TW200918669A - Method for producing polyhydroxyalkanonate (PHAs) by microorganisms utilizing different carbon sources - Google Patents

Method for producing polyhydroxyalkanonate (PHAs) by microorganisms utilizing different carbon sources Download PDF

Info

Publication number
TW200918669A
TW200918669A TW96113888A TW96113888A TW200918669A TW 200918669 A TW200918669 A TW 200918669A TW 96113888 A TW96113888 A TW 96113888A TW 96113888 A TW96113888 A TW 96113888A TW 200918669 A TW200918669 A TW 200918669A
Authority
TW
Taiwan
Prior art keywords
phas
acid
carbon source
gene
medium
Prior art date
Application number
TW96113888A
Other languages
Chinese (zh)
Other versions
TWI374190B (en
Inventor
Chih-Ching Chien
Chang-Chieh Chen
Yi-Ming Sun
Shih-Hsu Kang
Ling-Yi He
Original Assignee
Univ Yuan Ze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Yuan Ze filed Critical Univ Yuan Ze
Priority to TW96113888A priority Critical patent/TW200918669A/en
Publication of TW200918669A publication Critical patent/TW200918669A/en
Application granted granted Critical
Publication of TWI374190B publication Critical patent/TWI374190B/zh

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A method for producing polyhydroxyalkanonate (PHAs) by microorganisms utilizing different carbon sources, which performed by utilizing a gene transfer technology to transfer a PhbCAB operon gene of Ralstonia eutropha capable of synthesizing poly 3 - hydroxybutyrate (PHB) by carbohydrate metabolism, into a microorganism belonging to genus Aeromonas, having amylase and capable of growing by utilizing starch, in which the PhbCAB operon gene has a sequence of SEQ ID NO.1;the genetically recombined Aeromonas can use hydrocarbons and carbohydrates as carbon sources simultaneously when appropriate culture medium and carbon sources are provided so as to synthesis and cumulate Polyhydroxyalkanoates (PHAs).

Description

200918669 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種可使微生物利用不同碳源以合成聚羥基烷酸(PHAs) 之方法’特別是指一種利用基因轉殖技術,將可利用醣類代謝以合成聚3-&基丁酸酿(PHB)的;?M)C45operon基因,轉殖到含有澱粉酶可利用澱粉生 長的產氣單胞菌屬之微生物内’並誘導該微生物以不同碳源合 成聚經基院酸(PHAs)之方法。 【先前技術】 近年來,由於環保意識的抬頭,習用不可分解的石化塑膠製品,對環 境的破壞及資源的浪費,已成為各界關注並亟欲解決的議題;因此,尋求 低成本、可分解的替代材料是目前各方所努力的目標。 微生物為了適應自然界多變的環境,在不利於其生長的惡劣條件下, 通常會在體内產生、累積特定的能源物質而得以存活下去,在這些物質當 中,聚羥基烷酸(Polyhydroxyalkanoates,PHAs)因為具有生物相容性 (biocompatble)、生物可分解性(bi〇degradable)及可塑性㈣脑明,其物理 性質類似於塑膠產品(如:聚乙烯p〇Iyeihylene),因此可作為替代石化塑夥的 生物塑膠祕’以解決龍石化塑膠不能被分解所造成的環境污染問題, 並可進-步研發成為高價值的生醫材料’以供生物卫程和生物醫學界應用。 聚絲烧酸(PHAs)這種聚酯類是某些細菌用以儲存能量的形式,當這 些細菌處於碳源過剩且缺乏某一類營養素(例如:N、p、s、〇或等) 的環境時,便會在城㈣積基鎌(PHAs),⑽作碳源並儲§存能 200918669 量。目前已發現可產生聚羥基烷酸(PHAs)的細菌約有150種,這些細菌 不限於同一屬(Genera),且含括格蘭式陽性菌以及格蘭式陰性菌。 聚經基烧酸(PHAs)的結構如式(I)所示,其側鏈R可為不同碳數的烧 基,而形成不同的聚羥基烷酸(PHAs);當側鏈碳數介於3_5個碳時,為短碳 鏈的聚經基烧酸(short-chain-length,scl-PHAs);而側鏈碳數在6-10個碳時, 則為中長碳鏈的聚經基烧酸(medium-chain-length,mcl-PHAs)。 R Ο200918669 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for synthesizing polyhydroxyalkanoic acid (PHAs) by utilizing different carbon sources by microorganisms, particularly a technique utilizing gene transfer technology, which will be available Carbohydrate metabolism to synthesize poly-3-&-butyric acid (PHB); ?M) C45operon gene, which is transferred to microorganisms containing Aeromonas genus containing amylase-producing starch and induces the microorganism A method for synthesizing polybasic acid (PHAs) from different carbon sources. [Prior Art] In recent years, due to the rise of environmental awareness, the use of non-decomposable petrochemical plastic products, environmental damage and waste of resources has become an issue of concern and ambition; therefore, seeking low-cost, decomposable Alternative materials are currently the goal of all parties. In order to adapt to the changing environment of nature, microorganisms usually survive and produce specific energy substances in the body under adverse conditions, in which polyhydroxyalkanoates (PHAs) Because of its biocompatibility, biodepatibility, and plasticity, its physical properties are similar to those of plastic products (such as polyethylene p〇Iyeihylene), so it can be used as an alternative to petrochemical plastics. Bio-plastics 'to solve the environmental pollution problems caused by the decomposition of Long Petrochemical plastics, and can be further developed into high-value biomedical materials' for bio-defense and biomedical applications. Polyesters (PHAs) are polyesters that are used by certain bacteria to store energy. When these bacteria are in an environment where carbon sources are excessive and lack certain nutrients (eg, N, p, s, sputum, etc.) At that time, it will be used as a carbon source in the city (4), and as a carbon source, and stored in the amount of 200918669. It has been found that there are about 150 kinds of bacteria which can produce polyhydroxyalkanoic acid (PHAs), and these bacteria are not limited to the same genus (Genera), and include Gram-positive bacteria and Gram-negative bacteria. The structure of the polybasic acid (PHAs) is as shown in the formula (I), and the side chain R may be a different carbon number of the alkyl group to form different polyhydroxyalkanoic acids (PHAs); when the side chain carbon number is between When 3_5 carbons, it is a short-chain-length (scl-PHAs); when the side chain carbon number is 6-10 carbons, it is a medium-long carbon chain. Medium-chain-length (mcl-PHAs). R Ο

I II _ Ο - 0 Η - (C H A 0 — — 00-3000 (I) n = 1, R = hydrogen, PHAs = poly(3-hydroxypropionate), P(3HP) R = methyl, PHAs = poly(3-hydroxybutyrate), P(3HB) R = ethyl, PHAs = poly(3-hydroxyvalerate), P(3HV) R = propyl, PHAs = poly(3-hydroxycaproate), P(3HC) R = butyl, PHAs = poly(3-hydroxyheptanoate), P(3HH) R = pentyl, PHAs = poly(3-hydroxyocatanoate), P(3H0) R = hexyl, PHAs = poly(3-hydroxynonanoate), P(3HN) R = heptyl, PHAs = poly(3-hydroxydecanoate), P(3HD) R = octyl, PHAs = poly(3-hydroxyundecanoate), P(3HUD) R = nonyl, PHAs = poly(3-hydroxydodecanoate), P(3HDD) n = 2, R = hydrogen, PHAs = poly(4-hydroxybutyrate), P(4HB) n = 3, R = hydrogen, PHAs = poly(5-hydroxyvalerate), P(5HV) 當使用不同碳源的培養基時,菌體内會經由不同的代謝途徑來合成不 同側鏈長度的聚羥基烷酸;其中,較常見的結構有聚3-羥基丁酸輯 200918669 [Poly(3-hydroxybutyrate), P(3HB)或稱 PHB],係以 3-經基 丁酸醋 (3-hydroxybutyrate, 3HB)為單體的聚合物;以及聚經基丁酸醋-經基戊酸S旨共 聚物[卩〇1;7(117(1]'〇乂>^1^加6-117(11*〇乂}^16阳16),?116\/'],係為3-經基丁酸西旨 (3HB)與3-經基戊酸ί旨(3-hydrovalerate,3HV)兩種單體形成的共聚合物。 如圖1所示,在微生物體内,合成聚羥基烷酸(PHAs)的代謝途徑有三 種’途徑1 :醣類的降解(glycolysis);途徑2 :脂肪酸的降解(Fatty acids degradation);以及途徑 3 :脂肪酸的合成(Fatty acids biosynthesis)。 在途徑1中,微生物會利用醣類作為碳源,將多醣類經過醣解作用所 形成的乙酿輔酶A (Acetyl-CoA),利用β-酮基硫解酶(β-ketothiolase,PhaA) 作用形成乙醯乙醢辅酶A(Acetoacetyl CoA),再由乙醯乙酿辅酶A還原酶 (Acetoacetyl-CoA reductase,PhaB)將乙醯乙醯輔酶 A (Acetoacetyl CoA)還 原為(7?)-3-說基丁醯輔酶A [(/?)-3-Hydroxybutyryl- CoA],最後,再經由 PHB聚合酶(PHB p〇lymerase, PhaC)作用聚合成短碳鏈的聚3-羥基丁酸酯 (PHB) 〇 對多數菌種而έ,PHB的合成主要由β-酮基硫解酶(β-ketothiolase)、乙 醯乙醯輔酶Α還原酶(Acetoacetyl-CoA reductase)以及ΡΗΒ聚合酶(ΡΗΒ polymerase)三種酵素作用而成’這三種酵素分別由如μ、灿他、助6C基因 所編碼合成’ PHB合成基因操縱子(亦即户;^CAB 〇per〇n)如圖2所示,基因 排列順序為户祕、坤妨,驅動子(pr〇m〇ter,圖2中“p”標示處)則位 於phbC基因的JL游端。 如圖1所示,在途從2中,微生物[如:假單胞菌屬會利 200918669I II _ Ο - 0 Η - (CHA 0 – 00-3000 (I) n = 1, R = hydrogen, PHAs = poly(3-hydroxypropionate), P(3HP) R = methyl, PHAs = poly(3- Hydroxybutyrate), P(3HB) R = ethyl, PHAs = poly(3-hydroxyvalerate), P(3HV) R = propyl, PHAs = poly(3-hydroxycaproate), P(3HC) R = butyl, PHAs = poly(3 -hydroxyheptanoate), P(3HH) R = pentyl, PHAs = poly(3-hydroxyocatanoate), P(3H0) R = hexyl, PHAs = poly(3-hydroxynonanoate), P(3HN) R = heptyl, PHAs = poly( 3-hydroxydecanoate), P(3HD) R = octyl, PHAs = poly(3-hydroxyundecanoate), P(3HUD) R = nonyl, PHAs = poly(3-hydroxydodecanoate), P(3HDD) n = 2, R = hydrogen , PHAs = poly(4-hydroxybutyrate), P(4HB) n = 3, R = hydrogen, PHAs = poly(5-hydroxyvalerate), P(5HV) When using a medium with different carbon sources, the bacteria will be different The metabolic pathway to synthesize polyhydroxyalkanoic acids of different side chain lengths; among them, the more common structure is poly-3-hydroxybutyric acid 200918669 [Poly(3-hydroxybutyrate), P(3HB) or PHB], which is 3 - Polymerization of monomers via 3-hydroxybutyrate (3HB) And polybutyric acid vinegar-based valeric acid S-copolymer [卩〇1; 7(117(1]'〇乂>^1^ plus 6-117(11*〇乂}^16 yang 16), ?116\/'], is a copolymer formed by 3-mercaptoic acid (3HB) and 3-hydrovalerate (3HV) monomers. As shown in Figure 1, in the microbial organism, the metabolic pathways for the synthesis of polyhydroxyalkanoic acid (PHAs) have three 'pathway 1: glycolysis; pathway 2: fatty acid degradation (Fatty acids degradation); and pathway 3 : Fatty acids biosynthesis. In Route 1, the microorganisms use sugar as a carbon source, and the polysaccharides are subjected to glycolytic hydrolysis to form Acetyl-CoA, which utilizes β-ketothiolase (PhaA). The effect is to form Acetoacetyl CoA, and then Acetoacetyl CoA reductase (PhaB) is used to reduce Acetoacetyl CoA to (7?)-3. - Said ketidine coenzyme A [(/?)-3-Hydroxybutyryl-CoA], and finally, polymerized into a short carbon chain poly-3-hydroxybutyrate via PHB polymerase (PHB p〇lymerase, PhaC) PHB) 〇 For most species, the synthesis of PHB is mainly composed of β-ketothiolase, Acetoacetyl-CoA reductase and ΡΗΒpolymerase. The three enzymes act as 'these three enzymes are encoded by the μ, Canta, and 6C genes respectively. 'PHB synthetic gene operon (ie, household; ^CAB 〇per〇n) as shown in Figure 2, gene order For the household secret, Kun, the driver (pr〇m〇ter, labeled "p" in Figure 2) is located in the JL swim of the phbC gene. As shown in Figure 1, in the path from 2, microorganisms [eg: Pseudomonas Huili 200918669

用脂肪酸作為碳源,脂肪酸經由β-氧化作用(β-oxidation)降解為短碳鏈的脂 肪酸單體,每次降解皆減少2個碳,形成不同的中間產物:醯輔酶AUsing fatty acids as a carbon source, fatty acids are degraded into short-chain fatty acid monomers via β-oxidation, and each degradation is reduced by 2 carbons to form different intermediates: 醯CoA

• (acyl-CoA)、脂醯輔酶 A (enoyl-CoA)、〇S>3-羥基脂醯輔酶 A • [⑹-3-hydroxyacyl-CoA]、3-酮醯基輔酶 A (3-ketoacyl-CoA);中間產物脂醯 輔酶 A (enoyl-CoA)、⑶-3-經基脂醯輔酶 A [(<S)-3-hydroxyacyl-CoA]以及 3-酮醯基輔酶A (3-ketoacyl-CoA)再個別經由不同的酵素[分別為:脂醯輔酶a 水合酶(enoyl-CoA hydratase)、表異構酶(epimerase)、酮醯基輔酶A還原酶• (acyl-CoA), enoyl-CoA, 〇S> 3-hydroxyliposide coenzyme A • [(6)-3-hydroxyacyl-CoA], 3-ketoacylase A (3-ketoacyl- CoA); intermediates lipid oxime coenzyme A (enoyl-CoA), (3)-3-lipid 醯 coenzyme A [(<S)-3-hydroxyacyl-CoA], and 3-ketooxime enzyme A (3-ketoacyl) -CoA) by different enzymes separately [enoyl-CoA hydratase, epimerase, ketone oxime A reductase

C (Moacyi-CoA reductase)],將之催化形成⑻-3·羥基脂醯辅酶AC (Moacyi-CoA reductase)], which is catalyzed to form (8)-3·hydroxylipid coenzyme A

[⑻-3-hydroxyacyl-CoA],最後,經由基因所編碼合成的PHA聚合酶 (PHApolymerase,PhaC)催化形成中長碳鏈的聚羥基烷酸(mcl_pHAs)。 如圖1所示,在途徑3中,微生物會利用醣類作為碳源,經過脂肪酸 生合成途徑’產生一中間產物A3-羥基脂醯-ACP (/?-3-hydrmyacyl_A〇V 再經由;基因所編碼合成的輔酶a轉醯基酶(c〇A transacylase)催化,形 成混合形態的中長碳鏈的聚經基院酸(mcl_PHAs)。 G 峨生魅縣錄賊(PHAs)在工f上大量應科,培養基碳源的 選用將是成本考量的-大因素;在制的醱酵生產程中,碳水化合物為 常被選用之相對廉價的基質,其巾’麟類更是可賴許多農產廢棄物中 得到的廉價補。脑’目前雜有上百種不_微生物可以累積聚窥基 炫酸(PHAs),但在培養基制是碳源的選擇上仍錢纽制,大多無法有 效利用殿粉作為產生聚羥基烷酸(PHAs)的碳源,其中不乏包括利用基因重 組之微生物,如:基因重組大腸桿菌等。目前也有許多研究著重於利用廉 200918669 價碳源,如:農產廢棄物或甚至以光合作用利用二氧化碳來合成聚羥基烷 酸(PHAs),但由於均受限於微生物本身之生理特性,而無法得到良好之產 率’因此,國内現階段並無法將利用微生物生產聚經基烧酸(ρΗΑ_技術, 直接應用到工業生產的規模。 具有澱粉酶而能利用澱粉生長的微生物,如:桿菌屬及產氣 單胞菌屬中的許多菌種,均是已知具有產生胞外澱粉酶之微生 物,這些微生物在利用澱粉時,會先將之水解為葡萄糖再行利用;而此二 fe屬中有_夕微生物,如.巨大芽胞桿菌(及如·"⑽與水生產氣 單胞菌如办0/?Μα)等’亦可在體内累積聚羥基烷酸(PHAs);儘管 如此,這些菌種的野生菌株在利用澱粉作為碳源生產聚羥基烷酸(pHAs) 時’其效率卻遠低於可以運用於工業生產的程度。 根據文獻記載,產氣單胞菌屬(Jer〇WiWay)均是以碳氫化合物或脂肪酸 (如:月桂酸等)作為碳源,來合成並累積中長碳鏈的聚羥基烷酸 (mcl-PHAs);由於產氣單胞菌屬(deTOmonos)含有胞外澱粉酶,能夠利用澱 粉作為碳源生長,在胞外先將澱粉水解為葡萄糖後,再利用葡萄糖來增加 其細胞數目(cell mass);然而,以碳水化合物(包括澱粉)作為碳源時,該菌 屬所累積的聚羥基烷酸(PHAs)數量極少,甚至可被忽略。產氣單胞菌屬 具有活性極強之澱粉酶,可以有效的代謝澱粉,但卻無法利用 澱粉來合成聚羥基烷酸(PHAs),這在工業應用上實為一大缺憾。 微生物如如ew⑽尸/ζα H16能利用葡萄糖為碳源累積聚3_羥基丁 酸酯(PHB) ’然而兄H16生長較緩慢,其PHB產率低,且無法利 200918669 用澱粉這種廉價碳源;Wang及Lee於1997年曾報導(Wang F. and Lee S Υ.[(8)-3-hydroxyacyl-CoA] Finally, a polyhydroxyalkanoic acid (mcl_pHAs) which forms a medium-long carbon chain is catalyzed by a PHA polymerase (PHApolymerase, PhaC) synthesized by a gene. As shown in Figure 1, in pathway 3, microorganisms use carbohydrates as a carbon source to produce an intermediate product, A3-hydroxylipid-ACP (/?-3-hydrmyacyl_A〇V, via the fatty acid biosynthesis pathway; The encoded synthetic coenzyme a thiolase (c〇A transacylase) catalyzes the formation of a medium-long carbon chain poly-base acid (mcl_PHAs) in a mixed form. G 峨 魅 县 县 县 县 县 县 县 县A large number of subjects, the choice of medium carbon source will be a cost factor - the big factor; in the process of fermentation, carbohydrate is a relatively inexpensive substrate often used, the towel 'Lin class is more dependent on many farmers The cheap supplements obtained in the production of waste. The brain is currently mixed with hundreds of non-microorganisms to accumulate polypsylic acid (PHAs), but the choice of the medium is a carbon source, and most of them cannot be effectively utilized. As a carbon source for the production of polyhydroxyalkanoic acid (PHAs), there are many microorganisms including genetic recombination, such as recombinant Escherichia coli, etc. There are also many studies focusing on the use of inexpensive 200918669 carbon sources, such as agricultural waste. Photosynthesis Carbon dioxide is used to synthesize polyhydroxyalkanoic acid (PHAs), but since it is limited by the physiological characteristics of the microorganism itself, it cannot obtain good yields. Therefore, it is impossible to produce poly-based sulphuric acid by microorganisms at this stage in China. _Technology, directly applied to the scale of industrial production. Microorganisms that can grow with starch using amylase, such as: Bacillus and many species of Aeromonas, are known to produce extracellular amylase Microorganisms, when these microorganisms use starch, they will be hydrolyzed into glucose for further use; and the two genus have _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Such as 0 /? Μ α), etc. can also accumulate polyhydroxyalkanoic acid (PHAs) in vivo; however, wild strains of these strains use starch as a carbon source to produce polyhydroxyalkanoic acid (pHAs) However, it is far below the extent that it can be used in industrial production. According to the literature, Jer〇WiWay is synthesized and accumulated by using hydrocarbons or fatty acids (such as lauric acid) as carbon sources. Medium and long carbon chain Polyhydroxyalkanoic acid (mcl-PHAs); since detomonobacteria (deTOmonos) contain extracellular amylase, it can grow with starch as a carbon source, and then hydrolyze starch to glucose in the extracellular region, then use glucose to increase Its cell mass; however, when carbohydrates (including starch) are used as a carbon source, the number of polyhydroxyalkanoic acids (PHAs) accumulated by the genus is extremely small and can even be ignored. Aeromonas has The highly active amylase can effectively metabolize starch, but it cannot use starch to synthesize polyhydroxyalkanoic acid (PHAs), which is a big drawback in industrial applications. Microorganisms such as ew(10) corpse/ζα H16 can utilize glucose. Cumulative poly(3-hydroxybutyrate) (PHB) for carbon sources. However, the growth of H16 is slower, its PHB yield is low, and it is not possible to use the cheap carbon source of starch in 200918669; Wang and Lee reported in 1997 (Wang F. and Lee S Υ.

Production of poly ( 3-hydroxybutyrate ) by fed-batch culture of . filamentation-suppressed recombinant Escherichia coli. Appl. Em. Microbiol 1997· 63 :4765·9·) ’ 將 e妨Ό/7/ζα HI6 合成 PHB 之相關基因 operon轉瘦進入大腸桿菌(瓦co/〇 ’轉殖後之大腸桿菌便能利用葡萄糖合成 PHB ’然而該轉殖大腸桿菌亦無法利用澱粉作為碳源產生ρΗβ。 由此可見,上述習用以微生物生產聚羥基烷酸(PHAs)的方法仍有諸多 f 缺失,實非一良善之設計者,而亟待加以改良。 本案發明人鑑於上述習用以微生物生產聚羥基烷酸(PHAs)的方法所衍 生的各項缺點,乃亟思加以改良創新,並經多年苦心孤詣潛心研究後,終 於成功研發完成本件一種可使微生物利用不同碳源以合成聚羥基烷酸 (PHAs)之方法。 【發明内容】 本發明之目的即在於提供一種可使微生物利用不同碳源以合成聚羥基 烷酸(PHAs)之方法’將原本無法利用碳水化合物作為碳源合成聚羥基烷酸 (PHAs)之微生物’利用基因轉殖方法,提供合成聚羥基烷酸(pHAs)之另一 代謝途徑’而成為可利用碳水化合物作為碳源以產生聚羥基烷酸(pHAs)2 微生物。 本發明之次一目的係在於提供一種可使微生物利用不同碳源以合成聚 备基烧酸(PHAs)之方法,除了利用基因轉殖方法,使轉殖之微生物可以碳 水化合物作為碳源合成聚3_羥基丁酸酯(pHB)之外,也可利用碳氫化合物作 200918669 為碳源合成中長碳鏈的聚經基貌酸(mcl_PHAs)。 由於可產生胞外澱粉酶之產氣單胞菌屬如卿㈣在利用澱粉時,必 .先將祕水解成葡萄糖,因此,本案發明人係將触Η16菌 .株中可利用醣類代謝以合成聚3-經基丁酸醋(ρηβ)之基因;operon ϋ、土因序列如SEQH)NO: 1戶斤示)轉殖至產氣單胞菌屬⑷這類含 有胞外殿粉酶,能夠彻作為碳源生長之_中,使基因重組後帶有 P 〇Per〇n基因之產氣單胞菌屬(Jeromomw)細菌,可利用碳水化合物 (:(例如.殿粉)作為碳源,合成並累積大量的聚I經基丁酸醋阳%而產氣 早胞菌屬細菌本身可利用碳氫化合物或脂肪酸,合成包括聚羥 基己酸醋(Polyhydroxyhexanoate,PHHx)等中長碳鏈的聚羥基烷酸 (mcl-PHAs)的能力依舊存在,因此本發明所提供之微生物,在合成聚絲院 S4PHAs)時’不但具有基質選擇之優勢,也有錢不同組狀聚經基烧酸 (PHAs)的能力。 可達成上述發明目的之一種可使微生物利用不同碳源以合成聚羥基烷 ί, 酸(PHAs)之方法,包括有: (1) 提供一可利用澱粉生長之產氣單胞菌屬⑽似)微生物; (2) 提供一具有基因的DNA構築物; (3) 將該DNA構築物轉殖到該產氣單胞菌微生物體内, 得到一可利用不同碳源以合成聚羥基烷酸(PHAs)之微生物; (4) 提供(3)所述之微生物一適當培養基及碳源,以合成聚羥基烷酸 (PHAs) 〇 200918669 其中該基因係為合成聚3-羥基丁酸酯(PHB)之相關基因,該基 因係選自仙/对〇«/aewir〇p/zaH16菌株,具有如SEQK)NO: 1之序列。 其中該碳源為碳水化合物,該碳水化合物為澱粉或葡萄糖。 其中該碳源為碳氫化合物,該碳氫化合物為月桂酸。 其中該培養基為M9基礎培養基、LB培養基、YT培養基、2xYT培養 基或1/2ΥΤ培養基等。 【實施方式】 實施例一 試驗菌株及operon基因片段的製備 試驗菌株為產氣單胞菌屬之菌株Jeromo聰/BCRC13018 (亦 即ATCC7966),係購自食品所。 operon基因係選殖自及H16菌株,其序列如 SEQ ID NO: 1所示’該基因乃位於pBHR68質體中。爲了將operon 基因轉殖到菌株中,以限制酶也wHI及所^dm將 pBHR68質體上帶有operon基因序列的片段(約5 2 kb)切下,選殖 到具有廣泛宿主範圍的PRK415 (TV)載體,而得到pRHBj質體;由於 如ramo娜/^菌株本身已具有四環黴素(tetracydine,Tc)的抗性 (Tc>因此,以限制酶B_HUfpUC4K質體上所帶有的康黴素(ka_ydn, Km)抗藥基因片段(Km1)切下,選殖到ρΚΗΒ] f體中,得到帶有 operon基因序列及康黴素(Km)抗藥基因(Km1)的pRHB—2質體,pRHB_2質 體圖譜如圖3所示。 12 200918669 實施例二 將operon基因轉殖到產氣單胞菌dmwwwias 内 • 在本實施例中,以Jerowowos· BCRC13018菌株(以下簡稱 . Aeromonas hydrophila 菌特i)作為基因轉殖之诌標,Aeromonas hydrophila 菌 株係購自食品所。 I. Aeromonas ΛγώνφΜα 菌株勝任細胞(Competent cell)的製作 將3 ml Jeramowos /7_y<ira/?Ma菌株之菌液接種於裝有150 ml LBB培養 f ί 基的500 ml錐形瓶中(LBB培養基的配方為:1〇 g/L胰化蛋白(Tiyptone),5 g/L 酵母萃取物(Yeast extract),5 g/L 氯化鈉(NaCl),pH 7.35〜7.4),於 3〇t 下’以200 rpm震盪培養至〇D_值為0.4〜0·6時,將菌液冰浴30分鐘。 接著’以4,000卬111在4。(:下離心15分鐘,去除上清液後,加入5〇1111 的300 μΜ sucrose溶液,以重新懸浮菌體,再以4,〇〇〇 rpm在4。(:下離心15 分鐘’上述步驟共重複二次;之後,再加入15 ml的10 % glycerol,以6000 rpm在4C下離心15分鐘,去除上清液,最後加入1 mi的1〇 % giyCer〇1 溶液重新懸浮菌體,均勻混合後,以每管100 μΐ的量分裝至微量離心管中, 儲存於-80 °C下備用。 II·電穿孔法(Electroporation) 在本實施例中’以電穿孔法進行基因轉殖’將實施例一所得之 質體轉殖到菌株内。 電穿孔法實驗需在無菌環境下操作,首先,將前述製得之 菌株勝任細胞(C〇mpetentceu)以冰水浴溶解,每一微量離心管内 13 200918669 的Competent cell菌液(loo μι)各加入適量pRHB_2質體,稱微搖晃均句後, 再將所有液體移至置於冰上的比色槽(_tte)内,並且避免氣泡產生,擦乾 比色槽(cuvette)外壁上的水分後,進行電破,通電後加入丨miLB液體培^Production of poly ( 3-hydroxybutyrate ) by fed-batch culture of . filamentation-suppressed recombinant Escherichia coli. Appl. Em. Microbiol 1997· 63 :4765·9·) ' Correlation of e Ό/7/ζα HI6 synthetic PHB The gene operon is transferred to Escherichia coli (the coli after co-transplantation can be used to synthesize PHB by glucose. However, the transgenic Escherichia coli cannot use starch as a carbon source to produce ρΗβ. Thus, the above-mentioned microorganisms can be used. There are still many defects in the production of polyhydroxyalkanoic acid (PHAs), which is not a good designer and needs to be improved. The inventors of the present invention have derived from the above-mentioned methods for the production of polyhydroxyalkanoic acid (PHAs) by microorganisms. All the shortcomings are improved and innovated by Sui Si, and after years of painstaking research, I finally succeeded in researching and developing this method, which can make microorganisms use different carbon sources to synthesize polyhydroxyalkanoic acid (PHAs). The purpose is to provide a way for microorganisms to use different carbon sources to synthesize polyhydroxyalkanoic acid (PHAs). Carbohydrates as a carbon source for the synthesis of polyhydroxyalkanoic acid (PHAs) microorganisms, using gene transfer methods, provide another metabolic pathway for the synthesis of polyhydroxyalkanoic acid (pHAs), and become available as a carbon source to produce polyhydroxyl groups. Alkanoic acid (pHAs) 2 microorganisms. The second object of the present invention is to provide a method for synthesizing polybasic acid (PHAs) by using microorganisms using different carbon sources, in addition to utilizing gene transfer methods to transfer microorganisms. In addition to the synthesis of poly(3-hydroxybutyrate) (pHB) by using carbohydrate as a carbon source, it is also possible to use hydrocarbon as the carbon source to synthesize medium-long carbon chain poly-molecular acid (mcl_PHAs). The extracellular amylase of Aeromonas sp., such as Qing (4), when using starch, must first hydrolyze the secret into glucose. Therefore, the inventor of the present invention will touch 16 bacteria. The sugar can be metabolized to synthesize poly 3- The gene of butyl acetonate (ρηβ); the operon ϋ, the soil sequence (SEQH) NO: 1 jin) is transferred to the genus Aeromonas (4), which contains the extracellular phosphatase, which can be used as carbon. In the source of growth, the gene is recombined with P The erPer〇n gene of the genus Aeromonm (Zeromomw) bacteria, which can be used as a carbon source by using carbohydrates (eg, temple powder), synthesizes and accumulates a large amount of poly-I-peracetic acid vinegar and produces gas. The bacterium belonging to the genus Aspergillus itself can utilize hydrocarbons or fatty acids, and the ability to synthesize polyhydroxyalkanoic acid (mcl-PHAs) including medium-long carbon chains such as polyhydroxyhexanoate (PHHx) still exists, and thus the present invention The microbes provided, in the synthesis of S4PHAs), not only have the advantage of matrix selection, but also have the ability to form different groups of polybasic acid (PHAs). A method for synthesizing polyhydroxyalkanoic acid (PHAs) by using microorganisms using different carbon sources, comprising: (1) providing a genus Aeromonas (10) which can be used for starch growth. (2) providing a DNA construct having a gene; (3) transferring the DNA construct into the microorganism of the Aeromonas aeruginosa to obtain a polycarbonic acid (PHAs) which can be synthesized using different carbon sources. (4) providing the microorganism according to (3) a suitable medium and a carbon source to synthesize polyhydroxyalkanoic acid (PHAs) 〇200918669, wherein the gene is a gene related to the synthesis of poly-3-hydroxybutyrate (PHB) The gene is selected from the sequence of Sin / 〇 « / aewir 〇 p / zaH16, having the sequence of SEQ K) NO: 1. Wherein the carbon source is a carbohydrate and the carbohydrate is starch or glucose. Wherein the carbon source is a hydrocarbon and the hydrocarbon is lauric acid. The medium is M9 basal medium, LB medium, YT medium, 2xYT medium or 1/2 ΥΤ medium. [Examples] Example 1 Preparation of test strain and operan gene fragment The test strain was a strain of Aeromonas sp. Jeromo Cong/BCRC13018 (i.e., ATCC7966), which was purchased from a food factory. The operon gene was cloned from the H16 strain and its sequence is shown in SEQ ID NO: 1 'The gene is located in the pBHR68 plastid. In order to transfer the operon gene into the strain, the fragment (about 52 kb) carrying the operon gene sequence on the pBHR68 plastid was excised by the restriction enzyme also wHI and DM, and cloned into PRK415 with a broad host range ( TV) vector to obtain pRHBj plastid; since the ramo Na/^ strain itself has resistance to tetracydine (Tc) (Tc>, therefore, the restriction enzyme B_HUfpUC4K is carried on the plastid The anti-drug gene fragment (Km1) of the prime (ka_ydn, Km) was excised and cloned into the ρΚΗΒ]f body to obtain the pRHB-2 plastid with the operon gene sequence and the antibiotic gene (Km1). , pRHB2 plastid map is shown in Figure 3. 12 200918669 Example 2 to transfer the operan gene into Aeromonas aeruginosa dmwwwias • In this example, with Jerowowos·BCRC13018 strain (hereinafter referred to as Aeromonas hydrophila bacterium i As a target for gene transfer, the Aeromonas hydrophila strain was purchased from the Food Institute. I. Aeromonas ΛγώνφΜα Strain Competent Cell Preparation 3 ml of Jeramowos /7_y<ira/?Ma strain was inoculated with the bacteria solution. 150 ml LBB culture f ί based 500 ml cone Medium (LBB medium is formulated as: 1〇g/L trypsin (Tiyptone), 5 g/L yeast extract (Yeast extract), 5 g/L sodium chloride (NaCl), pH 7.35~7.4) 3〇t under 'shock culture at 200 rpm until the 〇D_ value is 0.4~0·6, the bath is ice bathed for 30 minutes. Then 'with 4,000 卬 111 at 4. (: centrifuge for 15 minutes, remove the supernatant After the solution, add 5〇1111 of 300 μΜ sucrose solution to resuspend the cells, and then repeat at 4° 〇〇〇 rpm at 4 (: 15 minutes under centrifugation). Repeat the above steps twice; then, add 15 ml. 10% glycerol, centrifuged at 6000 rpm for 15 minutes at 4 °C, remove the supernatant, and finally resuspend the cells by adding 1 μl of 1% giyCer〇1 solution, mix well, and dispense in 100 μM per tube. Into a microcentrifuge tube, store at -80 °C for use. II. Electroporation In this example, 'gene transfer by electroporation', the plastid obtained in Example 1 was transferred to the strain. The electroporation experiment requires operation in a sterile environment. First, the prepared strain competent cells (C〇mpetentceu) are dissolved in an ice water bath. Add a proper amount of pRHB_2 plastids to each of the micro-centrifuge tubes of 13 200918669 Competent cell bacterium (loo μι), and then transfer all the liquid to the colorimetric trough (_tte) placed on ice, and Avoid the generation of air bubbles, dry the moisture on the outer wall of the cuvette, and then electrolyze it. Add electricity to the 丨miLB liquid.

基均勻混和,再將所有液體移至新的微量離^管,並㈣液加到含有 μΕ/ml kanamycin的LB固體培養基(LB + Km4〇)上,於3〇t下進行隔夜培養。 III.純化質體DNA 為了確認pRHB-2質體是否已成功轉殖到菌體中,首先,自上述之lb + Km40固體培養基上挑出存活之菌株,命名為加〇w〇_ 施(R£), 並以2ml LB液體培養基進行試管隔夜培養,以便進行質體DNA的抽取, 並檢驗該質體DNA是否為pRHB-2質體。The base was uniformly mixed, and all the liquid was transferred to a new micro-ion tube, and the (iv) solution was added to LB solid medium (LB + Km4〇) containing μΕ/ml kanamycin, and cultured overnight at 3 〇t. III. Purification of plastid DNA In order to confirm whether the pRHB-2 plastid has been successfully transferred into the bacterium, first, the surviving strain was picked from the above lb + Km40 solid medium and named as 〇w〇_施(R) £), and overnight culture in a 2 ml LB liquid medium for plastid DNA extraction and examination of whether the plastid DNA is a pRHB-2 plastid.

於次日取出1_5 ml菌液至微量離心管中,以13,000 rpm離心1分鐘’ 去除上清液後,加入 1〇〇 μΐ Alkaline lysis solution I (50 mM glucose,25 mM 1^-〇邛118.〇’1〇11^£〇丁八,?118.〇)以重新懸浮菌體,再加入2〇〇0剛配 製好的 Alkaline lysis solution II (0.2 NNaOH,1 % SDS),稍微搖晃後,冰浴 5〜l〇 分鐘’並加入 i5〇 μ〗 Alkaline lysis solution III (3M sodium acetate, pH 4·8) ’再將微量離心管上下倒置使反應完全,冰浴10〜15分鐘後,以13,000 rpm離心1〇分鐘,將上清液移至新的微量離心管後,加入2〜2.5倍體積的 95%冰酒精,置於-20°C下20〜30分鐘以沉澱DNA,之後,再以13,000rpm 離心10分鐘,去除上清液後,以1 ml 70 %酒精洗滌沉澱物兩次,以13,000 rpm離心10分鐘,倒掉酒精後晾乾,將沉澱物溶於無菌水中備用。 由於derawowas 菌株的質體不易被大量抽取,因此,為確§忍 200918669 deramowos· (RE)是否為基因轉瘦成功者,將上述所抽取出之質體 再轉型(transformation)到大腸桿菌XLl-Blue中’利用大腸桿菌很強的自我 • 複製能力,將送入之質體DNA大量複製’再從大腸桿菌xL^Biue菌體内 • 純化出質體’並以洋菜膠體(agarose gel)進行電泳分析,確認 hydrophih (RE)確實為基因轉殖成功,為含有pmm-2質體之Aeromonas hydrophila 菌株。 實施例三 萃取Α/ό獅《似(RE)菌株内的聚羥基烷酸(PHAs)並分析 將含有pRHB-2質體之菌株Jerawonos如i/rap/zf/or (RE)進行菌體培養; 以 M9 基礎培養基(M9 base medium (Minimal salt medium,5x)的配方為:33.9 g/L NaHP04 ’ 15 g/L KH2P〇4,2.5 g/L NaC卜 5 g/L NH4C1)為基礎,並分別 添加不同的單一碳源:葡萄糖(gluc〇se)、澱粉(starch)以及月桂酸(Laurfc aC1d),各碳源濃度均為4% ’置入恆溫震盪培養箱,以2〇〇rpm在3〇<>c下進 灯囷體培養48小時,以誘導也__施(R£)菌株合成聚經基烧On the next day, take 1_5 ml of the bacterial solution into a microcentrifuge tube and centrifuge at 13,000 rpm for 1 minute. After removing the supernatant, add 1 μμΐ Alkaline lysis solution I (50 mM glucose, 25 mM 1^-〇邛118. 〇'1〇11^£〇丁八,?118.〇) to resuspend the bacteria, then add 2〇〇0 just prepared Alkaline lysis solution II (0.2 NNaOH, 1% SDS), shake slightly, ice Bath 5~l〇 minutes' and add i5〇μ〗 Alkaline lysis solution III (3M sodium acetate, pH 4·8) 'The microcentrifuge tube is inverted upside down to complete the reaction. After 10~15 minutes in ice bath, at 13,000 rpm Centrifuge for 1 minute, transfer the supernatant to a new microcentrifuge tube, add 2 to 2.5 volumes of 95% iced alcohol, and place at -20 °C for 20 to 30 minutes to precipitate DNA, then 13,000. After centrifugation at rpm for 10 minutes, after removing the supernatant, the precipitate was washed twice with 1 ml of 70% alcohol, centrifuged at 13,000 rpm for 10 minutes, the alcohol was drained, air-dried, and the precipitate was dissolved in sterile water for use. Since the plastids of the derawowas strain are not easily extracted in large quantities, the plastids extracted from the above-mentioned plastids are transformed into E. coli XLl-Blue in order to confirm whether the 200918669 deramowos·(RE) is a successful transgenic person. 'Using E. coli's strong self-replication ability, copying the plastid DNA that is sent in large amount, and then purifying the plastid from E. coli xL^Biue's body and electrophoresing it with agarose gel Analysis confirmed that hydrophih (RE) was indeed a successful gene transfer and was a strain of Aeromonas hydrophila containing pmm-2 plastids. Example 3: Extraction of polyhydroxyalkanoic acid (PHAs) in Α/ό 《 "like" (RE) strain and analysis of strains containing strains of jrawonos such as i/rap/zf/or (RE) containing pRHB-2 plastids Based on the formula of M9 base medium (Minimal salt medium, 5x): 33.9 g/L NaHP04 '15 g/L KH2P〇4, 2.5 g/L NaC Bu 5 g/L NH4C1), and Different single carbon sources were added: glucose (gluc〇se), starch (starch) and lauric acid (Laurfc aC1d), each carbon source concentration was 4% 'put into a constant temperature shaking incubator at 2 rpm at 3 〇<>c under the lamp corpus callosum for 48 hours to induce the synthesis of __Shi (R £) strains

Ssc(PHAs)並以未經過基因轉殖之如_^麵办妙〇厂脑菌株為陰性對照組 (negative control) 〇 I·菌體生長曲線的測量 刀光光度。十來測量在不同碳源環境下生長的▲广撕⑽似知加户級^ ()菌株之生長曲線’以分光光度計測量波長為_⑽時的吸收值 (〇D_) ’ _培|()〜1()小時中’每―小時測—次,之後每*小時測一次, 測出細菌之成長期及達㊉帶期的階段。 15 200918669 II.以氣相色層分析儀(GC)分析菌體内成分 取培養48小時之(RE)菌株作為測試樣本,菌體 樣品的處理為:秤取約0.02 g的乾菌塊,將之置入50 ml螺紋試管,管口以 止水帶螺旋方式捲好,加入2 ml 5%酸曱醇及2 ml氣仿,於105〇c水解4 小時以上,反應完成後,待其溫度降至室溫,再加入内標準品(intemal standard,即 Diphenol ester 85μ1),再加入 lml IN NaCl ’ 靜置 30 分鐘以上 等待分層,取出下層液500 μΐ裝入樣品瓶中,以注射針取2 μΐ於氣相色層 ('' 分析儀(Gas Chromatography,GC)分析樣品成分,移動相為空氣、氮氣(ν2) 以及氫氣(Η2),所使用的偵檢器為火燄離子偵檢器(flame ionization deteetm; FID)。 並以聚3-羥基丁酸酯(PHB)標準品及3.9% PHB-co-HHX標準品作為對 照組,聚3-羥基丁酸酯(PHB)標準品的標準檢量線如圖4所示,並以該標準 檢量線對各樣本聚3-羥基丁酸酯(PHB)定量。 ΠΙ.以SDS-次氣酸納萃取聚羥基烷酸(pHAs) U 係參照Dong and Sun等人於2000年所發表之方法,在500 ml的錐形 瓶中加入100 ml含有不同單一碳源的^^9基礎培養基,並將3邱預先培養 好之菌液接種於此,置入恆溫震盪培養箱,以2〇〇rpm在3〇。〇下培養48小 時後,分別秤各菌液之體積,並倒入圓底大型離心管,以8,〇〇〇rpm離心2〇 分鐘,去除上清液後,以5 ml無菌水重新懸浮菌體,並倒入乾燥之空塑膠 管裡’置入105 C中烘乾並秤重,以刮构盡量將乾菌塊壓碎,並以蒸館水均 勻混和乾菌塊。 200918669 再利用細胞熱脹冷縮的性質’以突然昇溫和降溫的方式來破壞細胞壁 和細胞膜’其方法為:以-80°C低溫處理20分鐘,以及以l〇(TC高溫處理15 , 分鐘,約重覆2〜3次;再利用超音波細胞粉碎機,以12 W震1分鐘。 - 接著,在各離心管中加入10ml的30%次氣酸鈉(NaOCl,係為聚羥基烷 酸之萃取劑,其作用為藉以除去細胞的蛋白質及其他物質),均勻混合後, 再加入蒸餾水至八分滿,並以l,〇〇〇rpm在4它下離心30分鐘,並去除上清 液,重覆上述步驟,直到沉澱出現白色物質,最後將每個樣本以蒸餾水均 ('勻混和後再離心一次,去除上清液後,再以蒸餾水混和,並置入1〇5。(:下烘 乾’供乾後的白色粉末即為聚羥基烷酸(PHAs)樣本。 IV.以核磁共振光譜儀(NMR)分析PHAs之結構 以上述方法萃取得到之聚羥基烷酸(PHAS)樣本進行核磁共振光譜儀 Pudeai· Magnetic KesGnance Spectroscopy,NMR)分析,取該樣本約 〇 〇6g, 加入1 mlD-氣仿(D_chU)r〇f〇rm),於5〇。〇下使樣本溶解,再將該溶液離心至 上層液為澄清’最後取D_chl〇r〇f_溶液置入分析管中,進行麗妙析樣品 1.^ 結構。 v.結果 如表所示,未經基因轉殖之菌株,以月桂酸 (Laurie acid)作為單—碳源培養時的聚羥基烷师產率(59逃),比使 用葡萄糖或·等碳水化合物作為單—碳源培養者,所制的雜基舰 (PHAs)產率(㈣糖:18 78% ;殿粉:奶8%)要高出許多。 、 儀刀析並汁算其聚3-經基丁酸酯(PHB)含量, 17 200918669Ssc (PHAs) and the negative control group (negative control) of the brain strain without the gene transfer, such as the measurement of the growth curve of the bacterium I. Ten measurements of growth under different carbon source environments ▲ wide tear (10) seemingly add the grade ^ () growth curve 'measured by the spectrophotometer when the wavelength is _ (10) absorption value (〇 D_) ' _ Pei | ) ~1 () hourly 'every hour' test - times, then every * hour test, measuring the growth period of the bacteria and the stage of the ten-band period. 15 200918669 II. Analysis of the components in the bacteria by gas chromatography layer analyzer (GC) for 48 hours (RE) strain as a test sample, the sample of the bacteria sample is: weigh about 0.02 g of dry bacteria, will Put in a 50 ml threaded test tube, the tube is wound up in a spiral with a water stop, add 2 ml of 5% acid sterol and 2 ml of air, and hydrolyze at 105 〇c for more than 4 hours. After the reaction is completed, wait for the temperature to drop. To room temperature, add the internal standard (diphenol ester 85μ1), then add 1ml of IN NaCl' to stand for more than 30 minutes, wait for stratification, remove the lower layer of 500 μΐ into the sample bottle, and take the injection needle 2 Μΐ is in the gas chromatographic layer (''Gas Chromatography (GC)), the moving phase is air, nitrogen (ν2) and hydrogen (Η2), and the detector used is a flame ion detector (flame Ionization deteetm; FID). Standardized measurements of poly-3-hydroxybutyrate (PHB) standards using poly-3-hydroxybutyrate (PHB) standards and 3.9% PHB-co-HHX standards as controls. The line is shown in Figure 4, and the sample poly(3-hydroxybutyrate) (PHB) was quantified by the standard calibration curve. Extraction of polyhydroxyalkanoic acid (pHAs) with SDS-sub-gas sulphate U. Referring to the method published by Dong and Sun et al. in 2000, 100 ml of a different single carbon source was added to a 500 ml Erlenmeyer flask. 9 Basic medium, inoculate the pre-cultured bacteria solution of 3 Qiu, put it into a constant temperature shaking incubator, and carry it at 3 rpm at 3 rpm. After cultivating for 48 hours under the armpit, weigh the volume of each bacterial solution separately, and Pour into a large round tube at the bottom of the circle and centrifuge at 8 〇〇〇 rpm for 2 , minutes. After removing the supernatant, resuspend the cells in 5 ml of sterile water and pour into a dry empty plastic tube. Dry and weigh in the middle, scrape the dry bacteria as much as possible, and mix the dried bacteria with steaming water. 200918669 Reuse the nature of cell thermal expansion and contraction to destroy the cell wall by sudden heating and cooling. And the cell membrane' method is as follows: low temperature treatment at -80 ° C for 20 minutes, and treatment with l 〇 (TC high temperature for 15 minutes, about 2 to 3 times; reuse of ultrasonic cell pulverizer, with 12 W shock 1 Minutes. - Next, add 10 ml of 30% sodium hypogasate (NaOCl, polyhydroxyalkanoic acid) to each centrifuge tube. The extracting agent, which acts to remove the protein and other substances of the cells, is uniformly mixed, and then distilled water is added to the end of eight minutes, and centrifuged at 4, rpm for 4 minutes, and the supernatant is removed. Repeat the above steps until the precipitated white matter. Finally, dilute each sample with distilled water ('After homogenization, centrifuge again, remove the supernatant, mix with distilled water, and place 1〇5. (: Drying) The white powder after drying is a sample of polyhydroxyalkanoic acid (PHAs). IV. Analysis of the structure of PHA by nuclear magnetic resonance spectrometry (NMR) The polyhydroxyalkanoic acid (PHAS) sample extracted by the above method. A nuclear magnetic resonance spectrometer Pudeai·Magnetic KesGnance Spectroscopy (NMR) analysis was carried out, and the sample was taken to be about 6 g, and 1 ml of D-gas (D_chU)r〇f〇rm) was added thereto at 5 Torr. The sample is dissolved under the armpit, and the solution is centrifuged to the upper layer for clarification. Finally, the D_chl〇r〇f_ solution is placed in the analysis tube, and the sample is analyzed. v. The results are shown in the table. For the strains that have not been genetically transformed, the polyhydroxyalkane yield (59 escapes) when lauric acid is used as the single-carbon source is higher than the use of glucose or other carbohydrates. As a single-carbon source trainer, the yield of heterogeneous base ships (PHAs) ((4) sugar: 18 78%; temple powder: 8% milk) is much higher. , instrumentation and juice calculation of its poly 3-butyric acid ester (PHB) content, 17 200918669

Mro/献菌株也以月桂酸為單__麟生長者的ρΗβ含量最高(葡萄糖: 5.16% ;殿粉:1.63% ;月桂酸:68.28%);相較於以葡萄糖或澱粉為單一礙 •源培養時’以澱粉培養者S OD_值雖為最冑,但合成聚經基烧酸(PHAs) 產物的1並不多,這樣的結果顯示,jerowoww如办叩知如菌株在合成聚羥 基烧酸(PHAs)的途徑是傾向於脂肪酸的代謝。 且根據GC儀分析結果顯示’如ramo· 菌株以月桂酸作為 單一碳源培養時,所合成聚羥基烷酸(PHAs)產物的類型是phb-co—j^x, 而以聚3-羥基丁酸酯(phb)的含量為最多(如圖7_2所示)。 表一以不同碳源培養各產氣單胞菌菌株之結果 菌株 培養前 培養後 細胞乾重 PHB PHB PHAs 培養基 〇D6〇〇 值 ODeoo 值 (g/L) 濃度Cg/L) 含量(%) 產率(%) M9+葡萄糖 0.27 3.08 1.09 0.06 5.16 18.78 Aeromonas M9 +澱粉 0.32 4.45 1.74 0.03 1.63 30.58 hydrophila M9+月桂酸 - 1.32 0.90 68.28 59.32 Aeromonas M9+葡萄糖 0.37 4.82 1.33 0.49 36.45 45.20 hydrophila M9 +澱粉 0.33 7.25 2.18 0.60 27.70 33.17 (RE) M9 +月桂酸 - - 1.55 0.92 59.17 38.62 根據GC儀分析結果顯示,derawoms (RE)菌株在以葡萄糖 或澱粉等碳水化合物為單一碳源培養後’其在5·Η分鐘時的波峰比 加菌株奇出很多,顯示經基因轉殖之 (RE)菌株合成聚3_羥基丁酸酯(PHB)的量較 菌株多(如圖5-2、5-3 ’以及圖6-2、6-3所示)。 200918669 以葡萄糖作為單-碳源培養時施菌株以及 加靡廳㈣哪Μα (RE)菌株的聚3·羥基丁酸醋(ρΗβ)含量分別為5.祕 與36.45% (如表-及圖8所示);以殿粉作為單一碳源培養時,上述二者的 聚3_經基丁酸醋(PHB)含量則分別為1.63%與27·7〇% (如表一及圖9所示); 而以月桂贿為單-雜培養時,上述二者崎1錄τ_(ρΗΒ)含量分 別為68.28%與59.17% (如表一及圖1〇所示)。 由此可知,帶有pRHB-2質體的產氣單胞菌菌株如M哪输 (·、(RE)在以葡萄糖或殿粉作為單-碳源的培養下,能夠經由醣類代謝將碳源 醣解,且會利用外加的0peron基因編碼產生p_酮基硫解酶 (β-ketothiolase)、乙醯乙醢輔酶a還原酶(Acet〇acetyl c〇A以及 PHB聚合酶(PHB P〇lymeraseg種酵素,以在菌體内合成聚3_超基丁酸 酯(PHB),且所產的聚3-羥基丁酸酯(PHB)含量較原始菌株⑽似 來的多(如表一及圖8、9所示)。 而 Aeromonas hydrophila 菌株以及^ieromonas hydrophila (RE)菌株在利 I-用月桂酸作為單一碳源培養時’帶有pRHB-2質體的Jeramoms (RE)函株之PHB產量比原始菌株Jeromomy 的PHB產量略少(如 表一及圖10所示)。 將基因重組菌株Jmwwwai (RE)在以澱粉作為單一碳源培 養下所產生的聚羥基烷酸(PHAs),以核磁共振光譜儀(NMR)分析其結構, 結果如圖11及圖12所示,其結構鑑定為聚3-羥基丁酸酯(PHB)。 由本發明所提供的實施例可知,產氣單胞菌 19 200918669 菌株主要是利用脂肪酸的代謝途徑來合成聚羥基烷酸(PHAs)。 而經過基因轉殖之菌株^*0所0_(紐)則確實可以利用醣 類的代謝途徑來合成聚羥基烷酸(PHAs),且合成聚羥基烷酸(pHAs)的含量 佔細胞乾重之27%以上;以葡萄糖或澱粉等碳水化合物作為單一碳源培養 時’所生產之聚經基烧酸(PHAs)以短碳鏈的聚3-羥基丁酸酯(PHB)為主,顯 示如mwo卿(RE)菌株可以走醣類的代謝途徑來合成短碳鏈的 聚3-羥基丁酸酯(PHB)。 本發明所提供之一種可使微生物利用不同碳源以合成聚羥基烷酸 (PHAs)之方法’與其他習用技術相互比較時,更具有下列之優點: 1. 以本發明提供之方法得到之基因重組產氣單胞菌脱历仍 办办〇/?;2而(RE)可培養於含不同碳源(例如:月桂酸、澱粉或葡萄糖)之培養 基中,並可將所提供之碳源轉換為累積於菌體内之脂質顆粒,即不同之聚 羥基烷酸,如:PHBHHX (月桂酸)或PHB(澱粉或葡萄糖)等,再經分離純化 後,便可作為生物可分解性塑膠的原料。 2. 以本發明提供之方法得到之基因重組產氣單胞菌似 办心神如(RE)可利用澱粉此種相對廉價之碳源,大量合成聚羥基烷酸 (PHAs),經GC儀及NMR分析後,鑑定為短鏈的聚3-羥基丁酸酯(phb), 且其含量佔細胞乾重之27.7%,極利於工業應用。 3·以本發明提供之方法得到之基因重組產氣單胞菌⑽仍 /^rap/2z7a(RE)可利用不同種類基質,合成不同之聚羥基烷酸(PHAs),當利 用碳氫化合物時,可合成中長碳鏈之PHA,而當利用碳水化合物時,則是 200918669 合成PHB。 4.本發崎叙綠可應祕^錢轉__麵)屬這類含 有已卜、私酶之細菌,使其可以殿粉為碳源生產聚絲烧酸(勘^),而可 在業大量生產可分解生物塑膠材料上,以解決目前可絲生產pHA 的優良工業用菌種不足之問題。 上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例 並非用以_本伽之專觀®,凡未脫離本發明技藝精神所為之等效實 C4施或變更,均應包含於本案之專利範圍中。 k上所述’本案*但在方法上確屬綱,且所製得之微生物能較習用 微生物增進上述多項功效,應已充分符合新雛及進步性之法定發明專利 要件’爰依法提出申請,懇請貴局核准本件發明專利申請案,以勵發明, 至感德便。 【圖式簡單說明】 圖1為微生物合成聚羥基烷酸(PHAS)的代謝途徑;Mro/strain also had the highest content of ρΗβ in lauric acid alone (glucose: 5.16%; temple powder: 1.63%; lauric acid: 68.28%); compared to glucose or starch as a single source When cultured, the S OD_ value of the starch cultivator was the most embarrassing, but the synthesis of polypyridyl acid (PHAs) product was not much, and the results showed that the jerowoww was like a strain in the synthesis of polyhydroxylated The pathway for acids (PHAs) is prone to the metabolism of fatty acids. According to the analysis results of the GC instrument, it is shown that when the ramo strain is cultured with lauric acid as a single carbon source, the type of polyhydroxyalkanoic acid (PHAs) product synthesized is phb-co-j^x, and poly-3-hydroxybutyrate The content of the acid ester (phb) is the highest (as shown in Figure 7_2). Table 1 Results of cultivation of Aeromonas aeruginosa strains with different carbon sources. Cultured cells before culture. Dry cell weight PHB PHB PHAs Medium 〇D6 ODODeo value (g/L) Concentration Cg/L) Content (%) Rate (%) M9+glucose 0.27 3.08 1.09 0.06 5.16 18.78 Aeromonas M9 + starch 0.32 4.45 1.74 0.03 1.63 30.58 hydrophila M9+ lauric acid - 1.32 0.90 68.28 59.32 Aeromonas M9+glucose 0.37 4.82 1.33 0.49 36.45 45.20 hydrophila M9 + starch 0.33 7.25 2.18 0.60 27.70 33.17 (RE) M9 + lauric acid - - 1.55 0.92 59.17 38.62 According to the analysis of the GC instrument, the derawoms (RE) strain is incubated with a carbohydrate such as glucose or starch as a single carbon source, and its peak ratio at 5 · Η minutes The strains were surprisingly many, showing that the amount of poly-3-hydroxybutyrate (PHB) synthesized by the gene-transferred (RE) strain was higher than that of the strain (Figures 5-2, 5-3' and Figures 6-2, 6). -3)). 200918669 The concentration of poly(3) hydroxybutyrate (ρΗβ) in the strains of Glucosamine as a single-carbon source and the coronation chamber (4), Μα (RE) strain were 5. Secret and 36.45%, respectively (see Table- and Figure 8). As shown in Table 1 and Figure 9, when the powder is cultured as a single carbon source, the content of poly 3_butyric acid vinegar (PHB) of the above two is 1.63% and 27.7%, respectively. When the laurel bribe is single-hybrid culture, the content of τ_(ρΗΒ) is 68.28% and 59.17%, respectively (as shown in Table 1 and Figure 1). It can be seen that the strain of Aeromonas aeruginosa with pRHB-2 plastids, such as M, can be used to transport carbon via carbohydrate metabolism under the culture of glucose or house powder as a single-carbon source. Source glycolytic, and will use the additional 0peron gene encoding to produce p-ketothiolase (beta-ketothiolase), acetamidine coenzyme a reductase (Acet〇acetyl c〇A and PHB polymerase (PHB P〇lymeraseg) An enzyme that synthesizes poly-3-butyrate (PHB) in bacteria and produces more poly-3-hydroxybutyrate (PHB) than the original strain (10) (see Table 1 and Figure). 8 and 9). The Aeromonas hydrophila strain and the ^ieromonas hydrophila (RE) strain were used to culture the PHB yield of the Jeramoms (RE) gene with pRHB-2 plastid when culturing with lauric acid as a single carbon source. Compared with the original strain Jeromomy, the PHB yield is slightly less (as shown in Table 1 and Figure 10). The genetically modified strain Jmwwwai (RE) is produced by culturing the polyhydroxyalkanoic acid (PHAs) produced by using starch as a single carbon source. The structure was analyzed by a resonance spectrometer (NMR), and the results are shown in Fig. 11 and Fig. 12, and the structure thereof was identified as poly-3-hydroxybutyrate (PHB). According to the examples provided by the present invention, the strain of Aeromonas aeruginosa 19 200918669 mainly utilizes a metabolic pathway of fatty acids to synthesize polyhydroxyalkanoic acid (PHAs), and the gene-transformed strain ^*0 is 0_(New) It is indeed possible to use the metabolic pathway of sugars to synthesize polyhydroxyalkanoic acid (PHAs), and the content of synthetic polyhydroxyalkanoic acid (pHAs) accounts for more than 27% of the dry weight of the cells; the cultivation of carbohydrates such as glucose or starch as a single carbon source The poly-based sulphuric acid (PHAs) produced by the time-based poly-hydroxybutyrate (PHB) with short carbon chain, showing that the mwoqing (RE) strain can take the metabolic pathway of sugars to synthesize short carbon. Chain of poly-3-hydroxybutyrate (PHB). The present invention provides a method for allowing microorganisms to utilize different carbon sources to synthesize polyhydroxyalkanoic acid (PHAs) when compared with other conventional techniques, and has the following Advantages: 1. The genetic recombination of Aeromonas aeruginosa obtained by the method provided by the present invention is still carried out, and (RE) can be cultured in different carbon sources (for example, lauric acid, starch or glucose). In the medium, and can convert the supplied carbon source into accumulated bacteria The lipid particles in the body, that is, different polyhydroxyalkanoic acids, such as PHBHHX (lauric acid) or PHB (starch or glucose), can be used as raw materials for biodegradable plastics after separation and purification. The genetically modified recombinant Aeromonas aeruginosa obtained by the method of the present invention can be used as a relatively inexpensive carbon source of starch, and a large amount of polyhydroxyalkanoic acid (PHAs) can be synthesized and analyzed by GC and NMR. It is identified as a short-chain poly-3-hydroxybutyrate (phb), and its content accounts for 27.7% of the dry weight of the cell, which is highly advantageous for industrial applications. 3. Recombinant Aeromonas aeruginosa (10) obtained by the method of the present invention still /^rap/2z7a (RE) can synthesize different polyhydroxyalkanoic acids (PHAs) by using different kinds of substrates, when using hydrocarbons It can synthesize the PHA of the medium-long carbon chain, and when using the carbohydrate, it is the synthetic PHB of 200918669. 4. This hair is said to be a secret, and the money is transferred to the __ surface. It is a kind of bacteria that contains the ubiquitous and private enzymes, so that it can produce polysilicic acid (review) as a carbon source. A large number of biodegradable bioplastic materials are produced to solve the problem of insufficient industrial strains for producing pHA. The detailed description above is a detailed description of one of the possible embodiments of the present invention, but the embodiment is not intended to be used in the specific embodiment of the present invention. It should be included in the patent scope of this case. The above-mentioned 'this case*' is a method in the method, and the microorganisms produced can enhance the above-mentioned multiple functions compared with the conventional microorganisms, and should have fully complied with the new and progressive legal patents of the inventions. I urge you to approve the application for this invention patent, so that you can invent the invention and feel it. [Simple illustration of the diagram] Figure 1 shows the metabolic pathway of microbial synthesis of polyhydroxyalkanoic acid (PHAS);

圖2為PHB合成基因操縱子(亦即phbCAB operon)基因結構示竟圖. 圖3為pRHB-2質體圖譜; 圖4為聚3-羥基丁酸酯(PHB)之標準檢量線; 圖5-1為聚3-羥基丁酸酯(PHB)標準品的GC圖譜’PHB的滯留鋒在5 i i 分鐘’内標準品(Diphenol ester)的滯留鋒則在9.94分鐘; 圖 5-2為Jeromoms 菌株以葡萄糖為單一碳源培養 之GC圖 譜,PHB的滯留鋒在5· 12分鐘,内標準品(Diphenol ester)的滯留鋒則在9 % 21 200918669 分鐘; 圖5-3為derowowos (RE)菌株以葡萄糖為單一碳源培養之 • GC圖譜,PHB的滯留鋒在5_ 11分鐘,内標準品(Diphenol ester)的滯留鋒則 • 在9.95分鐘; 圖6-1為聚3-羥基丁酸醋(PHB)標準品的GC圖譜,PHB的滯留鋒在511 分鐘,内標準品(Diphenol ester)的滯留鋒則在9.94分鐘; 圖6-2為菌株以澱粉為單一碳源培養之Gc圖 〇 譜,PHB的滯留鋒在5.11分鐘,内標準品(Diphenol ester)的滞留鋒則在9.95 分鐘; 圖6_3為也ramoms (RE)菌株以澱粉為單一碳源培養之% 圖譜,PHB的滯留鋒在5.11分鐘’内標準品(Diphen〇1 ester)的滯留鋒則在 9.95分鐘; 圖7-1為3.9%PHB-co-HHX標準品的GC圖譜,PHB的滞留鋒為5 ^ 分鐘,HHX的滯留鋒為6.04分鐘,内標準品(Diphen〇1 的滯留鋒則在 9.95 分鐘; 圖7-2為⑽os办办菌株以月桂酸為單一碳源培養之Gc圖 谱,PHB崎留鋒為5.丨2分鐘’ HHX的㈣鋒為_分鐘,内標準品 (Diphenol ester)的滯留鋒則在9.94分鐘; 圖7-3為加麵贿/^_·/β(ΚΕ)菌株以月桂酸為單一碳源培養之 GC圖譜,PHB的滯留鋒為5.12分鐘’内標準品(Diphen〇les㈣的滞留鋒則 在9.94分鐘; 22 200918669 圖 8 為 Jerawcwos· /z少菌株及 deramowos· /^drcipMa (RE)菌株以 葡萄糖為單一碳源培養之PHB含量(%); 圖 9 為 Jeramoms· /^t/rapMa 菌株及 derawowos /^i/rapMa (RE)菌株以 澱粉為單一碳源培養之PHB含量(%); 圖 爲 Aeromonas hydrophila 議株反 Aeromonas hydrophih(RE)菌株以 月桂酸為單一碳源培養之PHB含量(%); 圖11為以NMR分析(RE)菌株以殿粉為單一碳源 C 培養所合成的聚羥基烷酸(PHAs)之氫譜圖;以及 圖12為以NMR分析J eramo肌y /2_>^/rapM<3 (RE)菌株以澱粉為單一碳源 培養所合成的聚羥基烷酸(PHAs)之碳譜圖。 【主要元件符號說明】 益 #»>> 23Figure 2 is a schematic diagram showing the structure of the PHB synthetic gene operon (also known as phbCAB operon). Figure 3 is a plastid map of pRHB-2; Figure 4 is a standard calibration curve for poly-3-hydroxybutyrate (PHB); 5-1 is a poly-3-hydroxybutyrate (PHB) standard GC profile 'PHB's retention front in 5 ii minutes' internal standard (Diphenol ester) retention front at 9.94 minutes; Figure 5-2 is Jeromems The GC spectrum of the strain was cultured with glucose as a single carbon source. The retention front of PHB was 5·12 minutes, and the retention front of the internal standard (Diphenol ester) was 9% 21 200918669 minutes; Figure 5-3 shows the derowowos (RE) strain. GC map with glucose as a single carbon source, the retention front of PHB is 5-11 minutes, and the retention front of Diphenol ester is at 9.95 minutes; Figure 6-1 shows poly-3-hydroxybutyrate (Fig. 6-1) PHB of the standard PHB, the retention front of PHB is 511 minutes, and the retention front of the internal standard (Diphenol ester) is 9.94 minutes; Figure 6-2 shows the Gc map of the strain cultured with starch as a single carbon source. The retention front of PHB is at 5.11 minutes, and the retention front of the internal standard (Diphenol ester) is at 9.95 minutes; Figure 6_3 is also a strain of ramoms (RE) Starch is the % of the single carbon source culture. The retention front of the PHB in the 5.11 minutes' internal standard (Diphen〇1 ester) is at 9.95 minutes; Figure 7-1 shows the 3.9% PHB-co-HHX standard. GC spectrum, PHB has a retention front of 5 ^ minutes, HHX has a retention front of 6.04 minutes, and internal standard (Diphen〇1 has a retention front of 9.95 minutes; Figure 7-2 shows a (10) os-run strain with lauric acid as a single carbon. The Gc map of the source culture, PHB Qiliufeng is 5. 丨 2 minutes 'HHX's (four) front is _ minutes, and the internal standard (Diphenol ester) is at 9.94 minutes; Figure 7-3 is a bribe / The ^_·/β(ΚΕ) strain was cultured with lauric acid as the single carbon source. The retention front of PHB was 5.12 minutes' internal standard (Diphen〇les (four)'s retention front was at 9.94 minutes; 22 200918669 Figure 8 is Jerawcwos · PHZ content (%) of strains with less strains and dermofos· /^drcipMa (RE) with glucose as a single carbon source; Figure 9 shows Jeramoms· /^t/rapMa strain and derawowos /^i/rapMa (RE) The PHB content (%) of the strain cultured with starch as a single carbon source; The picture shows the Aeromonas hydrophila strain anti-Aeromonas hydrophih (RE) strain PHB content (%) of lauric acid cultured as a single carbon source; Figure 11 is a hydrogen spectrum of polyhydroxyalkanoic acid (PHAs) synthesized by NMR analysis (RE) strain using a temple powder as a single carbon source C; 12 is a carbon spectrum of polyhydroxyalkanoic acid (PHAs) synthesized by NMR analysis of J eramo muscle y /2_>^/rapM<3 (RE) strain with starch as a single carbon source. [Main component symbol description] Benefit #»>> 23

Claims (1)

200918669 十、申請專利範圍: 1. -種可使微生物利用不同碳源以合成聚經基烧酸(PHAs)之方法,包括: (1) 提供一可利用澱粉生長之產氣單胞菌屬微生物; (2) 提供一具有基因的DNA構築物; ()將及DNA構築物轉瘦到該產氣单胞菌屬微生物體内, 得到一可利用不同碳源以合成聚羥基烷酸(pHAs)之微生物; (4)提供(3)所述之微生物一適當培養基及碳源,以合成聚羥基烷酸 〔、 (PHAs) 〇 2_如申請專利範圍第1項所述之可使微生物侧不同碳源以合成聚經基烧 酸(PHAs)之方法,其中該娜⑽基因係為合成聚3經基丁酸醋(ρΗβ)之 相關基因,具有如SEQK)NO: 1之序列。 3. 如申睛專她圍第1項所述之可使微生物利用不同賴以合成聚經基烧 &l(PHAs)之方法’其中δ亥户祕基因係選自如/加_洲如户如H16菌株。 4. 如申凊專利範圍第1項所述之一種可使微生物利用不同碳源以合成聚羥 ^ 基烷酸(PHAs)之方法,其中該碳源為碳水化合物。 5. 如申請專利細第4項所述之可使微生物利用不同碳源以合成聚經基烧 酸(PHAs)之方法’其中該碳水化合物為澱粉。 6_如申請專利|&圍第4項所述之可使微生物·不同礙源以合成聚經基烧 酸(PHAs)之方法’其中該碳水化合物為葡萄糖。 7.如申請專利|&圍第1項所述之可使微生物糊不同碳源以合成聚經基烧 酸(PHAs)之方法,其中該碳源為碳氫化合物。 24 200918669 8.如申請專利範圍第7項所述之可使微生物利用不同碳源以合成聚羥基烷 酸(PHAs)之方法,其中該碳氫化合物為脂肪酸。 9.如申請專利範圍第8項所述之可使微生物利用不同碳源以合成聚經其坑 酸(PHAs)之方法’其中該脂肪酸為月桂酸。 10.如申請專利範圍第1項所述之可使微生物利用不同碳源」 酸(PHAs)之方法,其中该培養基為M9基礎培養基、LB培養基 基、2xYT培養基或1/2YT培養基等。200918669 X. Patent application scope: 1. A method for synthesizing polypyridyl acid (PHAs) by using microorganisms with different carbon sources, including: (1) Providing a microorganism capable of using starch to grow Aeromonas (2) providing a DNA construct having a gene; () transferring the DNA construct to the microorganism of the genus Aeromonas to obtain a microorganism capable of synthesizing polyhydroxyalkanoic acid (pHAs) using different carbon sources; (4) providing the microorganism according to (3) a suitable medium and a carbon source for synthesizing polyhydroxyalkanoic acid [, (PHAs) 〇 2_ as described in claim 1 of the patent scope, enabling different microbial sources of carbon sources In the method of synthesizing polypyridyl acid (PHAs), wherein the Na(10) gene is a gene related to the synthesis of poly(3)-butyric acid vinegar (ρΗβ), having the sequence of SEQK) NO: 1. 3. If the application of the above-mentioned items in the first item can make the use of microorganisms differently to synthesize polypyridyl & l (PHAs), the δ hai family secret gene is selected from the group of Such as H16 strain. 4. A method according to claim 1, wherein the microorganism is capable of utilizing different carbon sources to synthesize polyhydroxyalkanoic acid (PHAs), wherein the carbon source is a carbohydrate. 5. A method of synthesizing polypyrrolic acid (PHAs) by using a different carbon source as described in the patent application, item 4, wherein the carbohydrate is starch. 6_ As claimed in the patent | & 4, which can be used to synthesize polypyrrolic acid (PHAs) by the microorganisms, wherein the carbohydrate is glucose. 7. A method of synthesizing polycarbamic acid (PHAs) by using a microbial paste to different carbon sources as described in claim 1, wherein the carbon source is a hydrocarbon. 24 200918669 8. A method of synthesizing polyhydroxyalkanoic acid (PHAs) by using a different carbon source, as described in claim 7, wherein the hydrocarbon is a fatty acid. 9. A method of allowing a microorganism to utilize a different carbon source to synthesize a polyphenol (PHAs) thereof as described in claim 8 wherein the fatty acid is lauric acid. 10. The method of claim 1, wherein the medium is a M9 basal medium, an LB medium, a 2xYT medium or a 1/2YT medium. C. 25 200918669C. 25 200918669 序列表 <110〉元智大學 <120〉可使微生物利用不同碳源以合成聚羥基烷酸(PHAs)之方法 <160> 1 <210〉 1 <211> 5204 <212> DNA <213> Ralstonia eutropha H16 <400> 1 CCCGGGCAAG TACCTTGCCG ACATCTATGC GCTGGCGCGC ACGCGCCTGG CGCGCGCCGG CTGTACCGAG GTCTACGGCG GCGACGCCTG CACCGTGGCC GACGCCGGTC GCTTCTACTC CTATCGGCGC GATGGCGTGA CCGGCCGCAT GGCCAGCCTG GTCTGGCTGG CGGACTGAGC CCGCCGCTGC CTCACTCGTC CTTGCCCCTG GCCGCCTGCG CGCGCTCGGC TTCAGCCTTG CGTCGGCGGC GGCCGGGCGT GCCCATGATG TAGAGCACCA CGCCACCGGC GCCATGCCAT ACATCAGGAA GGTGGCAACG CCTGCCACCA CGTTGTGCTC GGTGATCGCC ATCATCAGCG CCACGTAGAG CCAGCCAATG GCCACGATGT ACATCAAAAA TTCATCCTTC TCGCCTATGC TCTGGGGCCT CGGCAGATGC GAGCGCTGCA TACCGTCCGG TAGGTCGGGA AGCGTGCAGT GCCGAGGCGG ATTCCCGCAT TGACAGCGCG TGCGTTGCAA GGCAACAATG GACTCAAATG TCTCGGAATC GCTGACGATT CCCAGGTTTC TCCGGCAAGC ATAGCGCATG GCGTCTCCAT GCGAGAATGT CGCGCTTGCC GGATAAAAGG GGAGCCGCTA TCGGAATGGA CGCAAGCCAC GGCCGCAGCA GGTGCGGTCG AGGGCTTCCA GCCAGTTCCA GGGCAGATGT GCCGGCAGAC CCTCCCGCTT TGGGGGAGGC GCAAGCCGGG TCCATTCGGA TAGCATCTCC CCATGCAAAG TGCCGGCCAG GGCAATGCCC GGAGCCGGTT CGAATAGTGA CGGCAGAGAG ACAATCAAAT CATGGCGACC GGCAAAGGCG CGGCAGCTTC CACGCAGGAA GGCAAGTCCC AACCATTCAA GGTCACGCCG GGGCCATTCG ATCCAGCCAC ATGGCTGGAA TGGTCCCGCC AGTGGCAGGG CACTGAAGGC AACGGCCACG CGGCCGCGTC CGGCATTCCG GGCCTGGATG CGCTGGCAGG CGTCAAGATC GCGCCGGCGC AGCTGGGTGA TATCCAGCAG CGCTACATGA AGGACTTCTC AGCGCTGTGG CAGGCCATGG CCGAGGGCAA GGCCGAGGCC ACCGGTCCGC TGCACGACCG GCGCTTCGCC GGCGACGCAT GGCGCACCAA CCTCCCATAT CGCTTCGCTG CCGCGTTCTA CCTGCTCAAT GCGCGCGCCT TGACCGAGCT GGCCGATGCC GTCGAGGCCG ATGCCAAGAC CCGCCAGCGC ATCCGCTTCG CGATCTCGCA ATGGGTCGAT GCGATGTCGC CCGCCAACTT CCTTGCCACC AATCCCGAGG CGCAGCGCCT GCTGATCGAG TCGGGCGGCG AATCGCTGCG TGCCGGCGTG CGCAACATGA TGGAAGACCT GACACGCGGC AAGATCTCGC AGACCGACGA GAGCGCGTTT GAGGTCGGCC GCAATGTCGC GGTGACCGAA GGCGCCGTGG TCTTCGAGAA CGAGTACTTC CAGCTGTTGC AGTACAAGCC GCTGACCGAC AAGGTGCACG CGCGCCCGCT GCTGATGGTG CCGCCGTGCA TCAACAAGTA CTACATCCTG GACCTGCAGC CGGAGAGCTC GCTGGTGCGC CATGTGGTGG AGCAGGGACA TACGGTGTTT CTGGTGTCGT GGCGCAATCC GGACGCCAGC ATGGCCGGCA GCACCTGGGA CGACTACATC GAGCACGCGG CCATCCGCGC 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740SEQUENCE LISTING <110>Yuanzhi University<120>>>210>><210><210><210> DNA < 213 > Ralstonia eutropha H16 < 400 > 1 CCCGGGCAAG TACCTTGCCG ACATCTATGC GCTGGCGCGC ACGCGCCTGG CGCGCGCCGG CTGTACCGAG GTCTACGGCG GCGACGCCTG CACCGTGGCC GACGCCGGTC GCTTCTACTC CTATCGGCGC GATGGCGTGA CCGGCCGCAT GGCCAGCCTG GTCTGGCTGG CGGACTGAGC CCGCCGCTGC CTCACTCGTC CTTGCCCCTG GCCGCCTGCG CGCGCTCGGC TTCAGCCTTG CGTCGGCGGC GGCCGGGCGT GCCCATGATG TAGAGCACCA CGCCACCGGC GCCATGCCAT ACATCAGGAA GGTGGCAACG CCTGCCACCA CGTTGTGCTC GGTGATCGCC ATCATCAGCG CCACGTAGAG CCAGCCAATG GCCACGATGT ACATCAAAAA TTCATCCTTC TCGCCTATGC TCTGGGGCCT CGGCAGATGC GAGCGCTGCA TACCGTCCGG TAGGTCGGGA AGCGTGCAGT GCCGAGGCGG ATTCCCGCAT TGACAGCGCG TGCGTTGCAA GGCAACAATG GACTCAAATG TCTCGGAATC GCTGACGATT CCCAGGTTTC TCCGGCAAGC ATAGCGCATG GCGTCTCCAT GCGAGAATGT CGCGCTTGCC GGATAAAAGG GGAGCCGCTA TCGGAATGGA CGCAAGCCAC GGCCGCAGCA GGTGCGGTCG AGGGCTTCCA GCCAGTTC CA GGGCAGATGT GCCGGCAGAC CCTCCCGCTT TGGGGGAGGC GCAAGCCGGG TCCATTCGGA TAGCATCTCC CCATGCAAAG TGCCGGCCAG GGCAATGCCC GGAGCCGGTT CGAATAGTGA CGGCAGAGAG ACAATCAAAT CATGGCGACC GGCAAAGGCG CGGCAGCTTC CACGCAGGAA GGCAAGTCCC AACCATTCAA GGTCACGCCG GGGCCATTCG ATCCAGCCAC ATGGCTGGAA TGGTCCCGCC AGTGGCAGGG CACTGAAGGC AACGGCCACG CGGCCGCGTC CGGCATTCCG GGCCTGGATG CGCTGGCAGG CGTCAAGATC GCGCCGGCGC AGCTGGGTGA TATCCAGCAG CGCTACATGA AGGACTTCTC AGCGCTGTGG CAGGCCATGG CCGAGGGCAA GGCCGAGGCC ACCGGTCCGC TGCACGACCG GCGCTTCGCC GGCGACGCAT GGCGCACCAA CCTCCCATAT CGCTTCGCTG CCGCGTTCTA CCTGCTCAAT GCGCGCGCCT TGACCGAGCT GGCCGATGCC GTCGAGGCCG ATGCCAAGAC CCGCCAGCGC ATCCGCTTCG CGATCTCGCA ATGGGTCGAT GCGATGTCGC CCGCCAACTT CCTTGCCACC AATCCCGAGG CGCAGCGCCT GCTGATCGAG TCGGGCGGCG AATCGCTGCG TGCCGGCGTG CGCAACATGA TGGAAGACCT GACACGCGGC AAGATCTCGC AGACCGACGA GAGCGCGTTT GAGGTCGGCC GCAATGTCGC GGTGACCGAA GGCGCCGTGG TCTTCGAGAA CGAGTACTTC CAGCTGTTGC AGTACAAGCC GCTGACCGAC AAGGTGCACG CGCGCCCGCT GCTGATGGTG CCGCCGTGCA TCAACAAGTA CTACATCCTG GACCTGC AGC CGGAGAGCTC GCTGGTGCGC CATGTGGTGG AGCAGGGACA TACGGTGTTT CTGGTGTCGT GGCGCAATCC GGACGCCAGC ATGGCCGGCA GCACCTGGGA CGACTACATC GAGCACGCGG CCATCCGCGC 60 120 180 240 360 360 420 480 900 960 10 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 200918669 CATCGAAGTC GCGCGCGACA TCAGCGGCCA GGACAAGATC AACGTGCTCG GCTTCTGCGT GGGCGGCACC ATTGTCTCGA CCGCGCTGGC GGTGCTGGCC GCGCGCGGCG AGCACCCGGC CGCCAGCGTC ACGCTGCTGA CCACGCTGCT GGACTTTGCC GACACGGGCA TCCTCGACGT CTTTGTCGAC GAGGGCCATG TGCAGTTGCG CGAGGCCACG CTGGGCGGCG GCGCCGGCGC GCCGTGCGCG CTGCTGCGCG GCCTTGAGCT GGCCAATACC TTCTCGTTCT TGCGCCCGAA CGACCTGGTG TGGAACTACG TGGTCGACAA CTACCTGAAG GGCAACACGC CGGTGCCGTT CGACCTGCTG TTCTGGAACG GCGACGCCAC CAACCTGCCG GGGCCGTGGT ACTGCTGGTA CCTGCGCCAC ACCTACCTGC AGAACGAGCT CAAGGTACCG GGCAAGCTGA CCGTGTGCGG CGTGCCGGTG GACCTGGCCA GCATCGACGT GCCGACCTAT ATCTACGGCT CGCGCGAAGA CCATATCGTG CCGTGGACCG CGGCCTATGC CTCGACCGCG CTGCTGGCGA ACAAGCTGCG CTTCGTGCTG GGTGCGTCGG GCCATATCGC CGGTGTGATC AACCCGCCGG CCAAGAACAA GCGCAGCCAC TGGACTAACG ATGCGCTGCC GGAGTCGCCG CAGCAATGGC TGGCCGGCGC CATCGAGCAT CACGGCAGCT GGTGGCCGGA CTGGACCGCA TGGCTGGCCG GGCAGGCCGG CGCGAAACGC GCCGCGCCCG CCAACTATGG CAATGCGCGC TATCGCGCAA TCGAACCCGC GCCTGGGCGA TACGTCAAAG CCAAGGCATG ACGCTTGCAT GAGTGCCGGC GTGCGTCATG CACGGCGCCG GCAGGCCTGC AGGTTCCCTC CCGTTTCCAT TGAAAGGACT ACACAATGAC TGACGTTGTC ATCGTATCCG CCGCCCGCAC CGCGGTCGGC AAGTTTGGCG GCTCGCTGGC CAAGATCCCG GCACCGGAAC TGGGTGCCGT GGTCATCAAG GCCGCGCTGG AGCGCGCCGG CGTCAAGCCG GAGCAGGTGA GCGAAGTCAT CATGGGCCAG GTGCTGACCG CCGGTTCGGG CCAGAACCCC GCACGCCAGG CCGCGATCAA GGCCGGCCTG CCGGCGATGG TGCCGGCCAT GACCATCAAC AAGGTGTGCG GCTCGGGCCT GAAGGCCGTG ATGCTGGCCG CCAACGCGAT CATGGCGGGC GACGCCGAGA TCGTGGTGGC CGGCGGCCAG GAAAACATGA GCGCCGCCCC GCACGTGCTG CCGGGCTCGC GCGATGGTTT CCGCATGGGC GATGCCAAGC TGGTCGACAC CATGATCGTC GACGGCCTGT GGGACGTGTA CAACCAGTAC CACATGGGCA TCACCGCCGA GAACGTGGCC AAGG7VATACG GCATCACACG CGAGGCGCAG GATGAGTTCG CCGTCGGCTC GCAGAACAAG GCCG7VAGCCG CGCAGAAGGC CGGCAAGTTT GACGAAGAGA TCGTCCCGGT GCTGATCCCG CAGCGCAAGG GCGACCCGGT GGCCTTCAAG ACCGACGAGT TCGTGCGCCA GGGCGCCACG CTGGACAGCA TGTCCGGCCT CAAGCCCGCC TTCGACAAGG CCGGCACGGT GACCGCGGCC AACGCCTCGG GCCTGAACGA CGGCGCCGCC GCGGTGGTGG TGATGTCGGC GGCCAAGGCC AAGGAACTGG GCCTGACCCC GCTGGCCACG ATCAAGAGCT ATGCCAACGC CGGTGTCGAT CCCAAGGTGA TGGGCATGGG CCCGGTGCCG GCCTCCAAGC GCGCCCTGTC GCGCGCCGAG TGGACCCCGC AAGACCTGGA CCTGATGGAG ATCAACGAGG CCTTTGCCGC GCAGGCGCTG GCGGTGCACC AGCAGATGGG CTGGGACACC TCCAAGGTCA ATGTGAACGG CGGCGCCATC GCCATCGGCC ACCCGATCGG CGCGTCGGGC TGCCGTATCC TGGTGACGCT GCTGCACGAG ATGAAGCGCC GTGACGCGAA GAAGGGCCTG GCCTCGCTGT GCATCGGCGG CGGCATGGGC GTGGCGCTGG CAGTCGAGCG CAAATAAGGA AGGGGTTTTC CGGGGCCGCG CGCGGTTGGC GCGGACCCGG CGACGATAAC GAAGCCAATC AAGGAGTGGA CATGACTCAG CGCATTGCGT ATGTGACCGG CGGCATGGGT GGTATCGGAA CCGCCATTTG CCAGCGGCTG GCCAAGGATG GCTTTCGTGT GGTGGCCGGT TGCGGCCCCA ACTCGCCGCG CCGCGAAAAG TGGCTGGAGC AGCAGAAGGC CCTGGGCTTC GATTTCATTG CCTCGGAAGG CAATGTGGCT GACTGGGACT CGACCAAGAC CGCATTCGAC AAGGTCAAGT CCGAGGTCGG CGAGGTTGAT GTGCTGATCA ACAACGCCGG TATCACCCGC GACGTGGTGT TCCGCAAGAT GACCCGCGCC GACTGGGATG CGGTGATCGA CACCAACCTG ACCTCGCTGT TCAACGTCAC CAAGCAGGTG 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 200918669 ATCGACGGCA TGGCCGACCG TGGCTGGGGC CGCATCGTCA ACATCTCGTC GGTGAACGGG CAGAAGGGCC AGTTCGGCCA GACCAACTAC TCCACCGCCA AGGCCGGCCT GCATGGCTTC ACCATGGCAC TGGCGCAGGA AGTGGCGACC AAGGGCGTGA CCGTCAACAC GGTCTCTCCG GGCTATATCG CCACCGACAT GGTCAAGGCG ATCCGCCAGG ACGTGCTCGA CAAGATCGTC GCGACGATCC CGGTCAAGCG CCTGGGCCTG CCGGAAGAGA TCGCCTCGAT CTGCGCCTGG TTGTCGTCGG AGGAGTCCGG TTTCTCGACC GGCGCCGACT TCTCGCTCAA CGGCGGCCTG CATATGGGCT GACCTGCCGG CCTGGTTCAA CCAGTCGGCA GCCGGCGCTG GCGCCCGCGT ATTGCGGTGC AGCCAGCGCG GCGCACAAGG CGGCGGGCGT TTCGTTTCGC CGCCCGTTTC GCGGGCCGTC AAGGCCCGCG AATCGTTTCT GCCCGCGCGG CATTCCTCGC TTTTTGCGCC AATTCACCGG GTTTTCCTTA AGCCCCGTCG CTTTTCTTAG TGCCTTGTTG GGCATAGAAT CAGGGCAGCG GCGCAGCCAG CACCATGTTC GTGCAGCGCG GCCCTCGCGG GGGCGAGGCT GCAGGCGCAC AAGGCGGCGG GCGTTTCGTT TCGCCGCCCG TTTCGCGGGC CGTCAAGGCC CGCGAATCGT TTCTGCCCGC GCGGCATTCC TCGCTTTTTG CGCCAATTCA CCGGGTTTTC CTTAAGCCCC GTCGCTTTTC TTAGTGCCTT GTTGGGCATA GAATCAGGGC AGCGGCGCAG CCAGCACCAT GTTCGTGCAG CGCGGCCCTC GCGGGGGCGA ATTC 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5204200918669 CATCGAAGTC GCGCGCGACA TCAGCGGCCA GGACAAGATC AACGTGCTCG GCTTCTGCGT GGGCGGCACC ATTGTCTCGA CCGCGCTGGC GGTGCTGGCC GCGCGCGGCG AGCACCCGGC CGCCAGCGTC ACGCTGCTGA CCACGCTGCT GGACTTTGCC GACACGGGCA TCCTCGACGT CTTTGTCGAC GAGGGCCATG TGCAGTTGCG CGAGGCCACG CTGGGCGGCG GCGCCGGCGC GCCGTGCGCG CTGCTGCGCG GCCTTGAGCT GGCCAATACC TTCTCGTTCT TGCGCCCGAA CGACCTGGTG TGGAACTACG TGGTCGACAA CTACCTGAAG GGCAACACGC CGGTGCCGTT CGACCTGCTG TTCTGGAACG GCGACGCCAC CAACCTGCCG GGGCCGTGGT ACTGCTGGTA CCTGCGCCAC ACCTACCTGC AGAACGAGCT CAAGGTACCG GGCAAGCTGA CCGTGTGCGG CGTGCCGGTG GACCTGGCCA GCATCGACGT GCCGACCTAT ATCTACGGCT CGCGCGAAGA CCATATCGTG CCGTGGACCG CGGCCTATGC CTCGACCGCG CTGCTGGCGA ACAAGCTGCG CTTCGTGCTG GGTGCGTCGG GCCATATCGC CGGTGTGATC AACCCGCCGG CCAAGAACAA GCGCAGCCAC TGGACTAACG ATGCGCTGCC GGAGTCGCCG CAGCAATGGC TGGCCGGCGC CATCGAGCAT CACGGCAGCT GGTGGCCGGA CTGGACCGCA TGGCTGGCCG GGCAGGCCGG CGCGAAACGC GCCGCGCCCG CCAACTATGG CAATGCGCGC TATCGCGCAA TCGAACCCGC GCCTGGGCGA TACGTCAAAG CCAAGGCATG ACGCTTGCAT GAGTGCCGGC GTGCGTCATG CACGGCGCCG GCAGGCCTGC AGGTTCCCTC CCGTTTCCAT TGAAAGGACT ACACAATGAC TGACGTTGTC ATCGTATCCG CCGCCCGCAC CGCGGTCGGC AAGTTTGGCG GCTCGCTGGC CAAGATCCCG GCACCGGAAC TGGGTGCCGT GGTCATCAAG GCCGCGCTGG AGCGCGCCGG CGTCAAGCCG GAGCAGGTGA GCGAAGTCAT CATGGGCCAG GTGCTGACCG CCGGTTCGGG CCAGAACCCC GCACGCCAGG CCGCGATCAA GGCCGGCCTG CCGGCGATGG TGCCGGCCAT GACCATCAAC AAGGTGTGCG GCTCGGGCCT GAAGGCCGTG ATGCTGGCCG CCAACGCGAT CATGGCGGGC GACGCCGAGA TCGTGGTGGC CGGCGGCCAG GAAAACATGA GCGCCGCCCC GCACGTGCTG CCGGGCTCGC GCGATGGTTT CCGCATGGGC GATGCCAAGC TGGTCGACAC CATGATCGTC GACGGCCTGT GGGACGTGTA CAACCAGTAC CACATGGGCA TCACCGCCGA GAACGTGGCC AAGG7VATACG GCATCACACG CGAGGCGCAG GATGAGTTCG CCGTCGGCTC GCAGAACAAG GCCG7VAGCCG CGCAGAAGGC CGGCAAGTTT GACGAAGAGA TCGTCCCGGT GCTGATCCCG CAGCGCAAGG GCGACCCGGT GGCCTTCAAG ACCGACGAGT TCGTGCGCCA GGGCGCCACG CTGGACAGCA TGTCCGGCCT CAAGCCCGCC TTCGACAAGG CCGGCACGGT GACCGCGGCC AACGCCTCGG GCCTGAACGA CGGCGCCGCC GCGGTGGTGG TGATGTCGGC GGCCAAGGCC AAGGAACTGG GCCTGACCCC GCTGGCCACG ATCAAGAGCT ATGCCAACGC CGGTGTC GAT CCCAAGGTGA TGGGCATGGG CCCGGTGCCG GCCTCCAAGC GCGCCCTGTC GCGCGCCGAG TGGACCCCGC AAGACCTGGA CCTGATGGAG ATCAACGAGG CCTTTGCCGC GCAGGCGCTG GCGGTGCACC AGCAGATGGG CTGGGACACC TCCAAGGTCA ATGTGAACGG CGGCGCCATC GCCATCGGCC ACCCGATCGG CGCGTCGGGC TGCCGTATCC TGGTGACGCT GCTGCACGAG ATGAAGCGCC GTGACGCGAA GAAGGGCCTG GCCTCGCTGT GCATCGGCGG CGGCATGGGC GTGGCGCTGG CAGTCGAGCG CAAATAAGGA AGGGGTTTTC CGGGGCCGCG CGCGGTTGGC GCGGACCCGG CGACGATAAC GAAGCCAATC AAGGAGTGGA CATGACTCAG CGCATTGCGT ATGTGACCGG CGGCATGGGT GGTATCGGAA CCGCCATTTG CCAGCGGCTG GCCAAGGATG GCTTTCGTGT GGTGGCCGGT TGCGGCCCCA ACTCGCCGCG CCGCGAAAAG TGGCTGGAGC AGCAGAAGGC CCTGGGCTTC GATTTCATTG CCTCGGAAGG CAATGTGGCT GACTGGGACT CGACCAAGAC CGCATTCGAC AAGGTCAAGT CCGAGGTCGG CGAGGTTGAT GTGCTGATCA ACAACGCCGG TATCACCCGC GACGTGGTGT TCCGCAAGAT GACCCGCGCC GACTGGGATG CGGTGATCGA CACCAACCTG ACCTCGCTGT TCAACGTCAC CAAGCAGGTG 1800 1860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3180 3240 3300 3360 3420 3480 354 0 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 200918669 ATCGACGGCA TGGCCGACCG TGGCTGGGGC CGCATCGTCA ACATCTCGTC GGTGAACGGG CAGAAGGGCC AGTTCGGCCA GACCAACTAC TCCACCGCCA AGGCCGGCCT GCATGGCTTC ACCATGGCAC TGGCGCAGGA AGTGGCGACC AAGGGCGTGA CCGTCAACAC GGTCTCTCCG GGCTATATCG CCACCGACAT GGTCAAGGCG ATCCGCCAGG ACGTGCTCGA CAAGATCGTC GCGACGATCC CGGTCAAGCG CCTGGGCCTG CCGGAAGAGA TCGCCTCGAT CTGCGCCTGG TTGTCGTCGG AGGAGTCCGG TTTCTCGACC GGCGCCGACT TCTCGCTCAA CGGCGGCCTG CATATGGGCT GACCTGCCGG CCTGGTTCAA CCAGTCGGCA GCCGGCGCTG GCGCCCGCGT ATTGCGGTGC AGCCAGCGCG GCGCACAAGG CGGCGGGCGT TTCGTTTCGC CGCCCGTTTC GCGGGCCGTC AAGGCCCGCG AATCGTTTCT GCCCGCGCGG CATTCCTCGC TTTTTGCGCC AATTCACCGG GTTTTCCTTA AGCCCCGTCG CTTTTCTTAG TGCCTTGTTG GGCATAGAAT CAGGGCAGCG GCGCAGCCAG CACCATGTTC GTGCAGCGCG GCCCTCGCGG GGGCGAGGCT GCAGGCGCAC AAGGCGGCGG GCGTTTCGTT TCGCCGCCCG TTTCGCGGGC CGTCAAGGCC CGCGAATCGT TTCTGCCCGC GCGGCATTCC TCGCTTTTTG CGCCAATTCA CCGGGTTTTC CTTAAGCCCC GTCGCTTTTC TTAGTGCCTT GTTGGGCATA GAATCAGGGC AGCGGCGC AG CCAGCACCAT GTTCGTGCAG CGCGGCCCTC GCGGGGGCGA ATTC 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5204
TW96113888A 2007-04-20 2007-04-20 Method for producing polyhydroxyalkanonate (PHAs) by microorganisms utilizing different carbon sources TW200918669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96113888A TW200918669A (en) 2007-04-20 2007-04-20 Method for producing polyhydroxyalkanonate (PHAs) by microorganisms utilizing different carbon sources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96113888A TW200918669A (en) 2007-04-20 2007-04-20 Method for producing polyhydroxyalkanonate (PHAs) by microorganisms utilizing different carbon sources

Publications (2)

Publication Number Publication Date
TW200918669A true TW200918669A (en) 2009-05-01
TWI374190B TWI374190B (en) 2012-10-11

Family

ID=44726785

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96113888A TW200918669A (en) 2007-04-20 2007-04-20 Method for producing polyhydroxyalkanonate (PHAs) by microorganisms utilizing different carbon sources

Country Status (1)

Country Link
TW (1) TW200918669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100888A1 (en) * 2018-11-15 2020-05-22 株式会社カネカ Microorganism belonging to genus cupriavidus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100888A1 (en) * 2018-11-15 2020-05-22 株式会社カネカ Microorganism belonging to genus cupriavidus
JPWO2020100888A1 (en) * 2018-11-15 2021-10-07 株式会社カネカ Microorganisms belonging to the genus Cupriavidus

Also Published As

Publication number Publication date
TWI374190B (en) 2012-10-11

Similar Documents

Publication Publication Date Title
Chung et al. Biosynthesis and characterization of poly (3-hydroxydodecanoate) by β-oxidation inhibited mutant of Pseudomonas entomophila L48
US10829793B2 (en) Transformant that produces copolymerized PHA containing 3HH unit, and method for producing said PHA
Zhuang et al. Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli
Steinbüchel et al. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms
JP3062459B2 (en) Polyester synthase gene and method for producing polyester
Zhou et al. Hyperproduction of poly (4-hydroxybutyrate) from glucose by recombinant Escherichia coli
Tripathi et al. Pseudomonas putida KT2442 as a platform for the biosynthesis of polyhydroxyalkanoates with adjustable monomer contents and compositions
Guo et al. Simultaneous production and characterization of medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK-01
Fukui et al. Engineering of Ralstonia eutropha for production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from fructose and solid-state properties of the copolymer
Chanasit et al. Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source
Nomura et al. Effective enhancement of short-chain-length− medium-chain-length polyhydroxyalkanoate copolymer production by coexpression of genetically engineered 3-ketoacyl-acyl-carrier-protein synthase III (f abH) and polyhydroxyalkanoate synthesis genes
Cho et al. Purification of polyhydroxybutyrate synthase from its native organism, Ralstonia eutropha: implications for the initiation and elongation of polymer formation in vivo
Nomura et al. Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109
Shen et al. Production and characterization of homopolymer poly (3-hydroxyvalerate)(PHV) accumulated by wild type and recombinant Aeromonas hydrophila strain 4AK4
Zhang et al. Engineering of Ralstonia eutropha for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose
EP2540835B1 (en) PROCESS FOR PRODUCTION OF POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYHEXANOATE) USING A GENETICALLY MODIFIED CUPRIAVIDUS NECATOR HAVING AN ENOYL-CoA HYDRATASE GENE INTRODUCED THEREIN
Lindenkamp et al. A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids
Wang et al. Polyhydroxyalkanoic acids from structurally-unrelated carbon sources in Escherichia coli
Cheema et al. Exploiting metagenomic diversity for novel polyhydroxyalkanoate synthases: production of a terpolymer poly (3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate) with a recombinant Pseudomonas putida strain
Ochi et al. Engineering of class I lactate-polymerizing polyhydroxyalkanoate synthases from Ralstonia eutropha that synthesize lactate-based polyester with a block nature
Heinrich et al. From waste to plastic: synthesis of poly (3-hydroxypropionate) in Shimwellia blattae
Volova et al. Effects of intracellular poly (3-hydroxybutyrate) reserves on physiological–biochemical properties and growth of Ralstonia eutropha
JPWO2005098001A1 (en) New transformant
Phan et al. Directed evolution of sequence-regulating polyhydroxyalkanoate synthase to synthesize a Medium-Chain-Length–Short-Chain-Length (MCL–SCL) block copolymer
Reiser et al. Characterization and cloning of an (R)-specific trans-2, 3-enoylacyl-CoA hydratase from Rhodospirillum rubrum and use of this enzyme for PHA production in Escherichia coli

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees