WO2020100941A1 - Position determination system and position determination method - Google Patents

Position determination system and position determination method Download PDF

Info

Publication number
WO2020100941A1
WO2020100941A1 PCT/JP2019/044518 JP2019044518W WO2020100941A1 WO 2020100941 A1 WO2020100941 A1 WO 2020100941A1 JP 2019044518 W JP2019044518 W JP 2019044518W WO 2020100941 A1 WO2020100941 A1 WO 2020100941A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
position determination
average value
antenna
correction
Prior art date
Application number
PCT/JP2019/044518
Other languages
French (fr)
Japanese (ja)
Inventor
正則 小杉
剛士 木村
Original Assignee
株式会社東海理化電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019109542A external-priority patent/JP7438675B2/en
Application filed by 株式会社東海理化電機製作所 filed Critical 株式会社東海理化電機製作所
Priority to DE112019005734.0T priority Critical patent/DE112019005734T5/en
Publication of WO2020100941A1 publication Critical patent/WO2020100941A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/20Means to switch the anti-theft system on or off
    • B60R25/24Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B49/00Electric permutation locks; Circuits therefor ; Mechanical aspects of electronic locks; Mechanical keys therefor

Definitions

  • the present invention relates to a position determination system and a position determination method for determining the position of a mobile terminal with respect to a communication partner when the mobile terminal communicates with the communication partner.
  • an authentication system that controls the vehicle through wireless communication between a mobile terminal carried by the user and an in-vehicle device mounted in the vehicle.
  • a smart verification system is known in which a mobile terminal automatically responds to a radio wave transmitted from a vehicle-mounted device and performs ID verification (smart verification) by wireless communication.
  • Patent Document 1 discloses a smart matching system including a position determination system that determines the position of a mobile terminal with respect to a vehicle. In this position determination system, the reception intensity when the radio wave transmitted from the vehicle is received by the mobile terminal is measured, and the position where the reception intensity matches is determined as the position of the mobile terminal.
  • the position determination of the mobile terminal by the position determination system is imposed on the authentication in addition to the ID verification, the security of the smart verification system can be improved.
  • the reception strength may change if, for example, the transmitted radio waves are blocked by obstacles or interfere with other radio waves.
  • the reception intensity changes, there is a problem that the position of the mobile terminal cannot be accurately determined.
  • An object of the present invention is to provide a position determination system and a position determination method capable of improving the position determination accuracy of a mobile terminal.
  • a position determination system includes a position determination unit that determines a position of the mobile terminal with respect to the communication partner when the mobile terminal and a communication partner communicate with each other wirelessly, and the position determination unit is configured to perform the communication. For a plurality of radio waves communicated at different frequencies between each of a plurality of antennas provided to the other party and the mobile terminal, a characteristic value for each antenna is calculated from the reception intensity measured for each radio wave of each frequency. Then, the position of the mobile terminal is determined by comparing the magnitudes of the characteristic values between the antennas.
  • each of a plurality of antennas provided to the communication partner and the mobile terminal communicate at different frequencies.
  • the characteristic value for each antenna is calculated from the reception intensity measured for each radio wave of each frequency, and the size of the characteristic value between the antennas is compared to determine whether the mobile phone for the communication partner is used. Determining the location of the terminal.
  • the position determination system and the position determination method of the present invention can improve the accuracy of position determination of a mobile terminal.
  • the block diagram which shows the structure of the position determination system provided in the authentication system of 1st Embodiment.
  • the flowchart which shows the flow of authentication through communication between the vehicle and a portable terminal in an authentication system.
  • the graph which shows the reception strength of the position detection signal transmitted from the (a) outdoor antenna when the portable terminal is located outdoors of the vehicle, and the graph which shows the reception strength of the position detection signal transmitted from the indoor antenna.
  • the vehicle 1 as a communication partner includes an authentication system 3 that authenticates whether the mobile terminal 2 is correct or not through wireless communication.
  • the mobile terminal 2 can be, for example, a high-performance mobile phone that has a telephone function and can communicate with the vehicle 1 using short-range wireless communication.
  • the authentication system 3 of this example is a short-range wireless verification system that executes ID verification by short-range wireless communication triggered by communication from the vehicle 1.
  • the short-range wireless communication may be Bluetooth (registered trademark) communication, for example.
  • the vehicle 1 includes a verification ECU (Electronic Control Unit) 4 that performs ID verification, a body ECU 5 that manages the power supply of in-vehicle electrical components, and an engine ECU 7 that controls the engine 6. These ECUs are connected through a communication line 8 inside the vehicle.
  • the communication line 8 is composed of, for example, a CAN (Controller Area network) or a LIN (Local Interconnect network).
  • the electronic key ID and the key unique key of the portable terminal 2 registered in the vehicle 1 are written and stored in the memory 9 of the verification ECU 4.
  • a series of ID verification is automatically executed by mutual communication between the verification ECU 4 and the mobile terminal 2, and the door lock and unlock and engine start are performed on condition that the ID verification is established. Is allowed.
  • the body ECU 5 controls the operation of the door lock device 11 as a mechanical part that locks and unlocks the vehicle door 10.
  • the vehicle door 10 is provided with an exterior door handle 12 for operating the opening and closing of the vehicle door 10.
  • the exterior door handle 12 is provided with a touch sensor 13 that detects a user's touch operation on the exterior door handle 12 as a trigger for unlocking the door, for example.
  • the vehicle exterior door handle 12 is provided with a lock button 14 that is operated, for example, when locking the door.
  • the body ECU 5 controls the operation of the door lock device 11 based on the detection signal of the touch sensor 13 or the lock button 14 when the ID verification is established and the portable terminal 2 is located outside the vehicle 1. .
  • the engine ECU 7 controls the operation of the engine 6 of the vehicle 1.
  • the vehicle 1 is provided with an engine switch 15 for operating the power transition of the engine 6.
  • the engine switch 15 can be, for example, a push-type switch.
  • the engine ECU 7 controls the transition of the engine 6 by operating the engine switch 15 under a predetermined condition.
  • the predetermined condition here means that ID verification is established, the portable terminal 2 is located inside the vehicle 1, and the brake pedal (not shown) of the vehicle 1 is stepped on. , The transmission of the vehicle 1 is in the parking range, or a combination thereof.
  • the vehicle 1 includes an outdoor antenna 16 and an indoor antenna 17 for performing near field communication with the mobile terminal 2.
  • the outdoor antenna 16 is provided outside the vehicle 1.
  • the indoor antenna 17 is provided on the indoor side of the vehicle 1.
  • the outdoor antenna 16 and the indoor antenna 17 of this example perform BLE (Bluetooth Low Energy) communication with the mobile terminal 2.
  • the outdoor antenna 16 and the indoor antenna 17 have their own unique antenna IDs.
  • the mobile terminal 2 is a master and the vehicle 1 is a slave.
  • the relationship between the master and the slave is not limited to this, and the vehicle 1 may be the master and the mobile terminal 2 may be the slave.
  • the outdoor antenna 16 and the indoor antenna 17 periodically transmit an advertisement message to an area near the vehicle 1 in a predetermined order.
  • the mobile terminal 2 includes a terminal control unit 20 that controls the operation of the mobile terminal 2, a network communication module 21 that performs network communication between the mobile terminal 2 and an external device or a communication partner, and the mobile terminal 2 and a communication partner (vehicle). 1) and a terminal communication unit 22 that performs near field communication (BLE communication).
  • a terminal control unit 20 that controls the operation of the mobile terminal 2
  • a network communication module 21 that performs network communication between the mobile terminal 2 and an external device or a communication partner
  • the mobile terminal 2 and a communication partner vehicle.
  • BLE communication near field communication
  • the mobile terminal 2 When using the mobile terminal 2 as the electronic key of the vehicle 1, the mobile terminal 2 registers the electronic key ID and the key unique key of the mobile terminal 2 in the vehicle 1 (electronic key registration). For example, the mobile terminal 2 acquires an electronic key ID and a key unique key from a server (not shown) through network communication, writes them in the memory 24, and saves them. Further, the mobile terminal 2 connects (logs in) to the vehicle 1 through BLE communication and registers the electronic key ID and the key unique key of the mobile terminal 2.
  • the mobile terminal 2 When the mobile terminal 2 receives the advertisement message from the vehicle 1 and establishes the BLE communication connection with the vehicle 1, the mobile terminal 2 automatically performs ID verification by mutual communication through the BLE communication with the vehicle 1. For example, when the electronic key registration of the mobile terminal 2 is completed and the BLE communication connection is established between the vehicle 1 and the mobile terminal 2, the electronic key ID is transmitted and received between the verification ECU 4 and the terminal control unit 20. The electronic key ID is verified, and cryptographic authentication such as challenge response authentication using the key unique key is performed. When the verification ECU 4 confirms that the verification and the authentication are established, the verification ECU 4 determines that the ID verification is established. It should be noted that the series of ID collation is automatically executed without the user operating the mobile terminal 2 or the vehicle 1.
  • the authentication system 3 includes a position determination system 30 that determines the position of the mobile terminal 2 with respect to the vehicle 1 when the vehicle 1 and the mobile terminal 2 communicate with each other.
  • the position determination system 30 of the present example determines whether the mobile terminal 2 is inside or outside the vehicle 1.
  • this position determination may be performed at any timing during ID collation communication. That is, the position determination may be performed before ID verification, after ID verification, or during ID verification.
  • the position determination system 30 includes a position determination unit 31 that determines the position of the mobile terminal 2 with respect to the vehicle 1.
  • the position determination unit 31 of this example is provided in the verification ECU 4 of the vehicle 1.
  • the position determination unit 31 causes the outdoor antenna 16 and the indoor antenna 17 to BLE-transmit the position detection signal Sd including the antenna ID.
  • the position detection signal Sd is transmitted from the outdoor antenna 16 and the indoor antenna 17 a plurality of times. Further, the transmission powers of the position detection signals Sd from the outdoor antenna 16 and the indoor antenna 17 are the same.
  • the position determination system 30 includes a measurement unit 32 that measures the reception intensity of radio waves between the outdoor antenna 16 and the indoor antenna 17 and the mobile terminal 2 for each radio wave of each frequency (each channel).
  • the measurement unit 32 of this example is provided in the terminal control unit 20 of the mobile terminal 2.
  • the measurement unit 32 measures the reception intensity (RSSI: Received Signal Strength Indicator) of this position detection signal Sd.
  • the reception intensity of the position detection signal Sd transmitted from the outdoor antenna 16 is defined as the reception intensity Pr1
  • the reception intensity of the position detection signal Sd transmitted from the indoor antenna 17 is defined as the reception intensity Pr2.
  • the measurement unit 32 measures the received signal strength for each received position detection signal Sd, and transmits the measured received strength (reception strength data) of the position detection signal Sd to the verification ECU 4.
  • the position determination unit 31 determines the reception intensity measured for each radio wave (position detection signal Sd) of each frequency for each of the outdoor antenna 16 and the indoor antenna 17. Calculate the corresponding characteristic value.
  • the characteristic value is an average value of the reception intensity, and is, for example, a moving average calculated from the reception intensity data received in the latest predetermined period.
  • the position determination unit 31 of the position determination system 30 temporarily stores the received reception intensity Pr1 and reception intensity Pr2 in the memory 9 of the verification ECU 4.
  • the position determination unit 31 calculates an average value Pr1 ′ of the reception intensities Pr1 from the stored plurality of reception intensities Pr1. Further, the position determination unit 31 calculates an average value Pr2 ′ of the reception intensities Pr2 from the stored plurality of reception intensities Pr2.
  • the position determination unit 31 determines whether the mobile terminal 2 is located inside or outside the vehicle 1 by comparing the magnitudes of the average value Pr1 ′ and the average value Pr2 ′. When the average value Pr1 ′ is equal to or larger than the average value Pr2 ′, the position determination unit 31 determines that the mobile terminal 2 is located outside the vehicle 1 (outdoor determination). On the other hand, when the average value Pr1 ′ is less than the average value Pr2 ′, the position determination unit 31 determines that the mobile terminal 2 is located inside the vehicle 1 (indoor determination).
  • step S101 the vehicle 1 (collation ECU 4) sends an advertisement message from the outdoor antenna 16 and the indoor antenna 17 to an area near the vehicle 1 in order to establish a BLE communication connection with the mobile terminal 2. Repeatedly send in order.
  • the portable terminal 2 terminal control unit 20
  • enters the area near the vehicle 1 and receives the advertisement message it returns a response to the antenna that has transmitted the advertisement message and starts the BLE communication connection with the vehicle 1.
  • step S102 the vehicle 1 and the mobile terminal 2 are automatically connected to each other when device authentication (for example, address authentication) is established according to a series of communication connection processes linked to the advertisement message.
  • device authentication for example, address authentication
  • the communication connection between the two continues until the mobile terminal 2 moves out of the short-range wireless communication range with the vehicle 1.
  • step S103 when the vehicle 1 and the mobile terminal 2 are communicatively connected, the vehicle 1 and the mobile terminal 2 start ID verification.
  • ID verification includes verification of electronic key IDs and cryptographic authentication using a key unique key.
  • the verification ECU 4 determines that the ID verification is unsuccessful when either the verification of the electronic key ID or the cryptographic authentication using the key unique key is unsuccessful. If the ID verification is unsuccessful, the operation of the vehicle 1 is prohibited. On the other hand, the verification ECU 4 continues the process if the ID verification is successful.
  • the position determination unit 31 transmits the position detection signal Sd from the outdoor antenna 16 and the indoor antenna 17, causes the measurement unit 32 of the mobile terminal 2 to measure the reception intensity of these radio waves, and the measurement result is received by the vehicle 1 To reply (notify).
  • the position detection signal Sd may include each antenna ID, and the mobile terminal 2 on the receiving side may be able to identify which of the outdoor antenna 16 and the indoor antenna 17 is the radio wave. Further, the position detection signals Sd of the outdoor antenna 16 and the indoor antenna 17 may be transmitted at different timings or frequencies so that the mobile terminal 2 can receive both.
  • the measuring unit 32 measures the reception intensity (reception intensity Pr1 and reception intensity Pr2) of the position detection signal Sd, and returns the measured reception intensity data to the outdoor antenna 16 and the indoor antenna 17. To notify you.
  • the position determination unit 31 repeats a series of processes of position detection signal transmission, reception intensity measurement, and reception intensity data notification by changing the frequency (channel) in each of the outdoor antenna 16 and the indoor antenna 17. Run (shown only once in Figure 2). As a result, in each of the outdoor antenna 16 and the indoor antenna 17, a data group of the reception intensity Pr1 and the reception intensity Pr2 measured during communication with the mobile terminal 2 is acquired.
  • one outdoor antenna 16 and one indoor antenna 17 are provided in the vehicle 1.
  • the propagation path L1 of the radio wave between the outdoor antenna 16 and the mobile terminal 2, the indoor antenna 17, and the mobile terminal 2 are provided between the vehicle 1 and the mobile terminal 2.
  • the propagation path L1 and the propagation path L2 include various propagation paths through which the transmitted position detection signal Sd passes as a direct wave, a diffracted wave, and a reflected wave.
  • the reception intensity Pr1 when passing through the propagation path L1 and the reception intensity Pr2 when passing through the propagation path L2 have variations among a plurality of measurements. is doing.
  • a frequency hopping method is used to switch between a plurality of channels (frequencies), and variations occur in reception strength between channels. Therefore, if the reception strengths (instantaneous values) at one point of the reception strength Pr1 and the reception strength Pr2 are compared, even when the mobile terminal 2 is located outside the vehicle 1, the reception strength Pr1 is lower than the reception strength Pr1. Pr2 may be larger. Therefore, it is not possible to determine that the mobile terminal 2 is located outside the vehicle 1 by simply comparing the instantaneous values of the reception intensities.
  • the average value Pr1 ′ and the average value Pr2 ′ are used for the position determination.
  • the average value Pr1 ′ is usually equal to or larger than the average value Pr2 ′. That is, the relationship of “Pr1 ′ ⁇ Pr2 ′” is established.
  • the average value Pr1 ′ and the average value Pr2 ′ are as shown by the broken line and the alternate long and short dash line in FIGS. 4A and 4B, for example. Therefore, it can be seen that in the determination of the position of the mobile terminal 2, the use of the average value improves the determination accuracy than the use of the instantaneous value.
  • the reception intensity of the position detection signal Sd changes due to obstacles that block radio waves and interference with other radio waves. For example, if there is an obstacle (such as a user's bag) that covers the mobile terminal 2, the reception strength is reduced. Therefore, if the method of determining the position of the mobile terminal 2 based on whether or not the reception intensity exceeds the threshold value is adopted, even if the mobile terminal 2 is at the same position, the reception intensity changes, and the determination result is May change. On the other hand, in the case of this example, the position is determined by comparing the magnitudes of the average values of the reception intensities.
  • a radio wave propagation path L3 between the outdoor antenna 16 and the mobile terminal 2 is provided between the vehicle 1 and the mobile terminal 2.
  • the reception intensity Pr1 when passing through the propagation path L3 and the reception intensity Pr2 when passing through the propagation path L4 also have variations among a plurality of measurements. is there.
  • the average value Pr1 ' is usually smaller than the average value Pr2'. That is, the relationship of “Pr1 ′ ⁇ Pr2 ′” is established.
  • the average value Pr1 ′ and the average value Pr2 ′ are as shown by the broken line and the alternate long and short dash line in FIGS. 6A and 6B, for example. Therefore, even when the mobile terminal 2 is located inside the vehicle 1, it is understood that the position of the mobile terminal 2 can be accurately determined by comparing the magnitudes of the average values of the reception intensities.
  • the position determination unit 31 calculates an average value Pr1 ′ and an average value Pr2 ′ from the stored plurality of reception intensities Pr1 and Pr2. Then, by comparing the magnitudes of the average value Pr1 ′ and the average value Pr2 ′, it is determined whether the portable terminal 2 is located inside or outside the vehicle 1. When the average value Pr1 ′ is equal to or larger than the average value Pr2 ′ (Pr1 ′ ⁇ Pr2 ′), the position determination unit 31 determines that the mobile terminal 2 is located outside the vehicle 1 (outdoor determination).
  • the position determination unit 31 determines that the mobile terminal 2 is located inside the vehicle 1 (indoor determination). For example, the body ECU 5 controls the operation of the door lock device 11 based on the detection signal of the touch sensor 13 or the lock button 14 when the ID collation is established and the outdoor determination is made. Further, the engine ECU 7 controls the transition of the engine 6 by operating the engine switch 15 on condition that the ID collation is established and the indoor determination is made. As described above, the position determination system 30 determines whether the mobile terminal 2 is located inside or outside the vehicle 1, and thus control according to the position of the mobile terminal 2 becomes possible.
  • the position determination system 30 calculates the characteristic value of each antenna from a plurality of reception intensities measured for each antenna, and compares the characteristic value between the antennas to determine whether the vehicle 1 (communication partner).
  • the position determining unit 31 for determining the position of the mobile terminal 2 with respect to According to this configuration, by using the characteristic value of each antenna calculated based on a plurality of reception intensities, it is possible to suppress the influence on the position determination due to the variation of the reception intensities. Further, when the mobile terminal 2 is at the same position, the magnitude relationship of the characteristic values between the antennas is unlikely to change even if the radio wave is blocked by an obstacle.
  • the average value of multiple reception strengths measured for each antenna was used as the characteristic value. According to this configuration, the accuracy of position determination can be improved without imposing an excessive processing load through a simple process of calculating the average of the reception intensities and determining the position.
  • the vehicle 1 includes the outdoor antenna 16 and the indoor antenna 17, and the position determination unit 31 compares the average value Pr1 ′ and the average value Pr2 ′ to determine whether the portable terminal 2 is indoors or outdoors of the vehicle 1. It is configured to determine whether or not it is located at. With this configuration, it is possible to accurately determine whether the portable terminal 2 is located inside or outside the vehicle 1.
  • the average value Pr1 ′ and the average value Pr2 ′ are used for position determination, the variation in the reception intensity can be suppressed, but the influence of the variation cannot be completely canceled. An error may occur in these average values due to variations in reception strength. If there is an error in the values of the average value Pr1 ′ and the average value Pr2 ′, the magnitude relationship between them may be reversed, and the position determination may not be accurately performed. This example is a countermeasure for suppressing the influence of the error between the average value Pr1 ′ and the average value Pr2 ′.
  • the authentication system 3 includes a correction unit 40 that corrects the characteristic value.
  • the correction unit 40 is provided in the verification ECU 4.
  • the correction unit 40 of the present example uses the ratio of the average value Pr1 ′ to the average value Pr2 ′, that is, “Pr1”, so that the difference between the average value Pr1 ′ and the average value Pr2 ′ when the mobile terminal 2 is located outdoors is large.
  • the correction is performed so that the value of “/ Pr2 ′” becomes larger after the correction than before the correction.
  • the correction unit 40 of the present example corrects the calculated average value Pr1 ′ by the offset value set in advance so as to be increased by the correction.
  • the correction unit 40 may perform the correction so as to reduce the average value Pr2 ′.
  • the position determination unit 31 determines the position of the mobile terminal 2 by comparing the magnitude of the average value Pr1 ′ corrected by the correction unit 40 and the average value Pr2 ′.
  • the operation and effect of the authentication system 3 (correction unit 40) of the present embodiment will be described with reference to correction using FIG. 8 and FIG. 9.
  • the difference D1 the difference obtained by subtracting the average value Pr2 ′ from the average value Pr1 ′. Therefore, when the mobile terminal 2 is located outside the vehicle 1, the average value Pr1 ′ is usually larger than the average value Pr2 ′ by the difference D1.
  • the difference D2 is the difference between the average value Pr2 ′ and the average value Pr1 ′ when the mobile terminal 2 is located inside the vehicle 1. Therefore, when the mobile terminal 2 is located inside the vehicle 1, the average value Pr2 'is usually larger than the average value Pr1' by the difference D2.
  • the difference D1 and the difference D2 correspond to the permissible amount for the error between the average value Pr1 ′ and the average value Pr2 ′.
  • the difference D2 is larger than the difference D1 (D2> D1).
  • the correction processing by the correction unit 40 of this example is performed on the assumption that the required difference D2 is secured even if the difference D1 is increased. As a result, it is possible to secure a sufficient allowance for the error between the average value Pr1 ′ and the average value Pr2 ′ regardless of whether the mobile terminal 2 is inside or outside the vehicle 1.
  • the average value Pr1 ′ is corrected according to the above concept.
  • the correction unit 40 corrects the average value Pr1 ′ calculated by the position determination unit 31 with an offset value set in advance so as to be increased by the correction. This correction is realized by the arithmetic processing of the correction unit 40 (controller). Then, the position determination unit 31 determines the position of the vehicle 1 of the mobile terminal 2 by comparing the magnitudes of the corrected average value Pr1 ′ and the average value Pr2 ′. As a result, regardless of whether the mobile terminal 2 is located inside or outside the vehicle 1, the determination can be performed with a sufficient allowable amount.
  • the correction unit 40 is provided to perform correction so that the average value Pr1 ′ becomes large.
  • the correction can be performed according to the magnitude relationship between the average value Pr1 ′ and the average value Pr2 ′. Accordingly, when an error occurs in the average value Pr1 ′ and the average value Pr2 ′, for example, when determining the position of the mobile terminal 2, it is possible to secure a sufficient allowance for the error in these average values. This contributes to improving the accuracy of the position determination of the mobile terminal 2.
  • the position determination unit 31 of this example calculates the standard deviation together with the average value of the reception intensity of the position detection signal Sd as the characteristic value.
  • the standard deviation calculated from the reception intensity Pr1 is the standard deviation Dv1
  • the standard deviation calculated from the reception intensity Pr2 is the standard deviation Dv2.
  • the correction unit 40 corrects the average value Pr1 ′ with the offset value according to the value of the standard deviation Dv1. Further, the correction unit 40 corrects the average value Pr2 ′ with the offset value according to the value of the standard deviation Dv2.
  • the correction unit 40 corrects the average value by using a larger offset value as the standard deviation is smaller.
  • the standard deviation of the reception intensity of the position detection signal Sd depends on the propagation path of the position detection signal Sd. That is, the standard deviation changes depending on propagation modes such as direct waves, diffracted waves, and reflected waves, the presence or absence of obstacles, and interference with other radio waves.
  • the present inventors have found that the variation in the reception intensity of the position detection signal Sd passing through the propagation path L1 is smaller than that when passing through the other propagation paths (L2 to L4). I found that. That is, it is known that the propagation path L1 has a small standard deviation, and the propagation path L2, the propagation path L3, and the propagation path L4 have no large difference in standard deviation. That is, even with the position detection signal Sd transmitted from the same outdoor antenna 16, there is a difference in the standard deviation of the reception intensity between the propagation path L1 and the propagation path L3. It was expected that this difference could be applied to correction for increasing the difference D1.
  • the correction unit 40 corrects the average value Pr1 ′ and the average value Pr2 ′ by the offset value that changes according to the standard deviation.
  • the average value Pr1 ′ is corrected more than the average value Pr2 ′ because the standard deviation of the mobile terminal 2 passing through the propagation path L1 is smaller than that of the propagation path L2.
  • the difference D1 becomes large, so that the allowable amount for the error of the average value becomes large.
  • the mobile terminal 2 is located inside the vehicle 1, there is no large difference in standard deviation between the propagation path L3 and the propagation path L4. Therefore, the average value Pr1 ′ and the average value Pr2 ′ should be corrected to the same degree.
  • the permissible amount for the error of the average value when the mobile terminal 2 is located outside the vehicle 1 is increased, while the permissible amount for the error of the average value when the mobile terminal 2 is located inside the vehicle 1 is maintained. can do.
  • the correction unit 40 is configured to correct the average value by the offset value that changes based on the standard deviation of the reception intensity of the position detection signal Sd.
  • the standard deviation is characterized by the radio wave propagation path between each antenna and the mobile terminal 2
  • the correction according to each radio wave propagation path is performed. It can be performed. This further contributes to improving the accuracy of the position determination of the mobile terminal 2.
  • the outdoor antenna 16 of this example includes an outdoor antenna 16a provided on the driver side of the vehicle 1 and an outdoor antenna 16b provided on the passenger side of the vehicle 1.
  • the indoor antenna 17 includes an indoor antenna 17a provided on the driver side of the vehicle 1 and an indoor antenna 17b provided on the passenger side of the vehicle 1. Therefore, in this example, the vehicle 1 is provided with four antennas.
  • the reception intensity of the position detection signal Sd transmitted from the outdoor antenna 16a is the reception intensity Pr1a
  • the reception intensity of the position detection signal Sd transmitted from the outdoor antenna 16b is the reception intensity Pr1b
  • the position detection signal Sd transmitted from the indoor antenna 17a is the reception intensity Pr1a
  • reception strength Pr2a The reception strength is defined as reception strength Pr2a
  • reception strength Pr2b the reception strength of the position detection signal Sd transmitted from the indoor antenna 17b
  • reception strength Pr2b the reception strength of the position detection signal Sd transmitted from the indoor antenna 17b
  • these average values are referred to as an average value Pr1a ', an average value Pr1b', an average value Pr2a ', and an average value Pr2b'.
  • the position determination unit 31 determines the position of the mobile terminal 2 by comparing the magnitude of each average value.
  • the position determination unit 31 performs outdoor determination when the relationship of “Pr1a ′ ⁇ Pr2a ′, Pr2b ′ ⁇ Pr1b ′, or Pr1b ′ ⁇ Pr2a ′, Pr2b ′ ⁇ Pr1a ′” is established. Note that “Pr2a ′, Pr2b ′” indicates that the average value Pr2a ′ and the average value Pr2b ′ may be either large or small (the same applies hereinafter).
  • the position determination unit 31 makes an indoor determination when the relationship “Pr1a ′, Pr1b ′ ⁇ Pr2a ′, Pr2b ′” holds. That is, when both the average value Pr1a 'and the average value Pr1b' are smaller than both the average value Pr2a 'and the average value Pr2b', the indoor determination is performed.
  • the position determination unit 31 determines that the position determination is abnormal and issues an error. If the position determination unit 31 produces an error, the verification ECU 4 does not permit the operation of the vehicle 1 on the condition that the portable terminal 2 is located inside or outside the vehicle 1.
  • the range that the position detection signal Sd reaches can be expanded or made redundant.
  • the combinations (orders) of the reception intensities from the respective antennas increase, and there is a possibility that it can be applied to more complex and advanced position determination.
  • the number of antennas may be any number as long as it is at least two.
  • the fifth embodiment differs from the second and third embodiments only in the correction method of the correction unit 40. Therefore, also in this example, only the parts different from the second embodiment will be described in detail.
  • the correction unit 40 corrects the average value Pr1 ′ to a value according to the current determination result of the position determination unit 31.
  • the correction unit 40 of this example corrects the average value Pr1 ′ using the offset value as the correction amount according to the determination result of the position determination unit 31.
  • the offset value includes a first offset value ⁇ used when the position determination unit 31 makes an outdoor determination, and a second offset value ⁇ used when the position determination unit 31 makes an indoor determination. ..
  • the correction unit 40 performs a positive offset so as to increase the value of the average value Pr1 ′ by the first offset value ⁇ and the second offset value ⁇ . Further, the first offset value ⁇ is larger than the second offset value ⁇ .
  • the position determination unit 31 compares the corrected average value Pr1 ′ and the corrected average value Pr2 ′ to determine the position of the mobile terminal 2.
  • the position determination unit 31 switches the position determination by performing the position determination once and then continuously monitoring the average value Pr1 ′ and the average value Pr2 ′.
  • the correction unit 40 corrects the average value Pr1 ′ with the first offset value ⁇ (hereinafter referred to as the first correction)
  • the average value Pr1 ′ is equal to the first offset value ⁇ . growing. That is, the correction is performed so that the ratio of the average value Pr1 ′ to the average value Pr2 ′ becomes large.
  • the first correction the value of the difference D1 between the average value Pr1 ′ and the average value Pr2 ′ becomes larger than that before the correction.
  • the correction unit 40 corrects the average value Pr1 ′ by the second offset value ⁇ (hereinafter referred to as the second correction)
  • the average value Pr1 ′ is equal to the second offset value ⁇ . growing. That is, the correction is performed so that the ratio of the average value Pr1 ′ to the average value Pr2 ′ becomes large.
  • the second correction the value of the difference D2 between the average value Pr2 ′ and the average value Pr1 ′ becomes smaller than that before the correction.
  • the position determination unit 31 monitors the average value Pr1 ′ and the average value Pr2 ′ that change over time due to the movement of the mobile terminal 2 after once performing the position determination, and switches the determination. To do.
  • a curve C shows an example of changes in the difference between the average value Pr1 ′ and the average value Pr2 ′. When the curve C is "0", the magnitude relationship between the average value Pr1 'and the average value Pr2' is reversed.
  • the position determination unit 31 makes the indoor determination.
  • the position determination unit 31 switches the position determination by comparing the magnitude relationship between the second corrected average value Pr1 ′ and the average value Pr2 ′.
  • a change in the difference between the second corrected average value Pr1 ′ and the average value Pr2 ′ is shown by a curve C ⁇ .
  • the position determination unit 31 switches the determination from the indoor determination to the outdoor determination when the second corrected average value Pr1 ′ is equal to or more than the average value Pr2 ′, that is, when the curve C ⁇ is “0” or more.
  • the position determination unit 31 maintains the indoor determination when the second corrected average value Pr1 ′ is smaller than the average value Pr2 ′, that is, when the curve C ⁇ is smaller than “0”.
  • the second corrected average value Pr1 ′ becomes equal to or larger than the average value Pr2 ′, and the curve C ⁇ becomes “0” or larger.
  • the position determination unit 31 switches from indoor determination to outdoor determination at time t1.
  • the position determination unit 31 switches the position determination by comparing the magnitude relationship between the first corrected average value Pr1 ′ and the average value Pr2 ′. A change in the difference between the first corrected average value Pr1 ′ and the average value Pr2 ′ is shown by a curve C ⁇ .
  • the position determination unit 31 determines from the outdoor determination to the indoor determination when the first corrected average value Pr1 ′ becomes smaller than the average value Pr2 ′, that is, when the curve C ⁇ becomes smaller than “0”. Switch.
  • the position determination unit 31 maintains the outdoor determination when the first corrected average value Pr1 ′ is the average value Pr2 ′ or more, that is, when the curve C ⁇ is “0” or more.
  • the first corrected average value Pr1 ′ becomes smaller than the average value Pr2 ′, and the curve C ⁇ becomes smaller than “0”.
  • the position determination unit 31 switches from outdoor determination to indoor determination at time t2.
  • the value of the curve C is provided with a hysteresis ⁇ C between the time of switching from the indoor determination to the outdoor determination and the time of switching from the outdoor determination to the indoor determination. As a result, it is possible to suppress frequent determination switching.
  • the first correction makes it difficult for the position determination unit 31 to switch the determination from the outdoor determination to the indoor determination.
  • the indoor determination is performed based on the outdoor determination. It is possible to prevent the determination from being mistakenly switched to.
  • the position determination unit 31 can easily switch the determination from the indoor determination to the outdoor determination. This is based on the fact that the difference D2 is sufficiently large in advance when the mobile terminal 2 is indoors. For example, it is easy to switch the determination while securing a sufficient allowable amount, which leads to improvement in convenience.
  • the correction unit 40 that corrects the average value Pr1 ′ to a value according to the current determination result of the position determination unit 31 is provided. Further, the position determination unit 31 switches the determination of the position of the mobile terminal based on the corrected average value Pr1 ′ and average value Pr2 ′. According to this configuration, it is possible to correctly switch the determination by the correction according to each determination result.
  • the correction unit 40 performs correction so as to increase the average value Pr1 ′.
  • the first offset value ⁇ and the second offset value ⁇ having different values are used for switching from the outdoor determination to the indoor determination and switching from the indoor determination to the outdoor determination, respectively. According to this configuration, in the system for determining whether the indoor or outdoor, the determination can be stabilized by the outdoor determination. This is advantageous for switching the correct judgment.
  • the present embodiment can be modified and implemented as follows.
  • the present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
  • -In 5th Embodiment although it corrected so that the average value Pr1 'might be increased by the 1st offset value (alpha), it is not limited to this, You may correct so that the average value Pr1' may be made small. That is, the determination may be easily switched from the outdoor determination to the indoor determination.
  • the average value Pr1 ′ is corrected to be large by the second offset value ⁇ , but the present invention is not limited to this, and the average value Pr1 ′ may be corrected to be small. That is, the ratio of the average value Pr1 ′ to the average value Pr2 ′ may be corrected so as to be smaller after the correction than before the correction. This makes it difficult to switch the determination from the indoor determination to the outdoor determination.
  • the first offset value ⁇ and the second offset value ⁇ may be either large or small.
  • amendment part 40 corrected average value Pr1 ' it is not limited to this, You may correct average value Pr2', and both average value Pr1 'and average value Pr2'. May be corrected. Further, the correction may be made not only by the offset but also by a coefficient or a ratio.
  • the position determination part 31 may provide a threshold value for determination of a magnitude relationship, for example, determination may be switched according to whether the difference of average value Pr1 'and average value Pr2' is more than a threshold value.
  • the correction unit 40 may correct the characteristic value or the threshold value.
  • the standard deviation of the reception intensity of the position detection signal Sd may be used as it is for the position determination of the position determination unit 31. For example, assuming that only the propagation path L1 has a small standard deviation value, the two standard deviations Dv1 and Dv2 are compared, and the standard deviation Dv1 is smaller than the standard deviation Dv2, and the standard deviations Dv1 and Dv2 are smaller. If the difference is greater than or equal to the specified value, outdoor determination may be performed. Further, the determination may be performed by comparing the standard deviations Dv1 and Dv2 together with the comparison of the average values Pr1 ′ and Pr2 ′.
  • the position of the mobile terminal 2 is determined based on the standard deviation. You can This contributes to improvement in the accuracy of the position determination of the mobile terminal 2.
  • the correction unit 40 may increase the offset value as the standard deviation increases if the standard deviation is large only in a certain propagation path. For example, if only the propagation path L1 has a large standard deviation, the difference D1 can be increased by increasing the offset value.
  • the correction part 40 may correct with a negative offset value so that a standard deviation may become large and an average value may become small.
  • amendment part 40 may perform correction
  • the preset offset value can be changed as appropriate.
  • it can be set based on the values of the difference D1 and the difference D2 measured by experiments.
  • the relationship between the value of a standard deviation and an offset value can be changed suitably.
  • the correction unit 40 may correct the reception intensity received from the measurement unit 32 and then calculate the average value. That is, it is sufficient that the average value can be corrected as a result of the correction.
  • the measurement unit 32 may be provided on the vehicle 1 side. For example, even if the position detection signal Sd transmitted from the mobile terminal 2 is received by a plurality of antennas on the vehicle 1 side and the position of the mobile terminal 2 is determined based on the magnitude relationship of the characteristic values calculated from the reception intensities thereof. Good.
  • the position determination part 31 may be provided in the portable terminal 2 side.
  • amendment part 40 may be provided in the portable terminal 2 side.
  • the average value is not limited to a moving average, and may be another arithmetic average, a geometric average, or a harmonic average. Alternatively, a weighted moving average or the like may be used.
  • the characteristic value is not limited to the average value, and may be the median value or the mode value. These can be appropriately changed according to the distribution (variation) of the reception strength. However, it is preferable to use the average value in terms of reliability with a small number of data and considering all data.
  • the position determination unit 31 is not limited to determining whether the mobile terminal 2 is located inside or outside the vehicle 1, and the mobile terminal 2 may be the driver seat side or the passenger seat side of the vehicle 1. It may be determined which of the two, the front side or the rear side, or the coordinates of the mobile terminal 2 with respect to the vehicle 1.
  • the transmission interval of the position detection signal Sd transmitted from the antenna is not particularly limited, and may be appropriately changed according to the specifications of the position determination system 30.
  • the arrangement of the antennas is not particularly limited and can be appropriately changed according to the specifications. For example, it may be arranged on the driver's seat side and the passenger's seat side of the vehicle 1 regardless of whether the vehicle 1 is indoors or outdoors.
  • the position detection signal Sd does not have to include the antenna ID of the radio wave transmission source.
  • the position determination unit 31 may control the transmission timing of the position detection signal Sd to identify which antenna has the reception intensity from the timing at which the reception intensity data is received, or may transmit the position detection signal Sd. You may identify by receiving receiving intensity data with an antenna.
  • the outdoor antenna 16 and the indoor antenna 17 may transmit a group of position detection signals Sd having different channels at one time.
  • the measurement unit 32 may calculate the average value of a group of the plurality of position detection signals Sd and send back (notify) the vehicle 1 side. That is, the characteristic value may be calculated on either the vehicle 1 side or the mobile terminal 2 side.
  • each frequency of a plurality of position detection signals Sd (radio waves) transmitted is not limited to a channel determined by frequency hopping of BLE communication.
  • the size relationship serving as a reference for position determination is not limited to this embodiment, and can be changed as appropriate based on, for example, data obtained by performing an experiment with the position determination system 30 mounted on the vehicle 1. is there.
  • the communication standard and band of the authentication system 3 and the position determination system 30 are not limited to those in the embodiments, and Wi-Fi may be used, for example. Also, different bands may be used between these systems.
  • a method for performing communication connection (pairing) for near field communication between the vehicle 1 and the mobile terminal 2 is not particularly limited.
  • pairing may be performed only by operating one of the devices.
  • a device such as a car navigation system mounted on the vehicle 1 can be applied as the input / output device. That is, when performing pairing, the operating device, operating method, authentication method, and the like can be changed as appropriate.
  • the method for the mobile terminal 2 to acquire the electronic key ID and the key unique key is to acquire the electronic key ID and the key unique key from the server through Internet communication, but the method is not limited to this.
  • a mode may be adopted in which the electronic key ID and the key unique key registered in the vehicle 1 in advance are given to the mobile terminal 2 by logging in to the vehicle 1 (user ID and password authentication) using BLE communication.
  • the ID verification performed by the authentication system 3 is not limited to the electronic key ID verification or the cryptographic authentication of the key unique key, and any method that can confirm the correctness of the mobile terminal 2 may be used.
  • the order of ID collation and position detection of the mobile terminal 2 is not particularly limited in a series of authentications.
  • the ID collation may be performed after the position detection, or the ID collation and the position detection may be performed so as to overlap with each other.
  • the mobile terminal 2 is not limited to a high-performance mobile phone, and may be an electronic key tied to the vehicle 1.
  • the authentication system 3 and the position determination system 30 are not limited to being mounted on the vehicle 1 and can be changed to various devices and apparatuses. That is, the communication partner of the mobile terminal 2 is not limited to the vehicle 1, and may be equipment in a building, for example.

Abstract

This position determination system (30) comprises a position determination unit (31) which determines the position of a mobile terminal (2) with respect to a communication partner (1). For a plurality of radio waves respectively communicated at different frequencies between each of a plurality of antennas (16, 17) provided in the communication partner (1) and the mobile terminal (2), the position determination unit (31) calculates the characteristic value of each antenna (16; 17) from the reception intensity measured for each radio wave of each frequency, and compares the magnitudes of the characteristic values of the antennas (16, 17) to determine the position of the mobile terminal (2).

Description

位置判定システム及び位置判定方法Position determination system and position determination method
 本発明は、携帯端末が通信相手と通信する際の通信相手に対する携帯端末の位置を判定する位置判定システム及び位置判定方法に関する。 The present invention relates to a position determination system and a position determination method for determining the position of a mobile terminal with respect to a communication partner when the mobile terminal communicates with the communication partner.
 従来、例えば車両において、ユーザに所持される携帯端末と車両に搭載される車載機との間の無線通信を通じて車両の制御を行う認証システムが知られている。認証システムとしては、車載機からの送信電波に携帯端末が自動で応答して無線通信によりID照合(スマート照合)を行うスマート照合システムが周知である。 In the past, for example, in a vehicle, an authentication system is known that controls the vehicle through wireless communication between a mobile terminal carried by the user and an in-vehicle device mounted in the vehicle. As an authentication system, a smart verification system is known in which a mobile terminal automatically responds to a radio wave transmitted from a vehicle-mounted device and performs ID verification (smart verification) by wireless communication.
 特許文献1には、車両に対する携帯端末の位置を判定する位置判定システムを備えたスマート照合システムが開示されている。この位置判定システムでは、車両から送信された電波を携帯端末が受信したときの受信強度を測定し、この受信強度が整合する位置を、携帯端末の位置として判定する。ID照合に加えて、位置判定システムによる携帯端末の位置判定を認証に課す態様とした場合、スマート照合システムのセキュリティ性を向上させることができる。 Patent Document 1 discloses a smart matching system including a position determination system that determines the position of a mobile terminal with respect to a vehicle. In this position determination system, the reception intensity when the radio wave transmitted from the vehicle is received by the mobile terminal is measured, and the position where the reception intensity matches is determined as the position of the mobile terminal. When the position determination of the mobile terminal by the position determination system is imposed on the authentication in addition to the ID verification, the security of the smart verification system can be improved.
特開2018-12933号公報Japanese Patent Laid-Open No. 2018-12933
 ところで、携帯端末が同じ位置にあっても、例えば送信された電波が障害物によって遮蔽されたり、他の電波の干渉を受けたりすると受信強度が変化することがある。受信強度が変化すると、携帯端末の位置を正確に判定できないという問題があった。 By the way, even if the mobile terminal is at the same position, the reception strength may change if, for example, the transmitted radio waves are blocked by obstacles or interfere with other radio waves. When the reception intensity changes, there is a problem that the position of the mobile terminal cannot be accurately determined.
 本発明の目的は、携帯端末の位置判定の精度を向上可能にした位置判定システム及び位置判定方法を提供することにある。 An object of the present invention is to provide a position determination system and a position determination method capable of improving the position determination accuracy of a mobile terminal.
 一実施形態による位置判定システムは、携帯端末とその通信相手とが無線により通信する場合に、前記通信相手に対する前記携帯端末の位置を判定する位置判定部を備え、前記位置判定部は、前記通信相手に設けられた複数のアンテナの各々と前記携帯端末との間で異なる周波数で通信される複数の電波について、各周波数の前記電波毎に測定された受信強度から前記アンテナ毎の特性値を算出し、前記アンテナ間の前記特性値の大小を比較することにより、前記携帯端末の位置を判定する。 A position determination system according to one embodiment includes a position determination unit that determines a position of the mobile terminal with respect to the communication partner when the mobile terminal and a communication partner communicate with each other wirelessly, and the position determination unit is configured to perform the communication. For a plurality of radio waves communicated at different frequencies between each of a plurality of antennas provided to the other party and the mobile terminal, a characteristic value for each antenna is calculated from the reception intensity measured for each radio wave of each frequency. Then, the position of the mobile terminal is determined by comparing the magnitudes of the characteristic values between the antennas.
 一実施形態による位置判定方法は、携帯端末とその通信相手とが無線により通信する場合に、前記通信相手に設けられた複数のアンテナの各々と前記携帯端末との間で異なる周波数で通信される複数の電波について、各周波数の前記電波毎に測定された受信強度から前記アンテナ毎の特性値を算出すること、前記アンテナ間の前記特性値の大小を比較することにより、前記通信相手に対する前記携帯端末の位置を判定すること、を備える。 In the position determination method according to one embodiment, when a mobile terminal and a communication partner communicate wirelessly, each of a plurality of antennas provided to the communication partner and the mobile terminal communicate at different frequencies. For the plurality of radio waves, the characteristic value for each antenna is calculated from the reception intensity measured for each radio wave of each frequency, and the size of the characteristic value between the antennas is compared to determine whether the mobile phone for the communication partner is used. Determining the location of the terminal.
 本発明の位置判定システム及び位置判定方法は、携帯端末の位置判定の精度を向上可能にする。 The position determination system and the position determination method of the present invention can improve the accuracy of position determination of a mobile terminal.
第1実施形態の認証システムに設けられた位置判定システムの構成を示すブロック図。The block diagram which shows the structure of the position determination system provided in the authentication system of 1st Embodiment. 認証システムにおける車両と携帯端末との通信を通じた認証の流れを示すフロー図。The flowchart which shows the flow of authentication through communication between the vehicle and a portable terminal in an authentication system. 車両の室外に携帯端末が位置する場合の電波伝搬経路を示す図。The figure which shows a radio wave propagation path when a portable terminal is located outside the vehicle. 車両の室外に携帯端末が位置する場合の(a)室外アンテナから送信された位置検出信号の受信強度を示すグラフ、(b)室内アンテナから送信された位置検出信号の受信強度を示すグラフ。The graph which shows the reception strength of the position detection signal transmitted from the (a) outdoor antenna when the portable terminal is located outdoors of the vehicle, and the graph which shows the reception strength of the position detection signal transmitted from the indoor antenna. 車両の室内に携帯端末が位置する場合の電波伝搬経路を示す図。The figure which shows a radio wave propagation path when a portable terminal is located in the vehicle interior. 車両の室内に携帯端末が位置する場合の(a)室外アンテナから送信された位置検出信号の受信強度を示すグラフ、(b)室内アンテナから送信された位置検出信号の受信強度を示すグラフ。The graph which shows the reception intensity of the position detection signal transmitted from the (a) outdoor antenna when the portable terminal is located in the vehicle interior, and the graph which shows the reception intensity of the position detection signal transmitted from the indoor antenna (b). 第2実施形態の認証システムに設けられた位置判定システムの構成を示すブロック図。The block diagram which shows the structure of the position determination system provided in the authentication system of 2nd Embodiment. 車両の室外に携帯端末が位置する場合の各アンテナからの受信強度を示すグラフ。The graph which shows the receiving strength from each antenna when a portable terminal is located outdoors of a vehicle. 車両の室内に携帯端末が位置する場合の各アンテナからの受信強度を示すグラフ。The graph which shows the reception strength from each antenna when a portable terminal is located in the vehicle interior. 第4実施形態において車両に設けられたアンテナを示す図。The figure which shows the antenna provided in the vehicle in 4th Embodiment. 第5実施形態において、室外判定をしている場合の平均値Pr1´の補正を示すグラフ。In 5th Embodiment, the graph which shows correction | amendment of average value Pr1 'at the time of performing the outdoor determination. 第5実施形態において、室内判定をしている場合の平均値Pr1´の補正を示すグラフ。The graph which shows correction | amendment of average value Pr1 'at the time of making an indoor determination in 5th Embodiment. 第5実施形態において、平均値Pr1´及び平均値Pr2´の差の変化の一例を示したグラフ。The graph which showed an example of change of the difference of average value Pr1 'and average value Pr2' in a 5th embodiment.
 <第1実施形態>
 以下、位置判定システム及び位置判定方法の第1実施形態を、図1~図6に従って説明する。
<First Embodiment>
Hereinafter, a first embodiment of a position determination system and a position determination method will be described with reference to FIGS.
 図1に示すように、通信相手としての車両1は、無線通信を通じて携帯端末2の正否を認証する認証システム3を備える。携帯端末2は、例えば、電話機能を有し、近距離無線通信を用いて車両1と通信可能な高機能携帯電話であり得る。本例の認証システム3は、車両1からの通信を契機に近距離無線通信によってID照合を実行する近距離無線照合システムである。近距離無線通信は、例えばブルートゥース(Bluetooth:登録商標)通信であり得る。 As shown in FIG. 1, the vehicle 1 as a communication partner includes an authentication system 3 that authenticates whether the mobile terminal 2 is correct or not through wireless communication. The mobile terminal 2 can be, for example, a high-performance mobile phone that has a telephone function and can communicate with the vehicle 1 using short-range wireless communication. The authentication system 3 of this example is a short-range wireless verification system that executes ID verification by short-range wireless communication triggered by communication from the vehicle 1. The short-range wireless communication may be Bluetooth (registered trademark) communication, for example.
 車両1は、ID照合を行う照合ECU(Electronic Control Unit)4と、車載電装品の電源を管理するボディECU5と、エンジン6を制御するエンジンECU7とを備えている。これらECUは、車内の通信線8を通じて接続されている。通信線8は、例えばCAN(Controller Area network)やLIN(Local Interconnect network)からなる。 The vehicle 1 includes a verification ECU (Electronic Control Unit) 4 that performs ID verification, a body ECU 5 that manages the power supply of in-vehicle electrical components, and an engine ECU 7 that controls the engine 6. These ECUs are connected through a communication line 8 inside the vehicle. The communication line 8 is composed of, for example, a CAN (Controller Area network) or a LIN (Local Interconnect network).
 照合ECU4のメモリ9には、車両1に登録された携帯端末2の電子キーID及びキー固有鍵が書き込み保存されている。認証システム3においては、照合ECU4と携帯端末2との間で自動的に相互通信による一連のID照合が実行され、そのID照合が成立したことを一条件としてドアロックの施解錠及びエンジンの始動が許可される。 The electronic key ID and the key unique key of the portable terminal 2 registered in the vehicle 1 are written and stored in the memory 9 of the verification ECU 4. In the authentication system 3, a series of ID verification is automatically executed by mutual communication between the verification ECU 4 and the mobile terminal 2, and the door lock and unlock and engine start are performed on condition that the ID verification is established. Is allowed.
 ボディECU5は、車両ドア10を施解錠するメカ部分としてのドアロック装置11の作動を制御する。車両ドア10には、車両ドア10の開閉を操作するための車外ドアハンドル12が設けられている。車外ドアハンドル12には、例えばドア解錠するときのトリガとして車外ドアハンドル12に対するユーザのタッチ操作を検出するタッチセンサ13が設けられている。また、車外ドアハンドル12には、例えばドア施錠するときに操作するロックボタン14が設けられている。ボディECU5は、ID照合が成立し、かつ車両1の室外に携帯端末2が位置しているときに、タッチセンサ13又はロックボタン14の検出信号を基に、ドアロック装置11の作動を制御する。 The body ECU 5 controls the operation of the door lock device 11 as a mechanical part that locks and unlocks the vehicle door 10. The vehicle door 10 is provided with an exterior door handle 12 for operating the opening and closing of the vehicle door 10. The exterior door handle 12 is provided with a touch sensor 13 that detects a user's touch operation on the exterior door handle 12 as a trigger for unlocking the door, for example. Further, the vehicle exterior door handle 12 is provided with a lock button 14 that is operated, for example, when locking the door. The body ECU 5 controls the operation of the door lock device 11 based on the detection signal of the touch sensor 13 or the lock button 14 when the ID verification is established and the portable terminal 2 is located outside the vehicle 1. .
 エンジンECU7は、車両1のエンジン6の作動を制御する。車両1には、エンジン6の電源遷移を操作するためのエンジンスイッチ15が設けられている。エンジンスイッチ15は、例えばプッシュ式のスイッチであり得る。エンジンECU7は、所定の条件下でエンジンスイッチ15が操作されることでエンジン6の遷移を制御する。なお、ここでいう所定の条件とは、ID照合が成立していること、車両1の室内に携帯端末2が位置していること、車両1のブレーキペダル(図示略)が踏まれていること、車両1のトランスミッションがパーキングレンジに入っていること、又はこれらの組み合わせが挙げられる。 The engine ECU 7 controls the operation of the engine 6 of the vehicle 1. The vehicle 1 is provided with an engine switch 15 for operating the power transition of the engine 6. The engine switch 15 can be, for example, a push-type switch. The engine ECU 7 controls the transition of the engine 6 by operating the engine switch 15 under a predetermined condition. The predetermined condition here means that ID verification is established, the portable terminal 2 is located inside the vehicle 1, and the brake pedal (not shown) of the vehicle 1 is stepped on. , The transmission of the vehicle 1 is in the parking range, or a combination thereof.
 車両1は、携帯端末2と近距離無線通信を行なうための室外アンテナ16と室内アンテナ17とを備えている。室外アンテナ16は、車両1の室外側に設けられている。室内アンテナ17は、車両1の室内側に設けられている。本例の室外アンテナ16及び室内アンテナ17は、携帯端末2とBLE(Bluetooth Low Energy)通信を行う。また、室外アンテナ16及び室内アンテナ17は、それぞれに固有のアンテナIDを有している。本例のBLE通信において、携帯端末2がマスタであり、車両1がスレーブである。なお、マスタとスレーブの関係はこの限りではなく、車両1がマスタで、携帯端末2がスレーブでもよい。室外アンテナ16及び室内アンテナ17は、車両1の近傍エリアに定期的にアドバタイズメッセージを予め決められた順序(順番)で送信する。 The vehicle 1 includes an outdoor antenna 16 and an indoor antenna 17 for performing near field communication with the mobile terminal 2. The outdoor antenna 16 is provided outside the vehicle 1. The indoor antenna 17 is provided on the indoor side of the vehicle 1. The outdoor antenna 16 and the indoor antenna 17 of this example perform BLE (Bluetooth Low Energy) communication with the mobile terminal 2. The outdoor antenna 16 and the indoor antenna 17 have their own unique antenna IDs. In the BLE communication of this example, the mobile terminal 2 is a master and the vehicle 1 is a slave. The relationship between the master and the slave is not limited to this, and the vehicle 1 may be the master and the mobile terminal 2 may be the slave. The outdoor antenna 16 and the indoor antenna 17 periodically transmit an advertisement message to an area near the vehicle 1 in a predetermined order.
 携帯端末2は、携帯端末2の作動を制御する端末制御部20と、携帯端末2と外部装置又は通信相手との間においてネットワーク通信を行なうネットワーク通信モジュール21と、携帯端末2と通信相手(車両1)との間において近距離無線通信(BLE通信)を行う端末通信部22とを備える。 The mobile terminal 2 includes a terminal control unit 20 that controls the operation of the mobile terminal 2, a network communication module 21 that performs network communication between the mobile terminal 2 and an external device or a communication partner, and the mobile terminal 2 and a communication partner (vehicle). 1) and a terminal communication unit 22 that performs near field communication (BLE communication).
 携帯端末2を車両1の電子キーとして使用するにあたり、携帯端末2は、車両1に携帯端末2の電子キーID及びキー固有鍵を登録(電子キー登録)する。例えば、携帯端末2は、ネットワーク通信を通じてサーバ(図示略)から電子キーID及びキー固有鍵を取得し、メモリ24に書き込み保存する。さらに、携帯端末2は、BLE通信を通じて車両1に接続(ログイン)し、携帯端末2の電子キーID及びキー固有鍵を登録する。 When using the mobile terminal 2 as the electronic key of the vehicle 1, the mobile terminal 2 registers the electronic key ID and the key unique key of the mobile terminal 2 in the vehicle 1 (electronic key registration). For example, the mobile terminal 2 acquires an electronic key ID and a key unique key from a server (not shown) through network communication, writes them in the memory 24, and saves them. Further, the mobile terminal 2 connects (logs in) to the vehicle 1 through BLE communication and registers the electronic key ID and the key unique key of the mobile terminal 2.
 携帯端末2は、車両1からのアドバタイズメッセージを受信して車両1とのBLE通信接続を確立すると、車両1とBLE通信を通じた相互通信により自動的にID照合を実行する。例えば、携帯端末2の電子キー登録が完了し、かつ車両1と携帯端末2との間でBLE通信接続が確立している場合、照合ECU4及び端末制御部20間で電子キーIDを送受信して電子キーIDの照合を行うとともに、キー固有鍵を用いたチャレンジレスポンス認証等の暗号認証を行う。照合ECU4は、これら照合や認証が成立することを確認すると、ID照合を成立と判定する。なお、これら一連のID照合は、ユーザによる携帯端末2の操作をすることなく、また、車両1の操作をすることなく自動的に処理が実行される。 When the mobile terminal 2 receives the advertisement message from the vehicle 1 and establishes the BLE communication connection with the vehicle 1, the mobile terminal 2 automatically performs ID verification by mutual communication through the BLE communication with the vehicle 1. For example, when the electronic key registration of the mobile terminal 2 is completed and the BLE communication connection is established between the vehicle 1 and the mobile terminal 2, the electronic key ID is transmitted and received between the verification ECU 4 and the terminal control unit 20. The electronic key ID is verified, and cryptographic authentication such as challenge response authentication using the key unique key is performed. When the verification ECU 4 confirms that the verification and the authentication are established, the verification ECU 4 determines that the ID verification is established. It should be noted that the series of ID collation is automatically executed without the user operating the mobile terminal 2 or the vehicle 1.
 認証システム3は、車両1と携帯端末2とが通信を行うとき、車両1に対する携帯端末2の位置を判定する位置判定システム30を備える。本例の位置判定システム30は、車両1と携帯端末2とがID照合を行うとき、携帯端末2が車両1の室内外のどちらにあるかを判定する。また、この位置判定は、ID照合の通信時のどのタイミングで実施されてもよい。すなわち、位置判定は、ID照合前、ID照合後、ID照合途中のいずれで実施されてもよい。 The authentication system 3 includes a position determination system 30 that determines the position of the mobile terminal 2 with respect to the vehicle 1 when the vehicle 1 and the mobile terminal 2 communicate with each other. When the vehicle 1 and the mobile terminal 2 perform ID verification, the position determination system 30 of the present example determines whether the mobile terminal 2 is inside or outside the vehicle 1. In addition, this position determination may be performed at any timing during ID collation communication. That is, the position determination may be performed before ID verification, after ID verification, or during ID verification.
 位置判定システム30は、車両1に対する携帯端末2の位置を判定する位置判定部31を備える。本例の位置判定部31は、車両1の照合ECU4に設けられている。位置判定部31は、室外アンテナ16及び室内アンテナ17からアンテナIDを含んだ位置検出信号SdをBLE送信させる。なお、一連の位置判定の過程において、位置検出信号Sdの送信は、室外アンテナ16及び室内アンテナ17のそれぞれから複数回、実行される。また、室外アンテナ16及び室内アンテナ17からの位置検出信号Sdの送信電力は、同じである。 The position determination system 30 includes a position determination unit 31 that determines the position of the mobile terminal 2 with respect to the vehicle 1. The position determination unit 31 of this example is provided in the verification ECU 4 of the vehicle 1. The position determination unit 31 causes the outdoor antenna 16 and the indoor antenna 17 to BLE-transmit the position detection signal Sd including the antenna ID. In the series of position determination process, the position detection signal Sd is transmitted from the outdoor antenna 16 and the indoor antenna 17 a plurality of times. Further, the transmission powers of the position detection signals Sd from the outdoor antenna 16 and the indoor antenna 17 are the same.
 位置判定システム30は、室外アンテナ16及び室内アンテナ17と携帯端末2との間の電波の受信強度を、各周波数(各チャネル)の電波毎に測定する測定部32を備える。本例の測定部32は、携帯端末2の端末制御部20に設けられている。測定部32は、室外アンテナ16及び室内アンテナ17からの位置検出信号Sdを、端末通信部22を介して受信すると、この位置検出信号Sdの受信強度(RSSI:Received Signal Strength Indicator)を測定する。なお、ここでは、室外アンテナ16から送信された位置検出信号Sdの受信強度を受信強度Pr1、室内アンテナ17から送信された位置検出信号Sdの受信強度を受信強度Pr2とする。測定部32は、受信した位置検出信号Sdごとに受信信号強度を測定し、その測定した位置検出信号Sdの受信強度(受信強度データ)を照合ECU4へ送信する。 The position determination system 30 includes a measurement unit 32 that measures the reception intensity of radio waves between the outdoor antenna 16 and the indoor antenna 17 and the mobile terminal 2 for each radio wave of each frequency (each channel). The measurement unit 32 of this example is provided in the terminal control unit 20 of the mobile terminal 2. Upon receiving the position detection signal Sd from the outdoor antenna 16 and the indoor antenna 17 via the terminal communication unit 22, the measurement unit 32 measures the reception intensity (RSSI: Received Signal Strength Indicator) of this position detection signal Sd. Here, the reception intensity of the position detection signal Sd transmitted from the outdoor antenna 16 is defined as the reception intensity Pr1, and the reception intensity of the position detection signal Sd transmitted from the indoor antenna 17 is defined as the reception intensity Pr2. The measurement unit 32 measures the received signal strength for each received position detection signal Sd, and transmits the measured received strength (reception strength data) of the position detection signal Sd to the verification ECU 4.
 位置判定部31は、測定部32から受信強度(受信強度データ)を受信すると、室外アンテナ16及び室内アンテナ17のそれぞれについて、各周波数の電波(位置検出信号Sd)毎に測定された受信強度に応じた特性値を計算する。本例の場合、特性値は、受信強度の平均値であり、例えば、直近の所定の期間に受信した受信強度データから算出される移動平均である。位置判定システム30の位置判定部31は、受信した受信強度Pr1及び受信強度Pr2を照合ECU4のメモリ9に一時的に記憶する。位置判定部31は、記憶した複数の受信強度Pr1から、受信強度Pr1の平均値Pr1´を計算する。また、位置判定部31は、記憶した複数の受信強度Pr2から、受信強度Pr2の平均値Pr2´を計算する。 When receiving the reception intensity (reception intensity data) from the measurement unit 32, the position determination unit 31 determines the reception intensity measured for each radio wave (position detection signal Sd) of each frequency for each of the outdoor antenna 16 and the indoor antenna 17. Calculate the corresponding characteristic value. In the case of this example, the characteristic value is an average value of the reception intensity, and is, for example, a moving average calculated from the reception intensity data received in the latest predetermined period. The position determination unit 31 of the position determination system 30 temporarily stores the received reception intensity Pr1 and reception intensity Pr2 in the memory 9 of the verification ECU 4. The position determination unit 31 calculates an average value Pr1 ′ of the reception intensities Pr1 from the stored plurality of reception intensities Pr1. Further, the position determination unit 31 calculates an average value Pr2 ′ of the reception intensities Pr2 from the stored plurality of reception intensities Pr2.
 位置判定部31は、平均値Pr1´及び平均値Pr2´の大小を比較することにより、携帯端末2が車両1の室内外のどちらに位置するかを判定する。位置判定部31は、平均値Pr1´が平均値Pr2´以上であった場合、携帯端末2が車両1の室外に位置すると判定(室外判定)する。一方、位置判定部31は、平均値Pr1´が平均値Pr2´未満であった場合、携帯端末2が車両1の室内に位置すると判定(室内判定)する。 The position determination unit 31 determines whether the mobile terminal 2 is located inside or outside the vehicle 1 by comparing the magnitudes of the average value Pr1 ′ and the average value Pr2 ′. When the average value Pr1 ′ is equal to or larger than the average value Pr2 ′, the position determination unit 31 determines that the mobile terminal 2 is located outside the vehicle 1 (outdoor determination). On the other hand, when the average value Pr1 ′ is less than the average value Pr2 ′, the position determination unit 31 determines that the mobile terminal 2 is located inside the vehicle 1 (indoor determination).
 次に、図2~図6を用いて位置判定システム30の作用及び効果を、説明する。
 図2に示すように、ステップS101では、車両1(照合ECU4)は、携帯端末2とのBLE通信接続を確立するために、室外アンテナ16及び室内アンテナ17からアドバタイズメッセージを車両1の近傍エリアに順に繰り返し送信する。携帯端末2(端末制御部20)は、車両1の近傍エリアに進入し、アドバタイズメッセージを受信すると、そのアドバタイズメッセージを送信したアンテナにレスポンスを返信して車両1とのBLE通信接続を開始する。
Next, the operation and effect of the position determination system 30 will be described with reference to FIGS. 2 to 6.
As shown in FIG. 2, in step S101, the vehicle 1 (collation ECU 4) sends an advertisement message from the outdoor antenna 16 and the indoor antenna 17 to an area near the vehicle 1 in order to establish a BLE communication connection with the mobile terminal 2. Repeatedly send in order. When the portable terminal 2 (terminal control unit 20) enters the area near the vehicle 1 and receives the advertisement message, it returns a response to the antenna that has transmitted the advertisement message and starts the BLE communication connection with the vehicle 1.
 ステップS102では、車両1及び携帯端末2は、アドバタイズメッセージに連なる一連の通信接続の処理に従い、機器認証(例えばアドレス認証等)が成立すると、自動で通信接続する。両者の通信接続は、携帯端末2が車両1との近距離無線通信の範囲外へ移動するまで継続される。 In step S102, the vehicle 1 and the mobile terminal 2 are automatically connected to each other when device authentication (for example, address authentication) is established according to a series of communication connection processes linked to the advertisement message. The communication connection between the two continues until the mobile terminal 2 moves out of the short-range wireless communication range with the vehicle 1.
 ステップS103では、車両1及び携帯端末2が通信接続されると、車両1及び携帯端末2は、ID照合を開始する。ID照合には、電子キーIDの照合及びキー固有鍵を用いた暗号認証が含まれる。照合ECU4は、電子キーIDの照合及びキー固有鍵を用いた暗号認証のいずれかが不成立の場合、ID照合が不成立と判定する。ID照合が不成立の場合、車両1の作動は禁止される。一方、照合ECU4は、ID照合が成立すれば、処理を継続する。 In step S103, when the vehicle 1 and the mobile terminal 2 are communicatively connected, the vehicle 1 and the mobile terminal 2 start ID verification. ID verification includes verification of electronic key IDs and cryptographic authentication using a key unique key. The verification ECU 4 determines that the ID verification is unsuccessful when either the verification of the electronic key ID or the cryptographic authentication using the key unique key is unsuccessful. If the ID verification is unsuccessful, the operation of the vehicle 1 is prohibited. On the other hand, the verification ECU 4 continues the process if the ID verification is successful.
 ステップS104では、位置判定部31は、室外アンテナ16及び室内アンテナ17から位置検出信号Sdを送信し、これら電波の受信強度を携帯端末2の測定部32で測定させるとともに、その測定結果を車両1に返信(通知)させる。位置検出信号Sdには、各々のアンテナIDが含まれ、受信側の携帯端末2では、室外アンテナ16及び室内アンテナ17のどちらからの電波なのかを識別可能としてもよい。また、室外アンテナ16及び室内アンテナ17の各位置検出信号Sdは、携帯端末2が両方を受け取ることができるように、タイミング又は周波数をずらして送信されるとよい。測定部32は、位置検出信号Sdを受信すると、位置検出信号Sdの受信強度(受信強度Pr1及び受信強度Pr2)を測定し、測定した受信強度データを、室外アンテナ16及び室内アンテナ17に返信して通知する。 In step S104, the position determination unit 31 transmits the position detection signal Sd from the outdoor antenna 16 and the indoor antenna 17, causes the measurement unit 32 of the mobile terminal 2 to measure the reception intensity of these radio waves, and the measurement result is received by the vehicle 1 To reply (notify). The position detection signal Sd may include each antenna ID, and the mobile terminal 2 on the receiving side may be able to identify which of the outdoor antenna 16 and the indoor antenna 17 is the radio wave. Further, the position detection signals Sd of the outdoor antenna 16 and the indoor antenna 17 may be transmitted at different timings or frequencies so that the mobile terminal 2 can receive both. Upon receiving the position detection signal Sd, the measuring unit 32 measures the reception intensity (reception intensity Pr1 and reception intensity Pr2) of the position detection signal Sd, and returns the measured reception intensity data to the outdoor antenna 16 and the indoor antenna 17. To notify you.
 本例の場合、位置判定部31は、位置検出信号送信、受信強度測定、及び受信強度データ通知の一連の処理を、室外アンテナ16及び室内アンテナ17のそれぞれにおいて、周波数(チャネル)を変えて繰り返し実行する(図2では1回だけを図示)。これにより、室外アンテナ16及び室内アンテナ17の各々において、携帯端末2との通信時に測定された受信強度Pr1及び受信強度Pr2のデータ群が取得される。 In the case of the present example, the position determination unit 31 repeats a series of processes of position detection signal transmission, reception intensity measurement, and reception intensity data notification by changing the frequency (channel) in each of the outdoor antenna 16 and the indoor antenna 17. Run (shown only once in Figure 2). As a result, in each of the outdoor antenna 16 and the indoor antenna 17, a data group of the reception intensity Pr1 and the reception intensity Pr2 measured during communication with the mobile terminal 2 is acquired.
 図3に示すように、本例の場合、室外アンテナ16及び室内アンテナ17は、車両1にそれぞれ一つずつ設けられている。携帯端末2が車両1の室外に位置する場合、車両1と携帯端末2との間には、室外アンテナ16と携帯端末2との間の電波の伝搬経路L1と、室内アンテナ17と携帯端末2との間の電波の伝搬経路L2とが存在する。なお、伝搬経路L1及び伝搬経路L2には、送信された位置検出信号Sdが直接波、回折波、反射波として通る種々の伝搬経路を含む。 As shown in FIG. 3, in this example, one outdoor antenna 16 and one indoor antenna 17 are provided in the vehicle 1. When the mobile terminal 2 is located outside the vehicle 1, the propagation path L1 of the radio wave between the outdoor antenna 16 and the mobile terminal 2, the indoor antenna 17, and the mobile terminal 2 are provided between the vehicle 1 and the mobile terminal 2. There is a radio wave propagation path L2 between and. The propagation path L1 and the propagation path L2 include various propagation paths through which the transmitted position detection signal Sd passes as a direct wave, a diffracted wave, and a reflected wave.
 図4(a)及び図4(b)に示すように、伝搬経路L1を通ったときの受信強度Pr1及び伝搬経路L2を通ったときの受信強度Pr2は、複数の測定の間でばらつきを有している。例えば、BLE通信では、複数のチャネル(周波数)の間を切り替える周波数ホッピング方式をとり、チャネル間で受信強度にばらつきが発生する。そのため、仮に受信強度Pr1及び受信強度Pr2の一点の受信強度(瞬時値)同士の比較をした場合、携帯端末2が車両1の室外に位置しているときにも、受信強度Pr1よりも受信強度Pr2の方が大きいことがある。したがって、単なる受信強度の瞬時値の比較では、携帯端末2が車両1の室外に位置していると判定できない。 As shown in FIGS. 4A and 4B, the reception intensity Pr1 when passing through the propagation path L1 and the reception intensity Pr2 when passing through the propagation path L2 have variations among a plurality of measurements. is doing. For example, in BLE communication, a frequency hopping method is used to switch between a plurality of channels (frequencies), and variations occur in reception strength between channels. Therefore, if the reception strengths (instantaneous values) at one point of the reception strength Pr1 and the reception strength Pr2 are compared, even when the mobile terminal 2 is located outside the vehicle 1, the reception strength Pr1 is lower than the reception strength Pr1. Pr2 may be larger. Therefore, it is not possible to determine that the mobile terminal 2 is located outside the vehicle 1 by simply comparing the instantaneous values of the reception intensities.
 一方、本例の場合、位置の判定には、平均値Pr1´及び平均値Pr2´を用いる。携帯端末2が車両1の室外に位置する場合、通常、平均値Pr1´は、平均値Pr2´以上である。すなわち、「Pr1´≧Pr2´」の関係が成り立つ。平均値Pr1´及び平均値Pr2´は、例えば図4(a)及び図4(b)に破線及び一点鎖線で示したとおりである。そのため、携帯端末2の位置の判定には、平均値を用いる方が瞬時値を用いるよりも判定精度が向上することが分かる。 On the other hand, in the case of this example, the average value Pr1 ′ and the average value Pr2 ′ are used for the position determination. When the mobile terminal 2 is located outside the vehicle 1, the average value Pr1 ′ is usually equal to or larger than the average value Pr2 ′. That is, the relationship of “Pr1 ′ ≧ Pr2 ′” is established. The average value Pr1 ′ and the average value Pr2 ′ are as shown by the broken line and the alternate long and short dash line in FIGS. 4A and 4B, for example. Therefore, it can be seen that in the determination of the position of the mobile terminal 2, the use of the average value improves the determination accuracy than the use of the instantaneous value.
 また、位置検出信号Sdは、電波を遮る障害物や、他の電波の干渉などにより受信強度が変化する。例えば、携帯端末2を覆うような障害物(ユーザの鞄など)が存在すると、受信強度は低下する。そのため、仮に、受信強度が閾値を超えるか否かによって携帯端末2の位置を判定する方法をとった場合、携帯端末2が同じ位置にあっても、受信強度が変化することで、判定結果が変わる可能性がある。一方、本例の場合、受信強度の平均値同士の大小を比較することにより位置の判定を行う。例えば携帯端末2を覆うような障害物(ユーザの鞄など)が存在している場合、伝搬経路L1及び伝搬経路L2の両方で電波が遮られるため、平均値Pr1´及び平均値Pr2´の両方が低下する。そのため、平均値Pr1´及び平均値Pr2´の大小関係は、逆転しない。したがって、アンテナ16,17間の平均値Pr1´,Pr2´の大小を比較することにより位置判定の精度を向上可能になる。 Also, the reception intensity of the position detection signal Sd changes due to obstacles that block radio waves and interference with other radio waves. For example, if there is an obstacle (such as a user's bag) that covers the mobile terminal 2, the reception strength is reduced. Therefore, if the method of determining the position of the mobile terminal 2 based on whether or not the reception intensity exceeds the threshold value is adopted, even if the mobile terminal 2 is at the same position, the reception intensity changes, and the determination result is May change. On the other hand, in the case of this example, the position is determined by comparing the magnitudes of the average values of the reception intensities. For example, when there is an obstacle (such as a user's bag) that covers the mobile terminal 2, radio waves are blocked by both the propagation path L1 and the propagation path L2, so that both the average value Pr1 ′ and the average value Pr2 ′ are present. Is reduced. Therefore, the magnitude relationship between the average value Pr1 ′ and the average value Pr2 ′ is not reversed. Therefore, the accuracy of the position determination can be improved by comparing the magnitudes of the average values Pr1 ′ and Pr2 ′ between the antennas 16 and 17.
 図5に示すように、携帯端末2が車両1の室内に位置する場合、車両1と携帯端末2との間には、室外アンテナ16と携帯端末2との間の電波の伝搬経路L3と、室内アンテナ17と携帯端末2との間の電波の伝搬経路L4とが存在する。 As shown in FIG. 5, when the mobile terminal 2 is located inside the vehicle 1, a radio wave propagation path L3 between the outdoor antenna 16 and the mobile terminal 2 is provided between the vehicle 1 and the mobile terminal 2. There is a radio wave propagation path L4 between the indoor antenna 17 and the mobile terminal 2.
 図6(a)及び図6(b)に示すように、伝搬経路L3を通ったときの受信強度Pr1及び伝搬経路L4を通ったときの受信強度Pr2にも、複数の測定の間にばらつきがある。また、携帯端末2が車両1の室内に位置する場合、通常、平均値Pr1´は、平均値Pr2´より小さい。すなわち、「Pr1´<Pr2´」の関係が成り立つ。平均値Pr1´及び平均値Pr2´は、例えば図6(a)及び図6(b)に破線及び一点鎖線で示したとおりである。そのため、携帯端末2が車両1の室内に位置する場合でも、受信強度の平均値の大小を比較することで、携帯端末2の位置を精度よく判定できることが分かる。 As shown in FIGS. 6A and 6B, the reception intensity Pr1 when passing through the propagation path L3 and the reception intensity Pr2 when passing through the propagation path L4 also have variations among a plurality of measurements. is there. When the mobile terminal 2 is located inside the vehicle 1, the average value Pr1 'is usually smaller than the average value Pr2'. That is, the relationship of “Pr1 ′ <Pr2 ′” is established. The average value Pr1 ′ and the average value Pr2 ′ are as shown by the broken line and the alternate long and short dash line in FIGS. 6A and 6B, for example. Therefore, even when the mobile terminal 2 is located inside the vehicle 1, it is understood that the position of the mobile terminal 2 can be accurately determined by comparing the magnitudes of the average values of the reception intensities.
 図2に戻り、ステップS105では、位置判定部31は、記憶した複数の受信強度Pr1及び受信強度Pr2から、平均値Pr1´及び平均値Pr2´を計算する。そして、平均値Pr1´及び平均値Pr2´の大小を比較することにより、携帯端末2が車両1の室内外のどちらに位置するかを判定する。位置判定部31は、平均値Pr1´が平均値Pr2´以上(Pr1´≧Pr2´)であった場合、携帯端末2が車両1の室外に位置すると判定(室外判定)する。一方、位置判定部31は、平均値Pr1´が平均値Pr2´未満(Pr1´<Pr2´)であった場合、携帯端末2が車両1の室内に位置すると判定(室内判定)する。例えば、ボディECU5は、ID照合が成立し、かつ室外判定されているときに、タッチセンサ13又はロックボタン14の検出信号を基に、ドアロック装置11の作動を制御する。また、エンジンECU7は、ID照合が成立し、かつ室内判定されていることを一条件に、エンジンスイッチ15が操作されることでエンジン6の遷移を制御する。このように、位置判定システム30により、携帯端末2が車両1の室内外のどちらに位置するかを判定することで、携帯端末2の位置に応じた制御が可能になる。 Returning to FIG. 2, in step S105, the position determination unit 31 calculates an average value Pr1 ′ and an average value Pr2 ′ from the stored plurality of reception intensities Pr1 and Pr2. Then, by comparing the magnitudes of the average value Pr1 ′ and the average value Pr2 ′, it is determined whether the portable terminal 2 is located inside or outside the vehicle 1. When the average value Pr1 ′ is equal to or larger than the average value Pr2 ′ (Pr1 ′ ≧ Pr2 ′), the position determination unit 31 determines that the mobile terminal 2 is located outside the vehicle 1 (outdoor determination). On the other hand, when the average value Pr1 ′ is less than the average value Pr2 ′ (Pr1 ′ <Pr2 ′), the position determination unit 31 determines that the mobile terminal 2 is located inside the vehicle 1 (indoor determination). For example, the body ECU 5 controls the operation of the door lock device 11 based on the detection signal of the touch sensor 13 or the lock button 14 when the ID collation is established and the outdoor determination is made. Further, the engine ECU 7 controls the transition of the engine 6 by operating the engine switch 15 on condition that the ID collation is established and the indoor determination is made. As described above, the position determination system 30 determines whether the mobile terminal 2 is located inside or outside the vehicle 1, and thus control according to the position of the mobile terminal 2 becomes possible.
 さて、本例では、位置判定システム30は、アンテナごとに測定された複数の受信強度からアンテナごとの特性値を算出し、アンテナ間で特性値の大小を比較することにより、車両1(通信相手)に対する携帯端末2の位置を判定する位置判定部31を備えた。この構成によれば、複数の受信強度を基に算出された各アンテナの特性値を用いることで受信強度のばらつきによる位置判定への影響を抑えることができる。また、携帯端末2が同じ位置にある場合、アンテナ間の特性値の大小関係は、例えば電波が障害物により遮蔽されたとしても変化しにくい。そのため、アンテナ間における特性値の大小関係の比較によって位置判定することで、障害物の有無により判定結果が変化するという事態の発生を抑制できる。したがって、携帯端末2の位置判定の精度が向上する。 Now, in this example, the position determination system 30 calculates the characteristic value of each antenna from a plurality of reception intensities measured for each antenna, and compares the characteristic value between the antennas to determine whether the vehicle 1 (communication partner The position determining unit 31 for determining the position of the mobile terminal 2 with respect to According to this configuration, by using the characteristic value of each antenna calculated based on a plurality of reception intensities, it is possible to suppress the influence on the position determination due to the variation of the reception intensities. Further, when the mobile terminal 2 is at the same position, the magnitude relationship of the characteristic values between the antennas is unlikely to change even if the radio wave is blocked by an obstacle. Therefore, by performing the position determination by comparing the magnitude relationship of the characteristic values between the antennas, it is possible to suppress the occurrence of a situation in which the determination result changes depending on the presence or absence of an obstacle. Therefore, the accuracy of the position determination of the mobile terminal 2 is improved.
 本例では、アンテナごとに測定された複数の受信強度の平均値を特性値として用いた。この構成によれば、受信強度の平均を算出して位置判定するという簡素な処理を通じて、過度な処理負荷をかけることなく、位置判定の精度を向上できる。 In this example, the average value of multiple reception strengths measured for each antenna was used as the characteristic value. According to this configuration, the accuracy of position determination can be improved without imposing an excessive processing load through a simple process of calculating the average of the reception intensities and determining the position.
 本例では、車両1は、室外アンテナ16と室内アンテナ17とを含み、位置判定部31は、平均値Pr1´及び平均値Pr2´を比較することにより携帯端末2が車両1の室内外のどちらに位置するかを判定する構成とした。この構成によれば、携帯端末2が車両1の室内外のどちらに位置しているのかを精度よく判定することが可能となる。 In this example, the vehicle 1 includes the outdoor antenna 16 and the indoor antenna 17, and the position determination unit 31 compares the average value Pr1 ′ and the average value Pr2 ′ to determine whether the portable terminal 2 is indoors or outdoors of the vehicle 1. It is configured to determine whether or not it is located at. With this configuration, it is possible to accurately determine whether the portable terminal 2 is located inside or outside the vehicle 1.
 <第2実施形態>
 次に、位置判定システム及び位置判定方法の第2実施形態を、図7~図9に従って説明する。第2実施形態は、特性値の補正を行う点で主に第1実施形態と異なる。従って、第1実施形態と同一の部材構成については、同一の符号を付し、その詳細な説明を省略し、異なる部分のみ詳述する。
<Second Embodiment>
Next, a second embodiment of the position determination system and the position determination method will be described with reference to FIGS. The second embodiment mainly differs from the first embodiment in that the characteristic value is corrected. Therefore, the same reference numerals are given to the same member configurations as those of the first embodiment, detailed description thereof will be omitted, and only different portions will be described in detail.
 平均値Pr1´及び平均値Pr2´を位置判定に用いた場合、受信強度のばらつきを抑えることができるものの、ばらつきの影響を完全に打ち消すことはできない。これら平均値には、受信強度のばらつきに起因して誤差が発生することがある。平均値Pr1´及び平均値Pr2´の値に誤差があると、これらの大小関係が逆転し、位置判定が正確にできないおそれがあった。本例は、平均値Pr1´及び平均値Pr2´の誤差の影響を抑制するための対処案である。 When the average value Pr1 ′ and the average value Pr2 ′ are used for position determination, the variation in the reception intensity can be suppressed, but the influence of the variation cannot be completely canceled. An error may occur in these average values due to variations in reception strength. If there is an error in the values of the average value Pr1 ′ and the average value Pr2 ′, the magnitude relationship between them may be reversed, and the position determination may not be accurately performed. This example is a countermeasure for suppressing the influence of the error between the average value Pr1 ′ and the average value Pr2 ′.
 図7に示すように、認証システム3は、特性値を補正する補正部40を備える。本例の場合、補正部40は、照合ECU4に設けられている。本例の補正部40は、携帯端末2が室外に位置するときの平均値Pr1´及び平均値Pr2´の差が大きくなるように、平均値Pr2´に対する平均値Pr1´の比、すなわち「Pr1´/Pr2´」の値が補正前よりも補正後の方が大きくなるように補正を行う。本例の補正部40は、算出した平均値Pr1´を補正によって大きくするように予め設定されたオフセット値によって補正する。なお、補正部40は、平均値Pr2´を小さくするように補正を行ってもよい。位置判定部31は、補正部40によって補正された平均値Pr1´と平均値Pr2´との大小を比較することにより、携帯端末2の位置を判定する。 As shown in FIG. 7, the authentication system 3 includes a correction unit 40 that corrects the characteristic value. In the case of this example, the correction unit 40 is provided in the verification ECU 4. The correction unit 40 of the present example uses the ratio of the average value Pr1 ′ to the average value Pr2 ′, that is, “Pr1”, so that the difference between the average value Pr1 ′ and the average value Pr2 ′ when the mobile terminal 2 is located outdoors is large. The correction is performed so that the value of “/ Pr2 ′” becomes larger after the correction than before the correction. The correction unit 40 of the present example corrects the calculated average value Pr1 ′ by the offset value set in advance so as to be increased by the correction. The correction unit 40 may perform the correction so as to reduce the average value Pr2 ′. The position determination unit 31 determines the position of the mobile terminal 2 by comparing the magnitude of the average value Pr1 ′ corrected by the correction unit 40 and the average value Pr2 ′.
 次に、図8及び図9を用いて本実施形態の認証システム3(補正部40)の作用及び効果について、補正の考え方とともに説明する。
 図8に示すように、携帯端末2が車両1の室外に位置する場合に、平均値Pr1´から平均値Pr2´を引いた差を、差D1とする。したがって、携帯端末2が車両1の室外に位置するとき、通常、平均値Pr1´は、差D1の分だけ平均値Pr2´よりも大きい。
Next, the operation and effect of the authentication system 3 (correction unit 40) of the present embodiment will be described with reference to correction using FIG. 8 and FIG. 9.
As shown in FIG. 8, when the mobile terminal 2 is located outside the vehicle 1, the difference obtained by subtracting the average value Pr2 ′ from the average value Pr1 ′ is defined as the difference D1. Therefore, when the mobile terminal 2 is located outside the vehicle 1, the average value Pr1 ′ is usually larger than the average value Pr2 ′ by the difference D1.
 図9に示すように、携帯端末2が車両1の室内に位置するときの、平均値Pr2´から平均値Pr1´を引いた差を、差D2とする。したがって、携帯端末2が車両1の室内に位置する場合、通常、平均値Pr2´は、差D2の分だけ平均値Pr1´よりも大きい。 As shown in FIG. 9, the difference D2 is the difference between the average value Pr2 ′ and the average value Pr1 ′ when the mobile terminal 2 is located inside the vehicle 1. Therefore, when the mobile terminal 2 is located inside the vehicle 1, the average value Pr2 'is usually larger than the average value Pr1' by the difference D2.
 差D1及び差D2は、大きければ大きいほど、平均値Pr1´及び平均値Pr2´の大小関係が逆転し難い。すなわち、差D1及び差D2は、平均値Pr1´及び平均値Pr2´の誤差に対する許容量に相当する。ここで、本発明者等が行った実験結果から、差D2が差D1よりも大きい(D2>D1)ことがわかっている。携帯端末2の位置に拘わらず平均値Pr1´を大きくする補正を行った場合、差D1の値は大きくなるものの、背反として差D2の値は小さくなる。しかし、差D2が予め十分に大きいため、差D1を大きくしても、必要とする差D2は確保されることを前提に、本例の補正部40による補正処理を行う。これにより、携帯端末2が車両1の室内外のどちらにあっても平均値Pr1´及び平均値Pr2´の誤差に対して十分な許容量を確保することができる。 The larger the difference D1 and the difference D2, the more difficult it is to reverse the magnitude relationship between the average value Pr1 ′ and the average value Pr2 ′. That is, the difference D1 and the difference D2 correspond to the permissible amount for the error between the average value Pr1 ′ and the average value Pr2 ′. Here, it is known from the results of experiments conducted by the present inventors that the difference D2 is larger than the difference D1 (D2> D1). When the correction for increasing the average value Pr1 ′ is performed regardless of the position of the mobile terminal 2, the value of the difference D1 increases, but the value of the difference D2 decreases as a trade-off. However, since the difference D2 is sufficiently large in advance, the correction processing by the correction unit 40 of this example is performed on the assumption that the required difference D2 is secured even if the difference D1 is increased. As a result, it is possible to secure a sufficient allowance for the error between the average value Pr1 ′ and the average value Pr2 ′ regardless of whether the mobile terminal 2 is inside or outside the vehicle 1.
 本例の場合、上記の考え方に沿って、平均値Pr1´を補正する。補正部40は、位置判定部31が算出した平均値Pr1´を補正によって大きくなるように予め設定されたオフセット値により補正する。この補正は、補正部40(コントローラ)の演算処理によって実現されている。そして、位置判定部31は、補正された平均値Pr1´と平均値Pr2´との大小を比較することにより、携帯端末2の車両1の位置を判定する。これにより、携帯端末2が車両1の室内外のどちらに位置する場合にも、十分な許容量をもって判定を行うことができる。 In the case of this example, the average value Pr1 ′ is corrected according to the above concept. The correction unit 40 corrects the average value Pr1 ′ calculated by the position determination unit 31 with an offset value set in advance so as to be increased by the correction. This correction is realized by the arithmetic processing of the correction unit 40 (controller). Then, the position determination unit 31 determines the position of the vehicle 1 of the mobile terminal 2 by comparing the magnitudes of the corrected average value Pr1 ′ and the average value Pr2 ′. As a result, regardless of whether the mobile terminal 2 is located inside or outside the vehicle 1, the determination can be performed with a sufficient allowable amount.
 本例では、平均値Pr1´が大きくなるように補正を行う補正部40を備えた。この構成によれば、平均値Pr1´及び平均値Pr2´の大小関係に応じて補正を行うことができる。これにより、例えば平均値Pr1´及び平均値Pr2´に誤差が生じる場合に、携帯端末2の位置を判定する際に、これら平均値の誤差に対する十分な許容量を確保することができる。これは、携帯端末2の位置判定の精度向上に寄与する。 In this example, the correction unit 40 is provided to perform correction so that the average value Pr1 ′ becomes large. According to this configuration, the correction can be performed according to the magnitude relationship between the average value Pr1 ′ and the average value Pr2 ′. Accordingly, when an error occurs in the average value Pr1 ′ and the average value Pr2 ′, for example, when determining the position of the mobile terminal 2, it is possible to secure a sufficient allowance for the error in these average values. This contributes to improving the accuracy of the position determination of the mobile terminal 2.
 <第3実施形態>
 次に、位置判定システム及び位置判定方法の第3実施形態について、図8及び図9に従って説明する。第3実施形態は、第2実施形態と、補正部40の補正の方法の点でのみ異なる。従って、本例も、第2実施形態に対して異なる部分のみ詳述する。
<Third Embodiment>
Next, a third embodiment of the position determination system and the position determination method will be described with reference to FIGS. 8 and 9. The third embodiment is different from the second embodiment only in the correction method of the correction unit 40. Therefore, also in this example, only the parts different from the second embodiment will be described in detail.
 本例の位置判定部31は、特性値として、位置検出信号Sdの受信強度の平均値とともに標準偏差を算出する。ここでは、受信強度Pr1より算出された標準偏差を標準偏差Dv1、受信強度Pr2より算出された標準偏差を標準偏差Dv2とする。補正部40は、標準偏差Dv1の値に応じたオフセット値によって、平均値Pr1´を補正する。また、補正部40は、標準偏差Dv2の値に応じたオフセット値によって、平均値Pr2´を補正する。補正部40は、標準偏差が小さいほど大きいオフセット値を用いて、平均値を補正する。 The position determination unit 31 of this example calculates the standard deviation together with the average value of the reception intensity of the position detection signal Sd as the characteristic value. Here, the standard deviation calculated from the reception intensity Pr1 is the standard deviation Dv1, and the standard deviation calculated from the reception intensity Pr2 is the standard deviation Dv2. The correction unit 40 corrects the average value Pr1 ′ with the offset value according to the value of the standard deviation Dv1. Further, the correction unit 40 corrects the average value Pr2 ′ with the offset value according to the value of the standard deviation Dv2. The correction unit 40 corrects the average value by using a larger offset value as the standard deviation is smaller.
 次に、図8及び図9を用いて、本実施形態の認証システム3(補正部40)の作用及び効果について説明する。
 位置検出信号Sdの受信強度の標準偏差は、位置検出信号Sdの伝搬経路に依存する。すなわち、直接波、回折波、反射波などの伝搬モード、障害物の有無、及び他の電波の干渉などによって、標準偏差は変化する。
Next, the operation and effect of the authentication system 3 (correction unit 40) of this embodiment will be described with reference to FIGS. 8 and 9.
The standard deviation of the reception intensity of the position detection signal Sd depends on the propagation path of the position detection signal Sd. That is, the standard deviation changes depending on propagation modes such as direct waves, diffracted waves, and reflected waves, the presence or absence of obstacles, and interference with other radio waves.
 図8及び図9に示すように、本発明者等は、伝搬経路L1を通る位置検出信号Sdの受信強度のばらつきが、他の伝搬経路(L2~L4)を通るときと比較して小さくなることを見出した。すなわち、伝搬経路L1では、標準偏差が小さく、また、伝搬経路L2、伝搬経路L3、及び伝搬経路L4の間では、標準偏差に大きな違いがないことがわかっている。すなわち、同じ室外アンテナ16から送信された位置検出信号Sdであっても、伝搬経路L1と伝搬経路L3とでは、受信強度の標準偏差において違いがある。この違いを、差D1を大きくするための補正に応用できる期待があった。 As shown in FIGS. 8 and 9, the present inventors have found that the variation in the reception intensity of the position detection signal Sd passing through the propagation path L1 is smaller than that when passing through the other propagation paths (L2 to L4). I found that. That is, it is known that the propagation path L1 has a small standard deviation, and the propagation path L2, the propagation path L3, and the propagation path L4 have no large difference in standard deviation. That is, even with the position detection signal Sd transmitted from the same outdoor antenna 16, there is a difference in the standard deviation of the reception intensity between the propagation path L1 and the propagation path L3. It was expected that this difference could be applied to correction for increasing the difference D1.
 本例の場合、上記の考え方に基づき、補正部40は、標準偏差に応じて変化するオフセット値によって平均値Pr1´及び平均値Pr2´の補正を行う。携帯端末2が車両1の室外に位置する場合、伝搬経路L1を通る方が伝搬経路L2よりも標準偏差が小さいため、平均値Pr1´の方が平均値Pr2´よりも大きく補正を受ける。その結果、差D1が大きくなるため、平均値の誤差に対する許容量が大きくなる。また、携帯端末2が車両1の室内に位置する場合、伝搬経路L3及び伝搬経路L4の間では標準偏差に大きな差がないため、平均値Pr1´と平均値Pr2´とは同程度の補正を受ける。その結果、差D2は補正前のままで維持される。これにより、携帯端末2が車両1の室外に位置する場合の平均値の誤差に対する許容量を大きくしつつ、携帯端末2が車両1の室内に位置する場合の平均値の誤差に対する許容量を維持することができる。 In the case of this example, based on the above idea, the correction unit 40 corrects the average value Pr1 ′ and the average value Pr2 ′ by the offset value that changes according to the standard deviation. When the portable terminal 2 is located outside the vehicle 1, the average value Pr1 ′ is corrected more than the average value Pr2 ′ because the standard deviation of the mobile terminal 2 passing through the propagation path L1 is smaller than that of the propagation path L2. As a result, the difference D1 becomes large, so that the allowable amount for the error of the average value becomes large. Further, when the mobile terminal 2 is located inside the vehicle 1, there is no large difference in standard deviation between the propagation path L3 and the propagation path L4. Therefore, the average value Pr1 ′ and the average value Pr2 ′ should be corrected to the same degree. receive. As a result, the difference D2 is maintained as it is before the correction. As a result, the permissible amount for the error of the average value when the mobile terminal 2 is located outside the vehicle 1 is increased, while the permissible amount for the error of the average value when the mobile terminal 2 is located inside the vehicle 1 is maintained. can do.
 さて、本例では、補正部40は、位置検出信号Sdの受信強度の標準偏差に基づいて変化するオフセット値によって平均値を補正する構成とした。この構成によれば、各アンテナと携帯端末2との間の電波伝搬経路によって標準偏差に特徴がある場合に、標準偏差に基づき平均値の補正をすれば、個々の電波伝搬経路に応じた補正を行うことができる。これは、携帯端末2の位置判定の精度向上に一層寄与する。 By the way, in this example, the correction unit 40 is configured to correct the average value by the offset value that changes based on the standard deviation of the reception intensity of the position detection signal Sd. According to this configuration, when the standard deviation is characterized by the radio wave propagation path between each antenna and the mobile terminal 2, if the average value is corrected based on the standard deviation, the correction according to each radio wave propagation path is performed. It can be performed. This further contributes to improving the accuracy of the position determination of the mobile terminal 2.
 <第4実施形態>
 次に、位置判定システム及び位置判定方法の第4実施形態について、図10に従って説明する。第4実施形態は、第1実施形態と、アンテナの個数に違いがある。従って、本例も、第1実施形態に対して異なる部分のみ詳述する。
<Fourth Embodiment>
Next, a fourth embodiment of the position determination system and the position determination method will be described with reference to FIG. The fourth embodiment is different from the first embodiment in the number of antennas. Therefore, also in this example, only the parts different from the first embodiment will be described in detail.
 図10に示すように、本例の室外アンテナ16は、車両1の運転席側に設けられた室外アンテナ16aと、車両1の助手席側に設けられた室外アンテナ16bとを含んでいる。また、室内アンテナ17は、車両1の運転席側に設けられた室内アンテナ17aと、車両1の助手席側に設けられた室内アンテナ17bとを含んでいる。したがって、本例では、車両1にアンテナが4個設けられている。室外アンテナ16aから送信された位置検出信号Sdの受信強度を受信強度Pr1a、室外アンテナ16bから送信された位置検出信号Sdの受信強度を受信強度Pr1b、室内アンテナ17aから送信された位置検出信号Sdの受信強度を受信強度Pr2a、室内アンテナ17bから送信された位置検出信号Sdの受信強度を受信強度Pr2bとする。また、これらの平均値を平均値Pr1a´、平均値Pr1b´、平均値Pr2a´、平均値Pr2b´とする。 As shown in FIG. 10, the outdoor antenna 16 of this example includes an outdoor antenna 16a provided on the driver side of the vehicle 1 and an outdoor antenna 16b provided on the passenger side of the vehicle 1. The indoor antenna 17 includes an indoor antenna 17a provided on the driver side of the vehicle 1 and an indoor antenna 17b provided on the passenger side of the vehicle 1. Therefore, in this example, the vehicle 1 is provided with four antennas. The reception intensity of the position detection signal Sd transmitted from the outdoor antenna 16a is the reception intensity Pr1a, the reception intensity of the position detection signal Sd transmitted from the outdoor antenna 16b is the reception intensity Pr1b, and the position detection signal Sd transmitted from the indoor antenna 17a. The reception strength is defined as reception strength Pr2a, and the reception strength of the position detection signal Sd transmitted from the indoor antenna 17b is defined as reception strength Pr2b. Further, these average values are referred to as an average value Pr1a ', an average value Pr1b', an average value Pr2a ', and an average value Pr2b'.
 位置判定部31は、各平均値の大小を比較することにより、携帯端末2の位置を判定する。位置判定部31は、「Pr1a´≧Pr2a´,Pr2b´≧Pr1b´、又はPr1b´≧Pr2a´,Pr2b´≧Pr1a´」の関係が成り立つ場合、室外判定する。なお、「Pr2a´,Pr2b´」とは、平均値Pr2a´と平均値Pr2b´との大小がどちらでもよいことを示している(以下同じ)。すなわち、受信強度の大小関係において平均値Pr1a´と平均値Pr1b´との間に、平均値Pr2a´及び平均値Pr2b´がある場合に、室外判定する。一方、位置判定部31は、「Pr1a´,Pr1b´<Pr2a´,Pr2b´」の関係が成り立つ場合、室内判定する。すなわち、平均値Pr1a´及び平均値Pr1b´の両方が、平均値Pr2a´及び平均値Pr2b´の両方よりも小さい場合に、室内判定する。また、位置判定部31は、受信強度の大小関係が上記の二つの関係のどちらにも当てはまらない場合は、位置判定が異常であるとして、エラーを出す。照合ECU4は、位置判定部31のエラーが出た場合、車両1の室内又は室外に携帯端末2が位置することを条件とする車両1の作動を許可しない。 The position determination unit 31 determines the position of the mobile terminal 2 by comparing the magnitude of each average value. The position determination unit 31 performs outdoor determination when the relationship of “Pr1a ′ ≧ Pr2a ′, Pr2b ′ ≧ Pr1b ′, or Pr1b ′ ≧ Pr2a ′, Pr2b ′ ≧ Pr1a ′” is established. Note that “Pr2a ′, Pr2b ′” indicates that the average value Pr2a ′ and the average value Pr2b ′ may be either large or small (the same applies hereinafter). That is, when there is an average value Pr2a 'and an average value Pr2b' between the average value Pr1a 'and the average value Pr1b' in the magnitude relation of the reception intensity, the outdoor determination is performed. On the other hand, the position determination unit 31 makes an indoor determination when the relationship “Pr1a ′, Pr1b ′ <Pr2a ′, Pr2b ′” holds. That is, when both the average value Pr1a 'and the average value Pr1b' are smaller than both the average value Pr2a 'and the average value Pr2b', the indoor determination is performed. In addition, when the magnitude relation of the reception intensities does not apply to either of the above two relations, the position determination unit 31 determines that the position determination is abnormal and issues an error. If the position determination unit 31 produces an error, the verification ECU 4 does not permit the operation of the vehicle 1 on the condition that the portable terminal 2 is located inside or outside the vehicle 1.
 このように、アンテナの個数を増やすことで、位置検出信号Sdが到達する範囲を拡げたり、冗長化したりできる。また、各アンテナからの受信強度の組み合わせ(順序)が多くなり、より複雑で高度な位置判定に応用できる可能性がある。なお、アンテナの個数は少なくとも2個以上であれば、いくつでもよい。 In this way, by increasing the number of antennas, the range that the position detection signal Sd reaches can be expanded or made redundant. In addition, the combinations (orders) of the reception intensities from the respective antennas increase, and there is a possibility that it can be applied to more complex and advanced position determination. The number of antennas may be any number as long as it is at least two.
 <第5実施形態>
 次に、位置判定システム及び位置判定方法の第5実施形態について、図11~図13に従って説明する。第5実施形態は、第2実施形態及び第3実施形態と、補正部40の補正の方法の点でのみ異なる。従って、本例も、第2実施形態に対して異なる部分のみ詳述する。
<Fifth Embodiment>
Next, a fifth embodiment of the position determination system and the position determination method will be described with reference to FIGS. 11 to 13. The fifth embodiment differs from the second and third embodiments only in the correction method of the correction unit 40. Therefore, also in this example, only the parts different from the second embodiment will be described in detail.
 補正部40は、位置判定部31の現状の判定結果に応じた値に平均値Pr1´を補正する。本例の補正部40は、位置判定部31の判定結果に応じた補正量としてのオフセット値を用いて平均値Pr1´を補正する。オフセット値には、位置判定部31が室外判定を判定した場合に用いられる第1オフセット値αと、位置判定部31が室内判定をした場合に用いられる第2オフセット値βとが含まれている。本例の場合、補正部40は、第1オフセット値α及び第2オフセット値βによって、平均値Pr1´の値を大きくするように、正のオフセットを行う。また、第1オフセット値αは、第2オフセット値βよりも大きい。 The correction unit 40 corrects the average value Pr1 ′ to a value according to the current determination result of the position determination unit 31. The correction unit 40 of this example corrects the average value Pr1 ′ using the offset value as the correction amount according to the determination result of the position determination unit 31. The offset value includes a first offset value α used when the position determination unit 31 makes an outdoor determination, and a second offset value β used when the position determination unit 31 makes an indoor determination. .. In the case of this example, the correction unit 40 performs a positive offset so as to increase the value of the average value Pr1 ′ by the first offset value α and the second offset value β. Further, the first offset value α is larger than the second offset value β.
 位置判定部31は、補正された平均値Pr1´及び平均値Pr2´との大小関係を比較し、携帯端末2の位置判定を行う。位置判定部31は、一度位置判定を行った後、継続して平均値Pr1´及び平均値Pr2´を監視することで、位置判定の切り替えを行う。 The position determination unit 31 compares the corrected average value Pr1 ′ and the corrected average value Pr2 ′ to determine the position of the mobile terminal 2. The position determination unit 31 switches the position determination by performing the position determination once and then continuously monitoring the average value Pr1 ′ and the average value Pr2 ′.
 次に、本実施形態の作用及び効果について説明する。
 図11に示すように、補正部40が、平均値Pr1´を、第1オフセット値αによって補正(以下、第1補正と記載)すると、平均値Pr1´は、第1オフセット値αの分だけ大きくなる。すなわち、平均値Pr2´に対する平均値Pr1´の比が大きくなるように補正する。第1補正により、平均値Pr1´及び平均値Pr2´の差D1の値は、補正前よりも大きくなる。
Next, the operation and effect of this embodiment will be described.
As illustrated in FIG. 11, when the correction unit 40 corrects the average value Pr1 ′ with the first offset value α (hereinafter referred to as the first correction), the average value Pr1 ′ is equal to the first offset value α. growing. That is, the correction is performed so that the ratio of the average value Pr1 ′ to the average value Pr2 ′ becomes large. By the first correction, the value of the difference D1 between the average value Pr1 ′ and the average value Pr2 ′ becomes larger than that before the correction.
 図12に示すように、補正部40が、平均値Pr1´を、第2オフセット値βによって補正(以下、第2補正と記載)すると、平均値Pr1´は、第2オフセット値βの分だけ大きくなる。すなわち、平均値Pr2´に対する平均値Pr1´の比が大きくなるように補正する。第2補正により、平均値Pr2´及び平均値Pr1´の差D2の値は、補正前よりも小さくなる。 As shown in FIG. 12, when the correction unit 40 corrects the average value Pr1 ′ by the second offset value β (hereinafter referred to as the second correction), the average value Pr1 ′ is equal to the second offset value β. growing. That is, the correction is performed so that the ratio of the average value Pr1 ′ to the average value Pr2 ′ becomes large. By the second correction, the value of the difference D2 between the average value Pr2 ′ and the average value Pr1 ′ becomes smaller than that before the correction.
 次に、位置判定部31による位置判定の切り替えを説明する。
 図13に示すように、位置判定部31は、一度、位置判定をした後、携帯端末2の移動等で経時的に変化する平均値Pr1´及び平均値Pr2´を監視し、判定の切り替えを行う。同図において、平均値Pr1´及び平均値Pr2´の差の変化の一例を、曲線Cで示す。曲線Cが「0」を境に、平均値Pr1´及び平均値Pr2´の大小関係が逆転する。
Next, switching of position determination by the position determination unit 31 will be described.
As shown in FIG. 13, the position determination unit 31 monitors the average value Pr1 ′ and the average value Pr2 ′ that change over time due to the movement of the mobile terminal 2 after once performing the position determination, and switches the determination. To do. In the same figure, a curve C shows an example of changes in the difference between the average value Pr1 ′ and the average value Pr2 ′. When the curve C is "0", the magnitude relationship between the average value Pr1 'and the average value Pr2' is reversed.
 ところで、平均値Pr1´及び平均値Pr2´の大きさが拮抗する場合、曲線Cが「0」付近で推移することが考えられる。この場合、平均値Pr1´及び平均値Pr2´の大小関係が頻繁に逆転し、判定が安定しないという事態が発生し得る。 By the way, when the magnitudes of the average value Pr1 ′ and the average value Pr2 ′ conflict with each other, it is possible that the curve C changes near “0”. In this case, the magnitude relationship between the average value Pr1 ′ and the average value Pr2 ′ is frequently reversed, and the determination may not be stable.
 上記を踏まえ、本例では、以下のように判定の切り替えを行う。ここでは、位置判定部31が室内判定をしたとして、説明する。位置判定部31は、室内判定をしている場合、第2補正された平均値Pr1´と平均値Pr2´との大小関係を比較することにより、位置判定の切り替えを行う。第2補正した平均値Pr1´と平均値Pr2´との差の変化を、曲線Cβで示す。位置判定部31は、第2補正された平均値Pr1´が平均値Pr2´以上になった場合、すなわち、曲線Cβが「0」以上になった場合、室内判定から室外判定へと判定を切り替える。一方、位置判定部31は、第2補正された平均値Pr1´が平均値Pr2´よりも小さい場合、すなわち、曲線Cβが「0」よりも小さい場合、室内判定を維持する。 Based on the above, in this example, the judgments are switched as follows. Here, it is assumed that the position determination unit 31 makes the indoor determination. When the indoor determination is performed, the position determination unit 31 switches the position determination by comparing the magnitude relationship between the second corrected average value Pr1 ′ and the average value Pr2 ′. A change in the difference between the second corrected average value Pr1 ′ and the average value Pr2 ′ is shown by a curve Cβ. The position determination unit 31 switches the determination from the indoor determination to the outdoor determination when the second corrected average value Pr1 ′ is equal to or more than the average value Pr2 ′, that is, when the curve Cβ is “0” or more. . On the other hand, the position determination unit 31 maintains the indoor determination when the second corrected average value Pr1 ′ is smaller than the average value Pr2 ′, that is, when the curve Cβ is smaller than “0”.
 本例の場合、時刻t1において、第2補正された平均値Pr1´が平均値Pr2´以上になり、曲線Cβが「0」以上になる。位置判定部31は、時刻t1で室内判定から室外判定へ切り替える。 In the case of this example, at time t1, the second corrected average value Pr1 ′ becomes equal to or larger than the average value Pr2 ′, and the curve Cβ becomes “0” or larger. The position determination unit 31 switches from indoor determination to outdoor determination at time t1.
 位置判定部31は、室外判定をしている場合、第1補正された平均値Pr1´と平均値Pr2´との大小関係を比較することにより、位置判定の切り替えを行う。第1補正された平均値Pr1´と平均値Pr2´との差の変化を、曲線Cαで示す。位置判定部31は、第1補正された平均値Pr1´が平均値Pr2´よりも小さくなった場合、すなわち、曲線Cαが「0」よりも小さくなった場合、室外判定から室内判定へと判定を切り替える。一方、位置判定部31は、第1補正された平均値Pr1´が平均値Pr2´以上の場合、すなわち、曲線Cαが「0」以上の場合、室外判定を維持する。 When the outdoor determination is performed, the position determination unit 31 switches the position determination by comparing the magnitude relationship between the first corrected average value Pr1 ′ and the average value Pr2 ′. A change in the difference between the first corrected average value Pr1 ′ and the average value Pr2 ′ is shown by a curve Cα. The position determination unit 31 determines from the outdoor determination to the indoor determination when the first corrected average value Pr1 ′ becomes smaller than the average value Pr2 ′, that is, when the curve Cα becomes smaller than “0”. Switch. On the other hand, the position determination unit 31 maintains the outdoor determination when the first corrected average value Pr1 ′ is the average value Pr2 ′ or more, that is, when the curve Cα is “0” or more.
 本例の場合、時刻t2において、第1補正された平均値Pr1´が平均値Pr2´より小さくなり、曲線Cαが「0」より小さくなる。位置判定部31は、時刻t2で室外判定から室内判定へ切り替える。 In the case of this example, at time t2, the first corrected average value Pr1 ′ becomes smaller than the average value Pr2 ′, and the curve Cα becomes smaller than “0”. The position determination unit 31 switches from outdoor determination to indoor determination at time t2.
 このように、室内判定から室外判定へと切り替えるときと、室外判定から室内判定へと切り替えるときとの間で、曲線Cの値には、ヒステリシスΔCが設けられている。これにより、頻繁に判定が切り替わることを抑制できる。 In this way, the value of the curve C is provided with a hysteresis ΔC between the time of switching from the indoor determination to the outdoor determination and the time of switching from the outdoor determination to the indoor determination. As a result, it is possible to suppress frequent determination switching.
 なお、室外判定から判定を切り替える際、曲線Cの値は、時刻t2以前に「0」よりも小さくなる。よって、第1補正することによって、位置判定部31は、室外判定から室内判定へと判定を切り替えにくくなっている。これにより、仮に、車両1の室外において、平均値Pr1´及び平均値Pr2´が拮抗するエリアが存在する場合に、携帯端末2が当該エリアを通るように移動しても、室外判定から室内判定へ誤って判定が切り替わることを抑制できる。 Note that when switching the determination from the outdoor determination, the value of the curve C becomes smaller than “0” before the time t2. Therefore, the first correction makes it difficult for the position determination unit 31 to switch the determination from the outdoor determination to the indoor determination. As a result, if there is an area where the average value Pr1 ′ and the average value Pr2 ′ compete with each other outside the vehicle 1, even if the mobile terminal 2 moves so as to pass through the area, the indoor determination is performed based on the outdoor determination. It is possible to prevent the determination from being mistakenly switched to.
 また、室内判定から判定を切り替える際、時刻t1において、曲線Cの値は、まだ「0」よりも小さい。よって、第2補正することによって、位置判定部31は、室内判定から室外判定へと判定を切り替えやすくなっている。これは、携帯端末2が室内にある状態では、差D2が予め十分に大きいことに基づき、例えば、十分な許容量を確保しつつ、判定を切り替えやすくすることで、利便性の向上に繋がる。 Also, when switching the determination from the indoor determination, the value of the curve C is still smaller than "0" at time t1. Therefore, by performing the second correction, the position determination unit 31 can easily switch the determination from the indoor determination to the outdoor determination. This is based on the fact that the difference D2 is sufficiently large in advance when the mobile terminal 2 is indoors. For example, it is easy to switch the determination while securing a sufficient allowable amount, which leads to improvement in convenience.
 さて、本例では、位置判定部31の現状の判定結果に応じた値に平均値Pr1´を補正する補正部40を備えた。また、位置判定部31は、補正された平均値Pr1´、及び平均値Pr2´に基づいて、携帯端末の位置の判定を切り替える。この構成によれば、それぞれの判定結果に応じた補正によって、正しく判定の切り替えを行うことができる。 In this example, the correction unit 40 that corrects the average value Pr1 ′ to a value according to the current determination result of the position determination unit 31 is provided. Further, the position determination unit 31 switches the determination of the position of the mobile terminal based on the corrected average value Pr1 ′ and average value Pr2 ′. According to this configuration, it is possible to correctly switch the determination by the correction according to each determination result.
 本例では、位置判定部31が車両1の室内外を判定する構成において、補正部40は、平均値Pr1´を大きくするように補正する。また、室外判定から室内判定への切り替わりと、室内判定から室外判定への切り替わりとで、値の異なる第1オフセット値α及び第2オフセット値βをそれぞれ用いる。この構成によれば、室内外を判定するシステムにおいて、判定を室外判定で安定させることができる。これは、正しい判定の切り替えに有利となる。 In this example, in the configuration in which the position determination unit 31 determines whether the vehicle 1 is indoors or outdoors, the correction unit 40 performs correction so as to increase the average value Pr1 ′. Further, the first offset value α and the second offset value β having different values are used for switching from the outdoor determination to the indoor determination and switching from the indoor determination to the outdoor determination, respectively. According to this configuration, in the system for determining whether the indoor or outdoor, the determination can be stabilized by the outdoor determination. This is advantageous for switching the correct judgment.
 なお、本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・第5実施形態において、第1オフセット値αによって、平均値Pr1´を大きくするように補正したが、これに限定されず、平均値Pr1´を小さくするように補正してもよい。すなわち、室外判定から室内判定へ判定を切り替え易くしてもよい。
The present embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
-In 5th Embodiment, although it corrected so that the average value Pr1 'might be increased by the 1st offset value (alpha), it is not limited to this, You may correct so that the average value Pr1' may be made small. That is, the determination may be easily switched from the outdoor determination to the indoor determination.
 ・第5実施形態において、第2オフセット値βによって、平均値Pr1´を大きくするように補正したが、これに限定されず、平均値Pr1´を小さくするように補正してもよい。すなわち、平均値Pr2´に対する平均値Pr1´の比が、補正前より補正後の方が小さくなるように補正してもよい。これにより、室内判定から室外判定へ判定を切り替え難くできる。 In the fifth embodiment, the average value Pr1 ′ is corrected to be large by the second offset value β, but the present invention is not limited to this, and the average value Pr1 ′ may be corrected to be small. That is, the ratio of the average value Pr1 ′ to the average value Pr2 ′ may be corrected so as to be smaller after the correction than before the correction. This makes it difficult to switch the determination from the indoor determination to the outdoor determination.
 ・第5実施形態において、第1オフセット値α及び第2オフセット値βの大小は、どちらでもよい。
 ・第5実施形態において、補正部40は、平均値Pr1´を補正したが、これに限定されず、平均値Pr2´を補正してもよいし、平均値Pr1´及び平均値Pr2´の両方を補正してもよい。また、オフセットに限らず、係数や比率などによって補正してもよい。
In the fifth embodiment, the first offset value α and the second offset value β may be either large or small.
-In 5th Embodiment, although the correction | amendment part 40 corrected average value Pr1 ', it is not limited to this, You may correct average value Pr2', and both average value Pr1 'and average value Pr2'. May be corrected. Further, the correction may be made not only by the offset but also by a coefficient or a ratio.
 ・第5実施形態において、位置判定部31は、大小関係の判定に閾値を設けてもよく、例えば平均値Pr1´及び平均値Pr2´の差が閾値以上か否かによって判定を切り替えてもよい。この場合、補正部40は、特性値を補正してもよいし、閾値を補正してもよい。 -In 5th Embodiment, the position determination part 31 may provide a threshold value for determination of a magnitude relationship, for example, determination may be switched according to whether the difference of average value Pr1 'and average value Pr2' is more than a threshold value. . In this case, the correction unit 40 may correct the characteristic value or the threshold value.
 ・第3実施形態において、位置検出信号Sdの受信強度の標準偏差を、位置判定部31の位置判定にそのまま用いてもよい。例えば、伝搬経路L1のみが標準偏差の値が小さいことを前提に、2つの標準偏差Dv1,Dv2の大小を比較し、標準偏差Dv1が標準偏差Dv2より小さく、かつ、これら標準偏差Dv1,Dv2の差が規定値以上であった場合に、室外判定をしてもよい。また、平均値Pr1´,Pr2´の比較とともに、標準偏差Dv1,Dv2の比較を行うことで判定を行ってもよい。この構成によれば、例えば、受信強度の標準偏差に、各アンテナと携帯端末2との間の電波伝搬経路に起因した特徴がある場合、標準偏差を基に携帯端末2の位置を判定することができる。これは、携帯端末2の位置判定の精度の向上に寄与する。 In the third embodiment, the standard deviation of the reception intensity of the position detection signal Sd may be used as it is for the position determination of the position determination unit 31. For example, assuming that only the propagation path L1 has a small standard deviation value, the two standard deviations Dv1 and Dv2 are compared, and the standard deviation Dv1 is smaller than the standard deviation Dv2, and the standard deviations Dv1 and Dv2 are smaller. If the difference is greater than or equal to the specified value, outdoor determination may be performed. Further, the determination may be performed by comparing the standard deviations Dv1 and Dv2 together with the comparison of the average values Pr1 ′ and Pr2 ′. According to this configuration, for example, when the standard deviation of the reception intensity has a characteristic caused by the radio wave propagation path between each antenna and the mobile terminal 2, the position of the mobile terminal 2 is determined based on the standard deviation. You can This contributes to improvement in the accuracy of the position determination of the mobile terminal 2.
 ・第3実施形態において、補正部40は、ある伝搬経路のみ標準偏差が大きいことに特徴がある場合、標準偏差が大きいほどオフセット値を大きくするようにしてもよい。例えば、仮に伝搬経路L1のみ標準偏差が大きいことに特徴がある場合、オフセット値を大きくすることで、差D1を大きくすることができる。 In the third embodiment, the correction unit 40 may increase the offset value as the standard deviation increases if the standard deviation is large only in a certain propagation path. For example, if only the propagation path L1 has a large standard deviation, the difference D1 can be increased by increasing the offset value.
 ・第3実施形態において、補正部40は、標準偏差が大きいほど、平均値を小さくするようにマイナスのオフセット値で補正を行ってもよい。
 ・第2実施形態において、補正部40は、平均値Pr2´の値が小さくなるように補正を行ってもよいし、平均値Pr1´を大きくしつつ、平均値Pr2´を小さくするように補正を行ってもよい。この場合も、差D1を大きくし、差D2が小さくなるという同様の効果を得ることができる。
-In 3rd Embodiment, the correction part 40 may correct with a negative offset value so that a standard deviation may become large and an average value may become small.
-In 2nd Embodiment, the correction | amendment part 40 may perform correction | amendment so that the value of average value Pr2 'may become small, or may make correction so that average value Pr2' may be made small, making average value Pr1 'large. You may go. Also in this case, the same effect that the difference D1 is increased and the difference D2 is decreased can be obtained.
 ・第2実施形態において、予め設定されたオフセット値は、適宜変更可能である。例えば、実験により測定した差D1及び差D2の値に基づいて設定することができる。
 ・第3実施形態において、標準偏差の値とオフセット値との間の関係は、適宜変更可能である。
In the second embodiment, the preset offset value can be changed as appropriate. For example, it can be set based on the values of the difference D1 and the difference D2 measured by experiments.
-In 3rd Embodiment, the relationship between the value of a standard deviation and an offset value can be changed suitably.
 ・第2実施形態及び第3実施形態において、補正部40は、測定部32より受信した受信強度を補正して、その後で平均値を算出してもよい。すなわち、補正の結果として平均値の値が補正できればよい。 In the second and third embodiments, the correction unit 40 may correct the reception intensity received from the measurement unit 32 and then calculate the average value. That is, it is sufficient that the average value can be corrected as a result of the correction.
 ・各実施形態において、測定部32は、車両1側に設けられてもよい。例えば、携帯端末2から送信された位置検出信号Sdを、車両1側の複数のアンテナで受信してその受信強度から算出した特性値の大小関係に基づいて携帯端末2の位置を判定してもよい。 In each embodiment, the measurement unit 32 may be provided on the vehicle 1 side. For example, even if the position detection signal Sd transmitted from the mobile terminal 2 is received by a plurality of antennas on the vehicle 1 side and the position of the mobile terminal 2 is determined based on the magnitude relationship of the characteristic values calculated from the reception intensities thereof. Good.
 ・各実施形態において、位置判定部31は、携帯端末2側に設けられてもよい。
 ・第2実施形態及び第3実施形態において、補正部40は、携帯端末2側に設けられてもよい。
-In each embodiment, the position determination part 31 may be provided in the portable terminal 2 side.
-In 2nd Embodiment and 3rd Embodiment, the correction | amendment part 40 may be provided in the portable terminal 2 side.
 ・各実施形態において、平均値は、移動平均であることに限定されず、その他の算術平均であってもよいし、幾何平均や調和平均でもよい。また、重み付きの加重移動平均などを用いてもよい。 -In each embodiment, the average value is not limited to a moving average, and may be another arithmetic average, a geometric average, or a harmonic average. Alternatively, a weighted moving average or the like may be used.
 ・各実施形態において、特性値は、平均値に限定されず、中央値、最頻値であってもよい。これらは、受信強度の分布(ばらつき)に応じて適宜変更可能である。ただし、少ないデータ数での信頼性や、全てのデータを考慮に入れる点で、平均値を使用することが好ましい。 -In each embodiment, the characteristic value is not limited to the average value, and may be the median value or the mode value. These can be appropriately changed according to the distribution (variation) of the reception strength. However, it is preferable to use the average value in terms of reliability with a small number of data and considering all data.
 ・各実施形態において、位置判定部31は、携帯端末2が車両1の室内外のどちらに位置するかを判定することに限定されず、携帯端末2が車両1の運転席側及び助手席側のどちらにあるか、前側及び後側のどちらにあるか、又は車両1に対する携帯端末2の座標を判定するようにしてもよい。 In each of the embodiments, the position determination unit 31 is not limited to determining whether the mobile terminal 2 is located inside or outside the vehicle 1, and the mobile terminal 2 may be the driver seat side or the passenger seat side of the vehicle 1. It may be determined which of the two, the front side or the rear side, or the coordinates of the mobile terminal 2 with respect to the vehicle 1.
 ・各実施形態において、アンテナから送信される位置検出信号Sdの送信間隔は、特に限定されず、位置判定システム30の仕様に応じて適宜変更してもよい。
 ・各実施形態において、アンテナの配置は特に限定されず、仕様に応じて適宜変更可能である。例えば、車両1の室内外の区別なく、車両1の運転席側及び助手席側に配置されていてもよい。
-In each embodiment, the transmission interval of the position detection signal Sd transmitted from the antenna is not particularly limited, and may be appropriately changed according to the specifications of the position determination system 30.
-In each embodiment, the arrangement of the antennas is not particularly limited and can be appropriately changed according to the specifications. For example, it may be arranged on the driver's seat side and the passenger's seat side of the vehicle 1 regardless of whether the vehicle 1 is indoors or outdoors.
 ・各実施形態において、位置検出信号Sdには、電波送信元のアンテナIDが含まれていなくてもよい。例えば、位置判定部31は、位置検出信号Sdの送信タイミングを制御して、受信強度データを受信したタイミングからどのアンテナの受信強度なのかを識別してもよいし、位置検出信号Sdを送信したアンテナにより受信強度データを受信することで識別してもよい。 In each embodiment, the position detection signal Sd does not have to include the antenna ID of the radio wave transmission source. For example, the position determination unit 31 may control the transmission timing of the position detection signal Sd to identify which antenna has the reception intensity from the timing at which the reception intensity data is received, or may transmit the position detection signal Sd. You may identify by receiving receiving intensity data with an antenna.
 ・各実施形態において、室外アンテナ16及び室内アンテナ17の各々で、チャネルが異なる位置検出信号Sdの群を一度に送信する態様でもよい。
 ・各実施形態において、測定部32は、複数の位置検出信号Sdの群からその平均値を算出し、車両1側へ返信(通知)する態様でもよい。すなわち、特性値の計算は、車両1側及び携帯端末2側のどちらで行われてもよい。
In each of the embodiments, the outdoor antenna 16 and the indoor antenna 17 may transmit a group of position detection signals Sd having different channels at one time.
In each of the embodiments, the measurement unit 32 may calculate the average value of a group of the plurality of position detection signals Sd and send back (notify) the vehicle 1 side. That is, the characteristic value may be calculated on either the vehicle 1 side or the mobile terminal 2 side.
 ・各実施形態において、複数送信される位置検出信号Sd(電波)の各周波数は、BLE通信の周波数ホッピングから決まるチャネルに限定されない。
 ・各実施形態において、位置判定の基準となる大小関係は、本実施形態に限定されず、例えば車両1に位置判定システム30が実装された状態で実験されたデータを基に、適宜変更可能である。
-In each embodiment, each frequency of a plurality of position detection signals Sd (radio waves) transmitted is not limited to a channel determined by frequency hopping of BLE communication.
In each of the embodiments, the size relationship serving as a reference for position determination is not limited to this embodiment, and can be changed as appropriate based on, for example, data obtained by performing an experiment with the position determination system 30 mounted on the vehicle 1. is there.
 ・各実施形態において、認証システム3及び位置判定システム30の通信規格や帯域は、実施例に限定されず、例えばWi-Fiを用いてもよい。またこれらシステムの間で異なる帯域を使用してもよい。 In each embodiment, the communication standard and band of the authentication system 3 and the position determination system 30 are not limited to those in the embodiments, and Wi-Fi may be used, for example. Also, different bands may be used between these systems.
 ・各実施形態において、車両1と携帯端末2との近距離無線通信の通信接続(ペアリング)を行う方法は、特に限定されない。例えば、どちらか片方の機器の操作のみでペアリングを行なってもよい。また、ペアリング時に車両1側で操作を行う場合、車両1に搭載されたカーナビゲーションシステムなどの機器を入出力機器として適用することができる。すなわち、ペアリングに際して、操作機器、操作方法及び認証方法などは適宜変更可能である。 -In each embodiment, a method for performing communication connection (pairing) for near field communication between the vehicle 1 and the mobile terminal 2 is not particularly limited. For example, pairing may be performed only by operating one of the devices. Further, when the operation is performed on the vehicle 1 side at the time of pairing, a device such as a car navigation system mounted on the vehicle 1 can be applied as the input / output device. That is, when performing pairing, the operating device, operating method, authentication method, and the like can be changed as appropriate.
 ・各実施形態において、携帯端末2が電子キーID及びキー固有鍵を取得する方法は、インターネット通信を通じてサーバから取得することとしたが、これに限定されない。例えば、BLE通信を用いて車両1にログイン(ユーザID及びパスワード認証)し、予め車両1に登録されている電子キーID及びキー固有鍵を携帯端末2に付与する態様としてもよい。 In each embodiment, the method for the mobile terminal 2 to acquire the electronic key ID and the key unique key is to acquire the electronic key ID and the key unique key from the server through Internet communication, but the method is not limited to this. For example, a mode may be adopted in which the electronic key ID and the key unique key registered in the vehicle 1 in advance are given to the mobile terminal 2 by logging in to the vehicle 1 (user ID and password authentication) using BLE communication.
 ・各実施形態において、認証システム3で行うID照合は、電子キーID照合やキー固有鍵の暗号認証に限らず、携帯端末2の正否を確認できるものであればよい。
 ・各実施形態において、一連の認証において、ID照合と携帯端末2の位置検出の順番は特に限定されない。例えば、位置検出の後にID照合を行ってもいいし、ID照合と位置検出との実行期間が重なるように行ってもよい。
In each embodiment, the ID verification performed by the authentication system 3 is not limited to the electronic key ID verification or the cryptographic authentication of the key unique key, and any method that can confirm the correctness of the mobile terminal 2 may be used.
In each embodiment, the order of ID collation and position detection of the mobile terminal 2 is not particularly limited in a series of authentications. For example, the ID collation may be performed after the position detection, or the ID collation and the position detection may be performed so as to overlap with each other.
 ・各実施形態において、携帯端末2は、高機能携帯電話に限定されず、車両1に紐付けられた電子キーであってもよい。
 ・各実施形態において、認証システム3及び位置判定システム30は、車両1に搭載されることに限定されず、種々の機器や装置に変更可能である。つまり、携帯端末2の通信相手は車両1に限定されず、例えば建物などにおける設備でもよい。
-In each embodiment, the mobile terminal 2 is not limited to a high-performance mobile phone, and may be an electronic key tied to the vehicle 1.
-In each embodiment, the authentication system 3 and the position determination system 30 are not limited to being mounted on the vehicle 1 and can be changed to various devices and apparatuses. That is, the communication partner of the mobile terminal 2 is not limited to the vehicle 1, and may be equipment in a building, for example.

Claims (9)

  1.  携帯端末とその通信相手とが無線により通信する場合に、前記通信相手に対する前記携帯端末の位置を判定する位置判定部を備え、
     前記位置判定部は、前記通信相手に設けられた複数のアンテナの各々と前記携帯端末との間で異なる周波数で通信される複数の電波について、各周波数の前記電波毎に測定された受信強度から前記アンテナ毎の特性値を算出し、前記アンテナ間の前記特性値の大小を比較することにより、前記携帯端末の位置を判定する
    位置判定システム。
    When the mobile terminal and the communication partner communicate wirelessly, a position determination unit that determines the position of the mobile terminal with respect to the communication partner is provided,
    The position determination unit, based on the reception intensity measured for each radio wave of each frequency, for a plurality of radio waves communicated at different frequencies between each of the plurality of antennas provided to the communication partner and the mobile terminal. A position determination system for determining the position of the mobile terminal by calculating a characteristic value for each antenna and comparing the magnitudes of the characteristic values between the antennas.
  2.  前記位置判定部は、前記アンテナごとに測定された前記複数の電波の受信強度の平均値を前記特性値として算出する
    請求項1に記載の位置判定システム。
    The position determination system according to claim 1, wherein the position determination unit calculates an average value of reception intensities of the plurality of radio waves measured for each antenna as the characteristic value.
  3.  前記複数のアンテナは、前記通信相手の室外に設けられる室外アンテナと前記通信相手の室内に設けられる室内アンテナとを含み、
     前記位置判定部は、前記室外アンテナの前記特性値と前記室内アンテナの前記特性値との大小を比較することにより、前記携帯端末が前記通信相手の室内外のどちらに位置するかを判定する
    請求項1又は2に記載の位置判定システム。
    The plurality of antennas include an outdoor antenna provided outside the communication partner's room and an indoor antenna provided inside the communication partner's room,
    The position determination unit determines whether the portable terminal is located indoors or outdoors of the communication partner by comparing the size of the characteristic value of the outdoor antenna and the size of the characteristic value of the indoor antenna. The position determination system according to Item 1 or 2.
  4.  前記室外アンテナの前記特性値と前記室内アンテナの前記特性値との少なくとも一方を補正する補正部を備え、
     前記補正部は、前記室内アンテナの前記特性値に対する前記室外アンテナの前記特性値の比が、補正前より補正後の方が大きくなるように前記補正を行う
    請求項3に記載の位置判定システム。
    A correction unit that corrects at least one of the characteristic value of the outdoor antenna and the characteristic value of the indoor antenna;
    The position determination system according to claim 3, wherein the correction unit performs the correction such that a ratio of the characteristic value of the outdoor antenna to the characteristic value of the indoor antenna is larger after the correction than before the correction.
  5.  前記位置判定部は、前記アンテナごとに測定された前記複数の電波の受信強度の平均値、及び前記アンテナごとに測定された前記複数の電波の受信強度の標準偏差のうちの少なくとも一方を前記特性値として算出し、
     前記位置判定部は、前記平均値及び前記標準偏差の少なくとも一方に基づいて、前記通信相手に対する前記携帯端末の位置を判定する
    請求項1に記載の位置判定システム。
    The position determination unit, the average value of the reception intensity of the plurality of radio waves measured for each antenna, and at least one of the standard deviation of the reception intensity of the plurality of radio waves measured for each antenna, the characteristic Calculated as a value,
    The position determination system according to claim 1, wherein the position determination unit determines the position of the mobile terminal with respect to the communication partner based on at least one of the average value and the standard deviation.
  6.  前記標準偏差に基づいて前記平均値を補正する補正部を備え、
     前記位置判定部は、前記補正部により補正された前記平均値に基づいて、前記通信相手に対する前記携帯端末の位置を判定する
    請求項5に記載の位置判定システム。
    A correction unit that corrects the average value based on the standard deviation,
    The position determination system according to claim 5, wherein the position determination unit determines the position of the mobile terminal with respect to the communication partner based on the average value corrected by the correction unit.
  7.  前記位置判定部の現状の判定結果に応じた値に前記特性値を補正する補正部を備え、
     前記位置判定部は、前記アンテナ間における補正後の前記特性値の大小の比較から、前記携帯端末の位置を判定する
    請求項1又は請求項2に記載の位置判定システム。
    A correction unit that corrects the characteristic value to a value according to the current determination result of the position determination unit,
    The position determination system according to claim 1 or 2, wherein the position determination unit determines the position of the mobile terminal based on a comparison of the corrected characteristic values between the antennas.
  8.  前記補正部は、前記通信相手の室外に設けられる室外アンテナの前記特性値と、前記通信相手の室内に設けられる室内アンテナの前記特性値との少なくとも一方を補正し、前記室内アンテナの前記特性値に対する前記室外アンテナの前記特性値の比が、補正前より補正後の方が大きくなるように、補正量を用いて前記補正を行い、
     前記補正部は、室内から室外への前記携帯端末の位置の切り替わりの判定と、室外から室内への前記携帯端末の位置の切り替わりの判定とで、前記補正量を変える
    請求項7に記載の位置判定システム。
    The correction unit corrects at least one of the characteristic value of the outdoor antenna provided outside the communication partner's room and the characteristic value of an indoor antenna provided inside the communication partner's room to obtain the characteristic value of the indoor antenna. The ratio of the characteristic value of the outdoor antenna with respect to, so that after correction is larger than before correction, the correction is performed using a correction amount,
    The position according to claim 7, wherein the correction unit changes the correction amount based on a determination of switching the position of the mobile terminal from indoors to the outdoors and a determination of switching the position of the mobile terminal from the outdoors to the indoors. Judgment system.
  9.  携帯端末とその通信相手とが無線により通信する場合に、前記通信相手に設けられた複数のアンテナの各々と前記携帯端末との間で異なる周波数で通信される複数の電波について、各周波数の前記電波毎に測定された受信強度から前記アンテナ毎の特性値を算出すること、
     前記アンテナ間の前記特性値の大小を比較することにより、前記通信相手に対する前記携帯端末の位置を判定すること、を備える位置判定方法。
    When a mobile terminal and a communication partner communicate wirelessly, a plurality of radio waves communicated at different frequencies between each of the plurality of antennas provided in the communication partner and the mobile terminal Calculating a characteristic value for each antenna from the reception intensity measured for each radio wave,
    A position determination method comprising: determining the position of the mobile terminal with respect to the communication partner by comparing the magnitudes of the characteristic values between the antennas.
PCT/JP2019/044518 2018-11-16 2019-11-13 Position determination system and position determination method WO2020100941A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019005734.0T DE112019005734T5 (en) 2018-11-16 2019-11-13 Position determination system and position determination method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-215503 2018-11-16
JP2018215503 2018-11-16
JP2019109542A JP7438675B2 (en) 2018-11-16 2019-06-12 Position determination system and position determination method
JP2019-109542 2019-06-12

Publications (1)

Publication Number Publication Date
WO2020100941A1 true WO2020100941A1 (en) 2020-05-22

Family

ID=70730794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044518 WO2020100941A1 (en) 2018-11-16 2019-11-13 Position determination system and position determination method

Country Status (1)

Country Link
WO (1) WO2020100941A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002031A (en) * 2010-06-21 2012-01-05 Murata Mfg Co Ltd Keyless control system
JP2012172334A (en) * 2011-02-18 2012-09-10 Mitsubishi Electric Corp Vehicle radio device
JP2015202750A (en) * 2014-04-11 2015-11-16 株式会社東海理化電機製作所 Communication area adjustment device and method
JP2015214316A (en) * 2014-05-13 2015-12-03 株式会社東海理化電機製作所 Vehicle communication system
JP2015218501A (en) * 2014-05-19 2015-12-07 株式会社東海理化電機製作所 Portable terminal key system
JP2016084589A (en) * 2014-10-23 2016-05-19 オムロンオートモーティブエレクトロニクス株式会社 Portable machine, communication apparatus, and communication system
JP2017079430A (en) * 2015-10-21 2017-04-27 住友電気工業株式会社 Vehicle communication system and on-vehicle device
US9894492B1 (en) * 2016-09-22 2018-02-13 Ford Global Technologies, Llc System and method for determining mobile device location relative to vehicle cabin
WO2018159118A1 (en) * 2017-02-28 2018-09-07 株式会社Soken Location determination system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002031A (en) * 2010-06-21 2012-01-05 Murata Mfg Co Ltd Keyless control system
JP2012172334A (en) * 2011-02-18 2012-09-10 Mitsubishi Electric Corp Vehicle radio device
JP2015202750A (en) * 2014-04-11 2015-11-16 株式会社東海理化電機製作所 Communication area adjustment device and method
JP2015214316A (en) * 2014-05-13 2015-12-03 株式会社東海理化電機製作所 Vehicle communication system
JP2015218501A (en) * 2014-05-19 2015-12-07 株式会社東海理化電機製作所 Portable terminal key system
JP2016084589A (en) * 2014-10-23 2016-05-19 オムロンオートモーティブエレクトロニクス株式会社 Portable machine, communication apparatus, and communication system
JP2017079430A (en) * 2015-10-21 2017-04-27 住友電気工業株式会社 Vehicle communication system and on-vehicle device
US9894492B1 (en) * 2016-09-22 2018-02-13 Ford Global Technologies, Llc System and method for determining mobile device location relative to vehicle cabin
WO2018159118A1 (en) * 2017-02-28 2018-09-07 株式会社Soken Location determination system

Similar Documents

Publication Publication Date Title
JP7009328B2 (en) Distance measurement system
US10438430B2 (en) On-vehicle device, mobile device, and vehicle wireless communication system
US10493953B2 (en) Car sharing system
US20120139691A1 (en) System for preventing establishment of unauthorized communication
KR20160048004A (en) Potable device, communication device and communication system
JP5341814B2 (en) Wireless communication pass / fail judgment system
WO2019107468A1 (en) Wireless communication correctness/incorrectness determining system
JP2018038025A (en) Wireless communication correctness determination system
US20220210641A1 (en) Unauthorized communication prevention system and unauthorized communication prevention method
JP7438675B2 (en) Position determination system and position determination method
US11271916B2 (en) System and method for preventing accomplishment of unauthorized communication
JP2017137751A (en) Wireless communication correctness determination system
JP2020085488A (en) Position determination system and position determination method
WO2020040134A1 (en) System for preventing unauthorized establishment of communication, and method for preventing unauthorized establishment of communication
JP6522902B2 (en) Position estimation device
WO2020100941A1 (en) Position determination system and position determination method
WO2018186075A1 (en) Vehicle-mounted instrument, portable device, and keyless entry system
JP2016056667A (en) Electronic key system
JP7123764B2 (en) Authentication system
US20230276395A1 (en) Control device, non-transitory computer readable medium, and communication system
WO2021192598A1 (en) Distance estimation device
US10999707B2 (en) Position determination system and position determination method
JP2020088436A (en) Position determination system and position determination system control method
CN113661299B (en) Communication system and communication machine
US20230227000A1 (en) Position determination system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884179

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19884179

Country of ref document: EP

Kind code of ref document: A1