WO2020100888A1 - Microorganism belonging to genus cupriavidus - Google Patents

Microorganism belonging to genus cupriavidus Download PDF

Info

Publication number
WO2020100888A1
WO2020100888A1 PCT/JP2019/044316 JP2019044316W WO2020100888A1 WO 2020100888 A1 WO2020100888 A1 WO 2020100888A1 JP 2019044316 W JP2019044316 W JP 2019044316W WO 2020100888 A1 WO2020100888 A1 WO 2020100888A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
cupriavidus
microorganism
genus
amylase
Prior art date
Application number
PCT/JP2019/044316
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 佐藤
尚志 有川
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2020555716A priority Critical patent/JPWO2020100888A1/en
Publication of WO2020100888A1 publication Critical patent/WO2020100888A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to a microorganism belonging to the genus Cupriavidus.
  • a carbon source that can be suitably assimilated by microorganisms (for example, a carbon source for cultivation and / or fermentation) is required.
  • a carbon source for cultivation and / or fermentation for example, a carbon source for cultivation and / or fermentation
  • sugars eg starch
  • oils and fats eg vegetable oils
  • fatty acids eg plant-derived fatty acids
  • Starch which is a sugar raw material, is an inexpensive fermentation raw material that can be produced from potato, corn, rice, cassava and the like, and may be considered as one of suitable carbon source candidates.
  • It is easy to use as a raw material a carbon source that has a structure that is easily taken up by cells and catabolized and assimilated by microorganisms, such as low molecular weight sugar raw materials such as glucose and sucrose.
  • starch is a polymer in which a large number of glucose are bound, and in particular raw starch has a micelle structure (crystal structure) in which chains of amylose and amylopectin are regularly assembled by hydrogen bonds, and thus is not decomposed by an enzyme. It is difficult to receive and cannot be assimilated by microorganisms as it is.
  • the microorganisms responsible for producing the substance can secrete amylase capable of decomposing the raw starch and produce the substance directly from the raw starch.
  • a microorganism belonging to the genus Cupriavidus can be mentioned as a host for substance production using microorganisms.
  • Examples of substance production using a microorganism belonging to the genus Cupriavidus include aliphatic polyesters such as polyhydroxyalkanoate (PHA), butanol and isopropanol.
  • Non-Patent Document 1 There is an example of producing acetone and butanol using a cupriavidus necator, which is a microorganism belonging to the genus Cupriavidus (Non-Patent Document 1). There is an example of producing isopropanol from fructose, which is a sugar raw material, using Cupriavidus necator (Non-patent Document 2). Also, an example of producing polyhydroxyalkanoate (PHA) from sucrose using Cupriavidus necator has been reported (Non-Patent Document 3). However, neither uses starch as a raw material.
  • PHA polyhydroxyalkanoate
  • Non-patent document 4 Since Cupriavidus necator does not have a gene encoding ⁇ -amylase, it cannot express a starch-degrading enzyme and cannot properly use starch, so an example of producing PHA using saccharified potato-derived starch has been reported. (Non-patent document 4).
  • Non-patent Document 5 an ⁇ -amylase derived from Streptococcus bovis (Non-patent Document 5), which is reported to be capable of degrading non-solubilized starch (also referred to as raw starch), into the Cupriavidus necator H16 strain, and The starch degrading activity was confirmed, but it did not show the degrading activity. Thus, it is not easy to suitably use starch, especially raw starch, as a carbon source.
  • Non-Patent Document 6 a Rhizopus-derived secretory signal sequence is used to cause yeast Saccharomyces cerevisiae to express Streptococcus bovis-derived ⁇ -amylase on the surface (a type of secretory expression).
  • a Rhizopus-derived secretory signal sequence is used to cause yeast Saccharomyces cerevisiae to express Streptococcus bovis-derived ⁇ -amylase on the surface (a type of secretory expression).
  • it is essential to introduce a gene sequence in which a secretory signal and a gene encoding the protein are linked.
  • the target microorganism will be It is difficult to find out if it exhibits degrading activity. Secreting the enzyme extracellularly is considered more difficult than simply expressing the heterologous gene intracellularly. Further research is necessary to industrially enable efficient production of substances by microorganisms belonging to the genus Cupriavidus that can produce aliphatic polyesters such as polyhydroxyalkanoate (PHA) using
  • An object of the present invention is to provide a microorganism belonging to the genus Cupriavidus that can decompose starch and effectively assimilate it.
  • the present invention relates to a microorganism belonging to the genus Cupriavidus, into which a gene encoding an ⁇ -amylase, into which a secretory signal derived from a microorganism belonging to the genus Cupriavidus has been introduced.
  • the ⁇ -amylase may be an ⁇ -amylase derived from a microorganism belonging to the genus Streptococcus.
  • a microorganism belonging to the genus Cupriavidus may synthesize polyhydroxyalkanoate.
  • the microorganism belonging to the genus Cupriavidus may be Cupriavidus necator.
  • the polyhydroxyalkanoate may be poly (3-hydroxybutyrate-co-3-hydroxyhexanoate).
  • the present invention it is possible to provide a microorganism belonging to the genus Cupriavidus that can decompose starch and effectively assimilate it.
  • the microorganism of the present disclosure is a microorganism belonging to the genus Cupriavidus, into which a gene encoding an ⁇ -amylase, into which a secretion signal derived from a microorganism belonging to the genus Cupriavidus is linked, has been introduced.
  • the present inventors have found a gene encoding a protein secreted extracellularly (secretory protein) from genes possessed by microorganisms belonging to the genus Cupriavidus, and present the signal present in the gene.
  • a gene in which a similar sequence (secretion signal) is linked to the ⁇ -amylase gene was introduced into a microorganism belonging to the genus Cupriavidus.
  • ⁇ -amylase which is a starch-degrading enzyme having a starch-degrading activity, can be extracellularly secreted, raw starch can be assimilated without being converted to ⁇ and can be effectively used.
  • the substance production using the microorganism of the present disclosure is also suitable for industrial substance production.
  • the microorganism of the present disclosure is not limited as long as it is a microorganism belonging to the genus Cupriavidus, but it is preferable to synthesize polyhydroxyalkanoate, that is, to have PHA synthesizing ability.
  • Cupriavidus necator is particularly preferable because it has high PHA synthesizing ability.
  • microorganism belonging to the genus Cupriavidus having PHA synthesizing ability not only a wild strain originally having a PHA synthase gene but also a mutant strain obtained by artificially mutating such a wild strain, or PHA synthesis It may be a recombinant strain into which an exogenous PHA synthase gene has been introduced by a genetic engineering technique into a microorganism that does not originally have the enzyme gene.
  • the microorganism belonging to the genus Cupriavidus having PHA synthesizing ability is a recombinant strain into which an exogenous PHA synthase gene has been introduced by a genetic engineering method
  • the exogenous PHA synthase gene for example, the Cupriavidus necator H16 strain is A PHA synthase gene encoding the amino acid sequence described in SEQ ID NO: 2 or a PHA encoding a polypeptide having 85% or more sequence identity to the amino acid sequence and having PHA synthesis activity.
  • Synthetic enzyme gene and PHA synthase gene encoding the amino acid sequence of SEQ ID NO: 3 held by Aeromonas caviae, or having 85% or more sequence identity to the amino acid sequence, and having PHA synthetic activity
  • the PHA synthase gene include a PHA synthase gene that encodes a polypeptide having: and other PHA synthase genes can be preferably used.
  • the sequence identity is preferably 90% or more, more preferably 95% or more, and particularly preferably 99% or more.
  • a PHA synthase gene having a synthetic activity of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (sometimes referred to as PHBH) as PHA is preferable.
  • PHBH may be synthesized by a transformant in which the PHA synthase gene derived from Aeromonas caviae is introduced into Cupriavidus necator.
  • the above-mentioned gene introduced into the microorganism of the present disclosure encodes an ⁇ -amylase linked with a secretory signal derived from a microorganism belonging to the genus Cupriavidus.
  • Secretory signal is a DNA sequence encoding a secretory signal peptide.
  • the secretory signal peptide is a signal peptide necessary for secreting a protein synthesized inside the cell, outside the intracellular membrane or outside the cell.
  • the secretory signal is not particularly limited as long as it is a secretory signal derived from a microorganism belonging to the genus Cupriavidus.
  • secretion signals derived from microorganisms belonging to the genus Cupriavidus such as Cupriavidus necator, Cupriavidus oxalaticus, Cupriavidus pauculus, Cupriavidus respiraculi, Cupriavidus taiwanensis and Cupriavidus metallidurans can be used.
  • ⁇ -amylase is not limited as long as it is an ⁇ -amylase having a starch-degrading activity, and the gene introduced into the microorganism of the present disclosure is not limited as long as it encodes such ⁇ -amylase. is not.
  • Examples of the gene encoding ⁇ -amylase include genes encoding ⁇ -amylase derived from microorganisms of Bacillus genus, Streptococcus genus, Panibacillus genus, and Rhyzopus genus. Among these, a gene encoding an ⁇ -amylase derived from a microorganism of the genus Streptococcus is preferable. This is because the microorganism of the present disclosure can suitably decompose raw starch.
  • genes encoding ⁇ -amylase derived from microorganisms belonging to the genus Bacillus include genes encoding ⁇ -amylase derived from microorganisms such as Bacillus stearothermophilus and Bacillus amyloliquefaciens.
  • genes encoding ⁇ -amylase derived from microorganisms belonging to the genus Streptococcus include genes encoding ⁇ -amylase derived from microorganisms such as Streptococcus bovis.
  • genes encoding ⁇ -amylase derived from microorganisms belonging to the genus Paenibacillus include genes encoding ⁇ -amylase derived from microorganisms such as Paenibacillus sp.
  • the “ligation” between the secretory signal derived from a microorganism belonging to the genus Cupriavidus and the gene encoding ⁇ -amylase may be a direct binding between the secretory signal and the part encoding ⁇ -amylase, and the secretory signal peptide and ⁇ -amylase It may be an indirect bond containing one or more bases with the coding portion.
  • a method for introducing into a microorganism belonging to the genus Cupriavidus or a method of introducing into a genomic DNA is used. be able to.
  • Introduction into a microorganism belonging to the genus Cupriavidus using a plasmid vector can be performed using any method commonly used, for example, an electric introduction method, a calcium method and the like.
  • the introduction into the genomic DNA can be carried out using any method commonly used, for example, homologous recombination, a method using a transposon, a method using a phage, or the like.
  • the plasmid vector may be prepared by ligating a DNA fragment having a nucleotide sequence encoding ⁇ -amylase to which a secretion signal derived from a microorganism belonging to the genus Cupriavidus is ligated with a plasmid vector such as pCUP2.
  • the culture condition of the microorganism belonging to the genus Cupriavidus of the present disclosure may be any condition that allows the microorganism to grow.
  • the temperature condition is 20 ° C. or higher and 50 ° C. or lower
  • the culture time is 10 hours or longer and 100 hours. It may be about the following.
  • substances accumulated in microorganisms belonging to the genus Cupriavidus can be collected by a known method.
  • the accumulated substance is PHA
  • it can be recovered by the following method, for example.
  • the cells are separated from the culture solution by a centrifuge or the like, and the cells are washed with methanol or the like and dried.
  • PHA is extracted from the dried cells using an organic solvent such as chloroform.
  • bacterial components are removed by filtration or the like, and a poor solvent such as hexane is added to the filtrate to precipitate PHA. Further, the supernatant may be removed by filtration or centrifugation, and dried to recover PHA.
  • ⁇ -amylase having a starch-degrading activity can be secreted extracellularly, and thus starch can be decomposed and effectively assimilated.
  • the microorganism of the present disclosure is a microorganism belonging to the genus Cupriavidus that synthesizes PHA, PHA can be directly synthesized from starch, and thus it is expected that PHA can be produced at low cost and energy saving.
  • PHA is a thermoplastic polyester that microorganisms produce and accumulate in the microbial cells, has biodegradability, and is incorporated into the natural carbon cycle process, so it enters the ecosystem. It is expected that the adverse effect of PHA will be small, and the practical application of PHA is earnestly desired. Therefore, PHA is one of the good examples of the substance produced using the microorganism of the present disclosure.
  • the microorganism belonging to the genus Cupriavidus of the present disclosure can be used for the production of alcohols such as ethanol, butanol and propanol; acids such as lactic acid, acetic acid, amino acids and nucleic acids, lipids, and fats and oils as well as PHA. ..
  • PHA production examples using Cupriavidus malaysiensis (Non-patent document 7) and Cupriavidus sp.USMAA1020 (Non-patent document 8) have been reported.
  • KNK005dZG strain The KNK005 ⁇ phaZ1,2,6 / nagEG793C, dR strain (hereinafter referred to as “KNK005dZG strain”) used in the following Production Examples, Examples, and Comparative Examples is Aeromonas caviae-derived on the chromosome of the Cupriavidus necator H16 strain.
  • a PHA synthase gene (a gene encoding a PHA synthase having the amino acid sequence set forth in SEQ ID NO: 3) was introduced, and the phaZ1,2,6 gene, which is a PHA-degrading enzyme gene on the chromosome, was deleted to relate to sugar uptake
  • G which is the 793th base of the nagE structural gene, is replaced with C, and the transformed microorganism has a deletion from the start codon to the stop codon of the nagR gene.
  • This transformed microorganism can be produced according to the method described in WO 2017/104722.
  • a plasmid vector was prepared.
  • the manufacturing method is as follows. A nucleotide encoding the trc promoter and the amino acid sequence (SEQ ID NO: 1) of a secretory ⁇ -amylase derived from Streptococcus bovis 148 strain (NRIC 1535) (hereinafter referred to as “amyA1535”) by PCR using a synthetic oligo DNA. A DNA fragment having a sequence (SEQ ID NO: 4) was obtained. The obtained DNA fragment was digested with restriction enzymes EcoRI and SpeI.
  • the secretory ⁇ -amylase is an ⁇ -amylase having a secretory signal peptide.
  • the plasmid vector pCUP2-trc-amyA1535 was introduced into the KNK005dZG strain to obtain a transformant pCUP2-trc-amyA1535 / KNK005dZG strain.
  • the introduction of the plasmid vector into the cells was carried out by electric introduction as follows.
  • a gene pulser manufactured by Biorad was used as the gene introduction device, and a gap 0.2 cm also manufactured by Biorad was used as the cuvette.
  • 400 ⁇ l of competent cells and 20 ⁇ l of expression vector were injected into a cuvette and set in a pulse device, and an electric pulse was applied under the conditions of a capacitance of 25 ⁇ F, a voltage of 1.5 kV and a resistance value of 800 ⁇ .
  • the bacterial solution in the cuvette was cultivated with shaking in Nutrient Broth medium (manufactured by DIFCO) at 30 ° C. for 3 hours, and then at 30 ° C.
  • a plasmid vector was prepared. The production was performed as follows. By PCR using a synthetic oligo DNA, a trc promoter and a DNA fragment having a nucleotide sequence encoding amyA1535 (SPfliCamyA1535) in which the secretory signal peptide is replaced with the secretory signal peptide derived from the Cupriavidus necator H16 strain fliC gene (SEQ ID NO: 5) Got The obtained DNA fragment was digested with restriction enzymes EcoRI and SpeI.
  • This DNA fragment was ligated with the plasmid vector pCUP2 described in WO 2007/049716 cleaved with restriction enzymes MunI and SpeI to obtain a plasmid vector pCUP2-trc-SPfliCamyA1535.
  • the plasmid vector pCUP2-trc-SPfliCamyA1535 was introduced into the KNK005dZG strain in the same manner as in Production Example 1 to obtain a transformant pCUP2-trc-SPfliCamyA1535 / KNK005dZG strain.
  • This DNA fragment was ligated with a plasmid vector pCUP2 described in WO 2007/049716 cut with restriction enzymes MunI and SpeI to obtain a plasmid vector pCUP2-trc-SPplcN4amyA1535.
  • the plasmid vector pCUP2-trc-SPplcN4amyA1535 was introduced into the KNK005dZG strain in the same manner as in Production Example 1 to obtain a transformant pCUP2-trc-SPplcN4amyA1535 / KNK005dZG strain.
  • the composition of the plate medium containing starch was the nutrient agar medium (Difco) to which 1 w / v% corn starch was added.
  • a glycerol stock (50 ⁇ L) of the KNK005dZG strain was inoculated into a seed medium (5 mL) and shake-cultured at a culture temperature of 30 ° C. for 24 hours, and the obtained culture solution was used as a seed mother.
  • Comparative Example 2 Starch-degrading test using pCUP2-trc-amyA1535 / KNK005dZG strain
  • the composition of the seed mother medium and the starch-containing plate medium was the same as that described in Comparative Example 1.
  • the pCUP2-trc-amyA1535 / KNK005dZG strain prepared in Production Example 1 was subjected to culture and starch degrading test in the same manner as in Comparative Example 1. However, kanamycin was added to the seed mother medium and the starch-containing plate medium so that the final concentration was 100 ⁇ g / ml.
  • Example 1 Starch-degrading test using pCUP2-trc-SPfliCamyA1535 / KNK005dZG strain
  • the composition of the seed mother medium and the starch-containing plate medium was the same as that described in Comparative Example 1.
  • the pCUP2-trc-SPfliCamyA1535 / KNK005dZG strain prepared in Production Example 2 was subjected to culture and starch degrading test in the same manner as in Comparative Example 1. However, kanamycin was added to the seed mother medium and the starch-containing plate medium so that the final concentration was 100 ⁇ g / ml.
  • Example 2 Starch-degrading test using pCUP2-trc-SPplcN4amyA1535 / KNK005dZG strain
  • the composition of the seed mother medium and the starch-containing plate medium was the same as that described in Comparative Example 1.
  • the pCUP2-trc-SPplcN4amyA1535 / KNK005dZG strain prepared in Production Example 3 was subjected to culture and starch degrading test in the same manner as in Comparative Example 1. However, kanamycin was added to the seed mother medium and the starch-containing plate medium so that the final concentration was 100 ⁇ g / ml.

Abstract

The present invention makes it possible to provide a microorganism belonging to the genus Cupriavidus that is capable of degrading and effectively assimilating starch. A microorganism belonging to the genus Cupriavidus into which a gene encoding α-amylase, to which a secretion signal derived from a microorganism belonging to the genus Cupriavidus is linked, has been introduced.

Description

Cupriavidus属に属する微生物Microorganisms belonging to the genus Cupriavidus
 本発明は、Cupriavidus属に属する微生物に関する。 The present invention relates to a microorganism belonging to the genus Cupriavidus.
 環境問題、食糧問題、健康及び安全に対する意識の高まり;並びに天然及び自然志向の高まり等を背景に、微生物の生産、及び微生物による物質製造(例えば、発酵生産、及びバイオ変換等)の意義及び重要性が益々高まっている。 Significance and importance of microbial production and substance production by microorganisms (for example, fermentative production, bioconversion, etc.) against the backdrop of heightened awareness of environmental issues, food issues, health and safety; Sex is increasing.
 微生物の生産、及び微生物による物質の製造においては、微生物によって好適に資化される炭素源(例えば、培養及び/又は発酵等のための炭素源)が必要である。その炭素源の代表的なものとして、糖質(例えば、澱粉)、油脂(例えば、植物油脂)、及び脂肪酸(例えば、植物由来の脂肪酸)等の利用が益々望まれてきている。糖質原料である澱粉は、ポテト、コーン、米及びキャッサバ等から生産され得る安価な発酵原料であり、好適な炭素源の候補の一つとして考えられるかもしれない。 In the production of microorganisms and the production of substances by microorganisms, a carbon source that can be suitably assimilated by microorganisms (for example, a carbon source for cultivation and / or fermentation) is required. As typical carbon sources, utilization of sugars (eg starch), oils and fats (eg vegetable oils), and fatty acids (eg plant-derived fatty acids) has been increasingly desired. Starch, which is a sugar raw material, is an inexpensive fermentation raw material that can be produced from potato, corn, rice, cassava and the like, and may be considered as one of suitable carbon source candidates.
 グルコースやシュークロース等の低分子量の糖質原料のように、一般に微生物が細胞内に取り込み、異化及び同化されやすい構造の炭素源を原料として利用することは容易である。しかし、澱粉は、グルコースが多数結合した高分子であり、特に生澱粉は、アミロースとアミロペクチンの鎖が水素結合によって規則的に集合したミセル構造(結晶構造)を有しており、酵素による分解を受けにくく、そのままでは微生物によって資化できない問題がある。 ▽ It is easy to use as a raw material a carbon source that has a structure that is easily taken up by cells and catabolized and assimilated by microorganisms, such as low molecular weight sugar raw materials such as glucose and sucrose. However, starch is a polymer in which a large number of glucose are bound, and in particular raw starch has a micelle structure (crystal structure) in which chains of amylose and amylopectin are regularly assembled by hydrogen bonds, and thus is not decomposed by an enzyme. It is difficult to receive and cannot be assimilated by microorganisms as it is.
 生澱粉をグルコース等の低分子量の糖質原料に分解するためには、熱や物理的破壊等のエネルギー投入により結晶化度を低下させることが必要であり、通常、加熱糊化(可溶化、又はα化とも言う)が行われる(特許文献1)。そして、その後、分解酵素であるアミラーゼを作用させて糖化する。しかし、このような方法では糊化工程でエネルギーを消費してしまう。このため、澱粉、特に生澱粉は有効に産業利用されているとはいえない。 In order to decompose raw starch into low-molecular-weight sugar raw materials such as glucose, it is necessary to reduce the crystallinity by inputting heat or energy such as physical destruction, and usually heat gelatinization (solubilization, solubilization, Alternatively, it is also referred to as alpha conversion) (Patent Document 1). Then, after that, amylase which is a degrading enzyme is caused to act on the saccharification. However, this method consumes energy in the gelatinization process. Therefore, it cannot be said that starch, particularly raw starch, is effectively used industrially.
 生澱粉の利用に伴うエネルギー消費を少なくするため、物質生産を担う微生物が生澱粉を分解可能なアミラーゼを分泌でき、生澱粉を原料として物質を直接生産させる事ができれば意義深い。 To reduce the energy consumption associated with the use of raw starch, it is significant if the microorganisms responsible for producing the substance can secrete amylase capable of decomposing the raw starch and produce the substance directly from the raw starch.
 微生物を用いた物質生産の宿主としてCupriavidus属に属する微生物が挙げられる。また、Cupriavidus属に属する微生物を用いた物質生産の例として、例えば、ポリヒドロキシアルカノエート(PHA)等の脂肪族ポリエステル、並びにブタノール及びイソプロパノール等が挙げられる。 A microorganism belonging to the genus Cupriavidus can be mentioned as a host for substance production using microorganisms. Examples of substance production using a microorganism belonging to the genus Cupriavidus include aliphatic polyesters such as polyhydroxyalkanoate (PHA), butanol and isopropanol.
 Cupriavidus属に属する微生物であるCupriavidus necatorを用いて、アセトンとブタノールを生産した例がある(非特許文献1)。Cupriavidus necatorを用いて、糖質原料であるフルクトースからイソプロパノールを生産した例がある(非特許文献2)。また、Cupriavidus necatorを用いて、スクロースからポリヒドロキシアルカノエート(PHA)を生産した例が報告されている(非特許文献3)。しかし、いずれも原料として澱粉は利用していない。 There is an example of producing acetone and butanol using a cupriavidus necator, which is a microorganism belonging to the genus Cupriavidus (Non-Patent Document 1). There is an example of producing isopropanol from fructose, which is a sugar raw material, using Cupriavidus necator (Non-patent Document 2). Also, an example of producing polyhydroxyalkanoate (PHA) from sucrose using Cupriavidus necator has been reported (Non-Patent Document 3). However, neither uses starch as a raw material.
 Cupriavidus necatorは、αアミラーゼをコードする遺伝子を有さないため、澱粉分解酵素を発現できず、澱粉を好適に利用できないため、糖化したポテト由来の澱粉を用いてPHAを生産した例が報告されている(非特許文献4)。 Since Cupriavidus necator does not have a gene encoding α-amylase, it cannot express a starch-degrading enzyme and cannot properly use starch, so an example of producing PHA using saccharified potato-derived starch has been reported. (Non-patent document 4).
特許第4767128号公報Japanese Patent No. 4767128
 本発明者らは、まず、非可溶化澱粉(生澱粉とも言う)を分解可能であると報告されているStreptococcus bovis由来のαアミラーゼ(非特許文献5)をCupriavidus necator H16株に導入し、その澱粉分解活性を確認したが、分解活性を示さなかった。このように、澱粉、特に生澱粉を炭素源として好適に利用することは容易ではない。 The present inventors first introduced an α-amylase derived from Streptococcus bovis (Non-patent Document 5), which is reported to be capable of degrading non-solubilized starch (also referred to as raw starch), into the Cupriavidus necator H16 strain, and The starch degrading activity was confirmed, but it did not show the degrading activity. Thus, it is not easy to suitably use starch, especially raw starch, as a carbon source.
 例えば、非特許文献6ではRhizopus由来の分泌シグナル配列を利用し、酵母Saccharomyces cerevisiaeにStreptococcus bovis由来αアミラーゼを表層提示発現(分泌発現の一種)させている。タンパク質を分泌発現させるためには、分泌シグナルとタンパク質をコードする遺伝子を連結させた遺伝子配列の導入が必須であるが、分泌タンパク質と分泌シグナルをどのように組み合わせれば、目的とする微生物が澱粉分解活性を示すのかを見出すのは困難である。細胞外に酵素を分泌させることは、細胞内で単に異種遺伝子を発現させるよりも困難とされている。澱粉を原料として、ポリヒドロキシアルカノエート(PHA)等の脂肪族ポリエステル等を生産可能なCupriavidus属に属する微生物による効率的な物質製造を工業的に可能にするためには、更なる研究が必要である。 For example, in Non-Patent Document 6, a Rhizopus-derived secretory signal sequence is used to cause yeast Saccharomyces cerevisiae to express Streptococcus bovis-derived α-amylase on the surface (a type of secretory expression). In order to secrete and express a protein, it is essential to introduce a gene sequence in which a secretory signal and a gene encoding the protein are linked. However, if the secretory protein and the secretory signal are combined, the target microorganism will be It is difficult to find out if it exhibits degrading activity. Secreting the enzyme extracellularly is considered more difficult than simply expressing the heterologous gene intracellularly. Further research is necessary to industrially enable efficient production of substances by microorganisms belonging to the genus Cupriavidus that can produce aliphatic polyesters such as polyhydroxyalkanoate (PHA) using starch as a raw material. is there.
 本発明は、澱粉を分解し、有効に資化し得るCupriavidus属に属する微生物を提供することを目的とする。 An object of the present invention is to provide a microorganism belonging to the genus Cupriavidus that can decompose starch and effectively assimilate it.
 本発明は、Cupriavidus属に属する微生物由来の分泌シグナルが連結した、αアミラーゼをコードする遺伝子を導入した、Cupriavidus属に属する微生物に関する。 The present invention relates to a microorganism belonging to the genus Cupriavidus, into which a gene encoding an α-amylase, into which a secretory signal derived from a microorganism belonging to the genus Cupriavidus has been introduced.
 前記微生物において、前記αアミラーゼが、Streptococcus属に属する微生物由来のαアミラーゼであってよい。 In the microorganism, the α-amylase may be an α-amylase derived from a microorganism belonging to the genus Streptococcus.
 前記微生物において、前記Cupriavidus属に属する微生物が、ポリヒドロキシアルカノエートを合成してよい。 In the above microorganism, a microorganism belonging to the genus Cupriavidus may synthesize polyhydroxyalkanoate.
 前記微生物において、前記Cupriavidus属に属する微生物が、Cupriavidus necatorであってよい。 Among the microorganisms, the microorganism belonging to the genus Cupriavidus may be Cupriavidus necator.
 前記ポリヒドロキシアルカノエートが、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)であってよい。 The polyhydroxyalkanoate may be poly (3-hydroxybutyrate-co-3-hydroxyhexanoate).
 本発明によれば、澱粉を分解し、有効に資化し得るCupriavidus属に属する微生物を提供することができる。 According to the present invention, it is possible to provide a microorganism belonging to the genus Cupriavidus that can decompose starch and effectively assimilate it.
 本開示の微生物は、Cupriavidus属に属する微生物由来の分泌シグナルが連結した、αアミラーゼをコードする遺伝子を導入した、Cupriavidus属に属する微生物である。 The microorganism of the present disclosure is a microorganism belonging to the genus Cupriavidus, into which a gene encoding an α-amylase, into which a secretion signal derived from a microorganism belonging to the genus Cupriavidus is linked, has been introduced.
 本開示の微生物は、本発明者らが、Cupriavidus属に属する微生物が保有する遺伝子の中から、細胞外に分泌されるタンパク質(分泌タンパク質)をコードする遺伝子を見出し、該遺伝子中に存在するシグナル様配列(分泌シグナル)とαアミラーゼ遺伝子とを連結させた遺伝子をCupriavidus属に属する微生物に導入したものである。当該微生物によれば、澱粉分解活性を有する澱粉分解酵素であるαアミラーゼを細胞外に分泌させることが可能であるため、生澱粉をα化することなく資化でき、有効利用できる。本開示の微生物を用いた物質生産は、工業的な物質生産としても適している。 As for the microorganism of the present disclosure, the present inventors have found a gene encoding a protein secreted extracellularly (secretory protein) from genes possessed by microorganisms belonging to the genus Cupriavidus, and present the signal present in the gene. A gene in which a similar sequence (secretion signal) is linked to the α-amylase gene was introduced into a microorganism belonging to the genus Cupriavidus. According to the microorganism, since α-amylase, which is a starch-degrading enzyme having a starch-degrading activity, can be extracellularly secreted, raw starch can be assimilated without being converted to α and can be effectively used. The substance production using the microorganism of the present disclosure is also suitable for industrial substance production.
 本開示の微生物は、Cupriavidus属に属する微生物であれば、限定されるものではないが、ポリヒドロキシアルカノエートを合成すること、つまり、PHA合成能を有することが好ましい。Cupriavidus属に属する微生物の中でも、高いPHA合成能を有するため、Cupriavidus necatorが特に好ましい。 The microorganism of the present disclosure is not limited as long as it is a microorganism belonging to the genus Cupriavidus, but it is preferable to synthesize polyhydroxyalkanoate, that is, to have PHA synthesizing ability. Among microorganisms belonging to the genus Cupriavidus, Cupriavidus necator is particularly preferable because it has high PHA synthesizing ability.
 PHA合成能を有するCupriavidus属に属する微生物としては、PHA合成酵素遺伝子を本来的に有する野生株だけではなく、そのような野生株を人工的に突然変異処理して得られる変異株や、PHA合成酵素遺伝子を本来的に有しない微生物に対して遺伝子工学的手法により外来のPHA合成酵素遺伝子が導入された組み換え菌株であってもよい。 As a microorganism belonging to the genus Cupriavidus having PHA synthesizing ability, not only a wild strain originally having a PHA synthase gene but also a mutant strain obtained by artificially mutating such a wild strain, or PHA synthesis It may be a recombinant strain into which an exogenous PHA synthase gene has been introduced by a genetic engineering technique into a microorganism that does not originally have the enzyme gene.
 PHA合成能を有するCupriavidus属に属する微生物が、遺伝子工学的手法により外来のPHA合成酵素遺伝子が導入された組み換え菌株である場合、前記外来のPHA合成酵素遺伝子としては、例えば、Cupriavidus necator H16株が保有する配列番号2に記載するアミノ酸配列をコードするPHA合成酵素遺伝子、又は、該アミノ酸配列に対して85%以上の配列同一性を有し、且つ、PHA合成活性を有するポリペプチドをコードするPHA合成酵素遺伝子;並びにAeromonas caviaeが保有する配列番号3に記載するアミノ酸配列をコードするPHA合成酵素遺伝子、又は、該アミノ酸配列に対して85%以上の配列同一性を有し、且つ、PHA合成活性を有するポリペプチドをコードするPHA合成酵素遺伝子等が挙げられるが、これらに限定されず、その他のPHA合成酵素遺伝子も好適に利用出来る。なお、上記配列同一性は好ましくは90%以上であり、より好ましくは95%以上、特に好ましくは99%以上である。これらの中でも、PHAとしてポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(PHBHと称することがある)を合成活性を有するPHA合成酵素遺伝子が好ましい。PHBHは、Cupriavidus necatorに、Aeromonas caviae由来のPHA合成酵素遺伝子が導入された形質転換体により合成すればよい。 When the microorganism belonging to the genus Cupriavidus having PHA synthesizing ability is a recombinant strain into which an exogenous PHA synthase gene has been introduced by a genetic engineering method, as the exogenous PHA synthase gene, for example, the Cupriavidus necator H16 strain is A PHA synthase gene encoding the amino acid sequence described in SEQ ID NO: 2 or a PHA encoding a polypeptide having 85% or more sequence identity to the amino acid sequence and having PHA synthesis activity. Synthetic enzyme gene; and PHA synthase gene encoding the amino acid sequence of SEQ ID NO: 3 held by Aeromonas caviae, or having 85% or more sequence identity to the amino acid sequence, and having PHA synthetic activity Examples of the PHA synthase gene include a PHA synthase gene that encodes a polypeptide having: and other PHA synthase genes can be preferably used. The sequence identity is preferably 90% or more, more preferably 95% or more, and particularly preferably 99% or more. Among these, a PHA synthase gene having a synthetic activity of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (sometimes referred to as PHBH) as PHA is preferable. PHBH may be synthesized by a transformant in which the PHA synthase gene derived from Aeromonas caviae is introduced into Cupriavidus necator.
 本開示の微生物に導入された上記遺伝子は、Cupriavidus属に属する微生物由来の分泌シグナルが連結したαアミラーゼをコードするものである。 The above-mentioned gene introduced into the microorganism of the present disclosure encodes an α-amylase linked with a secretory signal derived from a microorganism belonging to the genus Cupriavidus.
 分泌シグナルとは、分泌シグナルペプチドをコードするDNA配列である。また、分泌シグナルペプチドとは、細胞内で合成されたタンパク質を細胞内膜外又は細胞外へ分泌させるために必要なシグナルペプチドである。 Secretory signal is a DNA sequence encoding a secretory signal peptide. In addition, the secretory signal peptide is a signal peptide necessary for secreting a protein synthesized inside the cell, outside the intracellular membrane or outside the cell.
 分泌シグナルは、Cupriavidus属に属する微生物由来の分泌シグナルであれば特に制限されない。例えばCupriavidus necator、Cupriavidus oxalaticus、Cupriavidus pauculus、Cupriavidus respiraculi、Cupriavidus taiwanensis及びCupriavidus metallidurans等のCupriavidus属に属する微生物由来の分泌シグナルが利用出来る。 The secretory signal is not particularly limited as long as it is a secretory signal derived from a microorganism belonging to the genus Cupriavidus. For example, secretion signals derived from microorganisms belonging to the genus Cupriavidus such as Cupriavidus necator, Cupriavidus oxalaticus, Cupriavidus pauculus, Cupriavidus respiraculi, Cupriavidus taiwanensis and Cupriavidus metallidurans can be used.
 αアミラーゼは、澱粉分解活性を有するαアミラーゼであればなんら制限されるものではなく、本開示の微生物に導入された上記遺伝子は、このようなαアミラーゼをコードしていればなんら制限されるものではない。 α-amylase is not limited as long as it is an α-amylase having a starch-degrading activity, and the gene introduced into the microorganism of the present disclosure is not limited as long as it encodes such α-amylase. is not.
 αアミラーゼをコードする遺伝子としては、例えばBacillus属、Streptococcus属、Panibacillus属、及びRhyzopus属の微生物由来のαアミラーゼをコードする遺伝子が挙げられる。これらの中でも、Streptococcus属の微生物由来のαアミラーゼをコードする遺伝子が好ましい。本開示の微生物が生澱粉を好適に分解可能となるためである。 Examples of the gene encoding α-amylase include genes encoding α-amylase derived from microorganisms of Bacillus genus, Streptococcus genus, Panibacillus genus, and Rhyzopus genus. Among these, a gene encoding an α-amylase derived from a microorganism of the genus Streptococcus is preferable. This is because the microorganism of the present disclosure can suitably decompose raw starch.
 Bacillus属に属する微生物由来のαアミラーゼをコードする遺伝子として、Bacillus stearothermophilus、及びBacillus amyloliquefaciens等の微生物由来のαアミラーゼをコードする遺伝子が挙げられる。 Examples of genes encoding α-amylase derived from microorganisms belonging to the genus Bacillus include genes encoding α-amylase derived from microorganisms such as Bacillus stearothermophilus and Bacillus amyloliquefaciens.
 Streptococcus属に属する微生物由来のαアミラーゼをコードする遺伝子として、Streptococcus bovis等の微生物由来のαアミラーゼをコードする遺伝子が挙げられる。 Examples of genes encoding α-amylase derived from microorganisms belonging to the genus Streptococcus include genes encoding α-amylase derived from microorganisms such as Streptococcus bovis.
 Paenibacillus属に属する微生物由来のαアミラーゼをコードする遺伝子として、Paenibacillus sp. 等の微生物由来のαアミラーゼをコードする遺伝子が挙げられる。 Examples of genes encoding α-amylase derived from microorganisms belonging to the genus Paenibacillus include genes encoding α-amylase derived from microorganisms such as Paenibacillus sp.
 Cupriavidus属に属する微生物由来の分泌シグナルとαアミラーゼをコードする遺伝子との「連結」は、分泌シグナルとαアミラーゼをコードする部分との直接的な結合であってよく、分泌シグナルペプチドとαアミラーゼをコードする部分との間に1又は2以上の塩基が含まれる間接的な結合であってよい。 The “ligation” between the secretory signal derived from a microorganism belonging to the genus Cupriavidus and the gene encoding α-amylase may be a direct binding between the secretory signal and the part encoding α-amylase, and the secretory signal peptide and α-amylase It may be an indirect bond containing one or more bases with the coding portion.
 Cupriavidus属に属する微生物由来の分泌シグナルが連結したαアミラーゼをコードする遺伝子を導入する方法としては、プラスミドベクターを用いてCupriavidus属に属する微生物に導入する方法や、ゲノムDNAに導入する方法などを用いることができる。プラスミドベクターを用いたCupriavidus属に属する微生物への導入は、一般的に行われている方法、例えば、電気導入法、カルシウム法等の任意の方法を用いて行うことができる。ゲノムDNAへの導入は、一般的に行われている方法、例えば、相同性組み換え、トランスポゾンを利用する方法、及びファージを利用する方法等の任意の方法を用いて行うことができる。 As a method for introducing a gene encoding an α-amylase to which a secretion signal derived from a microorganism belonging to the genus Cupriavidus is linked, a method of introducing into a microorganism belonging to the genus Cupriavidus or a method of introducing into a genomic DNA is used. be able to. Introduction into a microorganism belonging to the genus Cupriavidus using a plasmid vector can be performed using any method commonly used, for example, an electric introduction method, a calcium method and the like. The introduction into the genomic DNA can be carried out using any method commonly used, for example, homologous recombination, a method using a transposon, a method using a phage, or the like.
 プラスミドベクターは、Cupriavidus属に属する微生物由来の分泌シグナルが連結したαアミラーゼをコードする塩基配列を有するDNA断片を、pCUP2等のプラスミドベクターと連結することにより作製すればよい。 The plasmid vector may be prepared by ligating a DNA fragment having a nucleotide sequence encoding α-amylase to which a secretion signal derived from a microorganism belonging to the genus Cupriavidus is ligated with a plasmid vector such as pCUP2.
 本開示のCupriavidus属に属する微生物の培養条件は、当該微生物が育成可能な条件であればよいが、例えば、温度条件としては、20℃以上50℃以下、培養時間としては、10時間以上100時間以下程度であってよい。 The culture condition of the microorganism belonging to the genus Cupriavidus of the present disclosure may be any condition that allows the microorganism to grow. For example, the temperature condition is 20 ° C. or higher and 50 ° C. or lower, and the culture time is 10 hours or longer and 100 hours. It may be about the following.
 また、Cupriavidus属に属する微生物内に蓄積された物質は公知の方法により回収することができる。蓄積された物質がPHAである場合、例えば、次のような方法により回収することができる。Cupriavidus属に属する微生物の培養終了後、培養液から遠心分離器等で菌体を分離し、その菌体をメタノール等により洗浄し、乾燥させる。この乾燥菌体から、クロロホルム等の有機溶剤を用いてPHAを抽出する。このPHAを含んだ有機溶剤の溶液から、濾過等によって菌体成分を除去し、そのろ液にヘキサン等の貧溶媒を加えてPHAを沈殿させる。さらに、濾過や遠心分離によって上澄み液を除去し、乾燥させてPHAを回収すればよい。 Also, substances accumulated in microorganisms belonging to the genus Cupriavidus can be collected by a known method. When the accumulated substance is PHA, it can be recovered by the following method, for example. After the culture of the microorganism belonging to the genus Cupriavidus is completed, the cells are separated from the culture solution by a centrifuge or the like, and the cells are washed with methanol or the like and dried. PHA is extracted from the dried cells using an organic solvent such as chloroform. From the solution of the organic solvent containing PHA, bacterial components are removed by filtration or the like, and a poor solvent such as hexane is added to the filtrate to precipitate PHA. Further, the supernatant may be removed by filtration or centrifugation, and dried to recover PHA.
 本開示の微生物によれば、澱粉分解活性を有するαアミラーゼを細胞外に分泌させることが可能であるため、澱粉を分解し、有効に資化し得る。 According to the microorganism of the present disclosure, α-amylase having a starch-degrading activity can be secreted extracellularly, and thus starch can be decomposed and effectively assimilated.
 さらに、本開示の微生物がPHAを合成するCupriavidus属に属する微生物であれば、澱粉から直接PHAを合成できるため、省エネルギー、低コストでのPHA生産が可能になることが期待される。 Furthermore, if the microorganism of the present disclosure is a microorganism belonging to the genus Cupriavidus that synthesizes PHA, PHA can be directly synthesized from starch, and thus it is expected that PHA can be produced at low cost and energy saving.
 現在、環境への意識の高まりから非石油由来のプラスチックが注目されている。非石油来のプラスチックのうち、特にPHAは微生物が菌体内に産生及び蓄積される熱可塑性ポリエステルであって、生分解性を有しており、自然界の炭素循環プロセスに取り込まれることから生態系への悪影響が小さいと予想され、PHAの実用化が切望されている。そのため、PHAは、本開示の微生物を用いて生産される物質の好例の一つである。 Currently, non-petroleum-derived plastics are attracting attention due to increasing environmental awareness. Among non-petroleum-derived plastics, PHA, in particular, is a thermoplastic polyester that microorganisms produce and accumulate in the microbial cells, has biodegradability, and is incorporated into the natural carbon cycle process, so it enters the ecosystem. It is expected that the adverse effect of PHA will be small, and the practical application of PHA is earnestly desired. Therefore, PHA is one of the good examples of the substance produced using the microorganism of the present disclosure.
 本開示のCupriavidus属に属する微生物は、PHAの他、エタノール、ブタノール及びプロパノール等のアルコール類;乳酸、酢酸、アミノ酸及び核酸等の酸類、脂質類、並びに油脂類等の生産にも用いることができる。例えば、Cupriavidus malaysiensis(非特許文献7)やCupriavidus sp. USMAA1020(非特許文献8)を用いたPHAの生産例が報告されている。 The microorganism belonging to the genus Cupriavidus of the present disclosure can be used for the production of alcohols such as ethanol, butanol and propanol; acids such as lactic acid, acetic acid, amino acids and nucleic acids, lipids, and fats and oils as well as PHA. .. For example, PHA production examples using Cupriavidus malaysiensis (Non-patent document 7) and Cupriavidus sp.USMAA1020 (Non-patent document 8) have been reported.
 以下に実施例で本発明を詳細に説明するが、本発明はこれら実施例によって何ら制限されるものではない。 The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
 全体的な遺伝子操作は、Molecular Cloning (Cold Spring Harbor Laboratory Press (1989又は2001))の記載に従い行うことができる。また、遺伝子操作に使用する酵素、及びクローニング宿主等は、市場の供給者から購入し、その説明に従い使用することができる。なお、酵素としては、遺伝子操作に使用できるものであれば特に限定されない。 ∙ Overall genetic manipulation can be performed as described in Molecular Cloning (Cold Spring Harbor Laboratory Press (1989 or 2001)). The enzyme used for genetic manipulation, the cloning host and the like can be purchased from suppliers on the market and used according to the instructions. The enzyme is not particularly limited as long as it can be used for gene manipulation.
 以下の製造例、実施例、及び比較例で使用されるKNK005ΔphaZ1,2,6/nagEG793C,dR株(以下、「KNK005dZG株」と記載する)は、Cupriavidus necator H16株の染色体上にAeromonas caviae由来のPHA合成酵素遺伝子(配列番号3に記載のアミノ酸配列を有するPHA合成酵素をコードする遺伝子)が導入され、染色体上のPHA分解酵素遺伝子であるphaZ1,2,6遺伝子が欠失し、糖取込みに関するnagオペロン遺伝子のうち、nagE構造遺伝子の793番目の塩基であるGがCに置換され、さらにnagR遺伝子の開始コドンから終止コドンまでを欠失した形質転換微生物である。この形質転換微生物は、国際公開第2017/104722号に記載の方法に準じて作製することができる。 The KNK005ΔphaZ1,2,6 / nagEG793C, dR strain (hereinafter referred to as “KNK005dZG strain”) used in the following Production Examples, Examples, and Comparative Examples is Aeromonas caviae-derived on the chromosome of the Cupriavidus necator H16 strain. A PHA synthase gene (a gene encoding a PHA synthase having the amino acid sequence set forth in SEQ ID NO: 3) was introduced, and the phaZ1,2,6 gene, which is a PHA-degrading enzyme gene on the chromosome, was deleted to relate to sugar uptake In the nag operon gene, G, which is the 793th base of the nagE structural gene, is replaced with C, and the transformed microorganism has a deletion from the start codon to the stop codon of the nagR gene. This transformed microorganism can be produced according to the method described in WO 2017/104722.
 (製造例1)pCUP2-trc-amyA1535/KNK005dZG株の作製
 まず、プラスミドベクターの作製を行った。作製方法は以下のとおりである。合成オリゴDNAを用いたPCRにより、trcプロモーター、及びStreptococcus bovis 148株(NRIC 1535)に由来する分泌型αアミラーゼ(以下、「amyA1535」と記載する)のアミノ酸配列(配列番号1)をコードする塩基配列を有するDNA断片(配列番号4)を得た。得られたDNA断片を制限酵素EcoRI及びSpeIで消化した。このDNA断片を、国際公開公報2007/049716号公報に記載のプラスミドベクターpCUP2を制限酵素MunI及びSpeIで切断したものと連結し、プラスミドベクターpCUP2-trc-amyA1535を得た。なお、当該分泌型αアミラーゼとは、分泌シグナルペプチドを有するαアミラーゼである。
(Production Example 1) Preparation of pCUP2-trc-amyA1535 / KNK005dZG strain First, a plasmid vector was prepared. The manufacturing method is as follows. A nucleotide encoding the trc promoter and the amino acid sequence (SEQ ID NO: 1) of a secretory α-amylase derived from Streptococcus bovis 148 strain (NRIC 1535) (hereinafter referred to as “amyA1535”) by PCR using a synthetic oligo DNA. A DNA fragment having a sequence (SEQ ID NO: 4) was obtained. The obtained DNA fragment was digested with restriction enzymes EcoRI and SpeI. This DNA fragment was ligated with the plasmid vector pCUP2 described in WO2007 / 049716 cleaved with restriction enzymes MunI and SpeI to obtain a plasmid vector pCUP2-trc-amyA1535. The secretory α-amylase is an α-amylase having a secretory signal peptide.
 次に、プラスミドベクターpCUP2-trc-amyA1535をKNK005dZG株へ導入し、形質転換体pCUP2-trc-amyA1535/KNK005dZG株を得た。 Next, the plasmid vector pCUP2-trc-amyA1535 was introduced into the KNK005dZG strain to obtain a transformant pCUP2-trc-amyA1535 / KNK005dZG strain.
 プラスミドベクターの細胞への導入は以下のように電気導入によって行った。遺伝子導入装置はBiorad社製のジーンパルサーを用い、キュベットは同じくBiorad社製のgap0.2cmを用いた。キュベットに、コンピテント細胞400μlと発現ベクター20μlを注入してパルス装置にセットし、静電容量25μF、電圧1.5kV、抵抗値800Ωの条件で電気パルスをかけた。パルス後、キュベット内の菌液をNutrientBroth培地(DIFCO社製)で30℃、3時間振とう培養し、選択プレート(NutrientAgar培地(DIFCO社製)、カナマイシン100mg/L)で、30℃にて2日間培養して、生育してきた形質転換体pCUP2-trc-amyA1535/KNK005dZG株を取得した。 The introduction of the plasmid vector into the cells was carried out by electric introduction as follows. A gene pulser manufactured by Biorad was used as the gene introduction device, and a gap 0.2 cm also manufactured by Biorad was used as the cuvette. 400 μl of competent cells and 20 μl of expression vector were injected into a cuvette and set in a pulse device, and an electric pulse was applied under the conditions of a capacitance of 25 μF, a voltage of 1.5 kV and a resistance value of 800Ω. After the pulse, the bacterial solution in the cuvette was cultivated with shaking in Nutrient Broth medium (manufactured by DIFCO) at 30 ° C. for 3 hours, and then at 30 ° C. with a selection plate (Nutrient Agar medium (manufactured by DIFCO), 100 mg / L) at 30 ° C. After culturing for one day, the transformant pCUP2-trc-amyA1535 / KNK005dZG strain that had grown was obtained.
 (製造例2)pCUP2-trc-SPfliCamyA1535/KNK005dZG株の作製
 まず、プラスミドベクターの作製を行った。作製は以下のように行った。合成オリゴDNAを用いたPCRにより、trcプロモーター、及び分泌シグナルペプチドがCupriavidus necator H16株fliC遺伝子由来の分泌シグナルペプチドに置換されたamyA1535(SPfliCamyA1535)をコードする塩基配列を有するDNA断片(配列番号5)を得た。得られたDNA断片を制限酵素EcoRI及びSpeIで消化した。このDNA断片を、国際公開公報第2007/049716号公報に記載のプラスミドベクターpCUP2を制限酵素MunI及びSpeIで切断したものと連結し、プラスミドベクターpCUP2-trc-SPfliCamyA1535を得た。
(Production Example 2) Preparation of pCUP2-trc-SPfliCamyA1535 / KNK005dZG strain First, a plasmid vector was prepared. The production was performed as follows. By PCR using a synthetic oligo DNA, a trc promoter and a DNA fragment having a nucleotide sequence encoding amyA1535 (SPfliCamyA1535) in which the secretory signal peptide is replaced with the secretory signal peptide derived from the Cupriavidus necator H16 strain fliC gene (SEQ ID NO: 5) Got The obtained DNA fragment was digested with restriction enzymes EcoRI and SpeI. This DNA fragment was ligated with the plasmid vector pCUP2 described in WO 2007/049716 cleaved with restriction enzymes MunI and SpeI to obtain a plasmid vector pCUP2-trc-SPfliCamyA1535.
 次に、プラスミドベクターpCUP2-trc-SPfliCamyA1535を、製造例1と同様の方法で、KNK005dZG株へ導入し、形質転換体pCUP2-trc-SPfliCamyA1535/KNK005dZG株を得た。 Next, the plasmid vector pCUP2-trc-SPfliCamyA1535 was introduced into the KNK005dZG strain in the same manner as in Production Example 1 to obtain a transformant pCUP2-trc-SPfliCamyA1535 / KNK005dZG strain.
 (製造例3)pCUP2-trc-SPplcN4amyA1535/KNK005dZG株の作製
 まず、プラスミドベクターの作製を行った。作製は以下のように行った。合成オリゴDNAを用いたPCRにより、trcプロモーター、及び分泌シグナルペプチドがCupriavidus necator H16株plcN4遺伝子由来の分泌シグナルペプチドに置換されたamyA1535(SPplcN4amyA1535)をコードする塩基配列を有するDNA断片(配列番号6)を得た。得られたDNA断片を制限酵素EcoRI及びSpeIで消化した。このDNA断片を、国際公開公報第2007/049716号公報に記載のプラスミドベクターpCUP2を制限酵素MunI及びSpeIで切断したものと連結し、プラスミドベクターpCUP2-trc-SPplcN4amyA1535を得た。
(Production Example 3) Preparation of pCUP2-trc-SPplcN4amyA1535 / KNK005dZG strain First, a plasmid vector was prepared. The production was performed as follows. A DNA fragment having a nucleotide sequence encoding amyA1535 (SPplcN4amyA1535) in which the secretion signal peptide derived from the cupriavidus necator H16 strain plcN4 gene has been replaced by PCR by using a synthetic oligo DNA (PCR sequence number 6) Got The obtained DNA fragment was digested with restriction enzymes EcoRI and SpeI. This DNA fragment was ligated with a plasmid vector pCUP2 described in WO 2007/049716 cut with restriction enzymes MunI and SpeI to obtain a plasmid vector pCUP2-trc-SPplcN4amyA1535.
 次に、プラスミドベクターpCUP2-trc-SPplcN4amyA1535を、製造例1と同様の方法で、KNK005dZG株へ導入し、形質転換体pCUP2-trc-SPplcN4amyA1535/KNK005dZG株を得た。 Next, the plasmid vector pCUP2-trc-SPplcN4amyA1535 was introduced into the KNK005dZG strain in the same manner as in Production Example 1 to obtain a transformant pCUP2-trc-SPplcN4amyA1535 / KNK005dZG strain.
 (比較例1)KNK005dZG株による澱粉分解能試験
 種母培地の組成は、1w/v% Meat-extract、1w/v% Bacto-Trypton、0.2w/v% Yeast-extract、0.9w/v% NaHPO・12HO、0.15w/v% KHPOとした。
(Comparative Example 1) Starch-degrading test using KNK005dZG strain The composition of the seed mother medium was 1 w / v% Meat-extract, 1 w / v% Bacto-Trypton, 0.2 w / v% Yeast-extract, 0.9 w / v%. Na 2 HPO 4 · 12H 2 O and 0.15 w / v% KH 2 PO 4 .
 澱粉含有プレート培地の組成は、ニュートリエント寒天培地(Difco)に1w/v% コーンスターチを加えたものとした。 The composition of the plate medium containing starch was the nutrient agar medium (Difco) to which 1 w / v% corn starch was added.
 KNK005dZG株のグリセロールストック(50μL)を種母培地(5mL)に接種して培養温度30℃で24時間振とう培養し、得られた培養液を種母とした。 A glycerol stock (50 μL) of the KNK005dZG strain was inoculated into a seed medium (5 mL) and shake-cultured at a culture temperature of 30 ° C. for 24 hours, and the obtained culture solution was used as a seed mother.
 澱粉分解能試験は以下のように行った。滅菌水を用いてOD600=2.0に調整した種母培養液10μlを澱粉含有プレート培地(ニュートリエント寒天培地(Difco)に1w/v% コーンスターチ)にスポットし、30℃で3日間生育させた。生育したコロニーの周囲に、澱粉が分解されたことによるクリアゾーン(ハローとも称する)が観察されるか否かを判定した。また、クリアゾーンの直径が大きい方が、澱粉分解能が高く優れる。 The starch resolution test was performed as follows. 10 μl of seed culture broth adjusted to OD600 = 2.0 with sterilized water was spotted on a starch-containing plate medium (1 w / v% corn starch on nutrient agar medium (Difco)) and grown at 30 ° C. for 3 days .. It was determined whether or not a clear zone (also referred to as a halo) due to the decomposition of starch was observed around the grown colonies. In addition, the larger the diameter of the clear zone, the better the starch decomposing ability.
 その結果、本比較例において、クリアゾーンは観察されず、KNK005dZG株は澱粉分解能を示さなかった。結果は表1に示す。 As a result, in this comparative example, no clear zone was observed, and the KNK005dZG strain did not show starch decomposing ability. The results are shown in Table 1.
 (比較例2)pCUP2-trc-amyA1535/KNK005dZG株による澱粉分解能試験
 種母培地及び澱粉含有プレート培地の組成は、比較例1に記載のものと同様とした。製造例1で作製したpCUP2-trc-amyA1535/KNK005dZG株について、比較例1と同様の方法で培養及び澱粉分解能試験を行った。ただし、種母培地及び澱粉含有プレート培地は、カナマイシンを最終濃度100μg/mlとなるように添加した。
(Comparative Example 2) Starch-degrading test using pCUP2-trc-amyA1535 / KNK005dZG strain The composition of the seed mother medium and the starch-containing plate medium was the same as that described in Comparative Example 1. The pCUP2-trc-amyA1535 / KNK005dZG strain prepared in Production Example 1 was subjected to culture and starch degrading test in the same manner as in Comparative Example 1. However, kanamycin was added to the seed mother medium and the starch-containing plate medium so that the final concentration was 100 μg / ml.
 本比較例において、クリアゾーンは観察されず、pCUP2-trc-amyA1535/KNK005dZG株は澱粉分解能を示さなかった。結果は表1に示す。 In this comparative example, no clear zone was observed, and the pCUP2-trc-amyA1535 / KNK005dZG strain did not show starch degrading ability. The results are shown in Table 1.
 (実施例1)pCUP2-trc-SPfliCamyA1535/KNK005dZG株による澱粉分解能試験
 種母培地及び澱粉含有プレート培地の組成は、比較例1に記載のものと同様とした。製造例2で作製したpCUP2-trc-SPfliCamyA1535/KNK005dZG株について、比較例1と同様の方法で培養及び澱粉分解能試験を行った。ただし、種母培地及び澱粉含有プレート培地は、カナマイシンを最終濃度100μg/mlとなるように添加した。
(Example 1) Starch-degrading test using pCUP2-trc-SPfliCamyA1535 / KNK005dZG strain The composition of the seed mother medium and the starch-containing plate medium was the same as that described in Comparative Example 1. The pCUP2-trc-SPfliCamyA1535 / KNK005dZG strain prepared in Production Example 2 was subjected to culture and starch degrading test in the same manner as in Comparative Example 1. However, kanamycin was added to the seed mother medium and the starch-containing plate medium so that the final concentration was 100 μg / ml.
 本実施例においては、クリアゾーンが観察され、pCUP2-trc-SPfliCamyA1535/KNK005dZG株は澱粉分解能を示した。クリアゾーンの直径を測定した。結果は表1に示す。 In this example, a clear zone was observed, and the pCUP2-trc-SPfliCamyA1535 / KNK005dZG strain showed starch degrading ability. The diameter of the clear zone was measured. The results are shown in Table 1.
 (実施例2)pCUP2-trc-SPplcN4amyA1535/KNK005dZG株による澱粉分解能試験
 種母培地及び澱粉含有プレート培地の組成は、比較例1に記載のものと同様とした。製造例3で作製したpCUP2-trc-SPplcN4amyA1535/KNK005dZG株について、比較例1と同様の方法で培養及び澱粉分解能試験を行った。ただし、種母培地及び澱粉含有プレート培地は、カナマイシンを最終濃度100μg/mlとなるように添加した。
(Example 2) Starch-degrading test using pCUP2-trc-SPplcN4amyA1535 / KNK005dZG strain The composition of the seed mother medium and the starch-containing plate medium was the same as that described in Comparative Example 1. The pCUP2-trc-SPplcN4amyA1535 / KNK005dZG strain prepared in Production Example 3 was subjected to culture and starch degrading test in the same manner as in Comparative Example 1. However, kanamycin was added to the seed mother medium and the starch-containing plate medium so that the final concentration was 100 μg / ml.
 本実施例においては、クリアゾーンが観察され、pCUP2-trc-SPplcN4amyA1535/KNK005dZG株は澱粉分解能を示した。クリアゾーンの直径を測定した。結果は表1に示す。 In this example, a clear zone was observed, and the pCUP2-trc-SPplcN4amyA1535 / KNK005dZG strain showed starch degrading ability. The diameter of the clear zone was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 Cupriavidus属に属する微生物由来の分泌シグナルが連結した、αアミラーゼをコードする遺伝子を導入した実施例の微生物は、澱粉を分解できたため、澱粉を有効に資化し得ることが示された。 It was shown that the microorganism of the example into which the gene encoding α-amylase, in which a secretory signal derived from a microorganism belonging to the genus Cupriavidus was linked, was able to decompose starch, and thus can effectively assimilate starch.

Claims (5)

  1.  Cupriavidus属に属する微生物由来の分泌シグナルが連結した、αアミラーゼをコードする遺伝子を導入した、Cupriavidus属に属する微生物。 A microorganism belonging to the genus Cupriavidus, into which a gene encoding α-amylase, which is linked with a secretion signal derived from a microorganism belonging to the genus Cupriavidus, has been introduced.
  2.  前記αアミラーゼが、Streptococcus属に属する微生物由来のαアミラーゼである、請求項1に記載の微生物。 The microorganism according to claim 1, wherein the α-amylase is an α-amylase derived from a microorganism belonging to the genus Streptococcus.
  3.  前記Cupriavidus属に属する微生物が、ポリヒドロキシアルカノエートを合成する、請求項1又は2に記載の微生物。 The microorganism according to claim 1 or 2, wherein the microorganism belonging to the genus Cupriavidus synthesizes polyhydroxyalkanoate.
  4.  前記Cupriavidus属に属する微生物が、Cupriavidus necatorである、請求項1~3の何れか一項に記載の微生物。 The microorganism according to any one of claims 1 to 3, wherein the microorganism belonging to the genus Cupriavidus is Cupriavidus necator.
  5.  前記ポリヒドロキシアルカノエートが、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)である、請求項3又は4に記載の微生物。 The microorganism according to claim 3 or 4, wherein the polyhydroxyalkanoate is poly (3-hydroxybutyrate-co-3-hydroxyhexanoate).
PCT/JP2019/044316 2018-11-15 2019-11-12 Microorganism belonging to genus cupriavidus WO2020100888A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020555716A JPWO2020100888A1 (en) 2018-11-15 2019-11-12 Microorganisms belonging to the genus Cupriavidus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-214888 2018-11-15
JP2018214888 2018-11-15

Publications (1)

Publication Number Publication Date
WO2020100888A1 true WO2020100888A1 (en) 2020-05-22

Family

ID=70730299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044316 WO2020100888A1 (en) 2018-11-15 2019-11-12 Microorganism belonging to genus cupriavidus

Country Status (2)

Country Link
JP (1) JPWO2020100888A1 (en)
WO (1) WO2020100888A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804371A (en) * 2022-04-01 2022-07-29 安徽农业大学 Bioremediation method for heavy metal polluted environment
KR102609658B1 (en) * 2023-05-17 2023-12-06 코스맥스 주식회사 Cupriavidus metallidurans strain and its use for anti-glycation of skin and improving skin conditions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010296A1 (en) * 2006-07-21 2008-01-24 Kaneka Corporation Microorganism with replaced gene and process for producing polyester using the same
TW200918669A (en) * 2007-04-20 2009-05-01 Univ Yuan Ze Method for producing polyhydroxyalkanonate (PHAs) by microorganisms utilizing different carbon sources
JP2015171340A (en) * 2014-03-12 2015-10-01 東ソー株式会社 Recombinant hydrogen oxidizing bacteria and processes of protein production using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010296A1 (en) * 2006-07-21 2008-01-24 Kaneka Corporation Microorganism with replaced gene and process for producing polyester using the same
TW200918669A (en) * 2007-04-20 2009-05-01 Univ Yuan Ze Method for producing polyhydroxyalkanonate (PHAs) by microorganisms utilizing different carbon sources
JP2015171340A (en) * 2014-03-12 2015-10-01 東ソー株式会社 Recombinant hydrogen oxidizing bacteria and processes of protein production using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHARLES UGWU, HIROO UCHIYAMA, HIDEKI AOYAGI, HIDEO TANAKA, YUTAKA TOKIWA: "Microbial Production of Poly(3-hydroxybutyrate) from Rice", ANNUAL MEETING OF THE JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 2017; MARCH 24TH TO 27TH, 2017, 2007, pages 13, XP009521222 *
KAZUYOSHI SUNAHARA: "Analysis of biopolyester-producing bacterium of ralstonia eutropha that is amylase transgenic strain", PROCEEDINGS OF THE ENZYME ENGINEERING WORKSHOP; NOVEMBER 16, 2018, vol. 80, 16 November 2018 (2018-11-16), pages 61, XP009521223 *
SHASHI KANT BHATIA ET AL: "Starch based polyhydroxybutyrate production in engineered Escherichia coli", BIOPROCESS AND BIOSYSTEMS ENGINEERING, vol. 38, no. 8, 28 March 2015 (2015-03-28), pages 1479 - 1484, XP035524018, ISSN: 1615-7591, DOI: 10.1007/s00449-015-1390-y *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804371A (en) * 2022-04-01 2022-07-29 安徽农业大学 Bioremediation method for heavy metal polluted environment
KR102609658B1 (en) * 2023-05-17 2023-12-06 코스맥스 주식회사 Cupriavidus metallidurans strain and its use for anti-glycation of skin and improving skin conditions

Also Published As

Publication number Publication date
JPWO2020100888A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
Mazzoli et al. Towards lactic acid bacteria-based biorefineries
Nguyen et al. Production of L-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli
Cui et al. Direct conversion of inulin into single cell protein by the engineered Yarrowia lipolytica carrying inulinase gene
Wang et al. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose
Park et al. Bacillus subtilis as a robust host for biochemical production utilizing biomass
KR101576186B1 (en) Kluyveromyces marxianus deficient in the ethanol fermentation and use thereof
CN107709540A (en) Novel warehouse Delhi A Ziweishi Pichia pastoris strains NG7 and application thereof
WO2020100888A1 (en) Microorganism belonging to genus cupriavidus
F Bosma et al. Sustainable production of bio-based chemicals by extremophiles
US9206445B2 (en) Biocatalysts with enhanced inhibitor tolerance
WO2014109360A1 (en) Method for highly efficiently producing heterologous protein
Alkotaini et al. Potential of Bacillus megaterium for production of polyhydroxyalkanoates using the red algae Gelidium amansii
CN111088177B (en) Construction and application of heat-resistant yeast engineering bacteria for producing glycerol under high-temperature aerobic condition
KR20140145397A (en) Recombinant microorganisms producing 1,3-propanediol and the method for preparing 1,3-propanediol using the same
KR20140147798A (en) Butanol fermentation using acid pretreated biomass
US20100093060A1 (en) Growth of microorganisms in cellulosic media
Werlang et al. d-lactate production from Spirulina (Arthrospira platensis) biomass using lactogenic Escherichia coli
EP4023759B1 (en) Systems for co-culture of ralstonia eutropha strains
JP2015012852A (en) Method of producing biofuel comprising microalgae biomass as raw material
JP2015502168A (en) Bacteria having a reconstituted transcription unit and use thereof
US20150368678A1 (en) Production of butanol
Ghosh et al. Use of fermentation technology for value-added industrial research
KR101666266B1 (en) 13- 13- - a method for the production of 13-hydroxy-fatty acid by using lactobacillus acidophilus 13-linoleate hydratase and -decalactone from the hydroxy fatty acid by using waltomyces lipofer and a composition therefor
Abd Alsaheb et al. Production D-Lactic Acid from Cassava Starch by Lactobacillus Delbruekii In The Semi Industrial Scale 16-L Bioreactor
KR101275855B1 (en) Oleate hydratase and method for the production of 10-hydroxystearic acid by the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883685

Country of ref document: EP

Kind code of ref document: A1