WO2020100417A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2020100417A1
WO2020100417A1 PCT/JP2019/036589 JP2019036589W WO2020100417A1 WO 2020100417 A1 WO2020100417 A1 WO 2020100417A1 JP 2019036589 W JP2019036589 W JP 2019036589W WO 2020100417 A1 WO2020100417 A1 WO 2020100417A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
layer
electrode
substrate
Prior art date
Application number
PCT/JP2019/036589
Other languages
French (fr)
Japanese (ja)
Inventor
伊東 理
池田 雅延
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2020100417A1 publication Critical patent/WO2020100417A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/46Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character is selected from a number of characters arranged one behind the other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a display device.
  • a display device having the characteristics of both a transmissive display device and a reflective display device there is a transflective liquid crystal display device having a transmissive display region and a reflective display region in one pixel.
  • the transflective liquid crystal display device displays by using transmitted light by backlight light in a dark environment and displays by using reflected light by external light in a bright environment.
  • a light emitting region including a self light emitting element such as an organic light emitting diode (OLED: Organic Light Emitting Diode) is formed.
  • OLED Organic Light Emitting Diode
  • Patent Document 1 In a semi-transmissive liquid crystal display device, it is necessary to divide one pixel into a transmissive area and a reflective area. Therefore, there is a trade-off relationship between securing the transmissive display area and maintaining the reflective display performance.
  • Patent Document 1 since the self-luminous element is used, it is possible to suppress deterioration of reflective display performance due to area division.
  • the organic light emitting diode may deteriorate due to heating in the manufacturing process of the liquid crystal display device. Further, Patent Document 1 does not describe a configuration for improving the light extraction efficiency.
  • An object of the present invention is to provide a display device that can achieve both the reflective display performance of displaying with reflected light and the light emitting display performance of emitting light from a light emitting element.
  • a display device includes a first substrate, a second substrate facing the first substrate, an inorganic light emitting element provided between the first substrate and the second substrate, and an anode electrode.
  • a first transistor electrically connected to the inorganic light emitting element via an insulating layer covering the inorganic light emitting element; a liquid crystal layer provided between the first substrate and the second substrate; A pixel electrode and a common electrode that face each other with a liquid crystal layer interposed therebetween, and the first transistor, the anode electrode, the inorganic light emitting element, the insulating layer, the pixel electrode, and The liquid crystal layer, the common electrode, and the second substrate are laminated in this order.
  • FIG. 1 is a perspective view schematically showing the display device according to the first embodiment.
  • FIG. 2 is a plan view showing a plurality of pixels.
  • FIG. 3 is a circuit diagram showing an equivalent circuit of the reflective display pixel.
  • FIG. 4 is a circuit diagram showing an equivalent circuit of the light emitting display pixel.
  • FIG. 5 is a cross-sectional view taken along line V-V 'in FIG.
  • FIG. 6 is an enlarged sectional view showing the light emitting device of FIG.
  • FIG. 7 is a cross-sectional view showing a display device according to a first modification of the first embodiment.
  • FIG. 8 is a sectional view showing a display device according to a second modification of the first embodiment.
  • FIG. 9 is a sectional view showing the display device according to the second embodiment.
  • FIG. 1 is a perspective view schematically showing the display device according to the first embodiment.
  • FIG. 2 is a plan view showing a plurality of pixels.
  • FIG. 3 is a circuit diagram
  • FIG. 10 is a sectional view showing the display device according to the third embodiment.
  • FIG. 11 is an explanatory diagram for explaining how light from the light emitting element propagates through the light extraction layer.
  • FIG. 12 is an explanatory diagram for explaining light propagation in the display device according to the third modified example of the third embodiment.
  • FIG. 13 is an explanatory diagram for explaining another example of light propagation in the display device according to the fourth modification of the third embodiment.
  • FIG. 14 is a sectional view showing the display device according to the fourth embodiment.
  • FIG. 15 is a sectional view showing a display device according to a fifth modified example of the fourth embodiment.
  • FIG. 16 is a cross-sectional view showing a display device according to a sixth modified example of the fourth embodiment.
  • FIG. 11 is an explanatory diagram for explaining how light from the light emitting element propagates through the light extraction layer.
  • FIG. 12 is an explanatory diagram for explaining light propagation in the display device according to the third modified example of the third embodiment.
  • FIG. 17 is a sectional view showing a display device according to a seventh modified example of the fourth embodiment.
  • FIG. 18 is a plan view showing a plurality of pixels of the display device according to the fifth embodiment.
  • FIG. 19 is a sectional view taken along line XIX-XIX ′ in FIG.
  • FIG. 1 is a perspective view schematically showing the display device according to the first embodiment.
  • the display device DSP includes a first substrate SU1, a second substrate SU2, a pixel Pix, a peripheral circuit GC, and a connection portion CN.
  • FIG. 1 shows the structure on the first substrate SU1 in a transparent manner.
  • An array substrate SUA for driving each pixel Pix is configured by the first substrate SU1, a plurality of transistors, a plurality of capacitors, various wirings and the like.
  • the array substrate SUA is a drive circuit substrate and is also called a backplane or an active matrix substrate.
  • the drive IC Integrated Circuit
  • the display device DSP has a display area DA and a peripheral area GA.
  • the display area DA is an area that is arranged so as to overlap the display portion DP and displays an image.
  • the peripheral area GA is an area that does not overlap the display portion DP and is arranged outside the display area DA.
  • the second substrate SU2 overlaps the first substrate SU1 in the display section DP.
  • the first substrate SU1 and the second substrate SU2 sandwich the liquid crystal layer LC (see FIG. 5) in the display portion DP.
  • the display portion DP has a plurality of pixels Pix, and the plurality of pixels Pix are arranged in the first direction Dx and the second direction Dy in the display area DA.
  • the first direction Dx and the second direction Dy are parallel to the surface of the first substrate SU1.
  • the first direction Dx is orthogonal to the second direction Dy.
  • the first direction Dx may intersect with the second direction Dy instead of being orthogonal to each other.
  • the third direction Dz is a direction orthogonal to the first direction Dx and the second direction Dy.
  • the third direction Dz corresponds to, for example, the normal direction of the first substrate SU1. Note that, hereinafter, the plan view refers to a positional relationship when viewed from the third direction Dz.
  • the peripheral circuit GC and the connection portion CN are provided in the peripheral area GA.
  • the connection part CN is provided in a region of the peripheral region GA that does not overlap the second substrate SU2.
  • the peripheral circuit GC includes a plurality of gate lines (for example, a reset control signal line RSL, an output control signal line MSL, a pixel control signal line SSL, an initialization control signal line ISL (see FIG. 4) based on various control signals from the driving IC. )) Is a circuit for driving.
  • the peripheral circuit GC selects a plurality of gate lines sequentially or simultaneously and supplies a gate drive signal to the selected gate lines. As a result, the peripheral circuit GC selects the plurality of pixels Pix connected to the gate line.
  • the drive IC is a circuit that controls the display of the display device DSP.
  • the drive IC may be mounted as a COF (Chip On Film) on a flexible printed board or a rigid board connected to the connection portion CN of the first board SU1.
  • the drive IC is not limited to this, and may be mounted as a COG (Chip On Glass) in the peripheral area GA of the first substrate SU1.
  • FIG. 2 is a plan view showing a plurality of pixels.
  • one pixel Pix has, for example, a first reflective display pixel RPx1, a first light emitting display pixel EPx1, a second light emitting display pixel EPx2, and a third light emitting display pixel EPx3.
  • the first reflective display pixel RPx1 performs display using reflected light from external light.
  • the first light emitting display pixel EPx1 displays the primary color red as the first color.
  • the second light emitting display pixel EPx2 displays the primary color green as the second color.
  • the third light emitting display pixel EPx3 displays the primary color blue as the third color.
  • the first reflective display pixel RPx1 and the second light emitting display pixel EPx2 are arranged in the first direction Dx.
  • the first light emitting display pixel EPx1 and the third light emitting display pixel EPx3 are arranged in the first direction Dx.
  • the first reflective display pixel RPx1 and the second light emitting display pixel EPx2, and the first light emitting display pixel EPx1 and the third light emitting display pixel EPx3 are arranged in the second direction Dy.
  • the first color, the second color, and the third color are not limited to red, green, and blue, respectively, and any color such as a complementary color can be selected.
  • the light emitting display pixel EPx is referred to.
  • the first reflective display pixel RPx1 includes a metal electrode ME (reflective electrode) and a pixel electrode PE.
  • the first light emitting display pixel EPx1, the second light emitting display pixel EPx2 and the third light emitting display pixel EPx3 are a red light emitting element RLED, a green light emitting element GLED and a blue light emitting element GLED, respectively, and an anode electrode AD electrically connected to them.
  • Including and The pixel electrode PE is provided for each pixel Pix, and overlaps the first reflective display pixel RPx1 and the plurality of light emitting display pixels EPx in one pixel Pix. That is, the pixel electrode PE is provided over a region overlapping with the metal electrode ME, the plurality of light emitting elements LED, and the plurality of anode electrodes AD respectively connected to the plurality of light emitting elements LED.
  • FIG. 2 shows the video signal line SL, the anode power supply line IPL, and the pixel control signal line SSL among the various wirings of the pixel circuits PICA and PICR.
  • the video signal line SL and the anode power supply line IPL extend in the second direction Dy.
  • a plurality of the pair of video signal lines SL and the anode power supply lines IPL are arranged in the first direction Dx.
  • the pixel control signal line SSL extends in the first direction Dx and intersects the video signal line SL and the anode power supply line IPL in a plan view.
  • the contact holes CH are arranged in a lattice formed by the pair of video signal lines SL and the anode power supply lines IPL and the pixel control signal lines SSL, and are connected to the pixel electrodes PE and the anode electrodes AD, respectively.
  • the red light emitting element RLED emits red light.
  • the green light emitting element GLED emits green light.
  • the blue light emitting element BLED emits blue light.
  • the red light emitting element RLED and the blue light emitting element BLED are arranged in one of the second directions Dy, and the green light emitting element GLED is arranged in the other of the second direction Dy with respect to the arrangement of the plurality of contact holes CH. ..
  • the plurality of contact holes CH and the pixel control signal line SSL are provided between the red light emitting element RLED and the blue light emitting element BLED and the green light emitting element GLED.
  • the red light emitting element RLED, the green light emitting element GLED, and the blue light emitting element BLED are referred to as light emitting element LEDs when there is no need to distinguish them.
  • the display device DSP performs a reflective display in the first reflective display pixel RPx1, and emits different light for each light emitting element LED in the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3.
  • the image is displayed by that.
  • the light emitting element LED is an inorganic light emitting diode (LED) chip having a size of 3 ⁇ m or more and 100 ⁇ m or less in a plan view, and is called a micro LED.
  • a display device DSP including a micro LED in each pixel is also called a micro LED display device. The size of the micro LED does not limit the size of the light emitting element LED.
  • the plurality of light emitting element LEDs may emit different lights of four or more colors.
  • the arrangement of the first reflective display pixel RPx1 and the plurality of light emitting display pixels EPx is not limited to the configuration shown in FIG.
  • the red light emitting element RLED, the green light emitting element GLED, and the blue light emitting element BLED may be adjacent to each other in the first direction Dx.
  • the light emitting element LED is connected to the anode electrode AD. Further, the anode electrode AD extends from the inside of the light emitting element LED to the outside in a plan view and is provided around the light emitting element LED. The anode electrode AD improves the light extraction efficiency of the light emitting element LED by emitting the light emitted from the light emitting element LED to the third direction Dz, that is, to the display surface side. Further, the anode electrode AD also has a function as a reflective electrode that reflects external light in reflective display.
  • FIG. 3 is a circuit diagram showing an equivalent circuit of the reflective display pixel.
  • FIG. 3 shows a pixel circuit PICR provided in one first reflective display pixel RPx1, and the pixel circuit PICR is provided in each of the plurality of first reflective display pixels RPx1.
  • the pixel circuit PICR includes a drive transistor DTRL, a pixel control signal line SSL, and a video signal line SL.
  • the pixel control signal line SSL and the video signal line SL are provided to intersect with each other.
  • the drive transistor DTRL is provided near the intersection of the pixel control signal line SSL and the video signal line SL.
  • the pixel control signal line SSL is connected to the gate electrode of the drive transistor DTRL.
  • the video signal line SL is connected to one of the source electrode and the drain electrode of the drive transistor DTRL.
  • the other of the source electrode and the drain electrode of the drive transistor DTRL is connected to the liquid crystal layer LC and the storage capacitor Cs3.
  • the drive transistor DTRL operates based on the scanning signal supplied from the pixel control signal line SSL. When the drive transistor DTRL is turned on, the voltage supplied from the video signal line SL is supplied to the liquid crystal layer LC.
  • FIG. 4 is a circuit diagram showing an equivalent circuit of a light emitting display pixel.
  • FIG. 4 shows a pixel circuit PICA provided in one light emitting display pixel EPx, and the pixel circuit PICA is provided in each of the plurality of light emitting display pixels EPx.
  • the pixel circuit PICA includes a light emitting element LED, five transistors, and two capacitors.
  • the pixel circuit PICA includes a drive transistor DRT, an output transistor BCT, an initialization transistor IST, a pixel selection transistor SST, and a reset transistor RST.
  • the drive transistor DRT, the output transistor BCT, the initialization transistor IST, the pixel selection transistor SST, and the reset transistor RST are each composed of an n-type TFT (Thin Film Transistor). Further, the pixel circuit PICA includes a first capacitor Cs1 and a second capacitor Cs2.
  • the cathode of the light emitting element LED (cathode terminal ELED2 (see FIG. 6) is connected to the cathode power supply line CDL.
  • the anode of the light emitting element LED (anode terminal ELED1 (see FIG. 6)) is connected to the anode power supply line IPL via the drive transistor DRT and the output transistor BCT.
  • the anode power supply potential PVDD is supplied to the anode power supply line IPL.
  • the cathode power source potential PVSS is supplied to the cathode power source line CDL.
  • the anode power supply potential PVDD is higher than the cathode power supply potential PVSS.
  • the anode power supply line IPL supplies the anode power supply potential PVDD, which is a drive potential, to the light emitting display pixels EPx.
  • the light emitting element LED emits light when a forward current (driving current) is supplied by the potential difference (PVDD-PVSS) between the anode power supply potential PVDD and the cathode power supply potential PVSS. That is, the anode power supply potential PVDD has a potential difference with respect to the cathode power supply potential PVSS that causes the light emitting element LED to emit light.
  • the anode terminal ELED1 of the light emitting element LED is connected to the anode electrode AD, and the second capacitor Cs2 is connected between the anode electrode AD and the anode power supply line IPL as an equivalent circuit.
  • the source electrode of the drive transistor DRT is connected to the anode terminal ELED1 of the light emitting element LED via the anode electrode AD, and the drain electrode is connected to the source electrode of the output transistor BCT.
  • the gate electrode of the drive transistor DRT is connected to the first capacitor Cs1, the drain electrode of the pixel selection transistor SST, and the drain electrode of the initialization transistor IST.
  • the gate electrode of the output transistor BCT is connected to the output control signal line MSL.
  • the output control signal BG is supplied to the output control signal line MSL.
  • the drain electrode of the output transistor BCT is connected to the anode power supply line IPL.
  • the source electrode of the initialization transistor IST is connected to the initialization power supply line INL.
  • the initialization potential Vini is supplied to the initialization power supply line INL.
  • the gate electrode of the initialization transistor IST is connected to the initialization control signal line ISL.
  • An initialization control signal IG is supplied to the initialization control signal line ISL. That is, the initialization power supply line INL is connected to the gate electrode of the drive transistor DRT via the initialization transistor IST.
  • the source electrode of the pixel selection transistor SST is connected to the video signal line SL.
  • the video signal Vsig is supplied to the video signal line SL.
  • the pixel control signal line SSL is connected to the gate electrode of the pixel selection transistor SST.
  • the pixel control signal SG is supplied to the pixel control signal line SSL.
  • the source electrode of the reset transistor RST is connected to the reset power supply line RL.
  • the reset power supply potential Vrst is supplied to the reset power supply line RL.
  • the reset control signal line RSL is connected to the gate electrode of the reset transistor RST.
  • a reset control signal RG is supplied to the reset control signal line RSL.
  • the drain electrode of the reset transistor RST is connected to the anode terminal ELED1 of the light emitting element LED and the source electrode of the drive transistor DRT.
  • a first capacitor Cs1 is provided as an equivalent circuit between the drain electrode of the reset transistor RST and the gate electrode of the drive transistor DRT.
  • the pixel circuit PICA can suppress the fluctuation of the gate voltage due to the parasitic capacitance of the drive transistor DRT and the leakage current by the first capacitance Cs1 and the second capacitance Cs2.
  • a potential according to the video signal Vsig (or gradation signal) is supplied to the gate electrode of the drive transistor DRT. That is, the drive transistor DRT supplies a current according to the video signal Vsig to the light emitting element LED based on the anode power supply potential PVDD supplied via the output transistor BCT.
  • the anode power supply potential PVDD supplied to the anode power supply line IPL drops due to the drive transistor DRT and the output transistor BCT, a potential lower than the anode power supply potential PVDD is supplied to the anode terminal ELED1 of the light emitting element LED. To be done.
  • the anode power supply potential PVDD is supplied to one electrode of the second capacitor Cs2 through the anode power supply line IPL, and the other electrode of the second capacitor Cs2 is supplied with a potential lower than the anode power supply potential PVDD. That is, one electrode of the second capacitor Cs2 is supplied with a higher potential than the other electrode of the second capacitor Cs2.
  • One electrode of the second capacitor Cs2 is, for example, the anode power supply line IPL, and the other electrode of the second capacitor Cs2 is the anode electrode AD of the drive transistor DRT and the anode connection electrode connected thereto.
  • the peripheral circuit GC sequentially selects a plurality of pixel rows from the top row (for example, the pixel row located at the top in the display area DA in FIG. 1).
  • the drive IC writes the video signal Vsig (video writing potential) in the light emitting display pixel EPx of the selected pixel row to cause the light emitting element LED to emit light.
  • the drive IC supplies the video signal Vsig to the video signal line SL, the reset power supply potential Vrst to the reset power supply line RL, and the initialization potential Vini to the initialization power supply line INL for each horizontal scanning period.
  • the display device DSP repeats these operations for each frame of image.
  • the configurations of the pixel circuits PICR and PICA shown in FIGS. 3 and 4 described above can be appropriately changed.
  • the number of wirings and the number of transistors in one light emitting display pixel EPx may be different.
  • the pixel circuit PICA may be a current mirror circuit or the like.
  • FIG. 5 is a cross-sectional view taken along line V-V 'in FIG.
  • FIG. 5 shows a cross-sectional structure of the first reflective display pixel RPx1 and the second light emitting display pixel EPx2.
  • the description of the second light emitting display pixel EPx2 can be applied to the first light emitting display pixel EPx1 and the third light emitting display pixel EPx3.
  • the display device DSP includes an array substrate SUA, a counter substrate SUB, and a liquid crystal layer LC.
  • the array substrate SUA the light-shielding layer LS, the undercoat layer UC, the semiconductor layer PS, the gate insulating film GZL, the scanning wiring GL, the interlayer insulating film LZL, the anode power supply line IPL, and the pedestal BS are provided on one surface of the first substrate SU1.
  • the second capacitor nitride film LSN2, the pixel electrode PE, and the first alignment film AL1 are provided in this order.
  • one surface of the first substrate SU1 is a surface facing the second substrate SU2.
  • the second common electrode CE2 and the second alignment film AL2 are provided on one surface of the second substrate SU2.
  • one surface of the second substrate SU2 is a surface facing the first substrate SU1.
  • a circular polarization plate CP is provided on the other surface of the second substrate SU2.
  • the liquid crystal layer LC is provided between the array substrate SUA and the counter substrate SUB.
  • the direction from the first substrate SU1 to the second substrate SU2 in the direction perpendicular to the surface of the first substrate SU1 is referred to as “upper side”. Further, the direction from the second substrate SU2 to the first substrate SU1 will be referred to as “lower side”.
  • the light emitting element LED is provided on the first substrate SU1.
  • the first substrate SU1 is an insulating substrate, and for example, a glass substrate, a resin substrate, a resin film, or the like is used.
  • borosilicate glass having a thickness of 100 ⁇ m can be used.
  • the drive transistor DTR is provided on one surface side of the first substrate SU1.
  • FIG. 5 shows the drive transistor DTR among the plurality of transistors of the pixel circuit PICA.
  • the output transistor BCT, the initialization transistor IST, the pixel selection transistor SST, and the reset transistor RST are also provided on the one surface side of the first substrate SU1.
  • the laminated structure of the output transistor BCT, the initialization transistor IST, the pixel selection transistor SST, and the reset transistor RST is similar to that of the drive transistor DTR, and detailed description thereof will be omitted.
  • FIG. 5 also shows the drive transistor DTRL of the pixel circuit PICR. The description of the drive transistor DTR can be applied to the drive transistor DTRL of the first reflective display pixel RPx1.
  • the light shielding layer LS is a molybdenum tungsten (MoW) alloy film having a layer thickness of about 50 nm.
  • the light shielding layer LS is formed of a material having a light transmittance lower than that of the first substrate SU1, and is provided below the semiconductor layer PS.
  • the undercoat layer UC is a laminated body of a silicon nitride (SiN) layer and a silicon oxide (SiO 2 ) layer, and has a layer thickness of about 100 nm and 150 nm, respectively.
  • the semiconductor layer PS is, for example, polysilicon, and is obtained by polycrystallizing an amorphous silicon layer by a laser annealing method.
  • the layer thickness of the semiconductor layer PS is, for example, about 50 nm.
  • the gate insulating film GZL is a silicon oxide layer having a layer thickness of about 100 nm.
  • the scanning line GL is a molybdenum-tungsten alloy film with a layer thickness of about 300 nm.
  • the scanning line GL is a line in which the drain line of the pixel selection transistor SST and the drain line of the initialization transistor IST merge.
  • the gate insulating film GZL is provided between the semiconductor layer PS and the scan line GL in the normal direction of the first substrate SU1.
  • the interlayer insulating film LZL is a laminated body of a silicon oxide layer and a silicon nitride layer, and has a layer thickness of about 350 nm and 375 nm, respectively.
  • the anode power line IPL and the pedestal BS are provided in the same layer, and each is a three-layer laminated film of titanium (Ti), aluminum (Al), and titanium (Ti).
  • the layer thickness of each layer is about 100 nm, 400 nm, and 200 nm, respectively.
  • a portion of the anode power supply line IPL that overlaps with the semiconductor layer PS functions as the drain electrode DE of the drive transistor DTR.
  • a portion of the pedestal BS that overlaps the semiconductor layer PS functions as the source electrode SE of the drive transistor DTR.
  • the drain electrode DE and the source electrode SE are connected to the semiconductor layer PS via contact holes provided in the interlayer insulating film LZL and the gate insulating film GZL, respectively.
  • the first flattening layer LL1 and the second flattening layer LL2 are organic insulating films, and have layer thicknesses of about 2 ⁇ m and 10 ⁇ m, respectively.
  • the first planarization layer LL1 is provided on the interlayer insulating film LZL, covering the anode power supply line IPL and the pedestal BS.
  • a conductive material having a light-transmitting property is used for the first common electrode CE.
  • the first common electrode CE is, for example, indium tin oxide (ITO, Indium Tin Oxide) and has a layer thickness of about 50 nm.
  • the first capacitor nitride film LSN1 is a silicon nitride layer formed at a low temperature and has a layer thickness of about 120 nm.
  • the first capacitive nitride film LSN1 is provided between the first common electrode CE1 and the anode electrode AD in the normal line direction of the first substrate SU1.
  • the anode electrode AD includes a metal material and is, for example, a laminated body of ITO, silver (Ag), and ITO.
  • the layer thickness of each layer is about 50 nm, 200 nm, and 100 nm, respectively.
  • the anode electrode AD is provided on the first capacitive nitride film LSN1 and is connected to the pedestal BS via a contact hole CH4 provided in the first planarization layer LL1.
  • the connection layer CL is formed of silver paste and is provided on the anode electrode AD between the first substrate SU1 and the light emitting element LED.
  • the light emitting element LED is provided on the connection layer CL and electrically connected to the connection layer CL.
  • the drive transistor DTR is electrically connected to the light emitting element LED via the connection layer CL and the anode electrode AD.
  • the second planarization layer LL2 is provided on the first capacitive nitride film LSN1 so as to cover the anode electrode AD.
  • the second planarization layer LL2 covers at least the side surface of the light emitting element LED and the side surface of the connection layer CL.
  • the top of the light emitting element LED is exposed at the bottom of the contact hole CH3 provided in the second flattening layer LL2, and is connected to the cathode electrode CD.
  • the cathode electrode CD is ITO and has a layer thickness of about 100 nm.
  • the cathode electrode CD is electrically connected to the cathode terminals ELED2 of the plurality of light emitting elements LED.
  • the second capacitive nitride film LSN2 is provided on the second planarization layer LL2 so as to cover the cathode electrode CD.
  • the semiconductor layer PS is not limited to polysilicon, and may be amorphous silicon, a microcrystalline oxide semiconductor, an amorphous oxide semiconductor, low temperature polysilicon (LTPS: Low Temperature Polycrystalline Silicon), or gallium nitride (GaN). ..
  • oxide semiconductors include IGZO, zinc oxide (ZnO), and ITZO.
  • IGZO is indium gallium zinc oxide.
  • ITZO is indium tin zinc oxide.
  • the drive transistor DTR has a so-called top gate structure.
  • the drive transistor DTR may have a bottom gate structure in which a gate electrode is provided below the semiconductor layer PS, or may have a dual gate structure in which a gate electrode is provided both above and below the semiconductor layer PS.
  • FIG. 6 is an enlarged sectional view showing the light emitting device of FIG.
  • FIG. 6 shows the cross-sectional structure of the green light emitting element GLED of the second light emitting display pixel EPx2, the blue light emitting element BLED and the red light emitting element RLED also have the same laminated structure.
  • the light emitting element LED has a light emitting element substrate SULED, an n-type cladding layer NC, a light emitting layer EM, a p-type cladding layer PC, an anode terminal ELED1 and a cathode terminal ELED2.
  • An n-type clad layer NC, a light-emitting layer EM, a p-type clad layer PC, and a cathode terminal ELED2 are sequentially stacked on the light emitting element substrate SULED.
  • the anode terminal ELED1 is provided between the light emitting element substrate SULED and the connection layer CL.
  • the light emitting layer EM is indium gallium nitride (InGaN), and the composition ratio of indium and gallium is, for example, 0.2: 0.8.
  • the p-type clad layer PC and the n-type clad layer NC are gallium nitride (GaN).
  • the light emitting element substrate SULED is silicon carbide (SiC).
  • the light emitting layer EM is indium gallium nitride (InGaN), and the composition ratio of indium and gallium is 0.45: 0.55, for example.
  • the p-type clad layer PC and the n-type clad layer NC are gallium nitride (GaN).
  • the light emitting element substrate SULED is silicon carbide (SiC).
  • the light emitting layer EM is aluminum gallium indium (AlGaIn), and the composition ratio of aluminum, gallium and indium is, for example, 0.225: 0.275: 0.5. .
  • the p-type clad layer PC and the n-type clad layer NC are aluminum indium phosphide (AlInP).
  • the light emitting element substrate SULED is gallium arsenide (GaAs).
  • the anode terminal ELED1 and the cathode terminal ELED2 of the red light emitting element RLED, the green light emitting element GLED, and the blue light emitting element BLED are all aluminum.
  • the maximum emission wavelengths of the red light emitting element RLED, the green light emitting element GLED, and the blue light emitting element BLED are 645 nm, 530 nm, and 450 nm, respectively.
  • the manufacturing apparatus forms the n-type clad layer NC, the light emitting layer EM, the p-type clad layer PC and the cathode terminal ELED2 on the light emitting element substrate SULED. Then, the manufacturing apparatus thins the light emitting element substrate SULED to form the anode terminal ELED1 on the bottom surface of the light emitting element substrate SULED. Then, the manufacturing apparatus arranged the light emitting element LED cut into a square shape on the connection layer CL.
  • connection layer CL By using silver paste for the connection layer CL, when the light emitting element LED is arranged, the connection layer CL deforms in response to pressure and is in close contact with the light emitting element LED to conduct electricity.
  • the connection layer CL may be made of the same metal material as the anode terminal ELED1, for example, aluminum.
  • the anode terminal ELED1 and the connection layer CL are integrated by performing heat treatment after disposing the light emitting element LED on the connection layer CL. As a result, the connection layer CL is in good conduction with the light emitting element LED.
  • the light Le1 emitted from the upper surface of the light emitting element LED is transmitted to the outside through the second substrate SU2. Further, the light Le2 emitted from the side surface of the light emitting element LED and traveling downward is reflected by the anode electrode AD, and the traveling direction is directed upward. The light Le2 reflected by the anode electrode AD also passes through the second substrate SU2 and is emitted to the outside.
  • the anode electrode AD has a high reflectance and also functions as a reflection layer that reflects the light Le2 of the light emitting element LED. As a result, the display device DSP can improve the light extraction efficiency in the light emitting display by the light emitting display pixel EPx.
  • the configurations of the first flattening layer LL1, the first common electrode CE, and the first capacitive nitride film LSN1 are similar to those of the light emitting display pixel EPx.
  • the metal electrode ME is provided on the same layer as the anode electrode AD and on the first capacitive nitride film LSN1.
  • the metal electrode ME is made of the same material as the anode electrode AD and is a laminated body of ITO, silver (Ag) and ITO.
  • the layer thickness of each layer is about 50 nm, 200 nm, and 100 nm, respectively.
  • the metal electrode ME is connected to the pedestal BS of the drive transistor DTRL via a contact hole CH2 provided in the first planarization layer LL1.
  • the first reflective display pixel RPx1 is provided with a contact hole CH1 penetrating the second flattening layer LL2.
  • the connection electrode CNE is provided on the inner wall and bottom of the contact hole CH1 and is connected to the metal electrode ME at the bottom of the contact hole CH1.
  • the connection electrode CNE is provided on the same layer as the cathode electrode CD, that is, on the second flattening layer LL2, and is made of the same material as the cathode electrode CD.
  • the connection electrode CNE is a light-transmitting conductive material such as ITO.
  • the second capacitive nitride film LSN2 is a silicon nitride layer formed at a low temperature.
  • the second capacitive nitride film LSN2 is provided on the connection electrode CNE and the cathode electrode CD, and an opening is provided at a position overlapping the contact hole CH1.
  • the pixel electrode PE is ITO.
  • the pixel electrode PE is provided on the second capacitor nitride film LSN2 and is connected to the connection electrode CNE inside the contact hole CH1. With such a configuration, the pixel electrode PE is connected to the metal electrode ME via the contact hole CH1.
  • the pixel electrode PE extends to a region overlapping with the light emitting display pixel EPx, and is provided over a region overlapping with the metal electrode ME, the anode electrode AD, and the light emitting element LED.
  • the second substrate SU2 is an insulating substrate, and for example, a glass substrate, a resin substrate, a resin film or the like is used.
  • a glass substrate for example, borosilicate glass having a thickness of 100 ⁇ m can be used.
  • the second common electrode CE2 and the second alignment film AL2 are sequentially stacked on one surface of the second substrate SU2.
  • the second common electrode CE2 is, for example, ITO.
  • the second common electrode CE2 faces the pixel electrode PE with the liquid crystal layer LC interposed therebetween.
  • the liquid crystal layer LC is arranged between the first alignment film AL1 and the second alignment film AL2.
  • Both the first alignment film AL1 and the second alignment film AL2 are vertical alignment polyimide films.
  • the alignment state of the liquid crystal layer LC is changed to vertical alignment, and the display device DSP exhibits a dark display when no voltage is applied by combining with the circularly polarizing plate CP.
  • a liquid crystal material having a negative dielectric constant anisotropy for the liquid crystal layer LC a normally black type voltage-reflectance characteristic is obtained.
  • the liquid crystal molecules LCM of the liquid crystal layer LC are schematically represented by a cylinder.
  • FIG. 5 shows a state where the liquid crystal molecules LCM are vertically aligned. A vertical electric field is applied to the liquid crystal layer LC by the pixel electrode PE and the second common electrode CE2, which changes the alignment state of the liquid crystal molecules LCM.
  • the first alignment film AL1, the liquid crystal layer LC, the second alignment film AL2, and the second common electrode CE2 are provided up to a region overlapping with the light emitting display pixel EPx.
  • the liquid crystal layer LC, the common electrode (second common electrode CE2), and the second substrate SU2 are stacked in this order.
  • the reflective display by the first reflective display pixel RPx1 the light Lr2 incident from the outside is reflected by the metal electrode ME, passes through the second substrate SU2, and is emitted to the outside. Is emitted.
  • the light Lr1 incident from the outside to the light emitting display pixel EPx side is reflected by the anode electrode AD, passes through the second substrate SU2, and is emitted to the outside. That is, the anode electrode AD has a high reflectance and also serves as a reflection layer of the light Lr1 in the reflective display.
  • a partial region of the light emitting display pixel EPx where the anode electrode AD is provided also functions as a reflective region.
  • the display device DSP can improve the light extraction efficiency in the reflective display by the first reflective display pixel RPx1.
  • the display device DSP of this embodiment When the display device DSP of this embodiment is observed, for example, indoors under weak illumination, a clear color display can be observed by the emission display of the emission display pixel EPx. Further, when the display device DSP was observed, for example, in direct sunlight at the time of fine weather, the display could be confirmed by the reflective display of the first reflective display pixel RPx1. As described above, the display device DSP can achieve both high-luminance light-emission display and high-reflectance reflective display, and can perform excellent display in an environment from low illuminance to high illuminance.
  • FIG. 7 is a cross-sectional view showing a display device according to a first modification of the first embodiment.
  • the components described in the above-described embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the conductive connection member CC is provided in the second planarization layer LL2 instead of the contact hole CH1.
  • the conductive connecting member CC is a columnar member that is provided so as to penetrate in the thickness direction of the second flattening layer LL2.
  • the conductive connection member CC includes a conductive spacer CS and a connection layer CLL provided between the metal electrode ME (reflection electrode) and the pixel electrode PE.
  • the connection layer CLL is provided on the metal electrode ME, and can be formed by using a silver paste like the connection layer CL of the light emitting element LED.
  • the conductive spacer CS is provided on the connection layer CLL, and the top of the conductive spacer CS is exposed from the second planarization layer LL2.
  • the top of the conductive spacer CS is connected to the pixel electrode PE via the connection electrode CNE.
  • the conductive spacer CS is a columnar body having conductivity, and for example, a sapphire substrate polished to the same thickness as the light emitting element LED and cut into the same size as the light emitting element LED can be used.
  • the conductive spacer CS can be formed by plating the cut sapphire substrate.
  • the conductive spacers CS are arranged on the connection layer CLL in the same process as the light emitting element LED. With such a configuration, the metal electrode ME is electrically connected to the pixel electrode PE via the conductive connection member CC provided on the second flattening layer LL2.
  • the contact hole CH1 (see FIG. 5) is not provided.
  • the contact hole CH1 is formed with an inclined wall surface in order to suppress disconnection of the connection electrode CNE and the pixel electrode PE. Therefore, the diameter on the upper side of the contact hole CH1 is equal to or larger than the layer thickness of the second flattening layer LL2.
  • the size of the conductive connecting member CC in plan view can be made approximately the same as the light emitting element LED. Therefore, it is possible to improve the aperture ratio of the first reflective display pixel RPx1 as compared with the configuration having the contact hole CH1 shown in FIG.
  • FIG. 8 is a sectional view showing a display device according to a second modification of the first embodiment.
  • the light emitting device LED of the first embodiment and the first modification has a vertical structure in which the lower part is connected to the anode electrode AD and the upper part is connected to the cathode electrode CD, but the structure is not limited thereto.
  • the anode terminal ELED1 and the cathode terminal ELED2 are both provided on the upper surface side of the light emitting element LED.
  • the cathode terminal ELED2 is exposed from the second flattening layer LL2 and is electrically connected to the cathode electrode CD.
  • the anode terminal ELED1 is electrically connected to the connection layer CL via the anode connection layer ADCL.
  • a molybdenum-tungsten alloy can be used for the anode connection layer ADCL.
  • a laminated film of molybdenum-tungsten alloy and aluminum can be used as the anode connection layer ADCL.
  • the display device DSP is also applicable to a light emitting element LED having a horizontal structure in which the anode terminal ELED1 and the cathode terminal ELED2 are arranged on the same surface side.
  • FIG. 9 is a sectional view showing the display device according to the second embodiment.
  • a wall-shaped structure WL is provided between the first reflective display pixel RPx1 and each light emitting display pixel EPx.
  • the wall-shaped structure WL is provided on the first capacitive nitride film LSN1.
  • the wall-shaped structure WL faces the side surface of the light emitting element LED. More preferably, the wall-shaped structure WL is provided so as to surround the periphery of the light emitting element LED. The height of the wall-shaped structure WL is about the same as the height of the light emitting element LED or higher than the height of the light emitting element LED.
  • the second planarization layer LL2 covers the upper surface of the wall-shaped structure WL, and as the material of the wall-shaped structure WL, for example, a positive photoresist composed of novolac resin and naphthoquinone of a photosensitive material, or a negative composed of acrylic resin. A mold resist or the like can be used. Alternatively, the side surface of the negative resist may be covered with a positive photoresist to form the negative resist.
  • the anode electrode AD, the connection layer CL, the light emitting element LED, and the second flattening layer LL2 are provided in the recess formed by the wall-shaped structure WL and the first capacitive nitride film LSN1.
  • the anode electrode AD has a recessed structure along the wall-shaped structure WL and the first capacitive nitride film LSN1.
  • the light emitting element LED is arranged inside the concave structure.
  • the anode electrode AD includes an anode electrode bottom portion ADa and an anode electrode inclined portion ADb.
  • the anode electrode bottom portion ADa is provided on the first capacitive nitride film LSN1, and is provided over a region overlapping the light emitting element LED and a region not overlapping the light emitting element LED.
  • the light emitting element LED is connected to the anode electrode bottom portion ADa.
  • the anode electrode inclined portion ADb is connected to the end of the anode electrode bottom portion ADa and is provided so as to be inclined along the inner wall surface of the wall-shaped structure WL.
  • the anode electrode inclined portion ADb faces the side surface of the light emitting element LED with the second flattening layer LL2 interposed therebetween.
  • a plurality of convex structures PT are provided on the first capacitive nitride film LSN1.
  • the plurality of convex structures PT can be formed by patterning an organic resist on the first capacitive nitride film LSN1. After that, the organic resist is melted and solidified by performing heat treatment, and the plurality of convex structures PT have a semicircular cross-sectional structure having a curved surface.
  • the height of the convex structure PT is, for example, about 0.5 ⁇ m, and the diameter is about 3 ⁇ m.
  • a plurality of convex structures PT are formed in the light emitting display pixel EPx.
  • the anode electrode bottom portion ADa is provided on the first capacitive nitride film LSN1 and the plurality of convex structures PT. On the anode electrode bottom portion ADa, a plurality of convex portions are formed following the shape of the convex structure PT.
  • the light Le3 emitted from the side surface of the light emitting element LED travels toward the anode electrode inclined portion ADb, is reflected by the anode electrode inclined portion ADb, and is second.
  • the light is emitted to the substrate SU2 side.
  • the light Le2 emitted from the side surface of the light emitting element LED to the first substrate SU1 side is reflected by the convex portion of the anode electrode bottom portion ADa and is emitted to the second substrate SU2 side.
  • the light Le2 is emitted at an angle closer to the normal direction of the first substrate SU1 as compared with the case where the light Le2 is reflected at a place where no convex portion is provided. Since the incident angle of the light Le2 is locally different in the convex portion of the anode electrode bottom portion ADa, the light Le2 reflected by the convex portion is scattered light having different incident angles and outgoing angles with respect to the plane parallel to the first substrate SU1. Becomes
  • the wall-shaped structure WL faces the contact hole CH1.
  • the wall-shaped structure WL is provided so as to surround the periphery of the contact hole CH1.
  • the height of the wall-shaped structure WL is lower than the depth of the contact hole CH1.
  • the metal electrode ME, the connection electrode CNE, and the pixel electrode PE are provided in the recess formed by the wall-shaped structure WL and the first capacitor nitride film LSN1.
  • the metal electrode ME has a recessed structure along the wall-shaped structure WL and the first capacitive nitride film LSN1.
  • the metal electrode ME includes a metal electrode bottom portion MEa and a metal electrode inclined portion MEb.
  • the metal electrode bottom portion MEa is provided on the first capacitive nitride film LSN1 and is provided over a region overlapping the bottom portion of the contact hole CH1 and a region not overlapping the bottom portion of the contact hole CH1.
  • the metal electrode inclined portion MEb is connected to the end of the metal electrode bottom portion MEa and is provided so as to be inclined along the inner wall surface of the wall-shaped structure WL.
  • a plurality of convex structures PT are provided on the first capacitive nitride film LSN1.
  • the metal electrode bottom portion MEa is provided on the plurality of convex structures PT.
  • a plurality of convex portions are formed following the shape of the convex structure PT.
  • the light Lr2 incident from the outside is reflected by the metal electrode bottom portion MEa and is emitted to the second substrate SU2 side. Since the metal electrode bottom portion MEa is also provided with the convex portion, the light Lr2 becomes scattered light like the light Le2 described above.
  • the light Lr1 incident from the outside on the light emitting display pixel EPx side is reflected by the anode electrode AD and is emitted to the second substrate SU2 side as scattered light.
  • the anode electrode inclined portion ADb and the metal electrode inclined portion MEb function as an inclined reflector, and the anode electrode bottom portion ADa and the metal electrode bottom portion MEa are formed. Functions as a diffuse reflector.
  • the reflective display even when the light Lr1 and Lr2 from the outside enter from a specific narrow angle range, the reflected light on the anode electrode bottom part ADa and the metal electrode bottom part MEa has a wide angle range. It is scattered and emitted.
  • the light extraction efficiency can be improved in the light emitting display of the light emitting display pixel EPx, and the reflection characteristic can be improved in the reflective display of the reflective display pixel RPx.
  • a conductive connecting member CC may be provided instead of the contact hole CH1, or a light emitting element LED having a horizontal structure may be provided.
  • FIG. 10 is a sectional view showing the display device according to the third embodiment.
  • the light emitting display pixel EPx further includes a light extraction layer LPL.
  • FIG. 10 shows the second light emitting display pixel EPx2
  • the light extraction layer LPL may be provided in the first light emitting display pixel EPx1 and the third light emitting display pixel EPx3.
  • the light extraction layer LPL is a translucent inorganic insulating layer and is provided so as to cover at least a part of the light emitting element LED and the anode electrode AD.
  • the light extraction layer LPL is, for example, a titanium oxide layer having a layer thickness of about 300 nm.
  • the light extraction layer LPL can be formed by a CVD method after disposing the light emitting element LED on the connection layer CL.
  • the light extraction layer LPL surrounds the side surface of the light emitting element LED, and is also provided around the light emitting element LED.
  • the light extraction layer LPL includes a side part LPLa, an inclined part LPLb, an extending part LPLc, and a top part LPLd.
  • the side portion LPLa is provided so as to surround the side surface of the light emitting element LED.
  • the inclined portion LPLb is connected to the lower end of the side portion LPLa and is provided between the side portion LPLa and the extending portion LPLc.
  • the inclined portion LPLb is provided along the side surface of the connection layer CL and is inclined with respect to the side portion LPLa.
  • the extension part LPLc is provided on the anode electrode bottom part ADa and is connected to the lower end of the inclined part LPLb. That is, the extending portion LPLc is provided on the lower end side of the side portion LPLa, and extends in the direction away from the side surface of the light emitting element LED, that is, away from the side portion LPLa in the plan view. In the normal direction of the first substrate SU1, the anode electrode AD is provided between the first capacitive nitride film LSN1 and the extension LPLc.
  • the top part LPLd is connected to the upper end of the side part LPLa and is provided on the upper surface of the light emitting element LED. In other words, the top part LPLd is provided between the upper surface of the light emitting element LED and the cathode electrode CD.
  • the second planarization layer LL2 is provided so as to cover the side surface, the side portion LPLa, the inclined portion LPLb, and the extension portion LPLc of the light emitting element LED.
  • the cathode electrode CD is provided on the second planarization layer LL2 and the top part LPLd, and is electrically connected to the cathode terminal ELED2 of the light emitting element LED.
  • FIG. 11 is an explanatory diagram for explaining how light from the light emitting element propagates through the light extraction layer.
  • Ease of incidence of light La from the light emitting element LED to a layer adjacent thereto is represented by a total reflection angle ⁇ r.
  • the total reflection angle ⁇ r is the incident angle at which the light La generated by the light emitting element LED is totally reflected at the interface with the adjacent layer.
  • the incident angle ⁇ a of the light La on the side portion LPLa is an angle formed by the normal direction of the side surface of the light emitting element LED and the traveling direction of the light La.
  • the incident angle ⁇ a is equal to or less than the total reflection angle ⁇ r, since a transmission component exists, the larger the total reflection angle ⁇ r, the easier the light La is to enter the adjacent layer.
  • n AJ > n LED When the relationship of n AJ > n LED is satisfied, the light La can be incident on the adjacent layers at all incident angles ⁇ a. In the case of n AJ ⁇ n LED, the larger n AJ is, the larger the total reflection angle ⁇ r is, and thus the component of the light La that is incident on the adjacent layer is larger.
  • the side portion LPLa of the light extraction layer LPL is provided between the side surface of the light emitting element LED and the second flattening layer LL2.
  • the refractive index of the second planarization layer LL2 is, for example, 1.5.
  • the difference between the refractive index of the light extraction layer LPL and the refractive index n LED of the light emitting element LED is smaller than the difference between the refractive index of the second flattening layer LL2 and the refractive index of the light emitting element LED. Therefore, in the present embodiment, the total reflection angle ⁇ r at the interface between the light emitting element LED and the side portion LPLa becomes larger than that in the case where the second planarizing layer LL2 is provided in contact with the side surface of the light emitting element LED. Light La from the light emitting element LED is likely to enter the side portion LPLa.
  • the refractive index n LED of the light emitting element LED is the same as the refractive index n AJ of the light extraction layer LPL, but may be different.
  • the inclined portion LPLb is provided between the side portion LPLa and the extending portion LPLc, the side portion LPLa and the inclined portion LPLb are formed as compared with the case where the side portion LPLa and the extending portion LPLc are directly connected.
  • the angle and the angle formed between the extending portion LPLc and the inclined portion LPLb become gentle.
  • the light Lb incident on the side portion LPLa is satisfactorily guided to the extension portion LPLc via the inclined portion LPLb.
  • the second flattening layer LL2 is provided on the extension part LPLc, and the anode electrode AD is provided on the bottom part.
  • the light Lb propagates in the direction away from the light emitting element LED while being reflected inside the extension LPLc.
  • the incident angle of the light Lb becomes smaller than the total reflection angle of the interface between the extending portion LPLc and the second flattening layer LL2, the light Lc is emitted upward.
  • the light extraction layer LPL by providing the light extraction layer LPL, the light La from the light emitting element LED can be emitted from the entire surface of the light extraction layer LPL.
  • the light emitting display pixel EPx can improve the light extraction efficiency in the light emitting display.
  • the light extraction layer LPL can propagate the light Lb, the light extraction layer LPL is provided for each of the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3 (see FIG. 2). By partitioning, the color mixture of the light emitting element LED can be suppressed.
  • the light extraction layer LPL is not limited to the configuration shown in FIG. 10, and may be changed as appropriate.
  • the light extraction layer LPL may omit the top LPLd.
  • the upper surface of the light emitting element LED is in direct contact with the cathode electrode CD.
  • the cathode terminal ELED2 (see FIG. 6) of the light emitting element LED is in direct contact with the cathode electrode CD.
  • the connection resistance between the cathode terminal ELED2 and the cathode electrode CD can be suppressed, so that the drive voltage (anode power supply potential PVDD) can be reduced.
  • the light extraction layer LPL is provided in the entire region overlapping with the anode electrode AD.
  • the present invention is not limited to this, and the light extraction layer LPL may have a larger area than the anode electrode AD or a smaller area than the anode electrode AD in plan view.
  • the titanium oxide layer is exemplified as the material of the light extraction layer LPL, but the material is not limited to this.
  • a material of the light extraction layer LPL a material having a high refractive index and a light-transmitting property is preferable, and for example, tantalum oxide, niobium oxide, barium titanium oxide, or the like can be applied.
  • the thickness of the light extraction layer LPL is merely an example and can be changed as appropriate.
  • an ultraviolet absorbing layer may be provided between the second substrate SU2 and the circularly polarizing plate CP.
  • titanium oxide absorbs ultraviolet rays, and thus the second flattening layer LL2 may be photodecomposed. By providing the ultraviolet absorbing layer, the incidence of ultraviolet rays on the second flattening layer LL2 is reduced, and the photolysis reaction can be suppressed.
  • FIG. 12 is an explanatory diagram for explaining light propagation in the display device according to the third modified example of the third embodiment.
  • a plurality of minute recesses COC are provided on the surface of the light extraction layer LPL.
  • the concave portion COC is provided in the side portion LPLa and the extending portion LPLc.
  • the concave portion COC may also be provided in the inclined portion LPLb.
  • the recess COC can be formed by shaving the surface of the light extraction layer LPL, and can be formed by, for example, a method of spraying an abrasive such as sandblast on the light extraction layer LPL.
  • the light Lb propagating inside the extended portion LPLc is reflected by a region of the interface between the extended portion LPLc and the second flattening layer LL2 where the concave portion COC is not provided.
  • the interface is locally inclined, and the incident angle of the light Lb is different from that in the region where the concave portion COC is not provided. Therefore, the light Lc is efficiently emitted to the second flattening layer LL2 side.
  • FIG. 13 is an explanatory diagram for explaining another example of light propagation in the display device according to the fourth modification of the third embodiment.
  • a plurality of minute convex portions COV are provided on the surface of the light extraction layer LPL.
  • the convex portion COV is provided on the side portion LPLa and the extension portion LPLc.
  • the convex portion COV may also be provided in the inclined portion LPLb.
  • the convex portion COV can be formed by adhering the same material as the light extraction layer LPL, for example, fine particles of titanium oxide.
  • titanium oxide fine particles are mixed in the organic material forming the second flattening layer LL2 to form the second flattening layer LL2, and some of the fine particles in the second flattening layer LL2 are The convex portion COV is formed by adhering to the surface of the light extraction layer LPL.
  • the interface is locally tilted in the portion where the convex portion COV is provided, and the incident angle of the light Lb is different from the region where the convex portion COV is not provided. Therefore, the light Lc is efficiently emitted to the second flattening layer LL2 side.
  • the configuration is not limited to the configurations shown in FIGS. 12 and 13, and a plurality of minute uneven structures may be formed on the surface of the light extraction layer LPL.
  • the concavo-convex structure may be formed by roughening the surface of the light extraction layer LPL by a reverse sputtering method or the like.
  • the configurations of the second embodiment, the first modified example, and the second modified example described above can also be applied to the third embodiment, the third modified example, and the fourth modified example.
  • the wall-shaped structure WL may be provided, and the anode electrode AD and the light extraction layer LPL may be provided along the wall surface of the wall-shaped structure WL.
  • a plurality of convex structures may be provided on the first capacitive nitride film LSN1 to form convex parts on the anode electrode AD and the light extraction layer LPL that follow the convex structures.
  • FIG. 14 is a sectional view showing the display device according to the fourth embodiment.
  • the anode electrode AD has a concave structure as in the second embodiment described above.
  • the phosphor layer FL is provided inside the concave structure of the anode electrode AD.
  • the phosphor layer FL is provided on the anode electrode AD and covers at least the side surface of the light emitting element LED.
  • a color filter CF is provided on the surface of the second substrate SU2 facing the first substrate SU1.
  • An overcoat layer OC is provided to cover the color filter CF, and the second common electrode CE2 and the second alignment film AL2 are provided on the overcoat layer OC.
  • the color filter CF faces the phosphor layer FL via the insulating layer (third planarization layer LL3), the pixel electrode PE, the liquid crystal layer LC, and the common electrode (second common electrode CE2).
  • Different types of phosphor layers FL and color filters CF are used for each of the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3.
  • a red phosphor layer and a red color filter are provided in the first light emitting display pixel EPx1.
  • a green phosphor layer and a green color filter are provided in the second light emitting display pixel EPx2.
  • a blue phosphor layer and a blue color filter are provided in the third light emitting display pixel EPx3.
  • a blue light emitting element BLED is used for each of the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3. Since the same light emitting element LED is used in each light emitting display pixel EPx, the step of arranging the light emitting element LEDs can be simplified in the manufacturing process of the display device DSP.
  • the luminous efficiency of the light emitting element LED varies depending on the color of light emitted. In the present embodiment, the blue light emitting element BLED having relatively excellent light emitting efficiency is used for each light emitting display pixel EPx.
  • the red phosphor layer, the green phosphor layer, and the blue phosphor layer are formed by patterning a negative resist in which red-emitting, green-emitting, and blue-emitting quantum dots are mixed.
  • the quantum dot is composed of a cadmium selenium (CdSe) core structure and a zinc sulfide (ZnS) shell structure surrounding the core structure.
  • the particle diameters of the red, green, and blue light emitting quantum dots are adjusted so that the fluorescence maximum wavelengths are shown at wavelengths of 630 nm, 530 nm, and 460 nm, respectively.
  • the absorption spectrum of the quantum dots is continuous and exhibits sufficient absorption even at the maximum emission wavelength of the blue light emitting device BLED.
  • the surface of the shell structure has an organic molecular chain for improving the compatibility with the negative resist.
  • non-cadmium-based quantum dots can also be applied.
  • non-cadmium-based quantum dots include those having a core structure of indium phosphide (InP) and a shell structure of zinc sulfide (ZnS).
  • the color filter CF is formed by patterning a negative resist in which a red pigment, a green pigment and a blue pigment are mixed.
  • the layer thickness of the color filter CF is, for example, about 2 ⁇ m.
  • the color filter CF can absorb the light of the blue wavelength component emitted from the blue light emitting element BLED and improve the color purity of the light emitted to the second substrate SU2 side. Further, the color filter CF can suppress the phosphor layer FL from emitting light by external light.
  • the color filter CF may be provided on the first substrate SU1 side.
  • the color filter CF may be stacked on the phosphor layer FL, for example.
  • the lights Le2 and Le3 emitted from the blue light emitting element BLED are respectively incident on and reflected by the anode electrode AD, and the traveling direction is directed to the upper side.
  • the convex portion having the convex structure PT is formed as in the second embodiment. Therefore, the light Le2 is scattered by the bottom portion ADa of the anode electrode.
  • the lights Le2 and Le3 are wavelength-converted by passing through the phosphor layer FL through such a path and undergoing an absorption and emission process by the phosphor layer FL.
  • the phosphor layer FL emits light isotropically.
  • the phosphor layer FL is surrounded by the anode electrode bottom portion ADa, the anode electrode inclined portion ADb, and the blue light emitting element BLED. Therefore, the traveling direction of the fluorescence emitted isotropically is reflected by the anode electrode AD and the blue light emitting element BLED, and is converted to a direction close to the normal direction of the first substrate SU1. Then, the fluorescence is emitted to the second substrate SU2 side. As a result, the display device DSP can improve the light extraction efficiency.
  • the lights Lf2 and Lf3 emitted from the phosphor layer FL pass through the color filter CF and are emitted to the outside on the second substrate SU2 side. Further, the color filter CF absorbs the components of the lights Le2 and Le3 emitted from the blue light emitting element BLED that have not been wavelength-converted. This improves the color purity of the light that has passed through the color filter CF. Further, the light Le1 emitted from the upper surface of the blue light emitting element BLED does not pass through the phosphor layer FL and is incident on and absorbed by the color filter CF. Further, the color filter CF absorbs a component that excites the phosphor layer FL in the light incident from the outside. This can prevent the phosphor layer FL from emitting light that is not related to the image signal.
  • the phosphor layer FL is a red phosphor layer, and blue light is incident from the blue light emitting element BLED to emit red light.
  • the color filter CF is a red color filter and absorbs light components other than red.
  • the phosphor layer FL is a green phosphor layer, and blue light is incident from the blue light emitting element BLED to emit green light.
  • the color filter CF is a green color filter and absorbs light components other than green.
  • the phosphor layer FL is a blue phosphor layer, and blue light is incident from the blue light emitting element BLED and emits blue light.
  • the color filter CF is a blue color filter and absorbs light components other than blue.
  • a light scattering layer may be provided instead of the phosphor layer FL.
  • FIG. 15 is a sectional view showing a display device according to a fifth modified example of the fourth embodiment.
  • the first phosphor layer FL1 and the second phosphor layer FL2 are provided inside the concave structure of the anode electrode AD.
  • the first phosphor layer FL1 covers the side surface of the blue light emitting element BLED and is provided in a region surrounded by the anode electrode bottom portion ADa, the anode electrode inclined portion ADb, and the blue light emitting element BLED.
  • the second phosphor layer FL2 is provided so as to cover the upper surface of the blue light emitting element BLED and the first phosphor layer FL1.
  • the second phosphor layer FL2 covers the cathode electrode CD and is provided in a region surrounded by the first phosphor layer FL1, the anode electrode inclined portion ADb, and the second capacitor nitride film LSN2.
  • the light Le1 emitted from the upper surface of the blue light emitting element BLED enters the second phosphor layer FL2 and undergoes wavelength conversion.
  • the light Lf1 emitted from the second phosphor layer FL2 passes through the color filter CF and is emitted to the outside on the second substrate SU2 side.
  • the display device DSP can also extract the light Le1 to the outside, and can improve the light extraction efficiency.
  • the lights Le2 and Le3 emitted from the blue light emitting element BLED pass through the first phosphor layer FL1 and the second phosphor layer FL2.
  • the total thickness of the first phosphor layer FL1 and the second phosphor layer FL2 becomes thicker than in the case where one phosphor layer FL is provided. Thereby, the wavelength conversion efficiency of the lights Le2 and Le3 can also be improved.
  • the display device DSP can improve the brightness of the display mainly in low illuminance.
  • FIG. 16 is a cross-sectional view showing a display device according to a sixth modified example of the fourth embodiment.
  • the reflective layer RF is provided in the light emitting display pixel EPx.
  • the reflective layer RF is provided between the light emitting element LED and the liquid crystal layer LC and covers the upper surface of the light emitting element LED.
  • the reflection layer RF is provided between the phosphor layer FL and the third flattening layer LL3, and the pixel electrode PE.
  • a metal material such as aluminum or silver is used.
  • the area of the reflection layer RF in plan view is smaller than the areas of the phosphor layer FL and the anode electrode AD in plan view.
  • An end of the reflection layer RF is separated from the anode electrode AD, and an opening is provided between the end of the reflection layer RF and the upper end of the anode electrode AD.
  • the light Le1 emitted upward from the light emitting element LED is reflected by the reflective layer RF and enters the phosphor layer FL. Then, the lights Lf1, Lf2, and Lf3 emitted from the phosphor layer FL are emitted to the second substrate SU2 side through the openings.
  • the path of the light Le1 emitted toward the upper side through the inside of the phosphor layer FL becomes longer than in the fourth embodiment and the fifth modified example described above. Therefore, the phosphor layer FL can effectively absorb the light of the light emitting element LED.
  • the color filter CF is provided so as to cover the opening between the end of the reflective layer RF and the upper end of the anode electrode AD in plan view.
  • the color filter CF has an opening provided in a region overlapping the reflection layer RF in plan view. Therefore, in the reflective display by the first reflective display pixel RPx1, a part of the light Lr3 incident from the outside is reflected by the reflective layer RF through the opening of the color filter CF and is emitted to the outside on the second substrate SU2 side.
  • the reflective layer RF functions as a reflective plate in reflective display. The light Lr3 is reflected by the reflection layer RF without passing through the color filter CF and the phosphor layer FL. Therefore, in the sixth modification, the reflectance of light in the reflective display is improved as compared with the case where the color filter CF is passed or the case where the reflective layer RF is not provided.
  • FIG. 17 is a sectional view showing a display device according to a seventh modified example of the fourth embodiment.
  • the convex structure PR is provided on the third flattening layer LL3.
  • the plurality of convex structures PR can be formed by patterning an organic resist on the third planarization layer LL3, similarly to the convex structures PT of the second embodiment (see FIG. 9).
  • the reflection layer RF, the pixel electrode PE, and the first alignment film AL1 are provided on the third planarization layer LL3 and the plurality of convex structures PR. Thereby, a plurality of convex portions are formed on the surface of the reflective layer RF, following the shape of the convex structure PR.
  • the light Le1 emitted from the light emitting element LED is diffusely reflected by the convex portion formed on the reflection layer RF.
  • the component of light returning to the light emitting element LED is suppressed, and the component of light incident on the phosphor layer FL increases. Therefore, in the seventh modified example, the luminous efficiency of the phosphor layer FL in the light emitting display can be improved.
  • the light Lr3 incident from the outside passes through the opening of the color filter CF and is diffusely reflected by the reflective layer RF.
  • the reflected light is scattered and emitted in a wide angle range. Therefore, it is possible to suppress a change in brightness associated with a change in the angle of the display device DSP, and it is possible to obtain a reflective display that is easier to observe.
  • the configurations of the second embodiment, the third embodiment, and the first modified example to the fourth modified example can be applied to the fourth embodiment and the fifth modified example to the seventh modified example. Further, the configuration of the fifth modified example and the configuration of the sixth modified example or the seventh modified example may be combined. In the fourth embodiment and the fifth to seventh modifications, the convex structure PT may not be provided below the anode electrode AD.
  • FIG. 18 is a plan view showing a plurality of pixels of the display device according to the fifth embodiment.
  • 19 is a sectional view taken along line XIX-XIX ′ in FIG.
  • one pixel Pix includes, in addition to the first reflective display pixel RPx1, the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3, The second reflective display pixel RPx2 and the third reflective display pixel RPx3 are included. That is, the pixel Pix has a plurality of light emitting display pixels EPx and a plurality of reflective display pixels RPx, and includes, for example, six pixels. However, the pixel Pix may have seven or more pixels.
  • the first reflective display pixel RPx1, the second reflective display pixel RPx2, and the third reflective display pixel RPx3 are arranged in the first direction Dx.
  • the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3 are also arranged in the first direction Dx.
  • the first reflective display pixel RPx1 and the first light emitting display pixel EPx1 are arranged in the second direction Dy.
  • the second reflective display pixel RPx2 and the second light emitting display pixel EPx2 are arranged in the second direction Dy.
  • the third reflective display pixel RPx3 and the third light emitting display pixel EPx3 are arranged in the second direction Dy.
  • a metal electrode ME and a pixel electrode PE are provided on the first reflective display pixel RPx1, the second reflective display pixel RPx2, and the third reflective display pixel RPx3, respectively.
  • a red color filter RCF, a green color filter GCF, and a blue color filter BCF are provided in the first reflective display pixel RPx1, the second reflective display pixel RPx2, and the third reflective display pixel RPx3, respectively.
  • the first reflective display pixel RPx1, the second reflective display pixel RPx2, and the third reflective display pixel RPx3 display red, green, and blue light, respectively.
  • the display device DSP of the fifth embodiment can realize color display in reflective display.
  • a red light emitting element RLED, a green light emitting element GLED, and a blue light emitting element BLED are provided in the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3, respectively.
  • An anode electrode AD is connected to each of the red light emitting element RLED, the green light emitting element GLED, and the blue light emitting element BLED.
  • the pixel electrode PE of the first reflective display pixel RPx1 is continuously provided so as to overlap with the metal electrode ME of the first reflective display pixel RPx1, the red light emitting element RLED of the first light emitting display pixel EPx1, and the anode electrode AD connected thereto. Be done.
  • the pixel electrode PE of the second reflective display pixel RPx2 continuously overlaps with the metal electrode ME of the second reflective display pixel RPx2, the green light emitting element GLED of the second light emitting display pixel EPx2, and the anode electrode AD connected thereto. Will be provided.
  • the pixel electrode PE of the third reflective display pixel RPx3 is continuously provided so as to overlap with the metal electrode ME of the third reflective display pixel RPx3, the blue light emitting element BLED of the third light emitting display pixel EPx3, and the anode electrode AD connected thereto. Be done.
  • the anode electrodes AD of the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3 are respectively the first reflective display pixel RPx1, the second reflective display pixel RPx2, and the third reflective display pixel. It functions as a reflection electrode of RPx3. This makes it possible to suppress a decrease in reflectance even when color display is performed in reflective display.
  • FIG. 19 shows a cross-sectional structure of the first reflective display pixel RPx1 and the first light emitting display pixel EPx1.
  • the second reflective display pixel RPx2 and the third reflective display pixel RPx3 have the same configuration as the first reflective display pixel RPx1.
  • the second light emitting display pixel EPx2 and the third light emitting display pixel EPx3 have the same configuration as the first light emitting display pixel EPx1.
  • the first reflective display pixel RPx1 and the first light emitting display pixel EPx1 have the same configuration as the second embodiment shown in FIG.
  • the present invention is not limited to this, and the configurations of the first to fifth embodiments and each modification can be applied.
  • the color filter CF (red color filter RCF) is provided on the surface of the second substrate SU2 that faces the first substrate SU1.
  • An overcoat layer OC, a second common electrode CE2, and a second alignment film AL2 are sequentially stacked on the color filter CF.
  • the color filter CF only covers a part of the first reflective display pixel RPx1 and is not provided on the entire surface of the first reflective display pixel RPx1. That is, the area of the color filter CF is smaller than the area of the metal electrode ME overlapping the color filter CF.
  • the display device DSP can secure the reflectance in the reflective display of the reflective display pixel RPx.
  • the color display of the portion where the color filter CF is provided and the white display of the high reflectance of the portion where the color filter CF is not provided are additively mixed to realize a color display of the high reflectance.
  • the display device DSP can mainly improve the color purity at high illuminance.
  • FIG. 18 is a schematic plan view, and the shapes of the metal electrode ME, the pixel electrode PE, the color filter CF, the anode electrode AD, and the light emitting element LED in plan view are not limited to a rectangular shape, and are circular. Other shapes such as a shape and a polygonal shape may be used. Further, the configurations of the above-described first to fourth embodiments and the first to seventh modifications can be applied to the fifth embodiment as well.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)

Abstract

This display device has: a first substrate (SU1); a second substrate (SU2) opposing the first substrate (SU1); an inorganic light-emitting element (LED) that is provided between the first substrate (SU1) and the second substrate (SU2); a first transistor (DTR) that is electrically connected to the inorganic light-emitting element (LED) via an anode electrode (AD); an insulating layer (LSN2) that covers the inorganic light-emitting element (LED); a liquid crystal layer (LC) that is provided between the first substrate (SU1) and the second substrate (SU2); and a pixel electrode (PE) and a common electrode (CE2) opposing each other with the liquid crystal layer (LC) therebetween, wherein the first transistor (DTR), the anode electrode (AD), the inorganic light-emitting element (LED), the insulating layer (LSN2), the pixel electrode (PE), the liquid crystal layer (LC), the common electrode (CE2), and the second substrate (SU2) are laminated in this order on one surface of the first substrate (SU1).

Description

表示装置Display device
 本発明は、表示装置に関する。 The present invention relates to a display device.
 透過型表示装置と反射型表示装置との特徴を併せ持つ表示装置として、例えば、1個の画素内に透過表示領域と反射表示領域とを有する半透過型液晶表示装置がある。半透過型液晶表示装置は、暗い環境下ではバックライト光による透過光を用いて表示し、明るい環境下では外光による反射光を用いて表示する。特許文献1に記載されているハイブリッド型の画像表示装置では、バックライトに換えて、有機発光ダイオード(OLED:Organic Light Emitting Diode)などの自発光素子からなる発光領域を形成している。 As a display device having the characteristics of both a transmissive display device and a reflective display device, for example, there is a transflective liquid crystal display device having a transmissive display region and a reflective display region in one pixel. The transflective liquid crystal display device displays by using transmitted light by backlight light in a dark environment and displays by using reflected light by external light in a bright environment. In the hybrid image display device described in Patent Document 1, instead of the backlight, a light emitting region including a self light emitting element such as an organic light emitting diode (OLED: Organic Light Emitting Diode) is formed.
特開2002-196702号公報JP-A-2002-196702
 半透過型液晶表示装置において、一画素内を透過領域と反射領域とに面積分割する必要がある。このため、透過表示領域を確保することと、反射表示性能を保つこととはトレードオフの関係にある。特許文献1では、自発光素子を用いているので、面積分割による反射表示性能の低下を抑制できる。しかし、特許文献1では、液晶表示装置の製造プロセスの加熱により有機発光ダイオードが劣化する可能性がある。また、特許文献1には、光取出し効率を向上させる構成について記載されていない。 In a semi-transmissive liquid crystal display device, it is necessary to divide one pixel into a transmissive area and a reflective area. Therefore, there is a trade-off relationship between securing the transmissive display area and maintaining the reflective display performance. In Patent Document 1, since the self-luminous element is used, it is possible to suppress deterioration of reflective display performance due to area division. However, in Patent Document 1, the organic light emitting diode may deteriorate due to heating in the manufacturing process of the liquid crystal display device. Further, Patent Document 1 does not describe a configuration for improving the light extraction efficiency.
 本発明は、反射光により表示を行う反射表示性能と、発光素子の発光による発光表示性能とを両立することができる表示装置を提供することを目的とする。 An object of the present invention is to provide a display device that can achieve both the reflective display performance of displaying with reflected light and the light emitting display performance of emitting light from a light emitting element.
 本発明の一態様の表示装置は、第1基板と、前記第1基板と対向する第2基板と、前記第1基板と前記第2基板との間に設けられた無機発光素子と、アノード電極を介して前記無機発光素子と電気的に接続された第1トランジスタと、前記無機発光素子を覆う絶縁層と、前記第1基板と前記第2基板との間に設けられた液晶層と、前記液晶層を挟んで対向する画素電極及び共通電極と、を有し、前記第1基板の一方の面に、前記第1トランジスタ、前記アノード電極、前記無機発光素子、前記絶縁層、前記画素電極、前記液晶層、前記共通電極、前記第2基板の順に積層されている。 A display device according to one aspect of the present invention includes a first substrate, a second substrate facing the first substrate, an inorganic light emitting element provided between the first substrate and the second substrate, and an anode electrode. A first transistor electrically connected to the inorganic light emitting element via an insulating layer covering the inorganic light emitting element; a liquid crystal layer provided between the first substrate and the second substrate; A pixel electrode and a common electrode that face each other with a liquid crystal layer interposed therebetween, and the first transistor, the anode electrode, the inorganic light emitting element, the insulating layer, the pixel electrode, and The liquid crystal layer, the common electrode, and the second substrate are laminated in this order.
図1は、第1実施形態に係る表示装置を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing the display device according to the first embodiment. 図2は、複数の画素を示す平面図である。FIG. 2 is a plan view showing a plurality of pixels. 図3は、反射表示画素の等価回路を示す回路図である。FIG. 3 is a circuit diagram showing an equivalent circuit of the reflective display pixel. 図4は、発光表示画素の等価回路を示す回路図である。FIG. 4 is a circuit diagram showing an equivalent circuit of the light emitting display pixel. 図5は、図2におけるV-V’断面図である。FIG. 5 is a cross-sectional view taken along line V-V 'in FIG. 図6は、図5の発光素子を拡大して示す断面図である。FIG. 6 is an enlarged sectional view showing the light emitting device of FIG. 図7は、第1実施形態の第1変形例に係る表示装置を示す断面図である。FIG. 7 is a cross-sectional view showing a display device according to a first modification of the first embodiment. 図8は、第1実施形態の第2変形例に係る表示装置を示す断面図である。FIG. 8 is a sectional view showing a display device according to a second modification of the first embodiment. 図9は、第2実施形態に係る表示装置を示す断面図である。FIG. 9 is a sectional view showing the display device according to the second embodiment. 図10は、第3実施形態に係る表示装置を示す断面図である。FIG. 10 is a sectional view showing the display device according to the third embodiment. 図11は、発光素子からの光が、光取出し層を伝播する様子を説明するための説明図である。FIG. 11 is an explanatory diagram for explaining how light from the light emitting element propagates through the light extraction layer. 図12は、第3実施形態の第3変形例に係る表示装置において、光の伝播を説明するための説明図である。FIG. 12 is an explanatory diagram for explaining light propagation in the display device according to the third modified example of the third embodiment. 図13は、第3実施形態の第4変形例に係る表示装置において、光の伝播の他の例を説明するための説明図である。FIG. 13 is an explanatory diagram for explaining another example of light propagation in the display device according to the fourth modification of the third embodiment. 図14は、第4実施形態に係る表示装置を示す断面図である。FIG. 14 is a sectional view showing the display device according to the fourth embodiment. 図15は、第4実施形態の第5変形例に係る表示装置を示す断面図である。FIG. 15 is a sectional view showing a display device according to a fifth modified example of the fourth embodiment. 図16は、第4実施形態の第6変形例に係る表示装置を示す断面図である。FIG. 16 is a cross-sectional view showing a display device according to a sixth modified example of the fourth embodiment. 図17は、第4実施形態の第7変形例に係る表示装置を示す断面図である。FIG. 17 is a sectional view showing a display device according to a seventh modified example of the fourth embodiment. 図18は、第5実施形態に係る表示装置の、複数の画素を示す平面図である。FIG. 18 is a plan view showing a plurality of pixels of the display device according to the fifth embodiment. 図19は、図18におけるXIX-XIX’断面図である。FIG. 19 is a sectional view taken along line XIX-XIX ′ in FIG.
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 A mode (embodiment) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described in the embodiments below. Further, the constituent elements described below include those that can be easily conceived by those skilled in the art and those that are substantially the same. Furthermore, the components described below can be combined as appropriate. It should be noted that the disclosure is merely an example, and a person having ordinary skill in the art can easily think of an appropriate modification while keeping the gist of the invention, and is naturally included in the scope of the invention. Further, in order to make the description clearer, the drawings may schematically show the width, thickness, shape, etc. of each part as compared with the actual mode, but this is merely an example, and the interpretation of the present invention will be understood. It is not limited. In the specification and the drawings, the same elements as those described above with reference to the drawings already described are denoted by the same reference numerals, and detailed description thereof may be appropriately omitted.
(第1実施形態)
 図1は、第1実施形態に係る表示装置を模式的に示す斜視図である。図1に示すように、表示装置DSPは、第1基板SU1と、第2基板SU2と、画素Pixと、周辺回路GCと、接続部CNとを有する。図1には、第1基板SU1上の構成を透過して示す。第1基板SU1、複数のトランジスタ、複数の容量及び各種配線等により、各画素Pixを駆動するためのアレイ基板SUAが構成される。アレイ基板SUAは、駆動回路基板であり、バックプレーン又はアクティブマトリクス基板とも呼ばれる。駆動IC(Integrated Circuit)は、接続部CNを介して接続される。
(First embodiment)
FIG. 1 is a perspective view schematically showing the display device according to the first embodiment. As shown in FIG. 1, the display device DSP includes a first substrate SU1, a second substrate SU2, a pixel Pix, a peripheral circuit GC, and a connection portion CN. FIG. 1 shows the structure on the first substrate SU1 in a transparent manner. An array substrate SUA for driving each pixel Pix is configured by the first substrate SU1, a plurality of transistors, a plurality of capacitors, various wirings and the like. The array substrate SUA is a drive circuit substrate and is also called a backplane or an active matrix substrate. The drive IC (Integrated Circuit) is connected via the connection portion CN.
 図1に示すように、表示装置DSPは、表示領域DAと、周辺領域GAとを有する。表示領域DAは、表示部DPと重なって配置され、画像を表示する領域である。周辺領域GAは、表示部DPと重ならない領域であり、表示領域DAの外側に配置される。第2基板SU2は、表示部DPにおいて第1基板SU1に重なっている。第1基板SU1及び第2基板SU2は、表示部DPにおいて液晶層LC(図5参照)を挟持している。 As shown in FIG. 1, the display device DSP has a display area DA and a peripheral area GA. The display area DA is an area that is arranged so as to overlap the display portion DP and displays an image. The peripheral area GA is an area that does not overlap the display portion DP and is arranged outside the display area DA. The second substrate SU2 overlaps the first substrate SU1 in the display section DP. The first substrate SU1 and the second substrate SU2 sandwich the liquid crystal layer LC (see FIG. 5) in the display portion DP.
 表示部DPは複数の画素Pixを有し、複数の画素Pixは、表示領域DAにおいて、第1方向Dx及び第2方向Dyに配列される。なお、第1方向Dx及び第2方向Dyは、第1基板SU1の表面に対して平行な方向である。第1方向Dxは、第2方向Dyと直交する。ただし、第1方向Dxは、第2方向Dyと直交しないで交差してもよい。第3方向Dzは、第1方向Dx及び第2方向Dyと直交する方向である。第3方向Dzは、例えば、第1基板SU1の法線方向に対応する。なお、以下、平面視とは、第3方向Dzから見た場合の位置関係を示す。 The display portion DP has a plurality of pixels Pix, and the plurality of pixels Pix are arranged in the first direction Dx and the second direction Dy in the display area DA. The first direction Dx and the second direction Dy are parallel to the surface of the first substrate SU1. The first direction Dx is orthogonal to the second direction Dy. However, the first direction Dx may intersect with the second direction Dy instead of being orthogonal to each other. The third direction Dz is a direction orthogonal to the first direction Dx and the second direction Dy. The third direction Dz corresponds to, for example, the normal direction of the first substrate SU1. Note that, hereinafter, the plan view refers to a positional relationship when viewed from the third direction Dz.
 周辺回路GC及び接続部CNは、周辺領域GAに設けられる。接続部CNは、周辺領域GAのうち第2基板SU2と重ならない領域に設けられる。周辺回路GCは、駆動ICからの各種制御信号に基づいて複数のゲート線(例えば、リセット制御信号線RSL、出力制御信号線MSL、画素制御信号線SSL、初期化制御信号線ISL(図4参照))を駆動する回路である。周辺回路GCは、複数のゲート線を順次又は同時に選択し、選択されたゲート線にゲート駆動信号を供給する。これにより、周辺回路GCは、ゲート線に接続された複数の画素Pixを選択する。 The peripheral circuit GC and the connection portion CN are provided in the peripheral area GA. The connection part CN is provided in a region of the peripheral region GA that does not overlap the second substrate SU2. The peripheral circuit GC includes a plurality of gate lines (for example, a reset control signal line RSL, an output control signal line MSL, a pixel control signal line SSL, an initialization control signal line ISL (see FIG. 4) based on various control signals from the driving IC. )) Is a circuit for driving. The peripheral circuit GC selects a plurality of gate lines sequentially or simultaneously and supplies a gate drive signal to the selected gate lines. As a result, the peripheral circuit GC selects the plurality of pixels Pix connected to the gate line.
 駆動ICは、表示装置DSPの表示を制御する回路である。駆動ICは、第1基板SU1の接続部CNに接続されたフレキシブルプリント基板やリジット基板の上にCOF(Chip On Film)として実装されてもよい。これに限定されず、駆動ICは、第1基板SU1の周辺領域GAにCOG(Chip On Glass)として実装されてもよい。 The drive IC is a circuit that controls the display of the display device DSP. The drive IC may be mounted as a COF (Chip On Film) on a flexible printed board or a rigid board connected to the connection portion CN of the first board SU1. The drive IC is not limited to this, and may be mounted as a COG (Chip On Glass) in the peripheral area GA of the first substrate SU1.
 図2は、複数の画素を示す平面図である。図2に示すように、1つの画素Pixは、例えば、第1反射表示画素RPx1と、第1発光表示画素EPx1と、第2発光表示画素EPx2と、第3発光表示画素EPx3とを有する。第1反射表示画素RPx1は、外光による反射光を利用して表示を行う。第1発光表示画素EPx1は、第1色としての原色の赤色を表示する。第2発光表示画素EPx2は、第2色としての原色の緑色を表示する。第3発光表示画素EPx3は、第3色としての原色の青色を表示する。 FIG. 2 is a plan view showing a plurality of pixels. As shown in FIG. 2, one pixel Pix has, for example, a first reflective display pixel RPx1, a first light emitting display pixel EPx1, a second light emitting display pixel EPx2, and a third light emitting display pixel EPx3. The first reflective display pixel RPx1 performs display using reflected light from external light. The first light emitting display pixel EPx1 displays the primary color red as the first color. The second light emitting display pixel EPx2 displays the primary color green as the second color. The third light emitting display pixel EPx3 displays the primary color blue as the third color.
 図2に示すように、1つの画素Pixにおいて、第1反射表示画素RPx1と、第2発光表示画素EPx2とは第1方向Dxで並ぶ。また、第1発光表示画素EPx1と、第3発光表示画素EPx3とは第1方向Dxで並ぶ。第1反射表示画素RPx1及び第2発光表示画素EPx2と、第1発光表示画素EPx1及び第3発光表示画素EPx3とは第2方向Dyで並ぶ。なお、第1色、第2色、第3色は、それぞれ赤色、緑色、青色に限られず、補色などの任意の色を選択することができる。以下において、第1発光表示画素EPx1と、第2発光表示画素EPx2と、第3発光表示画素EPx3とをそれぞれ区別する必要がない場合、発光表示画素EPxという。 As shown in FIG. 2, in one pixel Pix, the first reflective display pixel RPx1 and the second light emitting display pixel EPx2 are arranged in the first direction Dx. The first light emitting display pixel EPx1 and the third light emitting display pixel EPx3 are arranged in the first direction Dx. The first reflective display pixel RPx1 and the second light emitting display pixel EPx2, and the first light emitting display pixel EPx1 and the third light emitting display pixel EPx3 are arranged in the second direction Dy. The first color, the second color, and the third color are not limited to red, green, and blue, respectively, and any color such as a complementary color can be selected. Hereinafter, when it is not necessary to distinguish the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3 from each other, the light emitting display pixel EPx is referred to.
 第1反射表示画素RPx1は、金属電極ME(反射電極)と、画素電極PEとを含む。第1発光表示画素EPx1、第2発光表示画素EPx2及び第3発光表示画素EPx3は、それぞれ赤色発光素子RLED、緑色発光素子GLED及び青色発光素子GLEDと、これらに電気的に接続されたアノード電極ADとを含む。画素電極PEは、画素Pixごとに設けられ、1つの画素Pixにおいて、第1反射表示画素RPx1と、複数の発光表示画素EPxとに重なる。つまり、画素電極PEは、金属電極MEと、複数の発光素子LEDと、複数の発光素子LEDにそれぞれ接続された複数のアノード電極ADとに重なる領域に亘って設けられる。 The first reflective display pixel RPx1 includes a metal electrode ME (reflective electrode) and a pixel electrode PE. The first light emitting display pixel EPx1, the second light emitting display pixel EPx2 and the third light emitting display pixel EPx3 are a red light emitting element RLED, a green light emitting element GLED and a blue light emitting element GLED, respectively, and an anode electrode AD electrically connected to them. Including and The pixel electrode PE is provided for each pixel Pix, and overlaps the first reflective display pixel RPx1 and the plurality of light emitting display pixels EPx in one pixel Pix. That is, the pixel electrode PE is provided over a region overlapping with the metal electrode ME, the plurality of light emitting elements LED, and the plurality of anode electrodes AD respectively connected to the plurality of light emitting elements LED.
 図2では、画素回路PICA、PICRの各種配線のうち、映像信号線SL、アノード電源線IPL及び画素制御信号線SSLを示している。映像信号線SL及びアノード電源線IPLは、第2方向Dyに延出している。一対の映像信号線SL及びアノード電源線IPLは、第1方向Dxに複数配列されている。画素制御信号線SSLは、第1方向Dxに延出し、平面視で、映像信号線SL及びアノード電源線IPLと交差する。コンタクトホールCHは、一対の映像信号線SL及びアノード電源線IPLと、画素制御信号線SSLとで形成される格子中に配置され、画素電極PE及びアノード電極ADにそれぞれ接続される。 FIG. 2 shows the video signal line SL, the anode power supply line IPL, and the pixel control signal line SSL among the various wirings of the pixel circuits PICA and PICR. The video signal line SL and the anode power supply line IPL extend in the second direction Dy. A plurality of the pair of video signal lines SL and the anode power supply lines IPL are arranged in the first direction Dx. The pixel control signal line SSL extends in the first direction Dx and intersects the video signal line SL and the anode power supply line IPL in a plan view. The contact holes CH are arranged in a lattice formed by the pair of video signal lines SL and the anode power supply lines IPL and the pixel control signal lines SSL, and are connected to the pixel electrodes PE and the anode electrodes AD, respectively.
 赤色発光素子RLEDは、赤色の光を出射する。緑色発光素子GLEDは、緑色の光を出射する。青色発光素子BLEDは、青色の光を出射する。図2において、複数のコンタクトホールCHの配列に対して、赤色発光素子RLED及び青色発光素子BLEDは第2方向Dyの一方に配置され、緑色発光素子GLEDは第2方向Dyの他方に配置される。言い換えると、赤色発光素子RLED及び青色発光素子BLEDと、緑色発光素子GLEDとの間に、複数のコンタクトホールCH及び画素制御信号線SSLが設けられる。以下において、赤色発光素子RLED、緑色発光素子GLED及び青色発光素子BLEDをそれぞれ区別する必要がない場合、発光素子LEDという。 The red light emitting element RLED emits red light. The green light emitting element GLED emits green light. The blue light emitting element BLED emits blue light. In FIG. 2, the red light emitting element RLED and the blue light emitting element BLED are arranged in one of the second directions Dy, and the green light emitting element GLED is arranged in the other of the second direction Dy with respect to the arrangement of the plurality of contact holes CH. .. In other words, the plurality of contact holes CH and the pixel control signal line SSL are provided between the red light emitting element RLED and the blue light emitting element BLED and the green light emitting element GLED. In the following, the red light emitting element RLED, the green light emitting element GLED, and the blue light emitting element BLED are referred to as light emitting element LEDs when there is no need to distinguish them.
 表示装置DSPは、第1反射表示画素RPx1において反射表示を行い、第1発光表示画素EPx1、第2発光表示画素EPx2及び第3発光表示画素EPx3おいて、発光素子LEDごとに異なる光を出射することで画像を表示する。発光素子LEDは、平面視で、3μm以上、100μm以下程度の大きさを有する無機発光ダイオード(LED:Light Emitting Diode)チップであり、マイクロLED(micro LED)と呼ばれる。各画素にマイクロLEDを備える表示装置DSPは、マイクロLED表示装置とも呼ばれる。なお、マイクロLEDのマイクロは、発光素子LEDの大きさを限定するものではない。 The display device DSP performs a reflective display in the first reflective display pixel RPx1, and emits different light for each light emitting element LED in the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3. The image is displayed by that. The light emitting element LED is an inorganic light emitting diode (LED) chip having a size of 3 μm or more and 100 μm or less in a plan view, and is called a micro LED. A display device DSP including a micro LED in each pixel is also called a micro LED display device. The size of the micro LED does not limit the size of the light emitting element LED.
 なお、複数の発光素子LEDは、4色以上の異なる光を出射してもよい。また、第1反射表示画素RPx1及び複数の発光表示画素EPxの配置は、図2に示す構成に限定されない。例えば、赤色発光素子RLED、緑色発光素子GLED及び青色発光素子BLEDは、第1方向Dxに隣り合っていてもよい。 Note that the plurality of light emitting element LEDs may emit different lights of four or more colors. The arrangement of the first reflective display pixel RPx1 and the plurality of light emitting display pixels EPx is not limited to the configuration shown in FIG. For example, the red light emitting element RLED, the green light emitting element GLED, and the blue light emitting element BLED may be adjacent to each other in the first direction Dx.
 発光素子LEDは、アノード電極ADに接続される。また、アノード電極ADは、平面視で、発光素子LEDの内側から外側に延出し、発光素子LEDの周囲に設けられる。アノード電極ADは、発光素子LEDから出射された光を、第3方向Dz、すなわち表示面側に出射させることで、発光素子LEDの光取出し効率を向上させる。また、アノード電極ADは、反射表示において外光を反射する反射電極としての機能も兼ねる。 The light emitting element LED is connected to the anode electrode AD. Further, the anode electrode AD extends from the inside of the light emitting element LED to the outside in a plan view and is provided around the light emitting element LED. The anode electrode AD improves the light extraction efficiency of the light emitting element LED by emitting the light emitted from the light emitting element LED to the third direction Dz, that is, to the display surface side. Further, the anode electrode AD also has a function as a reflective electrode that reflects external light in reflective display.
 図3は、反射表示画素の等価回路を示す回路図である。図3は、1つの第1反射表示画素RPx1に設けられた画素回路PICRを示しており、画素回路PICRは複数の第1反射表示画素RPx1のそれぞれに設けられている。図3に示すように、画素回路PICRは、駆動トランジスタDTRL、画素制御信号線SSL及び映像信号線SLを含む。画素制御信号線SSL及び映像信号線SLは交差して設けられる。画素制御信号線SSL及び映像信号線SLの交差部近傍に駆動トランジスタDTRLが設けられる。 FIG. 3 is a circuit diagram showing an equivalent circuit of the reflective display pixel. FIG. 3 shows a pixel circuit PICR provided in one first reflective display pixel RPx1, and the pixel circuit PICR is provided in each of the plurality of first reflective display pixels RPx1. As shown in FIG. 3, the pixel circuit PICR includes a drive transistor DTRL, a pixel control signal line SSL, and a video signal line SL. The pixel control signal line SSL and the video signal line SL are provided to intersect with each other. The drive transistor DTRL is provided near the intersection of the pixel control signal line SSL and the video signal line SL.
 画素制御信号線SSLは、駆動トランジスタDTRLのゲート電極に接続される。映像信号線SLは、駆動トランジスタDTRLのソース電極又はドレイン電極の一方に接続される。駆動トランジスタDTRLのソース電極又はドレイン電極の他方は、液晶層LC及び保持容量Cs3に接続される。駆動トランジスタDTRLは、画素制御信号線SSLから供給される走査信号に基づいて動作する。駆動トランジスタDTRLがオンになると、映像信号線SLから供給される電圧が液晶層LCに供給される。 The pixel control signal line SSL is connected to the gate electrode of the drive transistor DTRL. The video signal line SL is connected to one of the source electrode and the drain electrode of the drive transistor DTRL. The other of the source electrode and the drain electrode of the drive transistor DTRL is connected to the liquid crystal layer LC and the storage capacitor Cs3. The drive transistor DTRL operates based on the scanning signal supplied from the pixel control signal line SSL. When the drive transistor DTRL is turned on, the voltage supplied from the video signal line SL is supplied to the liquid crystal layer LC.
 図4は、発光表示画素の等価回路を示す回路図である。図4は、1つの発光表示画素EPxに設けられた画素回路PICAを示しており、画素回路PICAは複数の発光表示画素EPxのそれぞれに設けられている。図4に示すように、画素回路PICAは、発光素子LEDと、5つのトランジスタと、2つの容量とを含む。具体的には、画素回路PICAは、駆動トランジスタDRT、出力トランジスタBCT、初期化トランジスタIST、画素選択トランジスタSST及びリセットトランジスタRSTを含む。駆動トランジスタDRT、出力トランジスタBCT、初期化トランジスタIST、画素選択トランジスタSST及びリセットトランジスタRSTは、それぞれn型TFT(Thin Film Transistor)で構成される。また、画素回路PICAは、第1容量Cs1及び第2容量Cs2を含む。 FIG. 4 is a circuit diagram showing an equivalent circuit of a light emitting display pixel. FIG. 4 shows a pixel circuit PICA provided in one light emitting display pixel EPx, and the pixel circuit PICA is provided in each of the plurality of light emitting display pixels EPx. As shown in FIG. 4, the pixel circuit PICA includes a light emitting element LED, five transistors, and two capacitors. Specifically, the pixel circuit PICA includes a drive transistor DRT, an output transistor BCT, an initialization transistor IST, a pixel selection transistor SST, and a reset transistor RST. The drive transistor DRT, the output transistor BCT, the initialization transistor IST, the pixel selection transistor SST, and the reset transistor RST are each composed of an n-type TFT (Thin Film Transistor). Further, the pixel circuit PICA includes a first capacitor Cs1 and a second capacitor Cs2.
 発光素子LEDのカソード(カソード端子ELED2(図6参照))は、カソード電源線CDLに接続される。また、発光素子LEDのアノード(アノード端子ELED1(図6参照))は、駆動トランジスタDRT及び出力トランジスタBCTを介してアノード電源線IPLに接続される。アノード電源線IPLには、アノード電源電位PVDDが供給される。カソード電源線CDLには、カソード電源電位PVSSが供給される。アノード電源電位PVDDは、カソード電源電位PVSSよりも高い電位である。 The cathode of the light emitting element LED (cathode terminal ELED2 (see FIG. 6)) is connected to the cathode power supply line CDL. The anode of the light emitting element LED (anode terminal ELED1 (see FIG. 6)) is connected to the anode power supply line IPL via the drive transistor DRT and the output transistor BCT. The anode power supply potential PVDD is supplied to the anode power supply line IPL. The cathode power source potential PVSS is supplied to the cathode power source line CDL. The anode power supply potential PVDD is higher than the cathode power supply potential PVSS.
 アノード電源線IPLは、発光表示画素EPxに、駆動電位であるアノード電源電位PVDDを供給する。具体的には、発光素子LEDは、アノード電源電位PVDDとカソード電源電位PVSSとの電位差(PVDD-PVSS)により順方向電流(駆動電流)が供給され発光する。つまり、アノード電源電位PVDDは、カソード電源電位PVSSに対し、発光素子LEDを発光させる電位差を有している。発光素子LEDのアノード端子ELED1はアノード電極ADに接続され、アノード電極ADとアノード電源線IPLと間に等価回路として、第2容量Cs2が接続される。 The anode power supply line IPL supplies the anode power supply potential PVDD, which is a drive potential, to the light emitting display pixels EPx. Specifically, the light emitting element LED emits light when a forward current (driving current) is supplied by the potential difference (PVDD-PVSS) between the anode power supply potential PVDD and the cathode power supply potential PVSS. That is, the anode power supply potential PVDD has a potential difference with respect to the cathode power supply potential PVSS that causes the light emitting element LED to emit light. The anode terminal ELED1 of the light emitting element LED is connected to the anode electrode AD, and the second capacitor Cs2 is connected between the anode electrode AD and the anode power supply line IPL as an equivalent circuit.
 駆動トランジスタDRTのソース電極は、アノード電極ADを介して発光素子LEDのアノード端子ELED1に接続され、ドレイン電極は、出力トランジスタBCTのソース電極に接続される。駆動トランジスタDRTのゲート電極は、第1容量Cs1、画素選択トランジスタSSTのドレイン電極及び初期化トランジスタISTのドレイン電極に接続される。 The source electrode of the drive transistor DRT is connected to the anode terminal ELED1 of the light emitting element LED via the anode electrode AD, and the drain electrode is connected to the source electrode of the output transistor BCT. The gate electrode of the drive transistor DRT is connected to the first capacitor Cs1, the drain electrode of the pixel selection transistor SST, and the drain electrode of the initialization transistor IST.
 出力トランジスタBCTのゲート電極は、出力制御信号線MSLに接続される。出力制御信号線MSLには、出力制御信号BGが供給される。出力トランジスタBCTのドレイン電極は、アノード電源線IPLに接続される。 The gate electrode of the output transistor BCT is connected to the output control signal line MSL. The output control signal BG is supplied to the output control signal line MSL. The drain electrode of the output transistor BCT is connected to the anode power supply line IPL.
 初期化トランジスタISTのソース電極は、初期化電源線INLに接続される。初期化電源線INLには、初期化電位Viniが供給される。初期化トランジスタISTのゲート電極は、初期化制御信号線ISLに接続される。初期化制御信号線ISLには、初期化制御信号IGが供給される。すなわち、駆動トランジスタDRTのゲート電極には、初期化トランジスタISTを介して初期化電源線INLが接続される。 The source electrode of the initialization transistor IST is connected to the initialization power supply line INL. The initialization potential Vini is supplied to the initialization power supply line INL. The gate electrode of the initialization transistor IST is connected to the initialization control signal line ISL. An initialization control signal IG is supplied to the initialization control signal line ISL. That is, the initialization power supply line INL is connected to the gate electrode of the drive transistor DRT via the initialization transistor IST.
 画素選択トランジスタSSTのソース電極は、映像信号線SLに接続される。映像信号線SLには、映像信号Vsigが供給される。画素選択トランジスタSSTのゲート電極には、画素制御信号線SSLが接続されている。画素制御信号線SSLには、画素制御信号SGが供給される。 The source electrode of the pixel selection transistor SST is connected to the video signal line SL. The video signal Vsig is supplied to the video signal line SL. The pixel control signal line SSL is connected to the gate electrode of the pixel selection transistor SST. The pixel control signal SG is supplied to the pixel control signal line SSL.
 リセットトランジスタRSTのソース電極は、リセット電源線RLに接続される。リセット電源線RLには、リセット電源電位Vrstが供給される。リセットトランジスタRSTのゲート電極には、リセット制御信号線RSLが接続される。リセット制御信号線RSLには、リセット制御信号RGが供給される。リセットトランジスタRSTのドレイン電極は、発光素子LEDのアノード端子ELED1及び駆動トランジスタDRTのソース電極に接続される。 The source electrode of the reset transistor RST is connected to the reset power supply line RL. The reset power supply potential Vrst is supplied to the reset power supply line RL. The reset control signal line RSL is connected to the gate electrode of the reset transistor RST. A reset control signal RG is supplied to the reset control signal line RSL. The drain electrode of the reset transistor RST is connected to the anode terminal ELED1 of the light emitting element LED and the source electrode of the drive transistor DRT.
 リセットトランジスタRSTのドレイン電極と、駆動トランジスタDRTのゲート電極との間に、等価回路として、第1容量Cs1が設けられる。画素回路PICAは、第1容量Cs1及び第2容量Cs2により、駆動トランジスタDRTの寄生容量とリーク電流とによるゲート電圧の変動を抑制することができる。 A first capacitor Cs1 is provided as an equivalent circuit between the drain electrode of the reset transistor RST and the gate electrode of the drive transistor DRT. The pixel circuit PICA can suppress the fluctuation of the gate voltage due to the parasitic capacitance of the drive transistor DRT and the leakage current by the first capacitance Cs1 and the second capacitance Cs2.
 駆動トランジスタDRTのゲート電極には、映像信号Vsig(または、階調信号)に応じた電位が供給される。つまり、駆動トランジスタDRTは、出力トランジスタBCTを介して供給されたアノード電源電位PVDDに基づいて、映像信号Vsigに応じた電流を発光素子LEDに供給する。このように、アノード電源線IPLに供給されたアノード電源電位PVDDは、駆動トランジスタDRT及び出力トランジスタBCTによって降下するため、発光素子LEDのアノード端子ELED1には、アノード電源電位PVDDよりも低い電位が供給される。 A potential according to the video signal Vsig (or gradation signal) is supplied to the gate electrode of the drive transistor DRT. That is, the drive transistor DRT supplies a current according to the video signal Vsig to the light emitting element LED based on the anode power supply potential PVDD supplied via the output transistor BCT. As described above, since the anode power supply potential PVDD supplied to the anode power supply line IPL drops due to the drive transistor DRT and the output transistor BCT, a potential lower than the anode power supply potential PVDD is supplied to the anode terminal ELED1 of the light emitting element LED. To be done.
 第2容量Cs2の一方の電極には、アノード電源線IPLを介してアノード電源電位PVDDが供給され、第2容量Cs2の他方の電極には、アノード電源電位PVDDよりも低い電位が供給される。つまり、第2容量Cs2の一方の電極には、第2容量Cs2の他方の電極よりも高い電位が供給される。第2容量Cs2の一方の電極は、例えば、アノード電源線IPLであり、第2容量Cs2の他方の電極は、駆動トランジスタDRTのアノード電極AD及びこれに接続されたアノード接続電極である。 The anode power supply potential PVDD is supplied to one electrode of the second capacitor Cs2 through the anode power supply line IPL, and the other electrode of the second capacitor Cs2 is supplied with a potential lower than the anode power supply potential PVDD. That is, one electrode of the second capacitor Cs2 is supplied with a higher potential than the other electrode of the second capacitor Cs2. One electrode of the second capacitor Cs2 is, for example, the anode power supply line IPL, and the other electrode of the second capacitor Cs2 is the anode electrode AD of the drive transistor DRT and the anode connection electrode connected thereto.
 表示装置DSPにおいて、周辺回路GC(図1参照)は、複数の画素行を、先頭行(例えば、図1中の表示領域DAにおいて、最上部に位置する画素行)から順番に選択する。駆動ICは、選択された画素行の発光表示画素EPxに映像信号Vsig(映像書き込み電位)を書き込み、発光素子LEDを発光させる。駆動ICは、1水平走査期間ごとに、映像信号線SLに映像信号Vsigを供給し、リセット電源線RLにリセット電源電位Vrstを供給し、初期化電源線INLに初期化電位Viniを供給する。表示装置DSPは、これらの動作が1フレームの画像ごとに繰り返される。 In the display device DSP, the peripheral circuit GC (see FIG. 1) sequentially selects a plurality of pixel rows from the top row (for example, the pixel row located at the top in the display area DA in FIG. 1). The drive IC writes the video signal Vsig (video writing potential) in the light emitting display pixel EPx of the selected pixel row to cause the light emitting element LED to emit light. The drive IC supplies the video signal Vsig to the video signal line SL, the reset power supply potential Vrst to the reset power supply line RL, and the initialization potential Vini to the initialization power supply line INL for each horizontal scanning period. The display device DSP repeats these operations for each frame of image.
 なお、上述した図3及び図4に示す画素回路PICR、PICAの構成は適宜変更することができる。例えば1つの発光表示画素EPxでの配線の数及びトランジスタの数は異なっていてもよい。また、画素回路PICAはカレントミラー回路等であってもよい。 Note that the configurations of the pixel circuits PICR and PICA shown in FIGS. 3 and 4 described above can be appropriately changed. For example, the number of wirings and the number of transistors in one light emitting display pixel EPx may be different. Further, the pixel circuit PICA may be a current mirror circuit or the like.
 次に、図5及び図6を参照しつつ、第1反射表示画素RPx1及び発光表示画素EPxの具体的な構成例について説明する。図5は、図2におけるV-V’断面図である。図5は、第1反射表示画素RPx1及び第2発光表示画素EPx2の断面構造を示す。ただし、第2発光表示画素EPx2についての説明は、第1発光表示画素EPx1及び第3発光表示画素EPx3にも適用できる。 Next, a specific configuration example of the first reflective display pixel RPx1 and the light emitting display pixel EPx will be described with reference to FIGS. 5 and 6. FIG. 5 is a cross-sectional view taken along line V-V 'in FIG. FIG. 5 shows a cross-sectional structure of the first reflective display pixel RPx1 and the second light emitting display pixel EPx2. However, the description of the second light emitting display pixel EPx2 can be applied to the first light emitting display pixel EPx1 and the third light emitting display pixel EPx3.
 図5に示すように、表示装置DSPは、アレイ基板SUAと、対向基板SUBと、液晶層LCと、を有する。アレイ基板SUAにおいて、第1基板SU1の一方の面に、遮光層LS、アンダーコート層UC、半導体層PS、ゲート絶縁膜GZL、走査配線GL、層間絶縁膜LZL、アノード電源線IPL及び台座BS、第1平坦化層LL1、第1共通電極CE1、第1容量窒化膜LSN1、金属電極ME及びアノード電極AD、接続層CL、発光素子LED及び第2平坦化層LL2、カソード電極CD及び接続電極CNE、第2容量窒化膜LSN2、画素電極PE、第1配向膜AL1の順に設けられている。なお、第1基板SU1の一方の面は、第2基板SU2と対向する面である。 As shown in FIG. 5, the display device DSP includes an array substrate SUA, a counter substrate SUB, and a liquid crystal layer LC. In the array substrate SUA, the light-shielding layer LS, the undercoat layer UC, the semiconductor layer PS, the gate insulating film GZL, the scanning wiring GL, the interlayer insulating film LZL, the anode power supply line IPL, and the pedestal BS are provided on one surface of the first substrate SU1. First flattening layer LL1, first common electrode CE1, first capacitive nitride film LSN1, metal electrode ME and anode electrode AD, connecting layer CL, light emitting element LED and second flattening layer LL2, cathode electrode CD and connecting electrode CNE. , The second capacitor nitride film LSN2, the pixel electrode PE, and the first alignment film AL1 are provided in this order. In addition, one surface of the first substrate SU1 is a surface facing the second substrate SU2.
 対向基板SUBにおいて、第2基板SU2の一方の面に、第2共通電極CE2及び第2配向膜AL2が設けられる。なお、第2基板SU2の一方の面は、第1基板SU1と対向する面である。第2基板SU2の他方の面に、円偏光板CPが設けられている。液晶層LCは、アレイ基板SUAと、対向基板SUBとの間に設けられる。 In the counter substrate SUB, the second common electrode CE2 and the second alignment film AL2 are provided on one surface of the second substrate SU2. In addition, one surface of the second substrate SU2 is a surface facing the first substrate SU1. A circular polarization plate CP is provided on the other surface of the second substrate SU2. The liquid crystal layer LC is provided between the array substrate SUA and the counter substrate SUB.
 本明細書において、第1基板SU1の表面に垂直な方向において、第1基板SU1から第2基板SU2に向かう方向を「上側」とする。また、第2基板SU2から第1基板SU1に向かう方向を「下側」とする。 In this specification, the direction from the first substrate SU1 to the second substrate SU2 in the direction perpendicular to the surface of the first substrate SU1 is referred to as “upper side”. Further, the direction from the second substrate SU2 to the first substrate SU1 will be referred to as “lower side”.
 発光素子LEDは、第1基板SU1の上に設けられる。第1基板SU1は絶縁基板であり、例えば、ガラス基板、樹脂基板又は樹脂フィルム等が用いられる。第1基板SU1は、例えば、厚さ100μmのホウケイ酸ガラスを用いることができる。 The light emitting element LED is provided on the first substrate SU1. The first substrate SU1 is an insulating substrate, and for example, a glass substrate, a resin substrate, a resin film, or the like is used. For the first substrate SU1, for example, borosilicate glass having a thickness of 100 μm can be used.
 駆動トランジスタDTRは、第1基板SU1の一方の面側に設けられる。図5では、画素回路PICAの複数のトランジスタのうち、駆動トランジスタDTRを示す。出力トランジスタBCT、初期化トランジスタIST、画素選択トランジスタSST及びリセットトランジスタRSTも第1基板SU1の一方の面側に設けられる。出力トランジスタBCT、初期化トランジスタIST、画素選択トランジスタSST及びリセットトランジスタRSTの積層構造は、駆動トランジスタDTRと類似した構成であり、詳細な説明は省略する。また、図5では、画素回路PICRの駆動トランジスタDTRLも示している。駆動トランジスタDTRについての説明は、第1反射表示画素RPx1の駆動トランジスタDTRLにも適用できる。 The drive transistor DTR is provided on one surface side of the first substrate SU1. FIG. 5 shows the drive transistor DTR among the plurality of transistors of the pixel circuit PICA. The output transistor BCT, the initialization transistor IST, the pixel selection transistor SST, and the reset transistor RST are also provided on the one surface side of the first substrate SU1. The laminated structure of the output transistor BCT, the initialization transistor IST, the pixel selection transistor SST, and the reset transistor RST is similar to that of the drive transistor DTR, and detailed description thereof will be omitted. Further, FIG. 5 also shows the drive transistor DTRL of the pixel circuit PICR. The description of the drive transistor DTR can be applied to the drive transistor DTRL of the first reflective display pixel RPx1.
 遮光層LSは、層厚50nm程度のモリブデンタングステン(MoW)合金膜である。遮光層LSは、第1基板SU1よりも光の透過率が小さい材料で形成され、半導体層PSの下に設けられる。アンダーコート層UCは、窒化珪素(SiN)層と酸化珪素(SiO)層の積層体で、層厚はそれぞれ100nm、150nm程度である。半導体層PSは、例えばポリシリコンであり、アモルファスシリコン層をレーザアニール法で多結晶化したものである。半導体層PSの層厚は、例えば50nm程度である。 The light shielding layer LS is a molybdenum tungsten (MoW) alloy film having a layer thickness of about 50 nm. The light shielding layer LS is formed of a material having a light transmittance lower than that of the first substrate SU1, and is provided below the semiconductor layer PS. The undercoat layer UC is a laminated body of a silicon nitride (SiN) layer and a silicon oxide (SiO 2 ) layer, and has a layer thickness of about 100 nm and 150 nm, respectively. The semiconductor layer PS is, for example, polysilicon, and is obtained by polycrystallizing an amorphous silicon layer by a laser annealing method. The layer thickness of the semiconductor layer PS is, for example, about 50 nm.
 ゲート絶縁膜GZLは、層厚100nm程度の酸化珪素層である。走査配線GLは、層厚300nm程度のモリブデンタングステン合金膜である。走査配線GLは、画素選択トランジスタSSTのドレイン線と、初期化トランジスタISTのドレイン線とが合流した配線である。第1基板SU1の法線方向において、半導体層PSと走査配線GLとの間にゲート絶縁膜GZLが設けられる。層間絶縁膜LZLは、酸化珪素層と窒化珪素層の積層体であり、層厚はそれぞれ350nm、375nm程度である。 The gate insulating film GZL is a silicon oxide layer having a layer thickness of about 100 nm. The scanning line GL is a molybdenum-tungsten alloy film with a layer thickness of about 300 nm. The scanning line GL is a line in which the drain line of the pixel selection transistor SST and the drain line of the initialization transistor IST merge. The gate insulating film GZL is provided between the semiconductor layer PS and the scan line GL in the normal direction of the first substrate SU1. The interlayer insulating film LZL is a laminated body of a silicon oxide layer and a silicon nitride layer, and has a layer thickness of about 350 nm and 375 nm, respectively.
 アノード電源線IPL及び台座BSは、同層に設けられ、それぞれ、チタン(Ti)、アルミニウム(Al)、チタン(Ti)の3層積層膜である。各層の層厚は、それぞれ、100nm、400nm、200nm程度である。アノード電源線IPLのうち、半導体層PSと重なる部分が駆動トランジスタDTRのドレイン電極DEとして機能する。台座BSのうち、半導体層PSと重なる部分が駆動トランジスタDTRのソース電極SEとして機能する。ドレイン電極DE及びソース電極SEは、それぞれ、層間絶縁膜LZL及びゲート絶縁膜GZLに設けられたコンタクトホールを介して半導体層PSと接続される。 The anode power line IPL and the pedestal BS are provided in the same layer, and each is a three-layer laminated film of titanium (Ti), aluminum (Al), and titanium (Ti). The layer thickness of each layer is about 100 nm, 400 nm, and 200 nm, respectively. A portion of the anode power supply line IPL that overlaps with the semiconductor layer PS functions as the drain electrode DE of the drive transistor DTR. A portion of the pedestal BS that overlaps the semiconductor layer PS functions as the source electrode SE of the drive transistor DTR. The drain electrode DE and the source electrode SE are connected to the semiconductor layer PS via contact holes provided in the interlayer insulating film LZL and the gate insulating film GZL, respectively.
 次に、駆動トランジスタDTRよりも上層の発光表示画素EPx(第2発光表示画素EPx2)について説明する。第1平坦化層LL1及び第2平坦化層LL2は、有機絶縁膜であり、層厚はそれぞれ2μm、10μm程度である。第1平坦化層LL1は、アノード電源線IPL及び台座BSを覆って層間絶縁膜LZLの上に設けられる。第1共通電極CEは、透光性を有する導電性材料が用いられる。第1共通電極CEは、例えばインジウムスズ酸化物(ITO、Indium Tin Oxide)であり、層厚は50nm程度である。第1容量窒化膜LSN1は、低温成膜した窒化珪素層であり、層厚は120nm程度である。第1容量窒化膜LSN1は、第1基板SU1の法線方向において、第1共通電極CE1とアノード電極ADとの間に設けられる。 Next, the light emitting display pixel EPx (second light emitting display pixel EPx2) in a layer above the drive transistor DTR will be described. The first flattening layer LL1 and the second flattening layer LL2 are organic insulating films, and have layer thicknesses of about 2 μm and 10 μm, respectively. The first planarization layer LL1 is provided on the interlayer insulating film LZL, covering the anode power supply line IPL and the pedestal BS. A conductive material having a light-transmitting property is used for the first common electrode CE. The first common electrode CE is, for example, indium tin oxide (ITO, Indium Tin Oxide) and has a layer thickness of about 50 nm. The first capacitor nitride film LSN1 is a silicon nitride layer formed at a low temperature and has a layer thickness of about 120 nm. The first capacitive nitride film LSN1 is provided between the first common electrode CE1 and the anode electrode AD in the normal line direction of the first substrate SU1.
 アノード電極ADは、金属材料を含み、例えばITO、銀(Ag)、ITOの積層体である。各層の層厚は、それぞれ、50nm、200nm、100nm程度である。アノード電極ADは、第1容量窒化膜LSN1の上に設けられ、第1平坦化層LL1に設けられたコンタクトホールCH4を介して台座BSに接続される。接続層CLは、銀ペーストにより形成され、第1基板SU1と発光素子LEDとの間において、アノード電極ADの上に設けられる。発光素子LEDは、接続層CLの上に設けられ、接続層CLと電気的に接続される。つまり、駆動トランジスタDTRは、接続層CL及びアノード電極ADを介して発光素子LEDと電気的に接続される。第2平坦化層LL2は、アノード電極ADを覆って第1容量窒化膜LSN1の上に設けられる。第2平坦化層LL2は、少なくとも発光素子LEDの側面と、接続層CLの側面を覆う。 The anode electrode AD includes a metal material and is, for example, a laminated body of ITO, silver (Ag), and ITO. The layer thickness of each layer is about 50 nm, 200 nm, and 100 nm, respectively. The anode electrode AD is provided on the first capacitive nitride film LSN1 and is connected to the pedestal BS via a contact hole CH4 provided in the first planarization layer LL1. The connection layer CL is formed of silver paste and is provided on the anode electrode AD between the first substrate SU1 and the light emitting element LED. The light emitting element LED is provided on the connection layer CL and electrically connected to the connection layer CL. That is, the drive transistor DTR is electrically connected to the light emitting element LED via the connection layer CL and the anode electrode AD. The second planarization layer LL2 is provided on the first capacitive nitride film LSN1 so as to cover the anode electrode AD. The second planarization layer LL2 covers at least the side surface of the light emitting element LED and the side surface of the connection layer CL.
 発光素子LEDの頂部は、第2平坦化層LL2に設けられたコンタクトホールCH3の底部で露出しており、カソード電極CDと接続される。カソード電極CDは、ITOであり、層厚は100nm程度である。カソード電極CDは、複数の発光素子LEDのカソード端子ELED2と電気的に接続される。第2容量窒化膜LSN2は、カソード電極CDを覆って第2平坦化層LL2の上に設けられる。 The top of the light emitting element LED is exposed at the bottom of the contact hole CH3 provided in the second flattening layer LL2, and is connected to the cathode electrode CD. The cathode electrode CD is ITO and has a layer thickness of about 100 nm. The cathode electrode CD is electrically connected to the cathode terminals ELED2 of the plurality of light emitting elements LED. The second capacitive nitride film LSN2 is provided on the second planarization layer LL2 so as to cover the cathode electrode CD.
 なお、各層の材料及び層厚はあくまで一例であり、適宜変更することができる。例えば、半導体層PSは、ポリシリコンに限定されず、アモルファスシリコン、微結晶酸化物半導体、アモルファス酸化物半導体、低温ポリシリコン(LTPS:Low Temperature Polycrystalline Silicone)又は窒化ガリウム(GaN)であってもよい。酸化物半導体としては、IGZO、酸化亜鉛(ZnO)、ITZOが例示される。IGZOは、インジウムガリウム亜鉛酸化物である。ITZOは、インジウムスズ亜鉛酸化物である。また、図5に示す例では、駆動トランジスタDTRは、いわゆるトップゲート構造である。ただし、駆動トランジスタDTRは、半導体層PSの下側にゲート電極が設けられたボトムゲート構造でもよく、半導体層PSの上側及び下側の両方にゲート電極が設けられたデュアルゲート構造でもよい。 Note that the material and layer thickness of each layer are merely examples, and can be changed as appropriate. For example, the semiconductor layer PS is not limited to polysilicon, and may be amorphous silicon, a microcrystalline oxide semiconductor, an amorphous oxide semiconductor, low temperature polysilicon (LTPS: Low Temperature Polycrystalline Silicon), or gallium nitride (GaN). .. Examples of oxide semiconductors include IGZO, zinc oxide (ZnO), and ITZO. IGZO is indium gallium zinc oxide. ITZO is indium tin zinc oxide. Further, in the example shown in FIG. 5, the drive transistor DTR has a so-called top gate structure. However, the drive transistor DTR may have a bottom gate structure in which a gate electrode is provided below the semiconductor layer PS, or may have a dual gate structure in which a gate electrode is provided both above and below the semiconductor layer PS.
 次に、発光素子LEDの構成について説明する。図6は、図5の発光素子を拡大して示す断面図である。なお、図6では、第2発光表示画素EPx2の緑色発光素子GLEDの断面構造を示しているが、青色発光素子BLED及び赤色発光素子RLEDも同様の積層構造である。図6に示すように、発光素子LEDは、発光素子基板SULED、n型クラッド層NC、発光層EM、p型クラッド層PC、アノード端子ELED1及びカソード端子ELED2を有する。発光素子基板SULEDの上に、n型クラッド層NC、発光層EM、p型クラッド層PC及びカソード端子ELED2の順に積層される。アノード端子ELED1は、発光素子基板SULEDと接続層CLとの間に設けられる。 Next, the structure of the light emitting element LED will be described. FIG. 6 is an enlarged sectional view showing the light emitting device of FIG. Although FIG. 6 shows the cross-sectional structure of the green light emitting element GLED of the second light emitting display pixel EPx2, the blue light emitting element BLED and the red light emitting element RLED also have the same laminated structure. As shown in FIG. 6, the light emitting element LED has a light emitting element substrate SULED, an n-type cladding layer NC, a light emitting layer EM, a p-type cladding layer PC, an anode terminal ELED1 and a cathode terminal ELED2. An n-type clad layer NC, a light-emitting layer EM, a p-type clad layer PC, and a cathode terminal ELED2 are sequentially stacked on the light emitting element substrate SULED. The anode terminal ELED1 is provided between the light emitting element substrate SULED and the connection layer CL.
 青色の光を出射する青色発光素子BLEDにおいて、発光層EMは、窒化インジウムガリウム(InGaN)であり、インジウムとガリウムの組成比は、例えば0.2:0.8である。p型クラッド層PCとn型クラッド層NCは、窒化ガリウム(GaN)である。発光素子基板SULEDは、炭化珪素(SiC)である。 In the blue light emitting element BLED that emits blue light, the light emitting layer EM is indium gallium nitride (InGaN), and the composition ratio of indium and gallium is, for example, 0.2: 0.8. The p-type clad layer PC and the n-type clad layer NC are gallium nitride (GaN). The light emitting element substrate SULED is silicon carbide (SiC).
 緑色の光を出射する緑色発光素子GLEDにおいて、発光層EMは、窒化インジウムガリウム(InGaN)であり、インジウムとガリウムの組成比は、例えば0.45:0.55である。p型クラッド層PCとn型クラッド層NCは、窒化ガリウム(GaN)である。発光素子基板SULEDは、炭化珪素(SiC)である。 In the green light emitting element GLED that emits green light, the light emitting layer EM is indium gallium nitride (InGaN), and the composition ratio of indium and gallium is 0.45: 0.55, for example. The p-type clad layer PC and the n-type clad layer NC are gallium nitride (GaN). The light emitting element substrate SULED is silicon carbide (SiC).
 赤色の光を出射する赤色発光素子RLEDにおいて、発光層EMは、アルミニウムガリウムインジウム(AlGaIn)であり、アルミニウムとガリウムとインジウムの組成比は、例えば0.225:0.275:0.5である。p型クラッド層PCとn型クラッド層NCは、燐化アルミニウムインジウム(AlInP)である。発光素子基板SULEDは、ヒ化ガリウム(GaAs)である。 In the red light emitting element RLED which emits red light, the light emitting layer EM is aluminum gallium indium (AlGaIn), and the composition ratio of aluminum, gallium and indium is, for example, 0.225: 0.275: 0.5. . The p-type clad layer PC and the n-type clad layer NC are aluminum indium phosphide (AlInP). The light emitting element substrate SULED is gallium arsenide (GaAs).
 赤色発光素子RLED、緑色発光素子GLED及び青色発光素子BLEDのアノード端子ELED1及びカソード端子ELED2は、いずれもアルミニウムである。 The anode terminal ELED1 and the cathode terminal ELED2 of the red light emitting element RLED, the green light emitting element GLED, and the blue light emitting element BLED are all aluminum.
 赤色発光素子RLED、緑色発光素子GLED及び青色発光素子BLEDの極大発光波長は、それぞれ645nm、530nm、450nmである。 The maximum emission wavelengths of the red light emitting element RLED, the green light emitting element GLED, and the blue light emitting element BLED are 645 nm, 530 nm, and 450 nm, respectively.
 各発光素子LEDの製造工程において、製造装置は、発光素子基板SULEDの上に、n型クラッド層NC、発光層EM、p型クラッド層PC及びカソード端子ELED2を成膜する。その後、製造装置は、発光素子基板SULEDを薄膜化して、発光素子基板SULEDの底面にアノード端子ELED1を形成する。そして、製造装置は、方形に切断加工した発光素子LEDを接続層CLの上に配置した。 In the manufacturing process of each light emitting element LED, the manufacturing apparatus forms the n-type clad layer NC, the light emitting layer EM, the p-type clad layer PC and the cathode terminal ELED2 on the light emitting element substrate SULED. Then, the manufacturing apparatus thins the light emitting element substrate SULED to form the anode terminal ELED1 on the bottom surface of the light emitting element substrate SULED. Then, the manufacturing apparatus arranged the light emitting element LED cut into a square shape on the connection layer CL.
 接続層CLに銀ペーストを用いることで、発光素子LEDを配置する際に、接続層CLは、圧力に応じて変形しつつ、発光素子LEDと密着して導通する。又は、接続層CLに、アノード端子ELED1と同じ金属材料、例えばアルミニウムを用いてもよい。この場合、接続層CLの上に発光素子LEDを配置した後に加熱処理を施すことで、アノード端子ELED1と接続層CLとが一体化される。これにより、接続層CLは、発光素子LEDと良好に導通する。 By using silver paste for the connection layer CL, when the light emitting element LED is arranged, the connection layer CL deforms in response to pressure and is in close contact with the light emitting element LED to conduct electricity. Alternatively, the connection layer CL may be made of the same metal material as the anode terminal ELED1, for example, aluminum. In this case, the anode terminal ELED1 and the connection layer CL are integrated by performing heat treatment after disposing the light emitting element LED on the connection layer CL. As a result, the connection layer CL is in good conduction with the light emitting element LED.
 以上のような構成により、図5に示すように、発光素子LEDの上面から出射された光Le1は、第2基板SU2を透過して外部に出射される。また、発光素子LEDの側面から出射され、下側に向かう光Le2は、アノード電極ADにより反射されて、進行方向が上側に向けられる。アノード電極ADで反射された光Le2も第2基板SU2を透過して外部に出射される。アノード電極ADは、高い反射率を有しており、発光素子LEDの光Le2を反射する反射層の機能を兼ねる。これにより、表示装置DSPは、発光表示画素EPxによる発光表示において、光取出し効率を向上させることができる。 With the above configuration, as shown in FIG. 5, the light Le1 emitted from the upper surface of the light emitting element LED is transmitted to the outside through the second substrate SU2. Further, the light Le2 emitted from the side surface of the light emitting element LED and traveling downward is reflected by the anode electrode AD, and the traveling direction is directed upward. The light Le2 reflected by the anode electrode AD also passes through the second substrate SU2 and is emitted to the outside. The anode electrode AD has a high reflectance and also functions as a reflection layer that reflects the light Le2 of the light emitting element LED. As a result, the display device DSP can improve the light extraction efficiency in the light emitting display by the light emitting display pixel EPx.
 次に、駆動トランジスタDTRLよりも上層の第1反射表示画素RPx1について説明する。第1平坦化層LL1、第1共通電極CE及び第1容量窒化膜LSN1の構成は、発光表示画素EPxと同様である。金属電極MEは、アノード電極ADと同層に、第1容量窒化膜LSN1の上に設けられる。金属電極MEは、アノード電極ADと同じ材料が用いられ、ITO、銀(Ag)、ITOの積層体である。各層の層厚は、それぞれ、50nm、200nm、100nm程度である。金属電極MEは、第1平坦化層LL1に設けられたコンタクトホールCH2を介して駆動トランジスタDTRLの台座BSに接続される。 Next, the first reflective display pixel RPx1 in the layer above the drive transistor DTRL will be described. The configurations of the first flattening layer LL1, the first common electrode CE, and the first capacitive nitride film LSN1 are similar to those of the light emitting display pixel EPx. The metal electrode ME is provided on the same layer as the anode electrode AD and on the first capacitive nitride film LSN1. The metal electrode ME is made of the same material as the anode electrode AD and is a laminated body of ITO, silver (Ag) and ITO. The layer thickness of each layer is about 50 nm, 200 nm, and 100 nm, respectively. The metal electrode ME is connected to the pedestal BS of the drive transistor DTRL via a contact hole CH2 provided in the first planarization layer LL1.
 第1反射表示画素RPx1では、第2平坦化層LL2を貫通するコンタクトホールCH1が設けられている。接続電極CNEは、コンタクトホールCH1の内壁及び底部に設けられており、コンタクトホールCH1の底部において金属電極MEと接続される。接続電極CNEは、カソード電極CDと同層、すなわち第2平坦化層LL2の上に設けられ、カソード電極CDと同じ材料で形成される。接続電極CNEは、ITO等の透光性を有する導電性材料である。 The first reflective display pixel RPx1 is provided with a contact hole CH1 penetrating the second flattening layer LL2. The connection electrode CNE is provided on the inner wall and bottom of the contact hole CH1 and is connected to the metal electrode ME at the bottom of the contact hole CH1. The connection electrode CNE is provided on the same layer as the cathode electrode CD, that is, on the second flattening layer LL2, and is made of the same material as the cathode electrode CD. The connection electrode CNE is a light-transmitting conductive material such as ITO.
 第2容量窒化膜LSN2は、低温成膜した窒化珪素層である。第2容量窒化膜LSN2は、接続電極CNE及びカソード電極CDの上に設けられ、コンタクトホールCH1と重なる位置に開口が設けられている。画素電極PEは、ITOである。画素電極PEは、第2容量窒化膜LSN2の上に設けられ、コンタクトホールCH1の内部で接続電極CNEと接続される。このような構成により、画素電極PEは、コンタクトホールCH1を介して金属電極MEと接続される。また、画素電極PEは、発光表示画素EPxと重なる領域まで延出しており、金属電極ME、アノード電極AD及び発光素子LEDと重なる領域に亘って設けられる。 The second capacitive nitride film LSN2 is a silicon nitride layer formed at a low temperature. The second capacitive nitride film LSN2 is provided on the connection electrode CNE and the cathode electrode CD, and an opening is provided at a position overlapping the contact hole CH1. The pixel electrode PE is ITO. The pixel electrode PE is provided on the second capacitor nitride film LSN2 and is connected to the connection electrode CNE inside the contact hole CH1. With such a configuration, the pixel electrode PE is connected to the metal electrode ME via the contact hole CH1. The pixel electrode PE extends to a region overlapping with the light emitting display pixel EPx, and is provided over a region overlapping with the metal electrode ME, the anode electrode AD, and the light emitting element LED.
 対向基板SUBにおいて、第2基板SU2は絶縁基板であり、例えば、ガラス基板、樹脂基板又は樹脂フィルム等が用いられる。第2基板SU2は、例えば、厚さ100μmのホウケイ酸ガラスを用いることができる。第2基板SU2の一方の面に、第2共通電極CE2及び第2配向膜AL2の順に積層される。第2共通電極CE2は、例えば、ITOである。第2共通電極CE2は、液晶層LCを挟んで画素電極PEと対向する。 In the counter substrate SUB, the second substrate SU2 is an insulating substrate, and for example, a glass substrate, a resin substrate, a resin film or the like is used. For the second substrate SU2, for example, borosilicate glass having a thickness of 100 μm can be used. The second common electrode CE2 and the second alignment film AL2 are sequentially stacked on one surface of the second substrate SU2. The second common electrode CE2 is, for example, ITO. The second common electrode CE2 faces the pixel electrode PE with the liquid crystal layer LC interposed therebetween.
 第1配向膜AL1と第2配向膜AL2との間に液晶層LCが配置される。第1配向膜AL1及び第2配向膜AL2はいずれも垂直配向性のポリイミド膜である。これにより、液晶層LCの配向状態を垂直配向にするとともに、円偏光板CPとの組み合わせにより、表示装置DSPは電圧無印加時に暗表示となる。また、液晶層LCに負の誘電率異方性の液晶材料を用いることでノーマリーブラック型の電圧-反射率特性となる。図5では、液晶層LCの液晶分子LCMを模式的に円筒で表している。図5では、液晶分子LCMが垂直配向した状態を示している。画素電極PE及び第2共通電極CE2により、液晶層LCに縦電界が印加され、これにより、液晶分子LCMの配向状態が変化する。 The liquid crystal layer LC is arranged between the first alignment film AL1 and the second alignment film AL2. Both the first alignment film AL1 and the second alignment film AL2 are vertical alignment polyimide films. As a result, the alignment state of the liquid crystal layer LC is changed to vertical alignment, and the display device DSP exhibits a dark display when no voltage is applied by combining with the circularly polarizing plate CP. Further, by using a liquid crystal material having a negative dielectric constant anisotropy for the liquid crystal layer LC, a normally black type voltage-reflectance characteristic is obtained. In FIG. 5, the liquid crystal molecules LCM of the liquid crystal layer LC are schematically represented by a cylinder. FIG. 5 shows a state where the liquid crystal molecules LCM are vertically aligned. A vertical electric field is applied to the liquid crystal layer LC by the pixel electrode PE and the second common electrode CE2, which changes the alignment state of the liquid crystal molecules LCM.
 第1配向膜AL1、液晶層LC、第2配向膜AL2及び第2共通電極CE2は、画素電極PEと同様に、発光表示画素EPxと重なる領域まで設けられる。言い換えると、第1基板SU1の一方の面に、第1トランジスタ(駆動トランジスタDTR)、アノード電極AD、無機発光素子(発光素子LED)、絶縁層(第2容量窒化膜LSN2)、画素電極PE、液晶層LC、共通電極(第2共通電極CE2)、第2基板SU2の順に積層されている。 Like the pixel electrode PE, the first alignment film AL1, the liquid crystal layer LC, the second alignment film AL2, and the second common electrode CE2 are provided up to a region overlapping with the light emitting display pixel EPx. In other words, on one surface of the first substrate SU1, the first transistor (driving transistor DTR), the anode electrode AD, the inorganic light emitting element (light emitting element LED), the insulating layer (second capacitance nitride film LSN2), the pixel electrode PE, The liquid crystal layer LC, the common electrode (second common electrode CE2), and the second substrate SU2 are stacked in this order.
 以上のような構成により、図5に示すように、第1反射表示画素RPx1による反射表示において、外部から入射した光Lr2は、金属電極MEで反射されて第2基板SU2を透過して外部に出射される。また、反射表示において、外部から発光表示画素EPx側に入射した光Lr1は、アノード電極ADで反射されて第2基板SU2を透過して外部に出射される。つまり、アノード電極ADは、高い反射率を有しており、反射表示における光Lr1の反射層の機能を兼ねる。すなわち、反射表示において、金属電極MEが設けられた領域に加え、アノード電極ADが設けられた発光表示画素EPxの一部の領域も反射領域として機能する。これにより、表示装置DSPは、第1反射表示画素RPx1による反射表示において、光取出し効率を向上させることができる。 With the above configuration, as shown in FIG. 5, in the reflective display by the first reflective display pixel RPx1, the light Lr2 incident from the outside is reflected by the metal electrode ME, passes through the second substrate SU2, and is emitted to the outside. Is emitted. Further, in the reflective display, the light Lr1 incident from the outside to the light emitting display pixel EPx side is reflected by the anode electrode AD, passes through the second substrate SU2, and is emitted to the outside. That is, the anode electrode AD has a high reflectance and also serves as a reflection layer of the light Lr1 in the reflective display. That is, in reflective display, in addition to the region where the metal electrode ME is provided, a partial region of the light emitting display pixel EPx where the anode electrode AD is provided also functions as a reflective region. Thereby, the display device DSP can improve the light extraction efficiency in the reflective display by the first reflective display pixel RPx1.
 本実施形態の表示装置DSPを、例えば、弱い照明の屋内で観察した場合、発光表示画素EPxの発光表示により、明瞭なカラー表示を観察できる。また、表示装置DSPを、例えば、晴天時の直射日光下で観察した場合、第1反射表示画素RPx1の反射表示により、表示を確認できた。以上により、表示装置DSPは、高輝度の発光表示と高反射率の反射表示を両立し、低照度から高照度までの環境下で良好に表示を行うことができる。 When the display device DSP of this embodiment is observed, for example, indoors under weak illumination, a clear color display can be observed by the emission display of the emission display pixel EPx. Further, when the display device DSP was observed, for example, in direct sunlight at the time of fine weather, the display could be confirmed by the reflective display of the first reflective display pixel RPx1. As described above, the display device DSP can achieve both high-luminance light-emission display and high-reflectance reflective display, and can perform excellent display in an environment from low illuminance to high illuminance.
(第1実施形態の第1変形例)
 図7は、第1実施形態の第1変形例に係る表示装置を示す断面図である。なお、以下の説明において、上述した実施形態で説明した構成要素については、同じ符号を付して、説明を省略する。
(First Modification of First Embodiment)
FIG. 7 is a cross-sectional view showing a display device according to a first modification of the first embodiment. In addition, in the following description, the components described in the above-described embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
 図7に示すように、第1変形例では、コンタクトホールCH1に換えて、第2平坦化層LL2に導電性接続部材CCが設けられている。導電性接続部材CCは第2平坦化層LL2の厚さ方向を貫通して設けられた柱状の部材である。具体的には、導電性接続部材CCは、金属電極ME(反射電極)と画素電極PEとの間に設けられた導電性スペーサCS及び接続層CLLを含む。接続層CLLは、金属電極MEの上に設けられ、発光素子LEDの接続層CLと同様に、銀ペーストを用いて形成できる。 As shown in FIG. 7, in the first modification, the conductive connection member CC is provided in the second planarization layer LL2 instead of the contact hole CH1. The conductive connecting member CC is a columnar member that is provided so as to penetrate in the thickness direction of the second flattening layer LL2. Specifically, the conductive connection member CC includes a conductive spacer CS and a connection layer CLL provided between the metal electrode ME (reflection electrode) and the pixel electrode PE. The connection layer CLL is provided on the metal electrode ME, and can be formed by using a silver paste like the connection layer CL of the light emitting element LED.
 導電性スペーサCSは接続層CLLの上に設けられ、導電性スペーサCSの頂部は、第2平坦化層LL2から露出する。導電性スペーサCSの頂部は、接続電極CNEを介して画素電極PEと接続される。導電性スペーサCSは、導電性を有する柱状体であり、例えば、サファイア基板を発光素子LEDと同じ厚さに研磨し、発光素子LEDと同じサイズに切断加工したものを用いることができる。切断加工されたサファイア基板にメッキ加工を施すことで導電性スペーサCSを形成できる。導電性スペーサCSは、発光素子LEDと同様の工程で接続層CLLの上に配列される。このような構成により、金属電極MEは、第2平坦化層LL2に設けられた導電性接続部材CCを介して画素電極PEと電気的に接続される。 The conductive spacer CS is provided on the connection layer CLL, and the top of the conductive spacer CS is exposed from the second planarization layer LL2. The top of the conductive spacer CS is connected to the pixel electrode PE via the connection electrode CNE. The conductive spacer CS is a columnar body having conductivity, and for example, a sapphire substrate polished to the same thickness as the light emitting element LED and cut into the same size as the light emitting element LED can be used. The conductive spacer CS can be formed by plating the cut sapphire substrate. The conductive spacers CS are arranged on the connection layer CLL in the same process as the light emitting element LED. With such a configuration, the metal electrode ME is electrically connected to the pixel electrode PE via the conductive connection member CC provided on the second flattening layer LL2.
 本実施形態では、コンタクトホールCH1(図5参照)が設けられていない。コンタクトホールCH1は、接続電極CNE及び画素電極PEの断線を抑制するために、壁面が傾斜して形成される。このため、コンタクトホールCH1の上側の直径は、第2平坦化層LL2の層厚以上の大きさとなる。 In this embodiment, the contact hole CH1 (see FIG. 5) is not provided. The contact hole CH1 is formed with an inclined wall surface in order to suppress disconnection of the connection electrode CNE and the pixel electrode PE. Therefore, the diameter on the upper side of the contact hole CH1 is equal to or larger than the layer thickness of the second flattening layer LL2.
 本実施形態では、導電性接続部材CCの平面視での大きさを、発光素子LEDと同程度にすることができる。このため、図5に示すコンタクトホールCH1を設けた構成と比較して、第1反射表示画素RPx1の開口率を向上させることができる。 In the present embodiment, the size of the conductive connecting member CC in plan view can be made approximately the same as the light emitting element LED. Therefore, it is possible to improve the aperture ratio of the first reflective display pixel RPx1 as compared with the configuration having the contact hole CH1 shown in FIG.
(第1実施形態の第2変形例)
 図8は、第1実施形態の第2変形例に係る表示装置を示す断面図である。第1実施形態及び第1変形例の発光素子LEDは、下部でアノード電極ADと接続され、上部でカソード電極CDと接続される垂直構造であるが、これに限定されない。図8に示すように、第2変形例において、アノード端子ELED1及びカソード端子ELED2は、いずれも発光素子LEDの上面側に設けられている。
(Second Modification of First Embodiment)
FIG. 8 is a sectional view showing a display device according to a second modification of the first embodiment. The light emitting device LED of the first embodiment and the first modification has a vertical structure in which the lower part is connected to the anode electrode AD and the upper part is connected to the cathode electrode CD, but the structure is not limited thereto. As shown in FIG. 8, in the second modification, the anode terminal ELED1 and the cathode terminal ELED2 are both provided on the upper surface side of the light emitting element LED.
 カソード端子ELED2は、第2平坦化層LL2から露出しており、カソード電極CDと電気的に接続される。アノード端子ELED1は、アノード接続層ADCLを介して接続層CLに電気的に接続される。アノード接続層ADCLは、モリブデンタングステン合金を用いることができる。又は、アノード接続層ADCLは、モリブデンタングステン合金とアルミニウムの積層膜を用いることができる。 The cathode terminal ELED2 is exposed from the second flattening layer LL2 and is electrically connected to the cathode electrode CD. The anode terminal ELED1 is electrically connected to the connection layer CL via the anode connection layer ADCL. A molybdenum-tungsten alloy can be used for the anode connection layer ADCL. Alternatively, as the anode connection layer ADCL, a laminated film of molybdenum-tungsten alloy and aluminum can be used.
 このように、表示装置DSPは、アノード端子ELED1及びカソード端子ELED2が同一面側に配置された水平構造の発光素子LEDも適用可能である。 As described above, the display device DSP is also applicable to a light emitting element LED having a horizontal structure in which the anode terminal ELED1 and the cathode terminal ELED2 are arranged on the same surface side.
(第2実施形態)
 図9は、第2実施形態に係る表示装置を示す断面図である。図9に示すように、第1反射表示画素RPx1及び各発光表示画素EPxの間に壁状構造WLが設けられている。壁状構造WLは、第1容量窒化膜LSN1の上に設けられる。
(Second embodiment)
FIG. 9 is a sectional view showing the display device according to the second embodiment. As shown in FIG. 9, a wall-shaped structure WL is provided between the first reflective display pixel RPx1 and each light emitting display pixel EPx. The wall-shaped structure WL is provided on the first capacitive nitride film LSN1.
 発光表示画素EPxにおいて、壁状構造WLは、発光素子LEDの側面と対向している。より好ましくは、壁状構造WLは、発光素子LEDの周囲を囲むように設けられる。壁状構造WLの高さは、発光素子LEDの高さと同程度、又は発光素子LEDの高さよりも高い。第2平坦化層LL2は、壁状構造WLの上面を覆っている、壁状構造WLの材料として、例えば、ノボラック樹脂と感光材のナフトキノンから構成されるポジ型ホトレジストや、アクリル樹脂から成るネガ型レジスト等を用いることができる。あるいはまた、ネガ型レジスト形成後にその側面をポジ型ホトレジストで被覆して形成してもよい。 In the light emitting display pixel EPx, the wall-shaped structure WL faces the side surface of the light emitting element LED. More preferably, the wall-shaped structure WL is provided so as to surround the periphery of the light emitting element LED. The height of the wall-shaped structure WL is about the same as the height of the light emitting element LED or higher than the height of the light emitting element LED. The second planarization layer LL2 covers the upper surface of the wall-shaped structure WL, and as the material of the wall-shaped structure WL, for example, a positive photoresist composed of novolac resin and naphthoquinone of a photosensitive material, or a negative composed of acrylic resin. A mold resist or the like can be used. Alternatively, the side surface of the negative resist may be covered with a positive photoresist to form the negative resist.
 壁状構造WLと第1容量窒化膜LSN1とで形成される凹部内にアノード電極AD、接続層CL、発光素子LED及び第2平坦化層LL2が設けられる。アノード電極ADは、壁状構造WL及び第1容量窒化膜LSN1に沿った凹状構造を有する。発光素子LEDは、凹状構造の内部に配置される。具体的には、アノード電極ADは、アノード電極底部ADaとアノード電極傾斜部ADbとを含む。アノード電極底部ADaは第1容量窒化膜LSN1の上に設けられ、発光素子LEDと重なる領域及び発光素子LEDと重ならない領域に亘って設けられる。発光素子LEDは、アノード電極底部ADaに接続される。アノード電極傾斜部ADbは、アノード電極底部ADaの端部と接続され、壁状構造WLの内壁面に沿って傾斜して設けられる。アノード電極傾斜部ADbは、第2平坦化層LL2を挟んで発光素子LEDの側面と対向する。 The anode electrode AD, the connection layer CL, the light emitting element LED, and the second flattening layer LL2 are provided in the recess formed by the wall-shaped structure WL and the first capacitive nitride film LSN1. The anode electrode AD has a recessed structure along the wall-shaped structure WL and the first capacitive nitride film LSN1. The light emitting element LED is arranged inside the concave structure. Specifically, the anode electrode AD includes an anode electrode bottom portion ADa and an anode electrode inclined portion ADb. The anode electrode bottom portion ADa is provided on the first capacitive nitride film LSN1, and is provided over a region overlapping the light emitting element LED and a region not overlapping the light emitting element LED. The light emitting element LED is connected to the anode electrode bottom portion ADa. The anode electrode inclined portion ADb is connected to the end of the anode electrode bottom portion ADa and is provided so as to be inclined along the inner wall surface of the wall-shaped structure WL. The anode electrode inclined portion ADb faces the side surface of the light emitting element LED with the second flattening layer LL2 interposed therebetween.
 第1容量窒化膜LSN1の上に複数の凸状構造PTが設けられている。複数の凸状構造PTは、第1容量窒化膜LSN1の上に有機レジストをパターニングすることで形成できる。その後、熱処理を施すことにより有機レジストが溶融しながら固化して、複数の凸状構造PTは、曲面を有する半円状の断面構造となる。凸状構造PTの高さは、例えば、0.5μm程度、直径は、3μm程度である。複数の凸状構造PTは、発光表示画素EPx内に多数形成される。 A plurality of convex structures PT are provided on the first capacitive nitride film LSN1. The plurality of convex structures PT can be formed by patterning an organic resist on the first capacitive nitride film LSN1. After that, the organic resist is melted and solidified by performing heat treatment, and the plurality of convex structures PT have a semicircular cross-sectional structure having a curved surface. The height of the convex structure PT is, for example, about 0.5 μm, and the diameter is about 3 μm. A plurality of convex structures PT are formed in the light emitting display pixel EPx.
 アノード電極底部ADaは、第1容量窒化膜LSN1及び複数の凸状構造PTの上に設けられる。アノード電極底部ADaには、凸状構造PTの形状に倣って複数の凸部が形成される。 The anode electrode bottom portion ADa is provided on the first capacitive nitride film LSN1 and the plurality of convex structures PT. On the anode electrode bottom portion ADa, a plurality of convex portions are formed following the shape of the convex structure PT.
 このような構成により、発光表示画素EPxの発光表示において、発光素子LEDの側面から出射された光Le3は、アノード電極傾斜部ADbに向かって進行し、アノード電極傾斜部ADbで反射されて第2基板SU2側に出射される。また、発光素子LEDの側面から第1基板SU1側に出射された光Le2は、アノード電極底部ADaの凸部で反射して、第2基板SU2側に出射される。光Le2は、凸部が設けられていない場所で反射した場合に比べて、第1基板SU1の法線方向により近い角度で出射される。アノード電極底部ADaの凸部では、光Le2の入射角が局所的に異なるので、凸部で反射された光Le2は、第1基板SU1に平行な平面に対する入射角と出射角とが異なる散乱光となる。 With such a configuration, in the light emission display of the light emitting display pixel EPx, the light Le3 emitted from the side surface of the light emitting element LED travels toward the anode electrode inclined portion ADb, is reflected by the anode electrode inclined portion ADb, and is second. The light is emitted to the substrate SU2 side. The light Le2 emitted from the side surface of the light emitting element LED to the first substrate SU1 side is reflected by the convex portion of the anode electrode bottom portion ADa and is emitted to the second substrate SU2 side. The light Le2 is emitted at an angle closer to the normal direction of the first substrate SU1 as compared with the case where the light Le2 is reflected at a place where no convex portion is provided. Since the incident angle of the light Le2 is locally different in the convex portion of the anode electrode bottom portion ADa, the light Le2 reflected by the convex portion is scattered light having different incident angles and outgoing angles with respect to the plane parallel to the first substrate SU1. Becomes
 反射表示画素RPxにおいて、壁状構造WLは、コンタクトホールCH1と対向している。言い換えると、壁状構造WLは、コンタクトホールCH1の周囲を囲むように設けられる。壁状構造WLの高さは、コンタクトホールCH1の深さよりも低い。 In the reflective display pixel RPx, the wall-shaped structure WL faces the contact hole CH1. In other words, the wall-shaped structure WL is provided so as to surround the periphery of the contact hole CH1. The height of the wall-shaped structure WL is lower than the depth of the contact hole CH1.
 壁状構造WLと第1容量窒化膜LSN1とで形成される凹部内に金属電極ME、接続電極CNE及び画素電極PEが設けられる。金属電極MEは、壁状構造WL及び第1容量窒化膜LSN1に沿った凹状構造を有する。具体的には、金属電極MEは、金属電極底部MEaと金属電極傾斜部MEbとを含む。金属電極底部MEaは第1容量窒化膜LSN1の上に設けられ、コンタクトホールCH1の底部と重なる領域及びコンタクトホールCH1の底部と重ならない領域に亘って設けられる。金属電極傾斜部MEbは、金属電極底部MEaの端部と接続され、壁状構造WLの内壁面に沿って傾斜して設けられる。 The metal electrode ME, the connection electrode CNE, and the pixel electrode PE are provided in the recess formed by the wall-shaped structure WL and the first capacitor nitride film LSN1. The metal electrode ME has a recessed structure along the wall-shaped structure WL and the first capacitive nitride film LSN1. Specifically, the metal electrode ME includes a metal electrode bottom portion MEa and a metal electrode inclined portion MEb. The metal electrode bottom portion MEa is provided on the first capacitive nitride film LSN1 and is provided over a region overlapping the bottom portion of the contact hole CH1 and a region not overlapping the bottom portion of the contact hole CH1. The metal electrode inclined portion MEb is connected to the end of the metal electrode bottom portion MEa and is provided so as to be inclined along the inner wall surface of the wall-shaped structure WL.
 反射表示画素RPxにおいても、第1容量窒化膜LSN1の上に複数の凸状構造PTが設けられている。金属電極底部MEaは、複数の凸状構造PTの上に設けられる。金属電極底部MEaには、凸状構造PTの形状に倣って複数の凸部が形成される。 Also in the reflective display pixel RPx, a plurality of convex structures PT are provided on the first capacitive nitride film LSN1. The metal electrode bottom portion MEa is provided on the plurality of convex structures PT. On the metal electrode bottom portion MEa, a plurality of convex portions are formed following the shape of the convex structure PT.
 反射表示画素RPxの反射表示において、外部から入射した光Lr2は、金属電極底部MEaで反射され、第2基板SU2側に出射される。金属電極底部MEaにも凸部が設けられていることにより、光Lr2は、上述した光Le2と同様に散乱光となる。また、外部から発光表示画素EPx側に入射した光Lr1は、アノード電極ADで反射されて、散乱光として第2基板SU2側に出射される。 In the reflective display of the reflective display pixel RPx, the light Lr2 incident from the outside is reflected by the metal electrode bottom portion MEa and is emitted to the second substrate SU2 side. Since the metal electrode bottom portion MEa is also provided with the convex portion, the light Lr2 becomes scattered light like the light Le2 described above. The light Lr1 incident from the outside on the light emitting display pixel EPx side is reflected by the anode electrode AD and is emitted to the second substrate SU2 side as scattered light.
 本実施形態では、壁状構造WL及び凸状構造PTを設けることにより、アノード電極傾斜部ADb及び金属電極傾斜部MEbは、傾斜した反射板として機能し、アノード電極底部ADa及び金属電極底部MEaは拡散反射板として機能する。本実施形態では、反射表示において、外部からの光Lr1、Lr2が特定の狭い角度範囲から入射した場合であっても、アノード電極底部ADa及び金属電極底部MEaでの反射光は、広い角度範囲に散乱されて出射される。このため、表示装置DSPの角度変化に伴う明るさの変化を抑制することができ、例えば右目と左目とで観察される明るさが大きく異なることを抑制することができる。また、表示装置DSPの表示面は、鏡面よりも紙に近い質感で観察されるので、より観察しやすい反射表示が得られる。 In the present embodiment, by providing the wall-shaped structure WL and the convex structure PT, the anode electrode inclined portion ADb and the metal electrode inclined portion MEb function as an inclined reflector, and the anode electrode bottom portion ADa and the metal electrode bottom portion MEa are formed. Functions as a diffuse reflector. In the present embodiment, in the reflective display, even when the light Lr1 and Lr2 from the outside enter from a specific narrow angle range, the reflected light on the anode electrode bottom part ADa and the metal electrode bottom part MEa has a wide angle range. It is scattered and emitted. For this reason, it is possible to suppress a change in brightness associated with a change in the angle of the display device DSP, and it is possible to suppress a large difference in brightness observed between the right eye and the left eye, for example. Further, since the display surface of the display device DSP is observed with a texture closer to that of paper than a mirror surface, a reflective display that is easier to observe can be obtained.
 このように、本実施形態では、発光表示画素EPxの発光表示において、光取出し効率を向上させることができ、更に、反射表示画素RPxの反射表示において、反射特性を向上させることができる。 As described above, in the present embodiment, the light extraction efficiency can be improved in the light emitting display of the light emitting display pixel EPx, and the reflection characteristic can be improved in the reflective display of the reflective display pixel RPx.
 なお、本実施形態においても、上述した、第1変形例及び第2変形例の構成を適用することができる。つまり、図9において、コンタクトホールCH1に換えて導電性接続部材CCを設けてもよいし、水平構造の発光素子LEDを設けてもよい。 Note that the configurations of the first modified example and the second modified example described above can also be applied to this embodiment. That is, in FIG. 9, a conductive connecting member CC may be provided instead of the contact hole CH1, or a light emitting element LED having a horizontal structure may be provided.
(第3実施形態)
 図10は、第3実施形態に係る表示装置を示す断面図である。図10に示すように、本実施形態では、発光表示画素EPxは、さらに光取出し層LPLを有する。なお、図10では、第2発光表示画素EPx2を示しているが、第1発光表示画素EPx1及び第3発光表示画素EPx3にも光取出し層LPLを設けてもよい。
(Third Embodiment)
FIG. 10 is a sectional view showing the display device according to the third embodiment. As shown in FIG. 10, in the present embodiment, the light emitting display pixel EPx further includes a light extraction layer LPL. Although FIG. 10 shows the second light emitting display pixel EPx2, the light extraction layer LPL may be provided in the first light emitting display pixel EPx1 and the third light emitting display pixel EPx3.
 光取出し層LPLは、透光性を有する無機絶縁層であって、発光素子LEDの少なくとも一部及びアノード電極ADを覆って設けられる。具体的には、光取出し層LPLは、例えば、層厚300nm程度の酸化チタン層である。光取出し層LPLは、発光素子LEDを接続層CLの上に配置した後、CVD法で成膜することができる。 The light extraction layer LPL is a translucent inorganic insulating layer and is provided so as to cover at least a part of the light emitting element LED and the anode electrode AD. Specifically, the light extraction layer LPL is, for example, a titanium oxide layer having a layer thickness of about 300 nm. The light extraction layer LPL can be formed by a CVD method after disposing the light emitting element LED on the connection layer CL.
 光取出し層LPLは、発光素子LEDの側面を囲み、さらに、発光素子LEDの周辺にも設けられる。具体的には、光取出し層LPLは、側部LPLaと、傾斜部LPLbと、延出部LPLcと、頂部LPLdとを含む。側部LPLaは、発光素子LEDの側面を囲んで設けられる。傾斜部LPLbは、側部LPLaの下端と接続され、側部LPLaと延出部LPLcとの間に設けられる。傾斜部LPLbは、接続層CLの側面に沿って設けられ、側部LPLaに対して傾斜する。 The light extraction layer LPL surrounds the side surface of the light emitting element LED, and is also provided around the light emitting element LED. Specifically, the light extraction layer LPL includes a side part LPLa, an inclined part LPLb, an extending part LPLc, and a top part LPLd. The side portion LPLa is provided so as to surround the side surface of the light emitting element LED. The inclined portion LPLb is connected to the lower end of the side portion LPLa and is provided between the side portion LPLa and the extending portion LPLc. The inclined portion LPLb is provided along the side surface of the connection layer CL and is inclined with respect to the side portion LPLa.
 延出部LPLcは、アノード電極底部ADaの上に設けられ、傾斜部LPLbの下端と接続される。つまり、延出部LPLcは、側部LPLaの下端側に設けられ、平面視で、側部LPLaよりも発光素子LEDの外側、すなわち発光素子LEDの側面から離れる方向に延出する。第1基板SU1の法線方向において、アノード電極ADは、第1容量窒化膜LSN1と延出部LPLcとの間に設けられる。 The extension part LPLc is provided on the anode electrode bottom part ADa and is connected to the lower end of the inclined part LPLb. That is, the extending portion LPLc is provided on the lower end side of the side portion LPLa, and extends in the direction away from the side surface of the light emitting element LED, that is, away from the side portion LPLa in the plan view. In the normal direction of the first substrate SU1, the anode electrode AD is provided between the first capacitive nitride film LSN1 and the extension LPLc.
 頂部LPLdは、側部LPLaの上端と接続され、発光素子LEDの上面に設けられる。言い換えると、頂部LPLdは、発光素子LEDの上面とカソード電極CDとの間に設けられる。 The top part LPLd is connected to the upper end of the side part LPLa and is provided on the upper surface of the light emitting element LED. In other words, the top part LPLd is provided between the upper surface of the light emitting element LED and the cathode electrode CD.
 第2平坦化層LL2は、発光素子LEDの側面、側部LPLa、傾斜部LPLb及び延出部LPLcを覆って設けられる。カソード電極CDは、第2平坦化層LL2及び頂部LPLdの上に設けられ、発光素子LEDのカソード端子ELED2と電気的に接続される。 The second planarization layer LL2 is provided so as to cover the side surface, the side portion LPLa, the inclined portion LPLb, and the extension portion LPLc of the light emitting element LED. The cathode electrode CD is provided on the second planarization layer LL2 and the top part LPLd, and is electrically connected to the cathode terminal ELED2 of the light emitting element LED.
 図11は、発光素子からの光が、光取出し層を伝播する様子を説明するための説明図である。発光素子LEDから、これに近接する層への光Laの入射のし易さは、全反射角θrで表される。全反射角θrとは、発光素子LEDで生じた光Laが、近接する層との界面において全反射される入射角度である。図11に示すように、光Laの側部LPLaへの入射角θaは、発光素子LEDの側面の法線方向と、光Laの進行方向とが成す角度である。入射角θaが全反射角θr以下の場合、透過成分が存在するので、全反射角θrが大きいほど、光Laは近接する層に入射しやすい。 FIG. 11 is an explanatory diagram for explaining how light from the light emitting element propagates through the light extraction layer. Ease of incidence of light La from the light emitting element LED to a layer adjacent thereto is represented by a total reflection angle θr. The total reflection angle θr is the incident angle at which the light La generated by the light emitting element LED is totally reflected at the interface with the adjacent layer. As shown in FIG. 11, the incident angle θa of the light La on the side portion LPLa is an angle formed by the normal direction of the side surface of the light emitting element LED and the traveling direction of the light La. When the incident angle θa is equal to or less than the total reflection angle θr, since a transmission component exists, the larger the total reflection angle θr, the easier the light La is to enter the adjacent layer.
 ここで、発光素子LEDの屈折率をnLEDとし、近接する層の屈折率をnAJとすると、全反射角θrは下記の式(1)で表される。
 θr=arcsin(nAJ/nLED) ・・・ (1)
Here, when the refractive index of the light emitting element LED is n LED and the refractive index of the adjacent layer is n AJ , the total reflection angle θr is represented by the following formula (1).
θr = arcsin (n AJ / n LED ) (1)
 nAJ>nLEDの関係を満たす場合、全ての入射角θaで光Laは近接する層に入射できる。nAJ<nLEDの場合、nAJが大きいほど全反射角θrが大きくなるので、光Laのうち、近接する層に入射する成分が大きくなる。 When the relationship of n AJ > n LED is satisfied, the light La can be incident on the adjacent layers at all incident angles θa. In the case of n AJ <n LED, the larger n AJ is, the larger the total reflection angle θr is, and thus the component of the light La that is incident on the adjacent layer is larger.
 本実施形態では、発光素子LEDの側面と第2平坦化層LL2との間に、光取出し層LPLの側部LPLaが設けられている。発光素子LEDの屈折率nLEDは、例えば、nLED=2.4であり、第2平坦化層LL2の屈折率は、例えば1.5である。光取出し層LPLの屈折率は、nAJ=2.4程度であり、第2平坦化層LL2の屈折率よりも大きい。すなわち、光取出し層LPLの屈折率と発光素子LEDの屈折率nLEDとの差は、第2平坦化層LL2の屈折率と発光素子LEDの屈折率との差よりも小さい。このため、発光素子LEDの側面に接して第2平坦化層LL2を設けた場合に比べて、本実施形態では、発光素子LEDと側部LPLaとの界面での全反射角θrが大きくなり、発光素子LEDからの光Laは、側部LPLaに入射しやすくなる。なお、発光素子LEDの屈折率nLEDは、光取出し層LPLの屈折率nAJと同じであるが、異なっていてもよい。 In the present embodiment, the side portion LPLa of the light extraction layer LPL is provided between the side surface of the light emitting element LED and the second flattening layer LL2. Refractive index n LED light emitting element LED is, for example, an n LED = 2.4, the refractive index of the second planarization layer LL2 is, for example, 1.5. The refractive index of the light extraction layer LPL is about n AJ = 2.4, which is higher than the refractive index of the second flattening layer LL2. That is, the difference between the refractive index of the light extraction layer LPL and the refractive index n LED of the light emitting element LED is smaller than the difference between the refractive index of the second flattening layer LL2 and the refractive index of the light emitting element LED. Therefore, in the present embodiment, the total reflection angle θr at the interface between the light emitting element LED and the side portion LPLa becomes larger than that in the case where the second planarizing layer LL2 is provided in contact with the side surface of the light emitting element LED. Light La from the light emitting element LED is likely to enter the side portion LPLa. The refractive index n LED of the light emitting element LED is the same as the refractive index n AJ of the light extraction layer LPL, but may be different.
 側部LPLaと延出部LPLcとの間に傾斜部LPLbが設けられているので、側部LPLaと延出部LPLcとを直接連結した場合に比べて、側部LPLaと傾斜部LPLbとが成す角度及び延出部LPLcと傾斜部LPLbとが成す角度が緩やかになる。これにより、側部LPLaに入射した光Lbは、傾斜部LPLbを介して延出部LPLcに良好に導かれる。 Since the inclined portion LPLb is provided between the side portion LPLa and the extending portion LPLc, the side portion LPLa and the inclined portion LPLb are formed as compared with the case where the side portion LPLa and the extending portion LPLc are directly connected. The angle and the angle formed between the extending portion LPLc and the inclined portion LPLb become gentle. As a result, the light Lb incident on the side portion LPLa is satisfactorily guided to the extension portion LPLc via the inclined portion LPLb.
 延出部LPLcの上部に第2平坦化層LL2が設けられ、下部にアノード電極ADが設けられる。これにより、光Lbは、延出部LPLcの内部で反射しながら、発光素子LEDから離れる方向に伝播する。その過程で、光Lbの入射角が、延出部LPLcと第2平坦化層LL2との界面の全反射角よりも小さくなると、光Lcが上側に向けて出射される。このように、本実施形態では、光取出し層LPLを設けたことにより、発光素子LEDからの光Laは、光取出し層LPLの全面から出射できる。これにより、発光表示画素EPxは、発光表示における光取出し効率を向上させることができる。 The second flattening layer LL2 is provided on the extension part LPLc, and the anode electrode AD is provided on the bottom part. As a result, the light Lb propagates in the direction away from the light emitting element LED while being reflected inside the extension LPLc. In the process, when the incident angle of the light Lb becomes smaller than the total reflection angle of the interface between the extending portion LPLc and the second flattening layer LL2, the light Lc is emitted upward. Thus, in the present embodiment, by providing the light extraction layer LPL, the light La from the light emitting element LED can be emitted from the entire surface of the light extraction layer LPL. As a result, the light emitting display pixel EPx can improve the light extraction efficiency in the light emitting display.
 また、光取出し層LPLは、光Lbを伝播させることができるため、第1発光表示画素EPx1、第2発光表示画素EPx2及び第3発光表示画素EPx3(図2参照)ごとに光取出し層LPLを区切ることで、発光素子LEDの混色を抑制することができる。 Further, since the light extraction layer LPL can propagate the light Lb, the light extraction layer LPL is provided for each of the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3 (see FIG. 2). By partitioning, the color mixture of the light emitting element LED can be suppressed.
 なお、光取出し層LPLは図10に示す構成に限定されず、適宜変更してもよい。例えば、光取出し層LPLは、頂部LPLdを省略してもよい。この場合、発光素子LEDの上面は、カソード電極CDと直接、接する。言い換えると、発光素子LEDのカソード端子ELED2(図6参照)は、カソード電極CDと直接、接する。これにより、カソード端子ELED2とカソード電極CDとの間の接続抵抗を抑制することができるので、駆動電圧(アノード電源電位PVDD)を低減できる。 The light extraction layer LPL is not limited to the configuration shown in FIG. 10, and may be changed as appropriate. For example, the light extraction layer LPL may omit the top LPLd. In this case, the upper surface of the light emitting element LED is in direct contact with the cathode electrode CD. In other words, the cathode terminal ELED2 (see FIG. 6) of the light emitting element LED is in direct contact with the cathode electrode CD. As a result, the connection resistance between the cathode terminal ELED2 and the cathode electrode CD can be suppressed, so that the drive voltage (anode power supply potential PVDD) can be reduced.
 また、光取出し層LPLは、アノード電極ADと重なる全領域に設けられている。ただしこれに限定されず、光取出し層LPLは、平面視で、アノード電極ADよりも大きい面積を有していてもよく、あるいはアノード電極ADよりも小さい面積を有していてもよい。 Also, the light extraction layer LPL is provided in the entire region overlapping with the anode electrode AD. However, the present invention is not limited to this, and the light extraction layer LPL may have a larger area than the anode electrode AD or a smaller area than the anode electrode AD in plan view.
 光取出し層LPLの材料として酸化チタン層を例示したが、これに限定されない。光取出し層LPLの材料として、高屈折率で透光性を有する材料が好ましく、例えば、酸化タンタル、酸化ニオブ、バリウムチタン酸化物等が適用可能である。また、光取出し層LPLの厚さも、あくまで一例であり適宜変更できる。また、第2基板SU2と円偏光板CPとの間に紫外線吸収層を設けてもよい。光取出し層LPLの材料として酸化チタンを用いた場合、酸化チタンは紫外線を吸収するため、第2平坦化層LL2が光分解する可能性がある。紫外線吸収層を設けることにより、第2平坦化層LL2への紫外線の入射が低減され、光分解反応を抑制できる。 The titanium oxide layer is exemplified as the material of the light extraction layer LPL, but the material is not limited to this. As a material of the light extraction layer LPL, a material having a high refractive index and a light-transmitting property is preferable, and for example, tantalum oxide, niobium oxide, barium titanium oxide, or the like can be applied. Further, the thickness of the light extraction layer LPL is merely an example and can be changed as appropriate. Further, an ultraviolet absorbing layer may be provided between the second substrate SU2 and the circularly polarizing plate CP. When titanium oxide is used as the material of the light extraction layer LPL, titanium oxide absorbs ultraviolet rays, and thus the second flattening layer LL2 may be photodecomposed. By providing the ultraviolet absorbing layer, the incidence of ultraviolet rays on the second flattening layer LL2 is reduced, and the photolysis reaction can be suppressed.
(第3実施形態の第3変形例)
 図12は、第3実施形態の第3変形例に係る表示装置において、光の伝播を説明するための説明図である。図12に示すように、第3変形例において、光取出し層LPLの表面に複数の微小な凹部COCが設けられる。凹部COCは、側部LPLa及び延出部LPLcに設けられる。ただし、凹部COCは、傾斜部LPLbにも設けられていてもよい。凹部COCは、光取出し層LPLの表面を削って形成することができ、例えば、サンドブラストなどの研磨剤を光取出し層LPLに吹き付ける方法で形成できる。
(Third Modification of Third Embodiment)
FIG. 12 is an explanatory diagram for explaining light propagation in the display device according to the third modified example of the third embodiment. As shown in FIG. 12, in the third modification, a plurality of minute recesses COC are provided on the surface of the light extraction layer LPL. The concave portion COC is provided in the side portion LPLa and the extending portion LPLc. However, the concave portion COC may also be provided in the inclined portion LPLb. The recess COC can be formed by shaving the surface of the light extraction layer LPL, and can be formed by, for example, a method of spraying an abrasive such as sandblast on the light extraction layer LPL.
 延出部LPLcの内部を伝播する光Lbは、延出部LPLcと第2平坦化層LL2との界面のうち、凹部COCが設けられていない領域で反射する。凹部COCが設けられた部分では、局所的に界面が傾いており、凹部COCが設けられていない領域とは、光Lbの入射角が異なる。このため、光Lcは、効率よく第2平坦化層LL2側に出射される。 The light Lb propagating inside the extended portion LPLc is reflected by a region of the interface between the extended portion LPLc and the second flattening layer LL2 where the concave portion COC is not provided. In the portion where the concave portion COC is provided, the interface is locally inclined, and the incident angle of the light Lb is different from that in the region where the concave portion COC is not provided. Therefore, the light Lc is efficiently emitted to the second flattening layer LL2 side.
(第3実施形態の第4変形例)
 図13は、第3実施形態の第4変形例に係る表示装置において、光の伝播の他の例を説明するための説明図である。図13に示すように、第4変形例において、光取出し層LPLの表面に複数の微小な凸部COVが設けられる。凸部COVは、側部LPLa及び延出部LPLcに設けられる。ただし、凸部COVは、傾斜部LPLbにも設けられていてもよい。凸部COVは、光取出し層LPLと同じ材料、例えば酸化チタンの微粒子を付着させることで形成できる。より具体的には、第2平坦化層LL2を構成する有機材料中に酸化チタンの微粒子を混合させて第2平坦化層LL2を形成し、第2平坦化層LL2中の微粒子の一部が、光取出し層LPLの表面に付着することで凸部COVが形成される。
(Fourth Modification of Third Embodiment)
FIG. 13 is an explanatory diagram for explaining another example of light propagation in the display device according to the fourth modification of the third embodiment. As shown in FIG. 13, in the fourth modification, a plurality of minute convex portions COV are provided on the surface of the light extraction layer LPL. The convex portion COV is provided on the side portion LPLa and the extension portion LPLc. However, the convex portion COV may also be provided in the inclined portion LPLb. The convex portion COV can be formed by adhering the same material as the light extraction layer LPL, for example, fine particles of titanium oxide. More specifically, titanium oxide fine particles are mixed in the organic material forming the second flattening layer LL2 to form the second flattening layer LL2, and some of the fine particles in the second flattening layer LL2 are The convex portion COV is formed by adhering to the surface of the light extraction layer LPL.
 第4変形例においても、凸部COVが設けられた部分では、局所的に界面が傾いており、凸部COVが設けられていない領域とは、光Lbの入射角度が異なる。このため、光Lcは効率よく第2平坦化層LL2側に出射される。なお、図12及び図13の構成に限定されず、光取出し層LPLの表面に複数の微小な凹凸構造が形成されていてもよい。具体的には、逆スパッタ法などにより、光取出し層LPLの表面を粗面化することで、凹凸構造を形成してもよい。 Also in the fourth modified example, the interface is locally tilted in the portion where the convex portion COV is provided, and the incident angle of the light Lb is different from the region where the convex portion COV is not provided. Therefore, the light Lc is efficiently emitted to the second flattening layer LL2 side. Note that the configuration is not limited to the configurations shown in FIGS. 12 and 13, and a plurality of minute uneven structures may be formed on the surface of the light extraction layer LPL. Specifically, the concavo-convex structure may be formed by roughening the surface of the light extraction layer LPL by a reverse sputtering method or the like.
 なお、第3実施形態、第3変形例及び第4変形例においても、上述した第2実施形態、第1変形例及び第2変形例の構成を適用することができる。例えば、第3実施形態、第3変形例及び第4変形例において、壁状構造WLを設けて、壁状構造WLの壁面に沿ってアノード電極AD及び光取出し層LPLを設けてもよい。あるいは、第1容量窒化膜LSN1の上に複数の凸状構造を設けて、アノード電極AD及び光取出し層LPLに凸状構造に倣った凸部が形成されてもよい。 The configurations of the second embodiment, the first modified example, and the second modified example described above can also be applied to the third embodiment, the third modified example, and the fourth modified example. For example, in the third embodiment, the third modified example, and the fourth modified example, the wall-shaped structure WL may be provided, and the anode electrode AD and the light extraction layer LPL may be provided along the wall surface of the wall-shaped structure WL. Alternatively, a plurality of convex structures may be provided on the first capacitive nitride film LSN1 to form convex parts on the anode electrode AD and the light extraction layer LPL that follow the convex structures.
(第4実施形態)
 図14は、第4実施形態に係る表示装置を示す断面図である。図14に示すように、第4実施形態では、上述した第2実施形態と同様に、アノード電極ADは凹状構造を有する。第4実施形態では、第2平坦化層LL2に換えて、アノード電極ADの凹状構造の内部に蛍光体層FLが設けられている。蛍光体層FLは、アノード電極ADの上に設けられ、少なくとも発光素子LEDの側面を覆う。
(Fourth Embodiment)
FIG. 14 is a sectional view showing the display device according to the fourth embodiment. As shown in FIG. 14, in the fourth embodiment, the anode electrode AD has a concave structure as in the second embodiment described above. In the fourth embodiment, instead of the second flattening layer LL2, the phosphor layer FL is provided inside the concave structure of the anode electrode AD. The phosphor layer FL is provided on the anode electrode AD and covers at least the side surface of the light emitting element LED.
 さらに、第2基板SU2の第1基板SU1と対向する面にカラーフィルタCFが設けられる。カラーフィルタCFを覆ってオーバーコート層OCが設けられ、オーバーコート層OCに第2共通電極CE2及び第2配向膜AL2が設けられる。カラーフィルタCFは、絶縁層(第3平坦化層LL3)、画素電極PE、液晶層LC及び共通電極(第2共通電極CE2)を介して蛍光体層FLと対向する。 Further, a color filter CF is provided on the surface of the second substrate SU2 facing the first substrate SU1. An overcoat layer OC is provided to cover the color filter CF, and the second common electrode CE2 and the second alignment film AL2 are provided on the overcoat layer OC. The color filter CF faces the phosphor layer FL via the insulating layer (third planarization layer LL3), the pixel electrode PE, the liquid crystal layer LC, and the common electrode (second common electrode CE2).
 蛍光体層FL及びカラーフィルタCFは、第1発光表示画素EPx1、第2発光表示画素EPx2及び第3発光表示画素EPx3ごとに、異なる種類が用いられる。第1発光表示画素EPx1には、赤色蛍光体層及び赤色カラーフィルタが設けられる。第2発光表示画素EPx2には、緑色蛍光体層及び緑色カラーフィルタが設けられる。第3発光表示画素EPx3には、青色蛍光体層及び青色カラーフィルタが設けられる。 Different types of phosphor layers FL and color filters CF are used for each of the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3. A red phosphor layer and a red color filter are provided in the first light emitting display pixel EPx1. A green phosphor layer and a green color filter are provided in the second light emitting display pixel EPx2. A blue phosphor layer and a blue color filter are provided in the third light emitting display pixel EPx3.
 発光素子LEDは、第1発光表示画素EPx1、第2発光表示画素EPx2及び第3発光表示画素EPx3のいずれも、青色発光素子BLEDが用いられる。各発光表示画素EPxで同一の発光素子LEDが用いられるため、表示装置DSPの製造工程において、発光素子LEDの配列工程を簡略化することができる。発光素子LEDは、発光色により発光効率が異なる。本実施形態では、比較的優れた発光効率を有する青色発光素子BLEDを各発光表示画素EPxに用いている。 As the light emitting element LED, a blue light emitting element BLED is used for each of the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3. Since the same light emitting element LED is used in each light emitting display pixel EPx, the step of arranging the light emitting element LEDs can be simplified in the manufacturing process of the display device DSP. The luminous efficiency of the light emitting element LED varies depending on the color of light emitted. In the present embodiment, the blue light emitting element BLED having relatively excellent light emitting efficiency is used for each light emitting display pixel EPx.
 赤色蛍光体層、緑色蛍光体層、青色蛍光体層は、それぞれ赤色発光、緑色発光、青色発光の量子ドットを混合したネガ型レジストをパターニングして形成される。量子ドットは、カドミウムセレン(CdSe)のコア構造と、これを取り巻く硫化亜鉛(ZnS)のシェル構造で構成される。赤色発光、緑色発光、青色発光の量子ドットの粒子径は、それぞれ波長630nm、530nm、460nmに蛍光の極大波長を示すように調整されている。量子ドットの吸収スペクトルは連続的で、青色発光素子BLEDの極大発光波長においても十分な吸収を示す。また、シェル構造の表面にはネガ型レジストとの相溶性を向上するための有機分子鎖を有する。 The red phosphor layer, the green phosphor layer, and the blue phosphor layer are formed by patterning a negative resist in which red-emitting, green-emitting, and blue-emitting quantum dots are mixed. The quantum dot is composed of a cadmium selenium (CdSe) core structure and a zinc sulfide (ZnS) shell structure surrounding the core structure. The particle diameters of the red, green, and blue light emitting quantum dots are adjusted so that the fluorescence maximum wavelengths are shown at wavelengths of 630 nm, 530 nm, and 460 nm, respectively. The absorption spectrum of the quantum dots is continuous and exhibits sufficient absorption even at the maximum emission wavelength of the blue light emitting device BLED. Further, the surface of the shell structure has an organic molecular chain for improving the compatibility with the negative resist.
 なお、これに限定されず、非カドミウム系の量子ドットも適用可能である。非カドミウム系の量子ドットとして、燐化インジウム(InP)のコア構造と、硫化亜鉛(ZnS)のシェル構造で構成されるものが挙げられる。 However, the present invention is not limited to this, and non-cadmium-based quantum dots can also be applied. Examples of non-cadmium-based quantum dots include those having a core structure of indium phosphide (InP) and a shell structure of zinc sulfide (ZnS).
 カラーフィルタCFは、赤色顔料、緑色顔料、青色顔料をそれぞれ混合したネガ型レジストをパターニングして形成される。カラーフィルタCFの層厚は、例えば2μm程度である。カラーフィルタCFは、青色発光素子BLEDから出射された青色の波長成分の光を吸収して、第2基板SU2側に出射される光の色純度を向上させることができる。また、カラーフィルタCFにより、蛍光体層FLが外光によって発光することを抑制できる。 The color filter CF is formed by patterning a negative resist in which a red pigment, a green pigment and a blue pigment are mixed. The layer thickness of the color filter CF is, for example, about 2 μm. The color filter CF can absorb the light of the blue wavelength component emitted from the blue light emitting element BLED and improve the color purity of the light emitted to the second substrate SU2 side. Further, the color filter CF can suppress the phosphor layer FL from emitting light by external light.
 カラーフィルタCFは、第1基板SU1側に設けられていてもよい。カラーフィルタCFは、例えば、蛍光体層FLの上に積層されてもよい。 The color filter CF may be provided on the first substrate SU1 side. The color filter CF may be stacked on the phosphor layer FL, for example.
 図14に示すように、青色発光素子BLEDから出射された光Le2、Le3は、それぞれアノード電極ADに入射して反射され、上側に進行方向が向けられる。アノード電極底部ADaには、第2実施形態と同様に凸状構造PTによる凸部が形成されている。このため、光Le2はアノード電極底部ADaで散乱される。光Le2、Le3は、このような経路で蛍光体層FLを通過することで、蛍光体層FLによる吸収発光過程を経て波長変換される。 As shown in FIG. 14, the lights Le2 and Le3 emitted from the blue light emitting element BLED are respectively incident on and reflected by the anode electrode AD, and the traveling direction is directed to the upper side. On the anode electrode bottom portion ADa, the convex portion having the convex structure PT is formed as in the second embodiment. Therefore, the light Le2 is scattered by the bottom portion ADa of the anode electrode. The lights Le2 and Le3 are wavelength-converted by passing through the phosphor layer FL through such a path and undergoing an absorption and emission process by the phosphor layer FL.
 蛍光体層FLは等方的に発光する。本実施形態では、蛍光体層FLは、アノード電極底部ADaとアノード電極傾斜部ADbと青色発光素子BLEDとで囲まれている。このため、等方的に発光した蛍光の進行方向がアノード電極AD及び青色発光素子BLEDにより反射されて、第1基板SU1の法線方向に近い方向に変換される。そして、蛍光は、第2基板SU2側に出射する。これにより、表示装置DSPは、光取出し効率を向上させることができる。 The phosphor layer FL emits light isotropically. In the present embodiment, the phosphor layer FL is surrounded by the anode electrode bottom portion ADa, the anode electrode inclined portion ADb, and the blue light emitting element BLED. Therefore, the traveling direction of the fluorescence emitted isotropically is reflected by the anode electrode AD and the blue light emitting element BLED, and is converted to a direction close to the normal direction of the first substrate SU1. Then, the fluorescence is emitted to the second substrate SU2 side. As a result, the display device DSP can improve the light extraction efficiency.
 蛍光体層FLで発光した光Lf2、Lf3は、カラーフィルタCFを通過して、第2基板SU2側の外部に出射される。また、カラーフィルタCFは、青色発光素子BLEDから出射された光Le2、Le3のうち波長変換されなかった成分を吸収する。これにより、カラーフィルタCFを通過した光の色純度が向上する。また、青色発光素子BLEDの上面から出射された光Le1は、蛍光体層FLを通過しないでカラーフィルタCFに入射して吸収される。また、カラーフィルタCFは、外部から入射する光のうち、蛍光体層FLを励起する成分を吸収する。これにより、蛍光体層FLが画像信号に関係しない発光を行うことを抑制できる。 The lights Lf2 and Lf3 emitted from the phosphor layer FL pass through the color filter CF and are emitted to the outside on the second substrate SU2 side. Further, the color filter CF absorbs the components of the lights Le2 and Le3 emitted from the blue light emitting element BLED that have not been wavelength-converted. This improves the color purity of the light that has passed through the color filter CF. Further, the light Le1 emitted from the upper surface of the blue light emitting element BLED does not pass through the phosphor layer FL and is incident on and absorbed by the color filter CF. Further, the color filter CF absorbs a component that excites the phosphor layer FL in the light incident from the outside. This can prevent the phosphor layer FL from emitting light that is not related to the image signal.
 具体的には、第1発光表示画素EPx1において、蛍光体層FLは、赤色蛍光体層であり、青色発光素子BLEDから青色の光が入射されて赤色の光を発光する。カラーフィルタCFは、赤色カラーフィルタであり、赤色以外の光の成分を吸収する。第2発光表示画素EPx2において、蛍光体層FLは、緑色蛍光体層であり、青色発光素子BLEDから青色の光が入射されて緑色の光を発光する。カラーフィルタCFは、緑色カラーフィルタであり、緑色以外の光の成分を吸収する。第3発光表示画素EPx3において、蛍光体層FLは、青色蛍光体層であり、青色発光素子BLEDから青色の光が入射されて青色の光を発光する。カラーフィルタCFは、青色カラーフィルタであり、青色以外の光の成分を吸収する。なお、第3発光表示画素EPx3において、蛍光体層FLに換えて、光散乱層を設けてもよい。 Specifically, in the first light emitting display pixel EPx1, the phosphor layer FL is a red phosphor layer, and blue light is incident from the blue light emitting element BLED to emit red light. The color filter CF is a red color filter and absorbs light components other than red. In the second light emitting display pixel EPx2, the phosphor layer FL is a green phosphor layer, and blue light is incident from the blue light emitting element BLED to emit green light. The color filter CF is a green color filter and absorbs light components other than green. In the third light emitting display pixel EPx3, the phosphor layer FL is a blue phosphor layer, and blue light is incident from the blue light emitting element BLED and emits blue light. The color filter CF is a blue color filter and absorbs light components other than blue. In the third light emitting display pixel EPx3, a light scattering layer may be provided instead of the phosphor layer FL.
(第4実施形態の第5変形例)
 図15は、第4実施形態の第5変形例に係る表示装置を示す断面図である。図15に示すように、第5変形例では、アノード電極ADの凹状構造の内部に第1蛍光体層FL1及び第2蛍光体層FL2が設けられている。第1蛍光体層FL1は、青色発光素子BLEDの側面を覆って、アノード電極底部ADaとアノード電極傾斜部ADbと青色発光素子BLEDとで囲まれた領域に設けられる。第2蛍光体層FL2は、青色発光素子BLEDの上面及び第1蛍光体層FL1を覆って設けられる。第2蛍光体層FL2は、カソード電極CDを覆って、第1蛍光体層FL1とアノード電極傾斜部ADbと第2容量窒化膜LSN2とで囲まれた領域に設けられる。
(Fifth Modification of Fourth Embodiment)
FIG. 15 is a sectional view showing a display device according to a fifth modified example of the fourth embodiment. As shown in FIG. 15, in the fifth modified example, the first phosphor layer FL1 and the second phosphor layer FL2 are provided inside the concave structure of the anode electrode AD. The first phosphor layer FL1 covers the side surface of the blue light emitting element BLED and is provided in a region surrounded by the anode electrode bottom portion ADa, the anode electrode inclined portion ADb, and the blue light emitting element BLED. The second phosphor layer FL2 is provided so as to cover the upper surface of the blue light emitting element BLED and the first phosphor layer FL1. The second phosphor layer FL2 covers the cathode electrode CD and is provided in a region surrounded by the first phosphor layer FL1, the anode electrode inclined portion ADb, and the second capacitor nitride film LSN2.
 青色発光素子BLEDの上面から出射された光Le1は、第2蛍光体層FL2に入射して波長変換される。第2蛍光体層FL2で発光した光Lf1は、カラーフィルタCFを通過して、第2基板SU2側の外部に出射される。これにより、表示装置DSPは、光Le1も外部に取出すことができ、光取出し効率を向上することができる。また、青色発光素子BLEDから出射された光Le2、Le3は、第1蛍光体層FL1及び第2蛍光体層FL2を通過する。1層の蛍光体層FLを設けた場合に比べ、第1蛍光体層FL1及び第2蛍光体層FL2の合計の厚さが厚くなる。これにより、光Le2、Le3の波長変換効率も向上できる。表示装置DSPは、主に低照度での表示の明るさを向上することができる。 The light Le1 emitted from the upper surface of the blue light emitting element BLED enters the second phosphor layer FL2 and undergoes wavelength conversion. The light Lf1 emitted from the second phosphor layer FL2 passes through the color filter CF and is emitted to the outside on the second substrate SU2 side. Thereby, the display device DSP can also extract the light Le1 to the outside, and can improve the light extraction efficiency. Further, the lights Le2 and Le3 emitted from the blue light emitting element BLED pass through the first phosphor layer FL1 and the second phosphor layer FL2. The total thickness of the first phosphor layer FL1 and the second phosphor layer FL2 becomes thicker than in the case where one phosphor layer FL is provided. Thereby, the wavelength conversion efficiency of the lights Le2 and Le3 can also be improved. The display device DSP can improve the brightness of the display mainly in low illuminance.
(第4実施形態の第6変形例)
 図16は、第4実施形態の第6変形例に係る表示装置を示す断面図である。図16に示すように、第6変形例では、発光表示画素EPxに反射層RFが設けられている。反射層RFは、発光素子LEDと液晶層LCとの間に設けられ、発光素子LEDの上面を覆う。具体的には、反射層RFは、蛍光体層FL及び第3平坦化層LL3と、画素電極PEとの間に設けられる。反射層RFは、例えばアルミニウム、銀などの金属材料が用いられる。
(Sixth Modification of Fourth Embodiment)
FIG. 16 is a cross-sectional view showing a display device according to a sixth modified example of the fourth embodiment. As shown in FIG. 16, in the sixth modified example, the reflective layer RF is provided in the light emitting display pixel EPx. The reflective layer RF is provided between the light emitting element LED and the liquid crystal layer LC and covers the upper surface of the light emitting element LED. Specifically, the reflection layer RF is provided between the phosphor layer FL and the third flattening layer LL3, and the pixel electrode PE. For the reflective layer RF, a metal material such as aluminum or silver is used.
 反射層RFの平面視での面積は、蛍光体層FL及びアノード電極ADの平面視での面積よりも小さい。反射層RFの端部は、アノード電極ADと離隔しており、アノード電極ADの上端との間に開口部が設けられている。発光素子LEDから上側に向けて出射される光Le1は、反射層RFにより反射されて蛍光体層FLに入射する。そして蛍光体層FLで発光した光Lf1、Lf2、Lf3は、開口部を通って第2基板SU2側に出射される。 The area of the reflection layer RF in plan view is smaller than the areas of the phosphor layer FL and the anode electrode AD in plan view. An end of the reflection layer RF is separated from the anode electrode AD, and an opening is provided between the end of the reflection layer RF and the upper end of the anode electrode AD. The light Le1 emitted upward from the light emitting element LED is reflected by the reflective layer RF and enters the phosphor layer FL. Then, the lights Lf1, Lf2, and Lf3 emitted from the phosphor layer FL are emitted to the second substrate SU2 side through the openings.
 第6変形例では、上述した第4実施形態及び第5変形例に比べて、上側に向けて出射される光Le1の、蛍光体層FLの内部を通る経路が長くなる。このため、蛍光体層FLは、効果的に発光素子LEDの光を吸収することができる。 In the sixth modified example, the path of the light Le1 emitted toward the upper side through the inside of the phosphor layer FL becomes longer than in the fourth embodiment and the fifth modified example described above. Therefore, the phosphor layer FL can effectively absorb the light of the light emitting element LED.
 また、第6変形例において、カラーフィルタCFは、平面視で反射層RFの端部と、アノード電極ADの上端との間の開口部を覆うように設けられている。言い換えると、カラーフィルタCFは、平面視で反射層RFと重なる領域に開口部が設けられている。このため、第1反射表示画素RPx1による反射表示において、外部から入射した光Lr3の一部は、カラーフィルタCFの開口部を通って反射層RFで反射され、第2基板SU2側の外部に出射される。つまり、反射層RFは、反射表示における反射板として機能する。光Lr3は、カラーフィルタCF及び蛍光体層FLを通過せずに反射層RFで反射される。このため、第6変形例では、カラーフィルタCFを通過する場合や、反射層RFを設けない場合に比べて、反射表示における光の反射率が向上する。 In addition, in the sixth modification, the color filter CF is provided so as to cover the opening between the end of the reflective layer RF and the upper end of the anode electrode AD in plan view. In other words, the color filter CF has an opening provided in a region overlapping the reflection layer RF in plan view. Therefore, in the reflective display by the first reflective display pixel RPx1, a part of the light Lr3 incident from the outside is reflected by the reflective layer RF through the opening of the color filter CF and is emitted to the outside on the second substrate SU2 side. To be done. That is, the reflective layer RF functions as a reflective plate in reflective display. The light Lr3 is reflected by the reflection layer RF without passing through the color filter CF and the phosphor layer FL. Therefore, in the sixth modification, the reflectance of light in the reflective display is improved as compared with the case where the color filter CF is passed or the case where the reflective layer RF is not provided.
(第4実施形態の第7変形例)
 図17は、第4実施形態の第7変形例に係る表示装置を示す断面図である。図17に示すように、第7変形例では、第3平坦化層LL3の上に凸状構造PRが設けられている。複数の凸状構造PRは、第2実施形態の凸状構造PT(図9参照)と同様に、第3平坦化層LL3の上に有機レジストをパターニングすることで形成できる。
(Seventh Modification of Fourth Embodiment)
FIG. 17 is a sectional view showing a display device according to a seventh modified example of the fourth embodiment. As shown in FIG. 17, in the seventh modified example, the convex structure PR is provided on the third flattening layer LL3. The plurality of convex structures PR can be formed by patterning an organic resist on the third planarization layer LL3, similarly to the convex structures PT of the second embodiment (see FIG. 9).
 反射層RF、画素電極PE及び第1配向膜AL1は、第3平坦化層LL3及び複数の凸状構造PRの上に設けられる。これにより、反射層RFの表面にも、凸状構造PRの形状に倣って複数の凸部が形成される。 The reflection layer RF, the pixel electrode PE, and the first alignment film AL1 are provided on the third planarization layer LL3 and the plurality of convex structures PR. Thereby, a plurality of convex portions are formed on the surface of the reflective layer RF, following the shape of the convex structure PR.
 発光表示において、発光素子LEDから出射された光Le1は、反射層RFに形成された凸部で拡散反射される。これにより、反射層RFで反射された光のうち、発光素子LEDに戻る光の成分が抑制されて、蛍光体層FLに入射する光の成分が増大する。したがって、第7変形例では、発光表示における蛍光体層FLの発光効率を向上することができる。 In the light emitting display, the light Le1 emitted from the light emitting element LED is diffusely reflected by the convex portion formed on the reflection layer RF. As a result, of the light reflected by the reflective layer RF, the component of light returning to the light emitting element LED is suppressed, and the component of light incident on the phosphor layer FL increases. Therefore, in the seventh modified example, the luminous efficiency of the phosphor layer FL in the light emitting display can be improved.
 反射表示において、外部から入射した光Lr3は、カラーフィルタCFの開口部を通って反射層RFで拡散反射される。これにより、外部からの光Lr3が特定の狭い角度範囲から入射した場合であっても、反射光は広い角度範囲に散乱されて出射される。このため、表示装置DSPの角度変化に伴う明るさの変化を抑制することができ、より観察しやすい反射表示が得られる。 In the reflective display, the light Lr3 incident from the outside passes through the opening of the color filter CF and is diffusely reflected by the reflective layer RF. Thereby, even when the light Lr3 from the outside enters from a specific narrow angle range, the reflected light is scattered and emitted in a wide angle range. Therefore, it is possible to suppress a change in brightness associated with a change in the angle of the display device DSP, and it is possible to obtain a reflective display that is easier to observe.
 なお、第4実施形態及び第5変形例から第7変形例においても、第2実施形態、第3実施形態及び第1変形例から第4変形例の構成を適用することができる。また、第5変形例の構成と、第6変形例又は第7変形例の構成とを組み合わせてもよい。なお、第4実施形態及び第5変形例から第7変形例おいて、アノード電極ADの下に凸状構造PTが設けられていなくてもよい。 Note that the configurations of the second embodiment, the third embodiment, and the first modified example to the fourth modified example can be applied to the fourth embodiment and the fifth modified example to the seventh modified example. Further, the configuration of the fifth modified example and the configuration of the sixth modified example or the seventh modified example may be combined. In the fourth embodiment and the fifth to seventh modifications, the convex structure PT may not be provided below the anode electrode AD.
(第5実施形態)
 図18は、第5実施形態に係る表示装置の、複数の画素を示す平面図である。図19は、図18におけるXIX-XIX’断面図である。図18に示すように、第5実施形態において、1つの画素Pixは、第1反射表示画素RPx1、第1発光表示画素EPx1、第2発光表示画素EPx2及び第3発光表示画素EPx3に加えて、第2反射表示画素RPx2及び第3反射表示画素RPx3を有する。つまり、画素Pixは、複数の発光表示画素EPx及び複数の反射表示画素RPxを有し、例えば、6つの画素を含む。ただし、画素Pixは、7つ以上の画素を有していてもよい。
(Fifth Embodiment)
FIG. 18 is a plan view showing a plurality of pixels of the display device according to the fifth embodiment. 19 is a sectional view taken along line XIX-XIX ′ in FIG. As shown in FIG. 18, in the fifth embodiment, one pixel Pix includes, in addition to the first reflective display pixel RPx1, the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3, The second reflective display pixel RPx2 and the third reflective display pixel RPx3 are included. That is, the pixel Pix has a plurality of light emitting display pixels EPx and a plurality of reflective display pixels RPx, and includes, for example, six pixels. However, the pixel Pix may have seven or more pixels.
 第1反射表示画素RPx1、第2反射表示画素RPx2及び第3反射表示画素RPx3は、第1方向Dxに配列される。第1発光表示画素EPx1、第2発光表示画素EPx2及び第3発光表示画素EPx3も、第1方向Dxに配列される。また、第1反射表示画素RPx1と第1発光表示画素EPx1とは、第2方向Dyに並ぶ。第2反射表示画素RPx2と第2発光表示画素EPx2とは、第2方向Dyに並ぶ。第3反射表示画素RPx3と第3発光表示画素EPx3とは、第2方向Dyに並ぶ。 The first reflective display pixel RPx1, the second reflective display pixel RPx2, and the third reflective display pixel RPx3 are arranged in the first direction Dx. The first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3 are also arranged in the first direction Dx. In addition, the first reflective display pixel RPx1 and the first light emitting display pixel EPx1 are arranged in the second direction Dy. The second reflective display pixel RPx2 and the second light emitting display pixel EPx2 are arranged in the second direction Dy. The third reflective display pixel RPx3 and the third light emitting display pixel EPx3 are arranged in the second direction Dy.
 第1反射表示画素RPx1、第2反射表示画素RPx2及び第3反射表示画素RPx3には、それぞれ、金属電極ME及び画素電極PEが設けられている。第1反射表示画素RPx1、第2反射表示画素RPx2及び第3反射表示画素RPx3には、それぞれ赤色カラーフィルタRCF、緑色カラーフィルタGCF、青色カラーフィルタBCFが設けられている。これにより、第1反射表示画素RPx1、第2反射表示画素RPx2及び第3反射表示画素RPx3は、それぞれ赤色、緑色、青色の光を表示する。これにより、第5実施形態の表示装置DSPは、反射表示においてカラー表示を実現できる。 A metal electrode ME and a pixel electrode PE are provided on the first reflective display pixel RPx1, the second reflective display pixel RPx2, and the third reflective display pixel RPx3, respectively. A red color filter RCF, a green color filter GCF, and a blue color filter BCF are provided in the first reflective display pixel RPx1, the second reflective display pixel RPx2, and the third reflective display pixel RPx3, respectively. As a result, the first reflective display pixel RPx1, the second reflective display pixel RPx2, and the third reflective display pixel RPx3 display red, green, and blue light, respectively. As a result, the display device DSP of the fifth embodiment can realize color display in reflective display.
 第1発光表示画素EPx1、第2発光表示画素EPx2及び第3発光表示画素EPx3には、それぞれ、赤色発光素子RLED、緑色発光素子GLED、青色発光素子BLEDが設けられる。赤色発光素子RLED、緑色発光素子GLED、青色発光素子BLEDには、それぞれアノード電極ADが接続される。 A red light emitting element RLED, a green light emitting element GLED, and a blue light emitting element BLED are provided in the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3, respectively. An anode electrode AD is connected to each of the red light emitting element RLED, the green light emitting element GLED, and the blue light emitting element BLED.
 第1反射表示画素RPx1の画素電極PEは、第1反射表示画素RPx1の金属電極ME、第1発光表示画素EPx1の赤色発光素子RLED及びこれに接続されたアノード電極ADに重なって連続して設けられる。同様に、第2反射表示画素RPx2の画素電極PEは、第2反射表示画素RPx2の金属電極ME、第2発光表示画素EPx2の緑色発光素子GLED及びこれに接続されたアノード電極ADに重なって連続して設けられる。第3反射表示画素RPx3の画素電極PEは、第3反射表示画素RPx3の金属電極ME、第3発光表示画素EPx3の青色発光素子BLED及びこれに接続されたアノード電極ADに重なって連続して設けられる。 The pixel electrode PE of the first reflective display pixel RPx1 is continuously provided so as to overlap with the metal electrode ME of the first reflective display pixel RPx1, the red light emitting element RLED of the first light emitting display pixel EPx1, and the anode electrode AD connected thereto. Be done. Similarly, the pixel electrode PE of the second reflective display pixel RPx2 continuously overlaps with the metal electrode ME of the second reflective display pixel RPx2, the green light emitting element GLED of the second light emitting display pixel EPx2, and the anode electrode AD connected thereto. Will be provided. The pixel electrode PE of the third reflective display pixel RPx3 is continuously provided so as to overlap with the metal electrode ME of the third reflective display pixel RPx3, the blue light emitting element BLED of the third light emitting display pixel EPx3, and the anode electrode AD connected thereto. Be done.
 これにより、第1発光表示画素EPx1、第2発光表示画素EPx2及び第3発光表示画素EPx3のアノード電極ADは、それぞれ、第1反射表示画素RPx1、第2反射表示画素RPx2及び第3反射表示画素RPx3の反射電極として機能する。これにより、反射表示においてカラー表示を行う場合であっても、反射率の低下を抑制することができる。 Accordingly, the anode electrodes AD of the first light emitting display pixel EPx1, the second light emitting display pixel EPx2, and the third light emitting display pixel EPx3 are respectively the first reflective display pixel RPx1, the second reflective display pixel RPx2, and the third reflective display pixel. It functions as a reflection electrode of RPx3. This makes it possible to suppress a decrease in reflectance even when color display is performed in reflective display.
 図19は、第1反射表示画素RPx1及び第1発光表示画素EPx1の断面構造を示す。ただし、第2反射表示画素RPx2及び第3反射表示画素RPx3は第1反射表示画素RPx1と同様の構成である。また、第2発光表示画素EPx2及び第3発光表示画素EPx3は、第1発光表示画素EPx1と同様の構成である。 FIG. 19 shows a cross-sectional structure of the first reflective display pixel RPx1 and the first light emitting display pixel EPx1. However, the second reflective display pixel RPx2 and the third reflective display pixel RPx3 have the same configuration as the first reflective display pixel RPx1. The second light emitting display pixel EPx2 and the third light emitting display pixel EPx3 have the same configuration as the first light emitting display pixel EPx1.
 図19に示すように、第1反射表示画素RPx1及び第1発光表示画素EPx1は、図9に示す第2実施形態と同様の構成である。ただし、これに限定されず、第1実施形態から第5実施形態及び各変形例の構成を適用することもできる。 As shown in FIG. 19, the first reflective display pixel RPx1 and the first light emitting display pixel EPx1 have the same configuration as the second embodiment shown in FIG. However, the present invention is not limited to this, and the configurations of the first to fifth embodiments and each modification can be applied.
 本実施形態において、カラーフィルタCF(赤色カラーフィルタRCF)は、第2基板SU2の、第1基板SU1と対向する面に設けられる。カラーフィルタCFの上にオーバーコート層OC、第2共通電極CE2、第2配向膜AL2の順に積層される。カラーフィルタCFは、第1反射表示画素RPx1の一部を覆うのみで第1反射表示画素RPx1の全面には設けられていない。つまり、カラーフィルタCFの面積は、カラーフィルタCFと重なる金属電極MEの面積よりも小さい。 In the present embodiment, the color filter CF (red color filter RCF) is provided on the surface of the second substrate SU2 that faces the first substrate SU1. An overcoat layer OC, a second common electrode CE2, and a second alignment film AL2 are sequentially stacked on the color filter CF. The color filter CF only covers a part of the first reflective display pixel RPx1 and is not provided on the entire surface of the first reflective display pixel RPx1. That is, the area of the color filter CF is smaller than the area of the metal electrode ME overlapping the color filter CF.
 これにより、光Lr2はカラーフィルタCFを通過して金属電極MEに入射する。そして、金属電極MEで反射された光Lr2のうち一部の成分は、カラーフィルタCFを通過しないで第2基板SU2側の外部に出射される。これにより、表示装置DSPは、反射表示画素RPxの反射表示における反射率を確保できる。この際、カラーフィルタCFが設けられた部分のカラー表示と、カラーフィルタCFが設けられていない部分の高反射率の白表示とが加法混色されて、高反射率のカラー表示を実現できる。 As a result, the light Lr2 passes through the color filter CF and enters the metal electrode ME. Then, some components of the light Lr2 reflected by the metal electrode ME are emitted to the outside on the second substrate SU2 side without passing through the color filter CF. Thereby, the display device DSP can secure the reflectance in the reflective display of the reflective display pixel RPx. At this time, the color display of the portion where the color filter CF is provided and the white display of the high reflectance of the portion where the color filter CF is not provided are additively mixed to realize a color display of the high reflectance.
 以上のように、第5実施形態では、第1反射表示画素RPx1、第2反射表示画素RPx2及び第3反射表示画素RPx3を有することで、反射表示もカラー表示とすることができる。これにより、表示装置DSPは、主に高照度での色純度を向上することができる。 As described above, in the fifth embodiment, by including the first reflective display pixel RPx1, the second reflective display pixel RPx2, and the third reflective display pixel RPx3, reflective display can also be color display. Thereby, the display device DSP can mainly improve the color purity at high illuminance.
 なお、図18に示す複数の反射表示画素RPx及び複数の発光表示画素EPxの配置は、あくまで一例であり、適宜変更することができる。また、図18は模式的に示した平面図であり、金属電極ME、画素電極PE、カラーフィルタCF、アノード電極AD、発光素子LEDの平面視での形状は、矩形状に限定されず、円形状、多角形状等、他の形状でもよい。また、第5実施形態においても、上述した第1実施形態から第4実施形態及び第1変形例から第7変形例の構成を適用することができる。 The arrangement of the plurality of reflective display pixels RPx and the plurality of light emitting display pixels EPx shown in FIG. 18 is merely an example, and can be changed as appropriate. Further, FIG. 18 is a schematic plan view, and the shapes of the metal electrode ME, the pixel electrode PE, the color filter CF, the anode electrode AD, and the light emitting element LED in plan view are not limited to a rectangular shape, and are circular. Other shapes such as a shape and a polygonal shape may be used. Further, the configurations of the above-described first to fourth embodiments and the first to seventh modifications can be applied to the fifth embodiment as well.
 以上、本発明の好適な実施の形態を説明したが、本発明はこのような実施の形態に限定されるものではない。実施の形態で開示された内容はあくまで一例にすぎず、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。本発明の趣旨を逸脱しない範囲で行われた適宜の変更についても、当然に本発明の技術的範囲に属する。上述した各実施形態及び各変形例の要旨を逸脱しない範囲で、構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment. The contents disclosed in the embodiments are merely examples, and various modifications can be made without departing from the spirit of the present invention. Appropriate changes made without departing from the spirit of the present invention naturally belong to the technical scope of the present invention. At least one of various omissions, replacements, and changes of the constituent elements can be performed without departing from the gist of the above-described embodiments and modified examples.
 AD アノード電極
 ADa アノード電極底部
 ADb アノード電極傾斜部
 CC 導電性接続部材
 CD カソード電極
 CE1 第1共通電極
 CE2 第2共通電極
 CF カラーフィルタ
 CH1、CH2、CH3、CH4 コンタクトホール
 CL、CLL 接続層
 DSP 表示装置
 DRT、DTRL 駆動トランジスタ
 EPx 発光表示画素
 EPx1 第1発光表示画素
 EPx2 第2発光表示画素
 EPx3 第3発光表示画素
 FL 蛍光体層
 FL1 第1蛍光体層
 FL2 第2蛍光体層
 LC 液晶層
 LED 発光素子
 LL1 第1平坦化層
 LL2 第2平坦化層
 LPL 光取出し層
 LPLa 側部
 LPLb 傾斜部
 LPLc 延出部
 LPLd 頂部
 ME 金属電極
 Pix 画素
 PT、PR 凸状構造
 RPx1 第1反射表示画素
 RPx2 第2反射表示画素
 RPx3 第3反射表示画素
 SU1 第1基板
 SU2 第2基板
 SULED 発光素子基板
 WL 壁状構造
AD Anode electrode ADa Anode electrode bottom part ADb Anode electrode inclined part CC Conductive connection member CD Cathode electrode CE1 First common electrode CE2 Second common electrode CF Color filter CH1, CH2, CH3, CH4 Contact hole CL, CLL connection layer DSP Display device DRT, DTRL Driving transistor EPx Light emitting display pixel EPx1 First light emitting display pixel EPx2 Second light emitting display pixel EPx3 Third light emitting display pixel FL phosphor layer FL1 first phosphor layer FL2 second phosphor layer LC liquid crystal layer LED light emitting element LL1 1st planarization layer LL2 2nd planarization layer LPL Light extraction layer LPLa side part LPLb inclination part LPLc extension part LPLd top ME metal electrode Pix pixel PT, PR convex structure RPx1 1st reflective display pixel RPx2 2nd reflective display pixel RPx3 Third reflective display pixel SU1 First substrate SU2 Second substrate SULED Light emitting element substrate WL Wall-shaped structure

Claims (17)

  1.  第1基板と、
     前記第1基板と対向する第2基板と、
     前記第1基板と前記第2基板との間に設けられた無機発光素子と、
     アノード電極を介して前記無機発光素子と電気的に接続された第1トランジスタと、
     前記無機発光素子を覆う絶縁層と、
     前記第1基板と前記第2基板との間に設けられた液晶層と、
     前記液晶層を挟んで対向する画素電極及び共通電極と、を有し、
     前記第1基板の一方の面に、前記第1トランジスタ、前記アノード電極、前記無機発光素子、前記絶縁層、前記画素電極、前記液晶層、前記共通電極、前記第2基板の順に積層されている
     表示装置。
    A first substrate,
    A second substrate facing the first substrate;
    An inorganic light emitting device provided between the first substrate and the second substrate;
    A first transistor electrically connected to the inorganic light emitting element through an anode electrode;
    An insulating layer covering the inorganic light emitting element,
    A liquid crystal layer provided between the first substrate and the second substrate,
    A pixel electrode and a common electrode facing each other across the liquid crystal layer,
    The first transistor, the anode electrode, the inorganic light emitting element, the insulating layer, the pixel electrode, the liquid crystal layer, the common electrode, and the second substrate are laminated in this order on one surface of the first substrate. Display device.
  2.  前記画素電極と電気的に接続された反射電極と、
     前記画素電極及び前記反射電極と電気的に接続された第2トランジスタと、を有する
     請求項1に記載の表示装置。
    A reflective electrode electrically connected to the pixel electrode,
    The display device according to claim 1, further comprising a second transistor electrically connected to the pixel electrode and the reflective electrode.
  3.  前記反射電極は、前記アノード電極と同層に設けられ、
     前記画素電極は、前記絶縁層に設けられたコンタクトホールを介して前記反射電極と電気的に接続される
     請求項2に記載の表示装置。
    The reflective electrode is provided in the same layer as the anode electrode,
    The display device according to claim 2, wherein the pixel electrode is electrically connected to the reflective electrode through a contact hole provided in the insulating layer.
  4.  前記反射電極は、前記アノード電極と同層に設けられ、前記絶縁層に設けられた導電性接続部材を介して前記画素電極と電気的に接続される
     請求項2に記載の表示装置。
    The display device according to claim 2, wherein the reflective electrode is provided in the same layer as the anode electrode, and is electrically connected to the pixel electrode via a conductive connection member provided in the insulating layer.
  5.  前記アノード電極は、金属材料を含み、前記第1基板の法線方向からの平面視で、前記無機発光素子よりも外側に延出する
     請求項1から請求項4のいずれか1項に記載の表示装置。
    The said anode electrode contains a metallic material, and it is planar view from the normal line direction of the said 1st board | substrate, and it is extended outside the said inorganic light emitting element in any one of Claim 1 to Claim 4. Display device.
  6.  前記画素電極は、複数の前記無機発光素子と、複数の前記無機発光素子にそれぞれ接続された複数の前記アノード電極とに重なる領域に亘って設けられる
     請求項1から請求項5のいずれか1項に記載の表示装置。
    The pixel electrode is provided over a region overlapping with the plurality of inorganic light emitting elements and the plurality of anode electrodes respectively connected to the plurality of inorganic light emitting elements. Display device according to.
  7.  透光性を有し、前記無機発光素子の少なくとも一部を覆う無機絶縁層を有し、
     前記無機絶縁層は、
     前記無機発光素子の側面に設けられた側部と、
     前記側部の下端側に設けられ、前記第1基板の法線方向からの平面視で、前記側部よりも前記無機発光素子の外側に延出する延出部と、を含む
     請求項1から請求項6のいずれか1項に記載の表示装置。
    Having a light-transmitting property, an inorganic insulating layer that covers at least a part of the inorganic light-emitting element,
    The inorganic insulating layer,
    A side portion provided on a side surface of the inorganic light emitting device,
    An extension portion that is provided on the lower end side of the side portion and that extends outward of the inorganic light-emitting element from the side portion in a plan view from the normal direction of the first substrate. The display device according to claim 6.
  8.  前記延出部は前記アノード電極の上に設けられる
     請求項7に記載の表示装置。
    The display device according to claim 7, wherein the extending portion is provided on the anode electrode.
  9.  前記無機絶縁層の表面に、複数の凹部又は複数の凸部が設けられる
     請求項7又は請求項8に記載の表示装置。
    The display device according to claim 7, wherein a plurality of concave portions or a plurality of convex portions are provided on the surface of the inorganic insulating layer.
  10.  前記アノード電極は、凹状構造を有し、
     前記無機発光素子は、前記凹状構造の内部に配置される
     請求項1から請求項9のいずれか1項に記載の表示装置。
    The anode electrode has a concave structure,
    The display device according to any one of claims 1 to 9, wherein the inorganic light emitting element is arranged inside the concave structure.
  11.  前記絶縁層を介して前記無機発光素子の側面と対向する壁状構造を有し、
     前記アノード電極は、
     前記無機発光素子と接続されるアノード電極底部と、
     前記壁状構造に沿って設けられ前記無機発光素子の側面と対向し、前記アノード電極底部に対して傾斜するアノード電極傾斜部と、を有する
     請求項10に記載の表示装置。
    A wall-shaped structure facing the side surface of the inorganic light-emitting element via the insulating layer,
    The anode electrode is
    An anode electrode bottom portion connected to the inorganic light emitting device,
    The display device according to claim 10, further comprising: an anode electrode inclined portion that is provided along the wall-shaped structure, faces the side surface of the inorganic light emitting element, and is inclined with respect to the anode electrode bottom portion.
  12.  前記アノード電極の前記凹状構造の内部に設けられ、少なくとも前記無機発光素子の側面を覆う蛍光体層を有する
     請求項10又は請求項11に記載の表示装置。
    The display device according to claim 10 or 11, further comprising a phosphor layer provided inside the concave structure of the anode electrode and covering at least a side surface of the inorganic light emitting element.
  13.  前記第2基板の前記第1基板と対向する面にカラーフィルタが設けられ
     前記カラーフィルタは、前記画素電極、前記液晶層及び前記共通電極を介して前記蛍光体層と対向する
     請求項12に記載の表示装置。
    The color filter is provided on a surface of the second substrate facing the first substrate, and the color filter faces the phosphor layer via the pixel electrode, the liquid crystal layer, and the common electrode. Display device.
  14.  前記蛍光体層は、第1蛍光体層と、第2蛍光体層とを有し、
     前記第1蛍光体層は、前記無機発光素子の少なくとも側面を覆って設けられ、
     前記第2蛍光体層は、前記無機発光素子の上面及び前記第1蛍光体層を覆って設けられる
     請求項12又は請求項13に記載の表示装置。
    The phosphor layer has a first phosphor layer and a second phosphor layer,
    The first phosphor layer is provided to cover at least a side surface of the inorganic light emitting element,
    The display device according to claim 12, wherein the second phosphor layer is provided so as to cover the upper surface of the inorganic light emitting element and the first phosphor layer.
  15.  前記無機発光素子と前記液晶層との間に設けられ、前記無機発光素子の上面を覆う反射層を有する
     請求項12から請求項14のいずれか1項に記載の表示装置。
    The display device according to claim 12, further comprising a reflective layer that is provided between the inorganic light emitting element and the liquid crystal layer and covers an upper surface of the inorganic light emitting element.
  16.  前記アノード電極は、複数の凸部が設けられている、
     請求項1から請求項15のいずれか1項に記載の表示装置。
    The anode electrode is provided with a plurality of protrusions,
    The display device according to any one of claims 1 to 15.
  17.  複数の反射表示画素と、複数の発光表示画素と、を有し、
     複数の前記反射表示画素のそれぞれに設けられ、前記反射表示画素の一部を覆うカラーフィルタと、を有する
     請求項1から請求項16のいずれか1項に記載の表示装置。
    A plurality of reflective display pixels and a plurality of light emitting display pixels,
    The display device according to claim 1, further comprising: a color filter that is provided in each of the plurality of reflective display pixels and covers a part of the reflective display pixel.
PCT/JP2019/036589 2018-11-15 2019-09-18 Display device WO2020100417A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018214928A JP2020085939A (en) 2018-11-15 2018-11-15 Display device
JP2018-214928 2018-11-15

Publications (1)

Publication Number Publication Date
WO2020100417A1 true WO2020100417A1 (en) 2020-05-22

Family

ID=70730683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036589 WO2020100417A1 (en) 2018-11-15 2019-09-18 Display device

Country Status (2)

Country Link
JP (1) JP2020085939A (en)
WO (1) WO2020100417A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113948626A (en) * 2020-07-17 2022-01-18 深圳市柔宇科技股份有限公司 Display device, display screen and manufacturing method of display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400221B (en) * 2020-06-19 2023-02-03 华为技术有限公司 Pixel structure for an electronic display, and electronic device comprising such a display
WO2023022250A1 (en) * 2021-08-18 2023-02-23 엘지전자 주식회사 Display device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196705A (en) * 2000-12-25 2002-07-12 Sony Corp Image display device
WO2004053819A1 (en) * 2002-12-06 2004-06-24 Citizen Watch Co., Ltd. Liquid crystal display
JP2013037139A (en) * 2011-08-05 2013-02-21 Panasonic Corp Self-luminous display device
JP2013167659A (en) * 2012-02-14 2013-08-29 Seiko Epson Corp Electro-optic device
JP2016038490A (en) * 2014-08-08 2016-03-22 株式会社半導体エネルギー研究所 Display panel, display module, and electronic apparatus
JP2017037825A (en) * 2015-08-14 2017-02-16 株式会社ジャパンディスプレイ Display device, and method of manufacturing the same
WO2017094461A1 (en) * 2015-12-01 2017-06-08 シャープ株式会社 Image-forming element
JP2018045196A (en) * 2016-09-16 2018-03-22 株式会社半導体エネルギー研究所 Display device or electronic apparatus having display device
JP2018060587A (en) * 2016-10-06 2018-04-12 株式会社半導体エネルギー研究所 Semiconductor device and display system
US20180114489A1 (en) * 2016-10-20 2018-04-26 Boe Technology Group Co., Ltd. Display panel, manufacturing method and drive method thereof, and display appratus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196705A (en) * 2000-12-25 2002-07-12 Sony Corp Image display device
WO2004053819A1 (en) * 2002-12-06 2004-06-24 Citizen Watch Co., Ltd. Liquid crystal display
JP2013037139A (en) * 2011-08-05 2013-02-21 Panasonic Corp Self-luminous display device
JP2013167659A (en) * 2012-02-14 2013-08-29 Seiko Epson Corp Electro-optic device
JP2016038490A (en) * 2014-08-08 2016-03-22 株式会社半導体エネルギー研究所 Display panel, display module, and electronic apparatus
JP2017037825A (en) * 2015-08-14 2017-02-16 株式会社ジャパンディスプレイ Display device, and method of manufacturing the same
WO2017094461A1 (en) * 2015-12-01 2017-06-08 シャープ株式会社 Image-forming element
JP2018045196A (en) * 2016-09-16 2018-03-22 株式会社半導体エネルギー研究所 Display device or electronic apparatus having display device
JP2018060587A (en) * 2016-10-06 2018-04-12 株式会社半導体エネルギー研究所 Semiconductor device and display system
US20180114489A1 (en) * 2016-10-20 2018-04-26 Boe Technology Group Co., Ltd. Display panel, manufacturing method and drive method thereof, and display appratus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113948626A (en) * 2020-07-17 2022-01-18 深圳市柔宇科技股份有限公司 Display device, display screen and manufacturing method of display device

Also Published As

Publication number Publication date
JP2020085939A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
KR102610028B1 (en) Display device
CN106842680B (en) Pixel structure and display panel with same
JP7266387B2 (en) Display device
KR20180079081A (en) Liquid crystal display device
WO2020100432A1 (en) Display device
WO2020100417A1 (en) Display device
US11824051B2 (en) Display device and tiled display device including the same
TW201740558A (en) Electro-optical device and electronic apparatus
US11316070B2 (en) Illumination device and display device
JP2007234391A (en) Electroluminescence display device and electronic apparatus
US20240168328A1 (en) Hybrid display device and spliced display device
PH12019000058A1 (en) Display device
CN113016081B (en) Display device
KR20220019198A (en) Display device
KR101927116B1 (en) Quantum rod luminescent display device
KR20210079171A (en) Light emitting display panel and light emitting display appartus using the same
US20220293684A1 (en) Display device
US20240105897A1 (en) Display device, method of manufacturing the same and tiled display device including the same
US11989481B2 (en) Display device, method of manufacturing the same and tiled display device including the same
US20220157891A1 (en) Display panel, method of manufacturing display panel, and display device
KR20230168227A (en) Display device
KR20240027175A (en) Appratus for fabricating display panel
TW202404070A (en) Electronic device
CN114078883A (en) Display device and tiled display device including the same
CN115458547A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884086

Country of ref document: EP

Kind code of ref document: A1