WO2017008505A1 - 一种组播链路的切换方法、装置及路由设备 - Google Patents

一种组播链路的切换方法、装置及路由设备 Download PDF

Info

Publication number
WO2017008505A1
WO2017008505A1 PCT/CN2016/073920 CN2016073920W WO2017008505A1 WO 2017008505 A1 WO2017008505 A1 WO 2017008505A1 CN 2016073920 W CN2016073920 W CN 2016073920W WO 2017008505 A1 WO2017008505 A1 WO 2017008505A1
Authority
WO
WIPO (PCT)
Prior art keywords
multicast
primary
interface
link
inbound
Prior art date
Application number
PCT/CN2016/073920
Other languages
English (en)
French (fr)
Inventor
邓涛鸿
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017008505A1 publication Critical patent/WO2017008505A1/zh

Links

Images

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, an apparatus, and a routing device for switching a multicast link.
  • Multicast technology effectively solves the problem of single-point transmission and multi-point reception, and realizes efficient data transmission from point to point in the network. It can save a lot of network bandwidth and reduce network load. It can easily provide some new features by using the multicast characteristics of the network. Value-added business.
  • a common method for implementing multicast protection in a network is to detect the link down by performing BFD (Bidirectional Forwarding Detection) on the active and standby links, and then perform link protection switching.
  • BFD Bidirectional Forwarding Detection
  • the problem with the protection mechanism is that in some scenarios (for example, when the link is not directly connected), the BFD does not detect the link down.
  • the BFD session on the multicast link is inconsistent in both directions. Detecting packets also consumes network bandwidth and increases network load.
  • the technical problem to be solved by the present invention is to provide a method, a device, and a routing device for switching a multicast link, which solves the problem that the multicast service protection mechanism in the prior art has a detection link that is not in place and increases the network load.
  • an embodiment of the present invention provides a method for switching a multicast link, which is applied to a routing device, where the handover method includes:
  • the inbound interface that receives the multicast traffic packet sent by the upstream device through the primary link is used as the primary inbound interface, and receives the inbound interface of the multicast traffic packet sent by the upstream device through the backup link.
  • the two inbound interfaces are The correspondence between the primary ingress interface and the standby interface is switched.
  • the switching method further includes:
  • the switching method further includes: before the receiving, by the two inbound interfaces, the multicast traffic packet sent by the upstream device and the standby link, the switching method further includes:
  • the traffic data sent by the source device connected to the upstream device generates multicast traffic packets and sends the packets to the routing device.
  • the generating, by the first multicast join message sent by the at least one user, the second multicast join message specifically:
  • the multicast forwarding table includes a multicast routing table and a multicast user table
  • the switching method further includes:
  • an embodiment of the present invention further provides a switching device for a multicast link, which is applied to a routing device, where the switching device includes:
  • the receiving module is configured to receive, by using the two inbound interfaces, a multicast traffic packet sent by the upstream device through the primary link and the backup link, where the routing device and the upstream device respectively pass the primary link Connected to the standby link;
  • a storage module configured to use an inbound interface that receives the multicast traffic packet sent by the upstream device by using the primary link as a primary inbound interface, and receive the multicast traffic sent by the upstream device by using the standby link
  • the inbound interface of the packet is stored as a backup interface.
  • the forwarding module is configured to forward the multicast traffic packet received by the primary inbound interface, and discard the multicast traffic packet received by the standby interface;
  • a switching module configured to periodically detect whether the primary inbound interface receives the multicast traffic packet, and if the primary inbound interface does not receive the multicast traffic packet within a predetermined time period, the two modules are Switching between the mapping interface and the primary ingress interface and the standby interface.
  • the switching device further includes:
  • a recovery module configured to: when the primary link is detected to be normal, the two inbound interfaces and the primary ingress interface The correspondence between the backup interface and the backup interface is restored to the state before the handover.
  • the switching device further includes:
  • a first generation module configured to generate a second multicast join message according to the first multicast join message sent by the at least one user
  • a sending module configured to send the second multicast join message to the upstream device by using the primary link and the backup link, and the upstream device joins the report according to the second multicast
  • the traffic data sent by the source device connected to the upstream device generates a multicast traffic packet and sends the packet to the routing device.
  • the first generation module specifically includes:
  • a first generating sub-unit configured to receive a first multicast join message sent by at least one user, and generate a multicast forwarding table according to the first multicast join message, where the multicast forwarding table includes multicast Routing table and multicast user table;
  • a second generating subunit configured to generate a second multicast join message according to the multicast forwarding table.
  • the switching device further includes:
  • the second generating module is configured to generate a hardware interrupt event, and notify a software unit of the routing device of a message that the correspondence between the two inbound interfaces and the primary inbound interface and the standby interface is switched.
  • an embodiment of the present invention further provides a routing device, including: a switching device for a multicast link as described above.
  • An embodiment of the present invention further provides a switching device for a multicast link, including:
  • a memory for storing processor executable instructions
  • processor is configured to:
  • the inbound interface that receives the multicast traffic packet sent by the upstream device through the primary link is used as the primary inbound interface, and receives the inbound interface of the multicast traffic packet sent by the upstream device through the backup link.
  • the two inbound interfaces are The correspondence between the primary ingress interface and the standby interface is switched.
  • Embodiments of the present invention also provide a non-transitory computer readable storage medium having stored therein instructions that, when executed by a processor of a routing device, cause the routing device to implement a multicast link A switching method, the method comprising the steps of:
  • the inbound interface that receives the multicast traffic packet sent by the upstream device through the primary link is used as the primary inbound interface, and receives the inbound interface of the multicast traffic packet sent by the upstream device through the backup link.
  • the two inbound interfaces are The correspondence between the primary ingress interface and the standby interface is switched.
  • the method for switching the multicast link in the embodiment of the present invention is applied to a routing device (here, a downstream device), and the routing device receives the multicast traffic sent by the upstream device through the two active and standby links through two inbound interfaces.
  • the inbound interface of the multicast traffic packet sent by the upstream device through the primary link is used as the primary inbound interface
  • the inbound interface of the multicast traffic packet sent by the upstream device through the standby link is used as the backup interface.
  • the multicast traffic received by the primary inbound interface is forwarded, and the multicast traffic received by the backup interface is discarded.
  • the primary inbound interface receives the multicast traffic packet periodically. The device does not receive the multicast traffic packet.
  • the mapping between the two inbound interfaces and the primary and secondary interfaces is switched.
  • the file is forwarded to ensure the normal operation of the multicast link, and the fast switching between the active and standby links is implemented, which satisfies the requirements for efficient protection of the multicast link in the existing network;
  • the monitoring of the multicast traffic does not require additional detection packets, which saves network resources. There is no detectable scenario and the network security is high.
  • the detection technologies such as the existing BFD are not detected and the network is added. The problem of burden.
  • FIG. 1 is a flowchart of a method for switching a multicast link according to the present invention
  • FIG. 2 is a schematic structural diagram of a specific application system of a method for switching a multicast link according to the present invention
  • FIG. 3 is a flowchart of a specific embodiment of a method for switching a multicast link according to the present invention.
  • FIG. 4 is a schematic structural diagram of a device for switching a multicast link according to the present invention.
  • the method for switching the multicast link in the embodiment of the present invention monitors the status of the primary link by monitoring the multicast traffic of the primary inbound interface on the downstream device, and triggers the device when the traffic packet is not received within a fixed time. Switch between the active and standby interfaces. It does not need to rely on BFD and other detection means to monitor the link status, and avoids the problem that the detection technology such as BFD has an undetectable scene and increases the network bandwidth.
  • the method for switching a multicast link in the embodiment of the present invention has the advantages of saving bandwidth, high network security, and fast switching speed. Etc.
  • a method for switching a multicast link according to an embodiment of the present invention is applied to a routing device, where the handover method includes:
  • Step 101 Receive, by using two inbound interfaces, a multicast traffic packet sent by the upstream device through the primary link and the backup link, where the routing device and the upstream device respectively pass the primary link and the Describe the link connection.
  • the primary link is used for the working link and the standby link is used to protect the link.
  • Step 102 The inbound interface that receives the multicast traffic packet sent by the upstream device by using the primary link is used as the primary inbound interface, and receives the multicast traffic packet sent by the upstream device through the backup link.
  • the inbound interface is stored as a backup interface.
  • Step 103 Forward the multicast traffic packet received by the primary inbound interface, and discard the multicast traffic packet received by the standby interface.
  • Step 104 Timely detecting whether the primary inbound interface receives the multicast traffic packet. If the primary inbound interface does not receive the multicast traffic packet within a predetermined time period, the two incoming packets are received. The corresponding relationship between the interface and the primary inbound interface and the standby interface is switched.
  • the method for switching the multicast link in the embodiment of the present invention periodically detects whether the primary inbound interface receives the multicast traffic packet, and if the multicast traffic packet is not received within the predetermined time period, indicating that the primary link is faulty, Perform the active/standby switchover between the two inbound interfaces to ensure the normal operation of the multicast link.
  • the fast switching between the active and standby links is implemented, which satisfies the requirements for efficient protection of the multicast link in the existing network.
  • the multicast traffic is monitored directly, and no additional detection packets are needed, which saves network resources. There is no detectable scene and the network security is high. The problem that the detection technology such as the existing BFD is not detected and the network burden is increased is solved.
  • the traffic of the primary inbound interface is forwarded and the traffic of the backup interface is discarded by the multicast reverse path forwarding (mrpf) mechanism, so that only one multicast traffic is forwarded. .
  • mrpf multicast reverse path forwarding
  • the switching method may further include:
  • Step 105 If it is detected that the primary link is restored to normal, the corresponding relationship between the two inbound interfaces and the primary ingress interface and the backup interface is restored to the state before the handover.
  • the inbound interface of the packet sent by the upstream device through the primary link is re-enabled as the primary inbound interface, and the data on the primary link is forwarded.
  • the device can be quickly restored to normal working condition and the utility is improved.
  • the switching method may further include:
  • Step 106 Generate a second multicast join message according to the first multicast join message sent by the at least one user.
  • Step 107 The second multicast join message is sent to the upstream device by using the primary link and the backup link, and the upstream device joins the packet according to the second multicast.
  • the traffic data sent by the source device connected to the upstream device generates a multicast traffic packet and sends the packet to the routing device.
  • the upstream device can accurately obtain the multicast join packet sent by the downstream device and the traffic data sent by the source device.
  • the multicast traffic required by the user of the downstream device is obtained to generate multicast traffic packets and send them to downstream devices, ensuring the accuracy of data transmission and improving network security.
  • the step of the foregoing step 107 may specifically include:
  • Step 1071 Receive a first multicast join message sent by at least one user, and generate a multicast forwarding table according to the first multicast join message, where the multicast forwarding table includes a multicast routing table and multicast user table.
  • the downstream device adds the user who sends the first multicast join message to the multicast user table, and forms a corresponding outbound port encapsulation information table for the multicast users.
  • Step 1072 Generate a second multicast join message according to the multicast forwarding table.
  • the multicast forwarding table can clearly and accurately obtain the user and the corresponding data information, thereby ensuring the accuracy and high efficiency of the data management.
  • the first multicast join message sent by the user to the downstream device may be an IGMP (Internet Group Management Protocol) multicast join message, and the user specifies that the user wants to receive the specific multicast group in the message.
  • Multicast packet; the second multicast join message sent by the downstream device to the upstream device can be a PIM (Protocol Independent Multicast) multicast join message.
  • the upstream device can form a multicast routing table on the upstream device according to the PIM multicast join message sent by the downstream device through the primary and backup links and the multicast traffic sent by the multicast source device.
  • a link is used as a multicast user to send traffic packets to the active and standby links.
  • the two inbound interfaces corresponding to the two links of the active and standby interfaces are formed in the multicast routing table of the downstream device, and then the two inbound interfaces are connected to the primary ingress interface.
  • the corresponding relationship with the standby interface is stored in the multicast routing table.
  • the inbound interface of the inbound interface is used as the inbound interface.
  • the inbound interface of the inbound interface is used as the backup interface.
  • the switching method may further include: after the foregoing step 104, in order to ensure the consistency of the multicast routing table on the software and the multicast routing table on the hardware.
  • Step 108 Generate a hardware interrupt event, and notify a software unit of the routing device of a message that the corresponding relationship between the ingress interface and the primary inbound interface and the backup interface is switched.
  • the hardware interrupt can be used to notify the software to switch the primary and secondary inbound interfaces in the multicast routing table, thus ensuring uniformity between the software and hardware multicast routing entries.
  • a traffic detection device such as a watchdog, etc.
  • the forwarding chip After receiving the first packet on the primary ingress interface, the forwarding chip enables the traffic detection device to be activated, and then the corresponding traffic detection device is updated every time a packet in the multicast group is received. If no multicast data packet is received within the time set by the timer, the primary link corresponding to the primary ingress interface is damaged, and the forwarding chip automatically forwards the primary backup interface in the hardware multicast routing table through microcode. The traffic of the standby link is forwarded through the switchover.
  • the foregoing step 108 can notify the software to switch the primary and secondary inbound interfaces in the multicast routing table according to the hardware interrupt mode, thereby ensuring the consistency of the software and hardware multicast routing entries.
  • the hardware switching can achieve fast switching of 50ms, which effectively improves the switching rate, reduces the impact caused by the damage of the primary link, and improves the protection performance of the multicast link.
  • the method for switching a multicast link is applied to a routing device (downstream device), and the downstream device is connected to an upstream device through a primary link and a backup link, and the upstream device is connected to the upstream device.
  • a multicast source device is connected, and the downstream device has N multicast users (N is an integer greater than or equal to 1).
  • the handover method includes the following steps:
  • Step 301 Receive an IGMP multicast join message sent by the multicast user 1 to the multicast user N, and form a multicast forwarding table according to the received IGMP multicast join message, and join the multicast users to the multicast transfer. Published, and form corresponding outbound port encapsulation information tables for these multicast users;
  • Step 302 Generate a PIM multicast join message according to the multicast forwarding table, and send the PIM multicast join message to the upstream device from the active/standby link, and the upstream device joins the packet according to the PIM multicast sent by the downstream device.
  • the multicast traffic sent by the multicast source device forms a multicast routing table on the upstream device, and the upstream device uses both the active and standby links as multicast users.
  • the upstream device sends the multicast traffic packet to the downstream device from the active and standby links.
  • the downstream device forms two inbound interfaces in the multicast routing table, and uses the inbound interface corresponding to the primary link as the primary inbound interface.
  • the inbound interface of the backup link is used as the backup interface.
  • the mrpf check mechanism forwards the multicast traffic received by the primary interface to the multicast interface. There is only one valid traffic on the road;
  • step 304 the downstream device forms a multicast routing table, creates a watchdog watchdog on the forwarding chip where the primary inbound interface is located, and sets a timer, which is forwarded when the primary inbound interface receives the first multicast traffic packet.
  • the chip will enable the watch dog to activate;
  • Step 305 The master inbound interface changes the watch dog to feed the dog every time a multicast traffic message is received. If the dog does not feed the dog within the time set by the timer, the forwarding chip switches the primary backup interface of the multicast routing table. At the same time, the hardware interrupt is sent to the control plane to notify the software to switch the master-slave interface, thereby ensuring the unification of software and hardware;
  • Step 306 When the primary link returns to normal, the primary standby interface is re-corresponded to the original inbound interface.
  • the method for switching the multicast link in the embodiment of the present invention implements fast switching between the active and standby links, and satisfies the requirements for efficient protection of the multicast link in the existing network.
  • the multicast traffic is monitored directly, and no additional detection packets are needed, which saves network resources. There is no detectable scene and the network security is high. The problem that the detection technology such as the existing BFD is not detected and the network burden is increased is solved.
  • an embodiment of the present invention further provides a switching device for a multicast link, which is applied to a routing device, where the switching device includes:
  • the receiving module is configured to receive, by using the two inbound interfaces, a multicast traffic packet sent by the upstream device through the primary link and the backup link, where the routing device and the upstream device respectively pass the primary link Connected to the standby link;
  • a storage module configured to use an inbound interface that receives the multicast traffic packet sent by the upstream device by using the primary link as a primary inbound interface, and receive the multicast traffic sent by the upstream device by using the standby link
  • the incoming interface of the packet is used as a backup Incoming interface for corresponding storage
  • the forwarding module is configured to forward the multicast traffic packet received by the primary inbound interface, and discard the multicast traffic packet received by the standby interface;
  • a switching module configured to periodically detect whether the primary inbound interface receives the multicast traffic packet, and if the primary inbound interface does not receive the multicast traffic packet within a predetermined time period, the two modules are Switching between the mapping interface and the primary ingress interface and the standby interface.
  • the switching device of the multicast link in the embodiment of the present invention implements fast switching between the active and standby links, and satisfies the requirements for efficient protection performance of the multicast link in the existing network.
  • the multicast traffic is monitored directly, and no additional detection packets are needed, which saves network resources. There is no detectable scene and the network security is high. The problem that the detection technology such as the existing BFD is not detected and the network burden is increased is solved.
  • the switching device may further include:
  • the recovery module is configured to restore the corresponding relationship between the two inbound interfaces and the primary ingress interface and the backup interface to a state before the handover if the primary link is restored to be normal.
  • the switching device may further include:
  • a first generation module configured to generate a second multicast join message according to the first multicast join message sent by the at least one user
  • a sending module configured to send the second multicast join message to the upstream device by using the primary link and the backup link, and the upstream device joins the report according to the second multicast
  • the traffic data sent by the source device connected to the upstream device generates a multicast traffic packet and sends the packet to the routing device.
  • the first generation module may specifically include:
  • a first generating sub-unit configured to receive a first multicast join message sent by at least one user, and generate a multicast forwarding table according to the first multicast join message, where the multicast forwarding table includes multicast Routing table and multicast user table;
  • a second generating subunit configured to generate a second multicast join message according to the multicast forwarding table.
  • the switching device may further include:
  • the second generating module is configured to generate a hardware interrupt event, and notify a software unit of the routing device of a message that the correspondence between the two inbound interfaces and the primary inbound interface and the standby interface is switched.
  • the switching device of the multicast link in the embodiment of the present invention implements fast switching between the active and standby links, and satisfies the requirements for efficient protection performance of the multicast link in the existing network.
  • the multicast traffic is monitored directly, and no additional detection packets are needed, which saves network resources. There is no detectable scene and the network security is high. The problem that the detection technology such as the existing BFD is not detected and the network burden is increased is solved.
  • the switching device of the multicast link is a device corresponding to the foregoing method for switching the multicast link, and all the implementation manners in the foregoing method embodiments are applicable to the embodiment of the device, and can also be implemented. The same technical effect.
  • the switching device of the multicast link in the embodiment of the present invention is applied to the routing device. Therefore, the embodiment of the present invention further provides a routing device, including: a switching device for a multicast link as described in the foregoing embodiment. Among them, the above multicast The implementation embodiments of the link switching device are applicable to the embodiment of the routing device, and the same technical effects can be achieved.
  • the method for switching the multicast link of the present application can be applied to a routing device.
  • the routing device receives the multicast traffic packets sent by the upstream device through the two active and standby links through the two inbound interfaces.
  • the inbound interface of the multicast traffic sent by the primary link is used as the primary inbound interface
  • the inbound interface of the multicast traffic sent by the upstream device through the standby link is used as the standby interface.
  • the traffic packets are forwarded, and the multicast traffic received by the backup interface is discarded.
  • the multicast interface receives the multicast traffic packets. If no multicast traffic is received within the specified time range. If the primary link is faulty, the mapping between the two inbound interfaces and the primary and secondary interfaces is switched.
  • the multicast packets sent by the upstream device are forwarded through the backup link to ensure the multicast chain.
  • the normal operation of the path enables fast switching between the active and standby links, which satisfies the requirements for efficient protection of multicast links in the existing network; and directly monitors multicast traffic. No additional use of detection messages, saving network resources; and there are no undetected scene, high network security; in addition to solve the existing BFD detection technology to detect and so is not in place, increasing the burden of network problems.

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供了一种组播链路的切换方法、装置及路由设备,涉及通信领域,解决现有组播保护机制检测不到位、增加网络负担的问题,该切换方法应用于路由设备,包括:通过两个入接口分别接收上游设备通过主链路和备链路发送的组播流量报文;将接收上游设备通过主链路发送报文的入接口作为主入接口,将接收上游设备通过备链路发送报文的入接口作为备入接口进行存储;对主入接口接收的组播流量报文进行转发,同时对备入接口接收的组播流量报文进行丢弃;定时检测主入接口是否接收到组播流量报文,若预定时间段内主入接口未接收到组播流量报文,则将两个入接口与主入接口及备入接口的对应关系进行切换。本发明的方案改善了检测性能,节约了网络资源。

Description

一种组播链路的切换方法、装置及路由设备
本申请要求于2015年7月10日提交中国专利局、申请号为201510403809.3的中国专利申请的优先权,以上全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,特别涉及一种组播链路的切换方法、装置及路由设备。
背景技术
组播技术有效解决了单点发送多点接收的问题,实现了网络中点到多点的高效数据传送,能够大量节约网络带宽,降低网络负载,利用网络的组播特性可以方便地提供一些新的增值业务。
随着组播技术在网络中的应用越来越广泛,对于组播技术的要求也越来越高,如对于网络发生故障时组播业务的可靠性保护等方面提出了更高的要求。现在常见的在网络中实现组播保护的方法,主要通过在主备两链路中逐跳部署BFD(Bidirectional Forwarding Detection,双向转发检测)来检测链路down,进而进行链路保护切换。这样的保护机制存在的问题是:有些场景(比如当链路不是直连的时候)BFD检测不到链路down;组播链路中BFD检测的路径双向不一致,可能导致有些路径BFD不通;BFD检测报文也会占用网络带宽,增加网络负担。
发明内容
本发明要解决的技术问题是提供一种组播链路的切换方法、装置及路由设备,解决现有技术中组播业务保护机制存在检测链路不到位、增加网络负担的问题。
为解决上述技术问题,本发明的实施例提供一种组播链路的切换方法,应用于一路由设备,所述切换方法包括:
通过两个入接口,分别接收一上游设备通过主链路和备链路发送的组播流量报文,其中,所述路由设备与所述上游设备分别通过所述主链路和所述备链路连接;
将接收所述上游设备通过所述主链路发送的组播流量报文的入接口作为主入接口,并将接收所述上游设备通过所述备链路发送的组播流量报文的入接口作为备入接口进行对应存储;
对所述主入接口接收的组播流量报文进行转发,同时对所述备入接口接收的组播流量报文进行丢弃;
定时检测所述主入接口是否接收到所述组播流量报文,若预定时间段内所述主入接口均未接收到所述组播流量报文,则将两个所述入接口与所述主入接口及所述备入接口的对应关系进行切换。
其中,所述定时检测所述主入接口是否接收到所述组播流量报文,若预定时间段内所述主入接口均未接收到所述组播流量报文,则将两个所述入接口与所述主入接口及所述备入接口的对应关系进行切换之后,所述切换方法还包括:
若检测到所述主链路恢复正常,则将两个所述入接口与所述主入接口及所述备入接口的对应关系恢复到切换前的状态。
其中,所述通过两个入接口,分别接收一上游设备通过主链路和备链路发送的组播流量报文之前,所述切换方法还包括:
根据至少一用户发送的第一组播加入报文,生成第二组播加入报文;
将所述第二组播加入报文,分别通过所述主链路和所述备链路发送给所述上游设备,由所述上游设备根据所述第二组播加入报文及与所述上游设备连接的源设备下发的流量数据,生成组播流量报文并发送给所述路由设备。
其中,所述根据至少一用户发送的第一组播加入报文,生成第二组播加入报文,具体包括:
接收至少一用户发送的第一组播加入报文,并根据所述第一组播加入报文生成组播转发表,其中,所述组播转发表包括组播路由表和组播用户表;
根据所述组播转发表,生成第二组播加入报文。
其中,所述定时检测所述主入接口是否接收到所述组播流量报文,若预定时间段内所述主入接口均未接收到所述组播流量报文,则将两个所述入接口与所述主入接口及所述备入接口的对应关系进行切换之后,所述切换方法还包括:
生成一硬件中断事件,将两个所述入接口与所述主入接口及所述备入接口的对应关系切换的消息通知给所述路由设备的软件单元。
为解决上述技术问题,本发明的实施例还提供一种组播链路的切换装置,应用于一路由设备,所述切换装置包括:
接收模块,用于通过两个入接口,分别接收一上游设备通过主链路和备链路发送的组播流量报文,其中,所述路由设备与所述上游设备分别通过所述主链路和所述备链路连接;
存储模块,用于将接收所述上游设备通过所述主链路发送的组播流量报文的入接口作为主入接口,并将接收所述上游设备通过所述备链路发送的组播流量报文的入接口作为备入接口进行对应存储;
转发模块,用于对所述主入接口接收的组播流量报文进行转发,同时对所述备入接口接收的组播流量报文进行丢弃;
切换模块,用于定时检测所述主入接口是否接收到所述组播流量报文,若预定时间段内所述主入接口均未接收到所述组播流量报文,则将两个所述入接口与所述主入接口及所述备入接口的对应关系进行切换。
其中,所述切换装置还包括:
恢复模块,用于若检测到所述主链路恢复正常,则将两个所述入接口与所述主入接口 及所述备入接口的对应关系恢复到切换前的状态。
其中,所述切换装置还包括:
第一生成模块,用于根据至少一用户发送的第一组播加入报文,生成第二组播加入报文;
发送模块,用于将所述第二组播加入报文,分别通过所述主链路和所述备链路发送给所述上游设备,由所述上游设备根据所述第二组播加入报文及与所述上游设备连接的源设备下发的流量数据,生成组播流量报文并发送给所述路由设备。
其中,所述第一生成模块具体包括:
第一生成子单元,用于接收至少一用户发送的第一组播加入报文,并根据所述第一组播加入报文生成组播转发表,其中,所述组播转发表包括组播路由表和组播用户表;
第二生成子单元,用于根据所述组播转发表,生成第二组播加入报文。
其中,所述切换装置还包括:
第二生成模块,用于生成一硬件中断事件,将两个所述入接口与所述主入接口及所述备入接口的对应关系切换的消息通知给所述路由设备的软件单元。
为解决上述技术问题,本发明的实施例还提供一种路由设备,包括:如上所述的组播链路的切换装置。
本发明的实施例还提供了一种组播链路的切换设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
通过两个入接口,分别接收一上游设备通过主链路和备链路发送的组播流量报文,其中,一路由设备与所述上游设备分别通过所述主链路和所述备链路连接;
将接收所述上游设备通过所述主链路发送的组播流量报文的入接口作为主入接口,并将接收所述上游设备通过所述备链路发送的组播流量报文的入接口作为备入接口进行对应存储;
对所述主入接口接收的组播流量报文进行转发,同时对所述备入接口接收的组播流量报文进行丢弃;
定时检测所述主入接口是否接收到所述组播流量报文,若预定时间段内所述主入接口均未接收到所述组播流量报文,则将两个所述入接口与所述主入接口及所述备入接口的对应关系进行切换。
本发明的实施例还提供了一种非易失性计算机可读存储介质,其中存储有指令,所述指令在由路由设备的处理器执行时使所述路由设备实施一种组播链路的切换方法,所述方法包括以下步骤:
通过两个入接口,分别接收一上游设备通过主链路和备链路发送的组播流量报文,其中,所述路由设备与所述上游设备分别通过所述主链路和所述备链路连接;
将接收所述上游设备通过所述主链路发送的组播流量报文的入接口作为主入接口,并将接收所述上游设备通过所述备链路发送的组播流量报文的入接口作为备入接口进行对应存储;
对所述主入接口接收的组播流量报文进行转发,同时对所述备入接口接收的组播流量报文进行丢弃;
定时检测所述主入接口是否接收到所述组播流量报文,若预定时间段内所述主入接口均未接收到所述组播流量报文,则将两个所述入接口与所述主入接口及所述备入接口的对应关系进行切换。
本发明的上述技术方案的有益效果如下:
本发明实施例的组播链路的切换方法,应用于一路由设备(这里为下游设备),该路由设备通过两个入接口,分别接收上游设备通过主备两条链路发送的组播流量报文;首先将接收上游设备通过主链路发送的组播流量报文的入接口作为主入接口,并将接收上游设备通过备链路发送的组播流量报文的入接口作为备入接口;对于主入接口接收的组播流量报文进行转发,同时对于备入接口接收的组播流量报文进行丢弃;然后定时检测主入接口是否接收到组播流量报文,若预定时间段内均未接收到组播流量报文,表示主链路发生故障,则将两个入接口与主入接口及备入接口的对应关系进行切换,使上游设备通过备链路发送的组播流量报文转发通过,保证组播链路的正常工作,实现了主备链路的快速切换,满足了现有网络中对组播链路高效保护性能的要求;且直接对组播流量进行监控,不需要额外采用检测报文,节省了网络资源;且不存在检测不到的场景,网络安全性高;另外解决了现有BFD等检测技术检测不到位,增加网络负担的问题。
附图说明
图1为本发明组播链路的切换方法流程图;
图2为本发明组播链路的切换方法一具体应用系统的结构示意图;
图3为本发明组播链路的切换方法一具体实施例的流程图;
图4为本发明组播链路的切换装置的结构示意图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明实施例的组播链路的切换方法,通过在下游设备上对主入接口的组播流量进行监控来监测主链路的状态,当在固定时间内没有收到流量报文则触发设备进行主备入接口的切换。而不需要依赖于BFD等检测手段来监控链路状态,避免了BFD等检测技术存在检测不到的场景,增加网络带宽的问题。
本发明实施例的组播链路的切换方法,具有节省带宽,网络安全性高以及切换速度快 等优点。
如图1所示,本发明实施例的组播链路的切换方法,应用于一路由设备,所述切换方法包括:
步骤101,通过两个入接口,分别接收一上游设备通过主链路和备链路发送的组播流量报文,其中,所述路由设备与所述上游设备分别通过所述主链路和所述备链路连接。
这里,主链路用于工作链路,备链路用于保护链路。
步骤102,将接收所述上游设备通过所述主链路发送的组播流量报文的入接口作为主入接口,并将接收所述上游设备通过所述备链路发送的组播流量报文的入接口作为备入接口进行对应存储。
步骤103,对所述主入接口接收的组播流量报文进行转发,同时对所述备入接口接收的组播流量报文进行丢弃。
步骤104,定时检测所述主入接口是否接收到所述组播流量报文,若预定时间段内所述主入接口均未接收到所述组播流量报文,则将两个所述入接口与所述主入接口及所述备入接口的对应关系进行切换。
本发明实施例的组播链路的切换方法,定时检测主入接口是否接收到组播流量报文,若预定时间段内均未接收到组播流量报文,表示主链路发生故障,则将两个入接口进行主备切换,保证组播链路的正常工作。实现了主备链路的快速切换,满足了现有网络中对组播链路高效保护性能的要求。且直接对组播流量进行监控,不需要额外采用检测报文,节省了网络资源。且不存在检测不到的场景,网络安全性高。解决了现有BFD等检测技术检测不到位,增加网络负担的问题。
具体的,上述步骤103中,可通过mrpf(multicast reverse path forwarding,组播反向路径转发)机制,将主入接口的流量转发而备入接口的流量丢弃,保证只有一份组播流量转发通过。
进一步的,上述步骤104之后,所述切换方法还可以包括:
步骤105,若检测到所述主链路恢复正常,则将两个所述入接口与所述主入接口及所述备入接口的对应关系恢复到切换前的状态。
此时,若主链路恢复正常,则将接收上游设备通过主链路发送的报文的入接口重新作为主入接口,使主链路上的数据转发通过。使装置可快速恢复正常工作状态,提高了实用性。
本发明的具体实施例中,上述步骤101之前,所述切换方法还可以包括:
步骤106,根据至少一用户发送的第一组播加入报文,生成第二组播加入报文;
步骤107,将所述第二组播加入报文,分别通过所述主链路和所述备链路发送给所述上游设备,由所述上游设备根据所述第二组播加入报文及与所述上游设备连接的源设备下发的流量数据,生成组播流量报文并发送给所述路由设备。
此时,上游设备根据下游设备发送的组播加入报文及源设备发送的流量数据,可准确 获取下游设备的用户需求的组播流量,以生成组播流量报文并发送给下游设备,保证了数据传输的准确性,且提高了网络安全性。
其中,上述步骤107的步骤具体可以包括:
步骤1071,接收至少一用户发送的第一组播加入报文,并根据所述第一组播加入报文生成组播转发表,其中,所述组播转发表包括组播路由表和组播用户表。
这里,下游设备将发送第一组播加入报文的用户加入到组播用户表中,并为这些组播用户形成相应的出端口封装信息表。
步骤1072,根据所述组播转发表,生成第二组播加入报文。
此时,通过组播转发表可清楚、准确的获取用户及对应的数据信息,保证了数据管理的准确性和高效性。
其中,用户发送给下游设备的第一组播加入报文具体可为IGMP(Internet Group Management Protocol,网络组管理协议)组播加入报文,用户在该报文中指定希望接收具体组播组的组播报文;下游设备发送给上游设备的第二组播加入报文具体可为PIM(Protocol Independent Multicast,协议无关组播)组播加入报文。
进一步的,上游设备根据下游设备通过主备两条链路发送的PIM组播加入报文和组播源设备发送的组播流量,可形成上游设备上的组播路由表,并将主备两条链路都作为组播用户,向主备两条链路发送流量报文。
本发明的具体实施例中,上述步骤102具体实现时,可首先在下游设备的组播路由表中形成对应主备两条链路的两个入接口,然后将两个入接口与主入接口和备入接口的对应关系存储在该组播路由表中。正常情况下,对应主链路的入接口作为主入接口,对应备链路的入接口作为备入接口;在主链路出现故障时,两个入接口的主备关系进行切换。
其中,为了保证软件上组播路由表和硬件上组播路由表的一致性,上述步骤104之后,所述切换方法还可以包括:
步骤108,生成一硬件中断事件,将两个所述入接口与所述主入接口及所述备入接口的对应关系切换的消息通知给所述路由设备的软件单元。
此时,通过硬件中断的方式可通知软件上该组播路由表中的主备入接口进行切换,从而保证了软件和硬件组播路由表项上的统一。
进一步的,上述步骤104具体实现时,可在下游设备上形成组播路由表之后,在主入接口所在的转发芯片上创建流量检测装置(比如看门狗watch dog等),并设定定时器。在主入接口上收到第一个报文后由转发芯片将流量检测装置使能激活,接下来每收到一个组播组内的报文就将相应的流量检测装置进行更新。若在定时器设定的时间内没有收到任何组播数据报文,即表示主入接口对应的主链路损坏,则转发芯片通过微码自动将硬件组播路由表中的主备入接口通过对调进行切换,使备链路的流量转发通过。同时,上述步骤108可根据流量检测装置通过硬件中断方式,通知软件上该组播路由表中的主备入接口进行切换,从而保证了软件和硬件组播路由表项的一致性。并且通过实验可知,这样全部通 过硬件切换能实现50ms的快速切换,有效提高了切换速率,且降低了由于主链路损坏造成的影响,改善了对组播链路的保护性能。
下面对本发明的具体实现实施例举例说明如下:
如图2所示,本发明实施例的组播链路的切换方法,应用于一路由设备(下游设备),该下游设备与一上游设备通过主链路和备链路连接,该上游设备与一组播源设备连接,该下游设备具有N个组播用户(N为大于或等于1的整数),如图3所示,该切换方法包括如下步骤:
步骤301,接收组播用户1~组播用户N分别发送的IGMP组播加入报文,并根据接收的IGMP组播加入报文形成组播转发表,将这些组播用户加入到该组播转发表中,并为这些组播用户形成相应的出端口封装信息表;
步骤302,根据组播转发表,生成PIM组播加入报文,并分别从主备两条链路向上游设备发送PIM组播加入报文,上游设备根据下游设备发送的PIM组播加入报文和组播源设备发送的组播流量,形成上游设备上的组播路由表,并且上游设备将主备两条链路都作为组播用户;
步骤303,上游设备从主备两条链路发送组播流量报文到下游设备,下游设备在组播路由表中形成两个入接口,并将主链路对应的入接口作为主入接口,备链路对应的入接口作为备入接口进行存储,同时,通过mrpf检查机制,将主入接口接收的组播流量报文正常转发,将备入接口接收的组播流量报文丢弃,保证链路上只有一份有效的流量通过;
步骤304,下游设备形成组播路由表后在主入接口所在的转发芯片上创建看门狗watch dog,并设定定时器,在主入接口收到第一个组播流量报文时由转发芯片将watch dog使能激活;
步骤305,主入接口每收到一个组播流量报文将改watch dog进行喂狗,若定时器设定的时间内没有喂狗,则转发芯片将组播路由表的主备入接口进行切换,同时通过硬件中断向控制面发送消息通知软件进行主备入接口切换,从而保证软件和硬件上的统一;
步骤306,当主链路恢复正常时,将主备入接口重新对应到原来的入接口上。
本发明实施例的组播链路的切换方法,实现了主备链路的快速切换,满足了现有网络中对组播链路高效保护性能的要求。且直接对组播流量进行监控,不需要额外采用检测报文,节省了网络资源。且不存在检测不到的场景,网络安全性高。解决了现有BFD等检测技术检测不到位,增加网络负担的问题。
如图4所示,本发明的实施例还提供了一种组播链路的切换装置,应用于一路由设备,所述切换装置包括:
接收模块,用于通过两个入接口,分别接收一上游设备通过主链路和备链路发送的组播流量报文,其中,所述路由设备与所述上游设备分别通过所述主链路和所述备链路连接;
存储模块,用于将接收所述上游设备通过所述主链路发送的组播流量报文的入接口作为主入接口,并将接收所述上游设备通过所述备链路发送的组播流量报文的入接口作为备 入接口进行对应存储;
转发模块,用于对所述主入接口接收的组播流量报文进行转发,同时对所述备入接口接收的组播流量报文进行丢弃;
切换模块,用于定时检测所述主入接口是否接收到所述组播流量报文,若预定时间段内所述主入接口均未接收到所述组播流量报文,则将两个所述入接口与所述主入接口及所述备入接口的对应关系进行切换。
本发明实施例的组播链路的切换装置,实现了主备链路的快速切换,满足了现有网络中对组播链路高效保护性能的要求。且直接对组播流量进行监控,不需要额外采用检测报文,节省了网络资源。且不存在检测不到的场景,网络安全性高。解决了现有BFD等检测技术检测不到位,增加网络负担的问题。
其中,所述切换装置还可以包括:
恢复模块,用于若检测到所述主链路恢复正常,则将两个所述入接口与所述主入接口及所述备入接口的对应关系恢复到切换前的状态。
进一步的,所述切换装置还可以包括:
第一生成模块,用于根据至少一用户发送的第一组播加入报文,生成第二组播加入报文;
发送模块,用于将所述第二组播加入报文,分别通过所述主链路和所述备链路发送给所述上游设备,由所述上游设备根据所述第二组播加入报文及与所述上游设备连接的源设备下发的流量数据,生成组播流量报文并发送给所述路由设备。
其中,所述第一生成模块具体可以包括:
第一生成子单元,用于接收至少一用户发送的第一组播加入报文,并根据所述第一组播加入报文生成组播转发表,其中,所述组播转发表包括组播路由表和组播用户表;
第二生成子单元,用于根据所述组播转发表,生成第二组播加入报文。
进一步的,所述切换装置还可以包括:
第二生成模块,用于生成一硬件中断事件,将两个所述入接口与所述主入接口及所述备入接口的对应关系切换的消息通知给所述路由设备的软件单元。
本发明实施例的组播链路的切换装置,实现了主备链路的快速切换,满足了现有网络中对组播链路高效保护性能的要求。且直接对组播流量进行监控,不需要额外采用检测报文,节省了网络资源。且不存在检测不到的场景,网络安全性高。解决了现有BFD等检测技术检测不到位,增加网络负担的问题。
需要说明的是,该组播链路的切换装置是与上述组播链路的切换方法相对应的装置,其中上述方法实施例中所有实现方式均适用于该装置的实施例中,也能达到同样的技术效果。
由于本发明实施例的组播链路的切换装置应用于路由设备,因此,本发明实施例还提供了一种路由设备,包括:如上述实施例中所述的组播链路的切换装置。其中,上述组播 链路的切换装置的所述实现实施例均适用于该路由设备的实施例中,也能达到相同的技术效果。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
本申请的组播链路切换方法,可应用于一路由设备,该路由设备通过两个入接口,分别接收上游设备通过主备两条链路发送的组播流量报文;首先将接收上游设备通过主链路发送的组播流量报文的入接口作为主入接口,并将接收上游设备通过备链路发送的组播流量报文的入接口作为备入接口;对于主入接口接收的组播流量报文进行转发,同时对于备入接口接收的组播流量报文进行丢弃;然后定时检测主入接口是否接收到组播流量报文,若预定时间段内均未接收到组播流量报文,表示主链路发生故障,则将两个入接口与主入接口及备入接口的对应关系进行切换,使上游设备通过备链路发送的组播流量报文转发通过,保证组播链路的正常工作,实现了主备链路的快速切换,满足了现有网络中对组播链路高效保护性能的要求;且直接对组播流量进行监控,不需要额外采用检测报文,节省了网络资源;且不存在检测不到的场景,网络安全性高;另外解决了现有BFD等检测技术检测不到位,增加网络负担的问题。

Claims (11)

  1. 一种组播链路的切换方法,应用于一路由设备,其中,所述切换方法包括:
    通过两个入接口,分别接收一上游设备通过主链路和备链路发送的组播流量报文,其中,所述路由设备与所述上游设备分别通过所述主链路和所述备链路连接;
    将接收所述上游设备通过所述主链路发送的组播流量报文的入接口作为主入接口,并将接收所述上游设备通过所述备链路发送的组播流量报文的入接口作为备入接口进行对应存储;
    对所述主入接口接收的组播流量报文进行转发,同时对所述备入接口接收的组播流量报文进行丢弃;
    定时检测所述主入接口是否接收到所述组播流量报文,若预定时间段内所述主入接口均未接收到所述组播流量报文,则将两个所述入接口与所述主入接口及所述备入接口的对应关系进行切换。
  2. 根据权利要求1所述的切换方法,其中,所述定时检测所述主入接口是否接收到所述组播流量报文,若预定时间段内所述主入接口均未接收到所述组播流量报文,则将两个所述入接口与所述主入接口及所述备入接口的对应关系进行切换之后,所述切换方法还包括:
    若检测到所述主链路恢复正常,则将两个所述入接口与所述主入接口及所述备入接口的对应关系恢复到切换前的状态。
  3. 根据权利要求1所述的切换方法,其中,所述通过两个入接口,分别接收一上游设备通过主链路和备链路发送的组播流量报文之前,所述切换方法还包括:
    根据至少一用户发送的第一组播加入报文,生成第二组播加入报文;
    将所述第二组播加入报文,分别通过所述主链路和所述备链路发送给所述上游设备,由所述上游设备根据所述第二组播加入报文及与所述上游设备连接的源设备下发的流量数据,生成组播流量报文并发送给所述路由设备。
  4. 根据权利要求3所述的切换方法,其中,所述根据至少一用户发送的第一组播加入报文,生成第二组播加入报文,具体包括:
    接收至少一用户发送的第一组播加入报文,并根据所述第一组播加入报文生成组播转发表,其中,所述组播转发表包括组播路由表和组播用户表;
    根据所述组播转发表,生成第二组播加入报文。
  5. 根据权利要求1所述的切换方法,其中,所述定时检测所述主入接口是否接收到所述组播流量报文,若预定时间段内所述主入接口均未接收到所述组播流量报文,则将两个所述入接口与所述主入接口及所述备入接口的对应关系进行切换之后,所述切换方法还包括:
    生成一硬件中断事件,将两个所述入接口与所述主入接口及所述备入接口的对应关系切换的消息通知给所述路由设备的软件单元。
  6. 一种组播链路的切换装置,应用于一路由设备,其中,所述切换装置包括:
    接收模块,设置为通过两个入接口,分别接收一上游设备通过主链路和备链路发送的组播流量报文,其中,所述路由设备与所述上游设备分别通过所述主链路和所述备链路连接;
    存储模块,设置为将接收所述上游设备通过所述主链路发送的组播流量报文的入接口作为主入接口,并将接收所述上游设备通过所述备链路发送的组播流量报文的入接口作为备入接口进行对应存储;
    转发模块,设置为对所述主入接口接收的组播流量报文进行转发,同时对所述备入接口接收的组播流量报文进行丢弃;
    切换模块,设置为定时检测所述主入接口是否接收到所述组播流量报文,若预定时间段内所述主入接口均未接收到所述组播流量报文,则将两个所述入接口与所述主入接口及所述备入接口的对应关系进行切换。
  7. 根据权利要求6所述的切换装置,其中,所述切换装置还包括:
    恢复模块,设置为若检测到所述主链路恢复正常,则将两个所述入接口与所述主入接口及所述备入接口的对应关系恢复到切换前的状态。
  8. 根据权利要求6所述的切换装置,其中,所述切换装置还包括:
    第一生成模块,设置为根据至少一用户发送的第一组播加入报文,生成第二组播加入报文;
    发送模块,设置为将所述第二组播加入报文,分别通过所述主链路和所述备链路发送给所述上游设备,由所述上游设备根据所述第二组播加入报文及与所述上游设备连接的源设备下发的流量数据,生成组播流量报文并发送给所述路由设备。
  9. 根据权利要求8所述的切换装置,其中,所述第一生成模块具体包括:
    第一生成子单元,设置为接收至少一用户发送的第一组播加入报文,并根据所述第一组播加入报文生成组播转发表,其中,所述组播转发表包括组播路由表和组播用户表;
    第二生成子单元,设置为根据所述组播转发表,生成第二组播加入报文。
  10. 根据权利要求6所述的切换装置,其中,所述切换装置还包括:
    第二生成模块,设置为生成一硬件中断事件,将两个所述入接口与所述主入接口及所述备入接口的对应关系切换的消息通知给所述路由设备的软件单元。
  11. 一种路由设备,其中,包括:如权利要求6-10任一项所述的组播链路的切换装置。
PCT/CN2016/073920 2015-07-10 2016-02-17 一种组播链路的切换方法、装置及路由设备 WO2017008505A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510403809.3A CN106330699B (zh) 2015-07-10 2015-07-10 一种组播链路的切换方法、装置及路由设备
CN201510403809.3 2015-07-10

Publications (1)

Publication Number Publication Date
WO2017008505A1 true WO2017008505A1 (zh) 2017-01-19

Family

ID=57725342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073920 WO2017008505A1 (zh) 2015-07-10 2016-02-17 一种组播链路的切换方法、装置及路由设备

Country Status (2)

Country Link
CN (1) CN106330699B (zh)
WO (1) WO2017008505A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528777A (zh) * 2017-09-25 2017-12-29 广东电网有限责任公司电力调度控制中心 一种负载均衡的软交换网络故障恢复方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428814B (zh) * 2017-09-04 2022-12-02 中兴通讯股份有限公司 一种组播流量传输方法、相关设备和计算机可读存储介质
CN109743250B (zh) * 2018-12-07 2020-09-04 华为技术有限公司 组播报文的传输方法、第一网络设备和第二网络设备
CN112187578B (zh) * 2020-09-28 2022-11-25 新华三信息安全技术有限公司 表项生成方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025541A (zh) * 2010-12-08 2011-04-20 中兴通讯股份有限公司 一种实现组播保护的方法及系统
CN102208995A (zh) * 2011-05-04 2011-10-05 中兴通讯股份有限公司 一种实现组播保护的方法和装置
EP2555476A1 (en) * 2010-04-02 2013-02-06 Huawei Technologies Co., Ltd. Method, system and device for protecting multicast in communication network
CN102932248A (zh) * 2012-10-29 2013-02-13 中兴通讯股份有限公司 多源组播路径备份方法及装置、汇聚点

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7428214B2 (en) * 2004-03-04 2008-09-23 Cisco Technology, Inc. Methods and devices for high network availability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2555476A1 (en) * 2010-04-02 2013-02-06 Huawei Technologies Co., Ltd. Method, system and device for protecting multicast in communication network
CN102025541A (zh) * 2010-12-08 2011-04-20 中兴通讯股份有限公司 一种实现组播保护的方法及系统
CN102208995A (zh) * 2011-05-04 2011-10-05 中兴通讯股份有限公司 一种实现组播保护的方法和装置
CN102932248A (zh) * 2012-10-29 2013-02-13 中兴通讯股份有限公司 多源组播路径备份方法及装置、汇聚点

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528777A (zh) * 2017-09-25 2017-12-29 广东电网有限责任公司电力调度控制中心 一种负载均衡的软交换网络故障恢复方法

Also Published As

Publication number Publication date
CN106330699A (zh) 2017-01-11
CN106330699B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
US9705735B2 (en) System and method using RSVP hello suppression for graceful restart capable neighbors
CN101170459B (zh) 基于双向转发链路进行故障检测与链路恢复的方法
EP2555476A1 (en) Method, system and device for protecting multicast in communication network
US8509059B2 (en) Method for operating a virtual router redundancy protocol router and communication system therefor
EP2536066A1 (en) Link detecting method, apparatus and system
WO2017008505A1 (zh) 一种组播链路的切换方法、装置及路由设备
EP2081322A1 (en) A method and device to realize punch-through of point-to-multipoint network link status
CN107612754B (zh) 双向转发链路故障检测方法、装置及网络节点设备
WO2009082923A1 (fr) Procédé de traitement de défaut de liaison et dispositif de transfert de données
WO2009046655A1 (fr) Système, procédé et dispositif de commutation de protection automatique
US10122618B2 (en) Path switching method and device
EP3029883B1 (en) Network protection method and apparatus, next-ring node, and system
KR20130055392A (ko) 점 대 다점 네트워크에서의 보호 절체 방법 및 장치
WO2011015011A1 (zh) 一种环网故障检测及定位的方法和系统
KR20150007623A (ko) 패킷 전달 시스템에서의 보호 절체 방법 및 장치
CN113315665B (zh) 一种双网卡终端设备的报文发送方法、装置、设备及介质
CN103023665A (zh) 一种组播业务保护的方法、网络设备和系统
CN110417761B (zh) 基于双机冗余的通信方法及装置
WO2014048128A1 (zh) 环网中点到多点业务的保护方法及环网中的上环节点
CN101895455B (zh) 一种基于mpls-tp的环网快速保护方法
CN106161232B (zh) 一种隧道保护切换的方法和装置
CN102769552A (zh) 一种通过bfd检测lsp时传输bfd报文的方法和设备
US8848512B2 (en) Rendezvous point convergence method and apparatus
WO2017206785A1 (zh) 一种网元、保护倒换方法及其系统、存储介质
WO2016086693A1 (zh) 报文传输的方法、骨干交换机和接入交换机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16823653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16823653

Country of ref document: EP

Kind code of ref document: A1