WO2020100286A1 - Precoated steel sheet - Google Patents

Precoated steel sheet Download PDF

Info

Publication number
WO2020100286A1
WO2020100286A1 PCT/JP2018/042475 JP2018042475W WO2020100286A1 WO 2020100286 A1 WO2020100286 A1 WO 2020100286A1 JP 2018042475 W JP2018042475 W JP 2018042475W WO 2020100286 A1 WO2020100286 A1 WO 2020100286A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
film layer
colored film
layer
precoated steel
Prior art date
Application number
PCT/JP2018/042475
Other languages
French (fr)
Japanese (ja)
Inventor
史生 柴尾
亜希子 平井
邦彦 東新
森下 敦司
植田 浩平
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020556556A priority Critical patent/JP7120322B2/en
Priority to PCT/JP2018/042475 priority patent/WO2020100286A1/en
Publication of WO2020100286A1 publication Critical patent/WO2020100286A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent

Definitions

  • the present invention relates to a precoated steel sheet.
  • precoated steel sheet a steel sheet having a colored coating precoated (hereinafter referred to as a precoated steel sheet) has been used instead of the postcoated steel sheet.
  • Precoated steel sheets are used for home appliances, building materials, automobiles and the like. Precoated steel sheets are required to have various characteristics such as corrosion resistance, workability, and designability according to their applications, and various techniques have been conventionally proposed to realize such characteristics.
  • Patent Document 1 describes a method for coating a metallic matte precoated steel sheet in which a primer coating, an intermediate coating and a metallic clear coating are coated on a metal plate. According to Patent Document 1, by this method, a metallic tone excellent in film hardness, weather resistance (light resistance, film thickness abrasion resistance), chemical resistance, corrosion resistance, workability, and designability (metallic matte film) It is described that a matte design coated metal plate can be realized.
  • Patent Document 2 has an undercoat film and an overcoat film on the surface of a metal material that has been subjected to a surface treatment, and the undercoat film contains an anticorrosion pigment having an average particle diameter of 0.01 to 2 ⁇ m.
  • a coated metal material having a concentration of 11 to 70% by weight is disclosed.
  • Patent Document 2 describes that excellent corrosion resistance and workability can be realized by using such a coated metal material.
  • the precoated steel sheet is often formed with a plurality of coatings. This increases the total film thickness of the film formed on the precoated steel sheet.
  • a solvent-based paint is often used for forming the colored film on the precoated steel sheet.
  • an incinerator and a facility against odor are required, and therefore the precoated steel sheet is generally produced in a dedicated painting line. Therefore, not only the manufacturing process of the coated original plate but also the coating process is required, which increases the manufacturing cost of the precoated steel sheet.
  • there is a demand for a technique that can realize the performance required for a precoated steel sheet such as designability, corrosion resistance, workability, and weather resistance, while being inexpensive.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a precoated steel sheet having excellent designability, corrosion resistance, workability, and weather resistance while achieving a thin colored film.
  • the present invention adopts the following means in order to solve the above problems and achieve the object.
  • a precoated steel sheet according to one aspect of the present invention is provided on a steel sheet, the steel sheet, and 1 to 25% by mass of Al, 0.1 to 13% by mass of Mg, and 0 to 2.0% by mass. % Si, the balance being a zinc alloy plating layer consisting of Zn and impurities, and at least one of a phosphate compound and a vanadium compound provided on the zinc alloy plating layer, and containing a color pigment and a binder resin.
  • a colored film layer contains the phosphoric acid compound, the concentration of the phosphoric acid compound is 0.3 to 5.0 mass in terms of P amount with respect to the total solid mass of the colored film layer.
  • the thickness direction is increased from the interface toward the surface side.
  • the colored coating layer may include the phosphoric acid compound.
  • the cross section of the colored coating layer in the thickness direction is observed by mapping with FE-EPMA, it is 2 ⁇ m in the thickness direction and parallel to the interface.
  • the cross section of the colored coating layer in the thickness direction is observed by mapping with FE-EPMA, it is 2 ⁇ m in the thickness direction and parallel to the interface.
  • 1 to 15 first regions having a phosphorus element concentration of 3% or more may be present.
  • the phosphoric acid compound may have an average particle size of 0.10 to 10 ⁇ m.
  • the colored film layer has a layer thickness of more than 8 ⁇ m and 15 ⁇ m or less, and the thickness direction from the surface of the colored film layer is the thickness direction.
  • the thickness direction In the range of 2 ⁇ m in the thickness direction, a center part in the range of 2 ⁇ m in the thickness direction centered on the center of the thickness of the colored film layer, and a range of 2 ⁇ m in the thickness direction from the interface toward the surface side.
  • the concentration of the elemental phosphorus detected in the range of 2 ⁇ m ⁇ 200 ⁇ m is measured using FE-EPMA for each of the deep areas, and the concentration of the phosphate compound in the surface portion is PA, and the concentration of the phosphate compound in the central portion is Where PA / PB is 0.5 to 2.0 and PA / PC is 0.5 to 2.0, where PB is PB and the concentration of the phosphate compound in the deep portion is PC.
  • the colored film layer has a layer thickness of 8 ⁇ m or less, and the colored film layer has a thickness of 2 ⁇ m from the surface in the thickness direction.
  • the FE-EPMA is used to map and observe the cross section in the thickness direction with respect to each of the surface part which is the range and the deep part which is the range of 2 ⁇ m in the thickness direction from the interface toward the surface side, PA / PC may be 0.5 to 2.0, where PA is the concentration of the phosphoric acid compound in the part and PC is the concentration of the phosphoric acid compound in the deep part.
  • the colored coating layer may include the vanadium compound.
  • the vanadium compound may have an average particle size of 0.10 to 10 ⁇ m.
  • the layer thickness of the colored film layer is T
  • T is 200 ⁇ m from the surface of the colored film layer in the thickness direction and in the direction parallel to the interface.
  • the concentration of vanadium element detected using FE-EPMA in the range of PD is PD
  • T / 2 in the thickness direction from the center of the layer thickness of the colored film layer to the interface
  • 200 ⁇ m in the interface direction is 200 ⁇ m in the interface direction.
  • PE / PD may be 1.0 to 5.0.
  • the zinc alloy plating layer contains 4 to 22 mass% of Al and 1 to 5 mass% of Mg. You may. (12) In the precoated steel sheet according to any one of the above (8) to (11), the zinc alloy plating layer may contain 0.01 to 2.0 mass% of Si. (13) In the precoated steel sheet according to any one of the above (8) to (12), the coloring pigment may be an aluminum pigment. (14) In the precoated steel sheet according to (13), the color pigment may have an average particle diameter of 7 to 30 ⁇ m and an average aspect ratio of 20 or more.
  • the color pigment is in the range of 0.5 ⁇ m from the surface of the colored film layer in the thickness direction, or from the interface to the surface. Therefore, it may not exist in the range of 0.5 ⁇ m in the thickness direction.
  • the binder resin contained in the colored film layer may be a polyester resin and an acrylic resin.
  • the colored coating layer may further contain melamine.
  • a melamine concentrated layer may be provided on the surface of the colored coating layer.
  • a chemical conversion treatment coating layer may be further provided between the colored coating layer and the zinc alloy plating layer.
  • the layer thickness of the colored film layer may be 2 ⁇ m or more.
  • FIG. 3 is a schematic diagram showing the existing state of a vanadium compound in a colored film in a precoated steel sheet according to a conventional technique.
  • the present inventor as a result of earnest studies to solve the above problems, with a steel plate used as a pre-coated steel sheet as a specific plated steel sheet, and specified as a rust preventive component for a colored film layer provided on the plated steel sheet.
  • a steel plate used as a pre-coated steel sheet as a specific plated steel sheet
  • a rust preventive component for a colored film layer provided on the plated steel sheet.
  • FIG. 1 is a schematic diagram showing a layer structure of a precoated steel sheet 100 according to the first embodiment of the present invention.
  • the precoated steel sheet 100 is provided on the steel sheet 1, contains 1 to 25% by mass of Al, 0.1 to 13% by mass of Mg, and 0 to 2.0% by mass of Si.
  • the zinc alloy plating layer 10 has the balance consisting of Zn and impurities, and the colored film layer 20 provided on the zinc alloy plating layer 10 and containing a phosphoric acid compound, a color pigment, and a binder resin.
  • the steel sheet (base steel sheet) 1 used for the precoated steel sheet 100 according to the present embodiment is not particularly limited, and it is possible to use the steel sheet 1 having known characteristics and chemical composition.
  • the chemical composition of the steel sheet 1 is not particularly limited, and is preferably a chemical composition that can realize the mechanical strength required for the precoated steel sheet 100.
  • the steel sheet 1 according to the present embodiment contains 1 to 25 mass% Al, 0.1 to 13 mass% Mg, and 0 to 2.0 mass% Si, and the balance Zn and A zinc alloy plating layer 10 made of impurities is provided. That is, the zinc alloy plating layer 10 according to the present embodiment is an alloy plating layer containing a ternary zinc alloy containing Zn, Al and Mg. Since the precoated steel sheet 100 according to the present embodiment has the zinc alloy plating layer 10, the corrosion resistance superior to that of the hot dip galvanized steel sheet can be realized.
  • the zinc alloy plating layer 10 preferably contains 4 to 22 mass% of Al and 1 to 5 mass% of Mg.
  • the zinc alloy plating layer 10 preferably further contains Si.
  • the preferable Si concentration in the zinc alloy plating layer 10 is 0.01 to 2.0 mass%. If the Si concentration is less than 0.01% by mass, the effect of improving the corrosion resistance due to the Si content is not sufficient, which is not preferable. When the concentration of Si exceeds 2.0 mass%, dross is likely to occur in the plating bath used when forming the zinc alloy plating layer 10, which is not preferable.
  • the steel plate 1 is dipped in a plating bath holding a molten Zn—Al—Mg alloy.
  • the method of pulling up the steel plate 1 from such a plating bath is mentioned.
  • the amount of coating adhered to the steel plate 1 can be controlled by the pulling-up speed of the steel plate 1, the flow rate of the wiping gas ejected from the wiping nozzle provided above the plating bath, the flow rate adjustment, and the like.
  • a cut plate plating method, a continuous method using a coil, or the like may be used.
  • the amount of the zinc alloy plating layer 10 deposited is preferably in the range of 20 to 100 g / m 2 per side of the steel sheet 1. If the amount of the zinc alloy plating layer 10 adhered is less than 20 g / m 2 per side, the corrosion resistance of the precoated steel sheet 100 becomes insufficient, which is not preferable. Further, if the amount of the zinc alloy plating layer 10 attached is more than 100 g / m 2 per side, the workability of the precoated steel sheet 100 will be reduced, which is not preferable.
  • the amount of the zinc alloy plating layer 10 deposited is more preferably in the range of 25 to 95 g / m 2 per side of the steel sheet 1.
  • a colored coating layer 20 (more specifically, a single colored coating layer 20) is provided on the zinc alloy plating layer 10.
  • the colored film layer 20 contains at least a phosphoric acid compound, a color pigment, and a binder resin.
  • the colored film layer 20 may be provided on one zinc alloy plating layer 10 or may be provided on both zinc alloy plating layers 10. Good.
  • ⁇ Phosphate compound> It is important that the phosphoric acid compound contained in the colored film layer 20 according to the present embodiment is uniformly distributed in the colored film layer 20 in a certain amount, and as long as the phosphoric acid compound is distributed as such,
  • the form in which the phosphoric acid compound is contained is not particularly limited.
  • the phosphate compound will be described in detail.
  • Phosphonate compounds release phosphate ions in corrosive environments.
  • the released phosphate ions react with the plating components of the zinc alloy plating layer 10 to form a protective film (not shown) on the surface of the zinc alloy plating layer 10, and the formed protective film improves the corrosion resistance. ..
  • the colored film layer 20 has a thickness of 2 ⁇ m and a range of 200 ⁇ m in the direction parallel to the interface 40 between the colored film layer 20 and the zinc alloy plating layer 10 (hereinafter sometimes referred to as the interface direction) (2 ⁇ m ⁇ 200 ⁇ m). Within the range), 1 to 15 first regions 30 having a phosphorus element concentration of 3% or more are present. For example, in the case shown in FIG. 4, the colored film layer 20 includes two first regions 30.
  • the number of the first regions 30 is less than 1 in the range of 2 ⁇ m ⁇ 200 ⁇ m, the distribution of the phosphoric acid compound becomes sparse, and a sufficient effect of improving corrosion resistance cannot be obtained, which is not preferable.
  • the number of the first regions 30 exceeds 15 within the range of 2 ⁇ m ⁇ 200 ⁇ m, the distribution of the phosphoric acid compound becomes too dense, and the barrier property of the colored film layer 20 itself deteriorates, which is preferable. Absent.
  • the number of the first regions 30 included in the colored film layer 20 is preferably 1 to 15 in the range of 2 ⁇ m in the thickness direction and 40 ⁇ m in the interface direction (range of 2 ⁇ m ⁇ 40 ⁇ m), and more preferably the thickness. 1 to 15 in the range of 2 ⁇ m in the depth direction and 20 ⁇ m in the interface direction (range of 2 ⁇ m ⁇ 20 ⁇ m).
  • the number of the first regions 30 included in the colored film layer 20 is within the above range, more preferable corrosion resistance can be obtained.
  • FIG. 10 is a schematic diagram for explaining the surface portion 60, the central portion 70, and the deep portion 80 of the colored coating layer 20 in the precoated steel sheet according to the first embodiment of the present invention.
  • the layer thickness of the colored film layer 20 is more than 8 ⁇ m and 15 ⁇ m or less, the surface portion 60 within the range of 2 ⁇ m from the surface of the colored film layer 20 and the layer thickness center 90 of the colored film layer 20 are centered.
  • the concentration of the detected phosphorus element is measured and the concentration of the phosphate compound in the surface portion 60 is PA
  • the concentration of the phosphate compound in the central portion 70 is PB
  • the concentration of the phosphate compound in the deep portion 80 is PC
  • PA / PB Is preferably 0.5 to 2.0
  • PA / PC is preferably 0.5 to 2.0. This is because when PA / PB and PA / PC are 0.5 to 2.0, the phosphoric acid compound is uniformly dispersed in the entire colored film layer 20, and excellent corrosion resistance can be obtained.
  • the above PA / PC is preferably 0.5 to 2.0. This is because when PA / PC is 0.5 to 2.0, the phosphoric acid compound is uniformly dispersed in the entire colored coating layer 20, and excellent corrosion resistance can be obtained.
  • the first region 30 is a portion in which the concentration of the phosphorus element is 3% or more, and is a portion in which the phosphoric acid compound mainly exists among the components contained in the colored film layer 20.
  • the first region 30 may include various resin components or the like contained in the colored film layer 20 in addition to the phosphoric acid compound as the main component.
  • the portion of the colored film layer 20 other than the first region 30 may contain various resin components derived from a binder resin as a main component, and may further contain a coloring pigment or the like.
  • the colored film layer 20 preferably contains a melamine resin.
  • the type of melamine resin is not particularly limited, but it is preferable to use an imino group type melamine resin. This is because the imino group-type melamine resin is likely to be concentrated on the surface layer of the colored film layer 20, and a melamine resin condensation compound (melamine concentrated layer, not shown) is easily formed. When the concentrated layer of the melamine resin condensation compound is formed on the surface of the colored film layer 20, the colored film layer 20 is provided with a barrier property, and the stain resistance and the corrosion resistance are improved, which is preferable.
  • the colored film layer 20 to be analyzed is dyed with osmium oxide. Thereby, the melamine resin in the colored film layer 20 is selectively dyed.
  • the colored film layer 20 dyed with osmium oxide is cut along the film thickness direction to prepare a sample whose cross section can be observed.
  • the thin film sample is observed with a transmission electron microscope at a magnification of 100,000 times. In this observation, the triazine site in the thin film sample is observed black in the STEM-BF (bright field) image and white in the STEM-HAADF (dark field) image.
  • the melamine resin in the colored film layer 20 can be confirmed by the above-described analysis method.
  • the melamine resin in the colored coating layer 20 is analyzed by energy dispersive X-ray spectroscopy or Fourier transform infrared spectroscopy to detect nitrogen and osmium, and to belong to the triazine ring. It can also be confirmed by detecting the vibration peak.
  • the thickness of the region where the granular melamine resin is concentrated is measured by the following method.
  • the thin film sample is observed with a transmission electron microscope at a magnification of 100,000 to obtain a STEM-BF (bright field) image.
  • the obtained STEM-BF (bright field) image is binarized.
  • the thickness of a layered region observed black from the surface of the colored film layer 20 was measured at arbitrary 20 points, and the average value thereof was measured for the region where the granular melamine resin was concentrated. Calculate as thickness.
  • a layered black region is observed from the surface of the colored film layer 20
  • 5 to 7 are schematic diagrams showing a distribution state of the first regions 30 in the colored film layer 520 according to the conventional technique.
  • the number of the first regions 30 is small in a part of the colored film layer 520.
  • the first region 30 does not exist in the region of 2 ⁇ m ⁇ 200 ⁇ m of the colored film layer, when a crack is generated in a portion where the first region 30 does not exist (that is, a portion where the phosphate compound does not exist). Since a protective film is not formed on the surface of the zinc alloy plating layer 10, sufficient corrosion resistance cannot be ensured.
  • a plurality of layers such as a primer layer, a colored film layer, and a clear film layer are formed from the zinc alloy plating layer 10 side using a solvent-based paint like a conventional pre-coated steel sheet (that is, the total film thickness is 20 ⁇ m or more).
  • a solvent-based paint like a conventional pre-coated steel sheet (that is, the total film thickness is 20 ⁇ m or more).
  • it is thick it is possible to improve the corrosion resistance by adding a large amount of a phosphoric acid compound to the primer layer.
  • FIG. 6 shows a case where the colored film layer 520 includes many first regions 30.
  • the phosphoric acid compound is used in a corrosive environment. The portion where the is dissolved becomes a passage for the corrosion factor to enter, and the barrier property of the colored film layer itself is deteriorated. Therefore, the phosphoric acid compound contained in the colored film layer 20 according to the present embodiment is uniformly present in a certain amount in the plane direction of the colored film layer 20 and excessively contained, as shown in FIG. 4, for example. It is necessary not to.
  • FE-EPMA Field Emission Electron Probe Micro Analyzer
  • the method for measuring the phosphorus element concentration by FE-EPMA mapping observation is as follows. That is, a precoated steel sheet is cut into an appropriate size, and a microtome, focused ion beam processing, resin-embedded polishing, and the like are used to produce a test piece whose cross-section can be observed. Then, FE-EPMA mapping analysis of the colored film layer is performed from the cross-sectional direction at an acceleration voltage of 15 kV (beam diameter of about 30 nm) and a magnification of 5000 times. P is selected as the detection target element, and the existing position and element concentration of the P element are mapped. The P element concentration is obtained from a calibration curve (relational expression between concentration and detection intensity) created using a sample having a known phosphoric acid concentration.
  • One pixel at the time of mapping is 1.5 ⁇ 10 ⁇ 3 ⁇ m 2 (diameter: 39 nm).
  • the center of one pixel is irradiated with an electron beam for 50 msec, and the generated X-ray intensity is processed as the intensity detected from one pixel.
  • a continuous range of 9 pixels or more is counted as one first region. That is, the range of 8 pixels or less is not counted as one first area.
  • the “continuous 9 or more pixel range” is not particularly limited to continuous in one direction, and may be 9 pixels or more regardless of the direction or shape.
  • the mapping analysis as described above first, based on the measurement result of the phosphorus element concentration, the portion where the phosphorus element concentration is 3 mass% or more is located at the position of the first region 30 in the focused visual field. And Next, the number of the first regions 30 was measured for an arbitrary portion having a length of 2 ⁇ m in the film thickness direction ⁇ 200 ⁇ m in the interface direction, and the obtained number was measured along the film thickness direction of the colored film layer. The number of the first regions 30 is within the range of length 2 ⁇ m ⁇ length 200 ⁇ m along the interface direction. In addition, in the mapping analysis, when the range of 200 ⁇ m cannot be observed in one visual field, the mapping analysis is performed in a plurality of visual fields and the analysis results in each visual field are summed to obtain the analysis result in the range of 200 ⁇ m.
  • the distribution state of the first region 30 (phosphoric acid compound) as described above is realized by including the phosphoric acid compound in the coloring film layer 20 at a specific concentration. That is, since the phosphoric acid compound has a larger specific gravity than the binder resin that functions as the matrix of the colored film layer 20, the treated liquid is usually applied after the treatment liquid for forming the colored film layer 20 is applied. Before being dried and solidified, it is in a state of being likely to settle down (that is, in the direction toward the zinc alloy plating layer 10). However, by using a water-dispersible aqueous resin as the binder resin, the phosphoric acid compounds do not aggregate densely and are easily dispersed. Thereby, the dispersion of the phosphoric acid compound is appropriately realized, and the distribution state of the specific phosphoric acid compound as described above is realized.
  • Examples of the phosphoric acid compound contained in the colored film layer 20 according to the present embodiment include magnesium phosphate, calcium phosphate, aluminum dihydrogen tripolyphosphate, zinc phosphate, magnesium phosphite, zinc phosphite, phosphomolybdic acid. Examples thereof include zinc, zinc magnesium phosphate, zirconium phosphate, and phosphorus vanadate.
  • these phosphoric acid compounds a certain phosphoric acid compound may be used alone, or a plurality of phosphoric acid compounds may be used in combination.
  • the average particle size of the phosphoric acid compound contained in the colored film layer 20 is preferably 0.10 ⁇ m or more.
  • the phosphoric acid compound When the average particle size of the phosphoric acid compound is less than 0.10 ⁇ m, the phosphoric acid compound will be distributed in the colored film layer 20 at close intervals, and the above-mentioned distribution state of the phosphoric acid compound will be realized. Can not do it. Further, when the average particle size of the phosphoric acid compound is less than 0.10 ⁇ m, the location where the phosphoric acid compound is eluted in the corrosive environment serves as a path for the corrosion factor to enter, and the barrier property of the colored film layer 20 itself deteriorates. It is not preferable because it is also present.
  • the average particle size of the phosphoric acid compound is preferably 10 ⁇ m or less. If the average particle size of the phosphoric acid compound exceeds 10 ⁇ m, it may adversely affect the color tone of the precoated steel sheet 100 according to the present embodiment, which is not preferable.
  • the average particle size of the phosphoric acid compound is more preferably within the range of 1 to 5 ⁇ m.
  • the average particle diameter of the phosphoric acid compound is determined by the following method.
  • the steel sheet is observed from the cross-sectional direction, and phosphorus (P) element is mapped by FE-EPMA. At this time, continuous particles of 9 pixels or more are regarded as one particle, and the area Sp thereof is obtained.
  • the concentration of the phosphoric acid compound in the colored film layer 20 is 0.3 to 5.0 mass% in terms of P amount with respect to the total mass of the colored film layer 20.
  • concentration of the phosphoric acid compound exceeds 5.0% by mass, the phosphoric acid compound is distributed in the colored film layer 20 at close intervals, so that the distribution state of the phosphoric acid compound as described above can be realized. Can not.
  • concentration of the phosphoric acid compound exceeds 5.0% by mass, the location where the phosphoric acid compound is eluted in the corrosive environment serves as a path for the corrosion factor to enter, and the barrier properties of the colored film layer 20 itself may deteriorate. Therefore, it is not preferable.
  • concentration of the phosphoric acid compound is less than 0.3% by mass, the corrosion resistance of the precoated steel sheet 100 according to this embodiment may be insufficient, which is not preferable.
  • concentration of the phosphoric acid compound in the colored film layer 20 is more preferably 1.0 to 3.0 mass% in terms of P content.
  • the concentration of the phosphoric acid compound in the colored film layer 20 is approximately the same value as the concentration of the phosphoric acid compound contained in the colored coating material used to form the colored film layer 20.
  • the concentration of the phosphoric acid compound converted into the amount of P in the colored film layer 20 can be measured by analyzing the cross section of the colored film layer 20 by FE-EPMA.
  • a color pigment usually used in general coating can be used.
  • the pigment include color pigments of known colors such as black, white, metallic color, and chromatic color, which are made of known metals or oxides.
  • a coloring pigment represents the pigment which does not contain phosphorus and vanadium.
  • the type of the color pigment in the colored film layer 20 and the concentration of the color pigment are not particularly limited, and a color pigment type capable of obtaining a desired color tone is appropriately selected to obtain a desired color tone.
  • the concentration may be appropriately selected so that The concentration of the color pigment contained in the color film layer 20 can be determined by dissolving the color film and quantitatively analyzing the color pigment element with an ICP emission spectral analyzer.
  • metallic color pigment metal pigments such as aluminum, silver, copper, platinum, gold and brass can be used, but among them, as the metallic pigment, an aluminum pigment (aluminum pigment) is used. Preferably.
  • the above-mentioned aluminum pigment has an average particle diameter within a range of 7 to 30 ⁇ m and an average aspect ratio (ratio between average particle diameter and thickness) of 20 or more. If the average particle size of the aluminum pigment is less than 7 ⁇ m, the metallic appearance may be insufficient, which is not preferable. On the other hand, when the average particle diameter of the aluminum pigment exceeds 30 ⁇ m, the appearance becomes nonuniform and the workability is deteriorated, which is not preferable. Further, when the average aspect ratio of the aluminum pigment is less than 20, the appearance may become nonuniform, which is not preferable.
  • the average particle diameter and average aspect ratio of the color pigment are determined as follows.
  • elemental mapping is performed from the surface of the colored film with a field emission-electron probe micro analyzer (FE-EPMA), and the major axis length X1 and the minor axis length X2 of any one pigment are mapped. And the particle size X of the pigment is calculated by (X1 + X2) / 2.
  • the major axis means, within the outline of the image of the pigment specified by elemental mapping, the maximum line segment that traverses the pigment, and the minor axis is a line segment perpendicular to the major axis, Means the largest across the pigments.
  • FE-EPMA is used to perform elemental mapping from the cross-sectional direction, and the thickness Y of any one pigment (the length of the largest line segment that crosses the pigment in the direction perpendicular to the measurement plane of the above-mentioned major axis and minor axis). ) Value is measured.
  • particle diameters and thicknesses of arbitrary 10 or more pigments are obtained, and the averages of the respective pigments are averaged to calculate the average particle diameter [X] and the average thickness [Y] of the pigments. It is calculated by [X] / [Y].
  • the shape thereof is closer to a sphere than the aluminum pigment, and the average particle diameter is often smaller than the aluminum pigment, so that the pigment has a general average particle diameter and an average aspect ratio. It is possible to realize the above-mentioned distribution state of the phosphoric acid compound by appropriately using a material.
  • the aluminum pigment is in the range of 0.5 ⁇ m in the film thickness direction from the interface 40 between the colored film layer 20 and the zinc alloy plating layer 10 toward the surface layer side, or from the outermost surface layer of the colored film layer 20 to the interface 40 side. It does not preferably exist within the range of 0.5 ⁇ m in the film thickness direction.
  • the aluminum pigment is liable to be a passageway for a corrosion factor to enter in a corrosive environment, resulting in poor corrosion resistance, which is not preferable. ..
  • the distance between the interface 40 and the aluminum pigment and the distance between the outermost layer of the colored film layer 20 and the aluminum pigment are cut into an appropriate size of the precoated steel sheet 100 and embedded with resin, the cross section is polished, and the cross section is viewed from an electron microscope. It can be confirmed by observing by observation.
  • the type of resin used as the binder resin is not particularly limited, but for example, a known resin such as a polyester resin, an acrylic resin, a urethane resin, an epoxy resin, a fluororesin, or a modified resin thereof may be used. it can. Further, these resins may be crosslinked with a known crosslinking agent component such as a melamine resin or an isocyanate resin. Further, as the binder resin, an energy beam curable resin such as an electron beam curable resin or an ultraviolet curable resin may be used. Among these resins, it is particularly preferable to use at least one of polyester resin and acrylic resin as the binder resin.
  • the thickness of the colored film layer 20 is preferably in the range of 2 to 15 ⁇ m, for example.
  • the thickness of the colored film layer 20 is less than 2 ⁇ m, the colored film layer 20 is deteriorated when used outdoors, or the surface of the zinc alloy plating layer 10 is discolored to grayish black, and It may be difficult to maintain the color tone of the precoated steel sheet 100 according to the embodiment within a desired range, which is not preferable.
  • the thickness of the colored coating layer 20 exceeds 15 ⁇ m, the cost for manufacturing the precoated steel sheet 100 increases and the workability tends to decrease, which is not preferable.
  • the thickness of the colored coating layer 20 is more preferably in the range of 3 to 10 ⁇ m.
  • the thickness of the colored film layer 20 can be measured by observing the cross section of the colored film layer 20 using various microscopes.
  • the chemical conversion coating layer (not shown) is formed by a known chemical conversion treatment.
  • Examples of such chemical conversion treatment include zinc phosphate chemical conversion treatment, coating chromate treatment, electrolytic chromic acid treatment, reactive chromate treatment, and chromate-free chemical conversion treatment.
  • the thickness of the chemical conversion coating layer (not shown) is not particularly limited, and may be, for example, 0.05 to 1 ⁇ m.
  • the thickness of the chemical conversion coating layer (not shown) can be measured, for example, by observing a cross section of the chemical conversion coating layer (not shown) with a transmission microscope or the like.
  • the method for manufacturing the precoated steel sheet 100 according to the present embodiment includes a step of applying a colored coating material containing a phosphoric acid compound, a color pigment and a binder resin to the steel sheet 1 on which the zinc alloy plating layer 10 is formed.
  • the above-mentioned colored paint is a colored paint treatment liquid used for forming the colored film layer 20.
  • the colored paint treatment liquid used for forming the colored film layer 20 has a predetermined dispersion medium (for example, water or an organic solvent) containing a predetermined component to be contained in the colored film layer 20 as described above. It may be contained in a ratio and manufactured by a known method.
  • a predetermined dispersion medium for example, water or an organic solvent
  • the binder resin contained in the colored paint treatment liquid is preferably a water-dispersible aqueous resin.
  • the presence of the water-dispersible resin makes it possible to disperse the phosphoric acid compound so as not to be in a densely aggregated state.
  • the colored film layer 20 according to the present embodiment it is possible to realize a predetermined distribution state of the phosphoric acid compound.
  • the colored film layer 20 formed of the water-based resin has a better elution property of the phosphoric acid compound than the colored film layer 20 formed of the solvent-based resin, and therefore a smaller amount of the phosphoric acid compound can be used. Corrosion resistance can be improved, which is preferable.
  • the colored paint treatment liquid preferably contains a melamine resin. This is because the melamine resin not only contributes to the crosslinking reaction of the binder resin but also contributes to the control of the distribution state of the rust preventive pigment. From these viewpoints, it is preferable that the melamine resin contained in the colored coating liquid is an imino group-type melamine resin.
  • the viscosity of the pigmented coating the processing solution is a 0.8 Pa ⁇ s or more when measured under the conditions of a shear rate of 0.01s -1 by rheometer, 0.3 Pa ⁇ when measured under the conditions of a shear rate of 1000 s -1 It is preferably s or less. Since the phosphoric acid compound has a larger specific gravity than the resin, the phosphoric acid compound is usually in a state where it tends to precipitate downward. On the other hand, by adjusting the viscosity of the coating material within the above range with the viscosity modifier, it is possible to prevent the phosphoric acid compound dispersed in the colored coating from settling due to convection generated when the coating material is heated. In addition, effects such as suppression of sedimentation during storage of paint and uniform appearance by leveling after coating can be obtained.
  • the type and amount of the viscosity modifier used may be appropriately selected according to the type of binder resin, the type of solvent, and the like.
  • the viscosity modifier include SN thickener 617 (manufactured by San Nopco Ltd., the main component being an acrylic polymer) which is one of the thickeners.
  • the use of SN thickener 617 is preferable because it imparts thixotropic viscosity to the colored coating liquid. By adding the SN thickener 617 to the colored paint treatment liquid, the viscosity of the colored paint can be controlled within the above range.
  • the coating method of the paint treatment liquid is not limited to a specific method, or by immersing the plated steel sheet in the treatment liquid, or by spraying the treatment liquid on the surface of the plated steel sheet, and a predetermined adhesion amount and Examples thereof include a method of controlling the amount of adhesion by using a roll or a gas sprayer, and a method of applying with a roll coater, a curtain coater, or a bar coater.
  • the method of drying and baking the applied coating material is not limited to a specific method as long as it can vaporize the dispersion medium (mainly water or organic solvent).
  • the dispersion medium mainly water or organic solvent.
  • the colored coating layer after coating should be heated at a temperature of about 150 ° C. to 250 ° C. for about 5 to 80 seconds. preferable.
  • the formation of the colored film layer is performed in-line in the production line of the plated steel sheet, but it may be formed in another line, or after blanking for forming is performed. It may be formed.
  • FIG. 2 is a schematic diagram showing a layer structure of a precoated steel sheet 200 according to the second embodiment of the present invention.
  • the pre-coated steel sheet 200 is provided on the steel sheet 1, contains 1 to 25 mass% Al, 0.1 to 13 mass% Mg, and 0 to 2.0 mass% Si.
  • the balance includes a zinc alloy plating layer 10 composed of Zn and impurities, and a colored film layer 120 provided on the zinc alloy plating layer 10 and containing a vanadium compound, a color pigment, and a binder resin. That is, the precoated steel sheet 200 is different from the first embodiment in that the colored coating layer 120 contains the vanadium compound.
  • the description of the points common to the first embodiment will be omitted.
  • a colored film layer 120 (more specifically, a single colored film layer) 120 is provided on the zinc alloy plating layer 10.
  • the colored film layer 120 according to this embodiment contains at least a vanadium compound, a color pigment, and a binder resin.
  • vanadium compound contained in the colored coating layer 120 according to the present embodiment is distributed near the interface 140 of the colored coating layer 120 on the zinc alloy plating layer 10 side.
  • the form in which the vanadium compound is contained is not particularly limited, as long as the vanadium compound is distributed as such.
  • the vanadium compound will be described in detail.
  • Vanadium compounds release vanadate ions in corrosive environments.
  • the released vanadate ions react with the plating components of the zinc alloy plating layer 10 and the components of the steel plate 1 to form a protective film (not shown) on the surfaces of the zinc alloy plating layer 10 and the steel plate 1 at the end face,
  • the formed protective film has an effect of improving corrosion resistance.
  • a solvent-based paint is used to form a multi-layer coating such as a primer layer, a colored coating layer, a clear coating layer, ...
  • a large amount of vanadium compound is present in the colored film layer 520, as schematically shown in FIG. 6,
  • the location where the vanadium compound is eluted serves as a path for the corrosive agent to enter, and the barrier property of the colored film layer 520 itself is reduced.
  • the vanadium compound used for the colored coating layer 120 according to the present embodiment is present in a fixed amount near the interface 140 on the zinc alloy plating layer 10 side of the colored coating layer 120, as schematically shown in FIG. However, it is important that the distribution is not too dense.
  • FIG. 8 is a schematic diagram showing the presence state of the vanadium compound in the colored film layer 120.
  • FIG. 8 when the cross section of the colored film layer 120 in the thickness direction is observed by mapping with FE-EPMA, 1 ⁇ m in the thickness direction from the interface 140 toward the surface side and a direction parallel to the interface 140 (hereinafter, There are 1 to 10 second regions 130 having a vanadium element concentration of 3% or more within a range of 200 ⁇ m (which may be referred to as an interface direction).
  • the number of the second regions 130 existing within the range of 200 ⁇ m along the interface direction is less than 1, the distribution of the vanadium compound becomes sparse and a sufficient corrosion resistance improving effect cannot be obtained.
  • the number of the second regions 130 existing within the range of 200 ⁇ m along the interface direction exceeds 10, the distribution of the vanadium compound becomes too dense and the barrier property of the colored film layer 120 itself. Is decreased, which is not preferable.
  • 1 to 10 second regions 130 are present within the range of 1 ⁇ m in the thickness direction from the interface 140 toward the surface side and 40 ⁇ m in the interface direction. More preferably, 1 to 10 second regions 130 are present within the range of 1 ⁇ m in the thickness direction from the interface 140 toward the surface side and 20 ⁇ m in the interface direction.
  • FIG. 11 is a schematic diagram for explaining the layer thickness center 190 and the layer thickness in the precoated steel sheet 200 according to the second embodiment of the present invention.
  • the layer thickness of the colored coating layer 120 is T
  • the vanadium element concentration detected using FE-EPMA in the range of T from the surface of the colored coating layer 120 in the thickness direction and 200 ⁇ m in the interface direction is PD
  • the colored coating layer is FE-EPMA is used in a range of T / 2 from the layer thickness center 190 of the 120 toward the interface 140 in the thickness direction (that is, a range from the layer thickness center 190 to the interface 140 in the thickness direction) and 200 ⁇ m in the interface direction.
  • PE / PD is preferably 1.0 to 5.0.
  • the method of measuring the vanadium element concentration by FE-EPMA mapping observation is as follows. That is, a precoated steel plate is cut into a suitable size, embedded with resin, and the cross section is polished. Then, FE-EPMA mapping analysis of the colored film layer is carried out from the cross-sectional direction at an acceleration voltage of 15 kV and a magnification of 5000 times. At this time, V is selected as the detection target element, and the existing position and element concentration of each element are mapped.
  • the mapping analysis as described above first, focusing on “a region up to 1 ⁇ m in the film thickness direction from the interface 140 on the zinc alloy plating layer 10 side of the colored film layer 120 toward the surface side”, Based on the measurement result of the vanadium element concentration in such a region, the portion where the vanadium element concentration is 3% or more is the position of the second region 130 in the focused visual field.
  • the number of the second regions 130 is measured for an arbitrary portion having a length of 200 ⁇ m in the plane direction, and the obtained number exists within the range of 200 ⁇ m in length along the interface direction of the colored film layer 120.
  • the number of the second areas 130 to be processed is set.
  • the distribution state of the specific vanadium compound as described above is realized by including a vanadium compound having a specific shape in the colored film layer 120 at a specific concentration, as described below. That is, since the vanadium compound has a larger specific gravity than the binder resin that functions as the matrix of the colored film layer 120, after the treatment liquid for forming the colored film layer is applied, the treated liquid is dried and solidified. By the time it is carried out, it is in a state where it is likely to settle downward (that is, in the direction toward the plated steel sheet). Furthermore, by using a water-dispersible water-based resin as the binder resin, the vanadium compounds are in a state of being easily aggregated and not dispersed. By containing a vanadium compound having a specific shape in a specific concentration in the colored film layer, the precipitation of the vanadium compound as described above is appropriately realized, and the distribution state of the specific vanadium compound as described above. Is realized.
  • the vanadium compound contained in the colored film layer according to the present embodiment is a vanadate compound or vanadium oxide.
  • the vanadium compound contained in the colored film layer according to the present embodiment for example, calcium vanadate, magnesium vanadate, ammonium vanadate, vanadium oxide, sodium vanadate, potassium vanadate, phosphorus vanadate, ammonium metavanadate, Pigments such as potassium metavanadate may be mentioned.
  • these vanadium compounds one vanadium compound may be used alone, or a plurality of vanadium compounds may be used in combination.
  • phosphorus vanadate is classified as a phosphate compound.
  • vanadium compound is a "vanadate compound” or “vanadium oxide” and whether or not the phosphorus compound is a “phosphate compound” can be analyzed by determining the binding energy from the narrow spectrum of XPS. It can also be confirmed from the infrared absorption peak due to IR or the like.
  • the average particle size of the vanadium compound is preferably 0.10 ⁇ m or more.
  • the average particle size of the vanadium compound When the average particle size of the vanadium compound is less than 0.10 ⁇ m, it becomes difficult to properly precipitate the vanadium compound in the treatment liquid for forming the colored film layer, and the vanadium compound distribution state as described above is realized. It is not preferable because it is difficult to do. Further, when the average particle diameter of the vanadium compound is less than 0.10 ⁇ m, the vanadium compound is distributed near the interface 140 of the colored coating layer 120 on the zinc alloy plating layer 10 side at a close interval. In that case, the location where the vanadium compound is eluted in the corrosive environment may serve as an entry path for the corrosion factor, which may reduce the barrier properties of the colored coating layer 120 itself, which is not preferable.
  • the average particle size of the vanadium compound is preferably 10 ⁇ m or less. If the average particle diameter of the vanadium compound exceeds 10 ⁇ m, it may adversely affect the color tone of the precoated steel sheet according to the present embodiment, which is not preferable.
  • the average particle size of the vanadium compound is more preferably within the range of 1 to 5 ⁇ m.
  • the concentration of the vanadium compound in the colored film layer 120 is 8.0 mass% or less in terms of V amount with respect to the total solid content mass of the colored film layer 120.
  • concentration of the vanadium compound exceeds 8.0% by mass, the concentration of the vanadium compound in the colored film layer 120 becomes too large, and it is difficult to realize the above-mentioned distribution state of the vanadium compound.
  • concentration of the vanadium compound exceeds 8.0 mass%, the vanadium compound is distributed in the vicinity of the interface 140 on the zinc alloy plating layer 10 side of the colored film layer 120 at a close interval. In that case, the part where the vanadium compound is eluted in the corrosive environment becomes a path for the corrosive agent to enter, and the barrier property of the colored film itself may be deteriorated, which is not preferable.
  • the concentration of the vanadium compound in the colored film layer 120 is preferably 0.5% by mass or more in terms of V amount with respect to the total solid mass of the colored film layer 120. If the concentration of the vanadium compound is less than 0.5% by mass, the corrosion resistance of the precoated steel sheet according to this embodiment may be insufficient, which is not preferable.
  • the concentration of the vanadium compound in the colored film layer 120 is more preferably 1.5 to 6.5 mass% in terms of V amount.
  • the concentration of the vanadium compound in the colored coating layer 120 is substantially the same as the concentration of the vanadium compound contained in the colored coating material used to form the colored coating layer 120.
  • the concentration of the vanadium compound converted into the amount of V in the colored coating layer 20 is analyzed by FE-EPMA on the cross section of the colored coating layer 20.
  • the method for manufacturing the precoated steel sheet 200 according to the present embodiment includes a step of applying a colored coating material containing a vanadium compound, a color pigment and a binder resin to the steel sheet 1 on which the zinc alloy plating layer 10 is formed.
  • the above-mentioned colored paint is a colored paint treatment liquid used for forming the colored film layer 120. Except that the colored paint contains a vanadium compound, the method is the same as the method for manufacturing the precoated steel sheet 100, and therefore the description is omitted.
  • FIG. 3 is a schematic diagram showing a layer structure of a precoated steel sheet 300 according to the third embodiment of the present invention.
  • the precoated steel sheet 300 is provided on the steel sheet 1, contains 1 to 25% by mass of Al, 0.1 to 13% by mass of Mg, and 0 to 2.0% by mass of Si.
  • the point that the colored film layer 220 contains both the phosphoric acid compound and the vanadium compound is different from the first embodiment and the second embodiment.
  • the description of the points common to the first embodiment and the second embodiment will be omitted.
  • a colored film layer (more specifically, a single colored film layer) 220 is provided on the zinc alloy plating layer 10.
  • the colored film layer 220 according to the present embodiment contains at least a phosphoric acid compound, a vanadium compound, a color pigment, and a binder resin.
  • the colored film layer 220 contains both a phosphoric acid compound and a vanadium compound
  • the phosphoric acid compound and the vanadium compound in the colored film layer 220 exist independently (that is, in the colored film). This is the same as the existing mode of the phosphoric acid compound in the layer 20 and the existing mode of the vanadium compound in the colored film layer 120).
  • the method for manufacturing the precoated steel sheet 300 according to the present embodiment includes a step of applying a colored coating material containing a phosphoric acid compound, a vanadium compound, a color pigment and a binder resin to the steel sheet 1 on which the zinc alloy plating layer 10 is formed. ..
  • the above-mentioned colored paint is a colored paint treatment liquid used for forming the colored film layer 220. The description is omitted because it is common to the manufacturing method of the precoated steel sheet 100 and the precoated steel sheet 200, except that the coloring paint contains both the phosphoric acid compound and the vanadium compound.
  • precoated steel sheet according to the present invention will be specifically described with reference to Examples and Comparative Examples.
  • the examples described below are merely examples of the precoated steel sheet according to the present invention, and the precoated steel sheet according to the present invention is not limited to the following examples.
  • a colored paint used for forming the colored film layer was prepared.
  • the binder resin the resins shown in Table 4 below were prepared, and a melamine-based curing agent as a curing agent was added to each resin solution at a solid content of 15% by mass.
  • the rust preventive pigments shown in Table 2 below were prepared as the rust preventive pigments.
  • the average particle size and concentration of the rust preventive pigment contained in the manufactured colored film layer were measured by the following methods. ⁇ Average particle size> The average particle diameter of the rust preventive pigment was determined by the following method. The steel sheet was observed from the cross-sectional direction, and phosphorus (P) element or vanadium (V) element was mapped by FE-EPMA.
  • An arbitrary width of 200 ⁇ m was measured, and the average of the particle diameter ⁇ p of the phosphoric acid compound particles or the vanadium compound particles confirmed in that range was obtained.
  • ⁇ Concentration> The concentration of the rust preventive pigment was measured by analyzing the cross section of the colored film layer by FE-EPMA. The average particle size and concentration of the rust preventive pigment are shown in Tables 5-1 to 5-5.
  • the concentrations of the rust preventive pigments shown in Tables 5-1 to 5-5 are the concentration converted into the amount of P in the case of the phosphoric acid compound and the concentration converted into the amount of V in the case of the vanadium compound.
  • the types of color pigments used are shown in Table 3, and the concentrations, average particle diameters and average aspect ratios are shown in Tables 5-1 to 5-5.
  • the concentration of the color pigment was measured by dissolving the color film and quantitatively analyzing the color pigment element with an ICP emission spectrophotometer. Further, the average particle diameter and the average aspect ratio of the color pigment were measured by the above-mentioned method using FE-EPMA.
  • ⁇ Distribution of phosphate compound> The distribution of the phosphoric acid compound in the colored film layer was analyzed by the following method. Each of the prepared samples was cut into a size of 15 ⁇ 20 mm, embedded with resin, the cross section was polished, and FE-EPMA mapping analysis of the colored film layer was performed from the cross section direction at an acceleration voltage of 15 kV and a magnification of 5000 times. At this time, in any region of the colored film layer, the number of first regions having a phosphorus element concentration of 3% or more within the range of 2 ⁇ m in the film thickness direction ⁇ 200 ⁇ m in the plane direction It was confirmed. Similarly, the values of PA / PB and PA / PC were measured. In addition, when the film thickness is 8 ⁇ m or less, slash is described in the item of PA / PB.
  • the distribution of the vanadium compound in the colored film layer was analyzed by the following method.
  • Each of the prepared samples was cut into a size of 15 ⁇ 20 mm, embedded with resin, the cross section was polished, and FE-EPMA mapping analysis of the colored film layer was carried out from the cross section direction at an acceleration voltage of 15 kV and a magnification of 5000 times.
  • the second region in which the concentration of vanadium element is 3% or more is the length in the plane direction.
  • the number existing within the range of 200 ⁇ m was confirmed.
  • the value of PE / PD was measured.
  • ⁇ Distribution of color pigment The distribution of the aluminum pigment in the colored film layer of the sample using the aluminum pigment as the coloring pigment was analyzed by the following method. Each of the produced samples was cut into a size of 15 ⁇ 20 mm, embedded with a resin, the cross section was polished, and an electron microscope observation was performed from the cross section direction at an acceleration voltage of 15 kV and a magnification of 5000 times. It was confirmed whether or not aluminum element was present within a range of 0.5 ⁇ m from the interface of the colored film layer on the zinc alloy plating layer side and within a range of 0.5 ⁇ m from the outermost layer of the colored film layer.
  • the evaluation criteria are as follows. In Examples and Comparative Examples in which no aluminum pigment is used, "-" is entered in the evaluation result column of "distribution of color pigment".
  • ⁇ Corrosion resistance of processed part> The sample was extruded by 7 mm by an Erichsen tester, and after 30 cycles of the combined cycle corrosion test specified in JASO-M609, the rust generation area ratio in the processed part was evaluated.
  • the evaluation criteria are as follows.
  • Very Good less than 5 mm Good: 5 mm or more, less than 8 mm Fair: 8 mm or more, less than 10 mm Poor: 10 mm or more
  • Very Good less than 5 mm Good: 5 mm or more and less than 8 mm Fair: 8 mm or more and less than 10 mm Poor: 10 mm or more
  • ⁇ Weather resistance> A sunshine carbon arc lamp type accelerated weathering test was carried out for 500 hours, and the color difference ⁇ E on the surface of the colored film before and after the test was evaluated according to the following criteria.
  • the color difference ⁇ E was measured using a spectrophotometer (manufactured by Suga Test Instruments Co., Ltd., model: SC-T45).
  • VeryGood The color tone and surface gloss are uniform, and the base cannot be seen through.
  • Good The color tone and surface gloss are slightly non-uniform (a level that can be confirmed by squinting eyes), and the base cannot be seen through.
  • Fair The color tone and surface gloss are slightly non-uniform (a level that can be confirmed by squinting), and the base is slightly transparent.
  • Poor The color tone and surface gloss are non-uniform (at a level that can be easily confirmed), or the base is visible.
  • VeryGood There are no defects such as cracks in the colored film layer.
  • Good A slight crack is observed in the colored film layer (a level that can be seen by squinting with the sample before processing)
  • Fair A slight crack is observed in the colored film layer (a level that can be easily seen when aligned with the sample before processing)
  • Poor A crack is observed in the colored film layer (a level that can be easily seen by looking at only the sample after processing).
  • the precoated steel sheets corresponding to the examples of the present invention have excellent designability, corrosion resistance, workability, and weather resistance. You can see that it has both. On the other hand, it can be seen that the precoated steel sheet corresponding to the comparative example of the present invention is inferior in any of the designability, corrosion resistance, workability, or weather resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)

Abstract

A precoated steel sheet is provided with: a steel sheet; a zinc alloy plating layer which is arranged on the steel sheet and contains 1 to 25% by mass of Al, 0.1 to 13% by mass of Mg, 0 to 2.0% by mass of Si, and a remainder made up by Zn and impurities; and a colored coating film layer which is arranged on the zinc alloy plating layer and contains at least one of a phosphorus compound and a vanadium compound, a coloring pigment and a binder resin.

Description

プレコート鋼板Precoated steel sheet
 本発明は、プレコート鋼板に関する。 The present invention relates to a precoated steel sheet.
 鋼板を加工した製品に塗装を施す場合、従来は、鋼板を加工した後に塗装が施されていた。加工後に塗装が施される鋼板をポストコート鋼板と呼称する。最近では、着色した皮膜が予め被覆されている鋼板(以下、プレコート鋼板と呼称する)がポストコート鋼板に代わって用いられている。プレコート鋼板は、家電、建材及び自動車等の用途に用いられている。
 プレコート鋼板は、その用途に応じて、耐食性、加工性、意匠性等といった様々な特性が希求されており、かかる特性を実現するために、従来様々な技術が提案されている。
In the case of applying a coating to a product obtained by processing a steel plate, conventionally, the coating is applied after processing the steel plate. A steel plate that is painted after processing is called a post-coated steel plate. Recently, a steel sheet having a colored coating precoated (hereinafter referred to as a precoated steel sheet) has been used instead of the postcoated steel sheet. Precoated steel sheets are used for home appliances, building materials, automobiles and the like.
Precoated steel sheets are required to have various characteristics such as corrosion resistance, workability, and designability according to their applications, and various techniques have been conventionally proposed to realize such characteristics.
 特許文献1には、金属板上に、プライマー塗料、中塗り塗料及びメタリック調クリア塗料を塗装したメタリック艶消しプレコート鋼板の塗装方法が記載されている。特許文献1には、この方法により、皮膜硬度、耐候性(耐光性、耐膜厚減耗性)、耐薬品性、耐食性、加工性、意匠性(メタリック調の艶消し皮膜)に優れたメタリック調艶消し意匠塗装金属板を実現できると記載されている。 Patent Document 1 describes a method for coating a metallic matte precoated steel sheet in which a primer coating, an intermediate coating and a metallic clear coating are coated on a metal plate. According to Patent Document 1, by this method, a metallic tone excellent in film hardness, weather resistance (light resistance, film thickness abrasion resistance), chemical resistance, corrosion resistance, workability, and designability (metallic matte film) It is described that a matte design coated metal plate can be realized.
 特許文献2には、下地処理を施された金属材料表面に下塗り皮膜及び上塗り皮膜を有し、下塗り皮膜が、平均粒子径が0.01~2μmの防錆顔料を含有し、かかる防錆顔料の濃度が11~70重量%である塗装金属材料が開示されている。特許文献2には、このような塗装金属材料を用いることで、優れた耐食性及び加工性を実現できると記載されている。 Patent Document 2 has an undercoat film and an overcoat film on the surface of a metal material that has been subjected to a surface treatment, and the undercoat film contains an anticorrosion pigment having an average particle diameter of 0.01 to 2 μm. A coated metal material having a concentration of 11 to 70% by weight is disclosed. Patent Document 2 describes that excellent corrosion resistance and workability can be realized by using such a coated metal material.
日本国特開2009-297631号公報Japanese Unexamined Patent Publication No. 2009-297631 日本国特開平8-218001号公報Japanese Patent Laid-Open No. 8-218001
 様々な機能を付与するために、プレコート鋼板には複数の皮膜が形成されていることが多い。これにより、プレコート鋼板に形成される皮膜の合計膜厚が厚くなる。
 また、プレコート鋼板の着色皮膜の形成には、溶剤系の塗料が使用される場合が多い。プレコート鋼板の製造に溶剤系の塗料を使用する場合には、インシネレーターや臭気対策を施した設備が必要となるため、プレコート鋼板は塗装専用ラインで製造されることが一般的である。従って、塗装原板の製造工程だけでなく塗装工程が必要となるため、プレコート鋼板の製造コストが増大する。
 これに対し、安価でありながら、意匠性や耐食性、加工性、耐候性等のプレコート鋼板に求められる性能を実現できる技術が希求されている。
In order to impart various functions, the precoated steel sheet is often formed with a plurality of coatings. This increases the total film thickness of the film formed on the precoated steel sheet.
In addition, a solvent-based paint is often used for forming the colored film on the precoated steel sheet. When a solvent-based paint is used in the production of a precoated steel sheet, an incinerator and a facility against odor are required, and therefore the precoated steel sheet is generally produced in a dedicated painting line. Therefore, not only the manufacturing process of the coated original plate but also the coating process is required, which increases the manufacturing cost of the precoated steel sheet.
On the other hand, there is a demand for a technique that can realize the performance required for a precoated steel sheet such as designability, corrosion resistance, workability, and weather resistance, while being inexpensive.
 本発明は、上記の事情に鑑みてなされたものであり、着色皮膜の薄膜化を図りつつ、意匠性、耐食性、加工性及び耐候性に優れたプレコート鋼板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a precoated steel sheet having excellent designability, corrosion resistance, workability, and weather resistance while achieving a thin colored film.
 本発明は、上記課題を解決して、係る目的を達成するために以下の手段を採用する。 The present invention adopts the following means in order to solve the above problems and achieve the object.
 (1)本発明の一態様に係るプレコート鋼板は、鋼板と、前記鋼板上に設けられ、1~25質量%のAlと、0.1~13質量%のMgと、0~2.0質量%のSiと、を含有し、残部がZn及び不純物からなる亜鉛合金めっき層と、前記亜鉛合金めっき層上に設けられ、リン酸化合物とバナジウム化合物との少なくとも一方、着色顔料及びバインダー樹脂を含む着色皮膜層と、を備える。
 前記着色皮膜層が前記リン酸化合物を含む場合には、前記リン酸化合物の濃度は、前記着色皮膜層の全固形分質量に対して、P量に換算して0.3~5.0質量%であり、前記着色皮膜層の厚さ方向の断面をFE-EPMAでマッピング観察したときに、前記厚さ方向に2μmかつ前記着色皮膜層と前記亜鉛合金めっき層との界面と平行方向に200μmの範囲内に、リン元素の濃度が3%以上である第1の領域が1~15個存在する。
 前記着色皮膜層が前記バナジウム化合物を含む場合には、前記バナジウム化合物は、バナジン酸化合物又は酸化バナジウムであり、前記バナジウム化合物の濃度は、前記着色皮膜層の全固形分質量に対して、V量に換算して0.5~8.0質量%であり、前記着色皮膜層の前記厚さ方向の断面をFE-EPMAでマッピング観察したときに、前記界面から表面側に向かって前記厚さ方向に1μmかつ前記界面と平行方向に200μmの範囲内に、バナジウム元素の濃度が3%以上である第2の領域が1~10個存在する。
 (2)上記(1)に記載のプレコート鋼板では、前記着色皮膜層が前記リン酸化合物を含んでもよい。
 (3)上記(1)又は(2)に記載のプレコート鋼板では、前記着色皮膜層の厚さ方向の断面をFE-EPMAでマッピング観察したときに、前記厚さ方向に2μmかつ前記界面と平行方向に40μmの範囲内に、リン元素の濃度が3%以上である第1の領域が1~15個存在してもよい。
 (4)上記(1)~(3)の何れか一態様に記載のプレコート鋼板では、前記着色皮膜層の厚さ方向の断面をFE-EPMAでマッピング観察したときに、前記厚さ方向に2μmかつ前記界面と平行方向に20μmの範囲内に、リン元素の濃度が3%以上である第1の領域が1~15個存在してもよい。
 (5)上記(1)~(4)の何れか一態様に記載のプレコート鋼板では、前記リン酸化合物の平均粒子径が、0.10~10μmであってもよい。
 (6)上記(1)~(5)の何れか一態様に記載のプレコート鋼板では、前記着色皮膜層の層厚が8μm超、15μm以下であり、前記着色皮膜層の表面から前記厚さ方向に2μmの範囲である表面部、前記着色皮膜層の層厚中心を中心として前記厚さ方向に2μmの範囲である中心部、前記界面から前記表面側に向かって前記厚さ方向に2μmの範囲である深部それぞれに対して、FE-EPMAを用いて2μm×200μmの範囲で検出されるリン元素の濃度を測定し、前記表面部のリン酸化合物濃度をPA、前記中心部のリン酸化合物濃度をPB、前記深部のリン酸化合物濃度をPCとしたときに、PA/PBが0.5~2.0であり、かつ、PA/PCが0.5~2.0であってもよい。
 (7)上記(1)~(6)の何れか一態様に記載のプレコート鋼板では、前記着色皮膜層の層厚が8μm以下であり、前記着色皮膜層の表面から前記厚さ方向に2μmの範囲である表面部及び前記界面から前記表面側に向かって前記厚さ方向に2μmの範囲である深部それぞれに対して、FE-EPMAを用いて前記厚さ方向の断面をマッピング観察し、前記表面部のリン酸化合物濃度をPA、前記深部のリン酸化合物濃度をPCとしたときに、PA/PCが0.5~2.0であってもよい。
 (8)上記(1)~(7)の何れか一態様に記載のプレコート鋼板では、前記着色皮膜層が前記バナジウム化合物を含んでもよい。
 (9)上記(8)に記載のプレコート鋼板では、前記バナジウム化合物の平均粒子径が、0.10~10μmであってもよい。
 (10)上記(8)又は(9)に記載のプレコート鋼板では、前記着色皮膜層の層厚をTとし、前記着色皮膜層の表面から前記厚さ方向にTかつ前記界面と平行方向に200μmの範囲でFE-EPMAを用いて検出されるバナジウム元素の濃度をPD、前記着色皮膜層の層厚中心から前記界面に向かって前記厚さ方向にT/2かつ前記界面方向に200μmの範囲でFE-EPMAを用いて検出されるバナジウム元素の濃度をPEとしたときに、PE/PDが1.0~5.0であってもよい。
 (11)上記(8)~(10)の何れか一態様に記載のプレコート鋼板では、前記亜鉛合金めっき層が、4~22質量%のAlと、1~5質量%のMgと、を含有してもよい。
 (12)上記(8)~(11)の何れか一態様に記載のプレコート鋼板では、前記亜鉛合金めっき層が、0.01~2.0質量%のSiを含有してもよい。
 (13)上記(8)~(12)の何れか一態様に記載のプレコート鋼板では、前記着色顔料が、アルミ顔料であってもよい。
 (14)上記(13)に記載のプレコート鋼板では、前記着色顔料の平均粒子径が7~30μmであり、かつ、平均アスペクト比が20以上であってもよい。
 (15)上記(13)又は(14)に記載のプレコート鋼板では、前記着色顔料が、前記着色皮膜層の表面から前記厚さ方向に0.5μmの範囲、又は、前記界面から前記表面に向かって前記厚さ方向に0.5μmの範囲には存在しなくてもよい。
 (16)上記(1)~(15)の何れか一態様に記載のプレコート鋼板では、前記着色皮膜層に含まれる前記バインダー樹脂が、ポリエステル樹脂及びアクリル樹脂であってもよい。
 (17)上記(1)~(16)の何れか一態様に記載のプレコート鋼板では、前記着色皮膜層がメラミンを更に含有してもよい。
 (18)上記(17)に記載のプレコート鋼板では、前記着色皮膜層の表面に、メラミン濃化層を備えてもよい。
 (19)上記(1)~(18)の何れか一態様に記載のプレコート鋼板では、前記着色皮膜層と前記亜鉛合金めっき層との間に、化成処理皮膜層を更に備えてもよい。
 (20)上記(1)~(19)の何れか一態様に記載のプレコート鋼板では、前記着色皮膜層の層厚が、2μm以上であってもよい。
(1) A precoated steel sheet according to one aspect of the present invention is provided on a steel sheet, the steel sheet, and 1 to 25% by mass of Al, 0.1 to 13% by mass of Mg, and 0 to 2.0% by mass. % Si, the balance being a zinc alloy plating layer consisting of Zn and impurities, and at least one of a phosphate compound and a vanadium compound provided on the zinc alloy plating layer, and containing a color pigment and a binder resin. A colored film layer.
When the colored film layer contains the phosphoric acid compound, the concentration of the phosphoric acid compound is 0.3 to 5.0 mass in terms of P amount with respect to the total solid mass of the colored film layer. %, Which is 2 μm in the thickness direction and 200 μm in the direction parallel to the interface between the color coating layer and the zinc alloy plating layer when the cross section of the color coating layer in the thickness direction is observed by mapping with FE-EPMA. Within this range, 1 to 15 first regions having a phosphorus element concentration of 3% or more are present.
When the colored coating layer contains the vanadium compound, the vanadium compound is a vanadate compound or vanadium oxide, the concentration of the vanadium compound, relative to the total solid mass of the colored coating layer, V amount. Is 0.5 to 8.0% by mass, and when the cross section of the colored film layer in the thickness direction is observed by mapping with FE-EPMA, the thickness direction is increased from the interface toward the surface side. In the range of 1 μm and 200 μm in the direction parallel to the interface, there are 1 to 10 second regions having a vanadium element concentration of 3% or more.
(2) In the precoated steel sheet according to (1), the colored coating layer may include the phosphoric acid compound.
(3) In the precoated steel sheet according to (1) or (2) above, when the cross section of the colored coating layer in the thickness direction is observed by mapping with FE-EPMA, it is 2 μm in the thickness direction and parallel to the interface. Within the range of 40 μm in the direction, 1 to 15 first regions having a phosphorus element concentration of 3% or more may be present.
(4) In the precoated steel sheet according to any one of the above (1) to (3), when the cross section of the colored coating layer in the thickness direction is observed by mapping with FE-EPMA, it is 2 μm in the thickness direction. Further, 1 to 15 first regions having a phosphorus element concentration of 3% or more may be present within a range of 20 μm in the direction parallel to the interface.
(5) In the precoated steel sheet according to any one of the above (1) to (4), the phosphoric acid compound may have an average particle size of 0.10 to 10 μm.
(6) In the precoated steel sheet according to any one of the above (1) to (5), the colored film layer has a layer thickness of more than 8 μm and 15 μm or less, and the thickness direction from the surface of the colored film layer is the thickness direction. In the range of 2 μm in the thickness direction, a center part in the range of 2 μm in the thickness direction centered on the center of the thickness of the colored film layer, and a range of 2 μm in the thickness direction from the interface toward the surface side. The concentration of the elemental phosphorus detected in the range of 2 μm × 200 μm is measured using FE-EPMA for each of the deep areas, and the concentration of the phosphate compound in the surface portion is PA, and the concentration of the phosphate compound in the central portion is Where PA / PB is 0.5 to 2.0 and PA / PC is 0.5 to 2.0, where PB is PB and the concentration of the phosphate compound in the deep portion is PC.
(7) In the precoated steel sheet according to any one of the aspects (1) to (6), the colored film layer has a layer thickness of 8 μm or less, and the colored film layer has a thickness of 2 μm from the surface in the thickness direction. The FE-EPMA is used to map and observe the cross section in the thickness direction with respect to each of the surface part which is the range and the deep part which is the range of 2 μm in the thickness direction from the interface toward the surface side, PA / PC may be 0.5 to 2.0, where PA is the concentration of the phosphoric acid compound in the part and PC is the concentration of the phosphoric acid compound in the deep part.
(8) In the precoated steel sheet according to any one of the aspects (1) to (7), the colored coating layer may include the vanadium compound.
(9) In the precoated steel sheet according to (8), the vanadium compound may have an average particle size of 0.10 to 10 μm.
(10) In the precoated steel sheet according to (8) or (9) above, the layer thickness of the colored film layer is T, and T is 200 μm from the surface of the colored film layer in the thickness direction and in the direction parallel to the interface. The concentration of vanadium element detected using FE-EPMA in the range of PD is PD, T / 2 in the thickness direction from the center of the layer thickness of the colored film layer to the interface, and 200 μm in the interface direction. When the concentration of the vanadium element detected by using FE-EPMA is PE, PE / PD may be 1.0 to 5.0.
(11) In the precoated steel sheet according to any one of the above (8) to (10), the zinc alloy plating layer contains 4 to 22 mass% of Al and 1 to 5 mass% of Mg. You may.
(12) In the precoated steel sheet according to any one of the above (8) to (11), the zinc alloy plating layer may contain 0.01 to 2.0 mass% of Si.
(13) In the precoated steel sheet according to any one of the above (8) to (12), the coloring pigment may be an aluminum pigment.
(14) In the precoated steel sheet according to (13), the color pigment may have an average particle diameter of 7 to 30 μm and an average aspect ratio of 20 or more.
(15) In the pre-coated steel sheet according to (13) or (14), the color pigment is in the range of 0.5 μm from the surface of the colored film layer in the thickness direction, or from the interface to the surface. Therefore, it may not exist in the range of 0.5 μm in the thickness direction.
(16) In the precoated steel sheet according to any one of the above aspects (1) to (15), the binder resin contained in the colored film layer may be a polyester resin and an acrylic resin.
(17) In the precoated steel sheet according to any one of the above (1) to (16), the colored coating layer may further contain melamine.
(18) In the precoated steel sheet according to (17) above, a melamine concentrated layer may be provided on the surface of the colored coating layer.
(19) In the precoated steel sheet according to any one of the above (1) to (18), a chemical conversion treatment coating layer may be further provided between the colored coating layer and the zinc alloy plating layer.
(20) In the precoated steel sheet according to any one of the above (1) to (19), the layer thickness of the colored film layer may be 2 μm or more.
 上記各態様によれば、着色皮膜の薄膜化を図りつつ、意匠性、耐食性、加工性及び耐候性に優れたプレコート鋼板を提供することができる。 According to each of the above aspects, it is possible to provide a precoated steel sheet having excellent designability, corrosion resistance, workability, and weather resistance while achieving a thin colored film.
本発明の第1実施形態に係るプレコート鋼板の層構成を示す模式図である。It is a schematic diagram which shows the layer structure of the precoat steel plate which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るプレコート鋼板の層構成を示す模式図である。It is a schematic diagram which shows the layer structure of the precoat steel plate which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るプレコート鋼板の層構成を示す模式図である。It is a schematic diagram which shows the layer structure of the precoat steel plate which concerns on 3rd Embodiment of this invention. 本発明の第1実施形態に係るプレコート鋼板において、着色皮膜断面におけるリン酸化合物の存在状態を示す模式図である。It is a schematic diagram which shows the presence state of the phosphoric acid compound in the cross section of a colored film in the pre-coated steel sheet which concerns on 1st Embodiment of this invention. 従来技術に係る着色皮膜層での第1の領域の分布状態を示す模式図である。It is a schematic diagram which shows the distribution state of the 1st area | region in the coloring film layer which concerns on a prior art. 従来技術に係る着色皮膜層での第1の領域の分布状態を示す模式図である。It is a schematic diagram which shows the distribution state of the 1st area | region in the coloring film layer which concerns on a prior art. 従来技術に係る着色皮膜層での第1の領域の分布状態を示す模式図である。It is a schematic diagram which shows the distribution state of the 1st area | region in the coloring film layer which concerns on a prior art. 本発明の第2実施形態に係るプレコート鋼板において、着色皮膜層中のバナジウム化合物の存在状態を示す模式図である。In the pre-coated steel sheet which concerns on 2nd Embodiment of this invention, it is a schematic diagram which shows the presence state of the vanadium compound in a colored film layer. 従来技術に係るプレコート鋼板において、着色皮膜中のバナジウム化合物の存在状態を示す模式図である。FIG. 3 is a schematic diagram showing the existing state of a vanadium compound in a colored film in a precoated steel sheet according to a conventional technique. 本発明の第1実施形態に係るプレコート鋼板において、着色皮膜層の表面部、中心部及び深部を説明するための模式図である。It is a schematic diagram for demonstrating the surface part, center part, and deep part of a colored film layer in the precoat steel plate which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るプレコート鋼板において、層厚中心と層厚とを説明するための模式図である。It is a schematic diagram for demonstrating the center of layer thickness and layer thickness in the precoat steel plate which concerns on 2nd Embodiment of this invention.
 本発明者は、上記課題を解決するために鋭意検討を行った結果、プレコート鋼板に用いる鋼板を特定のめっき鋼板とするとともに、めっき鋼板上に設けられる着色皮膜層に対して防錆成分として特定の顔料を含有し、更にかかる顔料の着色皮膜層中における分布を特定の条件とすることで、着色皮膜の薄膜化を図りつつ、優れた意匠性、耐食性、加工性及び耐候性を共に実現することが可能であることに想到し、本発明を完成するに至った。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
The present inventor, as a result of earnest studies to solve the above problems, with a steel plate used as a pre-coated steel sheet as a specific plated steel sheet, and specified as a rust preventive component for a colored film layer provided on the plated steel sheet. By including the pigment of (1) and further adjusting the distribution of such pigment in the colored coating layer under specific conditions, while achieving thinning of the colored coating, excellent designability, corrosion resistance, processability and weather resistance are achieved together. As a result, the present invention has been completed, and the present invention has been completed.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the present specification and the drawings, constituent elements having substantially the same functional configuration are designated by the same reference numerals, and a duplicate description will be omitted.
[第1実施形態]
(プレコート鋼板100)
 図1は、本発明の第1実施形態に係るプレコート鋼板100の層構成を示す模式図である。プレコート鋼板100は、鋼板1と、鋼板1上に設けられ、1~25質量%のAlと、0.1~13質量%のMgと、0~2.0質量%のSiと、を含有し、残部がZn及び不純物からなる亜鉛合金めっき層10と、亜鉛合金めっき層10上に設けられ、リン酸化合物、着色顔料及びバインダー樹脂を含む着色皮膜層20と、を備える。
[First Embodiment]
(Pre-coated steel sheet 100)
FIG. 1 is a schematic diagram showing a layer structure of a precoated steel sheet 100 according to the first embodiment of the present invention. The precoated steel sheet 100 is provided on the steel sheet 1, contains 1 to 25% by mass of Al, 0.1 to 13% by mass of Mg, and 0 to 2.0% by mass of Si. The zinc alloy plating layer 10 has the balance consisting of Zn and impurities, and the colored film layer 20 provided on the zinc alloy plating layer 10 and containing a phosphoric acid compound, a color pigment, and a binder resin.
(鋼板1)
 本実施形態に係るプレコート鋼板100に用いられる鋼板(母材鋼板)1は特に限定されず、公知の特性や化学組成を有する鋼板1を使用することが可能である。鋼板1の化学組成は特に限定されず、プレコート鋼板100に求められる機械的強度を実現可能な化学組成であることが好ましい。
(Steel plate 1)
The steel sheet (base steel sheet) 1 used for the precoated steel sheet 100 according to the present embodiment is not particularly limited, and it is possible to use the steel sheet 1 having known characteristics and chemical composition. The chemical composition of the steel sheet 1 is not particularly limited, and is preferably a chemical composition that can realize the mechanical strength required for the precoated steel sheet 100.
(亜鉛合金めっき層10)
 本実施形態に係る鋼板1上には、1~25質量%のAlと、0.1~13質量%のMgと、0~2.0質量%のSiと、を含有し、残部がZn及び不純物からなる亜鉛合金めっき層10が設けられている。すなわち、本実施形態に係る亜鉛合金めっき層10は、Zn、Al及びMgを有する三元系の亜鉛合金を含有する合金めっき層である。本実施形態に係るプレコート鋼板100は、亜鉛合金めっき層10を有することで、溶融亜鉛めっき鋼板よりも優れた耐食性を実現できる。
(Zinc alloy plating layer 10)
The steel sheet 1 according to the present embodiment contains 1 to 25 mass% Al, 0.1 to 13 mass% Mg, and 0 to 2.0 mass% Si, and the balance Zn and A zinc alloy plating layer 10 made of impurities is provided. That is, the zinc alloy plating layer 10 according to the present embodiment is an alloy plating layer containing a ternary zinc alloy containing Zn, Al and Mg. Since the precoated steel sheet 100 according to the present embodiment has the zinc alloy plating layer 10, the corrosion resistance superior to that of the hot dip galvanized steel sheet can be realized.
 亜鉛合金めっき層10におけるAlの濃度が1質量%未満である場合には、耐食性が不足するため、好ましくない。一方、Alの濃度が25質量%を超える場合には、耐食性向上効果が飽和する。
 亜鉛合金めっき層におけるMgの濃度が0.1質量%未満である場合には、耐食性が不足するため、好ましくない。一方、Mgの濃度が13質量%を超える場合には、亜鉛合金めっき層10を形成する際に用いられるめっき浴中でドロスが発生するため、好ましくない。
 本実施形態に係る亜鉛合金めっき層10は、4~22質量%のAlと、1~5質量%のMgと、を含有することが好ましい。
If the Al concentration in the zinc alloy plating layer 10 is less than 1% by mass, the corrosion resistance becomes insufficient, which is not preferable. On the other hand, when the Al concentration exceeds 25% by mass, the effect of improving corrosion resistance is saturated.
When the concentration of Mg in the zinc alloy plating layer is less than 0.1% by mass, corrosion resistance becomes insufficient, which is not preferable. On the other hand, when the concentration of Mg exceeds 13 mass%, dross is generated in the plating bath used when forming the zinc alloy plating layer 10, which is not preferable.
The zinc alloy plating layer 10 according to the present embodiment preferably contains 4 to 22 mass% of Al and 1 to 5 mass% of Mg.
 耐食性をより向上させるため、本実施形態に係る亜鉛合金めっき層10は、更にSiを含有することが好ましい。亜鉛合金めっき層10における好ましいSi濃度は、0.01~2.0質量%である。Siの濃度が0.01質量%未満である場合には、Si含有による耐食性の向上効果が十分ではないため好ましくない。Siの濃度が2.0質量%を超える場合には、亜鉛合金めっき層10を形成する際に用いられるめっき浴で、ドロスが発生しやすくなるため好ましくない。 In order to further improve the corrosion resistance, the zinc alloy plating layer 10 according to this embodiment preferably further contains Si. The preferable Si concentration in the zinc alloy plating layer 10 is 0.01 to 2.0 mass%. If the Si concentration is less than 0.01% by mass, the effect of improving the corrosion resistance due to the Si content is not sufficient, which is not preferable. When the concentration of Si exceeds 2.0 mass%, dross is likely to occur in the plating bath used when forming the zinc alloy plating layer 10, which is not preferable.
 本実施形態において、亜鉛合金めっき層10を形成するための製造方法としては、例えば、溶融した状態にあるZn-Al-Mg合金が保持されているめっき浴に対して、鋼板1を浸漬させ、かかるめっき浴から鋼板1を引き上げる方法が挙げられる。
 鋼板1へのめっき付着量の制御は、鋼板1の引き上げ速度や、めっき浴の上方に設けられたワイピングノズルより噴出するワイピングガスの流量や、流速調整などにより行うことが可能である。
 亜鉛合金めっき層10の製造に当たっては、切板めっき法やコイルを用いた連続法等を用いてもよい。
In the present embodiment, as a manufacturing method for forming the zinc alloy plating layer 10, for example, the steel plate 1 is dipped in a plating bath holding a molten Zn—Al—Mg alloy, The method of pulling up the steel plate 1 from such a plating bath is mentioned.
The amount of coating adhered to the steel plate 1 can be controlled by the pulling-up speed of the steel plate 1, the flow rate of the wiping gas ejected from the wiping nozzle provided above the plating bath, the flow rate adjustment, and the like.
In manufacturing the zinc alloy plating layer 10, a cut plate plating method, a continuous method using a coil, or the like may be used.
 亜鉛合金めっき層10の付着量は、鋼板1の片面当たり20~100g/mの範囲であることが好ましい。亜鉛合金めっき層10の付着量が片面当たり20g/m未満である場合には、プレコート鋼板100の耐食性が不十分となるため、好ましくない。また、亜鉛合金めっき層10の付着量が片面当たり100g/m超である場合には、プレコート鋼板100の加工性が低下するため、好ましくない。
 亜鉛合金めっき層10の付着量は、より好ましくは、鋼板1の片面当たり25~95g/mの範囲である。
The amount of the zinc alloy plating layer 10 deposited is preferably in the range of 20 to 100 g / m 2 per side of the steel sheet 1. If the amount of the zinc alloy plating layer 10 adhered is less than 20 g / m 2 per side, the corrosion resistance of the precoated steel sheet 100 becomes insufficient, which is not preferable. Further, if the amount of the zinc alloy plating layer 10 attached is more than 100 g / m 2 per side, the workability of the precoated steel sheet 100 will be reduced, which is not preferable.
The amount of the zinc alloy plating layer 10 deposited is more preferably in the range of 25 to 95 g / m 2 per side of the steel sheet 1.
(着色皮膜層20)
 亜鉛合金めっき層10上には、着色皮膜層20(より詳細には、単層の着色皮膜層20)が設けられる。着色皮膜層20は、リン酸化合物、着色顔料及びバインダー樹脂を少なくとも含有する。
 鋼板1の両面に亜鉛合金めっき層10が設けられている場合、着色皮膜層20は一方の亜鉛合金めっき層10上に設けられてもよく、両方の亜鉛合金めっき層10上に設けられてもよい。
(Colored film layer 20)
A colored coating layer 20 (more specifically, a single colored coating layer 20) is provided on the zinc alloy plating layer 10. The colored film layer 20 contains at least a phosphoric acid compound, a color pigment, and a binder resin.
When the zinc alloy plating layer 10 is provided on both surfaces of the steel sheet 1, the colored film layer 20 may be provided on one zinc alloy plating layer 10 or may be provided on both zinc alloy plating layers 10. Good.
<リン酸化合物>
 本実施形態に係る着色皮膜層20に含有されるリン酸化合物は、着色皮膜層20中に一定量が偏りなく分布していることが重要であり、リン酸化合物がそのように分布する限り、リン酸化合物が含有される形態については、特に限定されない。以下、かかるリン酸化合物について、詳細に説明する。
<Phosphate compound>
It is important that the phosphoric acid compound contained in the colored film layer 20 according to the present embodiment is uniformly distributed in the colored film layer 20 in a certain amount, and as long as the phosphoric acid compound is distributed as such, The form in which the phosphoric acid compound is contained is not particularly limited. Hereinafter, the phosphate compound will be described in detail.
 リン酸化合物は、腐食環境においてリン酸イオンを放出する。放出されたリン酸イオンは、亜鉛合金めっき層10のめっき成分と反応することで、亜鉛合金めっき層10の表面に保護皮膜(不図示)を形成し、形成された保護皮膜が耐食性を向上させる。特に、加工後の耐食性を向上させるためには、加工によって着色皮膜層20のどの部分に亀裂が生じたとしても、亀裂部(不図示)からリン酸化合物が溶出できることが重要となる。 Phosphonate compounds release phosphate ions in corrosive environments. The released phosphate ions react with the plating components of the zinc alloy plating layer 10 to form a protective film (not shown) on the surface of the zinc alloy plating layer 10, and the formed protective film improves the corrosion resistance. .. In particular, in order to improve the corrosion resistance after processing, it is important that the phosphoric acid compound can be eluted from the cracked portion (not shown) regardless of which portion of the colored film layer 20 is cracked by the processing.
 着色皮膜層20では、厚さ方向に2μmかつ着色皮膜層20と亜鉛合金めっき層10との界面40と平行方向(以下、界面方向と呼称する場合がある)に200μmの範囲(2μm×200μmの範囲)内に、リン元素の濃度が3%以上である第1の領域30が1~15個存在する。例えば、図4に示す場合には、着色皮膜層20は第1の領域30を2個含んでいる。 The colored film layer 20 has a thickness of 2 μm and a range of 200 μm in the direction parallel to the interface 40 between the colored film layer 20 and the zinc alloy plating layer 10 (hereinafter sometimes referred to as the interface direction) (2 μm × 200 μm). Within the range), 1 to 15 first regions 30 having a phosphorus element concentration of 3% or more are present. For example, in the case shown in FIG. 4, the colored film layer 20 includes two first regions 30.
 第1の領域30が2μm×200μmの範囲内に1個未満である場合には、リン酸化合物の分布が疎となり、十分な耐食性向上効果を得ることができないため、好ましくない。一方、第1の領域30の個数が2μm×200μmの範囲内に15個を超える場合には、リン酸化合物の分布が密になりすぎ、着色皮膜層20自体のバリア性が低下するため、好ましくない。 If the number of the first regions 30 is less than 1 in the range of 2 μm × 200 μm, the distribution of the phosphoric acid compound becomes sparse, and a sufficient effect of improving corrosion resistance cannot be obtained, which is not preferable. On the other hand, when the number of the first regions 30 exceeds 15 within the range of 2 μm × 200 μm, the distribution of the phosphoric acid compound becomes too dense, and the barrier property of the colored film layer 20 itself deteriorates, which is preferable. Absent.
 着色皮膜層20に含まれる第1の領域30の数は、好ましくは厚さ方向に2μmかつ界面方向に40μmの範囲(2μm×40μmの範囲)内に1~15個であり、より好ましくは厚さ方向に2μmかつ界面方向に20μmの範囲(2μm×20μmの範囲)内に1~15個である。着色皮膜層20に含まれる第1の領域30の数が上述の範囲であることにより、より好ましい耐食性を得ることができる。 The number of the first regions 30 included in the colored film layer 20 is preferably 1 to 15 in the range of 2 μm in the thickness direction and 40 μm in the interface direction (range of 2 μm × 40 μm), and more preferably the thickness. 1 to 15 in the range of 2 μm in the depth direction and 20 μm in the interface direction (range of 2 μm × 20 μm). When the number of the first regions 30 included in the colored film layer 20 is within the above range, more preferable corrosion resistance can be obtained.
 図10は、本発明の第1実施形態に係るプレコート鋼板において、着色皮膜層20の表面部60、中心部70及び深部80を説明するための模式図である。
 着色皮膜層20の層厚が8μm超、15μm以下である場合には、着色皮膜層20の表面から厚さ方向に2μmの範囲である表面部60、着色皮膜層20の層厚中心90を中心として厚さ方向に2μmの範囲である中心部70、界面40から表面側に向かって厚さ方向に2μmの範囲である深部80それぞれに対して、FE-EPMAを用いて2μm×200μmの範囲で検出されるリン元素の濃度を測定し、表面部60のリン酸化合物濃度をPA、中心部70のリン酸化合物濃度をPB、深部80のリン酸化合物濃度をPCとしたときに、PA/PBが0.5~2.0であり、かつ、PA/PCが0.5~2.0であることが好ましい。PA/PB及びPA/PCが0.5~2.0である場合には、リン酸化合物が着色皮膜層20全体に均等に分散しており、優れた耐食性を得ることができるためである。
FIG. 10 is a schematic diagram for explaining the surface portion 60, the central portion 70, and the deep portion 80 of the colored coating layer 20 in the precoated steel sheet according to the first embodiment of the present invention.
When the layer thickness of the colored film layer 20 is more than 8 μm and 15 μm or less, the surface portion 60 within the range of 2 μm from the surface of the colored film layer 20 and the layer thickness center 90 of the colored film layer 20 are centered. As for the central portion 70 having a range of 2 μm in the thickness direction and the deep portion 80 having a range of 2 μm in the thickness direction from the interface 40 toward the surface side, using FE-EPMA, a range of 2 μm × 200 μm When the concentration of the detected phosphorus element is measured and the concentration of the phosphate compound in the surface portion 60 is PA, the concentration of the phosphate compound in the central portion 70 is PB, and the concentration of the phosphate compound in the deep portion 80 is PC, PA / PB Is preferably 0.5 to 2.0 and PA / PC is preferably 0.5 to 2.0. This is because when PA / PB and PA / PC are 0.5 to 2.0, the phosphoric acid compound is uniformly dispersed in the entire colored film layer 20, and excellent corrosion resistance can be obtained.
 着色皮膜層20の層厚が8μm以下である場合には、上述のPA/PCが0.5~2.0であることが好ましい。PA/PCが0.5~2.0である場合には、リン酸化合物が着色皮膜層20全体に均等に分散しており、優れた耐食性を得ることができるためである。 When the thickness of the colored film layer 20 is 8 μm or less, the above PA / PC is preferably 0.5 to 2.0. This is because when PA / PC is 0.5 to 2.0, the phosphoric acid compound is uniformly dispersed in the entire colored coating layer 20, and excellent corrosion resistance can be obtained.
 第1の領域30は、リン元素の濃度が3%以上である部分であり、着色皮膜層20に含有される各成分のうち、リン酸化合物が主に存在する部分である。第1の領域30は、主成分であるリン酸化合物以外に、着色皮膜層20に含有される各種の樹脂成分等を含んでもよい。
 着色皮膜層20の第1の領域30以外の部分は、バインダー樹脂に由来する各種の樹脂成分を主成分とし、その他に着色顔料等を含んでもよい。
The first region 30 is a portion in which the concentration of the phosphorus element is 3% or more, and is a portion in which the phosphoric acid compound mainly exists among the components contained in the colored film layer 20. The first region 30 may include various resin components or the like contained in the colored film layer 20 in addition to the phosphoric acid compound as the main component.
The portion of the colored film layer 20 other than the first region 30 may contain various resin components derived from a binder resin as a main component, and may further contain a coloring pigment or the like.
 着色皮膜層20は、メラミン樹脂を含有することが好ましい。メラミン樹脂の種類は特に限定されないが、イミノ基型メラミン樹脂を用いることが好ましい。イミノ基型メラミン樹脂は着色皮膜層20の表層に濃化しやすく、メラミン樹脂縮合化合物(メラミン濃化層、不図示)を形成しやすいためである。着色皮膜層20の表面にメラミン樹脂縮合化合物の濃化層が形成されると、着色皮膜層20にバリア性が付与され、耐汚染性及び耐食性が向上するため、好ましい。 The colored film layer 20 preferably contains a melamine resin. The type of melamine resin is not particularly limited, but it is preferable to use an imino group type melamine resin. This is because the imino group-type melamine resin is likely to be concentrated on the surface layer of the colored film layer 20, and a melamine resin condensation compound (melamine concentrated layer, not shown) is easily formed. When the concentrated layer of the melamine resin condensation compound is formed on the surface of the colored film layer 20, the colored film layer 20 is provided with a barrier property, and the stain resistance and the corrosion resistance are improved, which is preferable.
 着色皮膜層20中におけるメラミン樹脂の各種分析方法について説明する。まず、分析対象である着色皮膜層20を、酸化オスミウムで染色する。これにより、着色皮膜層20中のメラミン樹脂が、選択的に染色される。次に、ミクロトーム、集束イオンビーム加工装置等を利用して、酸化オスミウムで染色した着色皮膜層20を膜厚方向に沿って切断し、断面が観察できる試料を作製する。続いて、透過型電子顕微鏡を用いて、薄膜試料を倍率10万倍で観察する。この観察において、薄膜試料中におけるトリアジン部位は、STEM-BF(明視野)画像では黒く観察され、STEM-HAADF(暗視野)画像では白く観察される。
 上記のような分析方法により、着色皮膜層20中のメラミン樹脂を確認することができる。なお、着色皮膜層20中のメラミン樹脂は、エネルギー分散型X線分光法、又は、フーリエ変換赤外分光法で着色皮膜層20を分析して、窒素とオスミウムを検出したり、トリアジン環に帰属される振動ピークを検出することでも確認できる。
Various methods for analyzing the melamine resin in the colored film layer 20 will be described. First, the colored film layer 20 to be analyzed is dyed with osmium oxide. Thereby, the melamine resin in the colored film layer 20 is selectively dyed. Next, using a microtome, a focused ion beam processing device, etc., the colored film layer 20 dyed with osmium oxide is cut along the film thickness direction to prepare a sample whose cross section can be observed. Then, the thin film sample is observed with a transmission electron microscope at a magnification of 100,000 times. In this observation, the triazine site in the thin film sample is observed black in the STEM-BF (bright field) image and white in the STEM-HAADF (dark field) image.
The melamine resin in the colored film layer 20 can be confirmed by the above-described analysis method. The melamine resin in the colored coating layer 20 is analyzed by energy dispersive X-ray spectroscopy or Fourier transform infrared spectroscopy to detect nitrogen and osmium, and to belong to the triazine ring. It can also be confirmed by detecting the vibration peak.
 粒状のメラミン樹脂が濃化している領域の厚み(すなわち、層状に偏在した粒状のメラミン樹脂の濃化部の厚み)は、次の方法により測定される。上述のように、透過型電子顕微鏡により薄膜試料を倍率10万倍で観察して、STEM-BF(明視野)画像を得る。得られたSTEM-BF(明視野)画像を、2値化する。そして、得られた2値化画像において、着色皮膜層20の表面から黒く観察される層状の領域の厚みを任意の20箇所測定し、その平均値を粒状のメラミン樹脂が濃化している領域の厚みとして算出する。なお、着色皮膜層20の表面から層状に黒く観察される領域が確認されたとき、粒状のメラミン樹脂が着色皮膜の表層に濃化しているとみなす。 The thickness of the region where the granular melamine resin is concentrated (that is, the thickness of the concentrated portion of the granular melamine resin that is unevenly distributed in layers) is measured by the following method. As described above, the thin film sample is observed with a transmission electron microscope at a magnification of 100,000 to obtain a STEM-BF (bright field) image. The obtained STEM-BF (bright field) image is binarized. Then, in the obtained binarized image, the thickness of a layered region observed black from the surface of the colored film layer 20 was measured at arbitrary 20 points, and the average value thereof was measured for the region where the granular melamine resin was concentrated. Calculate as thickness. When a layered black region is observed from the surface of the colored film layer 20, it is considered that the granular melamine resin is concentrated on the surface layer of the colored film.
 図5~7は、従来技術に係る着色皮膜層520での第1の領域30の分布状態を示す模式図である。図5に示す例では、着色皮膜層520の一部において、第1の領域30の数が少ない。このように、着色皮膜層の2μm×200μmの領域に第1の領域30が存在しないと、第1の領域30の存在しない箇所(つまり、リン酸化合物の存在しない箇所)に亀裂が生じたとき、亜鉛合金めっき層10の表面に保護皮膜が形成されないため、十分な耐食性を確保できない。
 従来のプレコート鋼板のように、溶剤系塗料を用いて、亜鉛合金めっき層10側からプライマー層、着色皮膜層、クリア皮膜層等の複数層を形成する場合(つまり、合計膜厚が20μm以上と厚い場合)には、プライマー層にリン酸化合物を多量に添加することで、耐食性を向上することが可能である。
5 to 7 are schematic diagrams showing a distribution state of the first regions 30 in the colored film layer 520 according to the conventional technique. In the example shown in FIG. 5, the number of the first regions 30 is small in a part of the colored film layer 520. As described above, when the first region 30 does not exist in the region of 2 μm × 200 μm of the colored film layer, when a crack is generated in a portion where the first region 30 does not exist (that is, a portion where the phosphate compound does not exist). Since a protective film is not formed on the surface of the zinc alloy plating layer 10, sufficient corrosion resistance cannot be ensured.
When a plurality of layers such as a primer layer, a colored film layer, and a clear film layer are formed from the zinc alloy plating layer 10 side using a solvent-based paint like a conventional pre-coated steel sheet (that is, the total film thickness is 20 μm or more). When it is thick, it is possible to improve the corrosion resistance by adding a large amount of a phosphoric acid compound to the primer layer.
 図6は、着色皮膜層520に第1の領域30が多く含まれる場合を表している。図6に示すように、着色皮膜層に多量のリン酸化合物が含まれており、かつ、本実施形態のように1層の着色皮膜層のみで耐食性を向上させる場合、腐食環境においてリン酸化合物が溶出した箇所が腐食因子の侵入経路となり、着色皮膜層自体のバリア性が低下する。
 従って、本実施形態に係る着色皮膜層20に含まれるリン酸化合物は、例えば図4に示したように、着色皮膜層20の平面方向に一定量が均一に存在し、かつ、過剰に含まれないことが必要である。
FIG. 6 shows a case where the colored film layer 520 includes many first regions 30. As shown in FIG. 6, when the colored film layer contains a large amount of a phosphoric acid compound and the corrosion resistance is improved by only one colored film layer as in the present embodiment, the phosphoric acid compound is used in a corrosive environment. The portion where the is dissolved becomes a passage for the corrosion factor to enter, and the barrier property of the colored film layer itself is deteriorated.
Therefore, the phosphoric acid compound contained in the colored film layer 20 according to the present embodiment is uniformly present in a certain amount in the plane direction of the colored film layer 20 and excessively contained, as shown in FIG. 4, for example. It is necessary not to.
 また、着色皮膜層20に亀裂が生じた際に、腐食環境においてめっき成分との反応を容易にするために、着色皮膜層20と亜鉛合金めっき層10との界面40付近に一定量の第1の領域30(リン酸化合物)が存在することが必要である。
 しかしながら、図7に示したように、亜鉛合金めっき層10の近傍のみにしか第1の領域30(リン酸化合物)が存在しない場合には、次のような問題が生じる。つまり、亀裂の深さが場所によって異なると、着色皮膜層20の表面近傍に第1の領域30(リン酸化合物)が存在しないために、亀裂が浅い箇所からのリン酸イオンの溶出量が少なくなり、耐食性が劣る。
 従って、リン酸化合物は、着色皮膜層20の平面方向のみならず、着色皮膜層20の膜厚方向にも均一に分布することが重要となる。
In addition, when a crack is generated in the colored film layer 20, in order to facilitate the reaction with the plating components in a corrosive environment, a certain amount of the first portion near the interface 40 between the colored film layer 20 and the zinc alloy plated layer 10 is used. It is necessary that the region 30 (phosphoric acid compound) is present.
However, as shown in FIG. 7, when the first region 30 (phosphoric acid compound) exists only in the vicinity of the zinc alloy plating layer 10, the following problem occurs. That is, when the depth of the cracks differs depending on the location, the first region 30 (phosphate compound) does not exist near the surface of the colored film layer 20, so that the amount of phosphate ions eluted from the shallow cracks is small. And the corrosion resistance is poor.
Therefore, it is important that the phosphoric acid compound be uniformly distributed not only in the plane direction of the colored film layer 20 but also in the film thickness direction of the colored film layer 20.
 第1の領域30の個数を測定する際は、着色皮膜層20の断面に対して、FE-EPMA(Field Emission Electron Probe Micro Analyzer)による二次電子像観察及びマッピング観察が用いられる。
 FE-EPMAマッピング観察によりリン元素濃度を測定する方法は以下の通りである。すなわち、プレコート鋼板を適当な大きさに切断して、ミクロトーム、集束イオンビーム加工、樹脂埋め込み研磨等により、断面観察可能な試験体を作製する。その上で、断面方向から着色皮膜層のFE-EPMAマッピング分析を、加速電圧15kV(ビーム径は約30nm)、倍率5000倍で実施する。検出対象元素としてPを選択し、P元素の存在位置及び元素濃度をマッピングする。なお、P元素濃度は、リン酸濃度が既知のサンプルを用いて作成される検量線(濃度と検出強度の関係式)から求める。
When measuring the number of the first regions 30, secondary electron image observation and mapping observation by FE-EPMA (Field Emission Electron Probe Micro Analyzer) are used for the cross section of the colored film layer 20.
The method for measuring the phosphorus element concentration by FE-EPMA mapping observation is as follows. That is, a precoated steel sheet is cut into an appropriate size, and a microtome, focused ion beam processing, resin-embedded polishing, and the like are used to produce a test piece whose cross-section can be observed. Then, FE-EPMA mapping analysis of the colored film layer is performed from the cross-sectional direction at an acceleration voltage of 15 kV (beam diameter of about 30 nm) and a magnification of 5000 times. P is selected as the detection target element, and the existing position and element concentration of the P element are mapped. The P element concentration is obtained from a calibration curve (relational expression between concentration and detection intensity) created using a sample having a known phosphoric acid concentration.
 マッピングの際の1ピクセルは1.5×10-3μm(径:39nm)である。1ピクセルの中央に電子線を50m秒照射し、発生するX線強度を1ピクセルから検出した強度として処理する。2値化した元素マッピングの結果から、連続した9ピクセル以上の範囲を1個の第1の領域としてカウントする。つまり、8ピクセル以下の範囲は1個の第1の領域としてはカウントしない。なお、「連続した9ピクセル以上の範囲」は、特に一方向における連続に限定されず、方向や形状によらず9ピクセル以上つながっていればよい。 One pixel at the time of mapping is 1.5 × 10 −3 μm 2 (diameter: 39 nm). The center of one pixel is irradiated with an electron beam for 50 msec, and the generated X-ray intensity is processed as the intensity detected from one pixel. From the binarized element mapping result, a continuous range of 9 pixels or more is counted as one first region. That is, the range of 8 pixels or less is not counted as one first area. Note that the “continuous 9 or more pixel range” is not particularly limited to continuous in one direction, and may be 9 pixels or more regardless of the direction or shape.
 より具体的には、上記のようなマッピング分析において、まず、リン元素濃度の測定結果に基づき、リン元素濃度が3mass%以上となっている部分を、着目した視野における第1の領域30の位置とする。次に、膜厚方向の長さ2μm×界面方向の長さ200μmの任意の部分について、第1の領域30の個数を計測し、得られた個数を、着色皮膜層の膜厚方向に沿った長さ2μm×界面方向に沿った長さ200μmの範囲内に存在する第1の領域30の個数とする。
 なお、マッピング分析において1視野で200μmの範囲を観察できない場合には、複数の視野でマッピング分析を行い、各視野での分析結果を合計することで200μmの範囲の分析結果とする。
More specifically, in the mapping analysis as described above, first, based on the measurement result of the phosphorus element concentration, the portion where the phosphorus element concentration is 3 mass% or more is located at the position of the first region 30 in the focused visual field. And Next, the number of the first regions 30 was measured for an arbitrary portion having a length of 2 μm in the film thickness direction × 200 μm in the interface direction, and the obtained number was measured along the film thickness direction of the colored film layer. The number of the first regions 30 is within the range of length 2 μm × length 200 μm along the interface direction.
In addition, in the mapping analysis, when the range of 200 μm cannot be observed in one visual field, the mapping analysis is performed in a plurality of visual fields and the analysis results in each visual field are summed to obtain the analysis result in the range of 200 μm.
 上記のような第1の領域30(リン酸化合物)の分布状態は、着色皮膜層20中に、リン酸化合物を特定の濃度で含有させることで実現される。
 すなわち、リン酸化合物は、着色皮膜層20のマトリックスとして機能するバインダー樹脂と比較して比重が大きいために、通常は、着色皮膜層20を形成するための処理液が塗布された後、処理液を乾燥及び固化させるまでの間に、下方(すなわち、亜鉛合金めっき層10に向かう方向)に沈降しやすい状態となっている。しかしながら、バインダー樹脂として水分散型の水性樹脂を用いることで、リン酸化合物同士が密に凝集せず分散しやすい状態となる。これにより、リン酸化合物の分散が適切に実現されて、上記のような、特定のリン酸化合物の分布状態が実現される。
The distribution state of the first region 30 (phosphoric acid compound) as described above is realized by including the phosphoric acid compound in the coloring film layer 20 at a specific concentration.
That is, since the phosphoric acid compound has a larger specific gravity than the binder resin that functions as the matrix of the colored film layer 20, the treated liquid is usually applied after the treatment liquid for forming the colored film layer 20 is applied. Before being dried and solidified, it is in a state of being likely to settle down (that is, in the direction toward the zinc alloy plating layer 10). However, by using a water-dispersible aqueous resin as the binder resin, the phosphoric acid compounds do not aggregate densely and are easily dispersed. Thereby, the dispersion of the phosphoric acid compound is appropriately realized, and the distribution state of the specific phosphoric acid compound as described above is realized.
 本実施形態に係る着色皮膜層20に含有されるリン酸化合物としては、例えば、リン酸マグネシウム、リン酸カルシウム、トリポリリン酸二水素アルミニウム、リン酸亜鉛、亜リン酸マグネシウム、亜リン酸亜鉛、リンモリブデン酸亜鉛、リン酸亜鉛マグネシウム、リン酸ジルコニウム、バナジン酸リン等を挙げることができる。
 これらのリン酸化合物のうち、あるリン酸化合物を単独で用いてもよいし、複数のリン酸化合物を組み合わせて用いてもよい。これらリン酸化合物の中では、トリポリリン酸二水素アルミニウムを用いることが、特に好ましい。
Examples of the phosphoric acid compound contained in the colored film layer 20 according to the present embodiment include magnesium phosphate, calcium phosphate, aluminum dihydrogen tripolyphosphate, zinc phosphate, magnesium phosphite, zinc phosphite, phosphomolybdic acid. Examples thereof include zinc, zinc magnesium phosphate, zirconium phosphate, and phosphorus vanadate.
Among these phosphoric acid compounds, a certain phosphoric acid compound may be used alone, or a plurality of phosphoric acid compounds may be used in combination. Among these phosphate compounds, it is particularly preferable to use aluminum dihydrogen tripolyphosphate.
 着色皮膜層20に含まれるリン酸化合物の平均粒子径は、0.10μm以上であることが好ましい。 The average particle size of the phosphoric acid compound contained in the colored film layer 20 is preferably 0.10 μm or more.
 リン酸化合物の平均粒子径が0.10μm未満である場合には、リン酸化合物が着色皮膜層20中に密な間隔で分布することになり、上記のようなリン酸化合物の分布状態を実現することができない。また、リン酸化合物の平均粒子径が0.10μm未満である場合には、腐食環境においてリン酸化合物が溶出した箇所が腐食因子の侵入経路となり、着色皮膜層20自体のバリア性が低下することもあるため、好ましくない。 When the average particle size of the phosphoric acid compound is less than 0.10 μm, the phosphoric acid compound will be distributed in the colored film layer 20 at close intervals, and the above-mentioned distribution state of the phosphoric acid compound will be realized. Can not do it. Further, when the average particle size of the phosphoric acid compound is less than 0.10 μm, the location where the phosphoric acid compound is eluted in the corrosive environment serves as a path for the corrosion factor to enter, and the barrier property of the colored film layer 20 itself deteriorates. It is not preferable because it is also present.
 リン酸化合物の平均粒子径は、10μm以下であることが好ましい。リン酸化合物の平均粒子径が10μmを超える場合には、本実施形態に係るプレコート鋼板100の色調に悪影響を及ぼすこともあるため、好ましくない。
 リン酸化合物の平均粒子径は、1~5μmの範囲内であることがより好ましい。
The average particle size of the phosphoric acid compound is preferably 10 μm or less. If the average particle size of the phosphoric acid compound exceeds 10 μm, it may adversely affect the color tone of the precoated steel sheet 100 according to the present embodiment, which is not preferable.
The average particle size of the phosphoric acid compound is more preferably within the range of 1 to 5 μm.
 リン酸化合物の平均粒子径は以下の方法で求める。鋼板を断面方向から観察し、FE-EPMAによりリン(P)元素をマッピングする。このとき、連続した9ピクセル以上を1つの粒子とし、その面積Spを求める。リン酸化合物の粒子径はφp=2×(Sp/π)0.5により求める。任意の幅200μmを測定し、その範囲に確認されたリン酸化合物粒子の粒子径φpの平均を求める。 The average particle diameter of the phosphoric acid compound is determined by the following method. The steel sheet is observed from the cross-sectional direction, and phosphorus (P) element is mapped by FE-EPMA. At this time, continuous particles of 9 pixels or more are regarded as one particle, and the area Sp thereof is obtained. The particle size of the phosphoric acid compound is determined by φp = 2 × (Sp / π) 0.5 . An arbitrary width of 200 μm is measured, and the average of the particle diameter φp of the phosphoric acid compound particles confirmed in that range is obtained.
 着色皮膜層20におけるリン酸化合物の濃度は、着色皮膜層20の全質量に対して、P量に換算して0.3~5.0質量%である。
 リン酸化合物の濃度が5.0質量%を超える場合には、リン酸化合物が着色皮膜層20中に密な間隔で分布するため、上記のようなリン酸化合物の分布状態を実現することができない。また、リン酸化合物の濃度が5.0質量%を超える場合には、腐食環境においてリン酸化合物が溶出した箇所が腐食因子の侵入経路となり、着色皮膜層20自体のバリア性が低下することもあるため、好ましくない。
The concentration of the phosphoric acid compound in the colored film layer 20 is 0.3 to 5.0 mass% in terms of P amount with respect to the total mass of the colored film layer 20.
When the concentration of the phosphoric acid compound exceeds 5.0% by mass, the phosphoric acid compound is distributed in the colored film layer 20 at close intervals, so that the distribution state of the phosphoric acid compound as described above can be realized. Can not. Further, when the concentration of the phosphoric acid compound exceeds 5.0% by mass, the location where the phosphoric acid compound is eluted in the corrosive environment serves as a path for the corrosion factor to enter, and the barrier properties of the colored film layer 20 itself may deteriorate. Therefore, it is not preferable.
 リン酸化合物の濃度が0.3質量%未満である場合には、本実施形態に係るプレコート鋼板100の耐食性が不十分となることもあるため、好ましくない。
 着色皮膜層20におけるリン酸化合物の濃度は、より好ましくは、P量に換算して1.0~3.0質量%である。
If the concentration of the phosphoric acid compound is less than 0.3% by mass, the corrosion resistance of the precoated steel sheet 100 according to this embodiment may be insufficient, which is not preferable.
The concentration of the phosphoric acid compound in the colored film layer 20 is more preferably 1.0 to 3.0 mass% in terms of P content.
 ここで、着色皮膜層20におけるリン酸化合物の濃度は、着色皮膜層20を形成するために用いられる着色塗料に含有されるリン酸化合物の濃度とほぼ同じ値である。
 着色皮膜層20中のP量に換算したリン酸化合物の濃度は、着色皮膜層20の断面をFE-EPMAにより分析することで測定できる。
Here, the concentration of the phosphoric acid compound in the colored film layer 20 is approximately the same value as the concentration of the phosphoric acid compound contained in the colored coating material used to form the colored film layer 20.
The concentration of the phosphoric acid compound converted into the amount of P in the colored film layer 20 can be measured by analyzing the cross section of the colored film layer 20 by FE-EPMA.
<着色顔料>
 本実施形態に係る着色皮膜層20中に含有される着色顔料には、一般的な塗装において通常使用される着色顔料を用いることができる。当該顔料の例には、黒色、白色、メタリック色、及び、有彩色の、各色の公知の金属や酸化物などからなる着色顔料が含まれる。なお、本明細書において着色顔料とは、リン及びバナジウムを含まない顔料を表す。
<Color pigment>
As the color pigment contained in the colored film layer 20 according to this embodiment, a color pigment usually used in general coating can be used. Examples of the pigment include color pigments of known colors such as black, white, metallic color, and chromatic color, which are made of known metals or oxides. In addition, in this specification, a coloring pigment represents the pigment which does not contain phosphorus and vanadium.
 ここで、着色皮膜層20中における着色顔料の種類と、かかる着色顔料の濃度については、特に限定されるものではなく、所望の色調を得ることができる着色顔料種を適宜選択し、所望の色調が得られるような濃度を適宜選定すればよい。
 着色皮膜層20に含まれる着色顔料の濃度は、着色皮膜を溶解し、ICP発光分光分析装置で着色顔料元素を定量分析することで求めることができる。
Here, the type of the color pigment in the colored film layer 20 and the concentration of the color pigment are not particularly limited, and a color pigment type capable of obtaining a desired color tone is appropriately selected to obtain a desired color tone. The concentration may be appropriately selected so that
The concentration of the color pigment contained in the color film layer 20 can be determined by dissolving the color film and quantitatively analyzing the color pigment element with an ICP emission spectral analyzer.
 なお、メタリック色の着色顔料としてはアルミ、銀、銅、白金、金、黄銅などの金属顔料を使用することができるが、中でも特にメタリック色の顔料としては、アルミ顔料(アルミニウム顔料)を使用することが好ましい。 As the metallic color pigment, metal pigments such as aluminum, silver, copper, platinum, gold and brass can be used, but among them, as the metallic pigment, an aluminum pigment (aluminum pigment) is used. Preferably.
 また、上記のアルミ顔料は、平均粒子径が7~30μmの範囲内であり、平均アスペクト比(平均粒子径と厚みとの比)が20以上であることがより好ましい。アルミ顔料の平均粒子径が7μm未満である場合には、外観としてメタリック感が不足することもあるため、好ましくない。一方、アルミ顔料の平均粒子径が30μmを超える場合には、外観が不均一となったり、加工性にも劣ることとなったりするため、好ましくない。また、アルミ顔料の平均アスペクト比が20未満である場合には、外観が不均一となることもあるため、好ましくない。
 着色顔料の平均粒子径及び平均アスペクト比は、次のように求める。まず、着色皮膜の表面から電界放出型電子プローブマイクロアナライザー(Field Emission-Electron Probe Micro Analyzer:FE-EPMA)で元素マッピングし、任意の1つの顔料の長径の長さX1と短径の長さX2を求め、その顔料の粒子径Xを(X1+X2)/2で算出する。ここで、長径とは、元素マッピングで特定された顔料の像の輪郭内において、その顔料を横断する最大の線分を意味し、短径とは、長径に垂直な線分であって、その顔料を横断する最大のものを意味する。次に、断面方向からFE-EPMAで元素マッピングを行い、任意の一つの顔料の厚さY(上述の長径と短径の測定平面に垂直な方向で顔料を横断する最大の線分の長さ)の値を測定する。同様の方法を用いて任意の10個以上の顔料について粒子径と厚さとを求め、それぞれを平均化して顔料の平均粒子径[X]及び平均厚さ[Y]を算出し、平均アスペクト比を[X]/[Y]で求める。
Further, it is more preferable that the above-mentioned aluminum pigment has an average particle diameter within a range of 7 to 30 μm and an average aspect ratio (ratio between average particle diameter and thickness) of 20 or more. If the average particle size of the aluminum pigment is less than 7 μm, the metallic appearance may be insufficient, which is not preferable. On the other hand, when the average particle diameter of the aluminum pigment exceeds 30 μm, the appearance becomes nonuniform and the workability is deteriorated, which is not preferable. Further, when the average aspect ratio of the aluminum pigment is less than 20, the appearance may become nonuniform, which is not preferable.
The average particle diameter and average aspect ratio of the color pigment are determined as follows. First, elemental mapping is performed from the surface of the colored film with a field emission-electron probe micro analyzer (FE-EPMA), and the major axis length X1 and the minor axis length X2 of any one pigment are mapped. And the particle size X of the pigment is calculated by (X1 + X2) / 2. Here, the major axis means, within the outline of the image of the pigment specified by elemental mapping, the maximum line segment that traverses the pigment, and the minor axis is a line segment perpendicular to the major axis, Means the largest across the pigments. Next, FE-EPMA is used to perform elemental mapping from the cross-sectional direction, and the thickness Y of any one pigment (the length of the largest line segment that crosses the pigment in the direction perpendicular to the measurement plane of the above-mentioned major axis and minor axis). ) Value is measured. Using the same method, particle diameters and thicknesses of arbitrary 10 or more pigments are obtained, and the averages of the respective pigments are averaged to calculate the average particle diameter [X] and the average thickness [Y] of the pigments. It is calculated by [X] / [Y].
 なお、アルミ顔料以外の着色顔料については、その形状がアルミ顔料よりも球形に近く、また、平均粒子径もアルミ顔料よりも小さいことが多いため、一般的な平均粒子径及び平均アスペクト比を有するものを適宜利用することで、上記のようなリン酸化合物の分布状態を実現することが可能である。 Regarding the color pigments other than the aluminum pigment, the shape thereof is closer to a sphere than the aluminum pigment, and the average particle diameter is often smaller than the aluminum pigment, so that the pigment has a general average particle diameter and an average aspect ratio. It is possible to realize the above-mentioned distribution state of the phosphoric acid compound by appropriately using a material.
 アルミ顔料は、着色皮膜層20と亜鉛合金めっき層10との界面40から表層側に向かって膜厚方向に0.5μmまでの範囲内、又は、着色皮膜層20の最表層から界面40側に向かって膜厚方向に0.5μmまでの範囲内には、存在しないことが好ましい。
 アルミ顔料が、界面40の近傍や、着色皮膜層20の最表層近傍に存在する場合には、腐食環境において、アルミ顔料が腐食因子の侵入経路となり易く、耐食性に劣る結果となり易いため、好ましくない。
 界面40とアルミ顔料との間隔及び着色皮膜層20の最表層とアルミ顔料との間隔は、プレコート鋼板100を適当な大きさに切断して樹脂埋め込みし、断面を研磨し、断面方向から電子顕微鏡観察等で観察することによって確認可能である。
The aluminum pigment is in the range of 0.5 μm in the film thickness direction from the interface 40 between the colored film layer 20 and the zinc alloy plating layer 10 toward the surface layer side, or from the outermost surface layer of the colored film layer 20 to the interface 40 side. It does not preferably exist within the range of 0.5 μm in the film thickness direction.
When the aluminum pigment is present near the interface 40 or near the outermost surface layer of the colored film layer 20, the aluminum pigment is liable to be a passageway for a corrosion factor to enter in a corrosive environment, resulting in poor corrosion resistance, which is not preferable. ..
The distance between the interface 40 and the aluminum pigment and the distance between the outermost layer of the colored film layer 20 and the aluminum pigment are cut into an appropriate size of the precoated steel sheet 100 and embedded with resin, the cross section is polished, and the cross section is viewed from an electron microscope. It can be confirmed by observing by observation.
<バインダー樹脂>
 バインダー樹脂として用いられる樹脂の種類は、特に限定されるものではないが、例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ふっ素樹脂、或いはこれらの変性樹脂などの公知の樹脂を用いることができる。
 更に、これらの樹脂をメラミン樹脂、やイソシアネート樹脂等の公知の架橋剤成分により架橋させてもよい。また、バインダー樹脂として、電子線硬化型樹脂、紫外線硬化型樹脂等のエネルギー線硬化樹脂を用いてもよい。
 これら樹脂の中では、特に、ポリエステル樹脂、及び、アクリル樹脂の少なくとも何れか一方をバインダー樹脂として用いることが好ましい。
<Binder resin>
The type of resin used as the binder resin is not particularly limited, but for example, a known resin such as a polyester resin, an acrylic resin, a urethane resin, an epoxy resin, a fluororesin, or a modified resin thereof may be used. it can.
Further, these resins may be crosslinked with a known crosslinking agent component such as a melamine resin or an isocyanate resin. Further, as the binder resin, an energy beam curable resin such as an electron beam curable resin or an ultraviolet curable resin may be used.
Among these resins, it is particularly preferable to use at least one of polyester resin and acrylic resin as the binder resin.
<着色皮膜層20の厚さ>
 着色皮膜層20の厚さは、例えば、2~15μmの範囲内であることが好ましい。
 着色皮膜層20の厚さが2μm未満である場合には、屋外で使用した場合に着色皮膜層20が劣化したり、亜鉛合金めっき層10の表面が灰黒色に変色したりすることで、本実施形態に係るプレコート鋼板100の色調を所望の範囲に維持することが困難となることがあるため、好ましくない。
 一方、着色皮膜層20の厚さが15μmを超える場合には、プレコート鋼板100の製造に係るコストが増加し、かつ、加工性が低下する傾向にあることから、好ましくない。
 着色皮膜層20の厚さは、3~10μmの範囲内であることがより好ましい。
<Thickness of colored film layer 20>
The thickness of the colored film layer 20 is preferably in the range of 2 to 15 μm, for example.
When the thickness of the colored film layer 20 is less than 2 μm, the colored film layer 20 is deteriorated when used outdoors, or the surface of the zinc alloy plating layer 10 is discolored to grayish black, and It may be difficult to maintain the color tone of the precoated steel sheet 100 according to the embodiment within a desired range, which is not preferable.
On the other hand, when the thickness of the colored coating layer 20 exceeds 15 μm, the cost for manufacturing the precoated steel sheet 100 increases and the workability tends to decrease, which is not preferable.
The thickness of the colored coating layer 20 is more preferably in the range of 3 to 10 μm.
 着色皮膜層20の厚さは、各種の顕微鏡等を利用した着色皮膜層20の断面観察により測定することが可能である。 The thickness of the colored film layer 20 can be measured by observing the cross section of the colored film layer 20 using various microscopes.
(化成処理皮膜層)
 上述の説明では亜鉛合金めっき層10の表面に着色皮膜層20が形成される場合を説明したが、亜鉛合金めっき層10の表面に化成処理皮膜層(不図示)を形成し、化成処理皮膜層(不図示)の表面に着色皮膜層20を形成する態様としてもよい。
 化成処理皮膜層(不図示)が設けられることによって、着色皮膜層20の密着性をより向上させることができ、かつ、耐食性をより向上させることができるため好ましい。
(Chemical conversion coating layer)
In the above description, the case where the colored film layer 20 is formed on the surface of the zinc alloy plating layer 10 has been described, but a chemical conversion treatment film layer (not shown) is formed on the surface of the zinc alloy plating layer 10, and the chemical conversion treatment film layer is formed. The color coating layer 20 may be formed on the surface (not shown).
By providing a chemical conversion treatment coating layer (not shown), the adhesion of the colored coating layer 20 can be further improved, and the corrosion resistance can be further improved, which is preferable.
 化成処理皮膜層(不図示)は、公知の化成処理により形成される。このような化成処理として、例えば、リン酸亜鉛系化成処理、塗布クロメート処理、電解クロム酸処理、反応クロメート処理、クロメートフリー系化成処理等が挙げられる。 The chemical conversion coating layer (not shown) is formed by a known chemical conversion treatment. Examples of such chemical conversion treatment include zinc phosphate chemical conversion treatment, coating chromate treatment, electrolytic chromic acid treatment, reactive chromate treatment, and chromate-free chemical conversion treatment.
 化成処理皮膜層(不図示)の厚さは特に限定されず、例えば0.05~1μmが挙げられる。化成処理皮膜層(不図示)の厚さは、例えば、化成処理皮膜層(不図示)の断面を透過型顕微鏡等で観察することで測定可能である。 The thickness of the chemical conversion coating layer (not shown) is not particularly limited, and may be, for example, 0.05 to 1 μm. The thickness of the chemical conversion coating layer (not shown) can be measured, for example, by observing a cross section of the chemical conversion coating layer (not shown) with a transmission microscope or the like.
(プレコート鋼板100の製造方法)
 次に、本実施形態に係るプレコート鋼板100の製造方法について説明する。
 本実施形態に係るプレコート鋼板100の製造方法は、亜鉛合金めっき層10が形成された鋼板1に対して、リン酸化合物、着色顔料及びバインダー樹脂を含む着色塗料を塗布する工程を含む。ここで、上記の着色塗料は、着色皮膜層20を形成するために用いられる着色塗料処理液である。
(Method for manufacturing precoated steel sheet 100)
Next, a method for manufacturing the precoated steel sheet 100 according to this embodiment will be described.
The method for manufacturing the precoated steel sheet 100 according to the present embodiment includes a step of applying a colored coating material containing a phosphoric acid compound, a color pigment and a binder resin to the steel sheet 1 on which the zinc alloy plating layer 10 is formed. Here, the above-mentioned colored paint is a colored paint treatment liquid used for forming the colored film layer 20.
 着色皮膜層20を形成するために用いられる着色塗料処理液は、所定の分散媒(例えば、水や有機溶媒など)に対して、上記のような着色皮膜層20に含有させたい成分を所定の割合で含有させ、公知の方法により製造すればよい。 The colored paint treatment liquid used for forming the colored film layer 20 has a predetermined dispersion medium (for example, water or an organic solvent) containing a predetermined component to be contained in the colored film layer 20 as described above. It may be contained in a ratio and manufactured by a known method.
 着色塗料処理液に含有されるバインダー樹脂は、水分散型の水性樹脂であることが好ましい。着色皮膜層20の形成過程において、水分散型の樹脂が存在することで、リン酸化合物を、密に凝集した状態とならないように分散させることができる。これにより、本実施形態に係る着色皮膜層20において、所定のリン酸化合物の分布状態を実現することができる。更に、水性樹脂により形成された着色皮膜層20は、溶剤系樹脂により形成された着色皮膜層20と比較して、リン酸化合物の溶出性が良好であるため、より少ない量のリン酸化合物で耐食性を向上させることができ、好ましい。 The binder resin contained in the colored paint treatment liquid is preferably a water-dispersible aqueous resin. In the process of forming the colored film layer 20, the presence of the water-dispersible resin makes it possible to disperse the phosphoric acid compound so as not to be in a densely aggregated state. Thereby, in the colored film layer 20 according to the present embodiment, it is possible to realize a predetermined distribution state of the phosphoric acid compound. Further, the colored film layer 20 formed of the water-based resin has a better elution property of the phosphoric acid compound than the colored film layer 20 formed of the solvent-based resin, and therefore a smaller amount of the phosphoric acid compound can be used. Corrosion resistance can be improved, which is preferable.
 着色塗料処理液は、メラミン樹脂を含有することが好ましい。メラミン樹脂はバインダー樹脂の架橋反応に寄与するだけでなく、防錆顔料の分布状態の制御に寄与するためである。これらの観点から、着色塗料処理液に含まれるメラミン樹脂は、イミノ基型メラミン樹脂であることが好ましい。 The colored paint treatment liquid preferably contains a melamine resin. This is because the melamine resin not only contributes to the crosslinking reaction of the binder resin but also contributes to the control of the distribution state of the rust preventive pigment. From these viewpoints, it is preferable that the melamine resin contained in the colored coating liquid is an imino group-type melamine resin.
 着色塗料処理液の粘度は、レオメーターによりせん断速度0.01s-1の条件で測定した場合に0.8Pa・s以上であり、せん断速度1000s-1の条件で測定した場合に0.3Pa・s以下であることが好ましい。
 リン酸化合物は樹脂よりも比重が大きいため、通常は、リン酸化合物が下方に沈降しやすい状態となる。これに対し、塗料粘度を粘度調整剤により上記範囲に調整することで、塗料を加熱時に発生する対流により着色皮膜中に分散されたリン酸化合物が沈降することを抑制できる。また、塗料保管時の沈降抑制や塗装後のレベリングによる外観均一化などの効果も得られる。
The viscosity of the pigmented coating the processing solution is a 0.8 Pa · s or more when measured under the conditions of a shear rate of 0.01s -1 by rheometer, 0.3 Pa · when measured under the conditions of a shear rate of 1000 s -1 It is preferably s or less.
Since the phosphoric acid compound has a larger specific gravity than the resin, the phosphoric acid compound is usually in a state where it tends to precipitate downward. On the other hand, by adjusting the viscosity of the coating material within the above range with the viscosity modifier, it is possible to prevent the phosphoric acid compound dispersed in the colored coating from settling due to convection generated when the coating material is heated. In addition, effects such as suppression of sedimentation during storage of paint and uniform appearance by leveling after coating can be obtained.
 使用する粘度調整剤の種類や量は、バインダー樹脂の種類や溶媒の種類等に応じて、適宜選定すればよい。粘度調整剤の例としては、増粘剤の一つであるSNシックナー617(サンノプコ株式会社製、主成分はアクリル系重合物)が挙げられる。SNシックナー617を用いることにより、着色塗料処理液にチクソトロピック粘性が付与されるため好ましい。
 SNシックナー617を着色塗料処理液に添加することにより、着色塗料の粘度を前記範囲に制御できる。
The type and amount of the viscosity modifier used may be appropriately selected according to the type of binder resin, the type of solvent, and the like. Examples of the viscosity modifier include SN thickener 617 (manufactured by San Nopco Ltd., the main component being an acrylic polymer) which is one of the thickeners. The use of SN thickener 617 is preferable because it imparts thixotropic viscosity to the colored coating liquid.
By adding the SN thickener 617 to the colored paint treatment liquid, the viscosity of the colored paint can be controlled within the above range.
 上記の塗料処理液の塗布方法は、特定の方法に限定されるものではなく、めっき鋼板を処理液に浸漬するか、又は、めっき鋼板の表面に処理液をスプレーしてから、所定付着量となるようにロールやガス吹き付けにより付着量を制御する方法や、ロールコータやカーテンコータやバーコータで塗布する方法が例示される。 The coating method of the paint treatment liquid is not limited to a specific method, or by immersing the plated steel sheet in the treatment liquid, or by spraying the treatment liquid on the surface of the plated steel sheet, and a predetermined adhesion amount and Examples thereof include a method of controlling the amount of adhesion by using a roll or a gas sprayer, and a method of applying with a roll coater, a curtain coater, or a bar coater.
 塗布された塗料の乾燥、焼付方法も、分散媒(主として水や有機溶媒など)を揮発させることが可能な方法であればよく、特定の方法に限定されるものではない。ここで、過度に高温で加熱すると着色皮膜層の均一性が低下することが懸念され、逆に、過度に低温で加熱すると生産性の低下が懸念される。従って、優れた特性を有する着色皮膜層を安定的かつ効率的に製造するためには、塗布後の着色皮膜層を、150℃~250℃程度の温度で5秒~80秒程度加熱することが好ましい。加熱温度を上記のような範囲とすることで、処理液中の各粒子を適切に十分移動させることが可能となり、各粒子の所望の分布状態をより確実に実現することが可能となる。 The method of drying and baking the applied coating material is not limited to a specific method as long as it can vaporize the dispersion medium (mainly water or organic solvent). Here, if heated at an excessively high temperature, it is feared that the uniformity of the colored film layer may be deteriorated, and conversely, if heated at an excessively low temperature, there is a concern that productivity may be deteriorated. Therefore, in order to stably and efficiently produce a colored coating layer having excellent characteristics, the colored coating layer after coating should be heated at a temperature of about 150 ° C. to 250 ° C. for about 5 to 80 seconds. preferable. By setting the heating temperature in the above range, it becomes possible to appropriately and sufficiently move each particle in the treatment liquid, and it is possible to more reliably realize a desired distribution state of each particle.
 なお、着色皮膜層の形成は、めっき鋼板の製造ラインにおいてインラインで行われることが経済的であり好ましいが、別ラインで形成してもよいし、あるいは、成形のためのブランキングをしてから形成してもよい。 In addition, it is economical and preferable that the formation of the colored film layer is performed in-line in the production line of the plated steel sheet, but it may be formed in another line, or after blanking for forming is performed. It may be formed.
[第2実施形態]
 図2は、本発明の第2実施形態に係るプレコート鋼板200の層構成を示す模式図である。プレコート鋼板200は、鋼板1と、鋼板1上に設けられ、1~25質量%のAlと、0.1~13質量%のMgと、0~2.0質量%のSiと、を含有し、残部がZn及び不純物からなる亜鉛合金めっき層10と、亜鉛合金めっき層10上に設けられ、バナジウム化合物、着色顔料及びバインダー樹脂を含む着色皮膜層120と、を備える。つまり、プレコート鋼板200では、着色皮膜層120がバナジウム化合物を含有する点が第1実施形態とは異なる。
 なお、第1実施形態と共通する点については説明を割愛する。
[Second Embodiment]
FIG. 2 is a schematic diagram showing a layer structure of a precoated steel sheet 200 according to the second embodiment of the present invention. The pre-coated steel sheet 200 is provided on the steel sheet 1, contains 1 to 25 mass% Al, 0.1 to 13 mass% Mg, and 0 to 2.0 mass% Si. The balance includes a zinc alloy plating layer 10 composed of Zn and impurities, and a colored film layer 120 provided on the zinc alloy plating layer 10 and containing a vanadium compound, a color pigment, and a binder resin. That is, the precoated steel sheet 200 is different from the first embodiment in that the colored coating layer 120 contains the vanadium compound.
The description of the points common to the first embodiment will be omitted.
(着色皮膜層120)
 亜鉛合金めっき層10上には、着色皮膜層(より詳細には、単層の着色皮膜層)120が設けられる。本実施形態に係る着色皮膜層120は、バナジウム化合物、着色顔料及びバインダー樹脂を少なくとも含有する。
(Colored film layer 120)
A colored film layer (more specifically, a single colored film layer) 120 is provided on the zinc alloy plating layer 10. The colored film layer 120 according to this embodiment contains at least a vanadium compound, a color pigment, and a binder resin.
<バナジウム化合物>
 本実施形態に係る着色皮膜層120に含有されるバナジウム化合物は、着色皮膜層120の亜鉛合金めっき層10側の界面140付近に分布していることが重要である。バナジウム化合物がそのように分布する限り、バナジウム化合物が含有される形態については、特に限定されない。以下、かかるバナジウム化合物について、詳細に説明する。
<Vanadium compound>
It is important that the vanadium compound contained in the colored coating layer 120 according to the present embodiment is distributed near the interface 140 of the colored coating layer 120 on the zinc alloy plating layer 10 side. The form in which the vanadium compound is contained is not particularly limited, as long as the vanadium compound is distributed as such. Hereinafter, the vanadium compound will be described in detail.
 バナジウム化合物は、腐食環境においてバナジン酸イオンを放出する。放出されたバナジン酸イオンは、亜鉛合金めっき層10のめっき成分及び鋼板1の成分と反応することで、亜鉛合金めっき層10及び端面の鋼板1の表面に保護皮膜(不図示)を形成し、形成された保護皮膜が耐食性を向上させる作用を示す。
 バナジン酸イオンがめっき成分及び素地鋼板成分と反応することを容易にするために、バナジウム化合物は、着色皮膜層120の亜鉛合金めっき層10側の界面140付近に存在することが重要である。特に、プレコート鋼板200の端面が露出する際には、バナジウム化合物の存在状態は極めて重要となる。
Vanadium compounds release vanadate ions in corrosive environments. The released vanadate ions react with the plating components of the zinc alloy plating layer 10 and the components of the steel plate 1 to form a protective film (not shown) on the surfaces of the zinc alloy plating layer 10 and the steel plate 1 at the end face, The formed protective film has an effect of improving corrosion resistance.
In order to facilitate the reaction of vanadate ions with the plating component and the base steel plate component, it is important that the vanadium compound exists near the interface 140 on the zinc alloy plating layer 10 side of the colored coating layer 120. Particularly, when the end surface of the precoated steel sheet 200 is exposed, the state of existence of the vanadium compound becomes extremely important.
 従来のプレコート鋼板のように、溶剤系塗料を用いて、めっき鋼板のめっき層側から順に、プライマー層、着色皮膜層、クリア皮膜層、・・・等といった複数層の皮膜を形成する場合には、プライマー層にバナジウム化合物を多量に添加することで、耐食性向上効果を得ることが可能である。一方、本発明の実施形態のように、着色皮膜層1層のみで耐食性を向上させる場合、例えば図6に模式的に示したように、バナジウム化合物が着色皮膜層520中に多量に存在すると、腐食環境においてバナジウム化合物が溶出した箇所が腐食因子の侵入経路となり、着色皮膜層520自体のバリア性が低下する。従って、本実施形態に係る着色皮膜層120に用いるバナジウム化合物は、例えば図8に模式的に示したように、着色皮膜層120の亜鉛合金めっき層10側の界面140付近に一定量存在しつつも、密になりすぎずに分布することが重要となる。 When a solvent-based paint is used to form a multi-layer coating such as a primer layer, a colored coating layer, a clear coating layer, ... By adding a large amount of vanadium compound to the primer layer, it is possible to obtain the effect of improving the corrosion resistance. On the other hand, in the case of improving the corrosion resistance with only one colored film layer as in the embodiment of the present invention, when a large amount of the vanadium compound is present in the colored film layer 520, as schematically shown in FIG. 6, In the corrosive environment, the location where the vanadium compound is eluted serves as a path for the corrosive agent to enter, and the barrier property of the colored film layer 520 itself is reduced. Therefore, the vanadium compound used for the colored coating layer 120 according to the present embodiment is present in a fixed amount near the interface 140 on the zinc alloy plating layer 10 side of the colored coating layer 120, as schematically shown in FIG. However, it is important that the distribution is not too dense.
 図8は、着色皮膜層120中のバナジウム化合物の存在状態を示す模式図である。図8に示すように、着色皮膜層120の厚さ方向の断面をFE-EPMAでマッピング観察したときに、界面140から表面側に向かって厚さ方向に1μmかつ界面140と平行方向(以下、界面方向と呼称する場合がある)に200μmの範囲内に、バナジウム元素の濃度が3%以上である第2の領域130が1~10個存在する。 FIG. 8 is a schematic diagram showing the presence state of the vanadium compound in the colored film layer 120. As shown in FIG. 8, when the cross section of the colored film layer 120 in the thickness direction is observed by mapping with FE-EPMA, 1 μm in the thickness direction from the interface 140 toward the surface side and a direction parallel to the interface 140 (hereinafter, There are 1 to 10 second regions 130 having a vanadium element concentration of 3% or more within a range of 200 μm (which may be referred to as an interface direction).
 界面方向に沿った長さ200μmの範囲内に存在する第2の領域130の個数が1個未満である場合には、バナジウム化合物の分布が疎となり、十分な耐食性向上効果を得ることができない。一方、界面方向に沿った長さ200μmの範囲内に存在する第2の領域130の個数が10個超の場合には、バナジウム化合物の分布が密になりすぎ、着色皮膜層120自体のバリア性が低下するため、好ましくない。
 第2の領域130は、界面140から表面側に向かって厚さ方向に1μmかつ界面方向に40μmの範囲内に1~10個存在することが好ましい。第2の領域130は、界面140から表面側に向かって厚さ方向に1μmかつ界面方向に20μmの範囲内に1~10個存在することがより好ましい。
When the number of the second regions 130 existing within the range of 200 μm along the interface direction is less than 1, the distribution of the vanadium compound becomes sparse and a sufficient corrosion resistance improving effect cannot be obtained. On the other hand, when the number of the second regions 130 existing within the range of 200 μm along the interface direction exceeds 10, the distribution of the vanadium compound becomes too dense and the barrier property of the colored film layer 120 itself. Is decreased, which is not preferable.
It is preferable that 1 to 10 second regions 130 are present within the range of 1 μm in the thickness direction from the interface 140 toward the surface side and 40 μm in the interface direction. More preferably, 1 to 10 second regions 130 are present within the range of 1 μm in the thickness direction from the interface 140 toward the surface side and 20 μm in the interface direction.
 図11は、本発明の第2実施形態に係るプレコート鋼板200において、層厚中心190と層厚とを説明するための模式図である。
 着色皮膜層120の層厚をTとし、着色皮膜層120の表面から厚さ方向にTかつ界面方向に200μmの範囲でFE-EPMAを用いて検出されるバナジウム元素の濃度をPD、着色皮膜層120の層厚中心190から界面140に向かって厚さ方向にT/2(つまり、厚さ方向に層厚中心190から界面140までの範囲)かつ界面方向に200μmの範囲でFE-EPMAを用いて検出されるバナジウム元素の濃度をPEとしたときに、PE/PDが1.0~5.0であることが好ましい。
FIG. 11 is a schematic diagram for explaining the layer thickness center 190 and the layer thickness in the precoated steel sheet 200 according to the second embodiment of the present invention.
When the layer thickness of the colored coating layer 120 is T, the vanadium element concentration detected using FE-EPMA in the range of T from the surface of the colored coating layer 120 in the thickness direction and 200 μm in the interface direction is PD, and the colored coating layer is FE-EPMA is used in a range of T / 2 from the layer thickness center 190 of the 120 toward the interface 140 in the thickness direction (that is, a range from the layer thickness center 190 to the interface 140 in the thickness direction) and 200 μm in the interface direction. When the concentration of vanadium element detected by PE is PE, PE / PD is preferably 1.0 to 5.0.
 FE-EPMAマッピング観察によりバナジウム元素濃度を測定する方法は、以下の通りである。すなわち、プレコート鋼板を適当な大きさに切断して樹脂埋め込みし、断面を研磨する。その上で、断面方向から着色皮膜層のFE-EPMAマッピング分析を、加速電圧15kV、倍率5000倍で実施する。この際、検出対象元素としてVを選択し、各元素の存在位置及び元素濃度をマッピングする。 The method of measuring the vanadium element concentration by FE-EPMA mapping observation is as follows. That is, a precoated steel plate is cut into a suitable size, embedded with resin, and the cross section is polished. Then, FE-EPMA mapping analysis of the colored film layer is carried out from the cross-sectional direction at an acceleration voltage of 15 kV and a magnification of 5000 times. At this time, V is selected as the detection target element, and the existing position and element concentration of each element are mapped.
 より具体的には、上記のようなマッピング分析において、まず、「着色皮膜層120の亜鉛合金めっき層10側の界面140から表層側に向かって膜厚方向に1μmまでの領域」に着目し、かかる領域におけるバナジウム元素濃度の測定結果に基づき、バナジウム元素濃度が3%以上となっている部分を、着目した視野における第2の領域130の位置とする。次に、平面方向の長さ200μmの任意の部分について、第2の領域130の個数を計測し、得られた個数を、着色皮膜層120の界面方向に沿った長さ200μmの範囲内に存在する第2の領域130の個数とする。 More specifically, in the mapping analysis as described above, first, focusing on “a region up to 1 μm in the film thickness direction from the interface 140 on the zinc alloy plating layer 10 side of the colored film layer 120 toward the surface side”, Based on the measurement result of the vanadium element concentration in such a region, the portion where the vanadium element concentration is 3% or more is the position of the second region 130 in the focused visual field. Next, the number of the second regions 130 is measured for an arbitrary portion having a length of 200 μm in the plane direction, and the obtained number exists within the range of 200 μm in length along the interface direction of the colored film layer 120. The number of the second areas 130 to be processed is set.
 上記のような特定のバナジウム化合物の分布状態は、以下で説明するように、特定の形状を有するバナジウム化合物が、着色皮膜層120中に特定の濃度で含まれることで実現される。すなわち、バナジウム化合物は、着色皮膜層120のマトリックスとして機能するバインダー樹脂と比較して比重が大きいために、着色皮膜層を形成するための処理液が塗布された後、かかる処理液を乾燥・固化させるまでの間に、下方(すなわち、めっき鋼板に向かう方向)に沈降しやすい状態となっている。更に、バインダー樹脂として水分散型の水性樹脂を用いることで、バナジウム化合物同士が密に凝集せず分散しやすい状態となる。特定の形状を有するバナジウム化合物を、着色皮膜層中に特定の濃度で含有させることで、上記のようなバナジウム化合物の沈降が適切に実現されて、上記のような、特定のバナジウム化合物の分布状態が実現される。 The distribution state of the specific vanadium compound as described above is realized by including a vanadium compound having a specific shape in the colored film layer 120 at a specific concentration, as described below. That is, since the vanadium compound has a larger specific gravity than the binder resin that functions as the matrix of the colored film layer 120, after the treatment liquid for forming the colored film layer is applied, the treated liquid is dried and solidified. By the time it is carried out, it is in a state where it is likely to settle downward (that is, in the direction toward the plated steel sheet). Furthermore, by using a water-dispersible water-based resin as the binder resin, the vanadium compounds are in a state of being easily aggregated and not dispersed. By containing a vanadium compound having a specific shape in a specific concentration in the colored film layer, the precipitation of the vanadium compound as described above is appropriately realized, and the distribution state of the specific vanadium compound as described above. Is realized.
 本実施形態に係る着色皮膜層に含有されるバナジウム化合物は、バナジン酸化合物又は酸化バナジウムである。本実施形態に係る着色皮膜層に含有されるバナジウム化合物としては、例えば、バナジン酸カルシウム、バナジン酸マグネシウム、バナジン酸アンモニウム、酸化バナジウム、バナジン酸ナトリウム、バナジン酸カリウム、バナジン酸リン、メタバナジン酸アンモニウム、メタバナジン酸カリウム等の顔料を挙げることができる。これらのバナジウム化合物のうち、あるバナジウム化合物を単独で用いてもよいし、複数のバナジウム化合物を組み合わせて用いてもよい。これらバナジウム化合物の中では、バナジン酸カルシウム、及び、バナジン酸マグネシウムの少なくとも何れか一方を用いることが、特に好ましい。
 なお、本明細書ではバナジン酸リンをリン酸化合物に分類する。
The vanadium compound contained in the colored film layer according to the present embodiment is a vanadate compound or vanadium oxide. The vanadium compound contained in the colored film layer according to the present embodiment, for example, calcium vanadate, magnesium vanadate, ammonium vanadate, vanadium oxide, sodium vanadate, potassium vanadate, phosphorus vanadate, ammonium metavanadate, Pigments such as potassium metavanadate may be mentioned. Of these vanadium compounds, one vanadium compound may be used alone, or a plurality of vanadium compounds may be used in combination. Among these vanadium compounds, it is particularly preferable to use at least one of calcium vanadate and magnesium vanadate.
In this specification, phosphorus vanadate is classified as a phosphate compound.
 バナジウム化合物が「バナジン酸化合物」又は「バナジウム酸化物」であるか否か、りん化合物が「りん酸化合物」か否かは、XPSのナロースペクトルから結合エネルギーを求めることで分析することができる。また、IRなどによる赤外線吸収ピークからでも確認できる。 Whether or not the vanadium compound is a "vanadate compound" or "vanadium oxide" and whether or not the phosphorus compound is a "phosphate compound" can be analyzed by determining the binding energy from the narrow spectrum of XPS. It can also be confirmed from the infrared absorption peak due to IR or the like.
 バナジウム化合物の平均粒子径は、0.10μm以上であることが好ましい。 The average particle size of the vanadium compound is preferably 0.10 μm or more.
 バナジウム化合物の平均粒子径が0.10μm未満である場合には、着色皮膜層形成用の処理液中でバナジウム化合物を適切に沈降させることが困難となり、上記のようなバナジウム化合物の分布状態を実現することが難しいため好ましくない。また、バナジウム化合物の平均粒子径が0.10μm未満である場合には、バナジウム化合物が着色皮膜層120の亜鉛合金めっき層10側の界面140付近に、密な間隔で分布することになる。その場合、腐食環境においてバナジウム化合物が溶出した箇所が腐食因子の侵入経路となり、着色皮膜層120自体のバリア性が低下することもあるため、好ましくない。 When the average particle size of the vanadium compound is less than 0.10 μm, it becomes difficult to properly precipitate the vanadium compound in the treatment liquid for forming the colored film layer, and the vanadium compound distribution state as described above is realized. It is not preferable because it is difficult to do. Further, when the average particle diameter of the vanadium compound is less than 0.10 μm, the vanadium compound is distributed near the interface 140 of the colored coating layer 120 on the zinc alloy plating layer 10 side at a close interval. In that case, the location where the vanadium compound is eluted in the corrosive environment may serve as an entry path for the corrosion factor, which may reduce the barrier properties of the colored coating layer 120 itself, which is not preferable.
 バナジウム化合物の平均粒子径は、10μm以下であることが好ましい。バナジウム化合物の平均粒子径が10μmを超える場合には、本実施形態に係るプレコート鋼板の色調に悪影響を及ぼすこともあるため、好ましくない。バナジウム化合物の平均粒子径は、1~5μmの範囲内であることがより好ましい。 The average particle size of the vanadium compound is preferably 10 μm or less. If the average particle diameter of the vanadium compound exceeds 10 μm, it may adversely affect the color tone of the precoated steel sheet according to the present embodiment, which is not preferable. The average particle size of the vanadium compound is more preferably within the range of 1 to 5 μm.
 着色皮膜層120におけるバナジウム化合物の濃度は、着色皮膜層120の全固形分質量に対して、V量に換算して8.0質量%以下とする。バナジウム化合物の濃度が8.0質量%を超える場合には、着色皮膜層120におけるバナジウム化合物の濃度が多くなりすぎて、上記のようなバナジウム化合物の分布状態を実現することが困難である。また、バナジウム化合物の濃度が8.0質量%を超える場合には、バナジウム化合物が着色皮膜層120の亜鉛合金めっき層10側の界面140付近に、密な間隔で分布することになる。その場合、腐食環境においてバナジウム化合物が溶出した箇所が腐食因子の侵入経路となり、着色皮膜自体のバリア性が低下することもあるため、好ましくない。 The concentration of the vanadium compound in the colored film layer 120 is 8.0 mass% or less in terms of V amount with respect to the total solid content mass of the colored film layer 120. When the concentration of the vanadium compound exceeds 8.0% by mass, the concentration of the vanadium compound in the colored film layer 120 becomes too large, and it is difficult to realize the above-mentioned distribution state of the vanadium compound. Further, when the concentration of the vanadium compound exceeds 8.0 mass%, the vanadium compound is distributed in the vicinity of the interface 140 on the zinc alloy plating layer 10 side of the colored film layer 120 at a close interval. In that case, the part where the vanadium compound is eluted in the corrosive environment becomes a path for the corrosive agent to enter, and the barrier property of the colored film itself may be deteriorated, which is not preferable.
 着色皮膜層120におけるバナジウム化合物の濃度は、着色皮膜層120の全固形分質量に対して、V量に換算して0.5質量%以上であることが好ましい。バナジウム化合物の濃度が0.5質量%未満である場合には、本実施形態に係るプレコート鋼板の耐食性が不十分となることもあるため、好ましくない。
 着色皮膜層120におけるバナジウム化合物の濃度は、より好ましくは、V量に換算して1.5~6.5質量%である。
The concentration of the vanadium compound in the colored film layer 120 is preferably 0.5% by mass or more in terms of V amount with respect to the total solid mass of the colored film layer 120. If the concentration of the vanadium compound is less than 0.5% by mass, the corrosion resistance of the precoated steel sheet according to this embodiment may be insufficient, which is not preferable.
The concentration of the vanadium compound in the colored film layer 120 is more preferably 1.5 to 6.5 mass% in terms of V amount.
 ここで、着色皮膜層120におけるバナジウム化合物の濃度は、着色皮膜層120を形成するために用いられる着色塗料に含有されるバナジウム化合物の濃度とほぼ同じ値となる。
 着色皮膜層20中のV量に換算したバナジウム化合物の濃度は、着色皮膜層20の断面をFE-EPMAにより分析する。
Here, the concentration of the vanadium compound in the colored coating layer 120 is substantially the same as the concentration of the vanadium compound contained in the colored coating material used to form the colored coating layer 120.
The concentration of the vanadium compound converted into the amount of V in the colored coating layer 20 is analyzed by FE-EPMA on the cross section of the colored coating layer 20.
(プレコート鋼板200の製造方法)
 次に、本実施形態に係るプレコート鋼板200の製造方法について説明する。
 本実施形態に係るプレコート鋼板200の製造方法は、亜鉛合金めっき層10が形成された鋼板1に対して、バナジウム化合物、着色顔料及びバインダー樹脂を含む着色塗料を塗布する工程を含む。ここで、上記の着色塗料は、着色皮膜層120を形成するために用いられる着色塗料処理液である。
 着色塗料がバナジウム化合物を含有する点以外は、プレコート鋼板100の製造方法と共通するため、説明を割愛する。
(Method of manufacturing precoated steel sheet 200)
Next, a method for manufacturing the precoated steel sheet 200 according to this embodiment will be described.
The method for manufacturing the precoated steel sheet 200 according to the present embodiment includes a step of applying a colored coating material containing a vanadium compound, a color pigment and a binder resin to the steel sheet 1 on which the zinc alloy plating layer 10 is formed. Here, the above-mentioned colored paint is a colored paint treatment liquid used for forming the colored film layer 120.
Except that the colored paint contains a vanadium compound, the method is the same as the method for manufacturing the precoated steel sheet 100, and therefore the description is omitted.
[第3実施形態]
 図3は、本発明の第3実施形態に係るプレコート鋼板300の層構成を示す模式図である。プレコート鋼板300は、鋼板1と、鋼板1上に設けられ、1~25質量%のAlと、0.1~13質量%のMgと、0~2.0質量%のSiと、を含有し、残部がZn及び不純物からなる亜鉛合金めっき層10と、亜鉛合金めっき層10上に設けられ、リン酸化合物、バナジウム化合物、着色顔料及びバインダー樹脂を含む着色皮膜層220と、を備える。つまり、プレコート鋼板300では、着色皮膜層220がリン酸化合物及びバナジウム化合物の両方を含有する点が第1実施形態及び第2実施形態とは異なる。
 なお、第1実施形態及び第2実施形態と共通する点については説明を割愛する。
[Third Embodiment]
FIG. 3 is a schematic diagram showing a layer structure of a precoated steel sheet 300 according to the third embodiment of the present invention. The precoated steel sheet 300 is provided on the steel sheet 1, contains 1 to 25% by mass of Al, 0.1 to 13% by mass of Mg, and 0 to 2.0% by mass of Si. A zinc alloy plating layer 10 with the balance being Zn and impurities, and a colored film layer 220 provided on the zinc alloy plating layer 10 and containing a phosphoric acid compound, a vanadium compound, a color pigment, and a binder resin. That is, in the pre-coated steel sheet 300, the point that the colored film layer 220 contains both the phosphoric acid compound and the vanadium compound is different from the first embodiment and the second embodiment.
The description of the points common to the first embodiment and the second embodiment will be omitted.
(着色皮膜層220)
 亜鉛合金めっき層10上には、着色皮膜層(より詳細には、単層の着色皮膜層)220が設けられる。本実施形態に係る着色皮膜層220は、リン酸化合物、バナジウム化合物、着色顔料及びバインダー樹脂を少なくとも含有する。
(Colored film layer 220)
A colored film layer (more specifically, a single colored film layer) 220 is provided on the zinc alloy plating layer 10. The colored film layer 220 according to the present embodiment contains at least a phosphoric acid compound, a vanadium compound, a color pigment, and a binder resin.
 着色皮膜層220はリン酸化合物とバナジウム化合物との両方を含有するが、着色皮膜層220におけるリン酸化合物の存在態様及びバナジウム化合物の存在態様は、それぞれが単独で存在する場合(つまり、着色皮膜層20におけるリン酸化合物の存在態様及び着色皮膜層120におけるバナジウム化合物の存在態様)と同様である。 Although the colored film layer 220 contains both a phosphoric acid compound and a vanadium compound, the phosphoric acid compound and the vanadium compound in the colored film layer 220 exist independently (that is, in the colored film). This is the same as the existing mode of the phosphoric acid compound in the layer 20 and the existing mode of the vanadium compound in the colored film layer 120).
(プレコート鋼板300の製造方法)
 次に、本実施形態に係るプレコート鋼板300の製造方法について説明する。
 本実施形態に係るプレコート鋼板300の製造方法は、亜鉛合金めっき層10が形成された鋼板1に対して、リン酸化合物、バナジウム化合物、着色顔料及びバインダー樹脂を含む着色塗料を塗布する工程を含む。ここで、上記の着色塗料は、着色皮膜層220を形成するために用いられる着色塗料処理液である。
 着色塗料がリン酸化合物とバナジウム化合物との両方を含有する点以外は、プレコート鋼板100及びプレコート鋼板200の製造方法と共通するため、説明を割愛する。
(Method of manufacturing precoated steel sheet 300)
Next, a method for manufacturing the precoated steel sheet 300 according to this embodiment will be described.
The method for manufacturing the precoated steel sheet 300 according to the present embodiment includes a step of applying a colored coating material containing a phosphoric acid compound, a vanadium compound, a color pigment and a binder resin to the steel sheet 1 on which the zinc alloy plating layer 10 is formed. .. Here, the above-mentioned colored paint is a colored paint treatment liquid used for forming the colored film layer 220.
The description is omitted because it is common to the manufacturing method of the precoated steel sheet 100 and the precoated steel sheet 200, except that the coloring paint contains both the phosphoric acid compound and the vanadium compound.
 以下では、実施例及び比較例を示しながら、本発明に係るプレコート鋼板について、具体的に説明する。なお、以下に示す実施例は、本発明に係るプレコート鋼板のあくまでも一例にすぎず、本発明に係るプレコート鋼板が下記の例に限定されるものではない。 In the following, the precoated steel sheet according to the present invention will be specifically described with reference to Examples and Comparative Examples. The examples described below are merely examples of the precoated steel sheet according to the present invention, and the precoated steel sheet according to the present invention is not limited to the following examples.
(1)めっき鋼板
 以下の表1に示すA1~A5の5種類の亜鉛系めっき鋼板を準備した。更に、これら亜鉛系めっき鋼板に対して、クロメートフリー系化成処理(CT-E300/日本パーカライジング社製)を60mg/m施しためっき鋼板も準備した。化成処理に用いた処理液は、その成分としてシランカップリング剤を含有するものであり、かかる化成処理により形成される化成処理皮膜層は、下地被膜層として機能する。なお、化成処理の有無は、表5-1~5-5に記載した。
(1) Plated Steel Sheets Five kinds of zinc-plated steel sheets A1 to A5 shown in Table 1 below were prepared. Further, a plated steel sheet was prepared by subjecting these zinc-based plated steel sheets to a chromate-free chemical conversion treatment (CT-E300 / manufactured by Nippon Parkerizing Co., Ltd.) at 60 mg / m 2 . The treatment liquid used for the chemical conversion treatment contains a silane coupling agent as its component, and the chemical conversion treatment film layer formed by such chemical conversion treatment functions as an undercoat layer. The presence / absence of chemical conversion treatment is shown in Tables 5-1 to 5-5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2)着色塗料の調整
 着色皮膜層の形成に用いる着色塗料を調製した。
 バインダー樹脂として、以下の表4に示す樹脂を用意し、各樹脂溶液に対し、硬化剤としてメラミン系硬化剤を固形分割合で15質量%添加した。更に、防錆顔料として、以下の表2に示す防錆顔料を準備した。製造された着色皮膜層に含まれる防錆顔料の平均粒子径及び濃度は、以下の方法で測定した。
<平均粒子径>
 防錆顔料の平均粒子径は以下の方法で求めた。鋼板を断面方向から観察し、FE-EPMAによりリン(P)元素又はバナジウム(V)元素をマッピングした。このとき、連続した9ピクセル以上を1つの粒子とし、その面積Spを求める。リン酸化合物の粒子径はφp=2×(Sp/π)0.5により求める。任意の幅200μmを測定し、その範囲に確認されたリン酸化合物粒子又はバナジウム化合物の粒子の粒子径φpの平均を求めた。
<濃度>
 防錆顔料の濃度は、着色皮膜層の断面をFE-EPMAにより分析することで測定した。
 防錆顔料の平均粒子径及び濃度を表5-1~5-5に示した。なお、表5-1~5-5に示す防錆顔料の濃度は、リン酸化合物の場合はP量に換算した濃度であり、バナジウム化合物の場合はV量に換算した濃度である。
 また、用いた着色顔料の種類を表3に、濃度、平均粒子径及び平均アスペクト比を表5-1~5-5に示した。
 着色顔料の濃度は、着色皮膜を溶解し、ICP発光分光分析装置で着色顔料元素を定量分析することによって測定した。また、着色顔料の平均粒子径及び平均アスペクト比は、上述したFE-EPMAを用いた方法によって測定した。
(2) Preparation of Colored Paint A colored paint used for forming the colored film layer was prepared.
As the binder resin, the resins shown in Table 4 below were prepared, and a melamine-based curing agent as a curing agent was added to each resin solution at a solid content of 15% by mass. Furthermore, the rust preventive pigments shown in Table 2 below were prepared as the rust preventive pigments. The average particle size and concentration of the rust preventive pigment contained in the manufactured colored film layer were measured by the following methods.
<Average particle size>
The average particle diameter of the rust preventive pigment was determined by the following method. The steel sheet was observed from the cross-sectional direction, and phosphorus (P) element or vanadium (V) element was mapped by FE-EPMA. At this time, continuous particles of 9 pixels or more are regarded as one particle, and the area Sp thereof is obtained. The particle size of the phosphoric acid compound is determined by φp = 2 × (Sp / π) 0.5 . An arbitrary width of 200 μm was measured, and the average of the particle diameter φp of the phosphoric acid compound particles or the vanadium compound particles confirmed in that range was obtained.
<Concentration>
The concentration of the rust preventive pigment was measured by analyzing the cross section of the colored film layer by FE-EPMA.
The average particle size and concentration of the rust preventive pigment are shown in Tables 5-1 to 5-5. The concentrations of the rust preventive pigments shown in Tables 5-1 to 5-5 are the concentration converted into the amount of P in the case of the phosphoric acid compound and the concentration converted into the amount of V in the case of the vanadium compound.
The types of color pigments used are shown in Table 3, and the concentrations, average particle diameters and average aspect ratios are shown in Tables 5-1 to 5-5.
The concentration of the color pigment was measured by dissolving the color film and quantitatively analyzing the color pigment element with an ICP emission spectrophotometer. Further, the average particle diameter and the average aspect ratio of the color pigment were measured by the above-mentioned method using FE-EPMA.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(3)サンプル作製
 上記のようにして調製した着色塗料を、乾燥膜厚が表5-1~5-5に示した膜厚になるように、バーコータを用いてめっき鋼板に塗布し、60秒で最高到達板温度(PMT)が200℃になるように加熱して、着色皮膜層を形成した。
(3) Sample preparation The colored coating material prepared as described above was applied to a plated steel sheet using a bar coater so that the dry film thickness was as shown in Tables 5-1 to 5-5, and 60 seconds Then, it was heated so that the maximum reached plate temperature (PMT) was 200 ° C. to form a colored film layer.
(4)サンプルの評価
 上記方法により作製した各サンプルについて、以下のような基準に基づき性能を評価した。性能評価において、VeryGood、Good、Fairを合格とし、Poorを不合格とした。得られた評価結果を、表6-1~6-3に示した。
(4) Evaluation of sample The performance of each sample manufactured by the above method was evaluated based on the following criteria. In the performance evaluation, VeryGood, Good, and Fair were accepted, and Poor was rejected. The obtained evaluation results are shown in Tables 6-1 to 6-3.
<リン酸化合物の分布>
 リン酸化合物の着色皮膜層における分布を、以下の方法により分析した。
 作製した各サンプルを15×20mmに切断して樹脂埋め込みし、断面を研磨し、断面方向から着色皮膜層のFE-EPMAマッピング分析を加速電圧15kV、倍率5000倍で実施した。この際に、着色皮膜層の任意の領域において、リン元素の濃度が3%以上である第1の領域が、膜厚方向の長さ2μm×平面方向の長さ200μmの範囲内に存在する個数を確認した。
 同様にして、PA/PB及びPA/PCの値を測定した。なお、膜厚が8μm以下の場合、PA/PBの項目にはスラッシュを記載している。
<Distribution of phosphate compound>
The distribution of the phosphoric acid compound in the colored film layer was analyzed by the following method.
Each of the prepared samples was cut into a size of 15 × 20 mm, embedded with resin, the cross section was polished, and FE-EPMA mapping analysis of the colored film layer was performed from the cross section direction at an acceleration voltage of 15 kV and a magnification of 5000 times. At this time, in any region of the colored film layer, the number of first regions having a phosphorus element concentration of 3% or more within the range of 2 μm in the film thickness direction × 200 μm in the plane direction It was confirmed.
Similarly, the values of PA / PB and PA / PC were measured. In addition, when the film thickness is 8 μm or less, slash is described in the item of PA / PB.
<バナジウム化合物の分布>
 バナジウム化合物の着色皮膜層における分布を、以下の方法により分析した。
 作製した各サンプルを15×20mmに切断して樹脂埋め込みし、断面を研磨し、断面方向から着色皮膜層のFE-EPMAマッピング分析を加速電圧15kV、倍率5000倍で実施した。この際に、着色皮膜層の亜鉛めっき層との界面から表層側に向かって膜厚方向に1μmの領域において、バナジウム元素の濃度が3%以上である第2の領域が、平面方向の長さ200μmの範囲内に存在する個数を確認した。
 同様にして、PE/PDの値を測定した。
<Distribution of vanadium compound>
The distribution of the vanadium compound in the colored film layer was analyzed by the following method.
Each of the prepared samples was cut into a size of 15 × 20 mm, embedded with resin, the cross section was polished, and FE-EPMA mapping analysis of the colored film layer was carried out from the cross section direction at an acceleration voltage of 15 kV and a magnification of 5000 times. At this time, in the region of 1 μm in the film thickness direction from the interface of the colored film layer with the zinc plating layer toward the surface layer side, the second region in which the concentration of vanadium element is 3% or more is the length in the plane direction. The number existing within the range of 200 μm was confirmed.
Similarly, the value of PE / PD was measured.
<着色顔料の分布>
 着色顔料としてアルミ顔料を用いたサンプルについて、アルミ顔料の着色皮膜層における分布を、以下の方法により分析した。
 作製した各サンプルを15×20mmに切断して樹脂埋め込みし、断面を研磨し、断面方向から電子顕微鏡観察を加速電圧15kV、倍率5000倍で実施した。着色皮膜層の亜鉛合金めっき層側の界面から0.5μmまでの範囲内、及び、着色皮膜層の最表層から0.5μmの範囲内に、アルミニウム元素が存在するか否かを確認した。評価基準は、以下の通りである。
 なお、アルミ顔料を用いていない実施例・比較例では、「着色顔料の分布」の評価結果の欄に「-」を記入している。
<Distribution of color pigment>
The distribution of the aluminum pigment in the colored film layer of the sample using the aluminum pigment as the coloring pigment was analyzed by the following method.
Each of the produced samples was cut into a size of 15 × 20 mm, embedded with a resin, the cross section was polished, and an electron microscope observation was performed from the cross section direction at an acceleration voltage of 15 kV and a magnification of 5000 times. It was confirmed whether or not aluminum element was present within a range of 0.5 μm from the interface of the colored film layer on the zinc alloy plating layer side and within a range of 0.5 μm from the outermost layer of the colored film layer. The evaluation criteria are as follows.
In Examples and Comparative Examples in which no aluminum pigment is used, "-" is entered in the evaluation result column of "distribution of color pigment".
  Good:上記2つの部分の何れにも存在しない
  Fair:上記2つの部分のうち何れか一方のみに存在する
  Poor:上記2つの部分のうち何れにも存在する
Good: Not present in either of the two parts Fair: Present in only one of the two parts Poor: Present in either of the two parts
<加工部耐食性>
 サンプルをエリクセン試験機により7mm押し出し加工し、JASO-M609に規定された複合サイクル腐食試験を30サイクル行った後に、加工部における錆発生面積率を評価した。評価基準は、以下の通りである。
<Corrosion resistance of processed part>
The sample was extruded by 7 mm by an Erichsen tester, and after 30 cycles of the combined cycle corrosion test specified in JASO-M609, the rust generation area ratio in the processed part was evaluated. The evaluation criteria are as follows.
  VeryGood:5mm未満
  Good:5mm以上、8mm未満
  Fair:8mm以上、10mm未満
  Poor:10mm以上
Very Good: less than 5 mm Good: 5 mm or more, less than 8 mm Fair: 8 mm or more, less than 10 mm Poor: 10 mm or more
<端面耐食性>
 JIS Z2371に準拠した塩水噴霧試験(SST)を480時間実施し、端面からの錆進展距離を、以下の基準により評価した。
<End face corrosion resistance>
A salt spray test (SST) according to JIS Z2371 was carried out for 480 hours, and the rust development distance from the end face was evaluated according to the following criteria.
  VeryGood:5mm未満
  Good:5mm以上8mm未満
  Fair:8mm以上10mm未満
  Poor:10mm以上
Very Good: less than 5 mm Good: 5 mm or more and less than 8 mm Fair: 8 mm or more and less than 10 mm Poor: 10 mm or more
<耐候性>
 サンシャインカーボンアーク灯式の促進耐候性試験を500時間実施し、試験前後での着色皮膜表面の色差ΔEを以下の基準により評価した。なお、色差ΔEは、分光測色計(スガ試験機社製、型式:SC-T45)を用いて測定した。
<Weather resistance>
A sunshine carbon arc lamp type accelerated weathering test was carried out for 500 hours, and the color difference ΔE on the surface of the colored film before and after the test was evaluated according to the following criteria. The color difference ΔE was measured using a spectrophotometer (manufactured by Suga Test Instruments Co., Ltd., model: SC-T45).
  VeryGood:色差ΔEが3未満
  Good:色差ΔEが3以上4未満
  Fair:色差ΔEが4以上6未満
  Poor:色差ΔEが6以上
VeryGood: Color difference ΔE is less than 3 Good: Color difference ΔE is 3 or more and less than 4 Fair: Color difference ΔE is 4 or more and less than 6 Poor: Color difference ΔE is 6 or more
<外観>
 作製したサンプルの外観を、以下の基準により評価した。
<Appearance>
The appearance of the produced sample was evaluated according to the following criteria.
  VeryGood:色調、表面艶が均一であり、下地が透けて見えない。
  Good:色調、表面艶がやや不均一であり(目を凝らして確認できるレベル)、下地は透けて見えない。
  Fair:色調、表面艶がやや不均一であり(目を凝らして確認できるレベル)、下地がやや透けて見える。
  Poor:色調、表面艶が不均一である(容易に確認できるレベル)、または下地が透けて見える。
VeryGood: The color tone and surface gloss are uniform, and the base cannot be seen through.
Good: The color tone and surface gloss are slightly non-uniform (a level that can be confirmed by squinting eyes), and the base cannot be seen through.
Fair: The color tone and surface gloss are slightly non-uniform (a level that can be confirmed by squinting), and the base is slightly transparent.
Poor: The color tone and surface gloss are non-uniform (at a level that can be easily confirmed), or the base is visible.
<加工性>
 作製したサンプルに対して、20℃雰囲気中で180°折り曲げ加工を施した後、折り曲げ加工部の外観を、以下の基準で評価した。
<Workability>
After bending the produced sample by 180 ° in an atmosphere of 20 ° C, the appearance of the folded portion was evaluated according to the following criteria.
  VeryGood:着色皮膜層に亀裂等の不具合がない。
  Good:着色皮膜層に僅かに亀裂が認められる(加工前のサンプルと並べると、目を凝らせば分かるレベル)
  Fair:着色皮膜層に僅かに亀裂が認められる(加工前のサンプルと並べると、容易に分かるレベル)
  Poor:着色皮膜層に亀裂が認められる(加工後サンプルのみを見て、容易に分かるレベル)。
VeryGood: There are no defects such as cracks in the colored film layer.
Good: A slight crack is observed in the colored film layer (a level that can be seen by squinting with the sample before processing)
Fair: A slight crack is observed in the colored film layer (a level that can be easily seen when aligned with the sample before processing)
Poor: A crack is observed in the colored film layer (a level that can be easily seen by looking at only the sample after processing).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 上記表5-1~5-5及び表6-1~6-3から明らかなように、本発明の実施例に対応するプレコート鋼板は、優れた意匠性、耐食性、加工性、及び、耐候性を兼ね備えていることが分かる。一方、本発明の比較例に対応するプレコート鋼板は、意匠性、耐食性、加工性、又は、耐候性の何れかの性能が劣ることがわかる。 As is clear from Tables 5-1 to 5-5 and Tables 6-1 to 6-3, the precoated steel sheets corresponding to the examples of the present invention have excellent designability, corrosion resistance, workability, and weather resistance. You can see that it has both. On the other hand, it can be seen that the precoated steel sheet corresponding to the comparative example of the present invention is inferior in any of the designability, corrosion resistance, workability, or weather resistance.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various alterations or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
 上記各実施形態によれば、着色皮膜の薄膜化を図りつつ、意匠性、耐食性、加工性及び耐候性に優れたプレコート鋼板を提供することができる。 According to each of the above-described embodiments, it is possible to provide a precoated steel sheet having excellent designability, corrosion resistance, workability, and weather resistance while achieving a thin colored film.
  1 鋼板
 10 亜鉛合金めっき層
 20,120,220  着色皮膜層
 100,200,300 プレコート鋼板
 30 第1の領域
 130 第2の領域
 40,140 (亜鉛合金めっき層と着色皮膜層との)界面
1 Steel plate 10 Zinc alloy plating layer 20, 120, 220 Colored film layer 100, 200, 300 Pre-coated steel plate 30 First region 130 Second region 40, 140 (Zinc alloy plating layer and colored film layer) Interface

Claims (20)

  1.  鋼板と;
     前記鋼板上に設けられ、1~25質量%のAlと、0.1~13質量%のMgと、0~2.0質量%のSiと、を含有し、残部がZn及び不純物からなる亜鉛合金めっき層と;
     前記亜鉛合金めっき層上に設けられ、リン酸化合物とバナジウム化合物との少なくとも一方、着色顔料及びバインダー樹脂を含む着色皮膜層と;
    を備え、
     前記着色皮膜層が前記リン酸化合物を含む場合には、
     前記リン酸化合物の濃度は、前記着色皮膜層の全固形分質量に対して、P量に換算して0.3~5.0質量%であり;
     前記着色皮膜層の厚さ方向の断面をFE-EPMAでマッピング観察したときに、前記厚さ方向に2μmかつ前記着色皮膜層と前記亜鉛合金めっき層との界面と平行方向に200μmの範囲内に、リン元素の濃度が3%以上である第1の領域が1~15個存在し、
     前記着色皮膜層が前記バナジウム化合物を含む場合には、
     前記バナジウム化合物は、バナジン酸化合物又は酸化バナジウムであり;
     前記バナジウム化合物の濃度は、前記着色皮膜層の全固形分質量に対して、V量に換算して0.5~8.0質量%であり;
     前記着色皮膜層の前記厚さ方向の断面をFE-EPMAでマッピング観察したときに、前記界面から表面側に向かって前記厚さ方向に1μmかつ前記界面と平行方向に200μmの範囲内に、バナジウム元素の濃度が3%以上である第2の領域が1~10個存在する
    ことを特徴とする、プレコート鋼板。
    Steel plate;
    Zinc provided on the steel sheet, containing 1 to 25% by mass of Al, 0.1 to 13% by mass of Mg, and 0 to 2.0% by mass of Si, with the balance being Zn and impurities. Alloy plating layer;
    A colored film layer which is provided on the zinc alloy plating layer and contains at least one of a phosphoric acid compound and a vanadium compound, a color pigment and a binder resin;
    Equipped with
    When the colored film layer contains the phosphoric acid compound,
    The concentration of the phosphoric acid compound is 0.3 to 5.0% by mass in terms of P amount with respect to the total solid mass of the colored film layer;
    When the cross section in the thickness direction of the colored film layer was observed by mapping with FE-EPMA, it was within a range of 2 μm in the thickness direction and 200 μm in the direction parallel to the interface between the colored film layer and the zinc alloy plating layer. , There are 1 to 15 first regions having a phosphorus element concentration of 3% or more,
    When the colored film layer contains the vanadium compound,
    The vanadium compound is a vanadate compound or vanadium oxide;
    The concentration of the vanadium compound is 0.5 to 8.0% by mass in terms of V amount with respect to the total solid mass of the colored film layer;
    When the cross section of the colored film layer in the thickness direction is observed by mapping with FE-EPMA, vanadium is present within a range of 1 μm in the thickness direction from the interface toward the surface side and 200 μm in the direction parallel to the interface. A precoated steel sheet, wherein 1 to 10 second regions having an element concentration of 3% or more are present.
  2.  前記着色皮膜層が前記リン酸化合物を含む
    ことを特徴とする、請求項1に記載のプレコート鋼板。
    The precoated steel sheet according to claim 1, wherein the colored coating layer contains the phosphoric acid compound.
  3.  前記着色皮膜層の厚さ方向の断面をFE-EPMAでマッピング観察したときに、前記厚さ方向に2μmかつ前記界面と平行方向に40μmの範囲内に、リン元素の濃度が3%以上である第1の領域が1~15個存在する
    ことを特徴とする、請求項1又は2に記載のプレコート鋼板。
    When the cross section of the colored film layer in the thickness direction is observed by mapping with FE-EPMA, the phosphorus element concentration is 3% or more within a range of 2 μm in the thickness direction and 40 μm in the direction parallel to the interface. The precoated steel sheet according to claim 1 or 2, wherein 1 to 15 first regions are present.
  4.  前記着色皮膜層の厚さ方向の断面をFE-EPMAでマッピング観察したときに、前記厚さ方向に2μmかつ前記界面と平行方向に20μmの範囲内に、リン元素の濃度が3%以上である第1の領域が1~15個存在する
    ことを特徴とする、請求項1~3の何れか1項に記載のプレコート鋼板。
    When the cross section of the colored film layer in the thickness direction is observed by mapping with FE-EPMA, the phosphorus element concentration is 3% or more within a range of 2 μm in the thickness direction and 20 μm in the direction parallel to the interface. The precoated steel sheet according to any one of claims 1 to 3, wherein 1 to 15 first regions are present.
  5.  前記リン酸化合物の平均粒子径が、0.10~10μmである
    ことを特徴とする、請求項1~4の何れか1項に記載のプレコート鋼板。
    The precoated steel sheet according to any one of claims 1 to 4, wherein the phosphoric acid compound has an average particle diameter of 0.10 to 10 µm.
  6.  前記着色皮膜層の層厚が8μm超、15μm以下であり、
     前記着色皮膜層の表面から前記厚さ方向に2μmの範囲である表面部、前記着色皮膜層の層厚中心を中心として前記厚さ方向に2μmの範囲である中心部、前記界面から前記表面側に向かって前記厚さ方向に2μmの範囲である深部それぞれに対して、FE-EPMAを用いて2μm×200μmの範囲で検出されるリン元素の濃度を測定し、前記表面部のリン酸化合物濃度をPA、前記中心部のリン酸化合物濃度をPB、前記深部のリン酸化合物濃度をPCとしたときに、PA/PBが0.5~2.0であり、かつ、PA/PCが0.5~2.0である
    ことを特徴とする、請求項1~5の何れか1項に記載のプレコート鋼板。
    The layer thickness of the colored film layer is more than 8 μm and 15 μm or less,
    A surface portion within a range of 2 μm from the surface of the colored coating layer in the thickness direction, a central portion within a range of 2 μm in the thickness direction around the layer thickness center of the colored coating layer, and the surface side from the interface. Toward the depth direction, the concentration of the phosphorus element detected in the range of 2 μm × 200 μm is measured using FE-EPMA for each of the deep parts in the range of 2 μm in the thickness direction, and the concentration of the phosphate compound in the surface portion is measured. Is PA, the central phosphate compound concentration is PB, and the deep phosphate compound concentration is PC, PA / PB is 0.5 to 2.0, and PA / PC is 0. The precoated steel sheet according to claim 1, wherein the precoated steel sheet has a thickness of 5 to 2.0.
  7.  前記着色皮膜層の層厚が8μm以下であり、
     前記着色皮膜層の表面から前記厚さ方向に2μmの範囲である表面部及び前記界面から前記表面側に向かって前記厚さ方向に2μmの範囲である深部それぞれに対して、FE-EPMAを用いて前記厚さ方向の断面をマッピング観察し、前記表面部のリン酸化合物濃度をPA、前記深部のリン酸化合物濃度をPCとしたときに、PA/PCが0.5~2.0である
    ことを特徴とする、請求項1~6の何れか1項に記載のプレコート鋼板。
    The layer thickness of the colored film layer is 8 μm or less,
    FE-EPMA is used for each of the surface portion within the range of 2 μm in the thickness direction from the surface of the colored film layer and the deep portion within the range of 2 μm in the thickness direction from the interface toward the surface side. Then, the cross section in the thickness direction is observed by mapping, and PA / PC is 0.5 to 2.0 when the phosphate compound concentration in the surface portion is PA and the phosphate compound concentration in the deep portion is PC. The precoated steel sheet according to any one of claims 1 to 6, characterized in that
  8.  前記着色皮膜層が前記バナジウム化合物を含む
    ことを特徴とする、請求項1~7の何れか1項に記載のプレコート鋼板。
    The precoated steel sheet according to any one of claims 1 to 7, wherein the colored coating layer contains the vanadium compound.
  9.  前記バナジウム化合物の平均粒子径が、0.10~10μmである
    ことを特徴とする、請求項8に記載のプレコート鋼板。
    9. The precoated steel sheet according to claim 8, wherein the vanadium compound has an average particle diameter of 0.10 to 10 μm.
  10.  前記着色皮膜層の層厚をTとし、前記着色皮膜層の表面から前記厚さ方向にTかつ前記界面と平行方向に200μmの範囲でFE-EPMAを用いて検出されるバナジウム元素の濃度をPD、前記着色皮膜層の層厚中心から前記界面に向かって前記厚さ方向にT/2かつ前記界面方向に200μmの範囲でFE-EPMAを用いて検出されるバナジウム元素の濃度をPEとしたときに、PE/PDが1.0~5.0である
    ことを特徴とする、請求項8又は9に記載のプレコート鋼板。
    When the layer thickness of the colored coating layer is T, the concentration of vanadium element detected by FE-EPMA in the range of T from the surface of the colored coating layer in the thickness direction and 200 μm in the direction parallel to the interface is PD. When the concentration of vanadium element detected by FE-EPMA is PE in a range of T / 2 in the thickness direction from the center of the thickness of the colored film layer to the interface and 200 μm in the interface direction, The precoated steel sheet according to claim 8 or 9, wherein PE / PD is 1.0 to 5.0.
  11.  前記亜鉛合金めっき層が、
     4~22質量%のAlと;
     1~5質量%のMgと;
    を含有する
    ことを特徴とする、請求項8~10の何れか1項に記載のプレコート鋼板。
    The zinc alloy plating layer,
    4-22% by mass of Al;
    1 to 5 mass% Mg;
    The precoated steel sheet according to any one of claims 8 to 10, characterized by containing.
  12.  前記亜鉛合金めっき層が、0.01~2.0質量%のSiを含有する
    ことを特徴とする、請求項8~11の何れか1項に記載のプレコート鋼板。
    The precoated steel sheet according to any one of claims 8 to 11, wherein the zinc alloy plated layer contains 0.01 to 2.0 mass% of Si.
  13.  前記着色顔料が、アルミ顔料である
    ことを特徴とする、請求項8~12の何れか1項に記載のプレコート鋼板。
    The precoated steel sheet according to any one of claims 8 to 12, wherein the color pigment is an aluminum pigment.
  14.  前記着色顔料の平均粒子径が7~30μmであり、かつ、平均アスペクト比が20以上である
    ことを特徴とする、請求項13に記載のプレコート鋼板。
    The precoated steel sheet according to claim 13, wherein the color pigment has an average particle diameter of 7 to 30 μm and an average aspect ratio of 20 or more.
  15.  前記着色顔料が、前記着色皮膜層の表面から前記厚さ方向に0.5μmの範囲、又は、前記界面から前記表面に向かって前記厚さ方向に0.5μmの範囲には存在しない
    ことを特徴とする、請求項13又は14に記載のプレコート鋼板。
    The color pigment is not present in the range of 0.5 μm in the thickness direction from the surface of the colored film layer or in the range of 0.5 μm in the thickness direction from the interface toward the surface. The precoated steel sheet according to claim 13 or 14.
  16.  前記着色皮膜層に含まれる前記バインダー樹脂が、ポリエステル樹脂及びアクリル樹脂である
    ことを特徴とする、請求項1~15の何れか1項に記載のプレコート鋼板。
    The precoated steel sheet according to any one of claims 1 to 15, wherein the binder resin contained in the colored film layer is a polyester resin and an acrylic resin.
  17.  前記着色皮膜層がメラミンを更に含有する
    ことを特徴とする、請求項1~16の何れか1項に記載のプレコート鋼板。
    The precoated steel sheet according to any one of claims 1 to 16, wherein the colored coating layer further contains melamine.
  18.  前記着色皮膜層の表面に、メラミン濃化層を備える
    ことを特徴とする、請求項17に記載のプレコート鋼板。
    The precoated steel sheet according to claim 17, wherein a melamine concentrated layer is provided on the surface of the colored coating layer.
  19.  前記着色皮膜層と前記亜鉛合金めっき層との間に、化成処理皮膜層を更に備える
    ことを特徴とする、請求項1~18の何れか1項に記載のプレコート鋼板。
    The precoated steel sheet according to any one of claims 1 to 18, further comprising a chemical conversion treatment coating layer between the colored coating layer and the zinc alloy plating layer.
  20.  前記着色皮膜層の層厚が、2μm以上である
    ことを特徴とする、請求項1~19の何れか1項に記載のプレコート鋼板。
    The precoated steel sheet according to any one of claims 1 to 19, wherein the colored film layer has a layer thickness of 2 µm or more.
PCT/JP2018/042475 2018-11-16 2018-11-16 Precoated steel sheet WO2020100286A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020556556A JP7120322B2 (en) 2018-11-16 2018-11-16 pre-coated steel plate
PCT/JP2018/042475 WO2020100286A1 (en) 2018-11-16 2018-11-16 Precoated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/042475 WO2020100286A1 (en) 2018-11-16 2018-11-16 Precoated steel sheet

Publications (1)

Publication Number Publication Date
WO2020100286A1 true WO2020100286A1 (en) 2020-05-22

Family

ID=70731382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042475 WO2020100286A1 (en) 2018-11-16 2018-11-16 Precoated steel sheet

Country Status (2)

Country Link
JP (1) JP7120322B2 (en)
WO (1) WO2020100286A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107474B1 (en) * 2021-12-03 2022-07-27 日本製鉄株式会社 Zn-based plated steel sheet
WO2022210200A1 (en) 2021-03-31 2022-10-06 日本製鉄株式会社 Precoated plated steel sheet and molded product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037083A (en) * 2009-08-07 2011-02-24 Sumitomo Metal Ind Ltd Coated metal material enclosure using coated metal material and coating material composition
JP2016121390A (en) * 2014-03-27 2016-07-07 日新製鋼株式会社 Chemically-treated steel sheet, manufacturing method for the same and chemical treatment liquid
JP2017128767A (en) * 2016-01-20 2017-07-27 新日鐵住金株式会社 Polyolefin coated steel pipe and method for manufacturing the same
WO2017155028A1 (en) * 2016-03-09 2017-09-14 新日鐵住金株式会社 Surface-treated steel sheet and process for producing surface-treated steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037083A (en) * 2009-08-07 2011-02-24 Sumitomo Metal Ind Ltd Coated metal material enclosure using coated metal material and coating material composition
JP2016121390A (en) * 2014-03-27 2016-07-07 日新製鋼株式会社 Chemically-treated steel sheet, manufacturing method for the same and chemical treatment liquid
JP2017128767A (en) * 2016-01-20 2017-07-27 新日鐵住金株式会社 Polyolefin coated steel pipe and method for manufacturing the same
WO2017155028A1 (en) * 2016-03-09 2017-09-14 新日鐵住金株式会社 Surface-treated steel sheet and process for producing surface-treated steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210200A1 (en) 2021-03-31 2022-10-06 日本製鉄株式会社 Precoated plated steel sheet and molded product
KR20230159860A (en) 2021-03-31 2023-11-22 닛폰세이테츠 가부시키가이샤 Precoated plated steel sheets and molded products
JP7107474B1 (en) * 2021-12-03 2022-07-27 日本製鉄株式会社 Zn-based plated steel sheet
WO2023100349A1 (en) * 2021-12-03 2023-06-08 日本製鉄株式会社 Zinc-based plated steel sheet
CN116547405A (en) * 2021-12-03 2023-08-04 日本制铁株式会社 Zn-based coated steel sheet

Also Published As

Publication number Publication date
JPWO2020100286A1 (en) 2021-09-02
JP7120322B2 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
JP6658988B1 (en) Surface treated steel sheet
JP7120322B2 (en) pre-coated steel plate
TWI658107B (en) Coated metal plate for exterior building materials, manufacturing method thereof, and exterior building materials
RU2660118C2 (en) Coated metal sheet, method of its manufacture and also construction material for external use
TWI558547B (en) Coated metal plate and exterior building material
KR101788235B1 (en) Colored Coated Metal Sheet and Exterior Building Material
JP6473354B2 (en) Exterior building materials
JP2010247347A (en) Precoated cold-rolled steel sheet and method for manufacturing the same
JP6680412B1 (en) Surface treated steel plate
JP5714756B1 (en) Manufacturing method of coated metal plate and exterior building material
RU2660877C2 (en) Coated metal sheet, production method, as well as structural material for outdoor use
JP6473355B2 (en) Exterior building materials
JP6772943B2 (en) Painted steel plate
KR20230051627A (en) Zn-based coated steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939968

Country of ref document: EP

Kind code of ref document: A1