WO2020103352A1 - 一种空调储液器及空调系统 - Google Patents

一种空调储液器及空调系统

Info

Publication number
WO2020103352A1
WO2020103352A1 PCT/CN2019/076781 CN2019076781W WO2020103352A1 WO 2020103352 A1 WO2020103352 A1 WO 2020103352A1 CN 2019076781 W CN2019076781 W CN 2019076781W WO 2020103352 A1 WO2020103352 A1 WO 2020103352A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid outlet
air conditioner
cylinder
diversion
Prior art date
Application number
PCT/CN2019/076781
Other languages
English (en)
French (fr)
Inventor
李林
徐志强
谢吉培
张洪亮
刘乾坤
赵雷
张捷
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2020103352A1 publication Critical patent/WO2020103352A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Definitions

  • the present invention relates to the technical field of air conditioning, and in particular, to the structural improvement of a liquid reservoir in an air conditioning system.
  • An object of the present invention is to provide an air conditioner accumulator to solve the problems that the refrigerant existing in the accumulator in the existing air conditioner easily generates vortex flow and strong impact when flowing in.
  • An air conditioner liquid reservoir includes a cylinder body, a buffer structure and a spoiler structure: the cylinder body is provided with a first liquid outlet and a liquid inlet higher than the first liquid outlet, the buffer structure is provided Between the liquid inlet and the first liquid outlet, it is used to block the impact of the refrigerant flowing in through the liquid inlet, and the turbulence structure is provided below the first liquid outlet to prevent the generation of vortex .
  • the spoiler structure includes a plurality of spoilers extending divergently from the center of the cylinder toward the side wall.
  • a second liquid outlet is provided at the bottom of the cylinder, an angle valve is installed at the second liquid outlet, and the first liquid outlet is higher than the second liquid outlet.
  • the liquid reservoir includes a liquid outlet pipe extending horizontally outward from the first liquid outlet, and the liquid outlet pipe is located in the middle of the side wall of the barrel.
  • the buffer structure includes a plurality of baffles extending from the side wall of the cylinder, and buffer flow channels are formed between adjacent baffles.
  • the baffle extends horizontally and is arranged at a vertical interval, and a diversion port is left between itself and / or the side wall of the barrel, and the diversion port between adjacent baffles Intertwined with each other.
  • one baffle is left between the baffle and the side wall of the barrel, and the adjacent baffles are located on opposite sides of the barrel.
  • diversion ports which are respectively a first diversion port and a second diversion port which are arranged up and down.
  • the liquid inlet is located on the farthest side of the first diversion port.
  • the first liquid outlet is located on the farthest side of the second deflector.
  • the liquid reservoir includes a liquid inlet pipe extending into the barrel body from the liquid inlet port at the top of the barrel body, and a bottom thereof is formed with a baffle facing away from the first diversion port Set diversion ramp.
  • the present invention also provides an air conditioner system including the above air conditioner accumulator.
  • the refrigerant when setting the first liquid outlet lower than the liquid inlet, the refrigerant always flows downward or obliquely downward from the liquid inlet to the first liquid outlet to avoid upward spraying.
  • a buffer structure is installed between the liquid inlet and the first liquid outlet.
  • the present invention also installs a turbulence structure below the first liquid outlet.
  • the turbulence structure is used to adjust the flow direction to achieve multi-directional flow. Effectively accelerate the stability of the refrigerant liquid level.
  • FIG. 1 is a front view of an air conditioner accumulator according to an embodiment of the present invention.
  • FIG. 2 is a side view of an air conditioner accumulator according to an embodiment of the present invention.
  • FIG. 3 is a plan view of an air conditioner accumulator according to an embodiment of the invention.
  • this embodiment proposes an air conditioner accumulator including a cylinder 10, a buffer structure and a turbulence structure, wherein the cylinder 10 defines a storage cavity that can store refrigerant, which is provided with a first
  • the middle cylinder 10 can also adopt different structural shapes according to actual needs.
  • a fixing bracket 13 is installed on the lower end cover, and a lifting eye 14 is welded on the side wall.
  • the liquid inlet 12 of this embodiment is opened on the top of the barrel 10, that is, on the upper end cover, so that the refrigerant falls vertically.
  • the first liquid outlet 11 is opened in the cylindrical side wall, and preferably in the middle of the cylindrical side wall.
  • the liquid storage of the air conditioner of this embodiment further includes a liquid outlet pipe 20 extending horizontally outward from the first liquid outlet 11.
  • this embodiment uses a turbulence structure to break up the refrigerant in the cylinder 10, which is located in the first liquid outlet 11 Below, where the spoiler structure includes a plurality of spoilers 30 that extend divergently from the center of the cylinder 10 toward the side walls, and the spoiler 30 can be welded to the cylindrical side wall or the lower end cover .
  • the refrigerant flowing into the cylinder 10 is blocked by a plurality of spoilers 30 arranged at different angles, overcoming the rotational inertia and preventing the generation of eddy currents.
  • the refrigerant will be blocked by the same spoiler 30 multiple times when it rotates, and each time it blocks, the refrigerant will be planned and the flow rate and direction of the refrigerant will be adjusted.
  • the inertia of the rotation achieves a smooth surge of refrigerant.
  • four spoilers 30 are used in this embodiment, and adjacent spoilers 30 are perpendicular to each other.
  • the air-conditioning reservoir of this embodiment installs a buffer structure between the liquid inlet 12 and the first liquid outlet 11, the buffer structure resists the liquid inlet 12 During the impact of the inflowing refrigerant, by breaking up the refrigerant, the inertial force of the refrigerant flow is blocked, and the single flow is changed to multiple flows, thereby effectively reducing the refrigerant flow rate.
  • the buffer structure may include a plurality of baffles extending from the side wall of the barrel 10, and buffer flow channels are formed between adjacent baffles, for example, a wave-shaped buffer flow channel may be formed between the plurality of baffles, To achieve multi-level continuous buffering.
  • the baffle in order to achieve a frontal blocking of the refrigerant, on the above basis, the baffle may be extended horizontally by the side wall and arranged at a vertical interval, and the baffle and the side wall may be connected by welding, preferably between a plurality of baffles Set at equal intervals.
  • the baffle can be processed on the baffle, that is, the baffle is a porous plate structure, and a baffle can be reserved between the baffle and the side wall.
  • the diversion openings between adjacent baffles can be staggered and distributed. By avoiding the continuous passage of the refrigerant between the baffles, the flow velocity of the refrigerant can be slowed while dispersing the refrigerant better.
  • only one diversion port may be reserved between the baffle and the side wall of the barrel 10, as shown in FIG. 2 and FIG.
  • the covering and covering area of the baffle plate is larger than half of the cross-sectional area of the barrel 10, and a guide opening is formed on the side that is not covered by the covering. They are located on opposite sides of the side wall of the barrel 10 respectively.
  • this embodiment further specifically installs two baffles in the cylinder 10, and the two baffles are arranged at an upper and lower interval.
  • one baffle is left between each baffle and the round table-shaped side wall
  • the diversion port for convenience of explanation, the two baffles are the first baffle 40 and the second baffle 50 which are arranged above and below respectively, and the first baffle which is arranged above and below is formed between the two baffles and the side wall Diversion port 41, second diversion port 51, first diversion port 41, second diversion port 51 are located on the opposite sides of the side wall of the barrel 10, in this embodiment, the liquid inlet 12 is also opened in the first The farthest side of the diversion port 41, and the first liquid outlet 11 is opened on the farthest side of the second diversion port 51, as shown in FIG. 2, in order to further increase the flow length and flow area of the refrigerant on the baffle To reduce the flow velocity of the refrigerant when it hits the liquid surface in the containing chamber.
  • this embodiment further includes a liquid inlet pipe 60 extending into the barrel 10 from the liquid inlet 12, and a flow guiding slope 61 is formed at the bottom of the liquid inlet pipe 60.
  • the outlet area of the diversion ramp 61 is significantly increased relative to the radial cross section of the liquid inlet pipe 60, and the flow rate can be effectively reduced at the same flow rate, which is beneficial to reduce the impact force of the refrigerant flowing to the buffer structure. As shown in FIG.
  • the diversion ramp 61 is arranged facing the first baffle 40 and facing away from the first diversion port 41, so that the refrigerant discharged from the diversion ramp 61 hits the side wall and blocks When the board is blocked, the speed drops sharply and is broken up instantaneously, spreading and spreading over the entire first baffle 40.
  • this embodiment also provides a second liquid outlet 15 in the cylinder 10, obviously, the second liquid outlet 15 needs to be lower than the first liquid outlet 11 is provided. Specifically, the second liquid outlet 15 is opened at the bottom of the cylindrical side wall. In order to realize the controllable opening and closing of the second liquid outlet 15, an angle valve 70 is installed at the second liquid outlet 15.
  • the second liquid outlet 15 can be connected to the compressor when the liquid level of the refrigerant in the accumulator is low while the compressor is turned on and the individual operating conditions are switched By opening the angle valve 70, the compressor is provided with a cooling medium for cooling to prevent damage to the compressor due to excessively high temperature.
  • this embodiment also provides an air conditioner system, including the above air conditioner accumulator.
  • an air conditioner system including the above air conditioner accumulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

公开了一种空调储液器以及包括所述储液器的空调系统。储液器包括筒体(10)、缓冲结构以及扰流结构。筒体(10)设有第一出液口(11)以及高于所述第一出液口(11)设置的进液口(12),缓冲结构设于进液口(12)、第一出液口(11)之间,用于阻挡由进液口(12)流入的冷媒的冲击,扰流结构设于第一出液口(11)下方,用于防止涡流的生成。

Description

一种空调储液器及空调系统 技术领域
本发明涉及空调技术领域,具体来说,涉及空调系统中储液器的结构改进。
背景技术
目前国内大中型水冷机组及商用中央空调都在冷凝器的出口连接有储液器,起到部分工况下的调剂、储藏冷媒的作用,现有储液器一般把冷媒的进出接口均开设在其顶部或均开设在底部,两种方案均将连接管插入并延伸至储液器的底部。
在冷媒高速冲入储液器内时,易在储液器冷媒液面以下形成涡流,影响冷媒的流通,且高速冲入的冷媒对储液器内液面造成强烈冲击,易加深储液器内冷媒液面的波动,造成冷媒的进、出液的不稳定。
技术问题
本发明的目的在于提供一种空调储液器,以解决现有空调中储液器所存在的冷媒流入时易生成涡流以及冲击强烈的问题。
技术解决方案
为达到上述目的,本发明采用以下技术方案予以实现:
一种空调储液器,包括筒体、缓冲结构以及扰流结构:所述筒体设有第一出液口以及高于所述第一出液口设置的进液口,所述缓冲结构设于进液口、第一出液口之间,用于阻挡由所述进液口流入的冷媒的冲击,所述扰流结构设于所述第一出液口下方,用于防止涡流的生成。
进一步的,所述扰流结构包括由所述筒体的中心向其侧壁方向发散延伸的多个扰流板。
进一步的,所述筒体底部设有第二出液口,所述第二出液口处安装有角阀,所述第一出液口高于所述第二出液口设置。
进一步的,所述储液器包括由所述第一出液口水平向外延伸的出液管,所述出液管位于所述筒体侧壁的中部。
进一步的,所述缓冲结构包括由所述筒体侧壁延伸的多个挡板,相邻挡板之间形成缓冲流道。
进一步的,所述挡板水平延伸并沿竖向间隔设置,其自身和/或与所述筒体侧壁之间留有导流口,相邻所述挡板之间的所述导流口相互交错。
进一步的,所述挡板与所述筒体侧壁之间留有1个所述导流口,相邻所述导流口位于所述筒体的相对两侧。
进一步的,所述导流口具有2个,分别为呈上下设置的第一导流口、第二导流口,所述进液口位于所述第一导流口的最远侧,所述第一出液口位于所述第二导流口的最远侧。
进一步的,所述储液器包括由位于所述筒体顶部的所述进液口延伸入所述筒体内的进液管,其底部形成有面向所述挡板并背向第一导流口设置的导流斜坡口。
基于上述的空调储液器的结构设计,本发明还提供一种空调系统,其包括上述的空调储液器。
有益效果
与现有技术相比,本发明的优点及有益效果是:
本发明通过将第一出液口低于进液口设置,使得冷媒由进液口至第一出液口之间始终保持向下或斜向下流动,避免出现向上喷射现象。为了弱化冷媒高速落下所形成的冲击,在进液口、第一出液口之间安装有缓冲结构,由进液口流入的冷媒在通过第一出液口流出筒体时,穿过缓冲结构受到其阻挡,从而可以有效降低冷媒的冲击力,减轻容纳腔内液面的波动,有利于冷媒的稳定出液。
此外,为了避免筒体内涡流的生成,本发明还在第一出液口的下方安装有扰流结构,利用扰流结构调整流向,实现多向流动,在克服冷媒旋转流动的惯性力的同时可有效加速冷媒液面的稳定。
结合附图阅读本发明实施方式的详细描述后,本发明的其他特点和优点将变得更加清楚。
附图说明
图1是本发明一实施例空调储液器的主视图;
图2是本发明一实施例空调储液器的侧视图;
图3是本发明一实施例空调储液器的俯视图。
本发明的最佳实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
如图1所示,本实施例提出了一种空调储液器,包括有筒体10、缓冲结构以及扰流结构,其中,筒体10限定出可贮存冷媒的容纳腔,其设有第一出液口11以及高于第一出液口11设置的进液口12,并包括上端盖、下端盖以及连接于所述上端盖、下端盖之间的圆筒形侧壁,在其他实施例中筒体10还可根据实际需要采用不同的结构形状。为了方便安装固定,在下端盖上安装有固定支架13,并在侧壁上焊接有吊耳14。
为了避免冷媒有进液口12进入时,减少可形成涡流的冲击力的产生,本实施例进液口12开设在筒体10的顶部,即上端盖上,以便冷媒垂直落下。为了在冷媒的需要量下降时,实现过剩冷媒的贮存,第一出液口11开设在圆筒形侧壁上,并优选开设在圆筒形侧壁的中部。为了便于与外部管道的连通,本实施空调储液器还包括由第一出液口11水平向外延伸的出液管20。
为了避免筒体10内冷媒液面以下产生涡流,以致影响第一出液口11出液,本实施例采用了扰流结构将筒体10内的冷媒打散,其位于第一出液口11下方,其中,扰流结构包括由筒体10的中心向其侧壁方向发散延伸的多个扰流板30,扰流板30可焊接于圆筒形侧壁上,也可焊接于下端盖上。流入筒体10内的冷媒受到呈不同角度设置的多个扰流板30的阻挡,克服了旋转惯性,阻止了涡流的生成,具体来说,由于多个扰流板30呈发散状延伸,在冷媒旋转流动时会受到同一扰流板30的多次阻挡,每次阻挡都会打算冷媒并调整冷媒的流速、流向,因而,扰流结构的设置能较快地抑制流入筒体10内冷媒所产生的旋转惯性,实现冷媒的平稳涌动。如图3所示,本实施例采用了4个扰流板30,相邻扰流板30之间相互垂直。
为了弱化由进液口12高速冲入的冷媒的冲击力,本实施例空调储液器将缓冲结构安装在进液口12、第一出液口11之间,缓冲结构在抵挡由进液口12流入的冷媒的冲击的过程中,通过打散冷媒,阻挡冷媒流动的惯性力,并将单股流动改为多股流动,从而有效降低冷媒流速。
在一个实施例中缓冲结构可包括由筒体10侧壁延伸的多个挡板,相邻挡板之间形成缓冲流道,例如,多个挡板之间可形成波浪线形的缓冲流道,以实现多级持续缓冲。
在一个实施例中,为了实现对冷媒正面阻挡,在上述基础上挡板可由侧壁水平延伸并沿竖向间隔设置,挡板、侧壁之间可通过焊接连接,多个挡板之间优选等间隔设置。为了确保冷媒的顺畅通过,可在挡板上加工出导流口,即挡板为多孔板状结构,也可在挡板与侧壁之间预留有导流口,为了进一步分散冷媒,还可令相邻挡板之间的导流口相互交错分布,通过避免冷媒的在挡板之间连续穿过,可以在更好分散冷媒的同时减缓其流速。
在一个实施例中,为了确保挡板的抗冲击强度,简化结构,在上述基础上还可仅在挡板与筒体10侧壁之间预留有1个导流口,如图2、图3所示,挡板的覆盖遮挡面积大于筒体10的横截面积的一半,其未覆盖遮挡一侧形成导流口,为了延长缓冲流道、扩大缓冲区域,上下相邻的导流口可分别位于筒体10侧壁的相对两侧。
在上述基础上,本实施例进一步具体在筒体10内安装有2个挡板,2个挡板呈上下间隔设置,对应的,每个挡板与圆台形侧壁之间均留有1个导流口,为了便于阐述,2个挡板分别为呈上、下设置的第一挡板40、第二挡板50,2个挡板与侧壁之间形成呈上、下设置的第一导流口41、第二导流口51,第一导流口41、第二导流口51位于筒体10侧壁相对两侧的同时,本实施例还将进液口12开设在第一导流口41的最远侧,并将第一出液口11开设在第二导流口51的最远侧,如图2所示,以便进一步增加冷媒在挡板上的流动长度、流动区域,降低冷媒冲击容纳腔内液面时的流速。
为了实现导流的同时便于与外部管道连接,本实施例还包括由进液口12延伸入筒体10内的进液管60,并且在进液管60的底部形成有导流斜坡口61,导流斜坡口61的出口面积相对于进液管60的径向横截面显著增加,在同等流量时可以有效降低流速,有利于降低冷媒流向缓冲结构的冲击力。如图2所示,本实施例还将导流斜坡口61面向第一挡板40并背向第一导流口41设置,以便由导流斜坡口61喷出的冷媒在冲击侧壁、挡板时受到阻挡,急剧降速并被瞬时打散,漫延、分散至整个第一挡板40上。
为了能在特定工况下,能够借用筒体10内的冷媒,本实施例还在筒体10开设了第二出液口15,显然,需要第二出液口15低于第一出液口11设置,具体地,第二出液口15开设在圆筒形侧壁底部,为了实现第二出液口15的开闭可控,在第二出液口15处安装有角阀70。在本实施储液器安装于空调系统时,在保证压缩机开机和个别工况切换的情况下,当储液器内冷媒的液面较低时,可将第二出液口15连接压缩机,通过打开角阀70优先给压缩机提供降温用的冷媒,以防止压缩机温度过高而造成损坏。
基于上述的空调储液器的结构设计,本实施例还提供了一种空调系统,包括上述的空调储液器,具体安装位置和安装方案,可参考现有技术,此处不作详述。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种空调储液器,其特征在于,包括:
    筒体,设有第一出液口以及高于所述第一出液口设置的进液口,
    缓冲结构,设于进液口、第一出液口之间,用于阻挡由所述进液口流入的冷媒的冲击,
    扰流结构,设于所述第一出液口下方,用于防止涡流的生成。
  2. 根据权利要求1所述的空调储液器,其特征在于,所述扰流结构包括由所述筒体的中心向其侧壁方向发散延伸的多个扰流板。
  3. 根据权利要求1所述的空调储液器,其特征在于,所述筒体底部设有第二出液口,所述第二出液口处安装有角阀,所述第一出液口高于所述第二出液口设置。
  4. 根据权利要求1所述的空调储液器,其特征在于,包括由所述第一出液口水平向外延伸的出液管,所述出液管位于所述筒体侧壁的中部。
  5. 根据权利要求1至4中任一项所述的空调储液器,其特征在于,所述缓冲结构包括由所述筒体侧壁延伸的多个挡板,相邻挡板之间形成缓冲流道。
  6. 根据权利要求5所述的空调储液器,其特征在于,所述挡板水平延伸并沿竖向间隔设置,其自身和/或与所述筒体侧壁之间留有导流口,相邻所述挡板之间的所述导流口相互交错。
  7. 根据权利要求6所述的空调储液器,其特征在于,所述挡板与所述筒体侧壁之间留有1个所述导流口,相邻所述导流口位于所述筒体的相对两侧。
  8. 根据权利要求7所述的空调储液器,其特征在于,所述导流口具有2个,分别为呈上下设置的第一导流口、第二导流口,所述进液口位于所述第一导流口的最远侧,所述第一出液口位于所述第二导流口的最远侧。
  9. 根据权利要求8所述的空调储液器,其特征在于,包括由位于所述筒体顶部的所述进液口延伸入所述筒体内的进液管,其底部形成有面向所述挡板并背向第一导流口设置的导流斜坡口。
  10. 一种空调系统,包括储液器,其特征在于,所述储液器为权利要求1至9中任一项所述的空调储液器。
PCT/CN2019/076781 2018-11-23 2019-03-02 一种空调储液器及空调系统 WO2020103352A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811406920.8 2018-11-23
CN201811406920.8A CN109341159A (zh) 2018-11-23 2018-11-23 一种空调储液器及空调系统

Publications (1)

Publication Number Publication Date
WO2020103352A1 true WO2020103352A1 (zh) 2020-05-28

Family

ID=65317560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076781 WO2020103352A1 (zh) 2018-11-23 2019-03-02 一种空调储液器及空调系统

Country Status (2)

Country Link
CN (1) CN109341159A (zh)
WO (1) WO2020103352A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109341159A (zh) * 2018-11-23 2019-02-15 青岛海尔空调电子有限公司 一种空调储液器及空调系统
CN110508069A (zh) * 2019-08-12 2019-11-29 佛山市南海九洲普惠风机有限公司 一种碰焊集尘房

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203837353U (zh) * 2014-05-04 2014-09-17 德州亚太集团有限公司 一种新型立式储液器
CN107289688A (zh) * 2017-06-01 2017-10-24 嵊州盈益机械有限公司 一种冰箱压缩机用储液器及其制造方法
CN206803567U (zh) * 2017-06-01 2017-12-26 嵊州盈益机械有限公司 一种用于制冷系统的储液器
CN207395256U (zh) * 2017-09-28 2018-05-22 新昌县回山镇金帛机械厂 一种储液器
CN207455973U (zh) * 2017-09-14 2018-06-05 嵊州市新高轮制冷设备有限公司 一种空调压缩机储液器
CN109341159A (zh) * 2018-11-23 2019-02-15 青岛海尔空调电子有限公司 一种空调储液器及空调系统
CN208720571U (zh) * 2018-08-20 2019-04-09 松下·万宝(广州)压缩机有限公司 用于卧式压缩机的储液器及包括该储液器的卧式压缩机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203837353U (zh) * 2014-05-04 2014-09-17 德州亚太集团有限公司 一种新型立式储液器
CN107289688A (zh) * 2017-06-01 2017-10-24 嵊州盈益机械有限公司 一种冰箱压缩机用储液器及其制造方法
CN206803567U (zh) * 2017-06-01 2017-12-26 嵊州盈益机械有限公司 一种用于制冷系统的储液器
CN207455973U (zh) * 2017-09-14 2018-06-05 嵊州市新高轮制冷设备有限公司 一种空调压缩机储液器
CN207395256U (zh) * 2017-09-28 2018-05-22 新昌县回山镇金帛机械厂 一种储液器
CN208720571U (zh) * 2018-08-20 2019-04-09 松下·万宝(广州)压缩机有限公司 用于卧式压缩机的储液器及包括该储液器的卧式压缩机
CN109341159A (zh) * 2018-11-23 2019-02-15 青岛海尔空调电子有限公司 一种空调储液器及空调系统

Also Published As

Publication number Publication date
CN109341159A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2020103352A1 (zh) 一种空调储液器及空调系统
CN110081540A (zh) 一种湿帘分水盒
AU2020334589A1 (en) Refrigerant Distributor and Evaporator Comprising the Refrigerant Distributor
CN106440548A (zh) 一种分液头及空调
WO2022037723A1 (zh) 壁挂式空调室内机
KR20240021305A (ko) 에어덕트 어셈블리 및 이를 구비하는 공기 조절 설비
CN115727686A (zh) 一种干式联合换热设备
CN208458294U (zh) 均衡布水缓流器以及蓄热水箱
CN108826637A (zh) 导风结构、风口装置及空调器
KR101288270B1 (ko) 증발 냉각기용 주수장치
CN106524793B (zh) 一种换热器
CN212777709U (zh) 具有喷淋冷却系统的空调机组
KR100606789B1 (ko) 멀티에어컨의 냉매분배기 구조
CN110671764B (zh) 一种集成喷雾功能的空调机组
CN209399619U (zh) 一种空调储液器及空调系统
CN209386502U (zh) 一种反向速度分布的静压箱
CN208763684U (zh) 一种射流风机
CN203657590U (zh) 一种用于分液式冷凝器的高效分液联箱
CN214043773U (zh) 一种利用高压气体引射的储能电池散热管道
CN205587439U (zh) 轧机及轧机的冷却装置
CN103148552B (zh) 两级无风机、单水泵直接蒸发冷却空调器
CN218405743U (zh) 增强消能通风的台阶式斜井
CN111780295B (zh) 具有喷淋冷却系统的空调机组
CN109489231A (zh) 一种反向速度分布的静压箱
CN216347200U (zh) 一种气液分离装置及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886578

Country of ref document: EP

Kind code of ref document: A1