path switching method and communication device
US20080112333A1 (en) Communicating an operational state of a transport service
WO2018188425A1 (zh) Vxlan单归和双归混合接入方法、装置、pe设备和存储介质
US9692697B2 (en) Control channel establishing method, forwarding point, and controller
WO2009023996A1 (fr) Procédé de mise en œuvre d'une interconnexion de réseau par l'intermédiaire d'une agrégation de liaisons
CN107465613B (zh) 链路聚合接口通信状态切换方法及装置
CN109218232B (zh) 一种实现Mux机的方法、设备及系统
CN102075343A (zh) 一种实现带外管理的方法、系统和带外管理交换机
CN105656645A (zh) 堆叠系统的故障处理的决策方法和装置
US20190007302A1 (en) Mechanism for Dual Active Detection Link Monitoring in Virtual Switching System with Hardware Accelerated Fast Hello
CN105554175A (zh) 一种pw冗余场景下arp备份方法
WO2016165157A1 (zh) 家庭服务系统的故障处理方法及家电设备、服务器
WO2011113395A2 (zh) 一种负载分担方法和装置
WO2017008505A1 (zh) 一种组播链路的切换方法、装置及路由设备
WO2020103586A1 (zh) 一种堆叠系统中多主检测方法及堆叠系统
CN109150709B (zh) 一种实现Mux机的方法、设备及系统
CN110278094B (zh) 链路恢复方法及装置、系统、存储介质、电子装置
EP4094421A2 (en) Pce controlled network reliability
CN110086657B (zh) 一种配置同步方法及装置
WO2020083271A1 (zh) 一种聚合链路收敛方法、装置及存储介质
CN102271045A (zh) 一种基于vpn实例的设备间备份的方法、设备和系统
WO2017166932A1 (zh) 一种业务服务状态判定的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887867

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19887867

Country of ref document: EP

Kind code of ref document: A1