WO2020100727A1 - Flame-retardant polybutylene terephthalate resin composition - Google Patents

Flame-retardant polybutylene terephthalate resin composition Download PDF

Info

Publication number
WO2020100727A1
WO2020100727A1 PCT/JP2019/043788 JP2019043788W WO2020100727A1 WO 2020100727 A1 WO2020100727 A1 WO 2020100727A1 JP 2019043788 W JP2019043788 W JP 2019043788W WO 2020100727 A1 WO2020100727 A1 WO 2020100727A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutylene terephthalate
terephthalate resin
flame
resin composition
retardant
Prior art date
Application number
PCT/JP2019/043788
Other languages
French (fr)
Japanese (ja)
Inventor
一也 五島
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to JP2020555611A priority Critical patent/JP7256822B2/en
Publication of WO2020100727A1 publication Critical patent/WO2020100727A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • C08L33/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings

Definitions

  • the present invention relates to a flame-retardant polybutylene terephthalate resin composition and a method for producing the same.
  • Polybutylene terephthalate resin is widely used as an engineering plastic for various purposes such as automobile parts and electric / electronic equipment parts because of its excellent mechanical properties, electrical properties, and heat resistance.
  • PBT resin Polybutylene terephthalate resin
  • the materials used are required to be flame-retardant in order to prevent ignition due to tracking, etc. Since various electric and electronic parts are mounted, the demand for flame-retardant materials is expanding.
  • the polybutylene terephthalate resin itself lacks in flame retardancy, it is used as a flame retardant resin composition to which a flame retardant is added.
  • a halogenated benzyl acrylate flame retardant is one of the flame retardants added to such a polybutylene terephthalate resin, and an example thereof is polypentabromobenzyl acrylate (PBBPA) introduced in Patent Document 1.
  • PBBPA polypentabromobenzyl acrylate
  • paragraph [0004] of Patent Document 1 describes that a monomer, pentabromobenzyl acrylate, is polymerized in ethylene glycol monomethyl ether, methyl ethyl ketone, ethylene glycol dimethyl ether, or in chlorobenzene. The method is illustrated.
  • chlorobenzene which is a halogenated aromatic compound
  • a small amount of chlorobenzene will eventually exist as an impurity in PBBPA.
  • the flame-retardant polybutylene terephthalate resin composition added with this also contains chlorobenzene.
  • This chlorobenzene is generally a stable compound, but when it comes into contact with a metal such as a metal oxide or an alkali metal compound in a high temperature environment, dechlorination occurs and a compound such as hydrogen chloride is generated. Sometimes. Therefore, when a composition containing the same is used in a molded product that comes into contact with a metal member such as insert molding or terminal press-fitting, a problem may occur in which the metal member is corroded.
  • a molded article made of the polybutylene terephthalate resin composition is used as an electrically insulating member in combination with a metal member which is a conductive portion, the metal member may not be corroded. Required.
  • the molded product is used in combination with a metal member, but also in the process of molding the molded product itself, from the viewpoint of corrosion of a metal member such as a screw or a cylinder of a molding machine, or a metal mold, this is suppressed Required to do so.
  • polybutylene terephthalate resin is a crystalline thermoplastic resin
  • mold shrinkage due to crystallization after molding and post-shrinkage in the usage environment are likely to occur.
  • the linear expansion coefficient is larger than that of a metal
  • a molded article made of the polybutylene terephthalate resin composition used in combination with the metal member as described above is a resin when exposed to an environment where heating and cooling are repeated. Molding shrinkage and post-shrinkage occur together with the strain caused by the difference in linear expansion coefficient between metal and resin, and the molded product is apt to be damaged by cracks (so-called heat shock destruction). ..
  • Patent Document 2 as a technique for improving the heat shock resistance of the polybutylene terephthalate resin, in order to improve the heat shock resistance of the insert-molded product using polybutylene terephthalate or the like, in the vicinity of the fragile portion of the molded product.
  • a technique of providing a stress concentration part is disclosed.
  • the present invention in a polybutylene terephthalate resin composition using a halogenated benzyl acrylate-based flame retardant as a flame retardant, suppresses damage due to heat shock when a molded article made of the composition is used in an environment where heating and cooling are repeated. In addition, it is an object to suppress corrosion of a metal member that comes into contact with the molded product.
  • the present inventor in the course of research to solve the above problems, uses a halogenated benzyl acrylate flame retardant as a flame retardant, and in a polybutylene terephthalate resin composition containing a specific heat shock resistance improver, the polybutylene terephthalate It is possible to solve the above problems by suppressing the amount of halogenated aromatic compounds such as chlorobenzene contained in the resin composition, particularly by suppressing the amount of halogenated aromatic compounds derived from the manufacturing process of the flame retardant. Heading out, the present invention has been completed.
  • the present invention relates to the following (1) to (12).
  • (11) The production method according to (10), wherein the halogenated aromatic compound is not used as a solvent in the production process of the halogenated benzyl acrylate flame retardant (B).
  • one or more solvents selected from the group consisting of ethylene glycol monomethyl ether, methyl ethyl ketone, ethylene glycol dimethyl ether and dioxane are used as a solvent, (10) or The production method according to (11).
  • a polybutylene terephthalate resin composition using a halogenated benzyl acrylate-based flame retardant as a flame retardant by suppressing the amount of halogenated aromatic compounds such as chlorobenzene in the production process of the flame retardant, Corrosion of a metal member combined with a molded article using the butylene terephthalate resin composition can be suppressed, and heat shock destruction in an environment in which the molded article is repeatedly heated and cooled can be suppressed.
  • FIG. 1 It is a figure which shows the test piece used for the heat shock resistance test, Comprising: (A) is a perspective view and (B) is a top view. It is a figure which shows the insert member of the test piece shown in FIG. 1, (A) is a perspective view, (B) is a top view. It is the figure which showed the example of the molded article used when measuring melt fluidity in this invention.
  • a to B means A or more and B or less.
  • the (A) polybutylene terephthalate resin is a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (such as a C 1-6 alkyl ester or acid halide) and an alkylene having at least 4 carbon atoms. It is a polybutylene terephthalate resin obtained by polycondensing a glycol component containing glycol (1,4-butanediol) or its ester-forming derivative (acetylated product, etc.).
  • the (A) polybutylene terephthalate resin is not limited to the homopolybutylene terephthalate resin, but may be a copolymer containing 60 mol% or more of butylene terephthalate units.
  • the amount of the terminal carboxyl group of the (A) polybutylene terephthalate resin is not particularly limited as long as the object of the present invention is not impaired, but is preferably 30 meq / kg or less, more preferably 25 meq / kg or less.
  • the intrinsic viscosity of the (A) polybutylene terephthalate resin is not particularly limited as long as the object of the present invention is not impaired, but it is preferably 0.60 dL / g or more and 1.5 dL / g or less, and 0.65 dL / g or more 1 More preferably, it is not more than 0.2 dL / g.
  • the polybutylene terephthalate resin composition obtained has particularly excellent moldability.
  • the intrinsic viscosity can be adjusted by blending polybutylene terephthalate resins having different intrinsic viscosities.
  • a polybutylene terephthalate resin having an intrinsic viscosity of 0.9 dL / g is prepared by blending a polybutylene terephthalate resin having an intrinsic viscosity of 1.0 dL / g and a polybutylene terephthalate resin having an intrinsic viscosity of 0.7 dL / g.
  • the intrinsic viscosity of the polybutylene terephthalate resin can be measured, for example, in o-chlorophenol at a temperature of 35 ° C.
  • an aromatic dicarboxylic acid other than terephthalic acid or an ester-forming derivative thereof is used as a comonomer component
  • These dicarboxylic acid components can be used alone or in combination of two or more.
  • C 8-12 aromatic dicarboxylic acids such as isophthalic acid
  • C 6-12 alkane dicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid are more preferable.
  • glycol component other than 1,4-butanediol for example, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol , C 2-10 alkylene glycols such as neopentyl glycol and 1,3-octanediol; polyoxyalkylene glycols such as diethylene glycol, triethylene glycol and dipropylene glycol; cycloaliphatic compounds such as cyclohexanedimethanol and hydrogenated bisphenol A Diol; aromatic diol such as bisphenol A, 4,4'-dihydroxybiphenyl; C 2-4 alkylene oxide of bisphenol A such as bisphenol A ethylene oxide 2 mol adduct, bisphenol A propylene oxide 3 mol adduct Adducts; or ester-forming derivatives of these glycol
  • C 2-6 alkylene glycols such as ethylene glycol and trimethylene glycol
  • polyoxyalkylene glycols such as diethylene glycol
  • alicyclic diols such as cyclohexanedimethanol are more preferable.
  • comonomer components that can be used in addition to the dicarboxylic acid component and the glycol component include, for example, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4′-hydroxybiphenyl and the like.
  • Aromatic hydroxycarboxylic acids Aromatic hydroxycarboxylic acids; Aliphatic hydroxycarboxylic acids such as glycolic acid and hydroxycaproic acid; C 3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone ( ⁇ -caprolactone, etc.); esters of these comonomer components
  • Formable derivatives C 1-6 alkyl ester derivatives, acid halides, acetylated compounds, etc.
  • the content of the (A) polybutylene terephthalate resin is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and more preferably 30 to 70% by mass based on the total mass of the resin composition. Is more preferable.
  • (B) Halogenated benzyl acrylate flame retardant examples include a brominated acrylic polymer represented by the following general formula (I).
  • X in the formula is a hydrogen atom or a bromine atom, and at least one or more is a bromine atom.
  • the number of X is 1 to 5 in one structural unit, but it is preferably 3 to 5 from the effect of flame retardancy.
  • the average degree of polymerization m is 10 to 2000, preferably 15 to 1000. When the average degree of polymerization is lower than 10, the thermal stability deteriorates, and when it exceeds 2000, the moldability of the added polybutylene terephthalate resin deteriorates.
  • the above-mentioned brominated acrylic polymers may be used alone or in combination of two or more.
  • the (B) halogenated benzyl acrylate-based flame retardant used in the present invention is, in addition to the above-mentioned brominated acrylic polymer which is the flame retardant itself, an impurity such as a solvent at the time of polymerization or a decomposed product of the brominated acrylic polymer.
  • an impurity such as a solvent at the time of polymerization or a decomposed product of the brominated acrylic polymer.
  • the content of the halogenated aromatic compound other than the flame retardant, which is such an impurity is preferably 100 ppm or less, more preferably 50 ppm or less, further preferably 30 ppm or less. , Particularly preferably 10 ppm or less.
  • the content of the halogenated aromatic compound other than the flame retardant is measured by, for example, a gas chromatograph of a gas generated when a sample obtained by pulverizing the (B) halogenated benzyl acrylate flame retardant is heat-treated in the head space. It can be determined from the amount of gas generated from the halogenated aromatic compound.
  • the brominated acrylic polymer represented by the general formula (I) is obtained by polymerizing benzyl acrylate containing bromine alone, but benzyl methacrylate having a similar structure may be copolymerized.
  • Bromine-containing benzyl acrylates include pentabromobenzyl acrylate, tetrabromobenzyl acrylate, tribromobenzyl acrylate, or mixtures thereof. Of these, pentabromobenzyl acrylate is preferable.
  • Examples of benzyl methacrylate that is a copolymerizable component include methacrylates corresponding to the above-mentioned acrylates.
  • acrylic acid acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, benzyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, benzyl methacrylate.
  • acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, benzyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, benzyl methacrylate.
  • methacrylic acid esters styrene, acrylonitrile, fumaric acid, unsaturated carboxylic acids such as fumaric acid or anhydrides thereof, vinyl acetate, vinyl chloride and the like.
  • crosslinkable vinyl monomers xylylene diacrylate, xylylene dimethacrylate, tetrabromoxylylene diacrylate, tetrabromoxylylene dimethacrylate, butadiene, isoprene, and divinylbenzene can also be used. These are used in an equimolar amount or less, preferably 0.5 times or less the molar amount of benzyl acrylate or benzyl methacrylate.
  • the brominated acrylic monomer is solution-polymerized or bulk-polymerized to a predetermined degree of polymerization.
  • a method of reacting can be mentioned.
  • the content of the halogenated aromatic compound in the solvent is preferably 1000 ppm or less, more preferably 500 ppm or less, further preferably 300 ppm or less, and particularly preferably 100 ppm or less. preferable. It is more preferable not to use halogenated benzene or a halogenated aromatic compound such as chlorobenzene as the solvent.
  • aprotic solvents such as ethylene glycol monomethyl ether, methyl ethyl ketone, ethylene glycol dimethyl ether and dioxane are preferable.
  • a polymerization solvent containing a protic compound can be used.
  • the (B) halogenated benzyl acrylate-based flame retardant such as the brominated acrylic polymer described above contains water and / or an alkaline (earth) metal ion in order to remove reaction by-products such as residual sodium polyacrylate. It is preferable to wash with the contained aqueous solution.
  • containing an alkali (earth) metal ion means containing an alkali metal ion and / or an alkaline earth metal ion.
  • An aqueous solution containing an alkali (earth) metal ion can be easily obtained by adding an alkali (earth) metal salt to water, but an alkali (earth) metal containing no chloride ion, phosphate ion, etc.
  • Certain hydroxides eg calcium hydroxide
  • calcium hydroxide is generally soluble in about 0.126 g in 100 g of water at 20 ° C., and the concentration of the aqueous solution is not particularly limited as long as the solubility is reached. ..
  • the method of washing with water and / or an aqueous solution containing an alkali (earth) metal ion is not particularly limited, and the brominated acrylic polymer may contain water and / or an alkali (earth) metal ion for an appropriate time.
  • a method such as immersing in an aqueous solution may be used.
  • the brominated acrylic polymer that has been washed with an aqueous solution containing water and / or an alkaline (earth) metal ion generally has a dry solid content of 100 ppm or less in the hot water extract. When such a brominated acrylic polymer is used, almost no foreign matter is generated on the surface of the molded product.
  • the flame-retardant polybutylene terephthalate resin composition of the present invention has a content of halogenated aromatic compound other than the flame retardant, which is the above-mentioned impurity, is less than 0.5 ppm, preferably 0.3 ppm or less, more preferably Is 0.1 ppm or less.
  • the content of the halogenated aromatic compound other than the flame retardant is in the above range, in the molded article using the polybutylene terephthalate resin composition, in combination with a metal member
  • corrosion of the metal member can be suppressed, and heat shock destruction when the molded product is exposed to an environment in which heating and cooling are repeated can be suppressed.
  • the content of the halogenated aromatic compound other than such a flame retardant for example, a sample obtained by pulverizing the polybutylene terephthalate resin composition, the generated gas at the time of heat treatment in the head space, measured by gas chromatography, It can be determined from the amount of gas generated from the halogenated aromatic compound.
  • an antimony-based flame retardant auxiliary In making the above resin flame-retardant, it is preferable to use an antimony-based flame retardant auxiliary together.
  • the flame retardant aid include antimony trioxide, antimony tetroxide, antimony pentoxide, sodium antimonate and the like.
  • antimony pentoxide and sodium antimonate In the polybutylene terephthalate resin composition of the present invention, it is preferable to use antimony pentoxide and sodium antimonate from the viewpoint of further improving the heat shock resistance.
  • the addition amount of the antimony-based flame retardant auxiliary may be appropriately set in consideration of heat shock resistance, mechanical properties and fluidity, but 1 part by mass or more and 30 parts by mass or more with respect to 100 parts by mass of the polybutylene terephthalate resin. The following is preferable.
  • an anti-dripping agent such as polytetrafluoroethylene together for the purpose of preventing the fire from spreading due to the dropping of the burned resin.
  • the range of addition of the halogenated benzyl acrylate flame retardant and antimony flame retardant aid (B) to the resin is 3 to 50 parts by mass of the polymer with respect to 100 parts by mass of the polybutylene terephthalate resin, and 5 to 40 parts by mass. It is preferably 10 parts by mass and more preferably 10 to 35 parts by mass.
  • the antimony flame retardant aid is preferably in the range of 1 to 40 parts by mass. If the amounts of the brominated acrylic polymer and antimony flame retardant aid added are too small, sufficient flame retardancy cannot be imparted, and if the amounts are too large, the physical properties of the molded product may deteriorate.
  • the protic compound means a compound having a proton (hydrogen ion) donating property.
  • examples of the protic compound include compounds derived from a polymerization solvent for a halogenated benzyl acrylate flame retardant, an alkoxy alcohol is preferable, and a C1 to C20 alkoxy C1 to C20 alcohol is more preferable.
  • the C1-C20 alkoxy C1-C20 alcohol methoxy C1-C20 alcohol and C1-C20 alkoxy ethanol are more preferable, and methoxy ethanol is still more preferable.
  • the C1 to C20 dialkoxy C1 to C20 alcohol is also preferable as the protic compound, and 3,3-diethoxypropanol is preferable as the C1 to C20 dialkoxy C1 to C20 alcohol.
  • examples of the protic compound include compounds derived from a raw material of a halogenated benzyl acrylate flame retardant, an aromatic carboxylic acid is preferable, and benzoic acid is more preferable.
  • the protic compound is preferably derived from the polymerization solvent rather than derived from the halogenated benzyl acrylate flame retardant raw material.
  • the amount of the protic compound contained in the halogenated benzyl acrylate flame retardant is preferably 10 to 1000 ppm, more preferably 100 to 800 ppm, in the halogenated benzyl acrylate flame retardant. More preferably, it is 300 to 500 ppm.
  • the amount of the protic compound contained in the halogenated benzyl acrylate flame retardant is less than 10 ppm, it becomes difficult to obtain the effect of improving the fluidity of the flame retardant polybutylene terephthalate resin composition.
  • the amount of the protic compound contained in the halogenated benzyl acrylate flame retardant exceeds 1000 ppm, the amount of gas generated during compounding increases, and strand breakage easily occurs during pelletization.
  • the protic compound contained in the halogenated benzyl acrylate flame retardant is a linear product which is a reaction product with a linear low molecular weight substance (oligomer) of the polybutylene terephthalate resin. It is presumed that a compound is produced, which brings about the same effect as that of the plasticizer and improves the fluidity of the flame-retardant polybutylene terephthalate resin composition. For this reason, the polybutylene terephthalate resin preferably contains a linear low molecular weight substance.
  • the amount of the linear low molecular weight substance contained in the polybutylene terephthalate resin is preferably 50 to 1000 ppm, more preferably 70 to 700 ppm, and further preferably 100 to 200 ppm.
  • the amount of the linear low molecular weight substance is less than 50 ppm, it is difficult to obtain the effect of improving the fluidity of the flame-retardant polybutylene terephthalate resin composition, and when it exceeds 1000 ppm, Mold Deposition (die deposit) is likely to occur. Therefore, it is not preferable.
  • the resin for improving heat shock resistance (C) used in the present invention is required when a molded article made of the flame-retardant polybutylene terephthalate resin composition of the present invention is used in an environment in which heating and cooling are repeated. It is added to improve heat shock resistance.
  • an elastic body such as rubber or elastomer is used in the sense that by imparting toughness to the polybutylene terephthalate resin composition, the strain generated in the molded article can be absorbed.
  • an olefin elastomer a core shell elastomer, a diene elastomer, a polyester elastomer, a urethane elastomer, a silicone elastomer, a styrene elastomer, a polyamide elastomer, and the like. Or, two or more kinds can be used in combination.
  • olefin elastomer examples include ethylene-propylene copolymer (EP copolymer), ethylene-butene copolymer, ethylene-octene copolymer, ethylene-propylene-diene copolymer (EPD copolymer), Copolymer containing at least one unit selected from ethylene-propylene-butene copolymer, ethylene-vinyl acetate copolymer, EP copolymer and EPD copolymer, olefin and (meth) acrylic monomer With ethylene, ethylene-ethyl acrylate copolymer, ethylene-glycidyl methacrylate copolymer, ⁇ -olefin / ⁇ , ⁇ -unsaturated carboxylic acid (ester) / ⁇ , ⁇ -unsaturated carboxylic acid glycidyl ester An original copolymer, an ethylene-based copolymer obtained by copolymerizing an ethylene-
  • Preferred olefin elastomers include EP copolymers, EPD copolymers, and copolymers of olefins and (meth) acrylic monomers, with ethylene ethyl acrylate being particularly preferred. These olefinic elastomers can be used alone or in combination of two or more.
  • the core-shell elastomer is a polymer in which the core layer is composed of a rubber component (soft component) and the shell layer is composed of a hard component, and it is preferable to use acrylic rubber or the like as the rubber component of the core layer.
  • the rubber component used in the core layer preferably has a glass transition temperature (Tg) of less than 0 ° C. (eg ⁇ 10 ° C. or lower), and ⁇ 20 ° C. or lower (eg ⁇ 180 ° C. or higher and ⁇ 25 ° C. or lower). It is more preferably ⁇ 30 ° C. or lower (eg ⁇ 150 ° C. or higher and ⁇ 40 ° C. or lower).
  • an acrylic rubber When an acrylic rubber is used as the rubber component, a polymer obtained by polymerizing an acrylic monomer such as an alkyl acrylate as a main component is preferable.
  • the alkyl acrylate used as the monomer of the acrylic rubber is preferably a C 1 to C 12 alkyl ester of acrylic acid such as butyl acrylate, and more preferably a C 2 to C 6 alkyl ester of acrylic acid.
  • the acrylic rubber may be a homopolymer or a copolymer of acrylic monomers.
  • the acrylic rubber may be a copolymer of acrylic monomers or a copolymer of acrylic monomers and another unsaturated bond-containing monomer.
  • the acrylic rubber may be a copolymer of a crosslinkable monomer.
  • a vinyl polymer is preferably used for the shell layer.
  • the vinyl polymer is, for example, at least one monomer selected from aromatic vinyl monomers, vinyl cyanide monomers, methacrylic acid ester monomers, and acrylic acid ester monomers. It can be obtained by polymerization or copolymerization.
  • the core layer and the shell layer of the core-shell type elastomer may be bonded by graft copolymerization. This graft copolymerization is obtained by adding a graft cross-linking agent that reacts with the shell layer during the polymerization of the core layer, if necessary, to give a reactive group to the core layer, and then to form the shell layer.
  • an organosiloxane having a vinyl bond or an organosiloxane having a thiol is used, and preferably acryloxysiloxane, methacryloxysiloxane or vinylsiloxane.
  • polyester-based elastomer both an ester-ester type in which the hard segment and the soft segment have a polyester-based unit structure and an ester-ether type in which the soft segment has a polyether-based unit structure can be preferably used.
  • the former is more preferable in terms of heat resistance and the latter is more preferable in terms of dimensional accuracy.
  • An aromatic polyester unit such as polybutylene terephthalate or polyethylene terephthalate can be preferably used as the polyester unit structure of the heart segment, and an aliphatic polyester unit such as polyethylene adipate, polybutylene adipate, or polycaprolactone is preferably used as the polyester unit of the soft segment.
  • polyether unit of the soft segment polyethylene glycol or polytetramethylene glycol can be preferably used, but the soft segment polyether unit is not limited thereto.
  • urethane elastomers include reacting diisocyanates such as 4,4′-diphenylmethane diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, tolylene diisocyanate and hexamethylene diisocyanate with glycols such as ethylene glycol and tetramethylene glycol.
  • diisocyanates such as 4,4′-diphenylmethane diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, tolylene diisocyanate and hexamethylene diisocyanate
  • glycols such as ethylene glycol and tetramethylene glycol.
  • a block copolymer having polyurethane as a hard segment and polyether or polyethylene adipate such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol or polyethylene adipate, polybutylene adipate, aliphatic polyester such
  • styrene elastomer examples include acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, styrene-butadiene copolymer, styrene-butadiene-styrene copolymer, styrene-isoprene-styrene copolymer, styrene-ethylene.
  • -Butadiene-styrene copolymer, acrylonitrile-styrene-epoxy group-containing vinyl copolymer, and the like can be mentioned, and these can be used alone or in combination of two or more kinds.
  • polyamide elastomers include, but are not limited to, block copolymers having nylon 6, nylon 66, nylon 11, nylon 12, etc. as the hard segment and polyether or aliphatic polyester as the soft segment. Not a thing. Although not strictly classified as an elastomer, an aliphatic polyamide can also be used as the polyamide elastomer in the present invention.
  • the amount of the (C) resin for improving heat shock resistance added is 5 to 100 parts by mass, or 10 to 90 parts by mass or 20 to 80 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin.
  • the content of the resin for improving heat shock resistance is the flame-retardant polybutylene of the present invention because the combustibility of the composition may be deteriorated by adding a large amount thereof. It is preferably 40% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less, based on the entire terephthalate resin composition.
  • Inorganic fillers and metal fillers which have a small shrinkage ratio and linear expansion coefficient in the operating temperature range, are preferable, and in a molded product used as an insulating member to be combined with a metal member, an inorganic filler is used in order to ensure insulation. Is particularly preferably used.
  • the shape of the filler (D) for improving heat shock resistance may be any of fibrous filler, plate-like filler, spherical filler, powdery filler, curved filler, amorphous filler and combinations thereof. Although it is also possible to use, it is preferable to reduce the anisotropy of shrinkage and linear expansion in order to suppress the destruction due to heat shock. Therefore, it is desirable that the filler itself has small anisotropy, It is more preferable to use a plate-like filler, a spherical filler, a powdery filler, or the like, particularly a filler having an aspect ratio close to 1.
  • fibrous filler such as glass fiber
  • the effect of improving mechanical properties such as tensile strength is great, but the anisotropy of shrinkage tends to increase due to the orientation of the fibrous filler. Therefore, as fibrous fillers, short fibers such as milled fibers and whiskers, and flat shapes such as cocoon-shaped or elliptical / oval cross-sections (for example, ratio of cross-section long diameter / short diameter is 1.3 to 10) It is more preferable to use a fiber having a relatively small aspect ratio, such as a fiber. In particular, it is preferable to use glass fibers having a flat cross section because both heat shock resistance and mechanical properties can be improved.
  • the plate-like filler examples include plate-like talc, mica, glass flakes, metal pieces and combinations thereof
  • specific examples of the spherical filler include glass beads, glass balloons, spherical silica
  • the powdery filler examples include glass powder, talc powder, quartz powder, quartz powder, kaolin, clay, diatomaceous earth, wollastonite, silicon carbide, silicon nitride, metal powder, and inorganic acid metal.
  • Powder of salt (calcium carbonate, zinc borate, calcium borate, zinc stannate, calcium sulfate, barium sulfate, etc.), powder of metal oxide (magnesium oxide, iron oxide, titanium oxide, zinc oxide, alumina, etc.), metal Powders of hydroxides (aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, alumina hydrate (boehmite), etc.), metal sulfides (zinc sulfide, molybdenum sulfide, tungsten sulfide, etc.), and combinations thereof. Can be mentioned. From the viewpoint of metal corrosiveness, the content of the free inorganic acid contained in the filler (D) for improving heat shock resistance is preferably 0.5% by mass or less.
  • the size of the heat shock resistance-improving filler can be appropriately selected in consideration of the balance between the warp reduction effect and the mechanical characteristics, fluidity and the like.
  • talc talc having a volume average particle size of 1 to 10 ⁇ m or compressed fine powder talc having a bulk specific gravity of 0.4 to 1.5 can be suitably used
  • mica a volume average particle size of 10 to Mica of 60 ⁇ m can be preferably used.
  • These (D) fillers for improving heat shock resistance may be surface-treated (surface-coated) with an inorganic compound and / or an organic compound.
  • an inorganic compound used for the surface treatment for example, aluminum hydroxide, alumina, silica, zirconia, zirconium hydroxide, zirconia hydrate, cerium oxide, cerium oxide hydrate, aluminum such as cerium hydroxide, silicon, zirconium.
  • these inorganic compounds may be hydrates.
  • aluminum hydroxide and silica are preferable, and when silica is used, a silica hydrate represented by SiO 2 .nH 2 O is particularly preferable.
  • the organic compound used for the surface treatment is preferably an epoxy compound or an amine compound, and an epoxy compound such as bisphenol A type epoxy or novolac type epoxy and an amine compound such as monoethanolamine, diethanolamine, triethanolamine or dichlorohexylamine. Can be exemplified as a more preferable compound.
  • the addition amount of the (D) filler for improving heat shock resistance is 10 to 200 parts by mass, or 20 to 180 parts by mass or 30 to 150 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin. ..
  • the addition amount of the (D) filler for improving heat shock resistance can be appropriately selected in consideration of the balance between the effect of improving heat shock resistance and mechanical properties, fluidity and the like.
  • Examples of the additive (E) for improving heat shock resistance include a carbodiimide compound, an epoxy compound, an oxazoline compound, an oxazine compound, and an aromatic polycarboxylic acid ester, and one kind or a combination of two or more kinds thereof is used. Can be used.
  • a carbodiimide compound can be used, for example, in the presence of a suitable catalyst. It can be produced by heating an organic isocyanate and performing a decarboxylation reaction.
  • carbodiimide compound examples include diphenylcarbodiimide, di-cyclohexylcarbodiimide, di-2,6-dimethylphenylcarbodiimide, diisopropylcarbodiimide, dioctyldecylcarbodiimide, di-o-toluylcarbodiimide, di-p-toluylcarbodiimide, di-p- Nitrophenylcarbodiimide, di-p-aminophenylcarbodiimide, di-p-hydroxyphenylcarbodiimide, di-p-chlorophenylcarbodiimide, di-o-chlorophenylcarbodiimide, di-3,4-dichlorophenylcarbodiimide, di-2 , 5-dichlorophenylcarbodiimide, p-phenylene-bis-o-toluylcarbodiimide, p-phenylene-bis-dicyclo
  • polycarbodiimide a xylylene-based polycarbodiimide synthesized from m-xylylene diisocyanate, p-xylene diisocyanate, m-tetramethyl xylylene diisocyanate, p-tetramethyl xylene diisocyanate, or the like can be used.
  • a carbodiimide compound obtained by reacting a diisocyanate compound with a diol compound such as a polyether polyol, a polyester polyol, a polycarbonate polyol, a silicone diol, a polyolefin polyol, a polyurethane polyol, and an alkylene (21 to 22 carbon atoms) diol
  • a diol compound such as a polyether polyol, a polyester polyol, a polycarbonate polyol, a silicone diol, a polyolefin polyol, a polyurethane polyol, and an alkylene (21 to 22 carbon atoms) diol
  • aromatic carbodiimides such as N, N′-di-2,6-diisopropylphenylcarbodiimide and 2,6,2 ′, 6′-tetraisopropyldiphenylcarbodiimide are preferable from the viewpoint of heat resistance, and Carbodi
  • the epoxy compound may be any compound containing an epoxy group in its molecular structure, and glycidyl ether compounds, glycidyl ester compounds, glycidyl amine compounds, glycidyl imide compounds, and alicyclic epoxy compounds can be preferably used.
  • glycidyl ether compound examples include butyl glycidyl ether, stearyl glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, o-phenylphenyl glycidyl ether, ethylene oxide lauryl alcohol glycidyl ether, ethylene oxide phenol glycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol.
  • Diglycidyl ether propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, cyclohexanedimethanol diglycidyl ether, glycerol triglycidyl ether, trimethylolpropane triglycidyl ether, Of epichlorohydrin with pentaerythritol polyglycidyl ether, bisphenols such as 2,2-bis- (4-hydroxyphenyl) propane, 2,2-bis- (4-hydroxyphenyl) methane and bis (4-hydroxyphenyl) sulfone Examples thereof include bisphenol A diglycidyl ether type epoxy resin, bisphenol F diglycidyl ether type epoxy resin, and bisphenol S diglycidyl ether type epoxy resin obtained from the condensation reaction. Among them, bisphenol A diglycidyl ether
  • glycidyl ester compound examples include glycidyl benzoate, glycidyl p-toluate, glycidyl cyclohexanecarboxylic acid, glycidyl stearate, glycidyl laurate, glycidyl palmitate, glycidyl oleate, and glycidyl oleate.
  • Ester glycidyl linoleate, glycidyl linolenate, diglycidyl terephthalate, diglycidyl isophthalate, diglycidyl phthalate, naphthalene dicarboxylic acid diglycidyl ester, diglycidyl bibenzoate, diglycidyl methyl terephthalate , Hexahydrophthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, cyclohexanedicarboxylic acid diglycidyl ester, adipic acid diglycidyl ester, succinic acid diglycidyl ester, sebacic acid diglycidyl ester, dodecanedioic acid diglycidyl ester, octadecane dicarboxylic acid Examples thereof include acid diglycidyl ester, trimellitic acid triglycidyl ester, and p
  • Examples of the glycidyl amine compound include tetraglycidyl aminodiphenylmethane, triglycidyl-p-aminophenol, triglycidyl-m-aminophenol, diglycidyl aniline, diglycidyl toluidine, tetraglycidyl metaxylenediamine, diglycidyl tribromoaniline, tetra
  • Examples thereof include glycidyl bisaminomethylcyclohexane, triglycidyl cyanurate and triglycidyl isocyanurate.
  • Examples of the glycidyl imide compound include N-glycidyl phthalimide, N-glycidyl-4-methylphthalimide, N-glycidyl-4,5-dimethylphthalimide, N-glycidyl-3-methylphthalimide, N-glycidyl-3,6- Dimethylphthalimide, N-glycidyl-4-ethoxyphthalimide, N-glycidyl-4-chlorophthalimide, N-glycidyl-4,5-dichlorophthalimide, N-glycidyl-3,4,5,6-tetrabromophthalimide, N -Glycidyl-4-n-butyl-5-bromophthalimide, N-glycidyl succinimide, N-glycidyl hexahydrophthalimide, N-glycidyl-1,2,3,6-tetrahydrophthalimide, N-glycidyl maleimide, N- Glycidyl-
  • Examples of the alicyclic epoxy compound include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate, bis (3,4-epoxycyclohexylmethyl) adipate, vinylcyclohexene diepoxide, N-methyl-4, 5-epoxycyclohexane-1,2-dicarboxylic acid imide, N-ethyl-4,5-epoxycyclohexane-1,2-dicarboxylic acid imide, N-phenyl-4,5-epoxycyclohexane-1,2-dicarboxylic acid imide , N-naphthyl-4,5-epoxycyclohexane-1,2-dicarboxylic acid imide, N-tolyl-3-methyl-4,5-epoxycyclohexane-1,2-dicarboxylic acid imide and the like.
  • epoxy compounds epoxidized soybean oil, epoxidized linseed oil, epoxy-modified fatty acid glyceride such as epoxidized whale oil, phenol novolac type epoxy resin, cresol nozolac type epoxy resin, etc. can be used.
  • an epoxy compound such as a glycidyl ester of an ⁇ , ⁇ -unsaturated acid, for example, a glycidyl acrylic acid ester, a glycidyl methacrylic acid ester, a glycidyl ethacrylic acid glycidyl ester, etc. may be added to another monomer by random, block or graft copolymerization.
  • a polyorganosiloxane / polyalkyl (meth) acrylate composite rubber graft copolymer obtained by graft-polymerizing a monomer, a styrene / butadiene copolymer elastomer having an epoxy group in its main chain, etc. can also be used. It is also possible to use a brominated epoxy compound (which does not have an epoxy group sealed) used as a flame retardant.
  • oxazoline compound examples include 2-methoxy-2-oxazoline, 2-ethoxy-2-oxazoline, 2-propoxy-2-oxazoline, 2-butoxy-2-oxazoline, 2-pentyloxy-2-oxazoline, 2- Hexyloxy-2-oxazoline, 2-heptyloxy-2-oxazoline, 2-octyloxy-2-oxazoline, 2-nonyloxy-2-oxazoline, 2-decyloxy-2-oxazoline, 2-cyclopentyloxy-2-oxazoline, 2-cyclohexyloxy-2-oxazoline, 2-allyloxy-2-oxazoline, 2-methallyloxy-2-oxazoline, 2-crotyloxy-2-oxazoline, 2-phenoxy-2-oxazoline, 2-cresyl-2-oxazoline , 2-o-ethylphenoxy-2-oxazoline, 2-o-propylphenoxy-2-oxazoline, 2-o-phen
  • oxazine compound examples include 2-methoxy-5,6-dihydro-4H-1,3-oxazine, 2-ethoxy-5,6-dihydro-4H-1,3-oxazine, 2-propoxy-5,6.
  • 2,2'-m-phenylenebis (2-oxazoline) and 2,2'-p-phenylenebis (2-oxazoline) are preferable.
  • aromatic polyvalent carboxylic acid ester for example, trimellitic acid ester and pyromellitic acid ester are mentioned as preferable examples, and alkyl ester is particularly preferable.
  • alkyl ester examples include a trioctyl group, a triisodecyl group, a tris (2-ethylhexyl) group, a tributyl group, and the like, and any one or a combination of two or more thereof may be used.
  • aromatic polycarboxylic acid esters can be used alone or in combination of two or more.
  • the addition amount of the (E) heat shock resistance improving additive is 0.1 to 30 parts by mass, preferably 0.2 to 20 parts by mass, and 0 to 100 parts by mass of the polybutylene terephthalate resin. It is more preferably from 0.3 to 10 parts by mass.
  • the amount of the (E) additive for improving heat shock resistance is the total of carbodiimide group, epoxy group, oxazoline group, oxazine ring, and ester group, with the amount of terminal carboxyl group in the polybutylene terephthalate resin composition being 1.
  • the functional group content may be set to 0.3 to 5 equivalents.
  • the preferred total functional group content is 0.5 to 3 equivalents, more preferably 0.8 to 2 equivalents.
  • the colorant When an inorganic pigment such as carbon black is used as the colorant, it is preferable to use one having an average primary particle diameter of 10 to 100 nm, and one having an average primary particle diameter of 25 to 50 nm, from the viewpoint that the reduction of heat shock resistance can be suppressed. Is more preferable.
  • the average primary particle diameter here is an arithmetic average particle diameter obtained by observing 1000 colorants before being mixed in the resin composition with an electron microscope.
  • the colorant When the colorant is added, it is melt-kneaded with (A) a resin used as a polybutylene terephthalate resin or (C) a resin for improving heat shock resistance, or another resin having a high compatibility with the polybutylene terephthalate resin. Addition in the state of a masterbatch is preferable in that the decrease in heat shock resistance can be further suppressed.
  • the form of the flame-retardant polybutylene terephthalate resin composition of the present invention may be a mixture of powder or granules or a melt mixture (melt-kneaded product) such as pellets.
  • a method for producing a polybutylene terephthalate resin composition according to an embodiment of the present invention has a step of producing (B) a halogenated benzyl acrylate flame retardant. Since the process is as described above, the description is omitted here.
  • the method for producing the polybutylene terephthalate resin composition is not particularly limited, and the polybutylene terephthalate resin composition can be produced using equipment and methods known in the art. For example, necessary components can be mixed and kneaded using a single-screw or twin-screw extruder or another melt-kneading device to prepare pellets for molding. Plural extruders or other melt-kneading devices may be used. Further, all the components may be charged simultaneously from the hopper, or some of the components may be charged from the side feed port.
  • FIG. 1 is a view showing a test piece 10 that has been insert-molded
  • FIG. 1 is a view showing a test piece 10 that has been insert-molded
  • the test piece 10 has a rectangular columnar insert member 2 made of a metal embedded in a rectangular columnar resin member 1 made of a thermoplastic aromatic polyester resin composition.
  • the resin member 1 is molded using the resin composition pellets obtained as described above.
  • the insert member 2 is configured to include an upper portion 2a having a quadrangular prism shape, a lower portion 2b having a quadrangular prism shape, and a columnar constricted portion 2c connecting the two between them.
  • the lower portion 2b and the constricted portion 2c are embedded in the resin member 1, and the upper portion 2a is exposed from the upper surface of the resin member 1 (see FIG. 1A).
  • FIG. 1A shows that shows that the test piece 10 has a rectangular columnar insert member 2 made of a metal embedded in a rectangular columnar resin member 1 made of a thermoplastic aromatic polyester resin composition.
  • the resin member 1 is molded using the resin composition pellets obtained as described above.
  • the insert member 2 is configured to include an upper portion 2a having a quadrangular pris
  • the corners of the resin member 1 and the insert member 2 are arranged so as to be positioned in mutually different directions. That is, the corner portion of the insert member 2 is arranged so as to face the side surface of the resin member 1.
  • the distance between the tip of the corner of the insert member 2 and the side surface of the resin member 1 is about 1 mm.
  • the vicinity of the tip of the corner (sharp corner) of the insert member 2 is a thin portion.
  • the number of cycles when cracks were generated in the weld portion was used as an index of heat shock resistance, and 200 cycles or more were evaluated as ⁇ , 100 cycles or more were evaluated as ⁇ , and less than 100 cycles was evaluated as x.
  • the results are shown in Table 1.
  • polybutylene terephthalate resin (A-3) Polybutylene terephthalate resin (A-4) PBT resin having a terminal carboxyl group concentration of 20 meq / kg, an intrinsic viscosity of 0.7 dL / g, and a linear low molecular weight substance of 30 ppm: manufactured by Polyplastics Co., Ltd., a terminal carboxyl group concentration of 20 meq.
  • PBBPA1 polypentabromobenzyl acrylate polymerized by using ethylene glycol monomethyl ether as a solvent (other than flame retardant Containing 8 ppm of halogenated aromatic compound and containing 20 ppm of methoxyethanol as a protic compound)
  • B-2 Polypentabromobenzyl acrylate polymerized by using chlorobenzene as a solvent (containing 150 ppm of halogenated aromatic compound other than flame retardant and 20 ppm of methoxyethanol as a protic compound)
  • B-3) PBBPA3 Polypentabromobenzyl acrylate polymerized by using ethylene glycol monomethyl ether as a solvent (content of halogenated aromatic compound other than flame retardant 8 ppm, methoxyethanol 300 ppm as protic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] To suppress corrosion of metal members in contact with a molded article composed of a polybutylene terephthalate resin composition in which a halogenated benzyl-acrylate-based flame retardant is used as a flame retardant, and to improve the heat shock resistance of the molded article. [Solution] The problem is solved by suppressing the amount of halogenated aromatic compounds such as chlorobenzene derived from the halogenated benzyl-acrylate-based flame retardant used as a flame retardant in a polybutylene terephthalate resin composition to which a heat shock resistance improver and a flame retardant are added.

Description

難燃性ポリブチレンテレフタレート樹脂組成物Flame-retardant polybutylene terephthalate resin composition
 本発明は、難燃性ポリブチレンテレフタレート樹脂組成物、及びその製造方法に関する。 The present invention relates to a flame-retardant polybutylene terephthalate resin composition and a method for producing the same.
 ポリブチレンテレフタレート樹脂(PBT樹脂)は、機械的特性、電気的特性、耐熱性など各種特性に優れるため、エンジニアリングプラスチックとして自動車部品や電気・電子機器部品など種々の用途に広く利用されている。これらのうち、電気・電子機器部品用途では、トラッキング等による発火を防ぐため、使用される材料には難燃性が要求されており、また自動車部品についても、近年のハイブリッド化や電動化に伴い、種々の電気・電子部品が搭載されるようになっていることから、難燃性材料の要求が広がっている。ここで、ポリブチレンテレフタレート樹脂は、それ自体では難燃性が不足するため、難燃剤を添加した難燃性樹脂組成物として使用されている。 Polybutylene terephthalate resin (PBT resin) is widely used as an engineering plastic for various purposes such as automobile parts and electric / electronic equipment parts because of its excellent mechanical properties, electrical properties, and heat resistance. Of these, in electrical and electronic equipment parts applications, the materials used are required to be flame-retardant in order to prevent ignition due to tracking, etc. Since various electric and electronic parts are mounted, the demand for flame-retardant materials is expanding. Here, since the polybutylene terephthalate resin itself lacks in flame retardancy, it is used as a flame retardant resin composition to which a flame retardant is added.
 このようなポリブチレンテレフタレート樹脂に添加される難燃剤の一種としてハロゲン化ベンジルアクリレート系難燃剤があり、その例としては特許文献1に紹介されているようなポリペンタブロモベンジルアクリレート(PBBPA)がある。この難燃剤を製造する方法として特許文献1の段落[0004]には、モノマーであるペンタブロモベンジルアクリレートを、エチレングリコールモノメチルエーテルや、メチルエチルケトン、エチレングリコールジメチルエーテル中で重合する方法やクロロベンゼン中で重合する方法が例示されている。 A halogenated benzyl acrylate flame retardant is one of the flame retardants added to such a polybutylene terephthalate resin, and an example thereof is polypentabromobenzyl acrylate (PBBPA) introduced in Patent Document 1. .. As a method for producing this flame retardant, paragraph [0004] of Patent Document 1 describes that a monomer, pentabromobenzyl acrylate, is polymerized in ethylene glycol monomethyl ether, methyl ethyl ketone, ethylene glycol dimethyl ether, or in chlorobenzene. The method is illustrated.
 これらのうち、ハロゲン化芳香族化合物であるクロロベンゼンを溶媒として重合した場合、最終的にPBBPA中に不純物として微量のクロロベンゼンが存在することになる。そして、これを添加して難燃化したポリブチレンテレフタレート樹脂組成物もクロロベンゼンを含有することとなる。 Among these, when chlorobenzene, which is a halogenated aromatic compound, is used as a solvent for polymerization, a small amount of chlorobenzene will eventually exist as an impurity in PBBPA. The flame-retardant polybutylene terephthalate resin composition added with this also contains chlorobenzene.
 このクロロベンゼンは一般的には安定した化合物であるが、高温環境下において、特に金属酸化物やアルカリ金属系化合物などの金属と接触した場合、脱塩素化が起こり、塩化水素等の化合物が発生することがある。そのため、これを含む組成物をインサート成形や端子圧入など金属部材と接触する成形品に用いると、当該金属部材の腐蝕が生じるといった問題が起こる場合がある。ここで、前述した電気・電子部品用途においては、ポリブチレンテレフタレート樹脂組成物からなる成形品が電気絶縁部材として、導電部である金属部材と組み合わせて用いられるため、その金属部材を腐蝕させないことが要求される。また、成形品が金属部材と組み合わせて用いられる場合のみに限らず、成形品自体を成形する過程において、成形機のスクリュやシリンダ、あるいは金型といった金属部材の腐蝕の観点からも、これを抑制することが求められる。 This chlorobenzene is generally a stable compound, but when it comes into contact with a metal such as a metal oxide or an alkali metal compound in a high temperature environment, dechlorination occurs and a compound such as hydrogen chloride is generated. Sometimes. Therefore, when a composition containing the same is used in a molded product that comes into contact with a metal member such as insert molding or terminal press-fitting, a problem may occur in which the metal member is corroded. Here, in the above-mentioned electric / electronic component application, since a molded article made of the polybutylene terephthalate resin composition is used as an electrically insulating member in combination with a metal member which is a conductive portion, the metal member may not be corroded. Required. Further, not only when the molded product is used in combination with a metal member, but also in the process of molding the molded product itself, from the viewpoint of corrosion of a metal member such as a screw or a cylinder of a molding machine, or a metal mold, this is suppressed Required to do so.
 ところでポリブチレンテレフタレート樹脂は、結晶性の熱可塑性樹脂であるため、成形後の結晶化に伴う成形収縮や使用環境での後収縮が発生しやすい。また、金属に対し線膨張係数が大きいため、上述のような金属部材と組み合わせて用いられるポリブチレンテレフタレート樹脂組成物からなる成形品が、加熱冷却を繰り返す環境下に曝される場合には、樹脂の成形収縮及び後収縮の発生と、金属と樹脂の線膨張係数の違いに起因して発生する歪とが相俟って、成形品にクラック等の破損が生じやすくなる(いわゆるヒートショック破壊)。そこで、ポリブチレンテレフタレート樹脂の耐ヒートショック性を向上させる技術として、特許文献2では、ポリブチレンテレフタレート等を用いたインサート成形品の耐ヒートショック性を向上させるために、成形品の脆弱部近傍に応力集中部を設ける技術が開示されている。 By the way, since polybutylene terephthalate resin is a crystalline thermoplastic resin, mold shrinkage due to crystallization after molding and post-shrinkage in the usage environment are likely to occur. Further, since the linear expansion coefficient is larger than that of a metal, a molded article made of the polybutylene terephthalate resin composition used in combination with the metal member as described above is a resin when exposed to an environment where heating and cooling are repeated. Molding shrinkage and post-shrinkage occur together with the strain caused by the difference in linear expansion coefficient between metal and resin, and the molded product is apt to be damaged by cracks (so-called heat shock destruction). .. Therefore, in Patent Document 2, as a technique for improving the heat shock resistance of the polybutylene terephthalate resin, in order to improve the heat shock resistance of the insert-molded product using polybutylene terephthalate or the like, in the vicinity of the fragile portion of the molded product. A technique of providing a stress concentration part is disclosed.
特表2015-532350号公報Japanese Patent Publication No. 2015-532350 特開2013-103472号公報JP, 2013-103472, A
 本発明は、難燃剤としてハロゲン化ベンジルアクリレート系難燃剤を用いるポリブチレンテレフタレート樹脂組成物において、当該組成物からなる成形品が加熱冷却を繰り返す環境下で使用される際のヒートショックによる破壊を抑制するとともに、当該成形品と接触する金属部材の腐蝕を抑制することを課題とする。 The present invention, in a polybutylene terephthalate resin composition using a halogenated benzyl acrylate-based flame retardant as a flame retardant, suppresses damage due to heat shock when a molded article made of the composition is used in an environment where heating and cooling are repeated. In addition, it is an object to suppress corrosion of a metal member that comes into contact with the molded product.
 本発明者は、上記を課題とする研究の過程で、難燃剤としてハロゲン化ベンジルアクリレート系難燃剤を用い、特定の耐ヒートショック性向上剤を含むポリブチレンテレフタレート樹脂組成物において、当該ポリブチレンテレフタレート樹脂組成物に含有される、クロロベンゼンなどのハロゲン化芳香族化合物の量を抑える、特に当該難燃剤の製造工程に由来するハロゲン化芳香族化合物の量を抑えることで、上記の課題を解決できることを見出し、本発明を完成させるに至った。 The present inventor, in the course of research to solve the above problems, uses a halogenated benzyl acrylate flame retardant as a flame retardant, and in a polybutylene terephthalate resin composition containing a specific heat shock resistance improver, the polybutylene terephthalate It is possible to solve the above problems by suppressing the amount of halogenated aromatic compounds such as chlorobenzene contained in the resin composition, particularly by suppressing the amount of halogenated aromatic compounds derived from the manufacturing process of the flame retardant. Heading out, the present invention has been completed.
 すなわち、本発明は以下の(1)~(12)に関する。
(1)(A)ポリブチレンテレフタレート樹脂100質量部と、(B)ハロゲン化ベンジルアクリレート系難燃剤3~50質量部と、(C)耐ヒートショック性向上用樹脂5~100質量部と、(D)耐ヒートショック性向上用充填剤10~200質量部と、(E)耐ヒートショック性向上用添加剤0.1~30質量部とを含有し、ヘッドスペースガスクロマトグラフ法(150℃、1時間加熱)により測定される、前記難燃剤以外のハロゲン化芳香族化合物の含有量が0.5ppm未満の難燃性ポリブチレンテレフタレート樹脂組成物であり、前記耐ヒートショック性向上用添加剤が、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、芳香族多価カルボン酸エステル、及びこれらの組み合わせから選択される1種以上を含有することを特徴とする、難燃性ポリブチレンテレフタレート樹脂組成物。
(2)(B)ハロゲン化ベンジルアクリレート系難燃剤が、一般式(I)で表されるブロム化アクリル重合体を含有する、(1)に記載の難燃性ポリブチレンテレフタレート樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
(式中、Xは、水素原子または臭素原子であり、少なくとも1つ以上のXは臭素原子であり、mは10~2000の数である。)
(3)(B)ハロゲン化ベンジルアクリレート系難燃剤が、ポリペンタブロモベンジルアクリレートを含有する、(1)または(2)に記載の難燃性ポリブチレンテレフタレート樹脂組成物。
(4)前記難燃剤以外のハロゲン化芳香族化合物が、ハロゲン化ベンゼンを含有する、(1)から(3)のいずれかに記載の難燃性ポリブチレンテレフタレート樹脂組成物。
(5)前記難燃剤以外のハロゲン化芳香族化合物が、クロロベンゼンを含有する、(1)から(4)のいずれかに記載の難燃性ポリブチレンテレフタレート樹脂組成物。
(6)ポリブチレンテレフタレート樹脂と、ヘッドスペースガスクロマトグラフ法(180℃、1時間加熱)により測定される、プロトン性化合物の含有量が10~1000ppmであるハロゲン化ベンジルアクリレート系難燃剤を含有する、(1)から(5)のいずれかに記載の難燃性ポリブチレンテレフタレート樹脂組成物。
(7)ポリブチレンテレフタレート樹脂が、線状低分子量体を50~1000ppm含有する、(1)から(6)のいずれかに記載の難燃性ポリブチレンテレフタレート樹脂組成物。
(8)プロトン性化合物が、ハロゲン化ベンジルアクリレート系難燃剤の重合溶媒に由来する、(6)に記載の難燃性ポリブチレンテレフタレート樹脂組成物。
(9)プロトン性化合物が、アルコキシアルコールである、(6)または(8)に記載の難燃性ポリブチレンテレフタレート樹脂組成物。
(10)(1)から(9)のいずれかに記載の難燃性ポリブチレンテレフタレート樹脂組成物の製造方法であって、(B)ハロゲン化ベンジルアクリレート系難燃剤の製造工程を有し、該工程で用いる溶媒中のハロゲン化芳香族化合物の含有量が1000ppm以下であることを特徴とする、製造方法。
(11)(B)ハロゲン化ベンジルアクリレート系難燃剤の製造工程において、溶媒としてハロゲン化芳香族化合物を用いない、(10)に記載の製造方法。
(12)(B)ハロゲン化ベンジルアクリレート系難燃剤の製造工程において、溶媒としてエチレングリコールモノメチルエーテル、メチルエチルケトン、エチレングリコールジメチルエーテルおよびジオキサンからなる群から選択される一以上の溶媒を用いる、(10)又は(11)に記載の製造方法。
That is, the present invention relates to the following (1) to (12).
(1) 100 parts by weight of (A) polybutylene terephthalate resin, (B) 3 to 50 parts by weight of halogenated benzyl acrylate flame retardant, (C) 5 to 100 parts by weight of resin for improving heat shock resistance, D) Heat-shock resistance-improving filler 10 to 200 parts by mass and (E) Heat shock resistance-improving additive 0.1 to 30 parts by mass are contained, and headspace gas chromatography (150 ° C., 1 Is a flame-retardant polybutylene terephthalate resin composition having a halogenated aromatic compound content other than the flame retardant content of less than 0.5 ppm as measured by time heating), wherein the heat shock resistance improving additive is A flame-retardant polybutylene terephthalate resin composition comprising one or more selected from a carbodiimide compound, an epoxy compound, an oxazoline compound, an oxazine compound, an aromatic polycarboxylic acid ester, and a combination thereof.
(2) The flame-retardant polybutylene terephthalate resin composition according to (1), wherein the halogenated benzyl acrylate flame retardant (B) contains a brominated acrylic polymer represented by the general formula (I).
Figure JPOXMLDOC01-appb-C000002
(In the formula, X is a hydrogen atom or a bromine atom, at least one or more X is a bromine atom, and m is a number of 10 to 2000.)
(3) The flame-retardant polybutylene terephthalate resin composition according to (1) or (2), wherein the halogenated benzyl acrylate flame retardant (B) contains polypentabromobenzyl acrylate.
(4) The flame-retardant polybutylene terephthalate resin composition according to any one of (1) to (3), wherein the halogenated aromatic compound other than the flame retardant contains halogenated benzene.
(5) The flame-retardant polybutylene terephthalate resin composition according to any one of (1) to (4), wherein the halogenated aromatic compound other than the flame retardant contains chlorobenzene.
(6) Containing a polybutylene terephthalate resin and a halogenated benzyl acrylate flame retardant having a protic compound content of 10 to 1000 ppm as measured by a headspace gas chromatographic method (180 ° C., heating for 1 hour), The flame-retardant polybutylene terephthalate resin composition according to any one of (1) to (5).
(7) The flame-retardant polybutylene terephthalate resin composition according to any one of (1) to (6), wherein the polybutylene terephthalate resin contains a linear low molecular weight substance in an amount of 50 to 1000 ppm.
(8) The flame-retardant polybutylene terephthalate resin composition according to (6), wherein the protic compound is derived from a polymerization solvent for a halogenated benzyl acrylate-based flame retardant.
(9) The flame-retardant polybutylene terephthalate resin composition according to (6) or (8), wherein the protic compound is an alkoxy alcohol.
(10) A method for producing a flame-retardant polybutylene terephthalate resin composition according to any one of (1) to (9), which comprises a step (B) for producing a halogenated benzyl acrylate flame retardant, The production method, wherein the content of the halogenated aromatic compound in the solvent used in the step is 1000 ppm or less.
(11) The production method according to (10), wherein the halogenated aromatic compound is not used as a solvent in the production process of the halogenated benzyl acrylate flame retardant (B).
(12) In the step of producing the halogenated benzyl acrylate-based flame retardant (B), one or more solvents selected from the group consisting of ethylene glycol monomethyl ether, methyl ethyl ketone, ethylene glycol dimethyl ether and dioxane are used as a solvent, (10) or The production method according to (11).
 本発明によれば、難燃剤としてハロゲン化ベンジルアクリレート系難燃剤を用いるポリブチレンテレフタレート樹脂組成物において、当該難燃剤の製造工程におけるクロロベンゼンなどのハロゲン化芳香族化合物の量を抑えることで、当該ポリブチレンテレフタレート樹脂組成物を用いた成形品と組み合わされる金属部材の腐蝕を抑制することができ、かつ当該成形品の加熱冷却を繰り返す環境下におけるヒートショック破壊を抑制することができる。 According to the present invention, in a polybutylene terephthalate resin composition using a halogenated benzyl acrylate-based flame retardant as a flame retardant, by suppressing the amount of halogenated aromatic compounds such as chlorobenzene in the production process of the flame retardant, Corrosion of a metal member combined with a molded article using the butylene terephthalate resin composition can be suppressed, and heat shock destruction in an environment in which the molded article is repeatedly heated and cooled can be suppressed.
耐ヒートショック性試験で用いた試験片を示す図であって、(A)は斜視図であり、(B)は上面図である。It is a figure which shows the test piece used for the heat shock resistance test, Comprising: (A) is a perspective view and (B) is a top view. 図1に示す試験片のインサート部材を示す図であって、(A)は斜視図であり、(B)は上面図である。It is a figure which shows the insert member of the test piece shown in FIG. 1, (A) is a perspective view, (B) is a top view. 本発明において溶融流動性を測定する際に用いた成形品の例を示した図である。It is the figure which showed the example of the molded article used when measuring melt fluidity in this invention.
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。なお、本発明においてA~Bとは、A以上B以下であることを意味している。 Hereinafter, an embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within a range that does not impair the effects of the present invention. In the present invention, A to B means A or more and B or less.
[難燃性ポリブチレンテレフタレート樹脂組成物]
 以下、本実施形態の難燃性ポリブチレンテレフタレート樹脂組成物の各成分の詳細を例を挙げて説明する。
[Flame Retardant Polybutylene Terephthalate Resin Composition]
Hereinafter, details of each component of the flame-retardant polybutylene terephthalate resin composition of the present embodiment will be described with examples.
((A)ポリブチレンテレフタレート樹脂)
 (A)ポリブチレンテレフタレート樹脂(PBT樹脂)は、少なくともテレフタル酸又はそのエステル形成性誘導体(C1-6のアルキルエステルや酸ハロゲン化物等)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4-ブタンジオール)又はそのエステル形成性誘導体(アセチル化物等)を含むグリコール成分とを重縮合して得られるポリブチレンテレフタレート樹脂である。本実施形態において、(A)ポリブチレンテレフタレート樹脂はホモポリブチレンテレフタレート樹脂に限らず、ブチレンテレフタレート単位を60モル%以上含有する共重合体であってもよい。
((A) Polybutylene terephthalate resin)
The (A) polybutylene terephthalate resin (PBT resin) is a dicarboxylic acid component containing at least terephthalic acid or an ester-forming derivative thereof (such as a C 1-6 alkyl ester or acid halide) and an alkylene having at least 4 carbon atoms. It is a polybutylene terephthalate resin obtained by polycondensing a glycol component containing glycol (1,4-butanediol) or its ester-forming derivative (acetylated product, etc.). In the present embodiment, the (A) polybutylene terephthalate resin is not limited to the homopolybutylene terephthalate resin, but may be a copolymer containing 60 mol% or more of butylene terephthalate units.
 (A)ポリブチレンテレフタレート樹脂の末端カルボキシル基量は、本発明の目的を阻害しない限り特に限定されないが、30meq/kg以下が好ましく、25meq/kg以下がより好ましい。 The amount of the terminal carboxyl group of the (A) polybutylene terephthalate resin is not particularly limited as long as the object of the present invention is not impaired, but is preferably 30 meq / kg or less, more preferably 25 meq / kg or less.
 (A)ポリブチレンテレフタレート樹脂の固有粘度は本発明の目的を阻害しない範囲で特に制限されないが、0.60dL/g以上1.5dL/g以下であるのが好ましく、0.65dL/g以上1.2dL/g以下であるのがより好ましい。このような範囲の固有粘度のポリブチレンテレフタレート樹脂を用いる場合には、得られるポリブチレンテレフタレート樹脂組成物が特に成形性に優れたものとなる。また、異なる固有粘度を有するポリブチレンテレフタレート樹脂をブレンドして、固有粘度を調整することもできる。例えば、固有粘度1.0dL/gのポリブチレンテレフタレート樹脂と固有粘度0.7dL/gのポリブチレンテレフタレート樹脂とをブレンドすることにより、固有粘度0.9dL/gのポリブチレンテレフタレート樹脂を調製することができる。ポリブチレンテレフタレート樹脂の固有粘度は、例えば、o-クロロフェノール中で温度35℃の条件で測定することができる。 The intrinsic viscosity of the (A) polybutylene terephthalate resin is not particularly limited as long as the object of the present invention is not impaired, but it is preferably 0.60 dL / g or more and 1.5 dL / g or less, and 0.65 dL / g or more 1 More preferably, it is not more than 0.2 dL / g. When a polybutylene terephthalate resin having an intrinsic viscosity in such a range is used, the polybutylene terephthalate resin composition obtained has particularly excellent moldability. Also, the intrinsic viscosity can be adjusted by blending polybutylene terephthalate resins having different intrinsic viscosities. For example, a polybutylene terephthalate resin having an intrinsic viscosity of 0.9 dL / g is prepared by blending a polybutylene terephthalate resin having an intrinsic viscosity of 1.0 dL / g and a polybutylene terephthalate resin having an intrinsic viscosity of 0.7 dL / g. You can The intrinsic viscosity of the polybutylene terephthalate resin can be measured, for example, in o-chlorophenol at a temperature of 35 ° C.
 (A)ポリブチレンテレフタレート樹脂の調製において、コモノマー成分としてテレフタル酸以外の芳香族ジカルボン酸又はそのエステル形成性誘導体を用いる場合、例えば、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジカルボキシジフェニルエーテル等のC8-14の芳香族ジカルボン酸;コハク酸、アジピン酸、アゼライン酸、セバシン酸等のC4-16のアルカンジカルボン酸;シクロヘキサンジカルボン酸等のC5-10のシクロアルカンジカルボン酸;これらのジカルボン酸成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体や酸ハロゲン化物等)を用いることができる。これらのジカルボン酸成分は、単独で又は2種以上を組み合わせて使用できる。 In the preparation of the (A) polybutylene terephthalate resin, when an aromatic dicarboxylic acid other than terephthalic acid or an ester-forming derivative thereof is used as a comonomer component, for example, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4, C 8-14 aromatic dicarboxylic acid such as 4′-dicarboxydiphenyl ether; C 4-16 alkanedicarboxylic acid such as succinic acid, adipic acid, azelaic acid, sebacic acid; C 5-10 such as cyclohexanedicarboxylic acid Cycloalkanedicarboxylic acids; ester-forming derivatives of these dicarboxylic acid components (C 1-6 alkyl ester derivatives, acid halides, etc.) can be used. These dicarboxylic acid components can be used alone or in combination of two or more.
 これらのジカルボン酸成分の中では、イソフタル酸等のC8-12の芳香族ジカルボン酸、及び、アジピン酸、アゼライン酸、セバシン酸等のC6-12のアルカンジカルボン酸がより好ましい。 Among these dicarboxylic acid components, C 8-12 aromatic dicarboxylic acids such as isophthalic acid, and C 6-12 alkane dicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid are more preferable.
 (A)ポリブチレンテレフタレート樹脂の調製において、コモノマー成分として1,4-ブタンジオール以外のグリコール成分を用いる場合、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,3-オクタンジオール等のC2-10のアルキレングリコール;ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等のポリオキシアルキレングリコール;シクロヘキサンジメタノール、水素化ビスフェノールA等の脂環式ジオール;ビスフェノールA、4,4’-ジヒドロキシビフェニル等の芳香族ジオール;ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体等の、ビスフェノールAのC2-4のアルキレンオキサイド付加体;又はこれらのグリコールのエステル形成性誘導体(アセチル化物等)を用いることができる。これらのグリコール成分は、単独で又は2種以上を組み合わせて使用できる。 In the preparation of the (A) polybutylene terephthalate resin, when a glycol component other than 1,4-butanediol is used as a comonomer component, for example, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol , C 2-10 alkylene glycols such as neopentyl glycol and 1,3-octanediol; polyoxyalkylene glycols such as diethylene glycol, triethylene glycol and dipropylene glycol; cycloaliphatic compounds such as cyclohexanedimethanol and hydrogenated bisphenol A Diol; aromatic diol such as bisphenol A, 4,4'-dihydroxybiphenyl; C 2-4 alkylene oxide of bisphenol A such as bisphenol A ethylene oxide 2 mol adduct, bisphenol A propylene oxide 3 mol adduct Adducts; or ester-forming derivatives of these glycols (acetylated products etc.) can be used. These glycol components can be used alone or in combination of two or more.
 これらのグリコール成分の中では、エチレングリコール、トリメチレングリコール等のC2-6のアルキレングリコール、ジエチレングリコール等のポリオキシアルキレングリコール、又は、シクロヘキサンジメタノール等の脂環式ジオール等がより好ましい。 Among these glycol components, C 2-6 alkylene glycols such as ethylene glycol and trimethylene glycol, polyoxyalkylene glycols such as diethylene glycol, and alicyclic diols such as cyclohexanedimethanol are more preferable.
 ジカルボン酸成分及びグリコール成分の他に使用できるコモノマー成分としては、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4-カルボキシ-4’-ヒドロキシビフェニル等の芳香族ヒドロキシカルボン酸;グリコール酸、ヒドロキシカプロン酸等の脂肪族ヒドロキシカルボン酸;プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(ε-カプロラクトン等)等のC3-12ラクトン;これらのコモノマー成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体、酸ハロゲン化物、アセチル化物等)が挙げられる。 Examples of comonomer components that can be used in addition to the dicarboxylic acid component and the glycol component include, for example, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4′-hydroxybiphenyl and the like. Aromatic hydroxycarboxylic acids; Aliphatic hydroxycarboxylic acids such as glycolic acid and hydroxycaproic acid; C 3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone (ε-caprolactone, etc.); esters of these comonomer components Formable derivatives (C 1-6 alkyl ester derivatives, acid halides, acetylated compounds, etc.) can be mentioned.
 (A)ポリブチレンテレフタレート樹脂の含有量は、樹脂組成物の全質量の10~90質量%であることが好ましく、20~80質量%であることがより好ましく、30~70質量%であることがさらに好ましい。 The content of the (A) polybutylene terephthalate resin is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and more preferably 30 to 70% by mass based on the total mass of the resin composition. Is more preferable.
((B)ハロゲン化ベンジルアクリレート系難燃剤)
 本発明に用いられる(B)ハロゲン化ベンジルアクリレート系難燃剤としては、下記一般式(I)で示されるブロム化アクリル重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000003
  式中のXは、水素原子または臭素原子であり、少なくとも1つ以上が臭素原子である。Xの数は、一構成単位中1~5であるが、難燃化の効果から3~5であることが好ましい。平均重合度mは10~2000であり、好ましくは15~1000の範囲である。平均重合度が10より低いものは、熱安定性が悪化し、2000を超えると添加したポリブチレンテレフタレート樹脂の成形加工性を悪化させる。また、上記ブロム化アクリル重合体は1種又は2種以上混合使用してもよい。
((B) Halogenated benzyl acrylate flame retardant)
Examples of the (B) halogenated benzyl acrylate flame retardant used in the present invention include a brominated acrylic polymer represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000003
X in the formula is a hydrogen atom or a bromine atom, and at least one or more is a bromine atom. The number of X is 1 to 5 in one structural unit, but it is preferably 3 to 5 from the effect of flame retardancy. The average degree of polymerization m is 10 to 2000, preferably 15 to 1000. When the average degree of polymerization is lower than 10, the thermal stability deteriorates, and when it exceeds 2000, the moldability of the added polybutylene terephthalate resin deteriorates. The above-mentioned brominated acrylic polymers may be used alone or in combination of two or more.
 本発明に用いられる(B)ハロゲン化ベンジルアクリレート系難燃剤は、当該難燃剤自体である上記のブロム化アクリル重合体以外に、不純物として、重合時の溶媒やブロム化アクリル重合体の分解物に由来するハロゲン化芳香族化合物を含有しうるが、そのような不純物である、難燃剤以外のハロゲン化芳香族化合物の含有量は、好ましくは100ppm以下、より好ましくは50ppm以下、さらに好ましくは30ppm以下、特に好ましくは10ppm以下である。難燃剤以外のハロゲン化芳香族化合物の含有量は、例えば、(B)ハロゲン化ベンジルアクリレート系難燃剤を粉砕した試料を、ヘッドスペース中で加熱処理した際の発生ガスを、ガスクロマトグラフにより測定し、ハロゲン化芳香族化合物に由来するガス発生量から求めることができる。 The (B) halogenated benzyl acrylate-based flame retardant used in the present invention is, in addition to the above-mentioned brominated acrylic polymer which is the flame retardant itself, an impurity such as a solvent at the time of polymerization or a decomposed product of the brominated acrylic polymer. Although it may contain a halogenated aromatic compound derived from it, the content of the halogenated aromatic compound other than the flame retardant, which is such an impurity, is preferably 100 ppm or less, more preferably 50 ppm or less, further preferably 30 ppm or less. , Particularly preferably 10 ppm or less. The content of the halogenated aromatic compound other than the flame retardant is measured by, for example, a gas chromatograph of a gas generated when a sample obtained by pulverizing the (B) halogenated benzyl acrylate flame retardant is heat-treated in the head space. It can be determined from the amount of gas generated from the halogenated aromatic compound.
 一般式(I)で表されるブロム化アクリル重合体は臭素を含有するベンジルアクリレートを単独で重合することによって得られるが、類似構造のベンジルメタクリレート等を共重合させてもよい。臭素含有ベンジルアクリレートとしては、ペンタブロモベンジルアクリレート、テトラブロモベンジルアクリレート、トリブロモベンジルアクリレート、又はその混合物が挙げられる。中でも、ペンタブロモベンジルアクリレートが好ましい。また、共重合可能な成分であるベンジルメタクリレートとしては、上記したアクリレートに対応するメタクリレートが挙げられる。さらにはビニル系モノマーとの共重合も可能であり、アクリル酸、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレートのようなアクリル酸エステル類、メタクリル酸、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、ベンジルメタクリレートのようなメタクリル酸エステル類、スチレン、アクリロニトリル、フマル酸、マレイン酸のような不飽和カルボン酸又はその無水物、酢酸ビニル、塩化ビニルなどが挙げられる。また、架橋性のビニル系モノマー、キシリレンジアクリレート、キシリレンジメタクリレート、テトラブロムキシリレンジアクリレート、テトラブロムキシリレンジメタクリレート、ブタジエン、イソプレン、ジビニルベンゼンも使用できる。これらはベンジルアクリレートやベンジルメタクリレートに対し等モル量以下、好ましくは0.5倍モル量以下が使用される。 The brominated acrylic polymer represented by the general formula (I) is obtained by polymerizing benzyl acrylate containing bromine alone, but benzyl methacrylate having a similar structure may be copolymerized. Bromine-containing benzyl acrylates include pentabromobenzyl acrylate, tetrabromobenzyl acrylate, tribromobenzyl acrylate, or mixtures thereof. Of these, pentabromobenzyl acrylate is preferable. Examples of benzyl methacrylate that is a copolymerizable component include methacrylates corresponding to the above-mentioned acrylates. Furthermore, it is possible to copolymerize with vinyl monomers, acrylic acid, acrylic acid esters such as methyl acrylate, ethyl acrylate, butyl acrylate, benzyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, benzyl methacrylate. Examples thereof include methacrylic acid esters, styrene, acrylonitrile, fumaric acid, unsaturated carboxylic acids such as fumaric acid or anhydrides thereof, vinyl acetate, vinyl chloride and the like. Further, crosslinkable vinyl monomers, xylylene diacrylate, xylylene dimethacrylate, tetrabromoxylylene diacrylate, tetrabromoxylylene dimethacrylate, butadiene, isoprene, and divinylbenzene can also be used. These are used in an equimolar amount or less, preferably 0.5 times or less the molar amount of benzyl acrylate or benzyl methacrylate.
 (B)ハロゲン化ベンジルアクリレート系難燃剤の製造方法として、上記のブロム化アクリル重合体の製造法の一例を示すと、ブロム化アクリルのモノマーを溶液重合あるいは、塊状重合にて所定の重合度に反応させる方法が挙げられる。溶液重合の場合、溶媒中のハロゲン化芳香族化合物の含有量が1000ppm以下であることが好ましく、500ppm以下であることがより好ましく、300ppm以下であることがさらに好ましく、100ppm以下であることが特に好ましい。溶媒としてハロゲン化ベンゼンや、クロロベンゼンなどのハロゲン化芳香族化合物を用いないことがより好ましい。また、溶液重合の際の溶媒としては、エチレングリコールモノメチルエーテルや、メチルエチルケトン、エチレングリコールジメチルエーテルおよびジオキサンなどの非プロトン性溶媒が好ましい。ただし、本発明においては後述の通り、樹脂組成物としてプロトン性化合物を含むものとするため、重合溶媒としてプロトン性化合物を含むものを用いることができる。 As an example of the method for producing the above-mentioned brominated acrylic polymer as a method for producing the halogenated benzyl acrylate-based flame retardant (B), the brominated acrylic monomer is solution-polymerized or bulk-polymerized to a predetermined degree of polymerization. A method of reacting can be mentioned. In the case of solution polymerization, the content of the halogenated aromatic compound in the solvent is preferably 1000 ppm or less, more preferably 500 ppm or less, further preferably 300 ppm or less, and particularly preferably 100 ppm or less. preferable. It is more preferable not to use halogenated benzene or a halogenated aromatic compound such as chlorobenzene as the solvent. Further, as the solvent in the solution polymerization, aprotic solvents such as ethylene glycol monomethyl ether, methyl ethyl ketone, ethylene glycol dimethyl ether and dioxane are preferable. However, in the present invention, as will be described later, since the resin composition contains a protic compound, a polymerization solvent containing a protic compound can be used.
 上記のブロム化アクリル重合体等の(B)ハロゲン化ベンジルアクリレート系難燃剤は、残留ポリアクリル酸ナトリウム等の反応副生成物を除去するために、水及び/又はアルカリ(土類)金属イオンを含有する水溶液にて洗浄されることが好ましい。なお、本明細書において、「アルカリ(土類)金属イオンを含有する」とは、アルカリ金属イオン及び/又はアルカリ土類金属イオンを含有することを意味している。アルカリ(土類)金属イオンを含有する水溶液はアルカリ(土類)金属塩を水に投入することで容易に得られるが、塩化物イオン、リン酸イオン等を含まないアルカリ(土類)金属である水酸化物(例えば水酸化カルシウム)が最適である。アルカリ(土類)金属塩として、例えば水酸化カルシウムを用いる場合、水酸化カルシウムは一般に20℃において100gの水中に0.126g程度可溶であり、水溶液濃度は溶解度までであれば特に規定はない。また、水及び/又はアルカリ(土類)金属イオンを含有する水溶液による洗浄の手法も特に限定されず、ブロム化アクリル重合体を適当な時間、水及び/又はアルカリ(土類)金属イオンを含有する水溶液に浸漬させる等の手法で良い。上記、水及び/又はアルカリ(土類)金属イオンを含有する水溶液による洗浄処理を終えたブロム化アクリル重合体は、一般的に温水抽出分中の乾固分が100ppm以下のものとなり、このようなブロム化アクリル重合体を用いる場合、その成形品表面に異物を発生させることが殆どなくなる。 The (B) halogenated benzyl acrylate-based flame retardant such as the brominated acrylic polymer described above contains water and / or an alkaline (earth) metal ion in order to remove reaction by-products such as residual sodium polyacrylate. It is preferable to wash with the contained aqueous solution. In the present specification, “containing an alkali (earth) metal ion” means containing an alkali metal ion and / or an alkaline earth metal ion. An aqueous solution containing an alkali (earth) metal ion can be easily obtained by adding an alkali (earth) metal salt to water, but an alkali (earth) metal containing no chloride ion, phosphate ion, etc. Certain hydroxides (eg calcium hydroxide) are optimal. When calcium hydroxide is used as the alkali (earth) metal salt, calcium hydroxide is generally soluble in about 0.126 g in 100 g of water at 20 ° C., and the concentration of the aqueous solution is not particularly limited as long as the solubility is reached. .. In addition, the method of washing with water and / or an aqueous solution containing an alkali (earth) metal ion is not particularly limited, and the brominated acrylic polymer may contain water and / or an alkali (earth) metal ion for an appropriate time. A method such as immersing in an aqueous solution may be used. The brominated acrylic polymer that has been washed with an aqueous solution containing water and / or an alkaline (earth) metal ion generally has a dry solid content of 100 ppm or less in the hot water extract. When such a brominated acrylic polymer is used, almost no foreign matter is generated on the surface of the molded product.
 本発明の難燃性ポリブチレンテレフタレート樹脂組成物は、前述の不純物である、難燃剤以外のハロゲン化芳香族化合物の含有量が、0.5ppm未満であり、好ましくは0.3ppm以下、より好ましくは0.1ppm以下である。難燃性ポリブチレンテレフタレート樹脂組成物中の、難燃剤以外のハロゲン化芳香族化合物の含有量が上記範囲であることにより、当該ポリブチレンテレフタレート樹脂組成物を用いた成形品において、金属部材と組み合わせて用いられる場合も、金属部材の腐蝕を抑制することができ、かつ、当該成形品が加熱冷却を繰り返す環境下に曝される場合のヒートショック破壊を抑制することができる。このような難燃剤以外のハロゲン化芳香族化合物の含有量は、例えば、ポリブチレンテレフタレート樹脂組成物を粉砕した試料を、ヘッドスペース中で加熱処理した際の発生ガスを、ガスクロマトグラフにより測定し、ハロゲン化芳香族化合物に由来するガス発生量から求めることができる。 The flame-retardant polybutylene terephthalate resin composition of the present invention has a content of halogenated aromatic compound other than the flame retardant, which is the above-mentioned impurity, is less than 0.5 ppm, preferably 0.3 ppm or less, more preferably Is 0.1 ppm or less. In the flame-retardant polybutylene terephthalate resin composition, the content of the halogenated aromatic compound other than the flame retardant is in the above range, in the molded article using the polybutylene terephthalate resin composition, in combination with a metal member When used as well, corrosion of the metal member can be suppressed, and heat shock destruction when the molded product is exposed to an environment in which heating and cooling are repeated can be suppressed. The content of the halogenated aromatic compound other than such a flame retardant, for example, a sample obtained by pulverizing the polybutylene terephthalate resin composition, the generated gas at the time of heat treatment in the head space, measured by gas chromatography, It can be determined from the amount of gas generated from the halogenated aromatic compound.
 上記樹脂の難燃化において、アンチモン系の難燃助剤をあわせて使用することが好ましい。難燃助剤の代表的なものとしては、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ等が挙げられる。本発明のポリブチレンテレフタレート樹脂組成物においては、耐ヒートショック性をより高められる点で、五酸化アンチモン、アンチモン酸ソーダを用いることが好ましい。アンチモン系難燃助剤の添加量は耐ヒートショック性と機械的特性や流動性を考慮して適宜設定すれば良いが、ポリブチレンテレフタレート樹脂100質量部に対して、1質量部以上30質量部以下であることが好ましい。さらに、燃焼した樹脂が滴下することによる延焼を防ぐ目的で、ポリテトラフルオロエチレン等の滴下防止剤をあわせて使用することも好ましい。 ▽ In making the above resin flame-retardant, it is preferable to use an antimony-based flame retardant auxiliary together. Typical examples of the flame retardant aid include antimony trioxide, antimony tetroxide, antimony pentoxide, sodium antimonate and the like. In the polybutylene terephthalate resin composition of the present invention, it is preferable to use antimony pentoxide and sodium antimonate from the viewpoint of further improving the heat shock resistance. The addition amount of the antimony-based flame retardant auxiliary may be appropriately set in consideration of heat shock resistance, mechanical properties and fluidity, but 1 part by mass or more and 30 parts by mass or more with respect to 100 parts by mass of the polybutylene terephthalate resin. The following is preferable. Further, it is also preferable to use an anti-dripping agent such as polytetrafluoroethylene together for the purpose of preventing the fire from spreading due to the dropping of the burned resin.
 (B)ハロゲン化ベンジルアクリレート系難燃剤及びアンチモン系難燃助剤の樹脂に対する添加の範囲は、ポリブチレンテレフタレート樹脂100質量部に対して前記重合体3~50質量部であり、5~40質量部であることが好ましく、10~35質量部であることがより好ましい。アンチモン系難燃助剤は、1~40質量部の範囲が好ましい。ブロム化アクリル重合体及びアンチモン系難燃助剤の添加量が過少であると十分な難燃性を付与することができず、過大であると成形品としての物性を悪化させることがある。 The range of addition of the halogenated benzyl acrylate flame retardant and antimony flame retardant aid (B) to the resin is 3 to 50 parts by mass of the polymer with respect to 100 parts by mass of the polybutylene terephthalate resin, and 5 to 40 parts by mass. It is preferably 10 parts by mass and more preferably 10 to 35 parts by mass. The antimony flame retardant aid is preferably in the range of 1 to 40 parts by mass. If the amounts of the brominated acrylic polymer and antimony flame retardant aid added are too small, sufficient flame retardancy cannot be imparted, and if the amounts are too large, the physical properties of the molded product may deteriorate.
(プロトン性化合物) 本発明においてプロトン性化合物とは、プロトン(水素イオン)供与性を有する化合物のことをいう。 本発明においてプロトン性化合物としては、ハロゲン化ベンジルアクリレート系難燃剤の重合溶媒に由来するものが一例として挙げられ、アルコキシアルコールが好ましく、C1~C20アルコキシC1~C20アルコールがより好ましい。C1~C20アルコキシC1~C20アルコールとしては、メトキシC1~C20アルコールや、C1~C20アルコキシエタノールがより好ましく、メトキシエタノールがさらに好ましい。 (Protic compound) In the present invention, the protic compound means a compound having a proton (hydrogen ion) donating property. In the present invention, examples of the protic compound include compounds derived from a polymerization solvent for a halogenated benzyl acrylate flame retardant, an alkoxy alcohol is preferable, and a C1 to C20 alkoxy C1 to C20 alcohol is more preferable. As the C1-C20 alkoxy C1-C20 alcohol, methoxy C1-C20 alcohol and C1-C20 alkoxy ethanol are more preferable, and methoxy ethanol is still more preferable.
 またプロトン性化合物としては、C1~C20ジアルコキシC1~C20アルコールも好ましく、C1~C20ジアルコキシC1~C20アルコールとしては、3,3-ジエトキシプロパノールが好ましい。 The C1 to C20 dialkoxy C1 to C20 alcohol is also preferable as the protic compound, and 3,3-diethoxypropanol is preferable as the C1 to C20 dialkoxy C1 to C20 alcohol.
 また本発明においてプロトン性化合物としては、ハロゲン化ベンジルアクリレート系難燃剤の原料に由来するものが一例として挙げられ、芳香族カルボン酸が好ましく、安息香酸がより好ましい。なお、本発明においてプロトン性化合物としては、ハロゲン化ベンジルアクリレート系難燃剤の原料に由来するものよりも、重合溶媒に由来するものの方が好ましい。 In the present invention, examples of the protic compound include compounds derived from a raw material of a halogenated benzyl acrylate flame retardant, an aromatic carboxylic acid is preferable, and benzoic acid is more preferable. In the present invention, the protic compound is preferably derived from the polymerization solvent rather than derived from the halogenated benzyl acrylate flame retardant raw material.
 本発明においてハロゲン化ベンジルアクリレート系難燃剤に含有されるプロトン性化合物の量は、ハロゲン化ベンジルアクリレート系難燃剤中、10~1000ppmであることが好ましいが、100~800ppmであることがより好ましく、300~500ppmであることがさらに好ましい。ハロゲン化ベンジルアクリレート系難燃剤に含有されるプロトン性化合物の量が10ppm未満であると、難燃性ポリブチレンテレフタレート樹脂組成物の流動性の改善効果が得にくくなる。また、ハロゲン化ベンジルアクリレート系難燃剤に含有されるプロトン性化合物の量が1000ppmを超えると、コンパウンド時にガスの発生量が増加し、ペレット化の際にストランド切れが発生しやすくなる。 In the present invention, the amount of the protic compound contained in the halogenated benzyl acrylate flame retardant is preferably 10 to 1000 ppm, more preferably 100 to 800 ppm, in the halogenated benzyl acrylate flame retardant. More preferably, it is 300 to 500 ppm. When the amount of the protic compound contained in the halogenated benzyl acrylate flame retardant is less than 10 ppm, it becomes difficult to obtain the effect of improving the fluidity of the flame retardant polybutylene terephthalate resin composition. When the amount of the protic compound contained in the halogenated benzyl acrylate flame retardant exceeds 1000 ppm, the amount of gas generated during compounding increases, and strand breakage easily occurs during pelletization.
(線状低分子量体)
 本発明の難燃性ポリブチレンテレフタレート樹脂組成物において、ハロゲン化ベンジルアクリレート系難燃剤に含まれるプロトン性化合物は、ポリブチレンテレフタレート樹脂の線状低分子量体(オリゴマー)との反応物である線状化合物を生成し、これが可塑剤と同様の効果をもたらし、難燃性ポリブチレンテレフタレート樹脂組成物の流動性を改善させるものと推測される。このため、ポリブチレンテレフタレート樹脂は線状低分子量体を含有することが好ましい。含有される線状低分子量体の量は、ポリブチレンテレフタレート樹脂中、50~1000ppmであることが好ましく、70~700ppmであることがより好ましく、100~200ppmであることがさらに好ましい。線状低分子量体の量が50ppm未満であると、難燃性ポリブチレンテレフタレート樹脂組成物の流動性の改善効果が得にくく、1000ppmを超えると、Mold Deposit(金型付着物)が発生しやすくなるため、好ましくない。
(Linear low molecular weight compounds)
In the flame-retardant polybutylene terephthalate resin composition of the present invention, the protic compound contained in the halogenated benzyl acrylate flame retardant is a linear product which is a reaction product with a linear low molecular weight substance (oligomer) of the polybutylene terephthalate resin. It is presumed that a compound is produced, which brings about the same effect as that of the plasticizer and improves the fluidity of the flame-retardant polybutylene terephthalate resin composition. For this reason, the polybutylene terephthalate resin preferably contains a linear low molecular weight substance. The amount of the linear low molecular weight substance contained in the polybutylene terephthalate resin is preferably 50 to 1000 ppm, more preferably 70 to 700 ppm, and further preferably 100 to 200 ppm. When the amount of the linear low molecular weight substance is less than 50 ppm, it is difficult to obtain the effect of improving the fluidity of the flame-retardant polybutylene terephthalate resin composition, and when it exceeds 1000 ppm, Mold Deposition (die deposit) is likely to occur. Therefore, it is not preferable.
((C)耐ヒートショック性向上用樹脂)
 本発明に用いられる(C)耐ヒートショック性向上用樹脂は、本発明の難燃性ポリブチレンテレフタレート樹脂組成物からなる成形品が加熱冷却を繰り返す環境下で使用される場合において要求される、耐ヒートショック性を向上させるために添加される。
((C) Resin for improving heat shock resistance)
The resin for improving heat shock resistance (C) used in the present invention is required when a molded article made of the flame-retardant polybutylene terephthalate resin composition of the present invention is used in an environment in which heating and cooling are repeated. It is added to improve heat shock resistance.
 (C)耐ヒートショック性向上用樹脂としては、ポリブチレンテレフタレート樹脂組成物に靱性を付与することで、成形品に発生する歪を吸収できるようにする意味で、ゴムやエラストマ等の弾性体を用いることが好ましく、具体的には、オレフィン系エラストマ、コアシェル系エラストマ、ジエン系エラストマ、ポリエステル系エラストマ、ウレタン系エラストマ、シリコーン系エラストマ、スチレン系エラストマ、ポリアミド系エラストマ等が挙げられ、これらの1種、又は2種以上を組み合わせて用いることができる。 As the resin (C) for improving heat shock resistance, an elastic body such as rubber or elastomer is used in the sense that by imparting toughness to the polybutylene terephthalate resin composition, the strain generated in the molded article can be absorbed. It is preferable to use, specifically, an olefin elastomer, a core shell elastomer, a diene elastomer, a polyester elastomer, a urethane elastomer, a silicone elastomer, a styrene elastomer, a polyamide elastomer, and the like. Or, two or more kinds can be used in combination.
 オレフィン系エラストマとしては、例えば、エチレン-プロピレン共重合体(EP共重合体)、エチレン-ブテン共重合体、エチレン-オクテン共重合体、エチレン-プロピレン-ジエン共重合体(EPD共重合体)、エチレン-プロピレン-ブテン共重合体、エチレン-酢酸ビニル共重合体、EP共重合体およびEPD共重合体から選択された少なくとも一種の単位を含む共重合体、オレフィンと(メタ)アクリル系単量体との共重合体、エチレン-エチルアクリレート共重合体、エチレン-グリシジルメタクリレート共重合体、α-オレフィン・α,β-不飽和カルボン酸(エステル)・α,β-不飽和カルボン酸グリシジルエステル系三元共重合体、エチレン(共)重合体に無水マレイン酸又はメタクリル酸グリシジルを共重合したエチレン系共重合体等が含まれる。好ましいオレフィン系エラストマには、EP共重合体、EPD共重合体、オレフィンと(メタ)アクリル系単量体との共重合体が含まれ、特にエチレンエチルアクリレートが好ましい。これらのオレフィン系エラストマは単独でまたは二種以上組み合わせて使用することができる。 Examples of the olefin elastomer include ethylene-propylene copolymer (EP copolymer), ethylene-butene copolymer, ethylene-octene copolymer, ethylene-propylene-diene copolymer (EPD copolymer), Copolymer containing at least one unit selected from ethylene-propylene-butene copolymer, ethylene-vinyl acetate copolymer, EP copolymer and EPD copolymer, olefin and (meth) acrylic monomer With ethylene, ethylene-ethyl acrylate copolymer, ethylene-glycidyl methacrylate copolymer, α-olefin / α, β-unsaturated carboxylic acid (ester) / α, β-unsaturated carboxylic acid glycidyl ester An original copolymer, an ethylene-based copolymer obtained by copolymerizing an ethylene (co) polymer with maleic anhydride or glycidyl methacrylate, and the like are included. Preferred olefin elastomers include EP copolymers, EPD copolymers, and copolymers of olefins and (meth) acrylic monomers, with ethylene ethyl acrylate being particularly preferred. These olefinic elastomers can be used alone or in combination of two or more.
 コアシェル系エラストマは、コア層がゴム成分(軟質成分)、シェル層が硬質成分で構成されるポリマーであり、コア層のゴム成分としてはアクリル系ゴム等を用いるものが好ましい。コア層に用いるゴム成分は、ガラス転移温度(Tg)が0℃未満(例えば-10℃以下)であるのが好ましく、-20℃以下(例えば-180℃以上-25℃以下)であるのがより好ましく、-30℃以下(例えば-150℃以上-40℃以下)であるのが特に好ましい。 The core-shell elastomer is a polymer in which the core layer is composed of a rubber component (soft component) and the shell layer is composed of a hard component, and it is preferable to use acrylic rubber or the like as the rubber component of the core layer. The rubber component used in the core layer preferably has a glass transition temperature (Tg) of less than 0 ° C. (eg −10 ° C. or lower), and −20 ° C. or lower (eg −180 ° C. or higher and −25 ° C. or lower). It is more preferably −30 ° C. or lower (eg −150 ° C. or higher and −40 ° C. or lower).
 ゴム成分としてアクリル系ゴムを用いる場合、アルキルアクリレート等のアクリル系モノマーを主成分として重合して得られる重合体が好ましい。アクリル系ゴムのモノマーとして用いるアルキルアクリレートは、ブチルアクリレート等のアクリル酸のC~C12のアルキルエステルが好ましく、アクリル酸のC~Cのアルキルエステルがより好ましい。 When an acrylic rubber is used as the rubber component, a polymer obtained by polymerizing an acrylic monomer such as an alkyl acrylate as a main component is preferable. The alkyl acrylate used as the monomer of the acrylic rubber is preferably a C 1 to C 12 alkyl ester of acrylic acid such as butyl acrylate, and more preferably a C 2 to C 6 alkyl ester of acrylic acid.
 アクリル系ゴムは、アクリル系モノマーの単独重合体でもよく、共重合体でもよい。アクリル系ゴムがアクリル系モノマーの共重合体である場合、アクリル系モノマー同士の共重合体でも、アクリル系モノマーと他の不飽和結合含有モノマーとの共重合体であってもよい。アクリル系ゴムが共重合体である場合、アクリル系ゴムは架橋性モノマーを共重合したものであってもよい。 The acrylic rubber may be a homopolymer or a copolymer of acrylic monomers. When the acrylic rubber is a copolymer of acrylic monomers, it may be a copolymer of acrylic monomers or a copolymer of acrylic monomers and another unsaturated bond-containing monomer. When the acrylic rubber is a copolymer, the acrylic rubber may be a copolymer of a crosslinkable monomer.
 シェル層には、ビニル系重合体が好ましく用いられる。ビニル系重合体は、例えば、芳香族ビニル単量体、シアン化ビニル単量体、メタクリル酸エステル系単量体、及びアクリル酸エステル単量体の中から選ばれた少なくとも一種の単量体を重合あるいは共重合させて得られる。かかるコアシェル系エラストマのコア層とシェル層は、グラフト共重合によって結合されていてもよい。このグラフト共重合化は、必要な場合には、コア層の重合時にシェル層と反応するグラフト交差剤を添加し、コア層に反応基を与えた後、シェル層を形成させることによって得られる。グラフト交差剤として、シリコーン系ゴムを使用する場合は、ビニル結合を有したオルガノシロキサンあるいはチオールを有したオルガノシロキサンが用いられ、好ましくはアクロキシシロキサン、メタクリロキシシロキサン、ビニルシロキサンが使用される。 A vinyl polymer is preferably used for the shell layer. The vinyl polymer is, for example, at least one monomer selected from aromatic vinyl monomers, vinyl cyanide monomers, methacrylic acid ester monomers, and acrylic acid ester monomers. It can be obtained by polymerization or copolymerization. The core layer and the shell layer of the core-shell type elastomer may be bonded by graft copolymerization. This graft copolymerization is obtained by adding a graft cross-linking agent that reacts with the shell layer during the polymerization of the core layer, if necessary, to give a reactive group to the core layer, and then to form the shell layer. When a silicone rubber is used as the graft crossing agent, an organosiloxane having a vinyl bond or an organosiloxane having a thiol is used, and preferably acryloxysiloxane, methacryloxysiloxane or vinylsiloxane.
 ポリエステル系エラストマとしては、ハードセグメントとソフトセグメントにいずれもポリエステル系単位構造を有するエステル-エステル型と、ソフトセグメントをポリエーテル系単位構造としたエステル-エーテル型の、いずれも好ましく用いることができるが、耐熱性面では前者、寸法精度面では後者が、それぞれより好ましい。ハートセグメントのポリエステル単位構造としてはポリブチレンテレフタレートやポリエチレンテレフタレートといった芳香族ポリエステル単位を好ましく用いることができ、ソフトセグメントのポリエステル単位としてはポリエチレンアジペート、ポリブチレンアジペート、ポリカプロラクトンといった脂肪族ポリエステル単位を好ましく用いることができ、ソフトセグメントのポリエーテル単位としてはポリエチレングリコールやポリテトラメチレングリコールといったものを好ましく用いることができるが、これに限定されるものではない。 As the polyester-based elastomer, both an ester-ester type in which the hard segment and the soft segment have a polyester-based unit structure and an ester-ether type in which the soft segment has a polyether-based unit structure can be preferably used. The former is more preferable in terms of heat resistance and the latter is more preferable in terms of dimensional accuracy. An aromatic polyester unit such as polybutylene terephthalate or polyethylene terephthalate can be preferably used as the polyester unit structure of the heart segment, and an aliphatic polyester unit such as polyethylene adipate, polybutylene adipate, or polycaprolactone is preferably used as the polyester unit of the soft segment. As the polyether unit of the soft segment, polyethylene glycol or polytetramethylene glycol can be preferably used, but the soft segment polyether unit is not limited thereto.
 ウレタン系エラストマの例としては、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のジイソシアネートとエチレングリコール、テトラメチレングリコール等のグリコールとを反応させることによって得られるポリウレタンをハードセグメントとし、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルもしくはポリエチレンアジペート、ポリブチレンアジペート、ポリカプロラクトン等の脂肪族ポリエステルをソフトセグメントとするブロック共重合体が挙げられるが、これに限定されるものではない。 Examples of urethane elastomers include reacting diisocyanates such as 4,4′-diphenylmethane diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, tolylene diisocyanate and hexamethylene diisocyanate with glycols such as ethylene glycol and tetramethylene glycol. A block copolymer having polyurethane as a hard segment and polyether or polyethylene adipate such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol or polyethylene adipate, polybutylene adipate, aliphatic polyester such as polycaprolactone as a soft segment can be mentioned. However, it is not limited to this.
 スチレン系エラストマとしては、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、スチレン-ブタジエン共重合体、スチレン-ブタジエン-スチレン共重合体、スチレン-イソプレン-スチレン共重合体、スチレン-エチレン-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン-エポキシ基含有ビニル系共重合体等が挙げられ、これらを単独又は二種以上組み合せて用いることができる。 Examples of the styrene elastomer include acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, styrene-butadiene copolymer, styrene-butadiene-styrene copolymer, styrene-isoprene-styrene copolymer, styrene-ethylene. -Butadiene-styrene copolymer, acrylonitrile-styrene-epoxy group-containing vinyl copolymer, and the like can be mentioned, and these can be used alone or in combination of two or more kinds.
 ポリアミド系エラストマの例としては、ナイロン6、ナイロン66、ナイロン11、ナイロン12などをハードセグメントとし、ポリエーテルまたは脂肪族ポリエステルをソフトセグメントとするブロック共重合体が挙げられるが、これに限定されるものではない。また、厳密にはエラストマに分類されないが、本発明におけるポリアミド系エラストマとして脂肪族ポリアミドも用いることができる。 Examples of polyamide elastomers include, but are not limited to, block copolymers having nylon 6, nylon 66, nylon 11, nylon 12, etc. as the hard segment and polyether or aliphatic polyester as the soft segment. Not a thing. Although not strictly classified as an elastomer, an aliphatic polyamide can also be used as the polyamide elastomer in the present invention.
 (C)耐ヒートショック性向上用樹脂の添加量は、ポリブチレンテレフタレート樹脂100質量部に対し、5~100質量部であり、10~90質量部または20~80質量部であっても良い。ただし、難燃性の低い樹脂では、多量に添加することで組成物としての燃焼性を悪化させるおそれがあるため、耐ヒートショック性向上用樹脂の含有量は、本発明の難燃性ポリブチレンテレフタレート樹脂組成物全体に対し、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。 The amount of the (C) resin for improving heat shock resistance added is 5 to 100 parts by mass, or 10 to 90 parts by mass or 20 to 80 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin. However, in the case of a resin having low flame retardance, the content of the resin for improving heat shock resistance is the flame-retardant polybutylene of the present invention because the combustibility of the composition may be deteriorated by adding a large amount thereof. It is preferably 40% by mass or less, more preferably 30% by mass or less, and further preferably 20% by mass or less, based on the entire terephthalate resin composition.
 (D)耐ヒートショック性向上用充填剤としては、ポリブチレンテレフタレート樹脂の収縮率や線膨張係数を低減することにより、成形品に発生する歪を小さくする意味で、樹脂成形品の加工温度範囲や使用温度範囲における収縮率や線膨張係数の小さい、無機系充填剤、金属系充填剤が好ましく、金属部材と組み合わせる絶縁部材として用いる成形品においては、絶縁性を確保する意味で無機系充填剤を用いることが特に好ましい。 (D) As a filler for improving heat shock resistance, by reducing the shrinkage rate or linear expansion coefficient of the polybutylene terephthalate resin, it is possible to reduce the strain generated in the molded product, thereby reducing the processing temperature range of the resin molded product. Inorganic fillers and metal fillers, which have a small shrinkage ratio and linear expansion coefficient in the operating temperature range, are preferable, and in a molded product used as an insulating member to be combined with a metal member, an inorganic filler is used in order to ensure insulation. Is particularly preferably used.
 (D)耐ヒートショック性向上用充填剤の形状としては、繊維状充填剤、板状充填剤、球状充填剤、粉状充填剤、曲面状充填剤、不定形充填剤及びこれらの組み合わせのいずれも用いることができるが、ヒートショックによる破壊を抑制するためには、収縮や線膨張の異方性も低減することが好ましいため、充填剤自体も異方性の小さいものであることが望ましく、板状充填剤、球状充填剤、粉状充填剤等、特にアスペクト比が1に近い充填剤を用いることがより好ましい。一方、ガラス繊維等の繊維状充填剤を用いる場合、引張強度等の機械的特性の向上効果は大きいが、繊維状充填剤の配向に起因して、収縮率の異方性が大きくなる傾向にあるため、繊維状充填剤としては、ミルドファイバやウィスカ等の短繊維や、断面が繭型や長円形・楕円形といった扁平形状(例えば断面の長径÷短径の比が1.3~10)の繊維といった、アスペクト比が比較的小さいものを用いることがより好ましい。特に、断面が扁平形状のガラス繊維を用いる場合、耐ヒートショック性と機械的特性がともに向上できるため好ましい。 The shape of the filler (D) for improving heat shock resistance may be any of fibrous filler, plate-like filler, spherical filler, powdery filler, curved filler, amorphous filler and combinations thereof. Although it is also possible to use, it is preferable to reduce the anisotropy of shrinkage and linear expansion in order to suppress the destruction due to heat shock. Therefore, it is desirable that the filler itself has small anisotropy, It is more preferable to use a plate-like filler, a spherical filler, a powdery filler, or the like, particularly a filler having an aspect ratio close to 1. On the other hand, when a fibrous filler such as glass fiber is used, the effect of improving mechanical properties such as tensile strength is great, but the anisotropy of shrinkage tends to increase due to the orientation of the fibrous filler. Therefore, as fibrous fillers, short fibers such as milled fibers and whiskers, and flat shapes such as cocoon-shaped or elliptical / oval cross-sections (for example, ratio of cross-section long diameter / short diameter is 1.3 to 10) It is more preferable to use a fiber having a relatively small aspect ratio, such as a fiber. In particular, it is preferable to use glass fibers having a flat cross section because both heat shock resistance and mechanical properties can be improved.
 板状充填剤の具体例としては、板状タルク、マイカ、ガラスフレーク、金属片及びこれらの組み合わせ等を挙げることができ、球状充填剤の具体例としては、ガラスビーズ、ガラスバルーン、球状シリカ及びこれらの組み合わせ等を挙げることができ、粉状充填剤としてはガラス粉、タルク粉、石英粉末、石英粉末、カオリン、クレー、珪藻土、ウォラストナイト、炭化珪素、窒化珪素、金属粉、無機酸金属塩(炭酸カルシウム、ホウ酸亜鉛、ホウ酸カルシウム、スズ酸亜鉛、硫酸カルシウム、硫酸バリウム等)の粉末、金属酸化物(酸化マグネシウム、酸化鉄、酸化チタン、酸化亜鉛、アルミナ等)の粉末、金属水酸化物(水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム、アルミナ水和物(ベーマイト)等)の粉末、金属硫化物(硫化亜鉛、硫化モリブデン、硫化タングステン等)の粉末、及びこれらの組み合わせ等を挙げることができる。なお、金属腐食性の観点では、これら(D)耐ヒートショック性向上用充填剤中に含まれる遊離無機酸の含有量がそれぞれ0.5質量%以下のものであることが好ましい。 Specific examples of the plate-like filler include plate-like talc, mica, glass flakes, metal pieces and combinations thereof, and specific examples of the spherical filler include glass beads, glass balloons, spherical silica and Examples of the powdery filler include glass powder, talc powder, quartz powder, quartz powder, kaolin, clay, diatomaceous earth, wollastonite, silicon carbide, silicon nitride, metal powder, and inorganic acid metal. Powder of salt (calcium carbonate, zinc borate, calcium borate, zinc stannate, calcium sulfate, barium sulfate, etc.), powder of metal oxide (magnesium oxide, iron oxide, titanium oxide, zinc oxide, alumina, etc.), metal Powders of hydroxides (aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, alumina hydrate (boehmite), etc.), metal sulfides (zinc sulfide, molybdenum sulfide, tungsten sulfide, etc.), and combinations thereof. Can be mentioned. From the viewpoint of metal corrosiveness, the content of the free inorganic acid contained in the filler (D) for improving heat shock resistance is preferably 0.5% by mass or less.
 (D)耐ヒートショック性向上用充填剤のサイズについては、反り低減効果と機械的特性や流動性等とのバランスを考慮して適宜選択することができる。例えばタルクとしては、体積平均粒子径が1~10μmのタルク、または嵩比重が0.4~1.5の圧縮微粉タルクを好適に用いることができ、マイカとしては、体積平均粒子径が10~60μmのマイカを好適に用いることができる。 (D) The size of the heat shock resistance-improving filler can be appropriately selected in consideration of the balance between the warp reduction effect and the mechanical characteristics, fluidity and the like. For example, as talc, talc having a volume average particle size of 1 to 10 μm or compressed fine powder talc having a bulk specific gravity of 0.4 to 1.5 can be suitably used, and as mica, a volume average particle size of 10 to Mica of 60 μm can be preferably used.
 これらの(D)耐ヒートショック性向上用充填剤は、無機化合物および/または有機化合物で表面処理(表面被覆)されていてもよい。表面処理に用いられる無機化合物としては、例えば、水酸化アルミニウム、アルミナ、シリカ、ジルコニア、水酸化ジルコニウム、ジルコニア水和物、酸化セリウム、酸化セリウム水和物、水酸化セリウム等のアルミニウム、ケイ素、ジルコニウム、セリウム等の無機酸化物、水酸化物が好ましく挙げられる。また、これらの無機化合物は水和物であってもよい。これらの中でも、水酸化アルミニウム、シリカが好ましく、シリカを用いる場合は、SiO・nHOで表されるシリカ水和物であることが特に好ましい。また、表面処理に用いられる有機化合物としては、エポキシ化合物やアミン化合物が好ましく、ビスフェノールA型エポキシ、ノボラック型エポキシ等のエポキシ化合物およびモノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジクロルヘキシルアミン等のアミン化合物がより好ましい化合物として例示することができる。 These (D) fillers for improving heat shock resistance may be surface-treated (surface-coated) with an inorganic compound and / or an organic compound. As the inorganic compound used for the surface treatment, for example, aluminum hydroxide, alumina, silica, zirconia, zirconium hydroxide, zirconia hydrate, cerium oxide, cerium oxide hydrate, aluminum such as cerium hydroxide, silicon, zirconium. Preferred are inorganic oxides such as cerium and cerium, and hydroxides. Further, these inorganic compounds may be hydrates. Among these, aluminum hydroxide and silica are preferable, and when silica is used, a silica hydrate represented by SiO 2 .nH 2 O is particularly preferable. The organic compound used for the surface treatment is preferably an epoxy compound or an amine compound, and an epoxy compound such as bisphenol A type epoxy or novolac type epoxy and an amine compound such as monoethanolamine, diethanolamine, triethanolamine or dichlorohexylamine. Can be exemplified as a more preferable compound.
 (D)耐ヒートショック性向上用充填剤の添加量は、ポリブチレンテレフタレート樹脂100質量部に対し、10~200質量部であり、20~180質量部または30~150質量部であっても良い。(D)耐ヒートショック性向上用充填剤の添加量は、耐ヒートショック性向上効果と機械的特性や流動性等とのバランスを考慮して適宜選択することができる。 The addition amount of the (D) filler for improving heat shock resistance is 10 to 200 parts by mass, or 20 to 180 parts by mass or 30 to 150 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin. .. The addition amount of the (D) filler for improving heat shock resistance can be appropriately selected in consideration of the balance between the effect of improving heat shock resistance and mechanical properties, fluidity and the like.
 (E)耐ヒートショック性向上用添加剤としては、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、芳香族多価カルボン酸エステルなどが挙げられ、これらの1種、又は2種以上を組み合わせて用いることができる。 Examples of the additive (E) for improving heat shock resistance include a carbodiimide compound, an epoxy compound, an oxazoline compound, an oxazine compound, and an aromatic polycarboxylic acid ester, and one kind or a combination of two or more kinds thereof is used. Can be used.
 カルボジイミド化合物としては、分子内に少なくともひとつの(-N=C=N-)で表されるカルボジイミド基を有する化合物を用いることができ、このようなカルボジイミド化合物は、例えば適当な触媒の存在下に、有機イソシアネートを加熱し、脱炭酸反応で製造できる。 As the carbodiimide compound, a compound having at least one carbodiimide group represented by (-N = C = N-) in the molecule can be used. Such a carbodiimide compound can be used, for example, in the presence of a suitable catalyst. It can be produced by heating an organic isocyanate and performing a decarboxylation reaction.
 カルボジイミド化合物の例としては、ジフェニルカルボジイミド、ジ-シクロヘキシルカルボジイミド、ジ-2,6-ジメチルフェニルカルボジイミド、ジイソプロピルカルボジイミド、ジオクチルデシルカルボジイミド、ジ-o-トルイルカルボジイミド、ジ-p-トルイルカルボジイミド、ジ-p-ニトロフェニルカルボジイミド、ジ-p-アミノフェニルカルボジイミド、ジ-p-ヒドロキシフェニルカルボジイミド、ジ-p-クロルフェニルカルボジイミド、ジ-o-クロルフェニルカルボジイミド、ジ-3,4-ジクロルフェニルカルボジイミド、ジ-2,5-ジクロルフェニルカルボジイミド、p-フェニレン-ビス-o-トルイルカルボジイミド、p-フェニレン-ビス-ジシクロヘキシルカルボジイミド、p-フェニレン-ビス-ジ-p-クロルフェニルカルボジイミド、2,6,2′,6′-テトライソプロピルジフェニルカルボジイミド、ヘキサメチレン-ビス-シクロヘキシルカルボジイミド、エチレン-ビス-ジフェニルカルボジイミド、エチレン-ビス-ジ-シクロヘキシルカルボジイミド、N,N´-ジ-o-トリイルカルボジイミド、N,N´-ジフェニルカルボジイミド、N,N´-ジオクチルデシルカルボジイミド、N,N´-ジ-2,6-ジメチルフェニルカルボジイミド、N-トリイル-N´-シクロヘキシルカルボジイミド、N,N´-ジ-2,6-ジイソプロピルフェニルカルボジイミド、N,N´-ジ-2,6-ジ-tert -ブチルフェニルカルボジイミド、N-トルイル-N´-フェニルカルボジイミド、N,N´-ジ-p-ニトロフェニルカルボジイミド、N,N´-ジ-p-アミノフェニルカルボジイミド、N,N´-ジ-p-ヒドロキシフェニルカルボジイミド、N,N´-ジ-シクロヘキシルカルボジイミド、N,N´-ジ-p-トルイルカルボジイミド、N,N′-ベンジルカルボジイミド、N-オクタデシル-N′-フェニルカルボジイミド、N-ベンジル-N′-フェニルカルボジイミド、N-オクタデシル-N′-トリルカルボジイミド、N-シクロヘキシル-N′-トリルカルボジイミド、N-フェニル-N′-トリルカルボジイミド、N-ベンジル-N′-トリルカルボジイミド、N,N′-ジ-o-エチルフェニルカルボジイミド、N,N′-ジ-p-エチルフェニルカルボジイミド、N,N′-ジ-o-イソプロピルフェニルカルボジイミド、N,N′-ジ-p-イソプロピルフェニルカルボジイミド、N,N′-ジ-o-イソブチルフェニルカルボジイミド、N,N′-ジ-p-イソブチルフェニルカルボジイミド、N,N′-ジ-2,6-ジエチルフェニルカルボジイミド、N,N′-ジ-2-エチル-6-イソプロピルフェニルカルボジイミド、N,N′-ジ-2-イソブチル-6-イソプロピルフェニルカルボジイミド、N,N′-ジ-2,4,6-トリメチルフェニルカルボジイミド、N,N′-ジ-2,4,6-トリイソプロピルフェニルカルボジイミド、N,N′-ジ-2,4,6-トリイソブチルフェニルカルボジイミドなどのモノ又はジカルボジイミド化合物、ポリ(1,6-ヘキサメチレンカルボジイミド)、ポリ(4,4′-メチレンビスシクロヘキシルカルボジイミド)、ポリ(1,3-シクロヘキシレンカルボジイミド)、ポリ(1,4-シクロヘキシレンカルボジイミド)、ポリ(4,4′-ジフェニルメタンカルボジイミド)、ポリ(3,3′-ジメチル-4,4′-ジフェニルメタンカルボジイミド)、ポリ(ナフチレンカルボジイミド)、ポリ(p-フェニレンカルボジイミド)、ポリ(m-フェニレンカルボジイミド)、ポリ(トリルカルボジイミド)、ポリ(ジイソプロピルカルボジイミド)、ポリ(メチル-ジイソプロピルフェニレンカルボジイミド)、ポリ(トリエチルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)などのポリカルボジイミドなどが挙げられる。また、ポリカルボジイミドには、m-キシリレンジイソシアネート、p-キシレンジイソシアネート、m-テトラメチルキシリレンジイソシアネート、p-テトラメチルキシレンジイソシアネート等から合成されるキシリレン系ポリカルボジイミドも用いることができる。さらに、ジイソシアネート化合物を、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、シリコーンジオール、ポリオレフィンポリオール、ポリウレタンポリオール、アルキレン(炭素数21~)ジオール等のジオール化合物と反応させたカルボジイミド化合物を用いることもできる。これらの中でも、耐熱性の観点から、N,N´-ジ-2,6-ジイソプロピルフェニルカルボジイミド、2,6,2′,6′-テトライソプロピルジフェニルカルボジイミドなどの芳香族カルボジイミドが好ましく、また、ポリカルボジイミドが好ましい。 Examples of the carbodiimide compound include diphenylcarbodiimide, di-cyclohexylcarbodiimide, di-2,6-dimethylphenylcarbodiimide, diisopropylcarbodiimide, dioctyldecylcarbodiimide, di-o-toluylcarbodiimide, di-p-toluylcarbodiimide, di-p- Nitrophenylcarbodiimide, di-p-aminophenylcarbodiimide, di-p-hydroxyphenylcarbodiimide, di-p-chlorophenylcarbodiimide, di-o-chlorophenylcarbodiimide, di-3,4-dichlorophenylcarbodiimide, di-2 , 5-dichlorophenylcarbodiimide, p-phenylene-bis-o-toluylcarbodiimide, p-phenylene-bis-dicyclohexylcarbodiimide, p-phenylene-bis-di-p-chlorophenylcarbodiimide, 2,6,2 ', 6 ′ -Tetraisopropyldiphenylcarbodiimide, hexamethylene-bis-cyclohexylcarbodiimide, ethylene-bis-diphenylcarbodiimide, ethylene-bis-di-cyclohexylcarbodiimide, N, N′-di-o-triylcarbodiimide, N, N′-diphenyl Carbodiimide, N, N'-dioctyldecylcarbodiimide, N, N'-di-2,6-dimethylphenylcarbodiimide, N-triyl-N'-cyclohexylcarbodiimide, N, N'-di-2,6-diisopropylphenylcarbodiimide , N, N'-di-2,6-di-tert-butylphenylcarbodiimide, N-toluyl-N'-phenylcarbodiimide, N, N'-di-p-nitrophenylcarbodiimide, N, N'-di- p-aminophenylcarbodiimide, N, N'-di-p-hydroxyphenylcarbodiimide, N, N'-di-cyclohexylcarbodiimide, N, N'-di-p-toluylcarbodiimide, N, N'-benzylcarbodiimide, N -Octadecyl-N'-phenylcarbodiimide, N-benzyl-N'-phenylcarbodiimide, N-octadecyl-N'-tolylcarbodiimide, N-cyclohexyl-N'-tolylcarbodiimide, N-phenyl-N'-tolylcarbodiimide, N -Benzyl-N'-tolylcarbodiimide, N, N'-di-o-ethylphenylcarbodiimide, N, N'-di-p-ethylphenylcarbodiimide, N, N'-di-o-isopropylphenylcarbodiimid N, N'-di-p-isopropylphenylcarbodiimide, N, N'-di-o-isobutylphenylcarbodiimide, N, N'-di-p-isobutylphenylcarbodiimide, N, N'-di-2, 6-diethylphenylcarbodiimide, N, N'-di-2-ethyl-6-isopropylphenylcarbodiimide, N, N'-di-2-isobutyl-6-isopropylphenylcarbodiimide, N, N'-di-2,4 , 6-trimethylphenylcarbodiimide, N, N'-di-2,4,6-triisopropylphenylcarbodiimide, N, N'-di-2,4,6-triisobutylphenylcarbodiimide and other mono- or dicarbodiimide compounds, Poly (1,6-hexamethylenecarbodiimide), poly (4,4'-methylenebiscyclohexylcarbodiimide), poly (1,3-cyclohexylenecarbodiimide), poly (1,4-cyclohexylenecarbodiimide), poly (4, 4'-diphenylmethanecarbodiimide), poly (3,3'-dimethyl-4,4'-diphenylmethanecarbodiimide), poly (naphthylenecarbodiimide), poly (p-phenylenecarbodiimide), poly (m-phenylenecarbodiimide), poly ( And polycarbodiimides such as poly (diisopropylcarbodiimide), poly (methyl-diisopropylphenylenecarbodiimide), poly (triethylphenylenecarbodiimide), and poly (triisopropylphenylenecarbodiimide). As the polycarbodiimide, a xylylene-based polycarbodiimide synthesized from m-xylylene diisocyanate, p-xylene diisocyanate, m-tetramethyl xylylene diisocyanate, p-tetramethyl xylene diisocyanate, or the like can be used. Further, a carbodiimide compound obtained by reacting a diisocyanate compound with a diol compound such as a polyether polyol, a polyester polyol, a polycarbonate polyol, a silicone diol, a polyolefin polyol, a polyurethane polyol, and an alkylene (21 to 22 carbon atoms) diol can also be used. Among these, aromatic carbodiimides such as N, N′-di-2,6-diisopropylphenylcarbodiimide and 2,6,2 ′, 6′-tetraisopropyldiphenylcarbodiimide are preferable from the viewpoint of heat resistance, and Carbodiimides are preferred.
 エポキシ化合物としては、分子構造中にエポキシ基を含む化合物であればよく、グリシジルエーテル化合物、グリシジルエステル化合物、グリシジルアミン化合物、グリシジルイミド化合物、脂環式エポキシ化合物を好ましく使用することができる。 The epoxy compound may be any compound containing an epoxy group in its molecular structure, and glycidyl ether compounds, glycidyl ester compounds, glycidyl amine compounds, glycidyl imide compounds, and alicyclic epoxy compounds can be preferably used.
 グリシジルエーテル化合物の例としては、ブチルグリシジルエーテル、ステアリルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、o-フェニルフェニルグリシジルエーテル、エチレンオキシドラウリルアルコールグリシジルエーテル、エチレンオキシドフェノールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、グリセロールトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、2,2-ビス-(4-ヒドロキシフェニル)プロパン、2,2-ビス-(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシフェニル)スルホンなどのビスフェノール類とエピクロルヒドリンとの縮合反応から得られるビスフェノールAジグリシジルエーテル型エポキシ樹脂、ビスフェノールFジグリシジルエーテル型エポキシ樹脂、ビスフェノールSジグリシジルエーテル型エポキシ樹脂などを挙げることができる。なかでも、ビスフェノールAジグリシジルエーテル型エポキシ樹脂が好ましい。 Examples of the glycidyl ether compound include butyl glycidyl ether, stearyl glycidyl ether, allyl glycidyl ether, phenyl glycidyl ether, o-phenylphenyl glycidyl ether, ethylene oxide lauryl alcohol glycidyl ether, ethylene oxide phenol glycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol. Diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, polytetramethylene glycol diglycidyl ether, cyclohexanedimethanol diglycidyl ether, glycerol triglycidyl ether, trimethylolpropane triglycidyl ether, Of epichlorohydrin with pentaerythritol polyglycidyl ether, bisphenols such as 2,2-bis- (4-hydroxyphenyl) propane, 2,2-bis- (4-hydroxyphenyl) methane and bis (4-hydroxyphenyl) sulfone Examples thereof include bisphenol A diglycidyl ether type epoxy resin, bisphenol F diglycidyl ether type epoxy resin, and bisphenol S diglycidyl ether type epoxy resin obtained from the condensation reaction. Among them, bisphenol A diglycidyl ether type epoxy resin is preferable.
 グリシジルエステル化合物の例としては、安息香酸グリシジルエステル、p-トルイル酸グリシジルエステル、シクロヘキサンカルボン酸グリシジルエステル、ステアリン酸グリシジルエステル、ラウリン酸グリシジルエステル、パルミチン酸グリシジルエステル、バーサティック酸グリシジルエステル、オレイン酸グリシジルエステル、リノール酸グリシジルエステル、リノレン酸グリシジルエステル、テレフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、フタル酸ジグリシジルエステル、ナフタレンジカルボン酸ジグリシジルエステル、ビ安息香酸ジグリシジルエステル、メチルテレフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、シクロヘキサンジカルボン酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、コハク酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、ドデカンジオン酸ジグリシジルエステル、オクタデカンジカルボン酸ジグリシジルエステル、トリメリット酸トリグリシジルエステル、ピロメリット酸テトラグリシジルエステルなどを挙げることができる。なかでも、安息香酸グリシジルエステルやバーサティック酸グリシジルエステルが好ましい。 Examples of the glycidyl ester compound include glycidyl benzoate, glycidyl p-toluate, glycidyl cyclohexanecarboxylic acid, glycidyl stearate, glycidyl laurate, glycidyl palmitate, glycidyl oleate, and glycidyl oleate. Ester, glycidyl linoleate, glycidyl linolenate, diglycidyl terephthalate, diglycidyl isophthalate, diglycidyl phthalate, naphthalene dicarboxylic acid diglycidyl ester, diglycidyl bibenzoate, diglycidyl methyl terephthalate , Hexahydrophthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, cyclohexanedicarboxylic acid diglycidyl ester, adipic acid diglycidyl ester, succinic acid diglycidyl ester, sebacic acid diglycidyl ester, dodecanedioic acid diglycidyl ester, octadecane dicarboxylic acid Examples thereof include acid diglycidyl ester, trimellitic acid triglycidyl ester, and pyromellitic acid tetraglycidyl ester. Of these, glycidyl benzoate and glycidyl versatate are preferable.
 グリシジルアミン化合物の例としては、テトラグリシジルアミノジフェニルメタン、トリグリシジル-p-アミノフェノール、トリグリシジル-m-アミノフェノール、ジグリシジルアニリン、ジグリシジルトルイジン、テトラグリシジルメタキシレンジアミン、ジグリシジルトリブロモアニリン、テトラグリシジルビスアミノメチルシクロヘキサン、トリグリシジルシアヌレート、トリグリシジルイソシアヌレートなどを挙げることができる。 Examples of the glycidyl amine compound include tetraglycidyl aminodiphenylmethane, triglycidyl-p-aminophenol, triglycidyl-m-aminophenol, diglycidyl aniline, diglycidyl toluidine, tetraglycidyl metaxylenediamine, diglycidyl tribromoaniline, tetra Examples thereof include glycidyl bisaminomethylcyclohexane, triglycidyl cyanurate and triglycidyl isocyanurate.
 グリシジルイミド化合物の例としては、N-グリシジルフタルイミド、N-グリシジル-4-メチルフタルイミド、N-グリシジル-4,5-ジメチルフタルイミド、N-グリシジル-3-メチルフタルイミド、N-グリシジル-3,6-ジメチルフタルイミド、N-グリシジル-4-エトキシフタルイミド、N-グリシジル-4-クロルフタルイミド、N-グリシジル-4,5-ジクロルフタルイミド、N-グリシジル-3,4,5,6-テトラブロムフタルイミド、N-グリシジル-4-n-ブチル-5-ブロムフタルイミド、N-グリシジルサクシンイミド、N-グリシジルヘキサヒドロフタルイミド、N-グリシジル-1,2,3,6-テトラヒドロフタルイミド、N-グリシジルマレインイミド、N-グリシジル-α,β-ジメチルサクシンイミド、N-グリシジル-α-エチルサクシンイミド、N-グリシジル-α-プロピルサクシンイミド、N-グリシジルベンズアミド、N-グリシジル-p-メチルベンズアミド、N-グリシジルナフトアミド、N-グリシジルステラミドなどを挙げることができる。なかでも、N-グリシジルフタルイミドが好ましい。 Examples of the glycidyl imide compound include N-glycidyl phthalimide, N-glycidyl-4-methylphthalimide, N-glycidyl-4,5-dimethylphthalimide, N-glycidyl-3-methylphthalimide, N-glycidyl-3,6- Dimethylphthalimide, N-glycidyl-4-ethoxyphthalimide, N-glycidyl-4-chlorophthalimide, N-glycidyl-4,5-dichlorophthalimide, N-glycidyl-3,4,5,6-tetrabromophthalimide, N -Glycidyl-4-n-butyl-5-bromophthalimide, N-glycidyl succinimide, N-glycidyl hexahydrophthalimide, N-glycidyl-1,2,3,6-tetrahydrophthalimide, N-glycidyl maleimide, N- Glycidyl-α, β-dimethylsuccinimide, N-glycidyl-α-ethylsuccinimide, N-glycidyl-α-propylsuccinimide, N-glycidylbenzamide, N-glycidyl-p-methylbenzamide, N-glycidylnaphthamide, Examples thereof include N-glycidyl steramide. Of these, N-glycidyl phthalimide is preferable.
 脂環式エポキシ化合物の例としては、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキシルカルボキシレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジエポキシド、N-メチル-4,5-エポキシシクロヘキサン-1,2-ジカルボン酸イミド、N-エチル-4,5-エポキシシクロヘキサン-1,2-ジカルボン酸イミド、N-フェニル-4,5-エポキシシクロヘキサン-1,2-ジカルボン酸イミド、N-ナフチル-4,5-エポキシシクロヘキサン-1,2-ジカルボン酸イミド、N-トリル-3-メチル-4,5-エポキシシクロヘキサン-1,2-ジカルボン酸イミドなどを挙げることができる。 Examples of the alicyclic epoxy compound include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate, bis (3,4-epoxycyclohexylmethyl) adipate, vinylcyclohexene diepoxide, N-methyl-4, 5-epoxycyclohexane-1,2-dicarboxylic acid imide, N-ethyl-4,5-epoxycyclohexane-1,2-dicarboxylic acid imide, N-phenyl-4,5-epoxycyclohexane-1,2-dicarboxylic acid imide , N-naphthyl-4,5-epoxycyclohexane-1,2-dicarboxylic acid imide, N-tolyl-3-methyl-4,5-epoxycyclohexane-1,2-dicarboxylic acid imide and the like.
 また、その他のエポキシ化合物として、エポキシ化大豆油、エポキシ化アマニ油、エポキシ化鯨油などのエポキシ変性脂肪酸グリセリド、フェノールノボラック型エポキシ樹脂、クレゾールノゾラック型エポキシ樹脂などを用いることができる。 As other epoxy compounds, epoxidized soybean oil, epoxidized linseed oil, epoxy-modified fatty acid glyceride such as epoxidized whale oil, phenol novolac type epoxy resin, cresol nozolac type epoxy resin, etc. can be used.
 さらに、エポキシ化合物としては、α,β-不飽和酸のグリシジルエステル、例えばアクリル酸グリシジルエステル、メタクリル酸グリシジルエステル、エタクリル酸グリシジルエステル等のエポキシ化合物を、ランダム、ブロックまたはグラフト共重合により他のモノマーと共重合させた、エポキシ変性樹脂あるいはエポキシ変性エラストマ、具体的には、α-オレフィンと、α,β-不飽和酸のグリシジルエステルからなるグリシジル基含有共重合体や、エポキシ基含有ビニル系単量体をグラフト重合してなるポリオルガノシロキサン/ポリアルキル(メタ)アクリレ-ト複合ゴムグラフト共重合体、主鎖にエポキシ基を有するスチレン/ブタジエン共重合体エラストマ等を用いることもでき、一般的に難燃剤として使用される臭素化エポキシ化合物(エポキシ基を封止していないもの)を用いることもできる。 Further, as the epoxy compound, an epoxy compound such as a glycidyl ester of an α, β-unsaturated acid, for example, a glycidyl acrylic acid ester, a glycidyl methacrylic acid ester, a glycidyl ethacrylic acid glycidyl ester, etc. may be added to another monomer by random, block or graft copolymerization. Epoxy-modified resin or epoxy-modified elastomer copolymerized with, specifically, a glycidyl group-containing copolymer composed of α-olefin and a glycidyl ester of an α, β-unsaturated acid, or an epoxy group-containing vinyl-based copolymer. A polyorganosiloxane / polyalkyl (meth) acrylate composite rubber graft copolymer obtained by graft-polymerizing a monomer, a styrene / butadiene copolymer elastomer having an epoxy group in its main chain, etc. can also be used. It is also possible to use a brominated epoxy compound (which does not have an epoxy group sealed) used as a flame retardant.
 オキサゾリン化合物の例としては、2-メトキシ-2-オキサゾリン、2-エトキシ-2-オキサゾリン、2-プロポキシ-2-オキサゾリン、2-ブトキシ-2-オキサゾリン、2-ペンチルオキシ-2-オキサゾリン、2-ヘキシルオキシ-2-オキサゾリン、2-ヘプチルオキシ-2-オキサゾリン、2-オクチルオキシ-2-オキサゾリン、2-ノニルオキシ-2-オキサゾリン、2-デシルオキシ-2-オキサゾリン、2-シクロペンチルオキシ-2-オキサゾリン、2-シクロヘキシルオキシ-2-オキサゾリン、2-アリルオキシ-2-オキサゾリン、2-メタアリルオキシ-2-オキサゾリン、2-クロチルオキシ-2-オキサゾリン、2-フェノキシ-2-オキサゾリン、2-クレジル-2-オキサゾリン、2-o-エチルフェノキシ-2-オキサゾリン、2-o-プロピルフェノキシ-2-オキサゾリン、2-o-フェニルフェノキシ-2-オキサゾリン、2-m-エチルフェノキシ-2-オキサゾリン、2-m-プロピルフェノキシ-2-オキサゾリン、2-p-フェニルフェノキシ-2-オキサゾリン、2-メチル-2-オキサゾリン、2-エチル-2-オキサゾリン、2-プロピル-2-オキサゾリン、2-ブチル-2-オキサゾリン、2-ペンチル-2-オキサゾリン、2-ヘキシル-2-オキサゾリン、2-ヘプチル-2-オキサゾリン、2-オクチル-2-オキサゾリン、2-ノニル-2-オキサゾリン、2-デシル-2-オキサゾリン、2-シクロペンチル-2-オキサゾリン、2-シクロヘキシル-2-オキサゾリン、2-アリル-2-オキサゾリン、2-メタアリル-2-オキサゾリン、2-クロチル-2-オキサゾリン、2-フェニル-2-オキサゾリン、2-o-エチルフェニル-2-オキサゾリン、2-o-プロピルフェニル-2-オキサゾリン、2-o-フェニルフェニル-2-オキサゾリン、2-m-エチルフェニル-2-オキサゾリン、2-m-プロピルフェニル-2-オキサゾリン、2-p-フェニルフェニル-2-オキサゾリン、2,2′-ビス(2-オキサゾリン)、2,2′-ビス(4-メチル-2-オキサゾリン)、2,2′-ビス(4,4′-ジメチル-2-オキサゾリン)、2,2′-ビス(4-エチル-2-オキサゾリン)、2,2′-ビス(4,4′-ジエチル-2-オキサゾリン)、2,2′-ビス(4-プロピル-2-オキサゾリン)、2,2′-ビス(4-ブチル-2-オキサゾリン)、2,2′-ビス(4-ヘキシル-2-オキサゾリン)、2,2′-ビス(4-フェニル-2-オキサゾリン)、2,2′-ビス(4-シクロヘキシル-2-オキサゾリン)、2,2′-ビス(4-ベンジル-2-オキサゾリン)、2,2′-p-フェニレンビス(2-オキサゾリン)、2,2′-m-フェニレンビス(2-オキサゾリン)、2,2′-o-フェニレンビス(2-オキサゾリン)、2,2′-p-フェニレンビス(4-メチル-2-オキサゾリン)、2,2′-p-フェニレンビス(4,4′-ジメチル-2-オキサゾリン)、2,2′-m-フェニレンビス(4-メチル-2-オキサゾリン)、2,2′-m-フェニレンビス(4,4′-ジメチル-2-オキサゾリン)、2,2′-エチレンビス(2-オキサゾリン)、2,2′-テトラメチレンビス(2-オキサゾリン)、2,2′-ヘキサメチレンビス(2-オキサゾリン)、2,2′-オクタメチレンビス(2-オキサゾリン)、2,2′-デカメチレンビス(2-オキサゾリン)、2,2′-エチレンビス(4-メチル-2-オキサゾリン)、2,2′-テトラメチレンビス(4,4′-ジメチル-2-オキサゾリン)、2,2′-9,9′-ジフェノキシエタンビス(2-オキサゾリン)、2,2′-シクロヘキシレンビス(2-オキサゾリン)、2,2′-ジフェニレンビス(2-オキサゾリン)などが挙げられる。さらには、上記した化合物をモノマー単位として含むポリオキサゾリン化合物なども挙げることができる。 Examples of the oxazoline compound include 2-methoxy-2-oxazoline, 2-ethoxy-2-oxazoline, 2-propoxy-2-oxazoline, 2-butoxy-2-oxazoline, 2-pentyloxy-2-oxazoline, 2- Hexyloxy-2-oxazoline, 2-heptyloxy-2-oxazoline, 2-octyloxy-2-oxazoline, 2-nonyloxy-2-oxazoline, 2-decyloxy-2-oxazoline, 2-cyclopentyloxy-2-oxazoline, 2-cyclohexyloxy-2-oxazoline, 2-allyloxy-2-oxazoline, 2-methallyloxy-2-oxazoline, 2-crotyloxy-2-oxazoline, 2-phenoxy-2-oxazoline, 2-cresyl-2-oxazoline , 2-o-ethylphenoxy-2-oxazoline, 2-o-propylphenoxy-2-oxazoline, 2-o-phenylphenoxy-2-oxazoline, 2-m-ethylphenoxy-2-oxazoline, 2-m-propyl Phenoxy-2-oxazoline, 2-p-phenylphenoxy-2-oxazoline, 2-methyl-2-oxazoline, 2-ethyl-2-oxazoline, 2-propyl-2-oxazoline, 2-butyl-2-oxazoline, 2 -Pentyl-2-oxazoline, 2-hexyl-2-oxazoline, 2-heptyl-2-oxazoline, 2-octyl-2-oxazoline, 2-nonyl-2-oxazoline, 2-decyl-2-oxazoline, 2-cyclopentyl -2-oxazoline, 2-cyclohexyl-2-oxazoline, 2-allyl-2-oxazoline, 2-methallyl-2-oxazoline, 2-crotyl-2-oxazoline, 2-phenyl-2-oxazoline, 2-o-ethyl Phenyl-2-oxazoline, 2-o-propylphenyl-2-oxazoline, 2-o-phenylphenyl-2-oxazoline, 2-m-ethylphenyl-2-oxazoline, 2-m-propylphenyl-2-oxazoline, 2-p-phenylphenyl-2-oxazoline, 2,2'-bis (2-oxazoline), 2,2'-bis (4-methyl-2-oxazoline), 2,2'-bis (4,4 ' -Dimethyl-2-oxazoline), 2,2'-bis (4-ethyl-2-oxazoline), 2,2'-bis (4,4'-diethyl-2-oxazoline), 2,2'-bis ( 4-propyl-2-oxazoline), 2, 2'-bis (4-butyl-2-oxazoline), 2,2'-bis (4-hexyl-2-oxazoline), 2,2'-bis (4-phenyl-2-oxazoline), 2,2 ' -Bis (4-cyclohexyl-2-oxazoline), 2,2'-bis (4-benzyl-2-oxazoline), 2,2'-p-phenylenebis (2-oxazoline), 2,2'-m- Phenylene bis (2-oxazoline), 2,2'-o-phenylene bis (2-oxazoline), 2,2'-p-phenylene bis (4-methyl-2-oxazoline), 2,2'-p-phenylene Bis (4,4'-dimethyl-2-oxazoline), 2,2'-m-phenylene bis (4-methyl-2-oxazoline), 2,2'-m-phenylene bis (4,4'-dimethyl-) 2-oxazoline), 2,2′-ethylenebis (2-oxazoline), 2,2′-tetramethylenebis (2-oxazoline), 2,2′-hexamethylenebis (2-oxazoline), 2,2 ′ -Octamethylenebis (2-oxazoline), 2,2'-decamethylenebis (2-oxazoline), 2,2'-ethylenebis (4-methyl-2-oxazoline), 2,2'-tetramethylenebis ( 4,4'-dimethyl-2-oxazoline), 2,2'-9,9'-diphenoxyethane bis (2-oxazoline), 2,2'-cyclohexylene bis (2-oxazoline), 2,2 ' -Diphenylene bis (2-oxazoline) and the like. Further, a polyoxazoline compound containing the above-mentioned compound as a monomer unit can also be mentioned.
 オキサジン化合物の例としては、2-メトキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-エトキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-プロポキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-ブトキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-ペンチルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-ヘキシルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-ヘプチルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-オクチルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-ノニルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-デシルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-シクロペンチルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-シクロヘキシルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-アリルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-メタアリルオキシ-5,6-ジヒドロ-4H-1,3-オキサジン、2-クロチルオキシ-5,6-ジヒドロ-4H-1,3-オキサジンなどが挙げられ、さらには、2,2′-ビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-メチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-エチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-プロピレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-ブチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-ヘキサメチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-p-フェニレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-m-フェニレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-ナフチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2′-P,P′-ジフェニレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)などが挙げられる。さらには、上記した化合物をモノマー単位として含むポリオキサジン化合物などが挙げられる。 Examples of the oxazine compound include 2-methoxy-5,6-dihydro-4H-1,3-oxazine, 2-ethoxy-5,6-dihydro-4H-1,3-oxazine, 2-propoxy-5,6. -Dihydro-4H-1,3-oxazine, 2-butoxy-5,6-dihydro-4H-1,3-oxazine, 2-pentyloxy-5,6-dihydro-4H-1,3-oxazine, 2- Hexyloxy-5,6-dihydro-4H-1,3-oxazine, 2-heptyloxy-5,6-dihydro-4H-1,3-oxazine, 2-octyloxy-5,6-dihydro-4H-1 , 3-oxazine, 2-nonyloxy-5,6-dihydro-4H-1,3-oxazine, 2-decyloxy-5,6-dihydro-4H-1,3-oxazine, 2-cyclopentyloxy-5,6- Dihydro-4H-1,3-oxazine, 2-cyclohexyloxy-5,6-dihydro-4H-1,3-oxazine, 2-allyloxy-5,6-dihydro-4H-1,3-oxazine, 2-meta Examples include allyloxy-5,6-dihydro-4H-1,3-oxazine, 2-crotyloxy-5,6-dihydro-4H-1,3-oxazine, and further 2,2′-bis (5 , 6-dihydro-4H-1,3-oxazine), 2,2′-methylenebis (5,6-dihydro-4H-1,3-oxazine), 2,2′-ethylenebis (5,6-dihydro-) 4H-1,3-oxazine), 2,2′-propylenebis (5,6-dihydro-4H-1,3-oxazine), 2,2′-butylenebis (5,6-dihydro-4H-1,3) -Oxazine), 2,2'-hexamethylenebis (5,6-dihydro-4H-1,3-oxazine), 2,2'-p-phenylenebis (5,6-dihydro-4H-1,3- Oxazine), 2,2'-m-phenylenebis (5,6-dihydro-4H-1,3-oxazine), 2,2'-naphthylenebis (5,6-dihydro-4H-1,3-oxazine), 2,2'-P, P'-diphenylenebis (5,6-dihydro-4H-1,3-oxazine) and the like can be mentioned. Furthermore, the polyoxazine compound etc. which contain the above-mentioned compound as a monomer unit are mentioned.
 上記オキサゾリン化合物やオキサジン化合物の中では、2,2′-m-フェニレンビス(2-オキサゾリン)、2,2′-p-フェニレンビス(2-オキサゾリン)が好ましい。 Among the above oxazoline compounds and oxazine compounds, 2,2'-m-phenylenebis (2-oxazoline) and 2,2'-p-phenylenebis (2-oxazoline) are preferable.
 芳香族多価カルボン酸エステルとしては、例えばトリメリット酸エステルやピロメリット酸エステルが好適な例として挙げられ、特にアルキルエステルが好ましい。このアルキルエステルを構成するアルキル基としては、例えばトリオクチル基、トリイソデシル基、トリス(2-エチルヘキシル)基、トリブチル基等が挙げられ、これらのいずれか又は二種以上を組み合わせて用いても良い。このような芳香族多価カルボン酸エステルは一種または二種以上を併用することができる。 As the aromatic polyvalent carboxylic acid ester, for example, trimellitic acid ester and pyromellitic acid ester are mentioned as preferable examples, and alkyl ester is particularly preferable. Examples of the alkyl group constituting the alkyl ester include a trioctyl group, a triisodecyl group, a tris (2-ethylhexyl) group, a tributyl group, and the like, and any one or a combination of two or more thereof may be used. These aromatic polycarboxylic acid esters can be used alone or in combination of two or more.
 (E)耐ヒートショック性向上用添加剤の添加量は、ポリブチレンテレフタレート樹脂100質量部に対し、0.1~30質量部であり、0.2~20質量部であることが好ましく、0.3~10質量部であることがより好ましい。 The addition amount of the (E) heat shock resistance improving additive is 0.1 to 30 parts by mass, preferably 0.2 to 20 parts by mass, and 0 to 100 parts by mass of the polybutylene terephthalate resin. It is more preferably from 0.3 to 10 parts by mass.
 また、(E)耐ヒートショック性向上用添加剤の添加量は、ポリブチレンテレフタレート樹脂組成物中の末端カルボキシル基量を1として、カルボジイミド基、エポキシ基、オキサゾリン基、オキサジン環、エステル基の合計官能基含有量が0.3~5当量となるように設定しても良い。好ましい合計官能基含有量は0.5~3当量、より好ましくは0.8~2当量である。 The amount of the (E) additive for improving heat shock resistance is the total of carbodiimide group, epoxy group, oxazoline group, oxazine ring, and ester group, with the amount of terminal carboxyl group in the polybutylene terephthalate resin composition being 1. The functional group content may be set to 0.3 to 5 equivalents. The preferred total functional group content is 0.5 to 3 equivalents, more preferably 0.8 to 2 equivalents.
(添加剤) 本発明の組成物には必要に応じて、難燃性と耐ヒートショック性以外の所望の特性を付与するために、一般に熱可塑性樹脂等に添加される、耐ヒートショック性向上用添加剤に該当するもの以外の公知の物質を添加併用することができる。例えば酸化防止剤、紫外線吸収剤、光安定剤等の安定剤、帯電防止剤、滑剤、離型剤、染料や顔料等の着色剤、可塑剤、流動性向上剤、靱性向上剤、耐衝撃性向上剤、耐ヒートショック性向上用樹脂に該当するもの以外の樹脂、耐ヒートショック性向上用充填剤に該当するもの以外の充填剤等、いずれも配合することが可能である。 (Additive) Improve the heat shock resistance, which is generally added to a thermoplastic resin or the like in order to impart desired properties other than flame retardancy and heat shock resistance to the composition of the present invention as necessary. Known substances other than those corresponding to the additives for use can be added and used in combination. For example, antioxidants, ultraviolet absorbers, stabilizers such as light stabilizers, antistatic agents, lubricants, release agents, colorants such as dyes and pigments, plasticizers, fluidity improvers, toughness improvers, impact resistance. It is possible to mix any of improvers, resins other than those corresponding to the heat shock resistance improving resin, fillers other than those corresponding to the heat shock resistance improving filler, and the like.
 なお、着色剤としてカーボンブラック等の無機顔料を用いる場合、耐ヒートショック性の低下を抑制できる点で、平均一次粒子径が10~100nmのものを用いることが好ましく、25~50nmのものを用いることがより好ましい。なお、ここでいう平均一次粒子径は、樹脂組成物中に配合される前の着色剤1000個の電子顕微鏡観察により求めた算術平均粒子径である。 When an inorganic pigment such as carbon black is used as the colorant, it is preferable to use one having an average primary particle diameter of 10 to 100 nm, and one having an average primary particle diameter of 25 to 50 nm, from the viewpoint that the reduction of heat shock resistance can be suppressed. Is more preferable. The average primary particle diameter here is an arithmetic average particle diameter obtained by observing 1000 colorants before being mixed in the resin composition with an electron microscope.
 また着色剤を添加する際は、いったん(A)ポリブチレンテレフタレート樹脂又は(C)耐ヒートショック性向上用樹脂として用いる樹脂、あるいはポリブチレンテレフタレート樹脂と相溶性の高い他の樹脂と溶融混練した、マスターバッチの状態で添加すると、耐ヒートショック性の低下をさらに抑制できる点で好ましい。 When the colorant is added, it is melt-kneaded with (A) a resin used as a polybutylene terephthalate resin or (C) a resin for improving heat shock resistance, or another resin having a high compatibility with the polybutylene terephthalate resin. Addition in the state of a masterbatch is preferable in that the decrease in heat shock resistance can be further suppressed.
[難燃性ポリブチレンテレフタレート樹脂組成物の製造方法]
 本発明の難燃性ポリブチレンテレフタレート樹脂組成物の形態は、粉粒体混合物であってもよいし、ペレット等の溶融混合物(溶融混練物)であってもよい。本発明の一実施形態のポリブチレンテレフタレート樹脂組成物の製造方法は、(B)ハロゲン化ベンジルアクリレート系難燃剤の製造工程を有している。当該工程については上記のとおりであるからここでは記載を省略する。
 ポリブチレンテレフタレート樹脂組成物の製造方法は特に限定されるものではなく、当該技術分野で知られている設備及び方法を用いて製造することができる。例えば、必要な成分を混合し、1軸又は2軸の押出機又はその他の溶融混練装置を使用して混練し、成形用ペレットとして調製することができる。押出機又はその他の溶融混練装置は複数使用してもよい。また、全ての成分をホッパから同時に投入してもよいし、一部の成分はサイドフィード口から投入してもよい。
[Method for producing flame-retardant polybutylene terephthalate resin composition]
The form of the flame-retardant polybutylene terephthalate resin composition of the present invention may be a mixture of powder or granules or a melt mixture (melt-kneaded product) such as pellets. A method for producing a polybutylene terephthalate resin composition according to an embodiment of the present invention has a step of producing (B) a halogenated benzyl acrylate flame retardant. Since the process is as described above, the description is omitted here.
The method for producing the polybutylene terephthalate resin composition is not particularly limited, and the polybutylene terephthalate resin composition can be produced using equipment and methods known in the art. For example, necessary components can be mixed and kneaded using a single-screw or twin-screw extruder or another melt-kneading device to prepare pellets for molding. Plural extruders or other melt-kneading devices may be used. Further, all the components may be charged simultaneously from the hopper, or some of the components may be charged from the side feed port.
 以下、実施例により本発明を具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、特性評価は以下の方法により行った。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist. The characteristic evaluation was performed by the following methods.
(1)ハロゲン化芳香族化合物含有量
 表1に示す成分、組成(質量部)でドライブレンドした材料を、30mmφのスクリューを有する2軸押出機((株)日本製鋼所製)に供給して260℃で溶融混練し、得られたポリブチレンテレフタレート樹脂組成物のペレットを粉砕したものを試料とした。試料を5gとり、20mlのヘッドスペース中に150℃で1時間放置した後、装置:横河ヒューレット・パッカード社製HP5890A、カラム:HR-1701(0.32mm径×30m)を用い、50℃で1分間保持後、5℃/minで昇温させ、ガスクロマトグラフにより、ハロゲン化芳香族化合物に由来するガス発生量を測定し、ハロゲン化芳香族化合物の含有量をppmで示した。結果を表1に示す。
(1) Content of Halogenated Aromatic Compound The materials shown in Table 1 and dry-blended with the composition (parts by mass) were supplied to a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) having a screw of 30 mmφ. A sample was prepared by melt-kneading at 260 ° C. and crushing the obtained pellet of the polybutylene terephthalate resin composition. After taking 5 g of the sample and leaving it in a head space of 20 ml for 1 hour at 150 ° C., a device: HP5890A manufactured by Yokogawa Hewlett-Packard Co., and a column: HR-1701 (0.32 mm diameter × 30 m) at 50 ° C. After holding for 1 minute, the temperature was raised at 5 ° C./min, the amount of gas generated from the halogenated aromatic compound was measured by gas chromatography, and the content of the halogenated aromatic compound was shown in ppm. The results are shown in Table 1.
(2)金属腐蝕性
 表1に示す成分、組成(質量部)でドライブレンドした材料を、30mmφのスクリューを有する2軸押出機((株)日本製鋼所製)に供給して260℃で溶融混練し、得られたポリブチレンテレフタレート樹脂組成物のペレット50gを、1cm×1cmの銀板とともに300mlのガラス製共栓ビンに入れ栓をして、150℃のギアオーブン中で500時間静置した後、銀板の表面を目視にて確認し、腐蝕が発生していないものを○、腐蝕が発生していたものを×として評価した。結果を表1に示す。
(2) Metal Corrosion The materials dry-blended with the components and composition (parts by mass) shown in Table 1 are supplied to a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) having a screw of 30 mmφ and melted at 260 ° C. 50 g of pellets of the polybutylene terephthalate resin composition obtained by kneading were put in a 300 ml glass stopper bottle together with a silver plate of 1 cm × 1 cm and capped, and the mixture was allowed to stand in a gear oven at 150 ° C. for 500 hours. After that, the surface of the silver plate was visually confirmed, and those without corrosion were evaluated as ◯, and those with corrosion were evaluated as x. The results are shown in Table 1.
(3)難燃性
 表1に示す成分、組成(質量部)でドライブレンドした材料を、30mmφのスクリューを有する2軸押出機((株)日本製鋼所製)に供給して260℃で溶融混練し、得られたポリブチレンテレフタレート樹脂組成物のペレットを、140℃で3時間乾燥させた後、シリンダ温度250℃、金型温度70℃にて射出成形し、UL94に準拠し、125mm×13mm×厚さ1/32インチの短冊状試験片を作製して燃焼性を評価した。結果を表1に示す。
(3) Flame retardance The materials dry-blended with the components and composition (parts by mass) shown in Table 1 are supplied to a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) having a screw of 30 mmφ and melted at 260 ° C. The pellets of the polybutylene terephthalate resin composition obtained by kneading and drying are dried at 140 ° C. for 3 hours, and then injection-molded at a cylinder temperature of 250 ° C. and a mold temperature of 70 ° C. according to UL94, 125 mm × 13 mm × A strip-shaped test piece having a thickness of 1/32 inch was prepared and evaluated for flammability. The results are shown in Table 1.
(4)耐ヒートショック性
 表1に示す成分、組成(質量部)でドライブレンドした材料を、30mmφのスクリューを有する2軸押出機((株)日本製鋼所製)に供給して260℃で溶融混練し、得られたポリブチレンテレフタレート樹脂組成物のペレットを、140℃で3時間乾燥後、シリンダ温度260℃、金型温度80℃の条件で射出成形し、図1,2に示す試験片をインサート成形し、耐ヒートショック性を評価した。図1は、インサート成形した試験片10を示す図であり、図2は、インサート部材2を示す図である。試験片10は、図1に示すように、熱可塑性芳香族ポリエステル樹脂組成物からなる四角柱状の樹脂部材1に金属からなる四角柱状のインサート部材2が埋設されたものである。樹脂部材1は、上記のようにして得られた樹脂組成物ペレットを用いて成形されたものである。インサート部材2は、図2に示すように、四角柱状の上部2aと四角柱状の下部2bとこれらの間において両者を接続する円柱状の括れ部2cとを備えた構成とされている。インサート部材2は、下部2b及び括れ部2cが、樹脂部材1内に埋設され、上部2aが樹脂部材1の上面から露出している(図1(A)参照)。さらに、図1(B)に示すように、樹脂部材1の角部とインサート部材2の角部は、互いに異なる方向に位置するように配置されている。すなわち、インサート部材2の角部は、樹脂部材1の側面に向かうように配置されている。そして、インサート部材2の角部の先端と、樹脂部材1の側面との距離は約1mmである。樹脂部材1において、インサート部材2の角部(シャープコーナー)の先端近傍が肉薄部となっている。上記の試験片10に対し、冷熱衝撃試験機(エスペック株式会社製)を用い、-40℃にて1.5時間冷却後、180℃にて1.5時間加熱するというサイクルを繰り返し、20サイクル毎にウェルド部を観察した。ウェルド部にクラックが発生したときのサイクル数を耐ヒートショック性の指標として、200サイクル以上を◎、100サイクル以上を○、100サイクル未満を×として評価した。結果を表1に示す。
(4) Heat shock resistance The materials dry-blended with the components and composition (parts by mass) shown in Table 1 were supplied to a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) having a screw of 30 mmφ at 260 ° C. The pellets of the polybutylene terephthalate resin composition obtained by melt-kneading were dried at 140 ° C. for 3 hours, injection-molded under the conditions of a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C., and a test piece shown in FIGS. Was insert-molded and the heat shock resistance was evaluated. FIG. 1 is a view showing a test piece 10 that has been insert-molded, and FIG. 2 is a view showing an insert member 2. As shown in FIG. 1, the test piece 10 has a rectangular columnar insert member 2 made of a metal embedded in a rectangular columnar resin member 1 made of a thermoplastic aromatic polyester resin composition. The resin member 1 is molded using the resin composition pellets obtained as described above. As shown in FIG. 2, the insert member 2 is configured to include an upper portion 2a having a quadrangular prism shape, a lower portion 2b having a quadrangular prism shape, and a columnar constricted portion 2c connecting the two between them. In the insert member 2, the lower portion 2b and the constricted portion 2c are embedded in the resin member 1, and the upper portion 2a is exposed from the upper surface of the resin member 1 (see FIG. 1A). Furthermore, as shown in FIG. 1 (B), the corners of the resin member 1 and the insert member 2 are arranged so as to be positioned in mutually different directions. That is, the corner portion of the insert member 2 is arranged so as to face the side surface of the resin member 1. The distance between the tip of the corner of the insert member 2 and the side surface of the resin member 1 is about 1 mm. In the resin member 1, the vicinity of the tip of the corner (sharp corner) of the insert member 2 is a thin portion. Using the thermal shock tester (manufactured by ESPEC Co., Ltd.) for the above-mentioned test piece 10, a cycle of cooling at −40 ° C. for 1.5 hours and then heating at 180 ° C. for 1.5 hours was repeated, 20 cycles. The weld part was observed every time. The number of cycles when cracks were generated in the weld portion was used as an index of heat shock resistance, and 200 cycles or more were evaluated as ⊚, 100 cycles or more were evaluated as ◯, and less than 100 cycles was evaluated as x. The results are shown in Table 1.
(5)ストランド切れ
 表1に示す成分、組成(質量部)でドライブレンドした材料を、30mmφのスクリュを有する2軸押出機((株)日本製鋼所製TEX-30)に供給してシリンダ温度260℃、スクリュ回転数120rpm、押出量15kg/hrの条件で溶融混練し、ダイからストランド状に押し出した後、冷却・裁断してポリブチレンテレフタレート樹脂組成物のペレットを得る際に、ストランド切れの発生状況を確認し、ストランド切れがほとんど発生しなかったものを○、度々発生したものを×として評価した。結果を表1に示す。
(5) Strand break The materials dry-blended with the components and composition (parts by mass) shown in Table 1 were supplied to a twin-screw extruder (TEX-30 manufactured by Japan Steel Works, Ltd.) having a screw of 30 mmφ, and the cylinder temperature was supplied. When the pellets of the polybutylene terephthalate resin composition are obtained by melting and kneading under the conditions of 260 ° C., screw rotation speed 120 rpm, and extrusion rate 15 kg / hr and extruding from a die in a strand shape, strand breakage occurs The generation state was confirmed, and the one in which strand breakage hardly occurred was evaluated as ◯, and the one that occurred frequently was evaluated as x. The results are shown in Table 1.
(6)溶融流動性
 上記(5)の方法で得たペレットを140℃で3時間乾燥させた後、図3に示す箱状成形品(四辺の壁および底の厚さはいずれも0.7mm)を樹脂温度260℃、金型温度60℃、射出速度100mm/s、保圧力50MPaで射出成形し、完全に充填できたものを〇、流動性不足で末端まで充填できなかったものを×として評価した。
(6) Melt fluidity After the pellets obtained by the method of (5) were dried at 140 ° C for 3 hours, the box-shaped molded product shown in Fig. 3 (the thickness of the four side walls and the bottom was 0.7 mm) was obtained. ) Was injected at a resin temperature of 260 ° C., a mold temperature of 60 ° C., an injection speed of 100 mm / s, and a holding pressure of 50 MPa, and was completely filled with ◯, and those that could not be filled to the end due to insufficient fluidity were marked with x. evaluated.
(7)金型付着物
 上記(3)の評価に用いた短冊状試験片を連続で6000ショット成形した後、金型キャビティ表面を目視観察により評価した。金型付着物が見られなかったものを○、付着が見られたものを×として評価した。
(7) Die deposits The strip-shaped test pieces used in the evaluation of (3) above were continuously molded for 6000 shots, and then the surface of the mold cavity was evaluated by visual observation. The case where no metal deposit was observed was evaluated as ◯, and the one where adhesion was observed was evaluated as x.
Figure JPOXMLDOC01-appb-T000004
 
 表中のN.D.は検出限界(0.1ppm)以下であることを示す。
 含有量の単位は、質量部である。
Figure JPOXMLDOC01-appb-T000004

N. in the table. D. Indicates that it is below the detection limit (0.1 ppm).
The unit of content is parts by mass.
 表1に記載の各成分の詳細は下記の通りである。なお、PBT樹脂の線状低分子量体の量はSEC(サイズ排除クロマトグラフィ)、難燃剤中のプロトン性化合物の量はヘッドスペースガスクロマトグラフ法(180℃、1時間加熱)によりそれぞれ測定した。
(A-1)PBT樹脂1:ポリプラスチックス株式会社製、末端カルボキシル基濃度20meq/kg、固有粘度0.7dL/g、線状低分子量体50ppmのポリブチレンテレフタレート樹脂
(A-2)PBT樹脂2:ポリプラスチックス株式会社製、末端カルボキシル基濃度20meq/kg、固有粘度0.7dL/g、線状低分子量体150ppmのポリブチレンテレフタレート樹脂
(A-3)PBT樹脂3:ポリプラスチックス株式会社製、末端カルボキシル基濃度20meq/kg、固有粘度0.7dL/g、線状低分子量体30ppmのポリブチレンテレフタレート樹脂
(A-4)PBT樹脂4:ポリプラスチックス株式会社製、末端カルボキシル基濃度20meq/kg、固有粘度0.7dL/g、線状低分子量体1200ppmのポリブチレンテレフタレート樹脂
(B-1)PBBPA1:溶媒にエチレングリコールモノメチルエーテルを使用して重合したポリペンタブロモベンジルアクリレート(難燃剤以外のハロゲン化芳香族化合物含有量8ppm、プロトン性化合物としてメトキシエタノール20ppm含有)
(B-2)PBBPA2:溶媒にクロロベンゼンを使用して重合したポリペンタブロモベンジルアクリレート(難燃剤以外のハロゲン化芳香族化合物含有量150ppm、プロトン性化合物としてメトキシエタノール20ppm含有)
(B-3)PBBPA3:溶媒にエチレングリコールモノメチルエーテルを使用して重合したポリペンタブロモベンジルアクリレート(難燃剤以外のハロゲン化芳香族化合物含有量8ppm、プロトン性化合物としてメトキシエタノール300ppm含有)
(B-4)PBBPA4:溶媒にエチレングリコールモノメチルエーテルを使用して重合したポリペンタブロモベンジルアクリレート(難燃剤以外のハロゲン化芳香族化合物含有量8ppm、プロトン性化合物としてメトキシエタノール800ppm含有)
(B-5)PBBPA5:溶媒にエチレングリコールモノメチルエーテルを使用して重合したポリペンタブロモベンジルアクリレート(難燃剤以外のハロゲン化芳香族化合物含有量8ppm、プロトン性化合物として3,3-ジエトキシプロパノール100ppm含有)
(B-6)PBBPA6:溶媒にエチレングリコールモノメチルエーテルを使用して重合したポリペンタブロモベンジルアクリレート(難燃剤以外のハロゲン化芳香族化合物含有量8ppm、プロトン性化合物としてメトキシエタノール5ppm含有)
(B-7)PBBPA7:溶媒にエチレングリコールモノメチルエーテルを使用して重合したポリペンタブロモベンジルアクリレート(難燃剤以外のハロゲン化芳香族化合物含有量8ppm、プロトン性化合物としてメトキシエタノール1200ppm含有)
(C)耐ヒートショック性向上用樹脂
EEA:NUC社製、エチレンエチルアクリレート共重合体 NUC-6570
EEA-g-BAMMA:日油社製、エチレンエチルアクリレートとブチルアクリレート-メチルメタクリレートのグラフト共重合体 モディパーA5300
コアシェル:ローム・アンド・ハース・ジャパン社製、グリシジル基含有アクリルコアシェル系エラストマ パラロイドEXL2314
(D)耐ヒートショック性向上用充填剤
 円形断面GF:日本電気硝子社製、ECS03T-127(平均繊維径13μm、平均繊維長3mm)
扁平断面GF:日東紡社製、CSG3PA830(長径28μm、短径7μmの長円形断面(長径÷短径比=4)、平均繊維長3mmの長円形断面ガラス繊維)
(E)耐ヒートショック性向上用添加剤
 カルボン酸エステル:ADEKA社製、ピロメリット酸エステル アデカイザーUL100
カルボジイミド:ラインケミージャパン社製、芳香族ポリカルボジイミド STABAXOL P
三酸化アンチモン:日本精鉱社製、PATOX-M
五酸化アンチモン:日本化学工業株式会社製、サンエポックNA1030
滴下防止剤:ポリテトラフルオロエチレン樹脂
 
Details of each component shown in Table 1 are as follows. The amount of linear low molecular weight PBT resin was measured by SEC (size exclusion chromatography), and the amount of the protic compound in the flame retardant was measured by headspace gas chromatography (180 ° C., 1 hour heating).
(A-1) PBT resin 1: manufactured by Polyplastics Co., Ltd., a polybutylene terephthalate resin (A-2) PBT resin having a terminal carboxyl group concentration of 20 meq / kg, an intrinsic viscosity of 0.7 dL / g, and a linear low molecular weight substance of 50 ppm. 2: Polyplastics Co., Ltd., terminal carboxyl group concentration 20 meq / kg, intrinsic viscosity 0.7 dL / g, linear low molecular weight polymer 150 ppm polybutylene terephthalate resin (A-3) PBT resin 3: Polyplastics Co., Ltd. Polybutylene terephthalate resin (A-4) PBT resin having a terminal carboxyl group concentration of 20 meq / kg, an intrinsic viscosity of 0.7 dL / g, and a linear low molecular weight substance of 30 ppm: manufactured by Polyplastics Co., Ltd., a terminal carboxyl group concentration of 20 meq. / Kg, intrinsic viscosity 0.7 dL / g, linear low molecular weight substance 1200 ppm polybutylene terephthalate resin (B-1) PBBPA1: polypentabromobenzyl acrylate polymerized by using ethylene glycol monomethyl ether as a solvent (other than flame retardant Containing 8 ppm of halogenated aromatic compound and containing 20 ppm of methoxyethanol as a protic compound)
(B-2) PBBPA2: Polypentabromobenzyl acrylate polymerized by using chlorobenzene as a solvent (containing 150 ppm of halogenated aromatic compound other than flame retardant and 20 ppm of methoxyethanol as a protic compound)
(B-3) PBBPA3: Polypentabromobenzyl acrylate polymerized by using ethylene glycol monomethyl ether as a solvent (content of halogenated aromatic compound other than flame retardant 8 ppm, methoxyethanol 300 ppm as protic compound)
(B-4) PBBPA4: Polypentabromobenzyl acrylate polymerized by using ethylene glycol monomethyl ether as a solvent (containing 8 ppm of halogenated aromatic compound other than flame retardant, and 800 ppm of methoxyethanol as a protic compound)
(B-5) PBBPA5: Polypentabromobenzyl acrylate polymerized by using ethylene glycol monomethyl ether as a solvent (content of halogenated aromatic compound other than flame retardant 8 ppm, protic compound 3,3-diethoxypropanol 100 ppm Contained)
(B-6) PBBPA6: Polypentabromobenzyl acrylate polymerized by using ethylene glycol monomethyl ether as a solvent (content of halogenated aromatic compound other than flame retardant: 8 ppm, methoxyethanol: 5 ppm as protic compound)
(B-7) PBBPA7: Polypentabromobenzyl acrylate polymerized by using ethylene glycol monomethyl ether as a solvent (content of halogenated aromatic compound other than flame retardant 8 ppm, methoxyethanol 1200 ppm as protic compound)
(C) Resin for improving heat shock resistance EEA: ethylene ethyl acrylate copolymer NUC-6570 manufactured by NUC
EEA-g-BAMMA: NOF CORPORATION graft copolymer of ethylene ethyl acrylate and butyl acrylate-methyl methacrylate Modiper A5300
Core shell: Rohm and Haas Japan Co., glycidyl group-containing acrylic core shell elastomer Paraloid EXL2314
(D) Filler for improving heat shock resistance Circular cross section GF: ECS03T-127 manufactured by Nippon Electric Glass Co., Ltd. (average fiber diameter 13 μm, average fiber length 3 mm)
Flat cross section GF: manufactured by Nitto Boseki Co., Ltd., CSG3PA830 (oval cross section with major axis 28 μm, minor axis 7 μm (major axis / minor axis ratio = 4), oval circular section glass fiber with average fiber length of 3 mm)
(E) Additive for improving heat shock resistance Carboxylic acid ester: pyromellitic acid ester ADEKAIZER UL100 manufactured by ADEKA
Carbodiimide: Aromatic polycarbodiimide STABAXOL P manufactured by Rhein Chemie Japan
Antimony trioxide: PATOX-M manufactured by Nippon Seiko Co., Ltd.
Antimony pentoxide: manufactured by Nippon Chemical Industry Co., Ltd., Sun Epoch NA1030
Anti-drip agent: Polytetrafluoroethylene resin

Claims (12)

  1.  (A)ポリブチレンテレフタレート樹脂100質量部と、
     (B)ハロゲン化ベンジルアクリレート系難燃剤3~50質量部と、
     (C)耐ヒートショック性向上用樹脂5~100質量部と、
    (D)耐ヒートショック性向上用充填剤10~200質量部と、
    (E)耐ヒートショック性向上用添加剤0.1~30質量部とを含有し、
    ヘッドスペースガスクロマトグラフ法(150℃、1時間加熱)により測定される、前記難燃剤以外のハロゲン化芳香族化合物の含有量が0.5ppm未満の難燃性ポリブチレンテレフタレート樹脂組成物であり、前記耐ヒートショック性向上用添加剤が、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、芳香族多価カルボン酸エステル、及びこれらの組み合わせから選択される1種以上を含有することを特徴とする、難燃性ポリブチレンテレフタレート樹脂組成物。
    (A) 100 parts by mass of polybutylene terephthalate resin,
    (B) 3 to 50 parts by mass of halogenated benzyl acrylate flame retardant,
    (C) 5 to 100 parts by mass of resin for improving heat shock resistance,
    (D) 10 to 200 parts by mass of a filler for improving heat shock resistance,
    (E) 0.1 to 30 parts by mass of an additive for improving heat shock resistance,
    A flame-retardant polybutylene terephthalate resin composition containing less than 0.5 ppm of a halogenated aromatic compound other than the flame retardant, as measured by headspace gas chromatography (150 ° C., 1 hour heating), The heat shock resistance improving additive contains one or more selected from a carbodiimide compound, an epoxy compound, an oxazoline compound, an oxazine compound, an aromatic polycarboxylic acid ester, and a combination thereof. Flame-retardant polybutylene terephthalate resin composition.
  2.  (B)ハロゲン化ベンジルアクリレート系難燃剤が、一般式(I)で表されるブロム化アクリル重合体を含有する、請求項1に記載の難燃性ポリブチレンテレフタレート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは、水素原子または臭素原子であり、少なくとも1つ以上のXは臭素原子であり、mは10~2000の数である。)
    The flame-retardant polybutylene terephthalate resin composition according to claim 1, wherein the halogenated benzyl acrylate-based flame retardant (B) contains a brominated acrylic polymer represented by the general formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X is a hydrogen atom or a bromine atom, at least one or more X is a bromine atom, and m is a number of 10 to 2000.)
  3.  (B)ハロゲン化ベンジルアクリレート系難燃剤が、ポリペンタブロモベンジルアクリレートを含有する、請求項1または2に記載の難燃性ポリブチレンテレフタレート樹脂組成物。 The flame-retardant polybutylene terephthalate resin composition according to claim 1 or 2, wherein the (B) halogenated benzyl acrylate flame retardant contains polypentabromobenzyl acrylate.
  4.  前記難燃剤以外のハロゲン化芳香族化合物が、ハロゲン化ベンゼンを含有する、請求項1から3のいずれか一項に記載の難燃性ポリブチレンテレフタレート樹脂組成物。 The flame-retardant polybutylene terephthalate resin composition according to any one of claims 1 to 3, wherein the halogenated aromatic compound other than the flame retardant contains halogenated benzene.
  5.  前記難燃剤以外のハロゲン化芳香族化合物が、クロロベンゼンを含有する、請求項1から4のいずれか一項に記載の難燃性ポリブチレンテレフタレート樹脂組成物。 The flame-retardant polybutylene terephthalate resin composition according to any one of claims 1 to 4, wherein the halogenated aromatic compound other than the flame retardant contains chlorobenzene.
  6.  ポリブチレンテレフタレート樹脂と、ヘッドスペースガスクロマトグラフ法(180℃、1時間加熱)により測定される、プロトン性化合物の含有量が10~1000ppmであるハロゲン化ベンジルアクリレート系難燃剤を含有する、請求項1から5のいずれか一項に記載の難燃性ポリブチレンテレフタレート樹脂組成物。 A polybutylene terephthalate resin and a halogenated benzyl acrylate flame retardant having a protic compound content of 10 to 1000 ppm as measured by a headspace gas chromatographic method (180 ° C., 1 hour heating). 5. The flame-retardant polybutylene terephthalate resin composition according to any one of items 1 to 5.
  7.  ポリブチレンテレフタレート樹脂が、線状低分子量体を50~1000ppm含有する、請求項1から6のいずれか一項に記載の難燃性ポリブチレンテレフタレート樹脂組成物。 The flame-retardant polybutylene terephthalate resin composition according to any one of claims 1 to 6, wherein the polybutylene terephthalate resin contains a linear low molecular weight substance in an amount of 50 to 1000 ppm.
  8.  プロトン性化合物が、ハロゲン化ベンジルアクリレート系難燃剤の重合溶媒に由来する、請求項6に記載の難燃性ポリブチレンテレフタレート樹脂組成物。 The flame-retardant polybutylene terephthalate resin composition according to claim 6, wherein the protic compound is derived from a polymerization solvent for a halogenated benzyl acrylate flame retardant.
  9.  プロトン性化合物が、アルコキシアルコールである、請求項6または8に記載の難燃性ポリブチレンテレフタレート樹脂組成物。 The flame-retardant polybutylene terephthalate resin composition according to claim 6 or 8, wherein the protic compound is an alkoxy alcohol.
  10.  請求項1から9のいずれか一項に記載の難燃性ポリブチレンテレフタレート樹脂組成物の製造方法であって、
     (B)ハロゲン化ベンジルアクリレート系難燃剤の製造工程を有し、該工程で用いる溶媒中のハロゲン化芳香族化合物の含有量が1000ppm以下であることを特徴とする、製造方法。
    A method for producing the flame-retardant polybutylene terephthalate resin composition according to any one of claims 1 to 9,
    (B) A process for producing a halogenated benzyl acrylate flame retardant, wherein the content of the halogenated aromatic compound in the solvent used in the process is 1000 ppm or less.
  11.  (B)ハロゲン化ベンジルアクリレート系難燃剤の製造工程において、溶媒としてハロゲン化芳香族化合物を用いない、請求項10に記載の製造方法。 11. The production method according to claim 10, wherein a halogenated aromatic compound is not used as a solvent in the production process of (B) a halogenated benzyl acrylate flame retardant.
  12.  (B)ハロゲン化ベンジルアクリレート系難燃剤の製造工程において、溶媒としてエチレングリコールモノメチルエーテル、メチルエチルケトン、エチレングリコールジメチルエーテルおよびジオキサンからなる群から選択される一以上の溶媒を用いる、請求項10又は11に記載の製造方法。
     
    (B) In the step of producing a halogenated benzyl acrylate flame retardant, one or more solvents selected from the group consisting of ethylene glycol monomethyl ether, methyl ethyl ketone, ethylene glycol dimethyl ether and dioxane are used as a solvent. Manufacturing method.
PCT/JP2019/043788 2018-11-13 2019-11-08 Flame-retardant polybutylene terephthalate resin composition WO2020100727A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020555611A JP7256822B2 (en) 2018-11-13 2019-11-08 Flame-retardant polybutylene terephthalate resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-212726 2018-11-13
JP2018212726 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020100727A1 true WO2020100727A1 (en) 2020-05-22

Family

ID=70731400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043788 WO2020100727A1 (en) 2018-11-13 2019-11-08 Flame-retardant polybutylene terephthalate resin composition

Country Status (2)

Country Link
JP (1) JP7256822B2 (en)
WO (1) WO2020100727A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3770217A4 (en) * 2018-03-22 2021-05-26 Polyplastics Co., Ltd. Flame-retardant polybutylene terephthalate resin composition
US11401414B2 (en) 2017-08-22 2022-08-02 Polyplastics Co., Ltd. Flame-retardant poly(butylene terephthalate) resin composition
WO2023027069A1 (en) * 2021-08-24 2023-03-02 ポリプラスチックス株式会社 Polybutylene terephthalate resin composition and molded article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523682A (en) * 1975-06-21 1977-01-12 Dynamit Nobel Ag Acrylate*methacrylate base polymer and copolymer*its preparation and fireproofing agent containing same and fireproofing synthetic resin
JPH0347150A (en) * 1989-03-29 1991-02-28 Bromine Compounds Ltd Production of bromine-substituted aromatic ester of alpha, beta-unsaturated acid
JPH0959475A (en) * 1995-08-25 1997-03-04 Dainippon Ink & Chem Inc Flame-retardant thermoplastic polyester resin composition
JP2000336259A (en) * 1999-03-24 2000-12-05 Polyplastics Co Flame-retarded polyester resin composition
JP2001234045A (en) * 2000-02-21 2001-08-28 Polyplastics Co Flame retardant polybutylene terephthalate resin composition
WO2011058992A1 (en) * 2009-11-10 2011-05-19 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition
JP2016017104A (en) * 2014-07-07 2016-02-01 東レ株式会社 Polybutylene terephthalate resin composition
JP2018123215A (en) * 2017-01-31 2018-08-09 東レ株式会社 Polybutylene terephthalate resin composition and molded article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523682A (en) * 1975-06-21 1977-01-12 Dynamit Nobel Ag Acrylate*methacrylate base polymer and copolymer*its preparation and fireproofing agent containing same and fireproofing synthetic resin
JPH0347150A (en) * 1989-03-29 1991-02-28 Bromine Compounds Ltd Production of bromine-substituted aromatic ester of alpha, beta-unsaturated acid
JPH0959475A (en) * 1995-08-25 1997-03-04 Dainippon Ink & Chem Inc Flame-retardant thermoplastic polyester resin composition
JP2000336259A (en) * 1999-03-24 2000-12-05 Polyplastics Co Flame-retarded polyester resin composition
JP2001234045A (en) * 2000-02-21 2001-08-28 Polyplastics Co Flame retardant polybutylene terephthalate resin composition
WO2011058992A1 (en) * 2009-11-10 2011-05-19 ウィンテックポリマー株式会社 Polybutylene terephthalate resin composition
JP2016017104A (en) * 2014-07-07 2016-02-01 東レ株式会社 Polybutylene terephthalate resin composition
JP2018123215A (en) * 2017-01-31 2018-08-09 東レ株式会社 Polybutylene terephthalate resin composition and molded article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11401414B2 (en) 2017-08-22 2022-08-02 Polyplastics Co., Ltd. Flame-retardant poly(butylene terephthalate) resin composition
EP3770217A4 (en) * 2018-03-22 2021-05-26 Polyplastics Co., Ltd. Flame-retardant polybutylene terephthalate resin composition
US11326053B2 (en) 2018-03-22 2022-05-10 Polyplastics Co., Ltd. Flame-retardant polybutylene terephthalate resin composition
WO2023027069A1 (en) * 2021-08-24 2023-03-02 ポリプラスチックス株式会社 Polybutylene terephthalate resin composition and molded article

Also Published As

Publication number Publication date
JP7256822B2 (en) 2023-04-12
JPWO2020100727A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2020100727A1 (en) Flame-retardant polybutylene terephthalate resin composition
WO2009150831A1 (en) Polybutylene terephthalate resin composition and molding
JP2007112858A (en) Method for producing polybutylene terephthalate resin composition
JP2017197676A (en) Polybutylene terephthalate resin composition
JPWO2015002198A1 (en) High thermal conductivity thermoplastic resin composition excellent in injection moldability
WO2022124332A1 (en) Resin composition, pellet, molded article and method for producing resin composition
WO2022037660A1 (en) Polyester resin composition and molded article thereof
JP2003026905A (en) Resin composition and its molded article
US20070142503A1 (en) Flame-retardant injection-molded
JPS6028446A (en) Thermoplastic polyester resin composition
JP7446090B2 (en) Method for improving tracking resistance of polybutylene terephthalate resin composition
JP7454343B2 (en) Flame retardant polybutylene terephthalate resin composition
JP2007321109A (en) Polyester resin molded article and polyester resin composition
JP7174602B2 (en) polyester resin composition
JP7182396B2 (en) Flame-retardant polybutylene terephthalate resin composition
JP2022147198A (en) Polyester elastomer resin composition and cable covering material formed from the same
JP5772445B2 (en) Inorganic reinforced polyester resin composition and molded article comprising the same
JP7368976B2 (en) Flame retardant polybutylene terephthalate resin composition
JP2020019919A (en) Flame-retardant polybutylene terephthalate resin composition
JP2008050582A (en) Resin composition and molded product
WO2021140565A1 (en) Flame-retardant polybutylene terephthalate resin composition
JP7345308B2 (en) Flame retardant polybutylene terephthalate resin composition
WO2020095976A1 (en) Flame retardant polybutylene terephthalate resin composition
JP2020176158A (en) Thermoplastic resin composition and molded article
JPH10158487A (en) Flame-retardant polyester resin composition and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885372

Country of ref document: EP

Kind code of ref document: A1