WO2020103174A1 - 一种超导质子装置降能器控制系统 - Google Patents

一种超导质子装置降能器控制系统

Info

Publication number
WO2020103174A1
WO2020103174A1 PCT/CN2018/117780 CN2018117780W WO2020103174A1 WO 2020103174 A1 WO2020103174 A1 WO 2020103174A1 CN 2018117780 W CN2018117780 W CN 2018117780W WO 2020103174 A1 WO2020103174 A1 WO 2020103174A1
Authority
WO
WIPO (PCT)
Prior art keywords
plc
control system
bus
machine interface
distributed
Prior art date
Application number
PCT/CN2018/117780
Other languages
English (en)
French (fr)
Inventor
郑金星
宋云涛
王成
韩曼芬
陈永华
沈俊松
Original Assignee
合肥中科离子医学技术装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥中科离子医学技术装备有限公司 filed Critical 合肥中科离子医学技术装备有限公司
Publication of WO2020103174A1 publication Critical patent/WO2020103174A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/11Plc I-O input output
    • G05B2219/1105I-O
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention belongs to the technical field of therapeutic device engineering, and relates to an energy reducer control system, in particular to a superconducting proton device energy reducer control system.
  • the detonator control system is an important part of the proton therapy device control system.
  • protons of different energies are used according to the depth and thickness of the tumor itself.
  • the proton beam drawn by the cyclotron is a fixed value, so the accelerator Energy adjustment is performed with the treatment head, and the energy reducer control system participates in energy adjustment.
  • the accelerator Energy adjustment is performed with the treatment head, and the energy reducer control system participates in energy adjustment.
  • the adjustment accuracy of the proton beam energy directly affects the accuracy of the treatment.
  • the graphite block In order to accurately adjust the proton beam energy and reduce the time of each treatment, the graphite block must be accurately and quickly positioned. In order to realize the above concept, a solution is now provided.
  • the object of the present invention is to provide a control system for a superconducting proton device energy reducer.
  • a superconducting proton device energy reducer control system including PLC, host computer, man-machine interface, distributed I / O module, graphite block, servo controller, grating ruler and transmission mechanism;
  • the PLC is used to control the energy reducer
  • the host computer is used to exchange complex operation functions with the PLC through the bus
  • the human-machine interface is used to exchange parameters through the bus and the PLC
  • the distributed I / O module is passed
  • the bus is connected to the PLC
  • the distributed I / O modules are also respectively connected to the position switches of the two graphite blocks
  • the servo controller is connected to the PLC via the bus
  • the servo controller is connected to the grating ruler via the bus.
  • the servo motor is connected to the transmission mechanism, and the transmission mechanism is connected to the graphite block;
  • the system has two working modes: “local mode” and “remote mode” when working; the specific performance is:
  • the system can be directly controlled through the man-machine interface
  • the host computer that can be remotely accessed through the Internet can control the system
  • the servo motor uses its own encoder as the speed loop feedback signal, the grating ruler as the position loop feedback signal, and the PLC is used for real-time comparison of the encoder reading and the grating ruler reading to construct a double closed-loop redundant position control Remaining circuit, specifically as follows:
  • Step 1 Real-time difference comparison between the position value fed back by the encoder of the servo motor driving the graphite block through the transmission mechanism and the position value fed back by the grating ruler through the PLC in real time;
  • Step 2 When the difference exceeds the allowable range, it indicates that any one of the transmission mechanism and the position detection element has failed; at this time, the system immediately stops the graphite block movement through the PLC through the position detection redundancy protection mechanism.
  • human-machine interface is a touch screen, and the human-machine interface and the PLC are connected via a PROFINET bus;
  • the transmission mechanism may be a synchronous belt, and the graphite block is a wedge-shaped graphite block.
  • the upper computer is an industrial control computer, and the upper computer and the PLC are connected via an OPC-UA bus.
  • the distributed I / O module and the PLC are connected through a PROFINET bus.
  • man-machine interface is used to display the working status of each element, the man-machine interface is also used to set the protection parameters, action parameters and display error information of the energy reducer; the man-machine interface is used to The abnormal reason is displayed during the abnormal fault, and the solution solution prompt is provided according to the pre-written problem-solving solution library.
  • the man-machine interface is also used to store the mold parameters and record the action information of the deenergizer.
  • the host computer is used to display the working status of each component, set the protection parameters and action parameters of the deenergizer; the host computer is used to display error information, and provide solutions according to the pre-written problem-solving solution library
  • the method prompts that the host computer is also used for storing mold parameters and recording action information of the deenergizer.
  • the PLC is a safety-type PLC, which can build a fail-safe system.
  • the distributed I / O module is a safety type I / O module, which can realize safe signal collection and communication.
  • the control system of the present invention has two local and remote control modes, with PLC as the core component of the deenergizer control system, using PROFINET, OPC-UA, distributed I / O and servo control technology, combined with the application of touch screen and industrial computer , Built a double closed-loop redundant control system, making the system reliable, fast response, high precision, high degree of integration and intelligence, to meet the requirements of the depressurizer control system.
  • FIG. 1 is a block diagram of the control system of the present invention
  • FIG. 3 is a diagram of the closed-loop control system of the present invention.
  • Fig. 4 is a control flowchart of the present invention.
  • a superconducting proton device energy reducer control system the control system block diagram shows all the contents, in order: servo motor one, servo motor two, limit switch one, transmission mechanism one, grating ruler one, grating Ruler two, transmission mechanism two, limit switch two, graphite block one, graphite block two, energy reducer control system, in which the energy reducer control system includes PLC, host computer, human-machine interface, distributed I / O module; The blocks are all wedge-shaped graphite blocks.
  • the control system for energy-reducing device of the present invention includes a PLC for controlling the energy-reducing device, a host computer for exchanging complex operation functions with the PLC through the bus, a man-machine interface for exchanging parameters through the bus and the PLC, and a PLC connected with the bus
  • a distributed I / O module, the distributed I / O modules are respectively connected to position switches of two graphite blocks, and a servo controller connected to the PLC through a bus, and the servo controller is connected to a grating ruler through the bus
  • the servo motor is connected with a transmission mechanism, the transmission mechanism is connected with a graphite block, the transmission mechanism may be a synchronous belt, and the graphite block is a wedge-shaped graphite block.
  • the PLC controller is a safety PLC, which can build a fail-safe system.
  • the distributed IO module is a safe distributed I / O module, which can realize safe signal collection and communication.
  • the host computer or man-machine interface connected through PLC realizes the setting, storage and display of related parameters, and monitors the operating status of the system, prompts the fault information, and can display the control area information according to the image of the screen image.
  • the main working principle of the control system for the energy reducer of the present invention is that the system receives the position setting parameter value of the host computer or the man-machine interface according to the selected working mode, and the grating
  • the position value of the detected graphite block is sent to the PLC through the servo drive through the PROFINET bus mode; after the system self-test is normal, the PLC controller sends the target position value command to the servo drive through the PROFINET bus according to the set position parameters ,
  • the servo drive drives the graphite block to move to the target position through the drive mechanism of the motor.
  • the servo motor own encoder is used as the servo motion speed closed-loop feedback
  • the grating scale measuring the current position of the graphite block is used as the servo motion position closed-loop feedback.
  • the driver sends a feedback signal of the current movement position and speed of the graphite block to the PLC.
  • the PLC collects the limit switch signal of the graphite block.
  • the PLC feeds back the position value and the scale feedback of the encoder with a servo motor that drives the graphite block through the transmission mechanism in real time. Compare the difference of the position value of the position. If the difference exceeds the allowable range, it indicates that the transmission mechanism or position detection element has failed.
  • the system immediately stops the movement of the graphite block through the PLC through the position detection redundancy protection mechanism, and the system monitors the software in real time.
  • Limit and limit switch status if the current position value of the graphite block exceeds the software limit setting range or the limit switch is triggered, the system will stop the movement of the graphite block immediately after reaching the target position through the over-travel protection program in any case
  • the system enters the standby state and waits for the next action command.
  • the control system of the present invention has two local and remote control modes, with PLC as the core component of the deenergizer control system, using PROFINET, OPC-UA, distributed I / O and servo control technology, combined with the application of touch screen and industrial computer , Built a double closed-loop redundant control system, making the system reliable, fast response, high precision, high degree of integration and intelligence, to meet the requirements of the depressurizer control system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Programmable Controllers (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

一种超导质子装置降能器控制系统,包括PLC、上位机、人机界面、分布式I/O模块、石墨块、伺服控制器、光栅尺和传动机构;PLC用于控制降能器,上位机用于通过总线与PLC交换复杂运算功能,人机界面用于通过总线和PLC交换参数,分布式I/O模块通过总线与PLC相连;控制系统具有本地和远程两种控制方式,以PLC作为降能器控制系统的核心部件,利用PROFINET、OPC-UA、分布式I/O和伺服控制技术,结合触摸屏和工控机的应用,构建了双闭环冗余控制系统,使系统工作可靠、响应快、精度高、高度的集成和智能化,满足了降能器控制系统的要求。

Description

一种超导质子装置降能器控制系统 技术领域
本发明属于治疗装置工程技术领域,涉及一种降能器控制系统,具体是一种超导质子装置降能器控制系统。
背景技术
降能器控制系统是质子治疗装置控制系统中重要的组成部分,质子治疗时要根据肿瘤本身深度和厚度,使用不同能量的质子,而回旋加速器引出的质子束流为固定值,因此需要在加速器和治疗头之间进行能量调节,降能器控制系统参与能量调节。当质子通过降能器石墨层时,石墨厚度大则降低的能量大,用不同的厚度就可以得到不同的降能。因此,质子束流能量的调节精度,直接影响了治疗的准确性,为了精准调节质子束流能量,减少每次治疗时间,必须对石墨块进行精确、快速定位。而为了实现上述构想,现提供一种解决方案。
发明内容
本发明的目的在于提供一种超导质子装置降能器控制系统。
本发明的目的可以通过以下技术方案实现:
一种超导质子装置降能器控制系统,包括PLC、上位机、人机界面、分布式I/O模块、石墨块、伺服控制器、光栅尺和传动机构;
其中,所述PLC用于控制降能器,所述上位机用于通过总线与PLC交换复杂运算功能,所述人机界面用于通过总线和PLC交换参数,所述分布式I/O模块通过总线与PLC相连,所述分布式I/O模块还分别连接到两个石墨块的位置开关上,所述伺服控制器通过总线与PLC相连,所述伺服控制器通过总线连接光栅尺,所述伺服电机与传动机构相连,所述传动机构与石墨块相连;
该系统在工作时具备“本地模式”和“远程模式”两种工作方式;具体表现为:
A、当用户需要进入本地模式时,可通过人机界面对本系统进行直接控制;
B、当用户需要进入远程模式时,可通过互联网远程接入的上位机对本系统进行控制;
所述伺服电机采用自带的编码器作为速度环反馈信号,所述光栅尺作为位置环反馈信号,所述PLC用于对编码器读数和光栅尺读数进行实时比较,构建了位置控制双闭环冗余回路,具体表现为:
步骤一:通过所述PLC实时对通过传动机构带动石墨块的伺服电机自带编码器反馈的位置值和光栅尺反馈的位置值进行差值比较;
步骤二:在差值超出允许范围时,则表明传动机构和位置检测元件中的任一元件发生故障;此时系统通过位置检测冗余保护机制,通过所述PLC立即停止石墨块运动。
进一步地,所述人机界面为触摸屏,所述人机界面与PLC之间通过PROFINET总线连接;
所述传动机构可为同步带,所述石墨块为楔形石墨块。
进一步地,所述上位机为工控机,所述上位机与PLC之间通过OPC-UA总线连接。
进一步地,所述分布式I/O模块与PLC之间通过PROFINET总线连接。
进一步地,所述人机界面用于显示各元件的工作状态,所述人机界面还用于设定降能器的保护参数、动作参数和显示错误信息;所述人机界面用于在发生异常故障时显示异常原因,并根据预先编写的解决问题方案库,提供解决办法提示,所述人机界面还用于存储模具参数和记录降能器动作信息。
进一步地,所述上位机用于显示各元件的工作状态、设定降能器的保护参数和动作参数;所述上位机用于显示错误信息,并根据预先编写的解决问题方案库,提供解决办法提示,所述上位机还用于存储模具参数和记录降能器动作信息。
进一步地,所述PLC是安全型PLC,能够构建故障安全系统。
进一步地,所述分布式I/O模块是安全型I/O模块,能够实现安全的信号采集和通信。
本发明的有益效果:
本发明的控制系统具有本地和远程两种控制方式,以PLC作为降能器控制系统的核心部件,利用PROFINET、OPC-UA、分布式I/O和伺服控制技术,结合触摸屏和工控机的应用,构建了双闭环冗余控制系统,使系统工作可靠、响应快、精度高、高度的集成和智能化,满足了降能器控制系统的要求。
附图说明
为了便于本领域技术人员理解,下面结合附图对本发明作进一步的说明。
图1是本发明的控制系统框图;
图2是本发明的参数设置逻辑图;
图3是本发明的闭环控制系统图;
图4是本发明的控制流程图。
本发明的较佳实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1所示,一种超导质子装置降能器控制系统,控制系统框图所示全部内容,依次为伺服电机一、伺服电机二、限位开关一、传动机构一、光栅尺一、光栅尺二、传动机构二、限位开关二、石墨块一、石墨块二、降能器控制系统,其中降能器控制系统包含PLC、上位机、人机界面、分布式I/O模块;石墨块均为楔形石墨块。
本发明的用于降能器控制系统,包括用于控制降能器的PLC,通过总线与PLC交换复杂运算功能的上位机,通过总线和PLC交换参数的人机界面, 通过总线与PLC相连的分布式I/O模块,所述分布式I/O模块分别连接到两个石墨块的位置开关上,通过总线与PLC相连的伺服控制器,所述伺服控制器通过总线连接光栅尺,所述伺服电机与传动机构相连,所述传动机构与石墨块相连,所述传动机构可为同步带,所述石墨块为楔形石墨块。
所述的PLC控制器是安全型PLC,能够构建故障安全系统。所述的分布式IO模块是安全型的分布式I/O模块,能实现安全的信号采集和通信。通过PLC相连的上位机或人机界面,实现了相关参数的设置、存储及显示,并监控系统运行状态,提示故障信息,并且能够对控制区域信息按画面图像形象显示。
如图2、3、4所示,本发明的用于降能器控制系统的主要工作原理是,系统根据所选择的工作模式,PLC接收上位机或人机界面的位置设定参数值,光栅尺把检测到所测的石墨块位置值通过伺服驱动器以PROFINET总线方式发送到PLC;系统自检正常后,PLC的控制器根据设定的位置参数,通过PROFINET总线发送目标位置值命令给伺服驱动器,伺服驱动器通过电机带动传动机构驱动石墨块往目标位置运动,运动中,以伺服电机自带编码器作为伺服运动速度闭环反馈,以测量石墨块当前位置的光栅尺作为伺服运动位置闭环反馈,伺服驱动器发送石墨块当前运动位置和速度反馈信号给PLC,PLC采集石墨块的限位开关信号,所述PLC实时对通过传动机构带动石墨块的伺服电机自带编码器反馈的位置值和光栅尺反馈的位置值进行差值比较,如果差值超出允许范围,表明传动机构或位置检测元件发生故障;此时系统通过位置检测冗余保护机制,通过所述PLC立即停止石墨块运动,系统实时监控软限位及限位开关状态,如果石墨块当前位置值超出软限位设定范围或限位开关被触发,发生任一情况,系统通过超行程保护程序,立即停止石墨块运动,当到达目标位置时,动作结束,系统进入待机状态,等待下一个动作命令。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。
工业实用性
本发明的控制系统具有本地和远程两种控制方式,以PLC作为降能器控制系统的核心部件,利用PROFINET、OPC-UA、分布式I/O和伺服控制技术,结合触摸屏和工控机的应用,构建了双闭环冗余控制系统,使系统工作可靠、响应快、精度高、高度的集成和智能化,满足了降能器控制系统的要求。

Claims (8)

  1. 一种超导质子装置降能器控制系统,其特征在于,包括PLC、上位机、人机界面、分布式I/O模块、石墨块、伺服控制器、光栅尺和传动机构;
    其中,所述PLC用于控制降能器,所述上位机用于通过总线与PLC交换复杂运算功能,所述人机界面用于通过总线和PLC交换参数,所述分布式I/O模块通过总线与PLC相连,所述分布式I/O模块还分别连接到两个石墨块的位置开关上,所述伺服控制器通过总线与PLC相连,所述伺服控制器通过总线连接光栅尺,所述伺服电机与传动机构相连,所述传动机构与石墨块相连;
    该系统在工作时具备“本地模式”和“远程模式”两种工作方式;具体表现为:
    A、当用户需要进入本地模式时,可通过人机界面对本系统进行直接控制;
    B、当用户需要进入远程模式时,可通过互联网远程接入的上位机对本系统进行控制;
    所述伺服电机采用自带的编码器作为速度环反馈信号,所述光栅尺作为位置环反馈信号,所述PLC用于对编码器读数和光栅尺读数进行实时比较,构建了位置控制双闭环冗余回路,具体表现为:
    步骤一:通过所述PLC实时对通过传动机构带动石墨块的伺服电机自带编码器反馈的位置值和光栅尺反馈的位置值进行差值比较;
    步骤二:在差值超出允许范围时,则表明传动机构和位置检测元件中的任一元件发生故障;此时系统通过位置检测冗余保护机制,通过所述PLC立即停止石墨块运动。
  2. 根据权利要求1所述的一种超导质子装置降能器控制系统,其特征在于,所述人机界面为触摸屏,所述人机界面与PLC之间通过PROFINET总线连接;
    所述传动机构可为同步带,所述石墨块为楔形石墨块。
  3. 根据权利要求1所述的一种超导质子装置降能器控制系统,其特征在于,所述上位机为工控机,所述上位机与PLC之间通过OPC-UA总线连接。
  4. 根据权利要求1所述的一种超导质子装置降能器控制系统,其特征在于,所述分布式I/O模块与PLC之间通过PROFINET总线连接。
  5. 根据权利要求1或2所述的一种超导质子装置降能器控制系统,其特征在于,所述人机界面用于显示各元件的工作状态,所述人机界面还用于设定降能器的保护参数、动作参数和显示错误信息;所述人机界面用于在发生异常故障时显示异常原因,并根据预先编写的解决问题方案库,提供解决办法提示,所述人机界面还用于存储模具参数和记录降能器动作信息。
  6. 根据权利要求1或3所述的一种超导质子装置降能器控制系统,其特征在于,所述上位机用于显示各元件的工作状态、设定降能器的保护参数和动作参数;所述上位机用于显示错误信息,并根据预先编写的解决问题方案库,提供解决办法提示,所述上位机还用于存储模具参数和记录降能器动作信息。
  7. 根据权利要求1所述的一种超导质子装置降能器控制系统,其特征在于,所述PLC是安全型PLC,能够构建故障安全系统。
  8. 根据权利要求1所述的一种超导质子装置降能器控制系统,其特征在于,所述分布式I/O模块是安全型I/O模块,能够实现安全的信号采集和通信。
PCT/CN2018/117780 2018-11-21 2018-11-28 一种超导质子装置降能器控制系统 WO2020103174A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811391863.0A CN109240200A (zh) 2018-11-21 2018-11-21 一种超导质子装置降能器控制系统
CN201811391863.0 2018-11-21

Publications (1)

Publication Number Publication Date
WO2020103174A1 true WO2020103174A1 (zh) 2020-05-28

Family

ID=65076221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117780 WO2020103174A1 (zh) 2018-11-21 2018-11-28 一种超导质子装置降能器控制系统

Country Status (2)

Country Link
CN (1) CN109240200A (zh)
WO (1) WO2020103174A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109908492B (zh) * 2019-03-21 2021-08-13 中国科学院近代物理研究所 一种医用重离子加速器控制系统
CN110350845A (zh) * 2019-07-04 2019-10-18 冶金自动化研究设计院 一种基于profinet通信的变频器控制方法
CN112872906A (zh) * 2020-12-23 2021-06-01 中国人民解放军国防科技大学 基于机床光栅尺信号的超精密车削刀具磨损实时监测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582915A (zh) * 2011-06-06 2014-02-12 住友重机械工业株式会社 降能器及具备该降能器的带电粒子束照射系统
US20160172066A1 (en) * 2014-12-16 2016-06-16 Ion Beam Applications S.A. Energy degrader
CN107596579A (zh) * 2017-10-12 2018-01-19 合肥中科离子医学技术装备有限公司 基于紧凑型超导回旋加速器的质子治疗系统
CN107737411A (zh) * 2017-10-13 2018-02-27 华中科技大学 一种变角度多楔形混合材料降能器
US20180099156A1 (en) * 2016-05-27 2018-04-12 Faye Hendley Elgart Double dipole cancer therapy treatment beam scanning apparatus and method of use thereof
EP3385956A1 (en) * 2015-11-30 2018-10-10 Kaneka Corporation Energy degrader, charged particle beam emission system provided with same, and method of producing graphite film
CN108762318A (zh) * 2018-08-16 2018-11-06 合肥中科离子医学技术装备有限公司 一种多轴高精度闭环反馈运动控制系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100538278C (zh) * 2005-05-31 2009-09-09 西门子(中国)有限公司 激光编码器,采用该激光编码器的位移测量方法和数控机床加工方法
CN106406216B (zh) * 2016-10-24 2018-02-16 合肥中科离子医学技术装备有限公司 一种用于粒子束流降能器的控制装置及其控制方法
CN106881903A (zh) * 2017-03-28 2017-06-23 广东华中科技大学工业技术研究院 一种伺服压力机控制系统
CN107635348B (zh) * 2017-09-25 2018-08-14 合肥中科离子医学技术装备有限公司 一种超导质子装置能量选择系统及其实现方法
CN108388201B (zh) * 2018-04-17 2020-12-22 潍坊学院 一种数控机床自动检测预警系统及其运行方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582915A (zh) * 2011-06-06 2014-02-12 住友重机械工业株式会社 降能器及具备该降能器的带电粒子束照射系统
US20160172066A1 (en) * 2014-12-16 2016-06-16 Ion Beam Applications S.A. Energy degrader
EP3385956A1 (en) * 2015-11-30 2018-10-10 Kaneka Corporation Energy degrader, charged particle beam emission system provided with same, and method of producing graphite film
US20180099156A1 (en) * 2016-05-27 2018-04-12 Faye Hendley Elgart Double dipole cancer therapy treatment beam scanning apparatus and method of use thereof
CN107596579A (zh) * 2017-10-12 2018-01-19 合肥中科离子医学技术装备有限公司 基于紧凑型超导回旋加速器的质子治疗系统
CN107737411A (zh) * 2017-10-13 2018-02-27 华中科技大学 一种变角度多楔形混合材料降能器
CN108762318A (zh) * 2018-08-16 2018-11-06 合肥中科离子医学技术装备有限公司 一种多轴高精度闭环反馈运动控制系统

Also Published As

Publication number Publication date
CN109240200A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020103174A1 (zh) 一种超导质子装置降能器控制系统
CN103076780B (zh) 基于工业以太网总线的绝对式光栅控制方法
JPS6122803B2 (zh)
WO2023035497A1 (zh) 一种电传飞行备份控制系统和方法
WO2017140231A1 (zh) 一种闭环控制系统的监测装置、方法及闭环控制系统
CN103516346B (zh) 一种三余度模拟信号硬件表决电路
CN104934086B (zh) 核电站设备多路指令控制方法及优选控制指令输出装置
CN102830644A (zh) 五轴高速点胶机器人伺服控制系统
JP2000019287A (ja) 原子力プラントの制御システム
JP5962839B2 (ja) コントローラ、タイムチャート作成装置、コンピュータプログラム及びコンピュータ可読情報記憶媒体
CN103223672A (zh) 一种四轴全自动锡焊机器人伺服控制系统
CN202453716U (zh) 基于冗余控制技术的开启桥电气驱动系统
CN106003029A (zh) 一种教学用三核快速关节机器人控制系统
CN116507456A (zh) 机器人看门狗
CN203287747U (zh) 基于工业以太网总线的绝对式光栅控制系统
US20240120116A1 (en) Devices, systems, and methods for the enhanced operation of hydraulic control units of a control rod drive mechanism to regulate nuclear flux in a reactor core
Liu et al. Digital design and reliability analysis of reactor power control system
Du et al. Research on Safety Programmable Controller Based on Dual-CPU Architecture
CN107703895A (zh) 智能精密数控加工中心生产线集成系统
CN213457722U (zh) 基于LinuxCNC嵌入式开发平台的机床控制装置
JPH0196598A (ja) 機能階層構成出力制御システム
CN202189265U (zh) 乙烯装置中压缩机用紧急停车系统
CN208990079U (zh) 多叶准直器及其驱动装置、系统、放射治疗设备
Modic et al. Control system developments for the MYRRHA linac
KR101807638B1 (ko) 원자로용 이중화 제어봉 구동 장치 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940947

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18940947

Country of ref document: EP

Kind code of ref document: A1