JP2014219343A - Piezoelectric type vibration sensor, and leakage detection method using the same - Google Patents

Piezoelectric type vibration sensor, and leakage detection method using the same Download PDF

Info

Publication number
JP2014219343A
JP2014219343A JP2013099949A JP2013099949A JP2014219343A JP 2014219343 A JP2014219343 A JP 2014219343A JP 2013099949 A JP2013099949 A JP 2013099949A JP 2013099949 A JP2013099949 A JP 2013099949A JP 2014219343 A JP2014219343 A JP 2014219343A
Authority
JP
Japan
Prior art keywords
vibration sensor
piezoelectric
piezoelectric vibration
resonance frequency
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013099949A
Other languages
Japanese (ja)
Other versions
JP6134198B2 (en
Inventor
博昭 近藤
Hiroaki Kondo
博昭 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013099949A priority Critical patent/JP6134198B2/en
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to US14/430,413 priority patent/US10168243B2/en
Priority to EP13839205.5A priority patent/EP2899526B1/en
Priority to SG10201608433QA priority patent/SG10201608433QA/en
Priority to CN201380049680.XA priority patent/CN105247335A/en
Priority to PCT/JP2013/075464 priority patent/WO2014046237A1/en
Priority to KR1020157007126A priority patent/KR20150056784A/en
Priority to SG11201502179QA priority patent/SG11201502179QA/en
Priority to AU2013318975A priority patent/AU2013318975B2/en
Publication of JP2014219343A publication Critical patent/JP2014219343A/en
Application granted granted Critical
Publication of JP6134198B2 publication Critical patent/JP6134198B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric type vibration sensor that has high sensibility to a vibration sound due to a fluid leakage of a synthetic resin pipe or large-diameter pipe, can increase the installation span, and hence allows efficient fluid leakage investigation, and to provide a leakage detection method using the vibration sensor.SOLUTION: The piezoelectric type vibration sensor 6 includes: a piezoelectric device 12 for converting a vibration sound into an electric signal; supporting means 13 for supporting one end of the piezoelectric device 12; a spindle 16 for loading a load on the other end of the piezoelectric device 12. The distance between the support position of the piezoelectric device 12 by the supporting means 13 and a load position of the spindle 16 is mechanically variable. Thus, the resonance frequency of the piezoelectric type vibration sensor 6 is variable.

Description

この発明は、圧電型振動センサーおよびこれを用いた漏洩検知方法に関し、特に、水道管、建物配管、工場内配管などからなる各種配管において、流体漏洩を検出する用途に適した圧電型振動センサーおよびこれを用いた漏洩検知方法に関する。   The present invention relates to a piezoelectric vibration sensor and a leakage detection method using the same, and more particularly to a piezoelectric vibration sensor suitable for use in detecting fluid leakage in various pipes including water pipes, building pipes, factory pipes, and the like. The present invention relates to a leakage detection method using this.

従来より、漏水による水道管の振動をセンサーで検知することが一般になされている。例えば、特許文献1においては圧電素子を内蔵した検出部と剛性材料からなる台座部をゴム材料で連結した圧電型振動センサーが開示されている。これによれば、合成樹脂管に伝わる低周波振動を共振により増幅させることができるとされている。   Conventionally, vibration of a water pipe due to water leakage is generally detected by a sensor. For example, Patent Document 1 discloses a piezoelectric vibration sensor in which a detection unit incorporating a piezoelectric element and a pedestal unit made of a rigid material are connected by a rubber material. According to this, it is said that the low frequency vibration transmitted to the synthetic resin tube can be amplified by resonance.

また、水道管路における消火栓等に2個の検出器を設置し、得られた相関波形を解析することで漏水箇所を特定する方法がある。例えば、特許文献2には、導管の漏れを特定する方法が開示されている。   In addition, there is a method in which two detectors are installed in a fire hydrant or the like in a water pipe, and a water leak location is identified by analyzing the obtained correlation waveform. For example, Patent Document 2 discloses a method for identifying a leak in a conduit.

特許第3223337号公報Japanese Patent No. 3223337 特開平8−226865号公報JP-A-8-226865

管の材質が合成樹脂製であったり、管の口径が大きいと、流体漏洩によって起きる振動の減衰が大きい。上記従来のものでは、合成樹脂管や大口径の金属管における微小な振動に対する感度が十分でなく、例えば消火栓に設置する場合、検出器の設置スパンを短くする必要があり、広域の漏水調査を行おうとすると労力が大きいという問題があった。   When the pipe material is made of synthetic resin or the pipe has a large diameter, vibration caused by fluid leakage is greatly attenuated. In the above-mentioned conventional ones, the sensitivity to minute vibrations in synthetic resin pipes and large-diameter metal pipes is not sufficient.For example, when installing in a fire hydrant, it is necessary to shorten the installation span of the detector. There was a problem that trying to do it took a lot of effort.

この発明の目的は、合成樹脂管や大口径管の流体漏洩による振動音に対して感度が高く、設置スパンを長くとれるため、より効率的な流体漏洩調査が可能となる圧電型振動センサーおよびこれを用いた漏洩検知方法を提供することにある。   An object of the present invention is to provide a piezoelectric vibration sensor capable of conducting a more efficient fluid leakage investigation because it is highly sensitive to vibration noise caused by fluid leakage of a synthetic resin pipe or a large-diameter pipe and can take a long installation span. It is to provide a leakage detection method using the.

この発明による圧電型振動センサーは、振動音を電気信号に変換する圧電素子と、圧電素子の一端部を支持する支持手段と、圧電素子の他端部に荷重を負荷する錘とを備えており、圧電素子の支持手段による支持位置と錘の負荷位置との距離が機械的に可変とされていることにより、共振周波数が可変とされていることを特徴とするものである。   A piezoelectric vibration sensor according to the present invention includes a piezoelectric element that converts vibration sound into an electrical signal, a support means that supports one end of the piezoelectric element, and a weight that applies a load to the other end of the piezoelectric element. The distance between the support position of the piezoelectric element support means and the load position of the weight is mechanically variable, so that the resonance frequency is variable.

圧電素子の一端部が台座に支持されて、錘が圧電素子の他端部(台座に支持されていない部分)に負荷されているようにするには、例えば、フィルム状(またはシート状)の圧電素子の片端を支持し、錘の負荷によって圧電素子に曲げ変形を加えることによって電位差を発生させるようにすればよい。これにより、バネ定数を小さくなり、共振周波数が低くなる。したがって、合成樹脂管の流体漏洩による振動音に対して感度が高くなり、設置スパンを長くとれるため、より効率的な合成樹脂管の漏水調査が可能となる。   In order for one end of the piezoelectric element to be supported by the pedestal and the weight to be loaded on the other end of the piezoelectric element (the part not supported by the pedestal), for example, a film (or sheet) A potential difference may be generated by supporting one end of the piezoelectric element and bending the piezoelectric element with a weight load. As a result, the spring constant is reduced and the resonance frequency is lowered. Accordingly, the sensitivity to vibration sound due to fluid leakage of the synthetic resin pipe is increased, and the installation span can be increased, so that a more efficient investigation of the leakage of the synthetic resin pipe is possible.

流体漏洩の検出対象となる配管部材には、金属管か合成樹脂管かの材料違いの他に、口径についても、種々のものがあり、これらの相違点によって、共振周波数が異なっている。この発明による圧電型振動センサーによると、圧電型振動センサー側で、共振周波数を変化させることができるので、同じ圧電型振動センサーを使用して、その共振周波数を変化させることによって、種々の配管部材における流体漏洩の検出が可能となる。   In addition to the difference in material between metal pipes and synthetic resin pipes, there are various pipe members that are subject to detection of fluid leakage, and the resonance frequency differs depending on these differences. According to the piezoelectric vibration sensor of the present invention, since the resonance frequency can be changed on the piezoelectric vibration sensor side, various piping members can be obtained by using the same piezoelectric vibration sensor and changing the resonance frequency. It is possible to detect fluid leakage in

圧電素子に錘を負荷した系の共振周波数について、バネ定数k(N/m)のバネの片端を固定し、片端に質量M(kg)の錘をつけたときの共振周波数foはfo=√(k/M)/2πで表せる。   With respect to the resonance frequency of a system in which a weight is loaded on the piezoelectric element, the resonance frequency fo when one end of a spring having a spring constant k (N / m) is fixed and a weight of mass M (kg) is attached to one end is fo = √ It can be expressed by (k / M) / 2π.

圧電素子の片端を支持する場合、バネ定数kは下記のように表される。   When supporting one end of the piezoelectric element, the spring constant k is expressed as follows.

k=3EJ/L (J=bh/12)
E:圧電材料の弾性定数 J:断面2次モーメント L:長さ b:幅 h:高さ(厚さ)。
k = 3EJ / L 3 (J = bh 3/12)
E: Elastic constant of piezoelectric material J: Secondary moment of section L: Length b: Width h: Height (thickness).

Lは、片持ちの梁の長さであり、圧電素子の支持手段による支持位置と錘の負荷位置との距離がこれに対応している。すなわち、支持位置と錘の負荷位置との距離を変更することで、共振周波数が可変となる。   L is the length of the cantilever beam, and the distance between the support position of the piezoelectric element support means and the load position of the weight corresponds to this. That is, the resonance frequency is variable by changing the distance between the support position and the load position of the weight.

梁の長さLを大きくすると共振周波数foは低くなり、Lを小さくするとfoは高くなる。上式より、foはLの3/2乗に反比例することが分かる。   When the length L of the beam is increased, the resonance frequency fo is decreased, and when L is decreased, fo is increased. From the above equation, it can be seen that fo is inversely proportional to L 3/2.

配管の漏洩によって発生する漏洩振動は配管の材質や口径によってピークとなる周波数が異なる。この発明の圧電型振動センサーによると、配管の材質や口径に合わせて梁の長さを機械的に変更し、共振周波数を自在にコントロールすることができる。   Leakage vibration caused by pipe leakage differs in peak frequency depending on the pipe material and diameter. According to the piezoelectric vibration sensor of the present invention, the resonance frequency can be freely controlled by mechanically changing the length of the beam in accordance with the material and the diameter of the pipe.

圧電素子は、セラミック材料または高分子材料で形成される。   The piezoelectric element is formed of a ceramic material or a polymer material.

セラミック材料の場合には、スパッタリング等の方法を用いてガラス基板上にチタン酸バリウムやジルコン酸チタン酸鉛(PZT)などの圧電体を製膜することでシート状のセラミック製圧電素子とすることが好ましい。   In the case of a ceramic material, a sheet-like ceramic piezoelectric element is formed by forming a piezoelectric material such as barium titanate or lead zirconate titanate (PZT) on a glass substrate by using a method such as sputtering. Is preferred.

圧電素子は、高分子材料で形成されていることが好ましい。高分子材料のフィルム状圧電素子は、曲げに対する強度が大きく、破壊しにくいため好ましい。高分子圧電材料は特に限定されないが、ポリフッ化ビニリデンの延伸フィルムや多孔性のポリプロピレン延伸フィルムなどが挙げられる。中でも、ポリフッ化ビニリデンは耐久性が高く、好適である。圧電素子の厚みは、特に限定されるものではなく、「フィルム」と称されている厚みのものであってもよく、「シート」と称されている厚みのものであってもよい。   The piezoelectric element is preferably made of a polymer material. A film-like piezoelectric element made of a polymer material is preferable because it has high bending strength and is difficult to break. The polymer piezoelectric material is not particularly limited, and examples thereof include a stretched film of polyvinylidene fluoride and a stretched porous polypropylene film. Among these, polyvinylidene fluoride has high durability and is preferable. The thickness of the piezoelectric element is not particularly limited, and may be a thickness called “film” or may be a thickness called “sheet”.

圧電素子における錘の負荷位置との距離が機械的に可変とする構成は、特に限定されないが、例えば、支持手段は、台座に固定された支柱と、圧電素子の一端側にある部分を上下両側から挟んで台座上を移動することによって圧電素子の支持される部分の長さを変化させるスライダーとを備えているものとされる。   The configuration in which the distance from the load position of the weight in the piezoelectric element is mechanically variable is not particularly limited. For example, the support means includes a support post fixed to the pedestal and a portion on one end side of the piezoelectric element on both the upper and lower sides. And a slider that changes the length of the portion to be supported by the piezoelectric element by moving on the pedestal.

このようにすると、簡単な構成で支持位置と錘の負荷位置との距離を変更することができ、また、支持位置と錘の負荷位置との距離を変更するための操作を容易なものとできる。   In this way, the distance between the support position and the load position of the weight can be changed with a simple configuration, and the operation for changing the distance between the support position and the load position of the weight can be facilitated. .

支持位置と錘の負荷位置との距離が最大時の圧電型振動センサーの共振周波数が150Hz以下に、支持位置と錘の負荷位置との距離が最小時の圧電型振動センサーの共振周波数が400Hz以上に設定されていることが好ましい。   The resonance frequency of the piezoelectric vibration sensor when the distance between the support position and the load position of the weight is maximum is 150 Hz or less, and the resonance frequency of the piezoelectric vibration sensor when the distance between the support position and the load position of the weight is minimum is 400 Hz or more. It is preferable that it is set to.

共振周波数が150Hz以下の圧電型振動センサーは、漏洩検知対象の配管部材が合成樹脂製でかつ口径が相対的に大きい場合に適しており、共振周波数が400Hz以上の圧電型振動センサーは、漏洩検知対象の配管部材が金属製でかつ口径が相対的に小さい場合に適している。共振周波数が150Hz以下および400Hz以上のいずれにも適用可能とすることで、例えば対象とする水道管路で異なる配管部材が使用されていても、同じ圧電型振動センサーを使用して、圧電素子の支持手段による支持位置と錘の負荷位置との距離の変更だけで対応することができる。   A piezoelectric vibration sensor with a resonance frequency of 150 Hz or less is suitable when the piping member to be detected for leakage is made of synthetic resin and has a relatively large diameter. A piezoelectric vibration sensor with a resonance frequency of 400 Hz or more is suitable for leakage detection. This is suitable when the target piping member is made of metal and has a relatively small diameter. By making the resonance frequency applicable to both 150 Hz or less and 400 Hz or more, for example, even if different piping members are used in the target water pipeline, the same piezoelectric vibration sensor is used, This can be dealt with only by changing the distance between the support position by the support means and the load position of the weight.

この発明による漏洩検知方法は、上記いずれかの圧電型振動センサーを配管部材の近傍に設置し、配管からの流体漏洩によっておこる振動を検知することで流体漏洩の有無を判定することを特徴とするものである。   The leakage detection method according to the present invention is characterized in that any one of the piezoelectric vibration sensors described above is installed in the vicinity of a piping member, and the presence or absence of fluid leakage is determined by detecting vibration caused by fluid leakage from the piping. Is.

この発明による漏洩検知方法において、漏洩検知対象の配管部材が合成樹脂製か金属製かに対応して、合成樹脂製の配管部材に対しては、圧電型振動センサーの共振周波数を可変可能範囲のうちの相対的に低い値とし、金属製の配管部材に対しては、圧電型振動センサーの共振周波数を可変可能範囲のうちの相対的に高い値とすることが好ましく、また、漏洩検知対象の配管部材の管の口径が相対的に大か小かに対応して、口径が相対的に大の配管部材に対しては、圧電型振動センサーの共振周波数を可変可能範囲のうちの相対的に低い値とし、口径が相対的に小の配管部材に対しては、圧電型振動センサーの共振周波数を可変可能範囲のうちの相対的に高い値とすることが好ましい。   In the leak detection method according to the present invention, the resonance frequency of the piezoelectric vibration sensor can be varied within a range in which the pipe member to be detected for leak is made of synthetic resin or metal, and the pipe member made of synthetic resin is variable. Of these, it is preferable that the resonance frequency of the piezoelectric vibration sensor be a relatively high value within the variable range for metal pipe members. Corresponding to whether the pipe diameter of the piping member is relatively large or small, for the piping member having a relatively large diameter, the resonance frequency of the piezoelectric vibration sensor is relatively For a piping member having a low value and a relatively small diameter, it is preferable to set the resonance frequency of the piezoelectric vibration sensor to a relatively high value within the variable range.

こうして、共振周波数が可変とされた圧電型振動センサーを使用して、配管部材の材料や管の口径に応じて、圧電型振動センサーは変更せずに、その共振周波数を変更することで、精度の高い漏洩検出を行うことができる。したがって、配管部材の材料や管の口径に応じて、圧電型振動センサーを変更する漏洩検知方法に比べて、システムを簡素化することができる。   In this way, by using a piezoelectric vibration sensor whose resonance frequency is variable, the resonance frequency can be changed without changing the piezoelectric vibration sensor according to the material of the piping member or the diameter of the pipe. High leakage detection can be performed. Therefore, the system can be simplified as compared with the leak detection method in which the piezoelectric vibration sensor is changed according to the material of the piping member and the diameter of the pipe.

この発明の圧電型振動センサーによると、振動音を電気信号に変換する圧電素子と、圧電素子の一端部を支持する支持手段と、圧電素子の他端部に荷重を負荷する錘とを備えているので、バネ定数が小さくなり、共振周波数が低くなる。したがって、合成樹脂管の流体漏洩による振動音に対して感度が高くなり、設置スパンを長くとれるため、より効率的な合成樹脂管の漏水調査が可能となる。   According to the piezoelectric vibration sensor of the present invention, the piezoelectric element includes a piezoelectric element that converts vibration sound into an electrical signal, a support means that supports one end of the piezoelectric element, and a weight that applies a load to the other end of the piezoelectric element. Therefore, the spring constant becomes small and the resonance frequency becomes low. Accordingly, the sensitivity to vibration sound due to fluid leakage of the synthetic resin pipe is increased, and the installation span can be increased, so that a more efficient investigation of the leakage of the synthetic resin pipe is possible.

さらに、圧電素子の支持手段による支持位置と錘の負荷位置との距離が機械的に可変とされているので、共振周波数を自在にコントロールすることができる。したがって、同じ圧電型振動センサーを使用して、異なる配管部材に対し、支持手段による支持位置と錘の負荷位置との距離を変更するだけで対応することができる。   Furthermore, since the distance between the support position of the piezoelectric element support means and the load position of the weight is mechanically variable, the resonance frequency can be freely controlled. Therefore, it is possible to cope with different piping members by changing the distance between the support position by the support means and the load position of the weight using the same piezoelectric vibration sensor.

この発明の漏洩検知方法によると、共振周波数が可変とされた圧電型振動センサーを使用して、配管部材の材料や管の口径に応じて、圧電型振動センサーは変更せずに、その共振周波数を変更することで、精度の高い漏洩検出を行うことができる。したがって、配管部材の材料や管の口径に応じて、圧電型振動センサーを変更する漏洩検知方法に比べて、システムを簡素化することができる。   According to the leakage detection method of the present invention, a piezoelectric vibration sensor having a variable resonance frequency is used, and the piezoelectric vibration sensor is not changed in accordance with the material of the piping member or the diameter of the pipe. By changing, leakage detection with high accuracy can be performed. Therefore, the system can be simplified as compared with the leak detection method in which the piezoelectric vibration sensor is changed according to the material of the piping member and the diameter of the pipe.

図1は、この発明による圧電型振動センサーが使用される一例としての配管の監視装置を模式的に示す図である。FIG. 1 is a diagram schematically showing a pipe monitoring apparatus as an example in which the piezoelectric vibration sensor according to the present invention is used. 図2は、この発明による圧電型振動センサーの1実施形態を模式的に示す図である。FIG. 2 is a diagram schematically showing an embodiment of a piezoelectric vibration sensor according to the present invention. 図3は、図2の状態からスライダーを移動させたときの状態を示す図である。FIG. 3 is a diagram showing a state when the slider is moved from the state of FIG. 図4は、この発明の圧電型振動センサーに対する比較例を模式的に示す図である。FIG. 4 is a diagram schematically showing a comparative example for the piezoelectric vibration sensor of the present invention.

この発明の実施の形態を、以下図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、この発明による圧電型振動センサーが使用される一例としての配管の監視装置を示している。   FIG. 1 shows a piping monitoring apparatus as an example in which the piezoelectric vibration sensor according to the present invention is used.

配管の監視装置(1)は、複数の合成樹脂管(3)および複数の合成樹脂継手(4)(5)で構成された配管(図示は水道管路網)(2)と、各継手(4)(5)に設けられた圧電型振動センサー(6)と、各圧電型振動センサー(6)にそれぞれ接続された無線通信機(7)と、各無線通信機(7)から送られてくる情報を受け取って処理する解析装置(8)とを備えている。   The piping monitoring device (1) is composed of a plurality of synthetic resin pipes (3) and a plurality of synthetic resin joints (4) and (5) (illustrated water pipe network) (2) and each joint ( 4) The piezoelectric vibration sensor (6) provided in (5), the wireless communication device (7) connected to each piezoelectric vibration sensor (6), and the wireless communication device (7) And an analysis device (8) for receiving and processing incoming information.

配管(2)内で漏水が発生すると、合成樹脂管(3)および合成樹脂継手(4)(5)には、振動音が生じる。これに伴って、合成樹脂継手(4)(5)に貼り付けられた圧電型振動センサー(6)の圧電素子に付与される圧力が変動し、圧電素子において、圧力変動が電荷信号に変換される。   When water leaks in the pipe (2), vibration noise is generated in the synthetic resin pipe (3) and the synthetic resin joints (4) and (5). Along with this, the pressure applied to the piezoelectric element of the piezoelectric vibration sensor (6) attached to the synthetic resin joint (4) (5) fluctuates, and the pressure fluctuation is converted into a charge signal in the piezoelectric element. The

図4には、この発明の圧電型振動センサー(6)に対する比較例の圧電型振動センサー(6')を示している。比較例の圧電型振動センサー(6')は、鉄製の台座(21)と、台座(21)上に設置されたフィルム状圧電素子(22)と、下端部が台座(21)に固定されて上端部で圧電素子(22)を支持する支持手段としての支柱(23)と、圧電素子(22)の両面に銀ペーストを塗布して形成した上下1対の薄膜電極(24)(25)と、上側の薄膜電極(24)の上に積載された錘(26)とを備えている。支柱(23)と上側および下側の薄膜電極(24)(25)との間は絶縁されており、各薄膜電極(24)(25)にリード線(27)(28)が取り付けられている。リード線(27)(28)に、解析装置(8)を構成するオシロスコープやデータロガー等が接続され、これにより、上側の薄膜電極(24)と下側の薄膜電極(25)との間の電位差が測定されて解析装置(8)に送信される。   FIG. 4 shows a piezoelectric vibration sensor (6 ′) of a comparative example with respect to the piezoelectric vibration sensor (6) of the present invention. The piezoelectric vibration sensor (6 ′) of the comparative example has an iron base (21), a film-like piezoelectric element (22) installed on the base (21), and a lower end portion fixed to the base (21). A support (23) as a supporting means for supporting the piezoelectric element (22) at the upper end, and a pair of upper and lower thin film electrodes (24) (25) formed by applying silver paste on both sides of the piezoelectric element (22) And a weight (26) mounted on the upper thin film electrode (24). The column (23) is insulated from the upper and lower thin film electrodes (24) (25), and lead wires (27) (28) are attached to the thin film electrodes (24) (25). . The lead wires (27) and (28) are connected to an oscilloscope, a data logger, or the like that constitutes the analysis device (8), whereby the upper thin film electrode (24) and the lower thin film electrode (25) are connected. The potential difference is measured and transmitted to the analyzer (8).

この比較例では、支柱(23)による圧電素子(22)の支持は、片持ち支持とされており、圧電素子(22)の一方の端部が支柱(23)の上端部に支持されて、錘(26)は、圧電素子(22)の他方の端部に積載されている。   In this comparative example, the support of the piezoelectric element (22) by the support column (23) is cantilevered, and one end of the piezoelectric element (22) is supported by the upper end of the support column (23), The weight (26) is stacked on the other end of the piezoelectric element (22).

このような片持ち支持により、合成樹脂管(3)の特徴的な振動である低周波領域の信号を検出することができ、ポリ塩化ビニル製のような合成樹脂管(3)の漏水による振動音に対して、好ましいものとなっている。   Such a cantilever support can detect low-frequency signal, which is a characteristic vibration of the synthetic resin pipe (3), and vibration due to water leakage of the synthetic resin pipe (3) made of polyvinyl chloride. It is preferable for sound.

図2および図3は、この発明による圧電型振動センサー(6)の1実施形態を示すもので、圧電型振動センサー(6)は、鉄製の台座(11)と、台座(11)上に設置されたフィルム状圧電素子(12)と、圧電素子(12)を支持する支持手段(13)と、圧電素子(12)の両面に銀ペーストを塗布して形成した上下1対の薄膜電極(14)(15)と、上側の薄膜電極(14)の上に積載された錘(16)とを備えている。   2 and 3 show an embodiment of a piezoelectric vibration sensor (6) according to the present invention. The piezoelectric vibration sensor (6) is installed on an iron base (11) and a base (11). Film-shaped piezoelectric element (12), supporting means (13) for supporting the piezoelectric element (12), and a pair of upper and lower thin film electrodes (14) formed by applying silver paste on both sides of the piezoelectric element (12) ) (15) and a weight (16) mounted on the upper thin film electrode (14).

支持手段(16)は、下端部が台座(11)に固定されて上端部で圧電素子(12)を支持する支柱(19)と、台座(11)上を移動するスライダー(20)とを備えている。   The support means (16) includes a support (19) whose lower end is fixed to the pedestal (11) and supports the piezoelectric element (12) at the upper end, and a slider (20) that moves on the pedestal (11). ing.

支柱(19)は、図4に示した支柱(23)と同じもので、この実施形態は、図4に示した比較例にスライダー(20)が追加されたものとなっている。   The column (19) is the same as the column (23) shown in FIG. 4, and in this embodiment, a slider (20) is added to the comparative example shown in FIG.

支柱(19)と上側および下側の薄膜電極(14)(15)との間は絶縁されており、各薄膜電極(14)(15)にリード線(17)(18)が取り付けられている。リード線(17)(18)に、解析装置(8)を構成するオシロスコープやデータロガー等が接続され、これにより、上側の薄膜電極(14)と下側の薄膜電極(15)との間の電位差が測定されて解析装置(8)に送信される。   The column (19) is insulated from the upper and lower thin film electrodes (14) (15), and lead wires (17) (18) are attached to the thin film electrodes (14) (15). . The lead wires (17) and (18) are connected to an oscilloscope, a data logger, or the like that constitutes the analysis device (8), whereby the upper thin film electrode (14) and the lower thin film electrode (15) are connected. The potential difference is measured and transmitted to the analyzer (8).

比較例と同様に、支柱(19)による圧電素子(12)の支持は、片持ち支持とされており、圧電素子(12)の一方の端部が支柱(19)の上端部に支持されて、錘(16)は、圧電素子(12)の他方の端部に積載されている。   As in the comparative example, the support of the piezoelectric element (12) by the support (19) is cantilevered, and one end of the piezoelectric element (12) is supported by the upper end of the support (19). The weight (16) is stacked on the other end of the piezoelectric element (12).

スライダー(20)は、片持ち支持とされている圧電素子(12)および薄膜電極(14)(15)の支柱(19)に近い側の部分を上下両側から挟んで対向する上下挟持板(31)(32)と、上下挟持板(31)(32)を連結する連結板(33)とからなる。   The slider (20) is a cantilevered piezoelectric element (12) and upper and lower clamping plates (31) that are opposed to each other by sandwiching a portion of the thin film electrode (14) (15) near the support (19) from both the upper and lower sides. ) (32) and a connecting plate (33) for connecting the upper and lower clamping plates (31) and (32).

圧電素子に錘を負荷した系の共振周波数について説明する。   The resonance frequency of a system in which a weight is loaded on the piezoelectric element will be described.

バネ定数k(N/m)のバネの片端を固定し、片端に質量M(kg)の錘をつけたときの共振周波数foはfo=√(k/M)/2πで表せる。   The resonance frequency fo when one end of a spring having a spring constant k (N / m) is fixed and a weight of mass M (kg) is attached to one end can be expressed as fo = √ (k / M) / 2π.

ここで、圧電素子をバネと見なすことができる。バネ定数のkは圧電素子の弾性定数をEとすると、k=E・A/tで表すことができる(Aは圧電素子の断面積(m)、tは圧電素子の厚み(m)を表す。)。 Here, the piezoelectric element can be regarded as a spring. The spring constant k can be expressed as k = E · A / t, where E is the elastic constant of the piezoelectric element (A is the cross-sectional area (m 2 ) of the piezoelectric element, and t is the thickness (m) of the piezoelectric element. Represents.)

圧電素子(12)の支持が片持ち支持とされていることで、圧電素子(12)のバネ定数kは下記のように表される。   Since the support of the piezoelectric element (12) is cantilevered, the spring constant k of the piezoelectric element (12) is expressed as follows.

k=3EJ/L (J=bh/12)
E:圧電材料の弾性定数 J:断面2次モーメント L:長さ(図2の左右方向の寸法) b:幅(図2の紙面表裏方向の寸法) h:高さ(図2の上下方向の寸法)
合成樹脂管(3)の流体漏洩による振動音に対して感度を高めるには、合成樹脂管(3)の特徴的な振動である低周波領域の信号を計測することができるようにすることが好ましく、片持ち構造とすることで、合成樹脂管(3)の流体漏洩による振動音に対して感度が高くなる。これにより、配管の監視装置(1)において、圧電型振動センサー(6)の設置スパンを長くとれるため、より効率的な合成樹脂管(3)の漏水調査が可能となる。
k = 3EJ / L 3 (J = bh 3/12)
E: Elastic constant of the piezoelectric material J: Secondary moment of section L: Length (dimension in the horizontal direction in FIG. 2) b: Width (dimension in the front and back direction in FIG. 2) h: Height (vertical direction in FIG. 2) Size)
In order to increase the sensitivity to vibration sound due to fluid leakage of the synthetic resin pipe (3), it is necessary to be able to measure the signal in the low frequency range which is the characteristic vibration of the synthetic resin pipe (3). Preferably, the cantilever structure increases sensitivity to vibration noise caused by fluid leakage of the synthetic resin pipe (3). As a result, in the pipe monitoring device (1), the installation span of the piezoelectric vibration sensor (6) can be increased, so that more efficient water leakage investigation of the synthetic resin pipe (3) becomes possible.

スライダー(20)は、図2に示す初期位置にある場合、圧電素子(12)から離れている。スライダー(20)は、図2に示す初期位置から図の右方に移動可能とされており、この際、図3に示すように、圧電素子(12)および薄膜電極(14)(15)の支柱(17)に近い側の部分を上下両側から挟んで台座(11)上を移動することができる。これにより、圧電素子(12)の支持される部分の長さが長くなり、片持ちの梁の長さ(すなわち、上記の式における長さL)が短くなる。   The slider (20) is separated from the piezoelectric element (12) when in the initial position shown in FIG. The slider (20) is movable from the initial position shown in FIG. 2 to the right in the figure. At this time, as shown in FIG. 3, the piezoelectric element (12) and the thin film electrodes (14) (15) It is possible to move on the pedestal (11) while sandwiching a portion closer to the column (17) from both the upper and lower sides. As a result, the length of the supported portion of the piezoelectric element (12) is increased, and the length of the cantilever beam (that is, the length L in the above formula) is decreased.

したがって、圧電型振動センサー(6)は、共振周波数の最小値として、スライダー(20)が図2に示す初期位置にある場合に、図4に示す圧電型振動センサー(6')と同じ共振周波数を有しているとともに、スライダー(20)が右方に移動するに連れて共振周波数が大きくなる可変の共振周波数を有している。   Therefore, the piezoelectric vibration sensor (6) has the same resonance frequency as that of the piezoelectric vibration sensor (6 ′) shown in FIG. 4 when the slider (20) is at the initial position shown in FIG. As well as a variable resonance frequency that increases as the slider (20) moves to the right.

配管の漏洩によって発生する漏洩振動は配管の材質や口径によってピークとなる周波数が異なる。例えば、合成樹脂管は金属管と比較して周波数が小さい傾向にあり、口径が大きいほど周波数が小さい傾向にある。例えば、φ75の塩化ビニル製配管であれば、10〜200Hzに漏洩周波数のピークがあることが多く、φ75の鋳鉄管であれば300〜500Hzに漏洩周波数のピークがあることが多い。φ250の鋳鉄管であれば100〜300Hzに漏洩周波数のピークがあることが多い。このように漏洩周波数のピークは様々であるが、上記の圧電型振動センサー(6)を用いれば、共振現象を利用し、配管の材質や口径に合わせて梁の長さを機械的に変更し、共振周波数を自在にコントロールすることができる。   Leakage vibration caused by pipe leakage differs in peak frequency depending on the pipe material and diameter. For example, a synthetic resin pipe tends to have a lower frequency than a metal pipe, and the frequency tends to be smaller as the diameter is larger. For example, if the piping is made of vinyl chloride of φ75, there is often a leakage frequency peak at 10 to 200 Hz, and if it is a cast iron tube of φ75, there is often a leakage frequency peak at 300 to 500 Hz. In the case of a cast iron pipe of φ250, there is often a leakage frequency peak at 100 to 300 Hz. In this way, the peak of the leakage frequency varies, but if the above piezoelectric vibration sensor (6) is used, the resonance length is used to mechanically change the length of the beam according to the material and diameter of the pipe. The resonance frequency can be freely controlled.

φ75の塩化ビニル製配管とφ75〜φ250の鋳鉄管とが対象となる場合、支持手段(13)による支持位置と錘(16)の負荷位置との距離が最大時の(図2の状態における)圧電型振動センサー(6)の共振周波数が150Hz以下に、支持手段(13)による支持位置と錘(16)の負荷位置との距離が最小時(図3の状態からスライダー(20)がさらに右方に移動して連結板(33)が支柱(19)に当接した状態)の圧電型振動センサー(6)の共振周波数が400Hz以上に設定されているようにすればよい。   When φ75 polyvinyl chloride piping and φ75-φ250 cast iron pipes are targeted, the distance between the support position by the support means (13) and the load position of the weight (16) is maximum (in the state of FIG. 2). When the resonance frequency of the piezoelectric vibration sensor (6) is 150 Hz or less and the distance between the support position by the support means (13) and the load position of the weight (16) is the minimum (from the state of FIG. 3, the slider (20) is further to the right The resonance frequency of the piezoelectric vibration sensor (6) in a state in which the connecting plate (33) is in contact with the support column (19) is set to 400 Hz or more.

圧電型振動センサー(6)の圧電素子(12)の厚みを2mm、長さを60mm、幅を25mmとし、梁としての弾性率を3GPa、錘(16)の重さを1gとした。このときの図2に示した状態の圧電型振動センサー(6)の共振周波数は、133Hzとなる。この圧電型振動センサー(6)を図3の状態として、梁の長さを35mmとすると、共振周波数は、298Hzとなり、梁の長さを25mmとすると、共振周波数は、493Hzとなる。   The thickness of the piezoelectric element 12 of the piezoelectric vibration sensor 6 is 2 mm, the length is 60 mm, the width is 25 mm, the elastic modulus as a beam is 3 GPa, and the weight of the weight 16 is 1 g. At this time, the resonance frequency of the piezoelectric vibration sensor 6 in the state shown in FIG. 2 is 133 Hz. When the piezoelectric vibration sensor 6 is in the state shown in FIG. 3 and the length of the beam is 35 mm, the resonance frequency is 298 Hz, and when the length of the beam is 25 mm, the resonance frequency is 493 Hz.

この実施例によると、φ75の塩化ビニル製配管、φ75の鋳鉄管およびφ250の鋳鉄管のいずれであっても、漏洩周波数が圧電型振動センサー(6)の共振周波数の可変範囲内にあり、共振周波数を変更することで対応できる。   According to this embodiment, the leakage frequency is within the variable range of the resonance frequency of the piezoelectric vibration sensor (6) in any of the φ75 polyvinyl chloride pipe, φ75 cast iron tube, and φ250 cast iron tube. This can be done by changing the frequency.

圧電素子(12)の厚み、長さ、幅および弾性率ならびに錘(16)の重さを変更することで、圧電型振動センサー(6)の共振周波数の最小値すなわち可変範囲を変更することができる。こうして、この圧電型振動センサー(6)によると、同じ圧電型振動センサー(6)を使用して、その共振周波数を変化させることによって、種々の配管部材における流体漏洩の検出を行うことができる。   By changing the thickness, length, width and elastic modulus of the piezoelectric element (12) and the weight of the weight (16), the minimum value, that is, the variable range of the resonance frequency of the piezoelectric vibration sensor (6) can be changed. it can. Thus, according to the piezoelectric vibration sensor (6), fluid leakage in various piping members can be detected by changing the resonance frequency using the same piezoelectric vibration sensor (6).

(2) :配管
(3) :合成樹脂管(配管部材)
(6) :圧電型振動センサー
(11):台座
(12):圧電素子
(13):支持手段
(16):錘
(19):支柱
(20):スライダー
(2): Piping
(3): Synthetic resin pipe (pipe member)
(6): Piezoelectric vibration sensor
(11): Pedestal
(12): Piezoelectric element
(13): Support means
(16): Weight
(19): Prop
(20): Slider

Claims (6)

振動音を電気信号に変換する圧電素子と、圧電素子の一端部を支持する支持手段と、圧電素子の他端部に荷重を負荷する錘とを備えており、圧電素子の支持手段による支持位置と錘の負荷位置との距離が機械的に可変とされていることにより、共振周波数が可変とされていることを特徴とする圧電型振動センサー。   A piezoelectric element that converts vibration sound into an electrical signal, a support means that supports one end of the piezoelectric element, and a weight that applies a load to the other end of the piezoelectric element, and is supported by the support means of the piezoelectric element. A piezoelectric vibration sensor characterized in that the resonance frequency is variable because the distance between the weight and the load position of the weight is mechanically variable. 支持手段は、台座に固定された支柱と、圧電素子の一端側にある部分を上下両側から挟んで台座上を移動することによって圧電素子の支持される部分の長さを変化させるスライダーとを備えていることを特徴とする請求項1に記載の圧電型振動センサー。   The support means includes a support post fixed to the pedestal, and a slider that changes the length of the supported portion of the piezoelectric element by moving the portion on one end side of the piezoelectric element from above and below both sides of the pedestal. The piezoelectric vibration sensor according to claim 1, wherein the piezoelectric vibration sensor is provided. 支持位置と錘の負荷位置との距離が最大時の圧電型振動センサーの共振周波数が150Hz以下に、支持位置と錘の負荷位置との距離が最小時の圧電型振動センサーの共振周波数が400Hz以上に設定されていることを特徴とする請求項1または2に記載の圧電型振動センサー。   The resonance frequency of the piezoelectric vibration sensor when the distance between the support position and the load position of the weight is maximum is 150 Hz or less, and the resonance frequency of the piezoelectric vibration sensor when the distance between the support position and the load position of the weight is minimum is 400 Hz or more. The piezoelectric vibration sensor according to claim 1, wherein the piezoelectric vibration sensor is set as follows. 請求項1から3までのいずれかに記載の圧電型振動センサーを配管部材の近傍に設置し、配管からの流体漏洩によっておこる振動を検知することで流体漏洩の有無を判定することを特徴とする漏洩検知方法。   A piezoelectric vibration sensor according to any one of claims 1 to 3 is installed in the vicinity of a piping member, and the presence or absence of fluid leakage is determined by detecting vibration caused by fluid leakage from the piping. Leak detection method. 漏洩検知対象の配管部材が合成樹脂製か金属製かに対応して、合成樹脂製の配管部材に対しては、圧電型振動センサーの共振周波数を可変可能範囲のうちの相対的に低い値とし、金属製の配管部材に対しては、圧電型振動センサーの共振周波数を可変可能範囲のうちの相対的に高い値とすることを特徴とする請求項4に記載の漏洩検知方法。   Corresponding to whether the pipe member for leak detection is made of synthetic resin or metal, the resonance frequency of the piezoelectric vibration sensor is set to a relatively low value within the variable range for pipe members made of synthetic resin. The leakage detection method according to claim 4, wherein the resonance frequency of the piezoelectric vibration sensor is set to a relatively high value within a variable range for a metal pipe member. 漏洩検知対象の配管部材の管の口径が相対的に大か小かに対応して、口径が相対的に大の配管部材に対しては、圧電型振動センサーの共振周波数を可変可能範囲のうちの相対的に低い値とし、口径が相対的に小の配管部材に対しては、圧電型振動センサーの共振周波数を可変可能範囲のうちの相対的に高い値とすることを特徴とする請求項4または5に記載の漏洩検知方法。   Corresponding to whether the pipe diameter of the pipe member of the leakage detection target is relatively large or small, for the pipe member having a relatively large diameter, the resonance frequency of the piezoelectric vibration sensor is within the variable range. The relative frequency of the piezoelectric vibration sensor is set to a relatively high value in a variable range for a piping member having a relatively small diameter and a relatively small diameter. 6. The leakage detection method according to 4 or 5.
JP2013099949A 2012-09-24 2013-05-10 Piezoelectric vibration sensor and leak detection method using the same Expired - Fee Related JP6134198B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2013099949A JP6134198B2 (en) 2013-05-10 2013-05-10 Piezoelectric vibration sensor and leak detection method using the same
EP13839205.5A EP2899526B1 (en) 2012-09-24 2013-09-20 Leakage detector, leakage detection method, and pipe network monitoring apparatus
SG10201608433QA SG10201608433QA (en) 2012-09-24 2013-09-20 Leakage detector, leakage detection method, and pipe network monitoring apparatus
CN201380049680.XA CN105247335A (en) 2012-09-24 2013-09-20 Leakage detector, leakage detection method, and pipe network monitoring apparatus
US14/430,413 US10168243B2 (en) 2012-09-24 2013-09-20 Leakage detector, leakage detection method, and pipe network monitoring apparatus
PCT/JP2013/075464 WO2014046237A1 (en) 2012-09-24 2013-09-20 Leakage detector, leakage detection method, and pipe network monitoring apparatus
KR1020157007126A KR20150056784A (en) 2012-09-24 2013-09-20 Leakage detector, leakage detection method, and pipe network monitoring apparatus
SG11201502179QA SG11201502179QA (en) 2012-09-24 2013-09-20 Leakage detector, leakage detection method, and pipe network monitoring apparatus
AU2013318975A AU2013318975B2 (en) 2012-09-24 2013-09-20 Leakage detector, leakage detection method, and pipe network monitoring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013099949A JP6134198B2 (en) 2013-05-10 2013-05-10 Piezoelectric vibration sensor and leak detection method using the same

Publications (2)

Publication Number Publication Date
JP2014219343A true JP2014219343A (en) 2014-11-20
JP6134198B2 JP6134198B2 (en) 2017-05-24

Family

ID=51937913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013099949A Expired - Fee Related JP6134198B2 (en) 2012-09-24 2013-05-10 Piezoelectric vibration sensor and leak detection method using the same

Country Status (1)

Country Link
JP (1) JP6134198B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166838A (en) * 2015-03-10 2016-09-15 日本電気株式会社 Detector and detection method
JP2016166839A (en) * 2015-03-10 2016-09-15 日本電気株式会社 Detector and detection method
CN112092014A (en) * 2020-08-14 2020-12-18 华南理工大学 Flexible arm vibration detection device based on linear motion of elastic base and control method
WO2024106342A1 (en) * 2022-11-17 2024-05-23 ヤマハ株式会社 Piezoelectric sensor and musical instrument

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931421A (en) * 1982-08-17 1984-02-20 Fuji Elelctrochem Co Ltd Vibration sensor
JPS6117029A (en) * 1985-06-13 1986-01-25 Matsushita Electric Ind Co Ltd Vibration detector
JPS63225130A (en) * 1987-03-16 1988-09-20 Matsushita Electric Ind Co Ltd Knock sensor
JPH0360035U (en) * 1989-10-14 1991-06-13
JP3194078B2 (en) * 1996-03-29 2001-07-30 日本鋼管株式会社 Vibration detector with spontaneous power supply
JP3223337B2 (en) * 1993-03-25 2001-10-29 フジテコム株式会社 Leak sound detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931421A (en) * 1982-08-17 1984-02-20 Fuji Elelctrochem Co Ltd Vibration sensor
JPS6117029A (en) * 1985-06-13 1986-01-25 Matsushita Electric Ind Co Ltd Vibration detector
JPS63225130A (en) * 1987-03-16 1988-09-20 Matsushita Electric Ind Co Ltd Knock sensor
JPH0360035U (en) * 1989-10-14 1991-06-13
JP3223337B2 (en) * 1993-03-25 2001-10-29 フジテコム株式会社 Leak sound detector
JP3194078B2 (en) * 1996-03-29 2001-07-30 日本鋼管株式会社 Vibration detector with spontaneous power supply

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166838A (en) * 2015-03-10 2016-09-15 日本電気株式会社 Detector and detection method
JP2016166839A (en) * 2015-03-10 2016-09-15 日本電気株式会社 Detector and detection method
CN112092014A (en) * 2020-08-14 2020-12-18 华南理工大学 Flexible arm vibration detection device based on linear motion of elastic base and control method
CN112092014B (en) * 2020-08-14 2022-02-15 华南理工大学 Flexible arm vibration detection device based on linear motion of elastic base and control method
WO2024106342A1 (en) * 2022-11-17 2024-05-23 ヤマハ株式会社 Piezoelectric sensor and musical instrument

Also Published As

Publication number Publication date
JP6134198B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2014046237A1 (en) Leakage detector, leakage detection method, and pipe network monitoring apparatus
Yu et al. A self‐powered dynamic displacement monitoring system based on triboelectric accelerometer
JP6134198B2 (en) Piezoelectric vibration sensor and leak detection method using the same
JP6188335B2 (en) Leak detector, leak position specifying method and piping device
JPWO2015072130A1 (en) Leakage determination system and leak determination method
CN105190272B (en) The pressure sensor for monitoring and compensating with real time health
JP4422066B2 (en) Membrane stiffness measuring apparatus and membrane stiffness measuring method
JP2014178162A (en) Leakage detector
JP5873453B2 (en) Leak detector
JP5623868B2 (en) Piezoelectric characteristic measurement system and piezoelectric characteristic measurement method
JP2014219341A (en) Piezo-electric type vibration sensor
JP6316131B2 (en) How to identify the location of abnormal sound
JP2018523108A (en) Pulse erasure for flow measurement
WO2014024559A1 (en) Vibration detecting apparatus
CN104677484B (en) Vibration and dynamic acceleration sensing using capacitors
CN111722026B (en) Insulating medium space charge measuring method and system based on magnetoacoustic system
JP6408929B2 (en) Analysis data creation method, water leakage position detection device, and water leakage position identification method
JP5810059B2 (en) Piezoelectric vibration sensor and water leakage detection method
JP2015102486A (en) Identification method of defect position
JP6170388B2 (en) Piezoelectric vibration sensor
RU157156U1 (en) EFFECTIVE GAS DETECTOR
CN106595547A (en) Novel sensing monitoring device
CN114981682A (en) Apparatus and system for determining object characteristics
Cheng et al. A new method for monitoring far-fiedl noise level with a few near-field sensors
JP2001033380A (en) Device for detecting surface projection defect of material of continuous length

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170421

R151 Written notification of patent or utility model registration

Ref document number: 6134198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees