WO2020100940A1 - Bearing plate bearing device, calculation device, method for mounting bearing plate bearing device, and method for replacing rigid body plate - Google Patents
Bearing plate bearing device, calculation device, method for mounting bearing plate bearing device, and method for replacing rigid body plate Download PDFInfo
- Publication number
- WO2020100940A1 WO2020100940A1 PCT/JP2019/044517 JP2019044517W WO2020100940A1 WO 2020100940 A1 WO2020100940 A1 WO 2020100940A1 JP 2019044517 W JP2019044517 W JP 2019044517W WO 2020100940 A1 WO2020100940 A1 WO 2020100940A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- bearing
- attached
- rigid plate
- shoe
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
- E01D19/04—Bearings; Hinges
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D22/00—Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
Definitions
- the present invention relates to a technology of a support plate support device provided between an upper structure and a lower structure of a structure.
- a support (hereinafter referred to as a support plate support device) is arranged between a main girder (upper structure) and a bridge pier (lower structure) in a structure such as a bridge on which a moving body such as an automobile runs.
- the support plate support device supports the load from the upper structure and transmits the load to the lower structure.
- the support plate support device supports a dead load due to the weight of the upper structure and a live load such as vibration due to the weight of the vehicle traveling on the road surface or relative displacement of the upper structure with respect to the lower structure (for example, refer to Patent Document 1). ).
- the supporting plate supporting device has a structure having an upper shoe fixed to the upper structure, a lower shoe fixed to the lower structure, and a load supporting member sandwiched between the upper shoe and the lower shoe.
- the supporting plate supporting device is vertically stacked in this order from the upper structure side to the upper shoe, the load supporting member, and the lower shoe.
- the load supporting member is a member that supports a horizontal force (horizontal load) that is applied by relative displacement between the upper shoe and the lower shoe in the horizontal direction (the direction of the bridge axis or the direction perpendicular to the bridge axis), and is also loaded in the vertical direction. It is composed of a member that supports a force (vertical load).
- the piers are arranged at appropriate intervals along the bridge axis.
- Each pier is provided with a plurality of support plate support devices arranged side by side in the direction perpendicular to the bridge axis on the upper surface (the surface facing the main girder).
- the purpose of this invention is to provide a support plate support device that can measure the applied load.
- the support plate support device of the present invention is configured as follows in order to achieve the above object.
- This support plate support device is arranged between the upper structure and the lower structure of the structure.
- the support plate support device is arranged between an upper structure including a main girder, a floor slab, and a lower structure that is a bridge pier.
- the rigid plate is provided between an upper shoe attached to the upper structure and a lower shoe attached to the lower structure.
- the strain sensor is attached to the side surface of the rigid plate.
- the side surface of the rigid plate may be a surface formed in the hierarchical direction of the upper shoe, the rigid plate, and the lower shoe, and may be, for example, an outer surface formed in the vertical direction or formed on the rigid plate. It may be an inner side surface forming a hole or a groove.
- the support plate support device can measure the applied load by detecting the strain generated in the rigid plate with the strain sensor.
- the load applied to the support plate support device is mainly due to the structure (superstructure).
- one strain sensor may be attached to the side surface of the rigid plate, or a plurality of strain sensors may be attached.
- the strain sensors may be attached so as to be evenly positioned with the upper shoe, the rigid plate, and the lower shoe as the axis in the layer direction.
- the rigid plate may have a shape in which, for example, a cylindrical first portion and a cylindrical second portion are laminated in the layer direction.
- the first portion has a smaller diameter than the second portion and is arranged on the upper shoe side.
- the strain sensor may be attached to the side surface of the first portion or may be attached to the side surface of the second portion.
- the strain sensor When the strain sensor is attached to the side surface of the first part, it is possible to prevent the strain sensor from being pressed against another member.
- the strain sensor may be attached closer to the second portion side than the upper shoe side, for example.
- the portion where the strain sensor is attached may be processed into a flat surface.
- the strain sensor can be more firmly attached to the rigid plate.
- the arithmetic unit of the present invention uses a support plate support device using an input part to which the detection output of the strain sensor attached to the support plate support device is input, and the detection output of the strain sensor input to this input part. And a calculation unit that calculates the magnitude of the load applied to the.
- the arithmetic unit can measure the load applied to each bearing plate bearing device based on the detection output of the strain sensor attached to the bearing plate bearing device.
- the supporting plate supporting device is arranged between the upper structure and the lower structure of the structure, the upper shoe is attached to the upper structure, the lower shoe is attached to the lower structure, and the strain sensor is attached to the upper shoe and the lower shoe.
- the side surface of the rigid plate is a surface formed in the hierarchical direction of the upper shoe, the rigid plate, and the lower shoe.
- the support plate supporting device arranged between the upper structure and the lower structure of the structure is arranged between the upper shoe attached to the upper structure and the lower shoe attached to the lower structure.
- the rigid plate that is attached is removed, and a replacement rigid plate having a strain sensor attached to the side surface is attached between the upper and lower shoes.
- the side surface of the rigid plate is a surface formed in the hierarchical direction of the upper shoe, the rigid plate, and the lower shoe.
- FIG. 9A is an explanatory diagram showing an example of a screen generated by the arithmetic device, and FIG.
- 9B is an explanatory diagram showing an example of another screen generated by the arithmetic device. It is a flow chart which shows an example of a bearing attachment method. It is a flowchart which shows an example of the replacement method of a rigid plate. It is a perspective view showing appearance of a bearing concerning a modification. It is a disassembled perspective view of the bearing concerning a modification. It is a top view of the rigid plate concerning a modification. It is a top view of the rigid body plate concerning another modification.
- FIG. 1 is a block diagram showing the main configuration of the load measuring system.
- FIG. 2 is a schematic cross-sectional view of the bridge 10 to which the load measuring system is applied, taken in the direction perpendicular to the bridge axis.
- the bridge 10 corresponds to the structure referred to in the present invention.
- the load measuring system of this example includes a support plate support device 1 (hereinafter, simply referred to as support 1) arranged between an upper structure 100 of a bridge 10 and a bridge pier 110 that is a lower structure, and a computing device 41. I have it.
- the load measuring system measures the load applied to the bearing 1.
- the load applied to the bearing 1 is mainly due to the superstructure 100.
- the upper structure 100 has a main girder 101, a road surface 102, and a side wall 103.
- the bridge piers 110 of the bridge 10 are arranged side by side at appropriate intervals in the bridge axis direction.
- a floor slab is provided on the upper surface of the main girder 101 (the surface opposite to the pier 110 side), as shown in FIG.
- a road surface 102 and a side wall 103 on which a vehicle such as an automobile travels are formed on the floor slab.
- the bearing 1 supports a dead load due to the weight of the superstructure 100 and a live load due to vibrations due to the weight of the vehicle traveling on the road surface 102 and the relative displacement of the superstructure 100 with respect to the pier 110.
- FIG. 3 is a perspective view showing the outer appearance of the support 1.
- FIG. 4 is an exploded perspective view of the support 1.
- the support 1 includes an upper shoe 21, a lower shoe 28, a load support member 20 sandwiched between the upper shoe 21 and the lower shoe 28, a side block 29, and a strain sensor 3.
- the load supporting member 20 has a rigid plate 24. The detailed configuration of the load supporting member 20 will be described later.
- the strain sensor 3 detects the strain of the rigid plate 24. The rigid plate 24 is distorted according to the magnitude of the load applied to the bearing 1.
- FIG. 5 is an explanatory diagram showing the main configuration of the strain sensor 3.
- the strain sensor 3 includes a strain gauge 31 and a strain measuring device 32.
- the strain gauge 31 is a sensor whose resistance value changes according to the magnitude of strain.
- the strain gauge 31 is attached to the rigid plate 24 (see FIG. 4). Therefore, the resistance value of the strain gauge 31 changes according to the strain of the rigid plate 24.
- the strain gauge 31 corresponds to the strain sensor referred to in the present invention.
- the strain measuring device 32 has, for example, a bridge circuit including a strain gauge 31 and resistors R1, R2, and R3.
- the strain measuring instrument 32 applies the voltage E1 to the connection point between the resistance R1 and the resistance R2 and the connection point between the resistance R3 and the strain gauge 31. Further, the strain measuring instrument 32 outputs a voltage difference (output voltage Vo1) between a connection point between the strain gauge 31 and the resistor R1 and a connection point between the resistors R2 and R3 as a detection output.
- the strain gauge 31 is replaced with a piezoelectric film, for example, a sensor element made of PVDF (PolyVinylidene DiFluoride), and the strain measuring device 32 is an amplifier circuit that amplifies the output of the sensor element. Alternatively, it may be replaced with.
- a piezoelectric film for example, a sensor element made of PVDF (PolyVinylidene DiFluoride)
- the strain measuring device 32 is an amplifier circuit that amplifies the output of the sensor element. Alternatively, it may be replaced with.
- the arithmetic device 41 receives the detection output of the strain measuring device 32 of the strain sensor 3.
- the calculation device 41 calculates the load applied to the bearing 1 based on the detection output input from each strain measuring device 32.
- the arithmetic unit 41 also calculates the ratio of the loads applied to the three bearings 1 arranged side by side in the direction perpendicular to the bridge axis.
- the builder can confirm with the arithmetic unit 41 whether or not the bearing 1 is loaded with the load as designed.
- the load measuring system will be described.
- the load measuring system includes a bearing 1 having a strain sensor 3 and a computing device 41.
- the bearing 1 will be described as a closed rubber bearing plate bearing device.
- the load supporting member 20 of the support 1 includes a stainless plate 22, a Teflon plate 23 (Teflon is a registered trademark), a rigid plate 24, a compression ring 25, a rubber plate 26, and a seal ring 27. And a strain sensor 3. From the main girder 101 side, the bearing 1 is in the order of the upper lure 21, the stainless steel plate 22, the Teflon plate 23 (Teflon is a registered trademark), the rigid plate 24, the compression ring 25, the rubber plate 26 and the lower lure 28 in the order of the vertical direction (vertical Direction).
- the upper shoe 21 is fixed to the main girder 101.
- the lower shoe 28 is fixed to the pier 110.
- the lower shoe 28 has a recess 281 in which the rigid plate 24, the compression ring 25, and the rubber plate 26 are housed.
- the concave portion 281 is formed in a circular shape when the lower shoe 28 is viewed in a plan view.
- the lower shoe 28 is provided with, for example, projecting portions 282 projecting toward the upper shoe 21 side at both ends in the direction perpendicular to the bridge axis.
- the side block 29 has a U-shaped cross section in the vertical direction. The side block 29 is fixed to the protruding portion 282 of the lower shoe 28 by bolts or the like.
- the stainless steel plate 22 is formed in a rectangular plate shape.
- the stainless plate 22 is arranged on the lower surface of the upper shoe 21.
- the Teflon plate 23 (Teflon is a registered trademark) is made of PTFE (polytetrafluoroethylene).
- the Teflon plate 23 (Teflon is a registered trademark) is formed in a disc shape.
- the lower surface of the stainless steel plate 22 and the upper surface of the Teflon plate 23 (Teflon is a registered trademark) slide on each other to allow the upper structure 100 to move horizontally.
- the stainless steel plate 22 and the Teflon plate 23 absorb the force generated when the upper structure 100 moves in the horizontal direction.
- the range of horizontal movement of the upper structure 100 is restricted by the protruding portion 282 of the lower shoe 28.
- the rigid plate 24 is composed of a cylindrical first portion 241 and a cylindrical second portion 242.
- the rigid plate 24 has a shape in which a first portion 241 and a second portion 242 are vertically stacked.
- the first portion 241 has a smaller diameter than the second portion 242 and is arranged on the upper shoe 21 side.
- the end of the second portion 242 on the pier 110 side is inserted into the recess 281 of the lower shoe 28.
- a concave portion is formed on the upper surface (the surface on the upper shoe 21 side) of the first portion 241 of the rigid plate 24.
- a Teflon plate 23 (Teflon is a registered trademark) is inserted into the recess.
- the rubber plate 26 has a disc shape. It is arranged on the bottom surface of the recess 281 of the lower shoe 28. The rubber plate 26 faces the lower surface (the surface on the lower shoe 28 side) of the rigid plate 24 via the compression ring 25. The rubber plate 26 allows the upper structure 100 to rotate about a center in the horizontal direction. In other words, the rubber plate 26 absorbs the force generated when the upper structure 100 rotationally moves.
- the seal ring 27 is a tubular rubber ring.
- the seal ring 27 is arranged around the outer surface of the rigid plate 24 that is parallel to the vertical direction. More specifically, the seal ring 27 is arranged on the upper surface of the lower shoe 28 and around the outer surface of the first portion 241 of the rigid plate 24.
- the seal ring 27 is arranged so that dust or water does not enter the recess 281 of the lower shoe 28.
- FIG. 6 is a plan view of the rigid plate 24 to which the four strain gauges 31 are attached.
- FIG. 7 is a schematic cross-sectional view in the bridge axis direction of the rigid plate 24 to which the strain gauge 31 is attached.
- the four strain sensors 3 detect the strain generated in the rigid plate 24.
- the strain gauge 31 of each strain sensor 3 is attached to the outer surface of the first portion 241 of the rigid plate 24, as shown in FIGS. 6 and 7. As shown in FIG. 6, the four strain gauges 31 are evenly positioned with the vertical direction of the rigid plate 24 (the direction orthogonal to the paper surface in FIG. 6) as an axis. In other words, the four strain gauges 31 are arranged along the outer surface of the first portion 241 of the rigid plate 24 so that the distances between the adjacent strain gauges 31 are the same.
- the strain gauge 31 is attached to the first portion 241 of the rigid plate 24 with, for example, an adhesive material.
- the four strain gauges 31 are attached to the first portion 241 so as to be closer to the second portion 242 side than the upper shoe 21. That is, the strain gauge 31 is arranged between the first portion 241 and the surface forming the recess 281. As a result, the strain gauge 31 is not pressed against another member, for example, the surface forming the recess 281. Therefore, the bearing 1 can prevent the strain sensor 3 from being damaged by pressure contact.
- the four strain gauges 31 are connected to corresponding strain measuring instruments 32 by lead wires 33, for example (see FIG. 1). As shown in FIG. 7, the lead wire 33 is led out to the outside of the load supporting member 20, for example, passing between the upper surface of the lower shoe 28 and the seal ring 27.
- the strain measuring device 32 may be arranged between the first portion 241 and the surface forming the recess 281. Moreover, the strain sensor 3 does not need to be plural, and at least one strain sensor 3 may be provided for each bearing 1.
- FIG. 8 is a block diagram showing the main configuration of the arithmetic unit 41.
- FIG. 9A is an explanatory diagram showing an example of the screen 42 generated by the arithmetic device 41.
- FIG. 9B is an explanatory diagram showing an example of another screen 43 generated by the arithmetic unit 41.
- the arithmetic unit 41 is connected to the strain measuring instruments 32 of the plurality of strain sensors 3 wirelessly or by wire.
- the detection output is input from the strain measuring device 32 of each strain sensor 3 to the arithmetic unit 41.
- the arithmetic unit 41 includes a control unit 410, an input unit 411, an arithmetic unit 412, and a display unit 413.
- the control unit 410 controls the input unit 411, the calculation unit 412, and the display unit 413.
- the detection result is input from the strain measuring device 32 to the input unit 411.
- the calculation unit 412 calculates the load applied to the bearing 1 using the detection output of each strain sensor 3 input to the input unit 411.
- the calculation unit 412 calculates the load F applied to the bearing 1 by the following formula, for example.
- Load F g (v1, v2, v3, v4) v1, v2, v3, and v4 are the detection outputs of the four strain sensors 3 provided on the bearing 1.
- the function g is a predetermined function.
- the calculation unit 412 calculates the ratio of the loads applied to a plurality of (three in FIG. 1) bearings 1 provided in one bridge pier 110 side by side in the direction perpendicular to the bridge axis.
- the calculation unit 412 calculates, for example, the ratio of the load applied to each bearing 1 to the total load applied to the three bearings 1 arranged side by side in the direction perpendicular to the bridge axis.
- the arithmetic unit 41 calculates, for each bearing 1, a ratio of strains detected by the four strain sensors 3 provided in the bearing 1. In other words, the arithmetic unit 41 calculates the ratio of the load based on the strain detected by each strain sensor 3 provided in the bearing 1 to the load applied to the one bearing 1.
- the display unit 413 for example, as shown in FIG. 9 (A), is provided on each of the three bearings 1 (which are distinguished by G1, G2, and G3 on the screen 42) arranged side by side in the direction perpendicular to the bridge axis.
- the magnitude of the applied load is displayed on the screen 42.
- the display unit 413 also displays the ratio of the load applied to each bearing 1 on the screen 42.
- the display unit 413 also displays, for each bearing 1, a load ratio based on the strain detected by the four strain sensors 3 provided on the bearing 1.
- the bearing 1 of the present embodiment can measure the applied load by the strain sensor 3 provided on the rigid plate 24 detecting the strain of the rigid plate 24. That is, the builder can attach the superstructure 100 of the bridge 10 to the bearing 1 while checking whether the load applied to each bearing 1 is a value as designed. Further, the builder can confirm the ratio of the load based on the strain detected by the four strain sensors 3 provided on the bearing 1 for each bearing 1.
- FIG. 10 is a flowchart showing an example of the bearing mounting method.
- the builder attaches a plurality of bearings 1 (three in FIG. 2) with strain sensors 3 provided in advance to the pier 110 (S11). At this time, the builder fixes the lower shoe 28 to the pier 110 using, for example, anchor bolts. The builder adjusts the position of the superstructure 100 and places it on the fixed bearing 1 (S12). The builder looks at the screen 42 and determines whether the load applied to each bearing 1 is the designed load (S13). When the load applied to each bearing 1 is as designed (S13: Yes), the builder attaches the superstructure 100 to the bearing 1 (S14). At this time, the upper shoe 21 is fixed to the upper structure 100 using, for example, anchor bolts.
- the builder can perform the work of mounting the superstructure 100 while confirming the load applied to each bearing 1. .. Thereby, the builder can more accurately attach the bearing 1 to the bridge 10.
- the already arranged rigid plate needs to be replaced due to aging, etc., the already arranged rigid plate is replaced with the replacement rigid plate 24 provided with the strain sensor 3.
- FIG. 11 is a flowchart showing an example of a method of replacing the rigid plate 24.
- the installer lifts the upper structure 100 by using, for example, a jack, provides a gap between the upper shoe 21 and the lower shoe 28 of the already arranged support, and removes the rigid plate already arranged from this gap (S21). ..
- the builder inserts the rigid plate 24 provided with the strain sensor 3 between the upper shoe 21 and the lower shoe 28, and then restores the lifted upper structure (S22).
- the builder looks at the screen 42 and determines whether or not the load applied to each bearing 1 is as designed (S23). When the load applied to each bearing 1 is as designed (S23: Yes), the builder finishes the work.
- the builder When the load applied to each bearing 1 is not the designed load (S23: No), the builder lifts the upper structure 100 again, adjusts the position of the rigid plate 24, and then lifts the lifted upper structure. It returns to the original (S24). Then, the builder repeats the processing of S23 and S24 until it can confirm that the load applied to each bearing 1 is the load as designed. Lifting of the upper structure 100 at s24 is sufficient as long as the position of the rigid plate 24 can be adjusted, and it is not necessary to provide a gap for taking out the rigid plate 24 between the upper shoe 21 and the lower shoe 28. Therefore, the height of lifting the superstructure 100 in s24 is lower than the height of lifting the superstructure 100 in s21.
- the builder replaces the existing rigid plate and the replacement rigid plate 24 provided with the strain sensor 3 at a lower cost and in a shorter time than when replacing the entire bearing 1.
- the rigid plate 24 can be replaced.
- FIG. 12 is a perspective view showing the outer appearance of the bearing 1A according to this modification.
- FIG. 13 is an exploded perspective view of a bearing 1A according to a modification.
- the bearing 1A includes an upper shoe 51, a stainless plate 52, a bearing plate 53, a seal ring 54, a lower shoe 55, a side block 56, and a strain sensor 3. ing.
- the bearing plate 53 according to this modification corresponds to the rigid plate of the present invention.
- the upper shoe 51 is fixed to the main girder 101.
- the lower shoe 55 is fixed to the pier 110.
- the lower shoe 55 has a recess 551 for accommodating the bearing plate 53.
- the recess 551 has a dome shape whose diameter decreases toward the lower side (the pier 110 side).
- the lower shoe 55 is provided with, for example, projecting portions 552 projecting toward the upper shoe 51 side at both ends in the direction perpendicular to the bridge axis.
- the side block 56 shown in FIGS. 12 and 13 has an L-shaped cross section.
- the side block 56 is fixed to the lower shoe 55 along a side surface of the protruding portion 552 of the lower shoe 55 that is parallel to the vertical direction.
- the side block 56 is not limited to the example in which the cross section is formed in an L shape.
- the side block 56 may have a U-shaped cross section, for example.
- the stainless plate 52, the bearing plate 53, and the seal ring 54 are arranged between the upper shoe 51 and the lower shoe 55.
- the stainless plate 52 is formed in a rectangular plate shape.
- the stainless plate 52 is arranged on the lower surface of the upper shoe 51.
- the bearing plate 53 is composed of a first portion 531 formed in a disc shape and a second portion 532 formed in a dome shape protruding toward the lower shoe 55 side.
- the bearing plate 53 is formed by vertically stacking a first portion 531 and a second portion 532.
- the stainless plate 52 and the upper surface of the first portion 531 of the bearing plate 53 slide on each other to allow the horizontal movement of the superstructure 100 and the rotational movement about the horizontal center.
- the seal ring 54 is formed in a disc shape.
- the seal ring 54 is arranged around the outer surface of the bearing plate 53 that is parallel to the vertical direction. More specifically, the seal ring 54 is arranged on the upper surface of the lower shoe 55 and around the outer surface of the first portion 531 of the bearing plate 53 that is parallel to the vertical direction.
- the strain gauge 31 of the strain sensor 3 is attached to the outer surface of the first portion 531 of the bearing plate 53 parallel to the vertical direction using an adhesive or the like.
- the first portion 531 of the bearing plate 53 is It is preferable to process the outer surface. For example, the location where the strain gauge 31 is attached is processed into a flat surface on the outer surface of the first portion 531. A space is provided between the first portion 531 of the bearing plate 53 and another member in the bearing 1A by processing the portion to which the strain gauge 31 is attached into a flat surface. As a result, the bearing 1A can prevent the strain sensor 3 from being damaged by pressure contact or the like.
- the strain sensor 3 detects the strain generated in the bearing plate 53, so that the load applied to the bearing 1A can be measured.
- FIG. 14 is a plan view of a rigid plate 24A according to another modification.
- the rigid plate 24 ⁇ / b> A of this modification in the first portion 241, the portion to which the strain gauge 31 is attached is formed on the plane 240.
- the bearing 1 As shown in FIG. 14, a part of the first portion 241A of the rigid plate 24A is processed into a flat surface 240. Since the attachment surface on which the strain gauge 31 is attached is the flat surface 240, this support 1 can firmly attach the strain gauge 31 to the rigid plate 24A. That is, the bearing 1 can prevent the strain measurement failure due to the peeling of the strain gauge 31.
- FIG. 15 is a plan view of a rigid plate 24B according to another modification.
- the rigid plate 24B according to this modified example is different from the example described above in that the strain gauge 31 is housed in the groove 61 provided on the outer surface of the second portion 242A parallel to the vertical direction. different.
- a plurality of grooves 61 for accommodating the strain gauges 31 are formed on the outer surface of the rigid plate 24B of the bearing 1 according to this modification.
- the strain gauge 31 is attached to, for example, a side surface of the groove 61 that is parallel to the vertical direction.
- the bearing 1 stores the strain gauge 31 by forming the groove 61 on the outer surface of the rigid plate 24B.
- the groove 61 may accommodate not only the strain gauge 31 but also a circuit such as the strain measuring device 32 and a power source.
- the present invention is not limited to the above embodiments as they are, and can be embodied by modifying the constituent elements within a range not departing from the gist of the invention at the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, the constituent elements of different embodiments may be combined appropriately.
- a bearing plate bearing device (1) arranged between an upper structure (100) and a lower structure (110) of a structure (10), A rigid plate (24) provided between an upper shoe (21) attached to the upper structure (100) and a lower shoe (28) attached to the lower structure (110); A strain sensor (3) attached to a side surface of the rigid plate (24), The side surface is a surface formed in the hierarchical direction of the upper shoe (28), the rigid plate (24), and the lower shoe (28). Support plate support device.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Bridges Or Land Bridges (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
A bearing plate bearing device disposed between an upper structure and a lower structure of a building, the device comprising: a rigid body plate that is provided between an upper shoe mounted to the upper structure and a lower shoe mounted to the lower structure; and a strain sensor attached to the side face of the rigid body plate. The side face of the rigid body plate is a face formed in the layer direction of the upper shoe, the rigid body plate, and the lower shoe.
Description
この発明は、構造物の上部構造と下部構造との間に設けられる支承板支承装置の技術に関する。
The present invention relates to a technology of a support plate support device provided between an upper structure and a lower structure of a structure.
自動車等の移動体が走行する橋梁等の構造物には、主桁(上部構造)と橋脚(下部構造)との間に支承(以下、支承板支承装置と言う。)が配置されている。支承板支承装置は、上部構造からの荷重を支持し、下部構造へ伝達する。支承板支承装置は、上部構造の重さによる死荷重、及び路面を走行する車両の重量又は下部構造に対する上部構造の相対的な変位による振動等の活荷重を支持する(例えば、特許文献1参照)。
A support (hereinafter referred to as a support plate support device) is arranged between a main girder (upper structure) and a bridge pier (lower structure) in a structure such as a bridge on which a moving body such as an automobile runs. The support plate support device supports the load from the upper structure and transmits the load to the lower structure. The support plate support device supports a dead load due to the weight of the upper structure and a live load such as vibration due to the weight of the vehicle traveling on the road surface or relative displacement of the upper structure with respect to the lower structure (for example, refer to Patent Document 1). ).
支承板支承装置には、上部構造に固定された上沓、下部構造に固定された下沓、及び上沓と下沓との間に挟まれた荷重支持部材を有する構成のものがある。支承板支承装置は、上部構造側から上沓、荷重支持部材、下沓の順番に鉛直方向に重なっている。荷重支持部材は、水平方向(橋軸方向又は橋軸直角方向)における上沓と下沓との相対的な変位により負荷される水平力(水平荷重)を支持する部材及び、鉛直方向に負荷される力(鉛直荷重)を支持する部材等で構成されている。
There is a supporting plate supporting device that has a structure having an upper shoe fixed to the upper structure, a lower shoe fixed to the lower structure, and a load supporting member sandwiched between the upper shoe and the lower shoe. The supporting plate supporting device is vertically stacked in this order from the upper structure side to the upper shoe, the load supporting member, and the lower shoe. The load supporting member is a member that supports a horizontal force (horizontal load) that is applied by relative displacement between the upper shoe and the lower shoe in the horizontal direction (the direction of the bridge axis or the direction perpendicular to the bridge axis), and is also loaded in the vertical direction. It is composed of a member that supports a force (vertical load).
橋脚は、橋軸方向に適当な間隔で並べられている。各橋脚には、上面(主桁との対向面)に、複数の支承板支承装置が橋軸直角方向に並べて設けられている。
The piers are arranged at appropriate intervals along the bridge axis. Each pier is provided with a plurality of support plate support devices arranged side by side in the direction perpendicular to the bridge axis on the upper surface (the surface facing the main girder).
橋脚の上面に並べて設けられている支承板支承装置毎に負荷されている荷重が所望の大きさであるかどうかを確認するために、支承板支承装置毎に負荷されている荷重を計測したいとの要望がある。
I want to measure the load applied to each support plate support device to confirm whether the load applied to each support plate support device installed on the upper surface of the pier is the desired magnitude. There is a request.
この発明の目的は、負荷されている荷重の計測が行える支承板支承装置を提供することにある。
The purpose of this invention is to provide a support plate support device that can measure the applied load.
この発明の支承板支承装置は、上記目的を達するために、以下のように構成している。
The support plate support device of the present invention is configured as follows in order to achieve the above object.
この支承板支承装置は、構造物の上部構造と下部構造との間に配置される。支承板支承装置は、例えば、構造物が橋梁である場合、主桁、床版などを含む上部構造と、橋脚である下部構造との間に配置される。剛体プレートは、上部構造に取り付けられる上沓と、下部構造に取り付けられる下沓との間に設けられている。ひずみセンサは、剛体プレートの側面に貼付されている。剛体プレートの側面は、上沓、剛体プレート、および下沓の階層方向に形成された面であればよく、例えば鉛直方向に、形成された外側面であってもよいし、剛体プレートに形成された孔又は溝などを構成する内側面であってもよい。
This support plate support device is arranged between the upper structure and the lower structure of the structure. When the structure is a bridge, for example, the support plate support device is arranged between an upper structure including a main girder, a floor slab, and a lower structure that is a bridge pier. The rigid plate is provided between an upper shoe attached to the upper structure and a lower shoe attached to the lower structure. The strain sensor is attached to the side surface of the rigid plate. The side surface of the rigid plate may be a surface formed in the hierarchical direction of the upper shoe, the rigid plate, and the lower shoe, and may be, for example, an outer surface formed in the vertical direction or formed on the rigid plate. It may be an inner side surface forming a hole or a groove.
この構成により、支承板支承装置は、ひずみセンサで剛体プレートに生じているひずみを検出することによって、負荷されている荷重を計測できる。支承板支承装置に負荷されている荷重は、主に構造物(上部構造)による荷重である。
With this configuration, the support plate support device can measure the applied load by detecting the strain generated in the rigid plate with the strain sensor. The load applied to the support plate support device is mainly due to the structure (superstructure).
また、剛体プレートの側面に貼付するひずみセンサは、1つであってもよいし、複数であってもよい。剛体プレートの側面に複数のひずみセンサを貼付する場合、例えば、複数のひずみセンサを、上沓、剛体プレート、および下沓の階層方向を軸にして均等に位置するように貼付すればよい。
Also, one strain sensor may be attached to the side surface of the rigid plate, or a plurality of strain sensors may be attached. When a plurality of strain sensors are attached to the side surface of the rigid plate, for example, the strain sensors may be attached so as to be evenly positioned with the upper shoe, the rigid plate, and the lower shoe as the axis in the layer direction.
複数のひずみセンサを上記のように貼付すれば、支承板支承装置において負荷されている荷重が不均等であっても、この支承板支承装置に負荷されている荷重を計測できる。
If multiple strain sensors are attached as above, even if the load applied to the support plate support device is uneven, the load applied to this support plate support device can be measured.
また、剛体プレートは、例えば、円筒形状の第1部分と、円筒形状の第2部分とを階層方向に積層した形状にしてもよい。この場合、第1部分は、第2部分よりも径が小さく、上沓側に配置される。ひずみセンサは、第1部分の側面に貼付されてもよいし、第2部分の側面に貼付されてもよい。
The rigid plate may have a shape in which, for example, a cylindrical first portion and a cylindrical second portion are laminated in the layer direction. In this case, the first portion has a smaller diameter than the second portion and is arranged on the upper shoe side. The strain sensor may be attached to the side surface of the first portion or may be attached to the side surface of the second portion.
ひずみセンサを第1部分の側面に貼付した場合、ひずみセンサが別の部材との間で圧接されるのを防止できる。
When the strain sensor is attached to the side surface of the first part, it is possible to prevent the strain sensor from being pressed against another member.
また、ひずみセンサを、例えば、上沓側よりも第2部分側に寄せて貼付してもよい。
Also, the strain sensor may be attached closer to the second portion side than the upper shoe side, for example.
このようにすれば、ひずみセンサの貼付作業が効率的に行える。
By doing this, the work of attaching the strain sensor can be done efficiently.
また、剛体プレートの側面は、例えば、ひずみセンサが貼付されている箇所が平面に加工されたものであってもよい。
Also, on the side surface of the rigid plate, for example, the portion where the strain sensor is attached may be processed into a flat surface.
このような構成であれば、ひずみセンサをより強固に剛体プレートに貼付することができる。
With this configuration, the strain sensor can be more firmly attached to the rigid plate.
この発明の演算装置は、支承板支承装置に貼付されている前記ひずみセンサの検出出力が入力される入力部と、この入力部に入力されたひずみセンサの検出出力を用いて、支承板支承装置に負荷された荷重の大きさを演算する演算部とを備えている。
The arithmetic unit of the present invention uses a support plate support device using an input part to which the detection output of the strain sensor attached to the support plate support device is input, and the detection output of the strain sensor input to this input part. And a calculation unit that calculates the magnitude of the load applied to the.
この構成により、演算装置は、支承板支承装置に貼付されているひずみセンサの検出出力に基づいて、支承板支承装置毎に負荷されている荷重を計測することができる。
With this configuration, the arithmetic unit can measure the load applied to each bearing plate bearing device based on the detection output of the strain sensor attached to the bearing plate bearing device.
この発明の支承板支承装置取付方法では、構造物の上部構造と下部構造との間に配置し、上沓を上部構造に取り付け、下沓を下部構造に取り付け、ひずみセンサを上沓と下沓との間に設けられた剛体プレートの側面に貼付する。剛体プレートの側面は、上沓、剛体プレート、および下沓の階層方向に形成された面である。
In the supporting plate supporting device mounting method of the present invention, the supporting plate supporting device is arranged between the upper structure and the lower structure of the structure, the upper shoe is attached to the upper structure, the lower shoe is attached to the lower structure, and the strain sensor is attached to the upper shoe and the lower shoe. Attached to the side of the rigid plate provided between and. The side surface of the rigid plate is a surface formed in the hierarchical direction of the upper shoe, the rigid plate, and the lower shoe.
この構成では、支承板支承装置を構造物に取り付ける際に、支承板支承装置に負荷されている荷重の計測が行える。
With this configuration, when the support plate support device is attached to the structure, the load applied to the support plate support device can be measured.
この発明の剛体プレート交換方法では、構造物の上部構造と下部構造との間に配置する支承板支承装置から上部構造に取り付けられた上沓と下部構造に取り付けられた下沓との間に配置されている剛体プレートを取り外し、ひずみセンサが側面に貼付された交換用の剛体プレートを上沓と下沓との間に取り付ける。剛体プレートの側面は、上沓、剛体プレート、および下沓の階層方向に形成された面である。
In the rigid plate exchange method of the present invention, the support plate supporting device arranged between the upper structure and the lower structure of the structure is arranged between the upper shoe attached to the upper structure and the lower shoe attached to the lower structure. The rigid plate that is attached is removed, and a replacement rigid plate having a strain sensor attached to the side surface is attached between the upper and lower shoes. The side surface of the rigid plate is a surface formed in the hierarchical direction of the upper shoe, the rigid plate, and the lower shoe.
この構成では、支承板支承装置の剛体プレートを交換する際に、支承板支承装置に負荷されている荷重の計測が行える。
With this configuration, when replacing the rigid plate of the support plate support device, the load applied to the support plate support device can be measured.
この発明によれば、支承板支承装置に負荷されている荷重を計測することができる。
According to this invention, it is possible to measure the load applied to the support plate support device.
以下、この発明の実施形態について説明する。
The embodiments of the present invention will be described below.
<1.適用例>
図1は、荷重測定システムの主要な構成を示すブロック構成図である。図2は、荷重計測システムを適用した橋梁10の橋軸直角方向の概略断面図である。橋梁10が、この発明で言う構造物に相当する。 <1. Application example>
FIG. 1 is a block diagram showing the main configuration of the load measuring system. FIG. 2 is a schematic cross-sectional view of thebridge 10 to which the load measuring system is applied, taken in the direction perpendicular to the bridge axis. The bridge 10 corresponds to the structure referred to in the present invention.
図1は、荷重測定システムの主要な構成を示すブロック構成図である。図2は、荷重計測システムを適用した橋梁10の橋軸直角方向の概略断面図である。橋梁10が、この発明で言う構造物に相当する。 <1. Application example>
FIG. 1 is a block diagram showing the main configuration of the load measuring system. FIG. 2 is a schematic cross-sectional view of the
この例の荷重計測システムは、橋梁10の上部構造100と、下部構造である橋脚110との間に配置された支承板支承装置1(以下、単に支承1と呼ぶ)と、演算装置41とを備えている。荷重計測システムは、支承1に負荷されている荷重を計測する。支承1に負荷されている荷重は、主に上部構造100による荷重である。上部構造100は、主桁101、路面102及び側壁103を有する。
The load measuring system of this example includes a support plate support device 1 (hereinafter, simply referred to as support 1) arranged between an upper structure 100 of a bridge 10 and a bridge pier 110 that is a lower structure, and a computing device 41. I have it. The load measuring system measures the load applied to the bearing 1. The load applied to the bearing 1 is mainly due to the superstructure 100. The upper structure 100 has a main girder 101, a road surface 102, and a side wall 103.
橋梁10の橋脚110は、橋軸方向に適当な間隔で並べて配置されている。橋脚110の上面(主桁101との対向面)には、複数(図2では3つ)の支承1が橋軸直角方向に並べて設けられている。
The bridge piers 110 of the bridge 10 are arranged side by side at appropriate intervals in the bridge axis direction. On the upper surface of the pier 110 (the surface facing the main girder 101), a plurality of (three in FIG. 2) bearings 1 are arranged side by side in the direction perpendicular to the bridge axis.
主桁101の上面(橋脚110側と反対の面)には、図2に示すように、床版が設けられている。床版には、自動車などの車両が走行する路面102及び側壁103が形成されている。支承1は、上部構造100の重さによる死荷重、及び路面102を走行する車両の重量及び橋脚110に対する上部構造100の相対的な変位による振動等による活荷重を支持する。
A floor slab is provided on the upper surface of the main girder 101 (the surface opposite to the pier 110 side), as shown in FIG. A road surface 102 and a side wall 103 on which a vehicle such as an automobile travels are formed on the floor slab. The bearing 1 supports a dead load due to the weight of the superstructure 100 and a live load due to vibrations due to the weight of the vehicle traveling on the road surface 102 and the relative displacement of the superstructure 100 with respect to the pier 110.
図3は、支承1の外観を示す斜視図である。図4は、支承1の分解斜視図である。
FIG. 3 is a perspective view showing the outer appearance of the support 1. FIG. 4 is an exploded perspective view of the support 1.
支承1は、上沓21と、下沓28と、上沓21と下沓28とに挟まれた荷重支持部材20と、サイドブロック29と、ひずみセンサ3とを備えている。荷重支持部材20は、剛体プレート24を有している。荷重支持部材20の詳細な構成については後述する。ひずみセンサ3は、剛体プレート24のひずみを検出する。剛体プレート24は、支承1に負荷されている荷重の大きさに応じてひずむ。
The support 1 includes an upper shoe 21, a lower shoe 28, a load support member 20 sandwiched between the upper shoe 21 and the lower shoe 28, a side block 29, and a strain sensor 3. The load supporting member 20 has a rigid plate 24. The detailed configuration of the load supporting member 20 will be described later. The strain sensor 3 detects the strain of the rigid plate 24. The rigid plate 24 is distorted according to the magnitude of the load applied to the bearing 1.
図5は、ひずみセンサ3の主要な構成を示す説明図である。ひずみセンサ3は、図5に示すように、ひずみゲージ31と、ひずみ測定器32とを備えている。ひずみゲージ31は、ひずみの大きさに応じて、抵抗値が変化するセンサである。ひずみゲージ31は、剛体プレート24に貼付される(図4参照)。したがって、ひずみゲージ31は、剛体プレート24のひずみに応じて、抵抗値が変化する。ひずみゲージ31が、この発明で言うひずみセンサに相当する。
FIG. 5 is an explanatory diagram showing the main configuration of the strain sensor 3. As shown in FIG. 5, the strain sensor 3 includes a strain gauge 31 and a strain measuring device 32. The strain gauge 31 is a sensor whose resistance value changes according to the magnitude of strain. The strain gauge 31 is attached to the rigid plate 24 (see FIG. 4). Therefore, the resistance value of the strain gauge 31 changes according to the strain of the rigid plate 24. The strain gauge 31 corresponds to the strain sensor referred to in the present invention.
ひずみ測定器32は、例えば、ひずみゲージ31と抵抗R1、R2、R3とで構成されたブリッジ回路を有している。ひずみ測定器32は、抵抗R1と抵抗R2との接続点と、抵抗R3とひずみゲージ31との接続点に電圧E1を印加する。また、ひずみ測定器32は、ひずみゲージ31と抵抗R1との接続点と、抵抗R2と抵抗R3との接続点との電圧差(出力電圧Vo1)を検出出力として出力する。
The strain measuring device 32 has, for example, a bridge circuit including a strain gauge 31 and resistors R1, R2, and R3. The strain measuring instrument 32 applies the voltage E1 to the connection point between the resistance R1 and the resistance R2 and the connection point between the resistance R3 and the strain gauge 31. Further, the strain measuring instrument 32 outputs a voltage difference (output voltage Vo1) between a connection point between the strain gauge 31 and the resistor R1 and a connection point between the resistors R2 and R3 as a detection output.
なお、ひずみセンサ3は、ひずみゲージ31を、圧電フィルム、例えば、PVDF(PolyVinylidene DiFluoride(ポリフッ化ビニリデン))で構成したセンサ素子に置き換え、ひずみ測定器32を、センサ素子の出力を増幅する増幅回路に置き換えたもので構成してもよい。
In the strain sensor 3, the strain gauge 31 is replaced with a piezoelectric film, for example, a sensor element made of PVDF (PolyVinylidene DiFluoride), and the strain measuring device 32 is an amplifier circuit that amplifies the output of the sensor element. Alternatively, it may be replaced with.
演算装置41は、ひずみセンサ3のひずみ測定器32が出力した検出出力が入力される。演算装置41は、各ひずみ測定器32から入力された検出出力に基づいて、支承1に負荷されている荷重を演算する。また、演算装置41は、橋軸直角方向に並んで設けられている3つの支承1に負荷されている荷重の比率を演算する。
The arithmetic device 41 receives the detection output of the strain measuring device 32 of the strain sensor 3. The calculation device 41 calculates the load applied to the bearing 1 based on the detection output input from each strain measuring device 32. The arithmetic unit 41 also calculates the ratio of the loads applied to the three bearings 1 arranged side by side in the direction perpendicular to the bridge axis.
このように、ひずみセンサ3が設けられた支承1では、施工者は、支承1に設計通りの荷重が負荷されているか否かを演算装置41で確認することができる。
In this way, in the bearing 1 provided with the strain sensor 3, the builder can confirm with the arithmetic unit 41 whether or not the bearing 1 is loaded with the load as designed.
<2.構成例>
荷重測定システムについて説明する。荷重測定システムは、ひずみセンサ3が設けられた支承1と、演算装置41とを備えている。なお、本実施形態において、支承1を密閉ゴム支承板支承装置として説明する。 <2. Configuration example>
The load measuring system will be described. The load measuring system includes abearing 1 having a strain sensor 3 and a computing device 41. In the present embodiment, the bearing 1 will be described as a closed rubber bearing plate bearing device.
荷重測定システムについて説明する。荷重測定システムは、ひずみセンサ3が設けられた支承1と、演算装置41とを備えている。なお、本実施形態において、支承1を密閉ゴム支承板支承装置として説明する。 <2. Configuration example>
The load measuring system will be described. The load measuring system includes a
支承1の荷重支持部材20は、図4に示すように、ステンレス板22と、テフロン板23(テフロンは登録商標)と、剛体プレート24と、圧縮リング25と、ゴムプレート26と、シールリング27と、ひずみセンサ3とを備えている。支承1は、主桁101側から、上沓21、ステンレス板22、テフロン板23(テフロンは登録商標)、剛体プレート24、圧縮リング25、ゴムプレート26、下沓28の順で階層方向(鉛直方向)に重なっている。
As shown in FIG. 4, the load supporting member 20 of the support 1 includes a stainless plate 22, a Teflon plate 23 (Teflon is a registered trademark), a rigid plate 24, a compression ring 25, a rubber plate 26, and a seal ring 27. And a strain sensor 3. From the main girder 101 side, the bearing 1 is in the order of the upper lure 21, the stainless steel plate 22, the Teflon plate 23 (Teflon is a registered trademark), the rigid plate 24, the compression ring 25, the rubber plate 26 and the lower lure 28 in the order of the vertical direction (vertical Direction).
上沓21は、主桁101に固定されている。下沓28は、橋脚110に固定されている。下沓28には、剛体プレート24、圧縮リング25及びゴムプレート26が収納される凹部281が形成されている。凹部281は、下沓28を平面視して円形状に形成されている、また、下沓28には、例えば、橋軸直角方向の両端に、上沓21側に突出する突出部282が設けられている。サイドブロック29は、鉛直方向の断面がコの字型の形状に形成されている。サイドブロック29は、下沓28の突出部282にボルト等によって固定されている。
The upper shoe 21 is fixed to the main girder 101. The lower shoe 28 is fixed to the pier 110. The lower shoe 28 has a recess 281 in which the rigid plate 24, the compression ring 25, and the rubber plate 26 are housed. The concave portion 281 is formed in a circular shape when the lower shoe 28 is viewed in a plan view. Further, the lower shoe 28 is provided with, for example, projecting portions 282 projecting toward the upper shoe 21 side at both ends in the direction perpendicular to the bridge axis. Has been. The side block 29 has a U-shaped cross section in the vertical direction. The side block 29 is fixed to the protruding portion 282 of the lower shoe 28 by bolts or the like.
ステンレス板22は、矩形板状に形成されている。ステンレス板22は、上沓21の下面に配置されている。テフロン板23(テフロンは登録商標)は、PTFE(ポリテトラフルオロエチレン)で形成されている。テフロン板23(テフロンは登録商標)は、円板形状に形成されている。ステンレス板22の下面とテフロン板23(テフロンは登録商標)の上面とがすべりあうことで、上部構造100の水平移動を許容する。言い換えると、ステンレス板22とテフロン板23(テフロンは登録商標)とは、上部構造100が水平方向に移動するときに生じる力を吸収する。ただし、上部構造100の水平方向の移動の範囲は、下沓28の突出部282によって規制されている。
The stainless steel plate 22 is formed in a rectangular plate shape. The stainless plate 22 is arranged on the lower surface of the upper shoe 21. The Teflon plate 23 (Teflon is a registered trademark) is made of PTFE (polytetrafluoroethylene). The Teflon plate 23 (Teflon is a registered trademark) is formed in a disc shape. The lower surface of the stainless steel plate 22 and the upper surface of the Teflon plate 23 (Teflon is a registered trademark) slide on each other to allow the upper structure 100 to move horizontally. In other words, the stainless steel plate 22 and the Teflon plate 23 (Teflon is a registered trademark) absorb the force generated when the upper structure 100 moves in the horizontal direction. However, the range of horizontal movement of the upper structure 100 is restricted by the protruding portion 282 of the lower shoe 28.
剛体プレート24は、円筒形状の第1部分241と、円筒形状の第2部分242とで構成されている。剛体プレート24は、第1部分241と第2部分242とを鉛直方向に積層した形状である。第1部分241は、第2部分242よりも径が小さく、上沓21側に配置されている。剛体プレート24は、第2部分242の橋脚110側の端部を、下沓28の凹部281に挿入している。剛体プレート24の第1部分241の上面(上沓21側の面)には、凹部が形成されている。凹部には、テフロン板23(テフロンは登録商標)が挿入される。
The rigid plate 24 is composed of a cylindrical first portion 241 and a cylindrical second portion 242. The rigid plate 24 has a shape in which a first portion 241 and a second portion 242 are vertically stacked. The first portion 241 has a smaller diameter than the second portion 242 and is arranged on the upper shoe 21 side. In the rigid plate 24, the end of the second portion 242 on the pier 110 side is inserted into the recess 281 of the lower shoe 28. A concave portion is formed on the upper surface (the surface on the upper shoe 21 side) of the first portion 241 of the rigid plate 24. A Teflon plate 23 (Teflon is a registered trademark) is inserted into the recess.
ゴムプレート26は、円板形状である。下沓28の凹部281の底面に配置されている。ゴムプレート26は、圧縮リング25を介して剛体プレート24の下面(下沓28側の面)と向かい合う。ゴムプレート26は、水平方向の中心を軸とした上部構造100の回転移動を許容する。言い換えると、ゴムプレート26は、上部構造100が回転移動するときに生じる力を吸収する。
The rubber plate 26 has a disc shape. It is arranged on the bottom surface of the recess 281 of the lower shoe 28. The rubber plate 26 faces the lower surface (the surface on the lower shoe 28 side) of the rigid plate 24 via the compression ring 25. The rubber plate 26 allows the upper structure 100 to rotate about a center in the horizontal direction. In other words, the rubber plate 26 absorbs the force generated when the upper structure 100 rotationally moves.
シールリング27は、筒状のゴム性リングである。シールリング27は、剛体プレート24の鉛直方向に平行な外側面の周りに配置されている。より詳細には、シールリング27は、下沓28の上面であって、剛体プレート24の第1部分241の外側面の周りに配置されている。シールリング27は、塵又は水等が下沓28の凹部281に侵入しないように配置されている。
The seal ring 27 is a tubular rubber ring. The seal ring 27 is arranged around the outer surface of the rigid plate 24 that is parallel to the vertical direction. More specifically, the seal ring 27 is arranged on the upper surface of the lower shoe 28 and around the outer surface of the first portion 241 of the rigid plate 24. The seal ring 27 is arranged so that dust or water does not enter the recess 281 of the lower shoe 28.
この例の支承1には、4つのひずみセンサ3が設けられている。図6は、4つのひずみゲージ31が貼付された剛体プレート24の平面図である。図7は、ひずみゲージ31が貼付された剛体プレート24の橋軸方向の概略断面図である。
The bearing 1 in this example is provided with four strain sensors 3. FIG. 6 is a plan view of the rigid plate 24 to which the four strain gauges 31 are attached. FIG. 7 is a schematic cross-sectional view in the bridge axis direction of the rigid plate 24 to which the strain gauge 31 is attached.
4つのひずみセンサ3は、剛体プレート24に生じたひずみを検出する。各ひずみセンサ3のひずみゲージ31は、図6及び図7に示すように、剛体プレート24の第1部分241の外側面に貼付されている。4つのひずみゲージ31は、図6に示すように、剛体プレート24の鉛直方向(図6における紙面の直交方向)を軸にして均等に位置している。言い換えると、4つのひずみゲージ31は、剛体プレート24の第1部分241の外側面に沿って、隣り合うひずみゲージ31との距離が同じになるように配置されている。ひずみゲージ31は、例えば、接着材等で、剛体プレート24の第1部分241に貼付される。
The four strain sensors 3 detect the strain generated in the rigid plate 24. The strain gauge 31 of each strain sensor 3 is attached to the outer surface of the first portion 241 of the rigid plate 24, as shown in FIGS. 6 and 7. As shown in FIG. 6, the four strain gauges 31 are evenly positioned with the vertical direction of the rigid plate 24 (the direction orthogonal to the paper surface in FIG. 6) as an axis. In other words, the four strain gauges 31 are arranged along the outer surface of the first portion 241 of the rigid plate 24 so that the distances between the adjacent strain gauges 31 are the same. The strain gauge 31 is attached to the first portion 241 of the rigid plate 24 with, for example, an adhesive material.
また、4つのひずみゲージ31は、図7に示すように、第1部分241において、上沓21よりも第2部分242側によせて貼付されている。つまり、ひずみゲージ31は、第1部分241と凹部281を形成する面との間に配置される。これにより、ひずみゲージ31は、別の部材、例えば、凹部281を形成する面に圧接されない。したがって支承1は、圧接によるひずみセンサ3の破損を防止することができる。
Further, as shown in FIG. 7, the four strain gauges 31 are attached to the first portion 241 so as to be closer to the second portion 242 side than the upper shoe 21. That is, the strain gauge 31 is arranged between the first portion 241 and the surface forming the recess 281. As a result, the strain gauge 31 is not pressed against another member, for example, the surface forming the recess 281. Therefore, the bearing 1 can prevent the strain sensor 3 from being damaged by pressure contact.
4つのひずみゲージ31は、例えば、対応するひずみ測定器32にリード線33で接続されている(図1参照)。リード線33は、図7に示すように、例えば、下沓28の上面とシールリング27との間を通って荷重支持部材20の外部に引き出される。
The four strain gauges 31 are connected to corresponding strain measuring instruments 32 by lead wires 33, for example (see FIG. 1). As shown in FIG. 7, the lead wire 33 is led out to the outside of the load supporting member 20, for example, passing between the upper surface of the lower shoe 28 and the seal ring 27.
なお、ひずみ測定器32は、第1部分241と凹部281を形成する面との間に配置されていてもよい。また、ひずみセンサ3は、複数でなくてもよく、支承1毎に少なくとも1つのひずみセンサ3が設けられていればよい。
The strain measuring device 32 may be arranged between the first portion 241 and the surface forming the recess 281. Moreover, the strain sensor 3 does not need to be plural, and at least one strain sensor 3 may be provided for each bearing 1.
図8は、演算装置41の主要な構成を示すブロック構成図である。図9(A)は、演算装置41によって生成される画面42の一例を示す説明図である。図9(B)は、演算装置41によって生成される別の画面43の一例を示す説明図である。
FIG. 8 is a block diagram showing the main configuration of the arithmetic unit 41. FIG. 9A is an explanatory diagram showing an example of the screen 42 generated by the arithmetic device 41. FIG. 9B is an explanatory diagram showing an example of another screen 43 generated by the arithmetic unit 41.
演算装置41は、複数のひずみセンサ3のひずみ測定器32と、無線、又は有線で、接続されている。演算装置41には、各ひずみセンサ3のひずみ測定器32から検出出力が入力される。
The arithmetic unit 41 is connected to the strain measuring instruments 32 of the plurality of strain sensors 3 wirelessly or by wire. The detection output is input from the strain measuring device 32 of each strain sensor 3 to the arithmetic unit 41.
演算装置41は、図8に示すように、制御部410と、入力部411と、演算部412と、表示部413とを備えている。
As shown in FIG. 8, the arithmetic unit 41 includes a control unit 410, an input unit 411, an arithmetic unit 412, and a display unit 413.
制御部410は、入力部411、演算部412及び表示部413を制御する。入力部411には、ひずみ測定器32から検出結果が入力される。
The control unit 410 controls the input unit 411, the calculation unit 412, and the display unit 413. The detection result is input from the strain measuring device 32 to the input unit 411.
演算部412は、入力部411に入力された各ひずみセンサ3の検出出力を用いて、支承1に負荷されている荷重を演算する。演算部412は、例えば、以下の式で支承1に負荷されている荷重Fを演算する。
The calculation unit 412 calculates the load applied to the bearing 1 using the detection output of each strain sensor 3 input to the input unit 411. The calculation unit 412 calculates the load F applied to the bearing 1 by the following formula, for example.
荷重F=g(v1、v2、v3、v4)
v1、v2、v3、v4は、支承1に設けた4つのひずみセンサ3の検出出力である。また、関数gは、予め決められた関数である。 Load F = g (v1, v2, v3, v4)
v1, v2, v3, and v4 are the detection outputs of the fourstrain sensors 3 provided on the bearing 1. The function g is a predetermined function.
v1、v2、v3、v4は、支承1に設けた4つのひずみセンサ3の検出出力である。また、関数gは、予め決められた関数である。 Load F = g (v1, v2, v3, v4)
v1, v2, v3, and v4 are the detection outputs of the four
また、演算部412は、1つの橋脚110に、橋軸直角方向に並んで設けられている複数(図1では3つ)の支承1について、負荷されている荷重の比率を演算する。演算部412は、例えば、橋軸直角方向に並んで設けられている3つの支承1に負荷されている荷重の合計に対する、各支承1に負荷されている荷重の割合を演算する。
Further, the calculation unit 412 calculates the ratio of the loads applied to a plurality of (three in FIG. 1) bearings 1 provided in one bridge pier 110 side by side in the direction perpendicular to the bridge axis. The calculation unit 412 calculates, for example, the ratio of the load applied to each bearing 1 to the total load applied to the three bearings 1 arranged side by side in the direction perpendicular to the bridge axis.
さらに、演算装置41は、支承1毎に、その支承1に設けた4つのひずみセンサ3が検出したひずみの比率を演算する。言い換えると、演算装置41は、1つの支承1に負荷されている荷重に対して、この支承1に設けられた各ひずみセンサ3が検出したひずみに基づく荷重の割合を演算する。
Further, the arithmetic unit 41 calculates, for each bearing 1, a ratio of strains detected by the four strain sensors 3 provided in the bearing 1. In other words, the arithmetic unit 41 calculates the ratio of the load based on the strain detected by each strain sensor 3 provided in the bearing 1 to the load applied to the one bearing 1.
表示部413は、例えば、図9(A)に示すように、橋軸直角方向に並んで設けられている3つの支承1(画面42ではG1、G2、G3で区別されている)のそれぞれに負荷されている荷重の大きさを画面42に表示する。また、表示部413は、各支承1に負荷されている荷重の割合を画面42に表示する。
The display unit 413, for example, as shown in FIG. 9 (A), is provided on each of the three bearings 1 (which are distinguished by G1, G2, and G3 on the screen 42) arranged side by side in the direction perpendicular to the bridge axis. The magnitude of the applied load is displayed on the screen 42. The display unit 413 also displays the ratio of the load applied to each bearing 1 on the screen 42.
また、表示部413は、支承1毎に、その支承1に設けた4つのひずみセンサ3が検出したひずみに基づく荷重の割合を表示する。
The display unit 413 also displays, for each bearing 1, a load ratio based on the strain detected by the four strain sensors 3 provided on the bearing 1.
これにより、本実施形態の支承1は、剛体プレート24に設けられたひずみセンサ3が剛体プレート24のひずみを検出することで、負荷されている荷重の計測が行える。つまり、施工者は、支承1毎に負荷されている荷重が設計通りの値であるか否かを確認しながら橋梁10の上部構造100を支承1に取り付けることができる。また、施工者は、支承1毎に、その支承1に設けた4つのひずみセンサ3が検出したひずみに基づく荷重の割合を確認できる。
With this, the bearing 1 of the present embodiment can measure the applied load by the strain sensor 3 provided on the rigid plate 24 detecting the strain of the rigid plate 24. That is, the builder can attach the superstructure 100 of the bridge 10 to the bearing 1 while checking whether the load applied to each bearing 1 is a value as designed. Further, the builder can confirm the ratio of the load based on the strain detected by the four strain sensors 3 provided on the bearing 1 for each bearing 1.
<3.動作例>
ひずみセンサ3が設けられた支承1の取付方法を説明する。図10は、支承取付方法の一例を示すフローチャートである。 <3. Operation example>
A method of mounting thebearing 1 provided with the strain sensor 3 will be described. FIG. 10 is a flowchart showing an example of the bearing mounting method.
ひずみセンサ3が設けられた支承1の取付方法を説明する。図10は、支承取付方法の一例を示すフローチャートである。 <3. Operation example>
A method of mounting the
施工者は、ひずみセンサ3が予め設けられた複数(図2では3つ)の支承1を橋脚110に取り付ける(S11)。このとき、施工者は、下沓28を、例えば、アンカーボルトを用いて、橋脚110に固定する。施工者は、固定された支承1の上に、上部構造100の位置を調節して載置する(S12)。施工者は、画面42を見て、各支承1に負荷されている荷重が設計どおりの荷重であるか否か判断する(S13)。各支承1に負荷されている荷重が、設計どおりの荷重である場合(S13:Yes)、施工者は、上部構造100を支承1に取り付ける(S14)。このとき、上部構造100に上沓21を、例えばアンカーボルトを用いて、固定する。
The builder attaches a plurality of bearings 1 (three in FIG. 2) with strain sensors 3 provided in advance to the pier 110 (S11). At this time, the builder fixes the lower shoe 28 to the pier 110 using, for example, anchor bolts. The builder adjusts the position of the superstructure 100 and places it on the fixed bearing 1 (S12). The builder looks at the screen 42 and determines whether the load applied to each bearing 1 is the designed load (S13). When the load applied to each bearing 1 is as designed (S13: Yes), the builder attaches the superstructure 100 to the bearing 1 (S14). At this time, the upper shoe 21 is fixed to the upper structure 100 using, for example, anchor bolts.
また、各支承1に負荷されている荷重が設計どおりの荷重でない場合(S13:No)、施工者は、各支承1に負荷されている荷重が設計どおりの荷重であることが確認できるまで、S12及びS13の処理を繰り返す。
If the load applied to each bearing 1 is not the designed load (S13: No), the installer can confirm that the load applied to each bearing 1 is the designed load. The processing of S12 and S13 is repeated.
このように、ひずみセンサ3が設けられた支承1を橋梁10に取り付けることで、施工者は、支承1毎に負荷されている荷重を確認しながら、上部構造100の取付作業を行うことができる。これにより、施工者は、より正確に橋梁10に支承1を取り付けることができる。
In this way, by mounting the bearing 1 provided with the strain sensor 3 on the bridge 10, the builder can perform the work of mounting the superstructure 100 while confirming the load applied to each bearing 1. .. Thereby, the builder can more accurately attach the bearing 1 to the bridge 10.
ところで、既配置の剛体プレートが経年劣化などで交換が必要な場合、既配置の剛体プレートを、ひずみセンサ3が設けられた交換用の剛体プレート24に交換する。
By the way, when the already arranged rigid plate needs to be replaced due to aging, etc., the already arranged rigid plate is replaced with the replacement rigid plate 24 provided with the strain sensor 3.
既配置の剛体プレートを、ひずみセンサ3が設けられた交換用の剛体プレート24に交換する交換方法について説明する。図11は、剛体プレート24の交換方法の一例を示すフローチャートである。
The replacement method for replacing the rigid plate that has been placed with the rigid plate 24 for replacement provided with the strain sensor 3 will be described. FIG. 11 is a flowchart showing an example of a method of replacing the rigid plate 24.
施工者は、例えばジャッキを用いて、上部構造100を持ち上げ、既配置の支承の上沓21と下沓28との間に隙間を設けて、既配置の剛体プレートをこの隙間から取り外す(S21)。施工者は、ひずみセンサ3が設けられた剛体プレート24を、上沓21と下沓28との間に挿入した後、持ち上げた上部構造を元に戻す(S22)。施工者は、画面42を見て、各支承1に負荷されている荷重が設計どおりの荷重であるか否か判断する(S23)。各支承1に負荷されている荷重が、設計どおりの荷重である場合(S23:Yes)、施工者は作業を終了する。
The installer lifts the upper structure 100 by using, for example, a jack, provides a gap between the upper shoe 21 and the lower shoe 28 of the already arranged support, and removes the rigid plate already arranged from this gap (S21). .. The builder inserts the rigid plate 24 provided with the strain sensor 3 between the upper shoe 21 and the lower shoe 28, and then restores the lifted upper structure (S22). The builder looks at the screen 42 and determines whether or not the load applied to each bearing 1 is as designed (S23). When the load applied to each bearing 1 is as designed (S23: Yes), the builder finishes the work.
また、各支承1に負荷されている荷重が設計どおりの荷重でない場合(S23:No)、施工者は、上部構造100を再度持ち上げ、剛体プレート24の位置を調節した後、持ち上げた上部構造を元に戻す(S24)。そして、施工者は、各支承1に負荷されている荷重が設計どおりの荷重であることが確認できるまで、S23及びS24の処理を繰り返す。s24での上部構造100の持ち上げは、剛体プレート24の位置を調節することができればよく、剛体プレート24を取り出せる隙間を、上沓21と下沓28との間に設ける必要がない。したがって、s24で上部構造100を持ち上げる高さは、s21で上部構造100を持ち上げる高さよりも低い。
When the load applied to each bearing 1 is not the designed load (S23: No), the builder lifts the upper structure 100 again, adjusts the position of the rigid plate 24, and then lifts the lifted upper structure. It returns to the original (S24). Then, the builder repeats the processing of S23 and S24 until it can confirm that the load applied to each bearing 1 is the load as designed. Lifting of the upper structure 100 at s24 is sufficient as long as the position of the rigid plate 24 can be adjusted, and it is not necessary to provide a gap for taking out the rigid plate 24 between the upper shoe 21 and the lower shoe 28. Therefore, the height of lifting the superstructure 100 in s24 is lower than the height of lifting the superstructure 100 in s21.
このように、施工者は、既配置の剛体プレートと、ひずみセンサ3が設けられた交換用の剛体プレート24とを交換することで、支承1全体を交換する場合よりも低コスト及び短時間で剛体プレート24の交換作業をすることができる。
In this way, the builder replaces the existing rigid plate and the replacement rigid plate 24 provided with the strain sensor 3 at a lower cost and in a shorter time than when replacing the entire bearing 1. The rigid plate 24 can be replaced.
<4.変形例>
上述の例では、ひずみセンサ3が取り付けられた密閉ゴム支承板支承装置(BP・B支承装置)について説明した。この変形例にかかる支承1Aは、ひずみセンサ3が設けられた高力黄銅支承板支承装置(BP・A支承装置)(以下、単に支承1Aと呼ぶ)について説明する。 <4. Modification>
In the above example, the closed rubber bearing plate bearing device (BP / B bearing device) to which thestrain sensor 3 is attached has been described. As the bearing 1A according to this modification, a high-strength brass bearing plate bearing device (BP / A bearing device) (hereinafter simply referred to as bearing 1A) provided with a strain sensor 3 will be described.
上述の例では、ひずみセンサ3が取り付けられた密閉ゴム支承板支承装置(BP・B支承装置)について説明した。この変形例にかかる支承1Aは、ひずみセンサ3が設けられた高力黄銅支承板支承装置(BP・A支承装置)(以下、単に支承1Aと呼ぶ)について説明する。 <4. Modification>
In the above example, the closed rubber bearing plate bearing device (BP / B bearing device) to which the
図12は、この変形例にかかる支承1Aの外観を示す斜視図である。図13は、変形例にかかる支承1Aの分解斜視図である。
FIG. 12 is a perspective view showing the outer appearance of the bearing 1A according to this modification. FIG. 13 is an exploded perspective view of a bearing 1A according to a modification.
支承1Aは、図12及び図13に示すように、上沓51と、ステンレス板52と、ベアリングプレート53と、シールリング54と、下沓55と、サイドブロック56と、ひずみセンサ3とを備えている。この変形例にかかるベアリングプレート53は、この発明の剛体プレートに相当する。
As shown in FIGS. 12 and 13, the bearing 1A includes an upper shoe 51, a stainless plate 52, a bearing plate 53, a seal ring 54, a lower shoe 55, a side block 56, and a strain sensor 3. ing. The bearing plate 53 according to this modification corresponds to the rigid plate of the present invention.
上沓51は、主桁101に固定されている。下沓55は、橋脚110に固定されている。下沓55には、ベアリングプレート53が収納される凹部551が形成されている。凹部551は、下部側(橋脚110側)に向かうにつれての径が小さくなるドーム形状である。下沓55には、例えば橋軸直角方向の両端に、上沓51側に突出する突出部552が設けられている。
The upper shoe 51 is fixed to the main girder 101. The lower shoe 55 is fixed to the pier 110. The lower shoe 55 has a recess 551 for accommodating the bearing plate 53. The recess 551 has a dome shape whose diameter decreases toward the lower side (the pier 110 side). The lower shoe 55 is provided with, for example, projecting portions 552 projecting toward the upper shoe 51 side at both ends in the direction perpendicular to the bridge axis.
この変形例では、図12及び図13で示されるサイドブロック56は、断面がL字形状に形成されている。サイドブロック56は、下沓55の突出部552の鉛直方向に平行な側面に沿って下沓55に固定されている。なお、サイドブロック56は、断面がL字形状に形成されている例に限定されない。サイドブロック56は、例えば、断面がコの字形状に形成されていてもよい。
In this modification, the side block 56 shown in FIGS. 12 and 13 has an L-shaped cross section. The side block 56 is fixed to the lower shoe 55 along a side surface of the protruding portion 552 of the lower shoe 55 that is parallel to the vertical direction. The side block 56 is not limited to the example in which the cross section is formed in an L shape. The side block 56 may have a U-shaped cross section, for example.
ステンレス板52、ベアリングプレート53及びシールリング54は、上沓51と下沓55との間に配置されている。
The stainless plate 52, the bearing plate 53, and the seal ring 54 are arranged between the upper shoe 51 and the lower shoe 55.
ステンレス板52は、矩形板状に形成されている。ステンレス板52は、上沓51の下面に配置されている。
The stainless plate 52 is formed in a rectangular plate shape. The stainless plate 52 is arranged on the lower surface of the upper shoe 51.
ベアリングプレート53は、円板形状に形成された第1部分531と、下沓55側に突出するドーム形状に形成された第2部分532とで構成されている。ベアリングプレート53は、第1部分531と第2部分532とが鉛直方向に積層されて形成されている。ステンレス板52とベアリングプレート53の第1部分531の上面とがすべりあうことで、上部構造100の水平移動及び水平方向の中心を軸とした回転移動を許容する。
The bearing plate 53 is composed of a first portion 531 formed in a disc shape and a second portion 532 formed in a dome shape protruding toward the lower shoe 55 side. The bearing plate 53 is formed by vertically stacking a first portion 531 and a second portion 532. The stainless plate 52 and the upper surface of the first portion 531 of the bearing plate 53 slide on each other to allow the horizontal movement of the superstructure 100 and the rotational movement about the horizontal center.
シールリング54は、円板形状に形成されている。シールリング54は、ベアリングプレート53の鉛直方向に平行な外側面の周りに配置されている。より詳細には、シールリング54は、下沓55の上面であって、ベアリングプレート53の第1部分531の鉛直方向に平行な外側面の周りに配置されている。
The seal ring 54 is formed in a disc shape. The seal ring 54 is arranged around the outer surface of the bearing plate 53 that is parallel to the vertical direction. More specifically, the seal ring 54 is arranged on the upper surface of the lower shoe 55 and around the outer surface of the first portion 531 of the bearing plate 53 that is parallel to the vertical direction.
ひずみセンサ3のひずみゲージ31は、ベアリングプレート53の第1部分531の鉛直方向に平行な外側面に接着材等を使用して貼付されている。
The strain gauge 31 of the strain sensor 3 is attached to the outer surface of the first portion 531 of the bearing plate 53 parallel to the vertical direction using an adhesive or the like.
ここで、ベアリングプレート53の第1部分531の外側面に貼付されているひずみゲージ31が別の部材、例えば、凹部551を形成する面に圧接されないように、ベアリングプレート53の第1部分531の外側面を加工することが好ましい。例えば、第1部分531の外側面に、ひずみゲージ31が貼付されている箇所を平面に加工する。ひずみゲージ31が貼付されている箇所を平面に加工することで、支承1Aには、ベアリングプレート53の第1部分531と別の部材との間に隙間が設けられる。これにより、支承1Aは、圧接などによるひずみセンサ3の破損を防止することができる。
Here, in order to prevent the strain gauge 31 attached to the outer surface of the first portion 531 of the bearing plate 53 from being pressed against another member, for example, the surface forming the concave portion 551, the first portion 531 of the bearing plate 53 is It is preferable to process the outer surface. For example, the location where the strain gauge 31 is attached is processed into a flat surface on the outer surface of the first portion 531. A space is provided between the first portion 531 of the bearing plate 53 and another member in the bearing 1A by processing the portion to which the strain gauge 31 is attached into a flat surface. As a result, the bearing 1A can prevent the strain sensor 3 from being damaged by pressure contact or the like.
この変形例にかかる支承1Aでは、ひずみセンサ3がベアリングプレート53に生じたひずみを検出することで、支承1Aに負荷されている荷重の計測が行える。
In the bearing 1A according to this modification, the strain sensor 3 detects the strain generated in the bearing plate 53, so that the load applied to the bearing 1A can be measured.
ベアリングプレート53の第1部分531の外側面を加工する技術は、上述の支承1の剛体プレート24においても適用可能である。以下に、外側面を加工した剛体プレート24Aについて、別の変形例として、説明する。
The technique of processing the outer surface of the first portion 531 of the bearing plate 53 can be applied to the rigid plate 24 of the bearing 1 described above. Hereinafter, the rigid plate 24A whose outer surface is processed will be described as another modification.
図14は、別の変形例にかかる剛体プレート24Aの平面図である。この変形例の剛体プレート24Aは、第1部分241において、ひずみゲージ31が貼付された箇所が平面240に形成されている。
FIG. 14 is a plan view of a rigid plate 24A according to another modification. In the rigid plate 24 </ b> A of this modification, in the first portion 241, the portion to which the strain gauge 31 is attached is formed on the plane 240.
この変形例にかかる支承1は、図14に示すように、剛体プレート24Aの第1部分241Aの一部が平面240に加工される。ひずみゲージ31が貼付される貼付面が平面240であるので、この支承1は、ひずみゲージ31を剛体プレート24Aに強固に貼付できる。つまり、支承1は、ひずみゲージ31の剥がれによるひずみの計測不良を防止できる。
In the bearing 1 according to this modified example, as shown in FIG. 14, a part of the first portion 241A of the rigid plate 24A is processed into a flat surface 240. Since the attachment surface on which the strain gauge 31 is attached is the flat surface 240, this support 1 can firmly attach the strain gauge 31 to the rigid plate 24A. That is, the bearing 1 can prevent the strain measurement failure due to the peeling of the strain gauge 31.
また、別の変形例の支承1の剛体プレート24Bについて説明する。図15は、別の変形例にかかる剛体プレート24Bの平面図である。この変形例にかかる剛体プレート24Bは、図15に示すように、ひずみゲージ31が第2部分242Aの鉛直方向に平行な外側面に設けられた溝61に収納されている点で上述の例と異なる。
Further, the rigid plate 24B of the bearing 1 of another modified example will be described. FIG. 15 is a plan view of a rigid plate 24B according to another modification. As shown in FIG. 15, the rigid plate 24B according to this modified example is different from the example described above in that the strain gauge 31 is housed in the groove 61 provided on the outer surface of the second portion 242A parallel to the vertical direction. different.
この変形例にかかる支承1の剛体プレート24Bの外側面には、ひずみゲージ31を収納するための複数の溝61が形成されている。ひずみゲージ31は、例えば、溝61の、鉛直方向と平行な側面に貼付されている。
A plurality of grooves 61 for accommodating the strain gauges 31 are formed on the outer surface of the rigid plate 24B of the bearing 1 according to this modification. The strain gauge 31 is attached to, for example, a side surface of the groove 61 that is parallel to the vertical direction.
このように、支承1は、剛体プレート24Bの外側面に溝61を形成して、ひずみゲージ31を収納する。これにより、支承1は、圧接などによるひずみゲージ31の破損を防止できる。なお、この溝61には、ひずみゲージ31だけでなく、ひずみ測定器32などの回路及び電源を収納してもよい。
In this way, the bearing 1 stores the strain gauge 31 by forming the groove 61 on the outer surface of the rigid plate 24B. As a result, the bearing 1 can prevent the strain gauge 31 from being damaged by pressure contact or the like. The groove 61 may accommodate not only the strain gauge 31 but also a circuit such as the strain measuring device 32 and a power source.
なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
The present invention is not limited to the above embodiments as they are, and can be embodied by modifying the constituent elements within a range not departing from the gist of the invention at the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, the constituent elements of different embodiments may be combined appropriately.
さらに、この発明にかかる構成と上述した実施形態にかかる構成との対応関係は、以下の付記のように記載できる。
Furthermore, the correspondence relationship between the configuration according to the present invention and the configuration according to the above-described embodiment can be described as the following supplementary notes.
<付記>
構造物(10)の上部構造(100)と下部構造(110)との間に配置される支承板支承装置(1)であって、
前記上部構造(100)に取り付けられる上沓(21)と、前記下部構造(110)に取り付けられる下沓(28)と、の間に設けられた剛体プレート(24)と、
前記剛体プレート(24)の側面に貼付されたひずみセンサ(3)と、を備え、
前記側面は、前記上沓(28)、前記剛体プレート(24)、および前記下沓(28)の階層方向に形成された面である、
支承板支承装置。 <Appendix>
A bearing plate bearing device (1) arranged between an upper structure (100) and a lower structure (110) of a structure (10),
A rigid plate (24) provided between an upper shoe (21) attached to the upper structure (100) and a lower shoe (28) attached to the lower structure (110);
A strain sensor (3) attached to a side surface of the rigid plate (24),
The side surface is a surface formed in the hierarchical direction of the upper shoe (28), the rigid plate (24), and the lower shoe (28).
Support plate support device.
構造物(10)の上部構造(100)と下部構造(110)との間に配置される支承板支承装置(1)であって、
前記上部構造(100)に取り付けられる上沓(21)と、前記下部構造(110)に取り付けられる下沓(28)と、の間に設けられた剛体プレート(24)と、
前記剛体プレート(24)の側面に貼付されたひずみセンサ(3)と、を備え、
前記側面は、前記上沓(28)、前記剛体プレート(24)、および前記下沓(28)の階層方向に形成された面である、
支承板支承装置。 <Appendix>
A bearing plate bearing device (1) arranged between an upper structure (100) and a lower structure (110) of a structure (10),
A rigid plate (24) provided between an upper shoe (21) attached to the upper structure (100) and a lower shoe (28) attached to the lower structure (110);
A strain sensor (3) attached to a side surface of the rigid plate (24),
The side surface is a surface formed in the hierarchical direction of the upper shoe (28), the rigid plate (24), and the lower shoe (28).
Support plate support device.
1、1A、1B…支承(支承板支承装置)
3…ひずみセンサ
10…橋梁(構造物)
21…上沓
24、24A、24B…剛体プレート
28…下沓
41…演算装置
42、43…画面
51…上沓
53…ベアリングプレート(剛体プレート)
55…下沓
100…上部構造
110…下部構造
241、241A…第1部分
242、242A…第2部分
531…第1部分
532…第2部分 1, 1A, 1B ... Bearing (bearing plate bearing device)
3 ...Strain sensor 10 ... Bridge (structure)
21 ... Upper shoe 24, 24A, 24B ... Rigid plate 28 ... Lower shoe 41 ... Arithmetic unit 42, 43 ... Screen 51 ... Upper shoe 53 ... Bearing plate (rigid plate)
55 ...Lower shoe 100 ... Upper structure 110 ... Lower structure 241, 241A ... 1st part 242, 242A ... 2nd part 531 ... 1st part 532 ... 2nd part
3…ひずみセンサ
10…橋梁(構造物)
21…上沓
24、24A、24B…剛体プレート
28…下沓
41…演算装置
42、43…画面
51…上沓
53…ベアリングプレート(剛体プレート)
55…下沓
100…上部構造
110…下部構造
241、241A…第1部分
242、242A…第2部分
531…第1部分
532…第2部分 1, 1A, 1B ... Bearing (bearing plate bearing device)
3 ...
21 ...
55 ...
Claims (10)
- 構造物の上部構造と下部構造との間に配置される支承板支承装置であって、
前記上部構造に取り付けられる上沓と、前記下部構造に取り付けられる下沓と、の間に設けられた剛体プレートと、
前記剛体プレートの側面に貼付されたひずみセンサと、を備え、
前記側面は、前記上沓、前記剛体プレート、および前記下沓の階層方向に形成された面である、支承板支承装置。 A support plate support device arranged between a superstructure and a substructure of a structure,
A rigid plate provided between an upper shoe attached to the upper structure and a lower shoe attached to the lower structure;
And a strain sensor attached to the side surface of the rigid plate,
The support plate support device, wherein the side surface is a surface formed in the layer direction of the upper shoe, the rigid plate, and the lower shoe. - 前記剛体プレートの前記側面には、複数の前記ひずみセンサが貼付されている、請求項1に記載の支承板支承装置。 The support plate support device according to claim 1, wherein a plurality of the strain sensors are attached to the side surface of the rigid plate.
- 前記剛体プレートの前記側面に貼付されている複数の前記ひずみセンサは、前記階層方向を軸にして均等に位置する、請求項2に記載の支承板支承装置。 The support plate support device according to claim 2, wherein the plurality of strain sensors attached to the side surface of the rigid plate are evenly positioned about the layer direction.
- 前記剛体プレートは、円筒形状の第1部分と、円筒形状の第2部分とを前記階層方向に積層した形状であり、
前記第1部分は、前記第2部分よりも径が小さく、前記上沓側に配置され、
前記ひずみセンサは、前記第1部分の前記側面に貼付されている、請求項1~3のいずれかに記載の支承板支承装置。 The rigid plate has a shape in which a cylindrical first portion and a cylindrical second portion are stacked in the layer direction,
The first portion has a smaller diameter than the second portion, and is arranged on the upper shoe side,
The support plate support device according to any one of claims 1 to 3, wherein the strain sensor is attached to the side surface of the first portion. - 前記ひずみセンサは、前記上沓側よりも前記第2部分側に寄せて貼付されている、請求項4に記載の支承板支承装置。 The support plate support device according to claim 4, wherein the strain sensor is attached closer to the second portion side than the upper shoe side.
- 前記剛体プレートは、円筒形状の第1部分と、円筒形状の第2部分とを前記階層方向に積層した形状であり、
前記第1部分は、前記第2部分よりも径が小さく、前記上沓側に配置され、
前記ひずみセンサは、前記第2部分の前記側面に貼付されている、請求項1~3のいずれかに記載の支承板支承装置。 The rigid plate has a shape in which a cylindrical first portion and a cylindrical second portion are stacked in the layer direction,
The first portion has a diameter smaller than that of the second portion, and is arranged on the upper shoe side,
The support plate support device according to any one of claims 1 to 3, wherein the strain sensor is attached to the side surface of the second portion. - 前記剛体プレートの前記側面は、前記ひずみセンサが貼付されている箇所が平面に加工されている、請求項1~6のいずれかに記載の支承板支承装置。 The support plate support device according to any one of claims 1 to 6, wherein the side surface of the rigid plate is processed into a flat surface at a location where the strain sensor is attached.
- 請求項1~7のいずれかに記載の支承板支承装置に貼付されている前記ひずみセンサの検出出力が入力される入力部と、
前記入力部に入力された前記ひずみセンサの検出出力を用いて、前記支承板支承装置に負荷された荷重の大きさを演算する演算部と、
を備える、演算装置。 An input unit for inputting a detection output of the strain sensor, which is attached to the support plate support device according to any one of claims 1 to 7,
Using the detection output of the strain sensor input to the input unit, a calculation unit that calculates the magnitude of the load applied to the support plate support device,
An arithmetic unit comprising: - 構造物の上部構造と下部構造との間に配置し、
上沓を、前記上部構造に取り付け、
下沓を、前記下部構造に取り付け、
ひずみセンサを、前記上沓と前記下沓との間に設けられた剛体プレートの側面に貼付する支承板支承装置取付方法であって、
前記側面は、前記上沓、前記剛体プレート、および前記下沓の階層方向に形成された面である、支承板支承装置取付方法。 Arranged between the superstructure and the substructure of the structure,
Attach the upper shoe to the superstructure,
Attach the lower shoe to the lower structure,
A method for mounting a support plate support device, wherein a strain sensor is attached to a side surface of a rigid plate provided between the upper shoe and the lower shoe,
The support plate supporting device mounting method, wherein the side surface is a surface formed in the layer direction of the upper shoe, the rigid plate, and the lower shoe. - 構造物の上部構造と下部構造との間に配置する支承板支承装置から前記上部構造に取り付けられた上沓と前記下部構造に取り付けられた下沓との間に配置されている既配置の剛体プレートを取り外し、
ひずみセンサが側面に貼付された交換用の剛体プレートを前記上沓と前記下沓との間に取り付ける剛体プレート交換方法であって、
前記側面は、前記上沓、前記交換用の剛体プレート、および前記下沓の階層方向に形成された面である、剛体プレート交換方法。 An already-arranged rigid body disposed between a support plate supporting device disposed between the upper structure and the lower structure of the structure and an upper shoe attached to the upper structure and a lower shoe attached to the lower structure. Remove the plate,
A rigid plate replacement method for mounting a replacement rigid plate having a strain sensor attached on its side surface between the upper shoe and the lower shoe,
The rigid plate replacement method, wherein the side surface is a surface formed in the layer direction of the upper shoe, the rigid plate for replacement, and the lower shoe.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018212827A JP7173840B2 (en) | 2018-11-13 | 2018-11-13 | Bearing plate bearing device, computing device, bearing plate bearing device installation method, and rigid plate replacement method |
JP2018-212827 | 2018-11-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020100940A1 true WO2020100940A1 (en) | 2020-05-22 |
Family
ID=70731806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/044517 WO2020100940A1 (en) | 2018-11-13 | 2019-11-13 | Bearing plate bearing device, calculation device, method for mounting bearing plate bearing device, and method for replacing rigid body plate |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7173840B2 (en) |
WO (1) | WO2020100940A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013221576A (en) * | 2012-04-17 | 2013-10-28 | Kawakin Core-Tech Co Ltd | Laminated rubber bearing |
JP2017082555A (en) * | 2015-10-30 | 2017-05-18 | 首都高速道路株式会社 | Monitoring system |
JP2018025004A (en) * | 2016-08-09 | 2018-02-15 | Nexco西日本コンサルタンツ株式会社 | Bearing body, measurement device, and measurement method |
-
2018
- 2018-11-13 JP JP2018212827A patent/JP7173840B2/en active Active
-
2019
- 2019-11-13 WO PCT/JP2019/044517 patent/WO2020100940A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013221576A (en) * | 2012-04-17 | 2013-10-28 | Kawakin Core-Tech Co Ltd | Laminated rubber bearing |
JP2017082555A (en) * | 2015-10-30 | 2017-05-18 | 首都高速道路株式会社 | Monitoring system |
JP2018025004A (en) * | 2016-08-09 | 2018-02-15 | Nexco西日本コンサルタンツ株式会社 | Bearing body, measurement device, and measurement method |
Also Published As
Publication number | Publication date |
---|---|
JP7173840B2 (en) | 2022-11-16 |
JP2020079508A (en) | 2020-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2899526B1 (en) | Leakage detector, leakage detection method, and pipe network monitoring apparatus | |
JP5016281B2 (en) | Ground anchor tension detecting device, tension detecting method and sensor plate mounting jig | |
US7023539B2 (en) | Device for monitoring the condition of the superstructure especially of fixed railroad tracks | |
US20200348223A1 (en) | Bearing pad | |
JP6322085B2 (en) | Load test equipment | |
WO2018030126A1 (en) | Supporting body, measuring device, and measuring method | |
WO2020100940A1 (en) | Bearing plate bearing device, calculation device, method for mounting bearing plate bearing device, and method for replacing rigid body plate | |
JP4430445B2 (en) | Anchor shear tester | |
JP2008174958A (en) | Flat-plate loading test device and flat-plate loading test method | |
US20100321027A1 (en) | Methods and Systems for Detection Using Threshold-Type Electrostatic Sensors | |
JP6601872B2 (en) | Monitoring system | |
JP2011043442A (en) | Fluctuation load detection pad, fluctuation load detection plate using the same, distributed type fluctuation load detection plate, and fluctuation load detector | |
US7332849B2 (en) | Method and transducers for dynamic testing of structures and materials | |
JP2014219343A (en) | Piezoelectric type vibration sensor, and leakage detection method using the same | |
JP3001577B2 (en) | Load cell, pressure sensor and pressure sensor calibration device | |
JP5873453B2 (en) | Leak detector | |
JP2000136970A (en) | Flexible shear-measuring sensor | |
JP2009001994A (en) | Laminated rubber with load detecting function | |
JP2017008616A (en) | Monitoring device | |
CN209783780U (en) | Device for measuring forces for an elastic bearing | |
JP2015152337A (en) | piezoelectric vibration sensor | |
JP2019190944A (en) | Compression test device | |
RU69241U1 (en) | DYNOMETER FOR MEASURING EFFORT | |
JP2010151654A (en) | Load measuring device | |
JP2000329611A (en) | Load-measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19883689 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19883689 Country of ref document: EP Kind code of ref document: A1 |