WO2020100275A1 - Radar device and signal processing method - Google Patents

Radar device and signal processing method Download PDF

Info

Publication number
WO2020100275A1
WO2020100275A1 PCT/JP2018/042432 JP2018042432W WO2020100275A1 WO 2020100275 A1 WO2020100275 A1 WO 2020100275A1 JP 2018042432 W JP2018042432 W JP 2018042432W WO 2020100275 A1 WO2020100275 A1 WO 2020100275A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
signals
pulse width
signal
transmission
Prior art date
Application number
PCT/JP2018/042432
Other languages
French (fr)
Japanese (ja)
Inventor
聡 影目
照幸 原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019530848A priority Critical patent/JP6664554B1/en
Priority to PCT/JP2018/042432 priority patent/WO2020100275A1/en
Publication of WO2020100275A1 publication Critical patent/WO2020100275A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters

Definitions

  • the present invention relates to radar technology for detecting a target such as a moving object.
  • a general pulse Doppler radar continuously transmits a plurality of pulse waves at a pulse repetition period (Pulse Repetition Interval, PRI), and then receives a plurality of reflected waves corresponding to the plurality of pulse waves from a target. It is possible to generate a plurality of received signals and estimate target information such as a target relative speed based on the plurality of received signals. It is possible to improve the signal-to-noise ratio (Signal-to-Noise Ratio, SNR) by coherently integrating the plurality of received signals in the pulse hit direction.
  • SNR Signal-to-noise Ratio
  • JP-A-6-294864 see, for example, FIG. 1
  • the above-mentioned pulse Doppler radar has a problem that the improvement effect of the signal-to-noise ratio by coherent integration is limited.
  • a pulsed Doppler radar causes a loss of a reflected wave from a target.
  • the transmission blind refers to a state in which the reflected wave from the target cannot be received during the transmission time of each pulse wave.
  • the pulse width of each pulse wave may be widened to increase the average transmission power. However, if the pulse width is wide, transmission blinds are likely to occur.
  • an object of the present invention is to provide a radar device and a signal processing method capable of improving the signal-to-noise ratio (SNR) while suppressing the influence of the transmission blind.
  • SNR signal-to-noise ratio
  • a radar device includes a pulse width control unit that sets a plurality of pulse widths that form a pulse width distribution that gradually increases or decreases within a setting range equal to or greater than a predetermined reference pulse width, and A signal generation circuit for continuously generating a plurality of transmission pulse signals each having a plurality of pulse widths and subjected to intra-pulse modulation, and for transmitting the plurality of transmission pulse signals to an external space, the external space From the transmitting / receiving unit that receives a plurality of reflected wave signals respectively corresponding to the plurality of transmitted pulse signals, and a plurality of received signals that respectively correspond to the plurality of transmitted pulse signals by sampling each of the plurality of reflected wave signals.
  • a receiving circuit that generates a signal, a correlation processing unit that generates a plurality of pulse compression signals by performing a correlation process using a reference signal for each of the plurality of reception signals, and a plurality of pulse compression signals
  • a domain conversion unit that generates a plurality of frequency domain signals by performing a domain conversion process from the time domain to the frequency domain
  • a target detection unit that detects a target candidate based on the plurality of frequency domain signals.
  • a plurality of transmission pulses that have been subjected to intra-pulse modulation using a plurality of pulse widths that form a pulse width distribution that gradually increases or decreases within a setting range that is equal to or larger than the reference pulse width. Since the signals are continuously generated, it is possible to generate a high SNR pulse compression signal while suppressing the influence of the transmission blind. As a result, since a high SNR frequency domain signal is generated, it is possible to provide a radar device with improved target detection performance.
  • FIG. 3 is a block diagram schematically showing a configuration example of a signal generation circuit of the first embodiment.
  • 3 is a block diagram schematically showing a configuration example of a receiving circuit according to the first embodiment.
  • FIG. 3 is a block diagram showing an example of a hardware configuration that implements the functions of a pulse width control unit and a radar signal processing circuit according to the first embodiment.
  • FIG. 3 is a flowchart schematically showing an operation procedure of the radar device according to the first embodiment.
  • 6A and 6B are diagrams schematically showing an example of a transmitted wave and an example of a reflected wave corresponding to the transmitted wave.
  • FIG. 7A and 7B are diagrams schematically showing another example of the transmitted wave and an example of the reflected wave corresponding to the transmitted wave.
  • FIG. 8A and FIG. 8B are diagrams schematically showing an example of a transmission wave composed of a transmission pulse signal group forming a pulse width distribution that gradually increases and an example of a reflected wave corresponding to the transmission wave.
  • 9A and 9B are diagrams schematically showing an example of a transmission wave composed of a transmission pulse signal group forming a pulse width distribution that gradually decreases and an example of a reflected wave corresponding to the transmission wave.
  • 10A and 10B are diagrams schematically showing an example of a transmission wave composed of a transmission pulse signal group that forms a pulse width distribution that gradually increases and then decreases, and an example of a reflected wave corresponding to the transmission wave.
  • Is. 11A and 11B are graphs schematically showing an example of power distribution of a pulse compression signal.
  • 12 is a graph schematically showing a signal-to-noise ratio (SNR) obtained from the power distributions shown in FIGS. 11A and 11B. It is a graph which shows roughly the example of the power distribution of a pulse compression signal. It is a graph which shows roughly SNR obtained from the electric power distribution shown to FIG. 11A and FIG. It is a graph which shows the example of a frequency domain signal.
  • SNR signal-to-noise ratio
  • 17A and 17B are graphs showing frequency domain signals obtained by Fourier transforming the reference signal. It is a graph which shows the relationship between SNR and a distance of a frequency domain signal.
  • Embodiment 1. 1 is a block diagram showing a schematic configuration of a radar device 1 according to a first embodiment of the present invention.
  • the radar device 1 has a plurality of transmission pulse signals Tx (h, t) each having a plurality of pulse widths T p (h) at a predetermined pulse repetition period (Pulse Repetition Interval, PRI). ), And the plurality of transmission pulse signals Tx (h, t), which are output to the antenna (antenna) 12, and then correspond to the plurality of transmission pulse signals Tx (h, t), respectively.
  • a transmitting / receiving unit 11 that receives a plurality of reflected wave signals Rx (h, t), and a plurality of received analog signals W 0 (h, t) by performing analog signal processing on the plurality of reflected wave signals Rx (h, t).
  • a receiving circuit 13 for converting the plurality of receiving analog signals W 0 (h, t) into a plurality of receiving digital signals (receiving video signals) V 0 (h, m), and the plurality of receiving digital signals.
  • a radar signal processing circuit 31 that detects a target candidate by performing digital signal processing on V 0 (h, m) and a display device 60 that displays the detection result are provided.
  • the variable t represents time
  • the variable h is an integer in the range of 0 to H-1 representing the pulse hit number
  • H is the pulse hit number.
  • the pulse hit number h will be referred to as “hit number h”.
  • the variable m in the received digital signal V 0 (h, m) is an integer in the range of 0 to M ⁇ 1 that represents the sampling number
  • M is the number of sampling points in the pulse repetition period.
  • the antenna 12 can radiate a transmission wave Tw corresponding to the transmission pulse signals Tx (0, t) to Tx (H-1, t) to the external space, and then returns from the target Tgt in the external space.
  • the reflected wave Rw is received.
  • the transmission / reception unit 11 outputs the reflected wave signals Rx (0, t) to Rx (H-1, t) corresponding to the reception output of the antenna 12 to the reception circuit 13.
  • a frequency band such as a millimeter wave band or a microwave band can be used.
  • the radar device 1 includes a pulse width control unit 14 that sets a plurality of pulse widths T p (h) used in the signal generation circuit 10 and the radar signal processing circuit 31.
  • the pulse width control unit 14 forms a plurality of pulse widths T p (that forms at least one pulse width distribution that increases or decreases stepwise within a preset reference pulse width T 0 or larger setting range). It has a function of setting 0) to T p (H-1).
  • the pulse width control unit 14 is a component different from the signal generation circuit 10, but is not limited to this. There may be an embodiment in which the pulse width control unit 14 is incorporated in the signal generation circuit 10 or the radar signal processing circuit 31.
  • FIG. 2 is a block diagram schematically showing a configuration example of the signal generation circuit 10 according to the first embodiment.
  • the signal generation circuit 10 includes a local oscillator 20, a pulse generator 21, an intrapulse modulator 22, and an output unit 23.
  • the local oscillator 20 generates a local oscillation signal L 0 usable frequency band (t), and outputs the local oscillation signal L 0 (t) to the pulse generator 21 and the reception circuit 13.
  • a local oscillation signal L 0 (t) can be generated.
  • t is the time
  • a L is the amplitude of the local oscillation signal L 0 (t)
  • ⁇ 0 is the initial phase of the local oscillation signal L 0 (t)
  • Tobs is the upper limit of the observation period
  • j is the imaginary unit. .
  • the pulse generator 21 shown in FIG. 2 operates in synchronization with the pulse repetition period T pri, and modulates the local oscillation signal L 0 (t) to set the pulse set by the pulse width control unit 14. It is possible to generate pulse signals L pls (0, t) to L pls (H-1, t) having widths T p (0) to T p (H-1), respectively.
  • a L is the amplitude of the pulse signal L pls (h, t), and ⁇ [h] is a set of times t that satisfy the following Expression (3).
  • the intra-pulse modulator 22 subjects each of the plurality of pulse signals to intra-pulse modulation to generate a plurality of intra-pulse modulation signals as transmission pulse signals Tx (h, t).
  • Examples of intra-pulse modulation include known frequency modulation such as chirp modulation.
  • the output unit 23 outputs the transmission pulse signals Tx (h, t) to the transmission / reception unit 11. At this time, the output unit 23 may perform processing such as amplification on the transmission pulse signal Tx (h, t).
  • the intra-pulse modulator 22 first uses the modulation bandwidth B 0 according to the following equation (4) to modulate the pulse signal L pls (h, t) with a modulation control signal L chp. (H, t) can be generated.
  • the intra-pulse modulator 22 has the intra-pulse modulation signal that is frequency-modulated using the modulation control signal L chp (h, t), that is, the transmission pulse signal Tx (h, t) can be generated.
  • the antenna 12 can radiate a plurality of transmission pulse signals Tx (h, t) to the external space as transmission waves Tw, and then receive the reflected waves Rw returning from the target Tgt in the external space.
  • the transmitter / receiver 11 can output the reflected wave signal Rx (h, t) as expressed by the following equation (6).
  • a R is the amplitude of the reflected wave signal reflected by the target Tgt Rx (h, t), R 0 is the initial target relative distance, v is the target relative speed, tau is localized in the 1 pulse At a certain time, c is the speed of light. Further, ⁇ [h] is a set of times t that satisfy the following expression (7).
  • FIG. 3 is a block diagram schematically showing a configuration example of the receiving circuit 13.
  • the reception circuit 13 includes a down converter (mixer) 24, a bandpass filter 25, an amplifier 26, a phase detector 27, and an A / D converter 28.
  • the down converter 24 shown in FIG. 3 converts the reflected wave signal Rx (h, t) into an analog signal in a lower frequency band (for example, an intermediate frequency band).
  • the bandpass filter 25 filters the analog signal and outputs a filtered signal.
  • the amplifier 26 amplifies the filter signal and outputs an amplified signal.
  • the phase detector 27 phase-detects the amplified signal and generates a detection signal including an in-phase component and a quadrature component as a reception analog signal W 0 (h, t).
  • the following expression (8) is an expression representing the received analog signal W 0 (h, m).
  • a V indicates the amplitude of the received analog signal W 0 (h, t)
  • the upper right subscript “*” indicates complex conjugate.
  • the local oscillation signal L 0 * (t) is a complex conjugate of the local oscillation signal L 0 (t).
  • the A / D converter 28 samples the reception analog signal W 0 (h, t) at a sampling interval ⁇ t corresponding to a predetermined sampling frequency f s , so that the reception digital signal as expressed by the following equation (9) is obtained.
  • a signal (received video signal) V 0 (h, m) can be generated.
  • Equation (9) A is the amplitude of the received digital signal V 0 (h, m), m is an integer in the range of 0 to M ⁇ 1 that represents the sampling number, and ⁇ [h] is It is a set of sampling numbers m that satisfy the conditional expression of the following expression (10).
  • the radar signal processing circuit 31 can perform digital signal processing on the received digital signal V 0 (h, m) to detect a target candidate.
  • the radar signal processing circuit 31 includes a correlation processing unit 41, a region conversion unit 44, and a target detection unit 50.
  • the correlation processing unit 41 performs a correlation process using the reference signal and the pulse width T p (h) on the received digital signal V 0 (h, m) to obtain the pulse compression signal F V ⁇ Ex (h, m). m) is generated. Details of the correlation processing will be described later.
  • the domain transforming unit 44 performs domain transform processing from the time domain to the frequency domain in the pulse hit direction on the pulse compression signal F V ⁇ Ex (h, m) to generate the frequency domain signal f d (h fft , m). ) Is generated.
  • domain transform processing discrete Fourier transform based on a predetermined algorithm such as a fast Fourier transform (Fast Fourier Transform, FFT) algorithm or a chirp z transform (Chirp Z-Transform, CZT) algorithm may be executed.
  • the target detection unit 50 includes a target candidate detection unit 51 that detects a target candidate based on the frequency domain signal f d (h fft , m), and a target candidate information calculation unit 52 that calculates target information regarding the detected target candidate. And have.
  • All or a part of the hardware configuration of the pulse width control unit 14 and the radar signal processing circuit 31 described above is an LSI (Large Scale Integrated) such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array). It should be realized.
  • LSI Large Scale Integrated
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • FIG. 4 is a block diagram showing a hardware configuration example for realizing the functions of the pulse width control unit 14 and the radar signal processing circuit 31.
  • the signal processing circuit 70 shown in FIG. 4 is configured to include a processor 71 configured by an LSI, an input / output interface 74, a memory 72, a storage device 73, and a signal path 75.
  • the signal path 75 is a bus for connecting the processor 71, the input / output interface 74, the memory 72, the storage device 73, and the signal path 75 to each other.
  • the processor 71 is connected to the display unit 60 and the receiving circuit 13 via the input / output interface 74.
  • the memory 72 is, for example, a program memory that stores various program codes to be executed by the processor 71 in order to realize the functions of the pulse width control unit 14 and the radar signal processing circuit 31, and when the processor 71 executes digital signal processing. And a temporary storage memory in which data used in the digital signal processing is expanded.
  • a plurality of semiconductor memories such as a ROM (Read Only Memory) and an SDRAM (Synchronous Dynamic Random Access Memory) may be used.
  • the processor 71 can access the storage device 73.
  • the storage device 73 is used to store various data such as setting data to be used by the processor 71 and signal data generated by the processor 71.
  • a volatile memory such as SDRAM, a HDD (Hard Disk Drive), or an SSD (Solid State Drive) can be used. It should be noted that the storage device 73 can also store data to be stored in the memory 72.
  • the signal processing circuit 70 is realized by using the single processor 71, but it is not limited to this.
  • the functions of the pulse width control unit 14 and the radar signal processing circuit 31 may be realized by using a plurality of processors that operate in cooperation with each other. Furthermore, any of the functions of the pulse width control unit 14 and the radar signal processing circuit 31 may be realized by dedicated hardware.
  • FIG. 5 is a flowchart schematically showing an operation procedure of the radar device 1 according to the first embodiment.
  • the pulse width control unit 14 Before the transmission of the transmission wave Tw, the pulse width control unit 14 forms the H pulse widths T p (0) to T that form a pulse width distribution that gradually increases or decreases within a set range of the reference pulse width T 0 or more.
  • T p (H-1) is set (step ST11).
  • the pulse width distribution may be a linear distribution or a non-linear distribution. For example, when the inequality of T 0 ⁇ T p (i) ⁇ T p (i + 1) holds for any integer i within the range of 0 to H ⁇ 2, the pulse width T p (0) ⁇ T p (H ⁇ 1) form a stepwise increasing pulse width distribution. When the inequality of T p (i)> T p (i + 1) ⁇ T 0 is satisfied, the pulse widths T p (0) to T p (H ⁇ 1) have a pulse width distribution that gradually decreases. Form.
  • the setting range of the pulse width distribution for example, a range from the lower limit value T 0 to the upper limit value 2T 0 can be used, but the setting range is not limited to this.
  • the values of the pulse widths T p (0) to T p (H-1) set values stored in advance in a memory (not shown) may be used, or according to an arithmetic expression incorporated in advance. It may be calculated.
  • the pulse widths T p (0) to T p (H-1) are given to the signal generation circuit 10 and the correlation processing unit 41.
  • the signal generation circuit 10, the transmission / reception unit 11, the antenna 12, and the reception circuit 13 execute transmission / reception processing (step ST12). Specifically, the signal generation circuit 10 transmits the intra-pulse modulation signals having the pulse widths T p (0) to T p (H ⁇ 1) set by the pulse width control unit 14 to the transmission pulse signal Tx (0, t) to Tx (H-1, t) are continuously generated.
  • the antenna 12 receives the transmission pulse signals Tx (0, t) to Tx.
  • the transmitted wave Tw corresponding to (H-1, t) is radiated to the external space.
  • the transmission / reception unit 11 causes the reflected wave signals Rx (0, t) to Rx (H-1, t) corresponding to the reception output of the antenna 12.
  • the receiving circuit 13 receives the reflected wave signals Rx (0, t) to Rx (H-1, t) as received digital signals (received video signals) V 0 (0, m) to V 0 (H-1, m), respectively. Convert to.
  • the pulse width control unit 14 may sequentially set the pulse widths T p (0) to T p (H-1) in parallel with the transmission / reception processing in step ST12.
  • step ST12 when the received digital signal V 0 (h, m) is input, the correlation processing unit 41 outputs the reference signal Ex (h, m) to the received digital signal V 0 (h, m).
  • the pulse compression signal F V ⁇ Ex (h, m) is generated (step ST13 in FIG. 5).
  • the correlation processing unit 41 executes the correlation calculation between the reference signal Ex (h, m) and the received digital signal V 0 (h, m) to obtain the pulse compression signal F V ⁇ Ex (h , M) can be generated.
  • a E is the amplitude of the reference signal Ex (h, m).
  • the reference signal Ex (h, m) is a function whose variable is the product m ⁇ t of the sampling interval ⁇ t and the sampling number m.
  • the width (effective data length or effective data range) of the reference signal Ex (h, m) is limited by the pulse width T p (h). That is, the value of the reference signal Ex (h, m) is zero outside the range of 0 ⁇ m ⁇ t ⁇ T p (h).
  • the correlation processing unit 41 can execute the correlation calculation by executing the convolution calculation in the time domain as shown in the following Expression (12).
  • M p (h) is the number of sampling points within the pulse regarding the pulse number (hit number) h.
  • a correlation calculation based on a known convolution calculation in the frequency domain may be executed instead of the correlation calculation shown in Expression (12).
  • the domain transforming unit 44 performs domain transforming processing from the time domain to the frequency domain in the pulse hit direction on the pulse compression signal F V ⁇ Ex (h, m) to generate the frequency domain signal f d (h fft , m) is generated (step ST14 in FIG. 5).
  • the domain conversion processing discrete Fourier transform based on a predetermined algorithm such as FFT algorithm may be executed.
  • the discrete Fourier transform is expressed by the following equation (13).
  • h fft is the sampling number in the frequency domain
  • H is the number of discrete Fourier transform points.
  • a h is the amplitude of the frequency domain signal f d (h fft , m).
  • Equation (15) consists of the product of three terms. If the magnitude of the value of the third term in the product of the right side is maximized, high integration efficiency can be obtained in the discrete Fourier transform. The condition that the magnitude of the value of the third term becomes almost maximum is as shown in the following expression (16).
  • the frequency range based on the pulse repetition period T pri can be calculated based on the velocity value v amb in the following equation (18).
  • the transmission pulse signal Tx (0, 0, 0, 1) is generated using the pulse widths T p (0) to T p (H-1) that form a pulse width distribution that gradually increases or decreases within the set range. Since t) to Tx (H-1, t) are continuously generated, the influence of the transmission blind (a state where the reflected wave from the target Tgt cannot be received during the transmission time of each pulse wave) is suppressed. At the same time, it becomes possible to generate the pulse compression signal F V ⁇ Ex (h, m) having a high SNR. Therefore, the high SNR frequency domain signal f d (h fft , m) can be generated based on the high SNR pulse compression signal F V ⁇ Ex (h, m). This point will be described below.
  • FIG. 6A and 6B are diagrams schematically showing an example of a transmission wave Tw0 composed of a transmission pulse signal group having the same pulse width and an example of a reflected wave Rw0 corresponding to the transmission wave Tw0.
  • the pulse widths T tp of the transmission pulse signals for hit numbers 0 to H-1 are all the reference pulse width T 0 .
  • the spread width T rp of the received pulse signal in the reflected wave Rw0 is the width T 1 that does not cause the reception blind for the hit numbers 0 to H-1.
  • FIGS. 7A and 7B are diagrams schematically showing an example of a transmission wave Tw1 including transmission pulse signal groups having the same pulse width and an example of a reflected wave Rw1 corresponding to the transmission wave Tw1. is there.
  • the pulse widths T tp of the transmission pulse signals for hit numbers 0 to H-1 are all twice the reference pulse width T 0 .
  • the hatched portion ⁇ Ls1 of the reflected wave Rw1 becomes the loss portion.
  • the reason why the occurrence of such a loss portion ⁇ Ls1 can be suppressed will be described below.
  • FIG. 8A and 8B show an example of a transmission wave Tw2 including a transmission pulse signal group forming a pulse width distribution that increases stepwise with respect to hit numbers 0 to H-1, and a reflected wave Rw2 corresponding to the transmission wave Tw2. It is a figure which shows an example and roughly.
  • the pulse width distribution is formed such that the pulse width T tp gradually increases from the lower limit value T 0 to the upper limit value 2T 0 .
  • the hatched portion ⁇ Ls2 of the reflected wave Rw2 is the loss portion due to the reception blind.
  • FIG. 9A and 9B show an example of a transmission wave Tw3 including a transmission pulse signal group that forms a pulse width distribution that gradually decreases for hit numbers 0 to H-1, and a reflected wave corresponding to the transmission wave Tw3. It is a figure which shows the example of Rw3 roughly.
  • the pulse width distribution is formed such that the pulse width T tp gradually decreases from the upper limit value 2T 0 to the lower limit value T 0 .
  • the hatched portion ⁇ Ls3 of the reflected wave Rw3 is the loss portion due to the reception blind.
  • FIGS. 10A and 10B correspond to an example of a transmission wave Tw4 including a transmission pulse signal group that forms a pulse width distribution that gradually increases and then decreases for hit numbers 0 to H-1, and the transmission wave Tw4. It is a figure which shows roughly the example of the reflected wave Rw4 which performs.
  • the hatched portion ⁇ Ls4 of the reflected wave Rw4 is the loss portion due to the reception blind.
  • the correlation function Ex of the above equation (11) is greater than that when the pulse width is constant.
  • the width (effective data length or effective data range) of (h, m) can be expanded. This makes it possible to generate the pulse compression signal F V ⁇ Ex (h, m) having a high SNR. Further, since the pulse width distribution is formed so as to increase or decrease in steps, it is possible to suppress the influence of the transmission blind. As shown in FIG. 7A, when all the pulse widths are set to twice the reference pulse width T 0 , not only the loss due to the transmission blind increases but also the duty ratio between the pulse transmission time and the reception time becomes high.
  • the cooling period of the circuit for generating the transmission pulse signal cannot be sufficiently secured.
  • the pulse width distribution that increases or decreases stepwise is formed, it is possible to sufficiently secure the cooling period of the signal generation circuit 10.
  • FIG. 11A is a graph schematically showing an example of the power distribution of a pulse compression signal obtained when the pulse width is constant.
  • the power distribution shown in FIG. 11A forms peaks of almost constant height for hit numbers 0 to H-1.
  • FIG. 11B schematically shows an example of the power distribution of the pulse compression signal F V ⁇ Ex (h, m) obtained when forming the pulse width distribution that gradually increases as shown in FIG. 8A. It is a graph shown in. Since the power distribution shown in FIG. 11B forms a higher peak as the hit number h increases, the SNR is improved compared to the case of FIG. 11A.
  • FIG. 12 is a graph schematically showing SNR ⁇ 0 obtained from the power distribution shown in FIG.
  • the horizontal axis represents the hit number and the vertical axis represents the signal-to-noise ratio (SNR).
  • SNR ⁇ 2 increases as the hit number h increases, so that it can be seen that the SNR is improved.
  • the evaluation value eta out of SNR ⁇ 0, PC, 0, it can be expressed by the following equation (19), the evaluation value of SNR ⁇ 2 ⁇ out, PC (h ) , the following equation (20 ) Can be represented.
  • A is the amplitude of the received digital signal (received video signal) V 0 (h, m)
  • M 0 is the number of sampling points based on the reference pulse width T 0
  • M p (h) Is the number of sampling points based on the pulse width T p (h)
  • ⁇ nis 2 is the variance of noise.
  • a pulse width distribution that increases or decreases stepwise is formed, but it is not necessary to change the sampling frequency f s, and it is not necessary to change the modulation bandwidth B 0 . It is possible to obtain the radar device 1 with improved target detection performance without significantly modifying the configuration of the radar device.
  • the pulse width control unit 14 can set the pulse width T p (h) as shown in the following Expression (25), for example.
  • ⁇ T p is a pulse width change rate.
  • equation (25) a pulse width distribution that gradually increases from the lower limit value T 0 of the set range is obtained.
  • the pulse width control unit 14 uses a window function such as a triangular window, a Hanning window, or a Hamming window to make the pulse width control symmetrical.
  • the pulse width T p (h) that forms the pulse width distribution can be set. This makes it possible to reduce the side lobe in the Doppler frequency direction without degrading the resolution while suppressing the loss of the main lobe.
  • the following expression (26) is an expression representing the pulse width T p (h) when the triangular window is used.
  • the pulse width T p (h) is represented by the following equation (27).
  • the window function w (h) is expressed by the following equation (28).
  • FIG. 13 is a graph schematically showing an example of the power distribution of the pulse compression signal F V ⁇ Ex (h, m) obtained when the formula (26) is used.
  • the power distribution shown in FIG. 13 forms a high peak when the hit number h is (H-1) / 2, and forms a symmetrical distribution in the pulse hit direction. Therefore, the SNR is improved as compared with the case of FIG. 11A.
  • FIG. 14 is a graph schematically showing SNR ⁇ 0 obtained from the power distribution shown in FIG. 11A and SNR ⁇ 4 obtained from the power distribution shown in FIG. 13.
  • the horizontal axis represents the hit number and the vertical axis represents the signal-to-noise ratio (SNR). As shown in FIG. 14, it can be seen that the SNR is improved.
  • FIG. 15 is a graph showing an example of the frequency domain signal.
  • the horizontal axis represents the Doppler frequency
  • the vertical axis represents the power
  • f D represents the target Doppler frequency.
  • the solid line represents the power in the case of a pulse width distribution that increases stepwise
  • the broken line represents the power in the case of a symmetrical pulse width distribution
  • the dashed-dotted line represents the power in the case of a constant pulse width. ing.
  • the SNR in the case of a pulse width distribution that gradually increases, the SNR is improved and the resolution is not deteriorated.
  • the SNR is improved, the resolution is not deteriorated, and the level of the first side lobes appearing on both sides of the main lobe is suppressed.
  • the pulse width control unit 14 sets the pulse width T p (h) (in the case of the formula (25) so that the SNR of the frequency domain signal f d (h fft , m) exceeds a predetermined required value ⁇ out, rq. It is desirable to set the pulse width change rate ⁇ T p ). Specifically, for example, the pulse width control unit 14 may set the pulse width T p (h) so that the SNR of the frequency domain signal f d (h fft , m) satisfies the following equation (29). desirable.
  • H out is the evaluation value of the SNR of the frequency domain signal f d (h fft , m)
  • A is the amplitude of the received digital signal (received video signal) V 0 (h, m)
  • ⁇ nis 2 is the variance of noise.
  • the pulse width control unit 14 sets the pulse width T p (h) so as to satisfy the following conditional expression (31), thereby improving the SNR of the frequency domain signal f d (h fft , m) to achieve the target.
  • the radar device 1 with improved detection performance can be provided.
  • the pulse width distribution is formed so as to increase or decrease in steps, it is possible to reduce the loss due to the transmission blind as represented by the following inequality (33).
  • L 2T0 indicates a loss when all pulse widths are set to twice the reference pulse width T 0
  • L Tp indicates a loss when a pulse width distribution that gradually increases or decreases is formed. It shows the loss.
  • the target candidate detection unit 51 determines the frequency domain signal f d (h fft , m) based on the signal strength of the frequency domain signal f d (h fft , m).
  • a target candidate is detected (step ST15).
  • the target candidate detection unit 51 may detect the target candidate using a known CA-CFAR (Cell Average-Constant False Alarm Rate) process. For example, in the CA-CFAR processing, since the maximum detection probability can be obtained so that the false alarm probability Pfa becomes a constant value, the false detection can be controlled, and the noise in the frequency domain signal can be minimized.
  • f d (h fft, m) can be detected target candidates based on the signal strength.
  • the target candidate number ntg is an integer within the range of 1 to Ntg.
  • the target candidate information calculation unit 52 calculates target information such as a relative distance and a relative speed regarding the target candidate, and outputs data indicating the target information to the display device 60 (step ST16 in FIG. 5). Specifically, for example, the target candidate information calculation unit 52 calculates the relative distance R 0, ntg of the ntg-th target candidate based on the target candidate number ntg and the sampling number m ntg according to the following equation (34). be able to.
  • the target candidate information calculation unit 52 can calculate the relative speed V 0, ntg of the ntg-th target candidate according to the following equation (35).
  • ⁇ v fft is a relative velocity sampling interval as shown in the following Expression (36).
  • the target candidate information calculation unit 52 can output a combination of the target candidate number ntg, the relative distance R 0, ntg, and the relative speed V 0, ntg to the display 60 as target information.
  • the display device 60 can display the target information on the screen.
  • the signal generation circuit 10 forms a plurality of pulse widths T p (0) that form a pulse width distribution that gradually increases or decreases within the set range of the reference pulse width T 0 or more.
  • T p (H-1) are used to continuously generate intra-pulse modulated transmission pulse signals Tx (0, t) to Tx (H-1, t)
  • the correlation processing unit 41 Can generate the high SNR pulse compression signal F V ⁇ Ex (h, m) while suppressing the influence of the transmission blind.
  • the domain conversion unit 44 can generate the high SNR frequency domain signal f d (h fft , m). Therefore, it is possible to provide the radar device 1 with improved target detection performance.
  • the pulse width control unit 14 can set the pulse width T p (h) that forms a symmetrical pulse width distribution in the pulse hit direction by using the window function, the loss of the main lobe is suppressed.
  • the side lobe can be suppressed while maintaining the resolution in the Doppler frequency direction.
  • the window function may be selected or designed to form a desired sidelobe level distribution.
  • a pulse width T p (h) that forms a symmetrical pulse width distribution in the pulse hit direction is set by using a means other than the window function (for example, a filter function) to form a desired side lobe level distribution. By doing so, the side lobe level may be suppressed.
  • FIG. 16 is a block diagram showing a schematic configuration of the radar device 2 according to the second embodiment of the present invention.
  • the radar device 2 of this embodiment includes a signal generation circuit 10, a transmission / reception unit 11, a reception circuit 13, a radar signal processing circuit 32, and a display 60.
  • the radar signal processing circuit 32 of the present embodiment has the configuration of the radar signal processing circuit 31 of the first embodiment except that the correlation processing unit 41 of the first embodiment is replaced by the correlation processing unit 42 of FIG.
  • the configuration is the same as that of.
  • the correlation processing unit 42 of the present embodiment receives the reference signal Exa (h, m) and the pulse with respect to the received digital signal V 0 (h, m).
  • the pulse compression signal F V ⁇ Ex (h, m) is generated by performing the correlation processing using the width T p (h).
  • the processing content of the correlation processing unit 42 is the same as the processing content of the correlation processing unit 41 of the first embodiment, except that the reference signal used for the correlation processing is different.
  • the correlation process can be executed by a convolution operation in the time domain or a convolution operation in the frequency domain. Specifically, the correlation processing unit 42 can use the reference signal Exa (h, m) as shown in the following Expression (37).
  • m b is a parameter corresponding to a distance bin that is not affected by the transmission blind.
  • the reference signal Exa (h, m) gives a valid value when the two conditions of “0 ⁇ m ⁇ t ⁇ T p (h)” and “m b + m ⁇ M” are simultaneously satisfied, and otherwise (“ A zero value is given to "otherwise”). Therefore, the width (effective data length or the effective data range) of the reference signal Ex (h, m) is limited by the pulse width T p (h) and the parameter m b.
  • the axis labeled “First Time Frequency” corresponds to the sampling number m f in the frequency domain.
  • the width (effective data length or effective data range) of the reference signal Ex (h, m) in the first embodiment corresponds to the band range Ru indicated by hatching as shown in FIG. 17A.
  • frequency domain signal components fx (0), ..., fx (h), ..., fx (H-1) are used.
  • the band range Rn indicated by hatching is excluded.
  • frequency domain signal components fy (0), ..., Fy (h), ..., Fy (H-1) are used.
  • the band range Rn is a range in which only noise due to the influence of the transmission blind exists.
  • the band range Rn can be excluded by adjusting the parameter m b .
  • FIG. 18 is a graph showing the relationship between the signal-to-noise ratio (SNR) of the frequency domain signal f d (h fft , m) and the distance.
  • R p, 0 represents the size of the distance affected by the transmission blind due to the formation of the pulse width distribution that increases in stages.
  • H out is an evaluation value of SNR
  • ⁇ out rq is a required value
  • R pri is a distance corresponding to a pulse repetition period
  • R na is a maximum value of a pulse width that is not affected by the transmission blind.
  • the solid line shows the SNR obtained in the case of the second embodiment
  • the broken line shows the SNR obtained in the case of the first embodiment (incrementally increasing pulse width distribution)
  • the dashed-dotted line shows the constant pulse width.
  • the width (effective data length or effective data range) of the reference signal Exa (h, m) used for the correlation processing depends on the pulse width T p (h) and the parameter mb . Since it is limited, it is possible to avoid SNR deterioration due to the influence of the transmission blind. Even if the pulse width distribution that increases or decreases stepwise as described above is formed, it is possible to provide the radar device 2 with good target detection performance.
  • the hardware configuration of all or part of the pulse width control unit 14 and the radar signal processing circuit 32 according to the second embodiment may be realized by an LSI such as an ASIC or FPGA. Similar to the case of the first embodiment, the hardware configuration of all or part of the pulse width control unit 14 and the radar signal processing circuit 32 of the second embodiment is realized by the signal processing circuit 70 shown in FIG. Good.
  • first and second embodiments according to the present invention have been described above with reference to the drawings, the first and second embodiments are examples of the present invention, and various embodiments other than the first and second embodiments are described. It is possible. Within the scope of the present invention, it is possible to freely combine the first and second embodiments, modify any constituent element of each embodiment, or omit any constituent element of each embodiment.
  • the radar device and the signal processing method according to the present invention can be used in a radar system that detects a relative position and a relative speed of a target. Further, the radar device according to the present invention can be used in a state of being installed on the ground or in a state of being mounted on a moving body such as an aircraft, an artificial satellite, a vehicle or a ship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

This radar device (1) comprises a pulse width control unit (14), signal generation circuit (10), transmission and reception unit (11), reception circuit (13), correlation processing unit (41), and domain conversion unit (44). The pulse width control unit (14) sets a plurality of pulse widths so as to form a distribution of pulse widths that increase or decrease in steps within a set range greater than or equal to a standard pulse width. The signal generation circuit (10) continuously generates a plurality of transmission pulse signals respectively having the plurality of pulse widths. When the transmission and reception unit (11) receives a plurality of reflected wave signals from an external space, the reception circuit (13) samples each of the plurality of reflected wave signals and generates a plurality of reception signals. The correlation processing unit (41) carries out correlation processing on each of the plurality of reception signals and generates a plurality of pulse compression signals. The domain conversion unit (44) generates a plurality of frequency domain signals by carrying out domain conversion processing on the plurality of pulse compression signals.

Description

レーダ装置及び信号処理方法Radar device and signal processing method
 本発明は、移動物体などの目標を検出するレーダ技術に関するものである。 The present invention relates to radar technology for detecting a target such as a moving object.
 一般的なパルスドップラレーダは、パルス繰り返し周期(Pulse Repetition Interval,PRI)で複数のパルス波を連続的に送信し、その後、目標から当該複数のパルス波に対応する複数の反射波を受信して複数の受信信号を生成し、当該複数の受信信号を基に目標の相対速度などの目標情報を推定することができる。当該複数の受信信号をパルスヒット方向にコヒーレント積分することにより信号対雑音比(Signal-to-Noise Ratio,SNR)の改善を図ることが可能である。このようなパルスドップラレーダは、たとえば、特許文献1(特開平6-294864号公報)に開示されている。 A general pulse Doppler radar continuously transmits a plurality of pulse waves at a pulse repetition period (Pulse Repetition Interval, PRI), and then receives a plurality of reflected waves corresponding to the plurality of pulse waves from a target. It is possible to generate a plurality of received signals and estimate target information such as a target relative speed based on the plurality of received signals. It is possible to improve the signal-to-noise ratio (Signal-to-Noise Ratio, SNR) by coherently integrating the plurality of received signals in the pulse hit direction. Such a pulse Doppler radar is disclosed, for example, in Patent Document 1 (JP-A-6-294864).
特開平6-294864号公報(たとえば、図1を参照)JP-A-6-294864 (see, for example, FIG. 1)
 しかしながら、上記したパルスドップラレーダでは、コヒーレント積分による信号対雑音比の改善効果に限界があるという課題がある。たとえば、送信ブラインドと呼ばれる状態が発生する場合には、パルスドップラレーダにおいて目標からの反射波の損失が発生する。この場合に受信信号のコヒーレント積分が実行されても信号対雑音比の改善効果に限界がある。ここで、送信ブラインドとは、各パルス波の送信時間中に目標からの反射波を受信することができない状態をいう。比較的遠距離の目標を探知するためには、各パルス波のパルス幅を広くして平均送信電力を増加させればよい。しかしながら、パルス幅が広くなれば、送信ブラインドが発生しやすくなる。 However, the above-mentioned pulse Doppler radar has a problem that the improvement effect of the signal-to-noise ratio by coherent integration is limited. For example, when a state called a transmission blind occurs, a pulsed Doppler radar causes a loss of a reflected wave from a target. In this case, even if the coherent integration of the received signal is executed, the effect of improving the signal-to-noise ratio is limited. Here, the transmission blind refers to a state in which the reflected wave from the target cannot be received during the transmission time of each pulse wave. In order to detect a target at a relatively long distance, the pulse width of each pulse wave may be widened to increase the average transmission power. However, if the pulse width is wide, transmission blinds are likely to occur.
 上記に鑑みて本発明の目的は、送信ブラインドの影響を抑制しつつ信号対雑音比(SNR)の改善を図ることができるレーダ装置及び信号処理方法を提供することである。 In view of the above, an object of the present invention is to provide a radar device and a signal processing method capable of improving the signal-to-noise ratio (SNR) while suppressing the influence of the transmission blind.
 本発明の一態様によるレーダ装置は、予め定められた基準パルス幅以上の設定範囲内で段階的に増加または減少するパルス幅分布を形成する複数のパルス幅を設定するパルス幅制御部と、前記複数のパルス幅をそれぞれ有し、かつパルス内変調をそれぞれ施された複数の送信パルス信号を連続的に生成する信号生成回路と、前記複数の送信パルス信号を外部空間に送出し、当該外部空間から前記複数の送信パルス信号にそれぞれ対応する複数の反射波信号を受信する送受信部と、当該複数の反射波信号の各々をサンプリングすることにより、前記複数の送信パルス信号にそれぞれ対応する複数の受信信号を生成する受信回路と、前記複数の受信信号の各々に対して参照信号を用いた相関処理を実行することにより複数のパルス圧縮信号を生成する相関処理部と、前記複数のパルス圧縮信号に対して時間領域から周波数領域への領域変換処理を実行することにより複数の周波数領域信号を生成する領域変換部と、前記複数の周波数領域信号に基づいて目標候補を検出する目標検出部とを備える。 A radar device according to an aspect of the present invention includes a pulse width control unit that sets a plurality of pulse widths that form a pulse width distribution that gradually increases or decreases within a setting range equal to or greater than a predetermined reference pulse width, and A signal generation circuit for continuously generating a plurality of transmission pulse signals each having a plurality of pulse widths and subjected to intra-pulse modulation, and for transmitting the plurality of transmission pulse signals to an external space, the external space From the transmitting / receiving unit that receives a plurality of reflected wave signals respectively corresponding to the plurality of transmitted pulse signals, and a plurality of received signals that respectively correspond to the plurality of transmitted pulse signals by sampling each of the plurality of reflected wave signals. A receiving circuit that generates a signal, a correlation processing unit that generates a plurality of pulse compression signals by performing a correlation process using a reference signal for each of the plurality of reception signals, and a plurality of pulse compression signals On the other hand, a domain conversion unit that generates a plurality of frequency domain signals by performing a domain conversion process from the time domain to the frequency domain, and a target detection unit that detects a target candidate based on the plurality of frequency domain signals. ..
 本発明の一態様によれば、基準パルス幅以上の設定範囲内で段階的に増加または減少するパルス幅分布を形成する複数のパルス幅を用いて、パルス内変調を施された複数の送信パルス信号が連続的に生成されるので、送信ブラインドの影響を抑制しつつ高SNRのパルス圧縮信号を生成することが可能となる。これにより、高SNRの周波数領域信号が生成されるので、目標検出性能が向上したレーダ装置を提供することができる。 According to one aspect of the present invention, a plurality of transmission pulses that have been subjected to intra-pulse modulation using a plurality of pulse widths that form a pulse width distribution that gradually increases or decreases within a setting range that is equal to or larger than the reference pulse width. Since the signals are continuously generated, it is possible to generate a high SNR pulse compression signal while suppressing the influence of the transmission blind. As a result, since a high SNR frequency domain signal is generated, it is possible to provide a radar device with improved target detection performance.
本発明に係る実施の形態1のレーダ装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the radar apparatus of Embodiment 1 which concerns on this invention. 実施の形態1の信号生成回路の構成例を概略的に示すブロック図である。FIG. 3 is a block diagram schematically showing a configuration example of a signal generation circuit of the first embodiment. 実施の形態1の受信回路の構成例を概略的に示すブロック図である。3 is a block diagram schematically showing a configuration example of a receiving circuit according to the first embodiment. FIG. 実施の形態1のパルス幅制御部及びレーダ信号処理回路の機能を実現するハードウェア構成例を示すブロック図である。3 is a block diagram showing an example of a hardware configuration that implements the functions of a pulse width control unit and a radar signal processing circuit according to the first embodiment. FIG. 実施の形態1のレーダ装置の動作手順を概略的に示すフローチャートである。3 is a flowchart schematically showing an operation procedure of the radar device according to the first embodiment. 図6A及び図6Bは、送信波の例と当該送信波に対応する反射波の例とを概略的に示す図である。6A and 6B are diagrams schematically showing an example of a transmitted wave and an example of a reflected wave corresponding to the transmitted wave. 図7A及び図7Bは、送信波の他の例と当該送信波に対応する反射波の例とを概略的に示す図である。7A and 7B are diagrams schematically showing another example of the transmitted wave and an example of the reflected wave corresponding to the transmitted wave. 図8A及び図8Bは、段階的に増加するパルス幅分布を形成する送信パルス信号群からなる送信波の例と、当該送信波に対応する反射波の例とを概略的に示す図である。FIG. 8A and FIG. 8B are diagrams schematically showing an example of a transmission wave composed of a transmission pulse signal group forming a pulse width distribution that gradually increases and an example of a reflected wave corresponding to the transmission wave. 図9A及び図9Bは、段階的に減少するパルス幅分布を形成する送信パルス信号群からなる送信波の例と、当該送信波に対応する反射波の例とを概略的に示す図である。9A and 9B are diagrams schematically showing an example of a transmission wave composed of a transmission pulse signal group forming a pulse width distribution that gradually decreases and an example of a reflected wave corresponding to the transmission wave. 図10A及び図10Bは、段階的に増加した後に減少するパルス幅分布を形成する送信パルス信号群からなる送信波の例と、当該送信波に対応する反射波の例とを概略的に示す図である。10A and 10B are diagrams schematically showing an example of a transmission wave composed of a transmission pulse signal group that forms a pulse width distribution that gradually increases and then decreases, and an example of a reflected wave corresponding to the transmission wave. Is. 図11A及び図11Bは、パルス圧縮信号の電力分布の例を概略的に示すグラフである。11A and 11B are graphs schematically showing an example of power distribution of a pulse compression signal. 図11A及び図11Bに示した電力分布から得られる信号対雑音比(SNR)を概略的に示すグラフである。12 is a graph schematically showing a signal-to-noise ratio (SNR) obtained from the power distributions shown in FIGS. 11A and 11B. パルス圧縮信号の電力分布の例を概略的に示すグラフである。It is a graph which shows roughly the example of the power distribution of a pulse compression signal. 図11A及び図13に示した電力分布から得られるSNRを概略的に示すグラフである。It is a graph which shows roughly SNR obtained from the electric power distribution shown to FIG. 11A and FIG. 周波数領域信号の例を示すグラフである。It is a graph which shows the example of a frequency domain signal. 本発明に係る実施の形態2のレーダ装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the radar apparatus of Embodiment 2 which concerns on this invention. 図17A及ぶ図17Bは、参照信号をフーリエ変換して得られる周波数領域信号を表すグラフである。17A and 17B are graphs showing frequency domain signals obtained by Fourier transforming the reference signal. 周波数領域信号のSNRと距離との関係を示すグラフである。It is a graph which shows the relationship between SNR and a distance of a frequency domain signal.
 以下、図面を参照しつつ、本発明に係る種々の実施の形態について詳細に説明する。なお、図面全体において同一符号を付された構成要素は、同一構成及び同一機能を有するものとする。 Hereinafter, various embodiments according to the present invention will be described in detail with reference to the drawings. In addition, the components denoted by the same reference numerals throughout the drawings have the same configuration and the same function.
実施の形態1.
 図1は、本発明に係る実施の形態1のレーダ装置1の概略構成を示すブロック図である。図1に示されるようにレーダ装置1は、予め定められたパルス繰り返し周期(Pulse Repetition Interval,PRI)で、複数のパルス幅T(h)をそれぞれ有する複数の送信パルス信号Tx(h,t)を生成する信号生成回路10と、当該複数の送信パルス信号Tx(h,t)をアンテナ(空中線)12に出力し、その後、当該複数の送信パルス信号Tx(h,t)にそれぞれ対応する複数の反射波信号Rx(h,t)を受信する送受信部11と、当該複数の反射波信号Rx(h,t)にアナログ信号処理を施して複数の受信アナログ信号W(h,t)を生成し、当該複数の受信アナログ信号W(h,t)を複数の受信ディジタル信号(受信ビデオ信号)V(h,m)にそれぞれ変換する受信回路13と、当該複数の受信ディジタル信号V(h,m)にディジタル信号処理を施して目標候補を検出するレーダ信号処理回路31と、その検出結果を表示する表示器60とを備えている。
Embodiment 1.
1 is a block diagram showing a schematic configuration of a radar device 1 according to a first embodiment of the present invention. As shown in FIG. 1, the radar device 1 has a plurality of transmission pulse signals Tx (h, t) each having a plurality of pulse widths T p (h) at a predetermined pulse repetition period (Pulse Repetition Interval, PRI). ), And the plurality of transmission pulse signals Tx (h, t), which are output to the antenna (antenna) 12, and then correspond to the plurality of transmission pulse signals Tx (h, t), respectively. A transmitting / receiving unit 11 that receives a plurality of reflected wave signals Rx (h, t), and a plurality of received analog signals W 0 (h, t) by performing analog signal processing on the plurality of reflected wave signals Rx (h, t). And a receiving circuit 13 for converting the plurality of receiving analog signals W 0 (h, t) into a plurality of receiving digital signals (receiving video signals) V 0 (h, m), and the plurality of receiving digital signals. A radar signal processing circuit 31 that detects a target candidate by performing digital signal processing on V 0 (h, m) and a display device 60 that displays the detection result are provided.
 ここで、パルス幅T(h)、送信パルス信号Tx(h,t)、反射波信号Rx(h,t)、受信アナログ信号W(h,t)及び受信ディジタル信号V(h,m)においては、変数tは時間を表し、変数hは、パルスヒット番号を表す0~H-1の範囲内の整数であり、Hはパルスヒット数である。以下、パルスヒット番号hを「ヒット番号h」という。また、受信ディジタル信号V(h,m)における変数mは、サンプリング番号を表す0~M-1の範囲内の整数であり、Mは、パルス繰り返し周期内のサンプリング点数である。 Here, the pulse width T p (h), the transmission pulse signal Tx (h, t), the reflected wave signal Rx (h, t), the reception analog signal W 0 (h, t), and the reception digital signal V 0 (h, t). In m), the variable t represents time, the variable h is an integer in the range of 0 to H-1 representing the pulse hit number, and H is the pulse hit number. Hereinafter, the pulse hit number h will be referred to as “hit number h”. The variable m in the received digital signal V 0 (h, m) is an integer in the range of 0 to M−1 that represents the sampling number, and M is the number of sampling points in the pulse repetition period.
 アンテナ12は、送信パルス信号Tx(0,t)~Tx(H-1,t)に応じた送信波Twを外部空間に放射することができ、その後、外部空間内の目標Tgtから戻ってきた反射波Rwを受信する。送受信部11は、アンテナ12の受信出力に応じた反射波信号Rx(0,t)~Rx(H-1,t)を受信回路13に出力する。なお、レーダ装置1の使用周波数帯としては、たとえば、ミリ波帯またはマイクロ波帯などの周波数帯を使用することが可能である。 The antenna 12 can radiate a transmission wave Tw corresponding to the transmission pulse signals Tx (0, t) to Tx (H-1, t) to the external space, and then returns from the target Tgt in the external space. The reflected wave Rw is received. The transmission / reception unit 11 outputs the reflected wave signals Rx (0, t) to Rx (H-1, t) corresponding to the reception output of the antenna 12 to the reception circuit 13. As the frequency band used by the radar device 1, for example, a frequency band such as a millimeter wave band or a microwave band can be used.
 また、図1に示されるようにレーダ装置1は、信号生成回路10とレーダ信号処理回路31とで使用される複数のパルス幅T(h)を設定するパルス幅制御部14を備える。後述するように、パルス幅制御部14は、予め定められた基準パルス幅T以上の設定範囲内で段階的に増加または減少する少なくとも1つのパルス幅分布を形成する複数のパルス幅T(0)~T(H-1)を設定する機能を有している。なお、パルス幅制御部14は、信号生成回路10とは別の構成要素であるが、これに限定されるものではない。信号生成回路10またはレーダ信号処理回路31にパルス幅制御部14が組み込まれた実施の形態もありうる。 Further, as shown in FIG. 1, the radar device 1 includes a pulse width control unit 14 that sets a plurality of pulse widths T p (h) used in the signal generation circuit 10 and the radar signal processing circuit 31. As will be described later, the pulse width control unit 14 forms a plurality of pulse widths T p (that forms at least one pulse width distribution that increases or decreases stepwise within a preset reference pulse width T 0 or larger setting range). It has a function of setting 0) to T p (H-1). The pulse width control unit 14 is a component different from the signal generation circuit 10, but is not limited to this. There may be an embodiment in which the pulse width control unit 14 is incorporated in the signal generation circuit 10 or the radar signal processing circuit 31.
 図2は、実施の形態1の信号生成回路10の構成例を概略的に示すブロック図である。図2に示されるように信号生成回路10は、局部発振器20、パルス生成器21、パルス内変調器22及び出力部23を有する。局部発振器20は、使用周波数帯の局部発振信号L(t)を生成し、局部発振信号L(t)をパルス生成器21及び受信回路13に出力する。 FIG. 2 is a block diagram schematically showing a configuration example of the signal generation circuit 10 according to the first embodiment. As shown in FIG. 2, the signal generation circuit 10 includes a local oscillator 20, a pulse generator 21, an intrapulse modulator 22, and an output unit 23. The local oscillator 20 generates a local oscillation signal L 0 usable frequency band (t), and outputs the local oscillation signal L 0 (t) to the pulse generator 21 and the reception circuit 13.
 具体的には、局部発振器20は、次式(1)で示されるような、或る観測期間(時刻t=0から時刻t=Tobsまでの期間)内に一定の送信周波数fを有する局部発振信号L(t)を生成することができる。

Figure JPOXMLDOC01-appb-I000001
 ここで、tは時刻、Aは局部発振信号L(t)の振幅、φは局部発振信号L(t)の初期位相、Tobsは観測期間の上限、jは虚数単位である。
Specifically, the local oscillator 20 has a constant transmission frequency f 0 within a certain observation period (the period from time t = 0 to time t = T obs ) as shown in the following equation (1). A local oscillation signal L 0 (t) can be generated.

Figure JPOXMLDOC01-appb-I000001
Here, t is the time, A L is the amplitude of the local oscillation signal L 0 (t), φ 0 is the initial phase of the local oscillation signal L 0 (t), Tobs is the upper limit of the observation period, and j is the imaginary unit. .
 次に、図2に示されるパルス生成器21は、パルス繰り返し周期Tpriと同期して動作し、局部発振信号L(t)を変調することにより、パルス幅制御部14によって設定されたパルス幅T(0)~T(H-1)をそれぞれ有するパルス信号Lpls(0,t)~Lpls(H-1,t)を生成することができる。たとえば、パルス生成器21は、次式(2)に示される複数のパルス信号Lpls(h,t)(h=0,1,…,H-1)を生成することができる。

Figure JPOXMLDOC01-appb-I000002
Next, the pulse generator 21 shown in FIG. 2 operates in synchronization with the pulse repetition period T pri, and modulates the local oscillation signal L 0 (t) to set the pulse set by the pulse width control unit 14. It is possible to generate pulse signals L pls (0, t) to L pls (H-1, t) having widths T p (0) to T p (H-1), respectively. For example, the pulse generator 21 can generate a plurality of pulse signals L pls (h, t) (h = 0, 1, ..., H−1) represented by the following equation (2).

Figure JPOXMLDOC01-appb-I000002
 式(2)において、Aは、パルス信号Lpls(h,t)の振幅、Ω[h]は、次式(3)を満たす時刻tの集合である。

Figure JPOXMLDOC01-appb-I000003
In Expression (2), A L is the amplitude of the pulse signal L pls (h, t), and Ω [h] is a set of times t that satisfy the following Expression (3).

Figure JPOXMLDOC01-appb-I000003
 次に、パルス内変調器22は、当該複数のパルス信号の各々にパルス内変調を施して複数のパルス内変調信号を送信パルス信号Tx(h,t)として生成する。パルス内変調としては、たとえば、チャープ変調(chirp modulation)などの公知の周波数変調が挙げられる。出力部23は、それら送信パルス信号Tx(h,t)を送受信部11に出力する。このとき、出力部23は、送信パルス信号Tx(h,t)に増幅などの処理を施してもよい。具体的には、パルス内変調器22は、先ず、次式(4)に従い、変調帯域幅Bを用いて、パルス信号Lpls(h,t)を周波数変調するための変調制御信号Lchp(h,t)を生成することができる。

Figure JPOXMLDOC01-appb-I000004
Next, the intra-pulse modulator 22 subjects each of the plurality of pulse signals to intra-pulse modulation to generate a plurality of intra-pulse modulation signals as transmission pulse signals Tx (h, t). Examples of intra-pulse modulation include known frequency modulation such as chirp modulation. The output unit 23 outputs the transmission pulse signals Tx (h, t) to the transmission / reception unit 11. At this time, the output unit 23 may perform processing such as amplification on the transmission pulse signal Tx (h, t). Specifically, the intra-pulse modulator 22 first uses the modulation bandwidth B 0 according to the following equation (4) to modulate the pulse signal L pls (h, t) with a modulation control signal L chp. (H, t) can be generated.

Figure JPOXMLDOC01-appb-I000004
 さらに、パルス内変調器22は、次式(5)に示されるように、変調制御信号Lchp(h,t)を用いて周波数変調されたパルス内変調信号、すなわち送信パルス信号Tx(h,t)を生成することができる。

Figure JPOXMLDOC01-appb-I000005
Further, the intra-pulse modulator 22 has the intra-pulse modulation signal that is frequency-modulated using the modulation control signal L chp (h, t), that is, the transmission pulse signal Tx (h, t) can be generated.

Figure JPOXMLDOC01-appb-I000005
 アンテナ12は、複数の送信パルス信号Tx(h,t)を送信波Twとして外部空間に放射し、その後、外部空間内の目標Tgtから戻ってきた反射波Rwを受信することができる。送受信部11は、次式(6)に示されるような反射波信号Rx(h,t)を出力することができる。

Figure JPOXMLDOC01-appb-I000006
The antenna 12 can radiate a plurality of transmission pulse signals Tx (h, t) to the external space as transmission waves Tw, and then receive the reflected waves Rw returning from the target Tgt in the external space. The transmitter / receiver 11 can output the reflected wave signal Rx (h, t) as expressed by the following equation (6).

Figure JPOXMLDOC01-appb-I000006
 式(6)において、Aは、目標Tgtで反射された反射波信号Rx(h,t)の振幅、Rは初期目標相対距離、vは目標相対速度、τは1パルス内の局所的な時刻、cは光速である。また、Λ[h]は、次式(7)を満たす時刻tの集合である。

Figure JPOXMLDOC01-appb-I000007
In the formula (6), A R is the amplitude of the reflected wave signal reflected by the target Tgt Rx (h, t), R 0 is the initial target relative distance, v is the target relative speed, tau is localized in the 1 pulse At a certain time, c is the speed of light. Further, Λ [h] is a set of times t that satisfy the following expression (7).

Figure JPOXMLDOC01-appb-I000007
 次に、受信回路13の構成について説明する。図3は、受信回路13の構成例を概略的に示すブロック図である。図3に示されるように受信回路13は、ダウンコンバータ(混合器)24、帯域フィルタ25、増幅器26、位相検波器27及びA/D変換器28を備えて構成されている。 Next, the configuration of the receiving circuit 13 will be described. FIG. 3 is a block diagram schematically showing a configuration example of the receiving circuit 13. As shown in FIG. 3, the reception circuit 13 includes a down converter (mixer) 24, a bandpass filter 25, an amplifier 26, a phase detector 27, and an A / D converter 28.
 図3に示されるダウンコンバータ24は、反射波信号Rx(h,t)を、より低い周波数帯域(たとえば中間周波数帯域)のアナログ信号に変換する。帯域フィルタ25は、当該アナログ信号をフィルタリングしてフィルタ信号を出力する。増幅器26は、当該フィルタ信号を増幅して増幅信号を出力する。そして、位相検波器27は、当該増幅信号を位相検波して同相成分と直交成分とからなる検波信号を受信アナログ信号W(h,t)として生成する。次式(8)は、受信アナログ信号W(h,m)を表す式である。

Figure JPOXMLDOC01-appb-I000008
 ここで、Aは受信アナログ信号W(h,t)の振幅、右上添え字「*」は複素共役を示す。局部発振信号L (t)は、局部発振信号L(t)の複素共役である。
The down converter 24 shown in FIG. 3 converts the reflected wave signal Rx (h, t) into an analog signal in a lower frequency band (for example, an intermediate frequency band). The bandpass filter 25 filters the analog signal and outputs a filtered signal. The amplifier 26 amplifies the filter signal and outputs an amplified signal. Then, the phase detector 27 phase-detects the amplified signal and generates a detection signal including an in-phase component and a quadrature component as a reception analog signal W 0 (h, t). The following expression (8) is an expression representing the received analog signal W 0 (h, m).

Figure JPOXMLDOC01-appb-I000008
Here, A V indicates the amplitude of the received analog signal W 0 (h, t), and the upper right subscript “*” indicates complex conjugate. The local oscillation signal L 0 * (t) is a complex conjugate of the local oscillation signal L 0 (t).
 A/D変換器28は、受信アナログ信号W(h,t)を、所定のサンプリング周波数fに対応するサンプリング間隔Δtでサンプリングすることで、次式(9)に示されるような受信ディジタル信号(受信ビデオ信号)V(h,m)を生成することができる。
Figure JPOXMLDOC01-appb-I000009

The A / D converter 28 samples the reception analog signal W 0 (h, t) at a sampling interval Δt corresponding to a predetermined sampling frequency f s , so that the reception digital signal as expressed by the following equation (9) is obtained. A signal (received video signal) V 0 (h, m) can be generated.
Figure JPOXMLDOC01-appb-I000009

 式(9)において、Aは、受信ディジタル信号V(h,m)の振幅であり、mは、サンプリング番号を表す0~M-1の範囲内の整数であり、Ψ[h]は、次式(10)の条件式を満たすサンプリング番号mの集合である。

Figure JPOXMLDOC01-appb-I000010
In Equation (9), A is the amplitude of the received digital signal V 0 (h, m), m is an integer in the range of 0 to M−1 that represents the sampling number, and Ψ [h] is It is a set of sampling numbers m that satisfy the conditional expression of the following expression (10).

Figure JPOXMLDOC01-appb-I000010
 レーダ信号処理回路31は、受信ディジタル信号V(h,m)にディジタル信号処理を施して目標候補を検出することができる。図1に示されるように、レーダ信号処理回路31は、相関処理部41、領域変換部44及び目標検出部50を備えて構成されている。相関処理部41は、受信ディジタル信号V(h,m)に対して、参照信号及びパルス幅T(h)を用いた相関処理を実行することによりパルス圧縮信号FV・Ex(h,m)を生成する。相関処理の詳細については後述する。領域変換部44は、パルス圧縮信号FV・Ex(h,m)に対し、パルスヒット方向に時間領域から周波数領域への領域変換処理を実行することにより周波数領域信号f(hfft,m)を生成する。領域変換処理としては、高速フーリエ変換(Fast Fourier Transform,FFT)アルゴリズムまたはチャープz変換(Chirp Z-Transform,CZT)アルゴリズムなどの所定のアルゴリズムに基づく離散フーリエ変換が実行されればよい。 The radar signal processing circuit 31 can perform digital signal processing on the received digital signal V 0 (h, m) to detect a target candidate. As shown in FIG. 1, the radar signal processing circuit 31 includes a correlation processing unit 41, a region conversion unit 44, and a target detection unit 50. The correlation processing unit 41 performs a correlation process using the reference signal and the pulse width T p (h) on the received digital signal V 0 (h, m) to obtain the pulse compression signal F V · Ex (h, m). m) is generated. Details of the correlation processing will be described later. The domain transforming unit 44 performs domain transform processing from the time domain to the frequency domain in the pulse hit direction on the pulse compression signal F V · Ex (h, m) to generate the frequency domain signal f d (h fft , m). ) Is generated. As the domain transform processing, discrete Fourier transform based on a predetermined algorithm such as a fast Fourier transform (Fast Fourier Transform, FFT) algorithm or a chirp z transform (Chirp Z-Transform, CZT) algorithm may be executed.
 目標検出部50は、周波数領域信号f(hfft,m)に基づいて目標候補を検出する目標候補検出部51と、当該検出された目標候補に関する目標情報を算出する目標候補情報算出部52とを有している。 The target detection unit 50 includes a target candidate detection unit 51 that detects a target candidate based on the frequency domain signal f d (h fft , m), and a target candidate information calculation unit 52 that calculates target information regarding the detected target candidate. And have.
 上記したパルス幅制御部14及びレーダ信号処理回路31の全部または一部のハードウェア構成は、ASIC(Application Specific Integrated Circuit)またはFPGA(Field-Programmable Gate Array)などのLSI(Large Scale Integrated circuit)で実現されればよい。 All or a part of the hardware configuration of the pulse width control unit 14 and the radar signal processing circuit 31 described above is an LSI (Large Scale Integrated) such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array). It should be realized.
 図4は、パルス幅制御部14及びレーダ信号処理回路31の機能を実現するハードウェア構成例を示すブロック図である。図4に示される信号処理回路70は、LSIで構成されたプロセッサ71、入出力インタフェース74、メモリ72、記憶装置73及び信号路75を含んで構成されている。信号路75は、プロセッサ71、入出力インタフェース74、メモリ72、記憶装置73及び信号路75を相互に接続するためのバスである。プロセッサ71は、入出力インタフェース74を介して表示器60及び受信回路13と接続される。 FIG. 4 is a block diagram showing a hardware configuration example for realizing the functions of the pulse width control unit 14 and the radar signal processing circuit 31. The signal processing circuit 70 shown in FIG. 4 is configured to include a processor 71 configured by an LSI, an input / output interface 74, a memory 72, a storage device 73, and a signal path 75. The signal path 75 is a bus for connecting the processor 71, the input / output interface 74, the memory 72, the storage device 73, and the signal path 75 to each other. The processor 71 is connected to the display unit 60 and the receiving circuit 13 via the input / output interface 74.
 メモリ72は、たとえば、パルス幅制御部14及びレーダ信号処理回路31の機能を実現するためにプロセッサ71によって実行されるべき各種プログラムコードを記憶するプログラムメモリ、プロセッサ71がディジタル信号処理を実行する際に使用されるワークメモリ、及び、当該ディジタル信号処理で使用されるデータが展開される一時記憶メモリを含む。メモリ72としては、ROM(Read Only Memory)及びSDRAM(Synchronous Dynamic Random Access Memory)などの複数の半導体メモリが使用されればよい。 The memory 72 is, for example, a program memory that stores various program codes to be executed by the processor 71 in order to realize the functions of the pulse width control unit 14 and the radar signal processing circuit 31, and when the processor 71 executes digital signal processing. And a temporary storage memory in which data used in the digital signal processing is expanded. As the memory 72, a plurality of semiconductor memories such as a ROM (Read Only Memory) and an SDRAM (Synchronous Dynamic Random Access Memory) may be used.
 プロセッサ71は、記憶装置73にアクセスすることができる。記憶装置73は、プロセッサ71で使用されるべき設定データ、及び、プロセッサ71で生成された信号データなどの各種データを蓄積するために使用される。記憶装置73としては、たとえば、SDRAMなどの揮発性メモリ、HDD(Hard Disk Drive)またはSSD(Solid State Drive)が使用可能である。なお、この記憶装置73に、メモリ72に記憶されるべきデータを蓄積しておくこともできる。 The processor 71 can access the storage device 73. The storage device 73 is used to store various data such as setting data to be used by the processor 71 and signal data generated by the processor 71. As the storage device 73, for example, a volatile memory such as SDRAM, a HDD (Hard Disk Drive), or an SSD (Solid State Drive) can be used. It should be noted that the storage device 73 can also store data to be stored in the memory 72.
 図4の例では、信号処理回路70は、単一のプロセッサ71を用いて実現されているが、これに限定されるものではない。互いに連携して動作する複数個のプロセッサを用いてパルス幅制御部14及びレーダ信号処理回路31の機能が実現されてもよい。さらには、パルス幅制御部14及びレーダ信号処理回路31の機能のいずれかが専用のハードウェアで実現されてもよい。 In the example of FIG. 4, the signal processing circuit 70 is realized by using the single processor 71, but it is not limited to this. The functions of the pulse width control unit 14 and the radar signal processing circuit 31 may be realized by using a plurality of processors that operate in cooperation with each other. Furthermore, any of the functions of the pulse width control unit 14 and the radar signal processing circuit 31 may be realized by dedicated hardware.
 次に、図5を参照しつつ、レーダ装置1の構成及び動作について詳細に説明する。図5は、実施の形態1のレーダ装置1の動作手順を概略的に示すフローチャートである。 Next, the configuration and operation of the radar device 1 will be described in detail with reference to FIG. FIG. 5 is a flowchart schematically showing an operation procedure of the radar device 1 according to the first embodiment.
 送信波Twの送出前に、パルス幅制御部14は、基準パルス幅T以上の設定範囲内で段階的に増加または減少するパルス幅分布を形成するH個のパルス幅T(0)~T(H-1)を設定する(ステップST11)。パルス幅分布は、線形な分布でもよいし、あるいは、非線形な分布でもよい。たとえば、0~H-2の範囲内の任意の整数iに対して、T≦T(i)<T(i+1)との不等式が成立する場合には、パルス幅T(0)~T(H-1)は、段階的に増加するパルス幅分布を形成する。T(i)>T(i+1)≧Tとの不等式が成立する場合には、パルス幅T(0)~T(H-1)は、段階的に減少するパルス幅分布を形成する。 Before the transmission of the transmission wave Tw, the pulse width control unit 14 forms the H pulse widths T p (0) to T that form a pulse width distribution that gradually increases or decreases within a set range of the reference pulse width T 0 or more. T p (H-1) is set (step ST11). The pulse width distribution may be a linear distribution or a non-linear distribution. For example, when the inequality of T 0 ≦ T p (i) <T p (i + 1) holds for any integer i within the range of 0 to H−2, the pulse width T p (0) ˜T p (H−1) form a stepwise increasing pulse width distribution. When the inequality of T p (i)> T p (i + 1) ≧ T 0 is satisfied, the pulse widths T p (0) to T p (H−1) have a pulse width distribution that gradually decreases. Form.
 パルス幅分布の設定範囲としては、たとえば、下限値Tから上限値2Tまでの範囲が使用可能であるが、これに限定されるものではない。パルス幅T(0)~T(H-1)の値としては、メモリ(図示せず)に予め記憶された設定値が使用されてもよいし、あるいは、予め組み込まれた演算式に従って算出されてもよい。パルス幅T(0)~T(H-1)は、信号生成回路10及び相関処理部41に与えられる。 As the setting range of the pulse width distribution, for example, a range from the lower limit value T 0 to the upper limit value 2T 0 can be used, but the setting range is not limited to this. As the values of the pulse widths T p (0) to T p (H-1), set values stored in advance in a memory (not shown) may be used, or according to an arithmetic expression incorporated in advance. It may be calculated. The pulse widths T p (0) to T p (H-1) are given to the signal generation circuit 10 and the correlation processing unit 41.
 次に、信号生成回路10、送受信部11、アンテナ12及び受信回路13は、送受信処理を実行する(ステップST12)。具体的には、信号生成回路10は、パルス幅制御部14で設定されたパルス幅T(0)~T(H-1)をそれぞれ有するパルス内変調信号を送信パルス信号Tx(0,t)~Tx(H-1,t)として連続的に生成する。アンテナ12は、信号生成回路10から送受信部11を介して送信パルス信号Tx(0,t)~Tx(H-1,t)が入力されると、送信パルス信号Tx(0,t)~Tx(H-1,t)に応じた送信波Twを外部空間に放射する。アンテナ12が外部空間内の目標Tgtから戻ってきた反射波Rwを受信すると、送受信部11は、アンテナ12の受信出力に応じた反射波信号Rx(0,t)~Rx(H-1,t)を受信回路13に出力する。受信回路13は、反射波信号Rx(0,t)~Rx(H-1,t)をそれぞれ受信ディジタル信号(受信ビデオ信号)V(0,m)~V(H-1,m)に変換する。 Next, the signal generation circuit 10, the transmission / reception unit 11, the antenna 12, and the reception circuit 13 execute transmission / reception processing (step ST12). Specifically, the signal generation circuit 10 transmits the intra-pulse modulation signals having the pulse widths T p (0) to T p (H−1) set by the pulse width control unit 14 to the transmission pulse signal Tx (0, t) to Tx (H-1, t) are continuously generated. When the transmission pulse signals Tx (0, t) to Tx (H-1, t) are input from the signal generation circuit 10 via the transmission / reception unit 11, the antenna 12 receives the transmission pulse signals Tx (0, t) to Tx. The transmitted wave Tw corresponding to (H-1, t) is radiated to the external space. When the antenna 12 receives the reflected wave Rw returned from the target Tgt in the external space, the transmission / reception unit 11 causes the reflected wave signals Rx (0, t) to Rx (H-1, t) corresponding to the reception output of the antenna 12. ) Is output to the receiving circuit 13. The receiving circuit 13 receives the reflected wave signals Rx (0, t) to Rx (H-1, t) as received digital signals (received video signals) V 0 (0, m) to V 0 (H-1, m), respectively. Convert to.
 なお、図5の例では、ステップST11でパルス幅T(0)~T(H-1)が設定された後に、ステップST12で送受信処理が実行されている。この代わりに、パルス幅制御部14は、ステップST12の送受信処理と同時並行にパルス幅T(0)~T(H-1)を順次設定してもよい。 In the example of FIG. 5, after the pulse widths T p (0) to T p (H-1) are set in step ST11, the transmission / reception process is executed in step ST12. Alternatively, the pulse width control unit 14 may sequentially set the pulse widths T p (0) to T p (H-1) in parallel with the transmission / reception processing in step ST12.
 ステップST12の実行後、相関処理部41は、受信ディジタル信号V(h,m)が入力されると、受信ディジタル信号V(h,m)に対して参照信号Ex(h,m)を用いた相関処理を実行することによりパルス圧縮信号FV・Ex(h,m)を生成する(図5のステップST13)。具体的には、相関処理部41は、参照信号Ex(h,m)と受信ディジタル信号V(h,m)との間の相関演算を実行することによりパルス圧縮信号FV・Ex(h,m)を生成することができる。参照信号Ex(h,m)としては、次式(11)に示されるように変調制御信号Lchp(h,t)の変調成分B/(2T(h))を有する参照信号が使用可能である。

Figure JPOXMLDOC01-appb-I000011
After the execution of step ST12, when the received digital signal V 0 (h, m) is input, the correlation processing unit 41 outputs the reference signal Ex (h, m) to the received digital signal V 0 (h, m). By executing the correlation processing used, the pulse compression signal F V · Ex (h, m) is generated (step ST13 in FIG. 5). Specifically, the correlation processing unit 41 executes the correlation calculation between the reference signal Ex (h, m) and the received digital signal V 0 (h, m) to obtain the pulse compression signal F V · Ex (h , M) can be generated. As the reference signal Ex (h, m), a reference signal having a modulation component B 0 / (2T p (h)) of the modulation control signal L chp (h, t) as shown in the following equation (11) is used. It is possible.

Figure JPOXMLDOC01-appb-I000011
 式(11)において、Aは、参照信号Ex(h,m)の振幅である。式(11)に示されるように、参照信号Ex(h,m)は、サンプリング間隔Δtとサンプリング番号mとの積mΔtを変数とする関数である。参照信号Ex(h,m)の幅(有効データ長あるいは有効データ範囲)は、パルス幅T(h)によって制限される。すなわち、0≦mΔt≦T(h)の範囲の外では、参照信号Ex(h,m)の値は零である。 In Expression (11), A E is the amplitude of the reference signal Ex (h, m). As shown in Expression (11), the reference signal Ex (h, m) is a function whose variable is the product mΔt of the sampling interval Δt and the sampling number m. The width (effective data length or effective data range) of the reference signal Ex (h, m) is limited by the pulse width T p (h). That is, the value of the reference signal Ex (h, m) is zero outside the range of 0 ≦ mΔt ≦ T p (h).
 たとえば、相関処理部41は、次式(12)に示すような時間領域における畳み込み演算を実行することにより相関演算を実行することができる。
Figure JPOXMLDOC01-appb-I000012

 ここで、M(h)は、パルス番号(ヒット番号)hに関するパルス内サンプリング点数である。なお、式(12)で示される相関演算に代えて、周波数領域における公知の畳込み演算に基づく相関演算が実行されてもよい。
For example, the correlation processing unit 41 can execute the correlation calculation by executing the convolution calculation in the time domain as shown in the following Expression (12).
Figure JPOXMLDOC01-appb-I000012

Here, M p (h) is the number of sampling points within the pulse regarding the pulse number (hit number) h. Note that a correlation calculation based on a known convolution calculation in the frequency domain may be executed instead of the correlation calculation shown in Expression (12).
 次に、領域変換部44は、パルス圧縮信号FV・Ex(h,m)に対して、パルスヒット方向に時間領域から周波数領域への領域変換処理を実行して周波数領域信号f(hfft,m)を生成する(図5のステップST14)。領域変換処理としては、FFTアルゴリズムなどの所定のアルゴリズムに基づく離散フーリエ変換が実行されればよい。離散フーリエ変換は、次式(13)で表される。
Figure JPOXMLDOC01-appb-I000013
 ここで、hfftは、周波数領域のサンプリング番号、Hは、離散フーリエ変換点数である。
Next, the domain transforming unit 44 performs domain transforming processing from the time domain to the frequency domain in the pulse hit direction on the pulse compression signal F V · Ex (h, m) to generate the frequency domain signal f d (h fft , m) is generated (step ST14 in FIG. 5). As the domain conversion processing, discrete Fourier transform based on a predetermined algorithm such as FFT algorithm may be executed. The discrete Fourier transform is expressed by the following equation (13).
Figure JPOXMLDOC01-appb-I000013
Here, h fft is the sampling number in the frequency domain, and H is the number of discrete Fourier transform points.
 上記式を用いて式(13)を変形すれば、次式(14)が得られる。
Figure JPOXMLDOC01-appb-I000014
 ここで、Aは、周波数領域信号f(hfft,m)の振幅である。
By transforming the equation (13) using the above equation, the following equation (14) is obtained.
Figure JPOXMLDOC01-appb-I000014
Here, A h is the amplitude of the frequency domain signal f d (h fft , m).
 式(14)を整理すれば、次式(15)を得ることができる。

Figure JPOXMLDOC01-appb-I000015
By rearranging the equation (14), the following equation (15) can be obtained.

Figure JPOXMLDOC01-appb-I000015
 式(15)の右辺は3つの項の積からなる。当該右辺の積のうち第3項の値の大きさが最大になれば、離散フーリエ変換の際に高い積分効率が得られる。当該第3項の値の大きさがほぼ最大になる条件は、次式(16)のとおりである。
Figure JPOXMLDOC01-appb-I000016
The right side of equation (15) consists of the product of three terms. If the magnitude of the value of the third term in the product of the right side is maximized, high integration efficiency can be obtained in the discrete Fourier transform. The condition that the magnitude of the value of the third term becomes almost maximum is as shown in the following expression (16).
Figure JPOXMLDOC01-appb-I000016
 式(16)の条件を満たすサンプリング番号hfftをhfft,peakと表すとすれば、サンプリング番号hfft,peakは、次式(17)に示すように表現される。
Figure JPOXMLDOC01-appb-I000017
If the sampling number h fft satisfying the condition of Expression (16) is represented by h fft, peak , the sampling number h fft, peak is expressed as shown in the following Expression (17).
Figure JPOXMLDOC01-appb-I000017
 したがって、周波数領域のサンプリング番号hfft,peakについて高い積分効率が得られる。なお、パルス繰り返し周期Tpriに基づく周波数範囲は、次式(18)の速度値vambに基づいて算出可能である。

Figure JPOXMLDOC01-appb-I000018
Therefore, high integration efficiency is obtained for the sampling number h fft, peak in the frequency domain. The frequency range based on the pulse repetition period T pri can be calculated based on the velocity value v amb in the following equation (18).

Figure JPOXMLDOC01-appb-I000018
 ところで、本実施の形態では、設定範囲内で段階的に増加または減少するパルス幅分布を形成するパルス幅T(0)~T(H-1)を用いて送信パルス信号Tx(0,t)~Tx(H-1,t)が連続的に生成されるので、送信ブラインド(各パルス波の送信時間中に目標Tgtからの反射波を受信することができない状態)の影響を抑制しつつ高SNRのパルス圧縮信号FV・Ex(h,m)を生成することが可能となる。よって、高SNRのパルス圧縮信号FV・Ex(h,m)に基づき、高SNRの周波数領域信号f(hfft,m)を生成することができる。この点について以下に説明する。 By the way, in the present embodiment, the transmission pulse signal Tx (0, 0, 0, 1) is generated using the pulse widths T p (0) to T p (H-1) that form a pulse width distribution that gradually increases or decreases within the set range. Since t) to Tx (H-1, t) are continuously generated, the influence of the transmission blind (a state where the reflected wave from the target Tgt cannot be received during the transmission time of each pulse wave) is suppressed. At the same time, it becomes possible to generate the pulse compression signal F V · Ex (h, m) having a high SNR. Therefore, the high SNR frequency domain signal f d (h fft , m) can be generated based on the high SNR pulse compression signal F V · Ex (h, m). This point will be described below.
 図6A及び図6Bは、同一のパルス幅を有する送信パルス信号群からなる送信波Tw0の例と、当該送信波Tw0に対応する反射波Rw0の例とを概略的に示す図である。図6Aの例では、ヒット番号0~H-1に関する送信パルス信号のパルス幅Ttpは、すべて基準パルス幅Tである。このとき、図6Bに示されるように、反射波Rw0における受信パルス信号の広がり幅Trpは、すべて、ヒット番号0~H-1に関して受信ブラインドを発生させない幅Tであるものとする。 6A and 6B are diagrams schematically showing an example of a transmission wave Tw0 composed of a transmission pulse signal group having the same pulse width and an example of a reflected wave Rw0 corresponding to the transmission wave Tw0. In the example of FIG. 6A, the pulse widths T tp of the transmission pulse signals for hit numbers 0 to H-1 are all the reference pulse width T 0 . At this time, as shown in FIG. 6B, it is assumed that the spread width T rp of the received pulse signal in the reflected wave Rw0 is the width T 1 that does not cause the reception blind for the hit numbers 0 to H-1.
 これに対し、図7A及び図7Bは、同一のパルス幅を有する送信パルス信号群からなる送信波Tw1の例と、当該送信波Tw1に対応する反射波Rw1の例とを概略的に示す図である。図7Aの例では、ヒット番号0~H-1について送信パルス信号のパルス幅Ttpは、すべて基準パルス幅Tの2倍である。このとき、図7Bに示されるように、反射波Rw1における受信パルス信号の広がり幅Trpは、幅Tを超えるので、受信ブラインドが発生するものとする。この場合、反射波Rw1のうち斜線ハッチング部分ΔLs1が損失部分となる。本実施の形態では、このような損失部分ΔLs1の発生を抑制することができる理由を以下に説明する。 On the other hand, FIGS. 7A and 7B are diagrams schematically showing an example of a transmission wave Tw1 including transmission pulse signal groups having the same pulse width and an example of a reflected wave Rw1 corresponding to the transmission wave Tw1. is there. In the example of FIG. 7A, the pulse widths T tp of the transmission pulse signals for hit numbers 0 to H-1 are all twice the reference pulse width T 0 . At this time, as shown in FIG. 7B, since the spread width T rp of the received pulse signal in the reflected wave Rw1 exceeds the width T 1 , it is assumed that the reception blind occurs. In this case, the hatched portion ΔLs1 of the reflected wave Rw1 becomes the loss portion. In the present embodiment, the reason why the occurrence of such a loss portion ΔLs1 can be suppressed will be described below.
 図8A及び図8Bは、ヒット番号0~H-1に関して段階的に増加するパルス幅分布を形成する送信パルス信号群からなる送信波Tw2の例と、当該送信波Tw2に対応する反射波Rw2の例とを概略的に示す図である。図8Aの例では、パルス幅分布は、パルス幅Ttpが下限値Tから上限値2Tまで段階的に増加するように形成されている。図8Bの例では、反射波Rw2のうち斜線ハッチング部分ΔLs2が、受信ブラインドによる損失部分となる。 8A and 8B show an example of a transmission wave Tw2 including a transmission pulse signal group forming a pulse width distribution that increases stepwise with respect to hit numbers 0 to H-1, and a reflected wave Rw2 corresponding to the transmission wave Tw2. It is a figure which shows an example and roughly. In the example of FIG. 8A, the pulse width distribution is formed such that the pulse width T tp gradually increases from the lower limit value T 0 to the upper limit value 2T 0 . In the example of FIG. 8B, the hatched portion ΔLs2 of the reflected wave Rw2 is the loss portion due to the reception blind.
 また、図9A及び図9Bは、ヒット番号0~H-1に関して段階的に減少するパルス幅分布を形成する送信パルス信号群からなる送信波Tw3の例と、当該送信波Tw3に対応する反射波Rw3の例とを概略的に示す図である。図9Aの例では、パルス幅分布は、パルス幅Ttpが上限値2Tから下限値Tまで段階的に減少するように形成されている。図9Bの例では、反射波Rw3のうち斜線ハッチング部分ΔLs3が、受信ブラインドによる損失部分となる。 9A and 9B show an example of a transmission wave Tw3 including a transmission pulse signal group that forms a pulse width distribution that gradually decreases for hit numbers 0 to H-1, and a reflected wave corresponding to the transmission wave Tw3. It is a figure which shows the example of Rw3 roughly. In the example of FIG. 9A, the pulse width distribution is formed such that the pulse width T tp gradually decreases from the upper limit value 2T 0 to the lower limit value T 0 . In the example of FIG. 9B, the hatched portion ΔLs3 of the reflected wave Rw3 is the loss portion due to the reception blind.
 さらに、図10A及び図10Bは、ヒット番号0~H-1に関して段階的に増加した後に減少するパルス幅分布を形成する送信パルス信号群からなる送信波Tw4の例と、当該送信波Tw4に対応する反射波Rw4の例とを概略的に示す図である。図10Aの例では、パルス幅分布は、ヒット番号h=(H-1)/2の点に関して対称的な分布を有している。図10Bの例では、反射波Rw4のうち斜線ハッチング部分ΔLs4が、受信ブラインドによる損失部分となる。 Further, FIGS. 10A and 10B correspond to an example of a transmission wave Tw4 including a transmission pulse signal group that forms a pulse width distribution that gradually increases and then decreases for hit numbers 0 to H-1, and the transmission wave Tw4. It is a figure which shows roughly the example of the reflected wave Rw4 which performs. In the example of FIG. 10A, the pulse width distribution has a symmetrical distribution with respect to the hit number h = (H−1) / 2. In the example of FIG. 10B, the hatched portion ΔLs4 of the reflected wave Rw4 is the loss portion due to the reception blind.
 このように基準パルス幅T以上の設定範囲内で段階的に増加または減少するパルス幅分布が形成されると、パルス幅を一定とする場合と比べて、上記式(11)の相関関数Ex(h,m)の幅(有効データ長あるいは有効データ範囲)を拡げることができる。これにより、高SNRのパルス圧縮信号FV・Ex(h,m)を生成することができる。また、パルス幅分布は、段階的に増加または減少するように形成されるので、送信ブラインドの影響を抑制することが可能となる。図7Aに示したように、すべてのパルス幅が基準パルス幅Tの2倍に設定されると、送信ブラインドによる損失が増大するだけでなく、パルス送信時間と受信時間とのデューティ比が高くなりすぎるので、送信パルス信号を生成する回路の冷却期間を十分に確保することができない事態が生じうる。このような事態が生じると、発熱により当該回路の制御が難しくなるという課題がある。本実施の形態では、段階的に増加または減少するパルス幅分布が形成されるため、信号生成回路10の冷却期間を十分に確保することができる。 When a pulse width distribution that increases or decreases stepwise within the set range of the reference pulse width T 0 or more is formed in this manner, the correlation function Ex of the above equation (11) is greater than that when the pulse width is constant. The width (effective data length or effective data range) of (h, m) can be expanded. This makes it possible to generate the pulse compression signal F V · Ex (h, m) having a high SNR. Further, since the pulse width distribution is formed so as to increase or decrease in steps, it is possible to suppress the influence of the transmission blind. As shown in FIG. 7A, when all the pulse widths are set to twice the reference pulse width T 0 , not only the loss due to the transmission blind increases but also the duty ratio between the pulse transmission time and the reception time becomes high. Therefore, it may happen that the cooling period of the circuit for generating the transmission pulse signal cannot be sufficiently secured. When such a situation occurs, there is a problem that it becomes difficult to control the circuit due to heat generation. In the present embodiment, since the pulse width distribution that increases or decreases stepwise is formed, it is possible to sufficiently secure the cooling period of the signal generation circuit 10.
 図11Aは、パルス幅を一定とする場合に得られるパルス圧縮信号の電力分布の例を概略的に示すグラフである。図11Aに示される電力分布は、ヒット番号0~H-1についてほぼ一定の高さのピークを形成している。これに対し、図11Bは、図8Aに示したように段階的に増加するパルス幅分布を形成する場合に得られるパルス圧縮信号FV・Ex(h,m)の電力分布の例を概略的に示すグラフである。図11Bに示される電力分布は、ヒット番号hが大きくなるほど高いピークを形成するので、図11Aの場合と比べるとSNRが改善される。図12は、図11Aに示した電力分布から得られるSNRηと、図11Bに示した電力分布から得られるSNRηとを概略的に示すグラフである。図12において、横軸はヒット番号、縦軸は信号対雑音比(SNR)を示す。図12に示されるように、SNRηは、ヒット番号hが大きくなるほど高くなるので、SNRが改善されることが分かる。 FIG. 11A is a graph schematically showing an example of the power distribution of a pulse compression signal obtained when the pulse width is constant. The power distribution shown in FIG. 11A forms peaks of almost constant height for hit numbers 0 to H-1. On the other hand, FIG. 11B schematically shows an example of the power distribution of the pulse compression signal F V · Ex (h, m) obtained when forming the pulse width distribution that gradually increases as shown in FIG. 8A. It is a graph shown in. Since the power distribution shown in FIG. 11B forms a higher peak as the hit number h increases, the SNR is improved compared to the case of FIG. 11A. FIG. 12 is a graph schematically showing SNR η 0 obtained from the power distribution shown in FIG. 11A and SNR η 2 obtained from the power distribution shown in FIG. 11B. In FIG. 12, the horizontal axis represents the hit number and the vertical axis represents the signal-to-noise ratio (SNR). As shown in FIG. 12, the SNR η 2 increases as the hit number h increases, so that it can be seen that the SNR is improved.
 より具体的には、たとえば、SNRηの評価値ηout,PC,0は、次式(19)で表すことができ、SNRηの評価値Ηout,PC(h)は、次式(20)で表すことができる。

Figure JPOXMLDOC01-appb-I000019

Figure JPOXMLDOC01-appb-I000020
More specifically, for example, the evaluation value eta out of SNRη 0, PC, 0, it can be expressed by the following equation (19), the evaluation value of SNRη 2 Η out, PC (h ) , the following equation (20 ) Can be represented.

Figure JPOXMLDOC01-appb-I000019

Figure JPOXMLDOC01-appb-I000020
 式(19),(20)において、Aは、受信ディジタル信号(受信ビデオ信号)V(h,m)の振幅、Mは、基準パルス幅Tに基づくサンプリング点数、M(h)は、パルス幅T(h)に基づくサンプリング点数、σnis は、雑音の分散である。 In Expressions (19) and (20), A is the amplitude of the received digital signal (received video signal) V 0 (h, m), M 0 is the number of sampling points based on the reference pulse width T 0 , and M p (h) Is the number of sampling points based on the pulse width T p (h), and σ nis 2 is the variance of noise.
 SNRηの評価値ηout,PC,0と、SNRηの評価値Ηout,PC(h)との間には次式(21)の関係が成立する。

Figure JPOXMLDOC01-appb-I000021
Evaluation value eta out of SNRη 0, a PC, 0, the following relationship (21) is established between the evaluation value of SNRη 2 Η out, PC (h ).

Figure JPOXMLDOC01-appb-I000021
 なお、上記のように段階的に増加または減少するパルス幅分布を形成するために、次式(22)で示される基準パルス幅Tに基づくサンプリング点数Mと、次式(23)で示されるヒット番号hに関するパルス幅T(h)に基づくサンプリング点数M(h)と、パルス繰り返し周期Tpri内のサンプリング点数Mとの間に次式(24)の関係を維持することが望ましい。

Figure JPOXMLDOC01-appb-I000022

Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024
In order to form the pulse width distribution that gradually increases or decreases as described above, the number of sampling points M 0 based on the reference pulse width T 0 shown in the following equation (22) and the following equation (23) a pulse width in the hit number h T p (h) the number of sampling points based on M p (h) that, it is desirable to maintain the relation of the following equation (24) between the sampling points M of the pulse repetition period T pri ..

Figure JPOXMLDOC01-appb-I000022

Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024
 本実施の形態では、段階的に増加または減少するパルス幅分布が形成されるが、サンプリング周波数fを変化させる必要はなく、また、変調帯域幅Bを変化させる必要もないため、従来のレーダ装置の構成を大幅に改修することなく、目標検出性能が向上したレーダ装置1を得ることができる。 In the present embodiment, a pulse width distribution that increases or decreases stepwise is formed, but it is not necessary to change the sampling frequency f s, and it is not necessary to change the modulation bandwidth B 0 . It is possible to obtain the radar device 1 with improved target detection performance without significantly modifying the configuration of the radar device.
 段階的に増加するパルス幅分布を形成する場合には、パルス幅制御部14は、たとえば、次式(25)を示すようなパルス幅T(h)を設定することができる。

Figure JPOXMLDOC01-appb-I000025
 ここで、ΔTはパルス幅変化率である。式(25)によれば、設定範囲の下限値Tから段階的に増加するパルス幅分布が得られる。
When forming the pulse width distribution that increases stepwise, the pulse width control unit 14 can set the pulse width T p (h) as shown in the following Expression (25), for example.

Figure JPOXMLDOC01-appb-I000025
Here, ΔT p is a pulse width change rate. According to equation (25), a pulse width distribution that gradually increases from the lower limit value T 0 of the set range is obtained.
 また、対称的なパルス幅分布を形成する場合には、パルス幅制御部14は、三角窓、ハニング窓(hanning window)またはハミング窓(hamming window)などの窓関数を使用して、対称的なパルス幅分布を形成するパルス幅T(h)を設定することができる。これにより、メインローブの損失を抑制しつつ、分解能の劣化なく、ドップラ周波数方向のサイドローブを低減することが可能となる。次式(26)は、三角窓が使用された場合のパルス幅T(h)を表す式である。

Figure JPOXMLDOC01-appb-I000026
Further, when forming a symmetrical pulse width distribution, the pulse width control unit 14 uses a window function such as a triangular window, a Hanning window, or a Hamming window to make the pulse width control symmetrical. The pulse width T p (h) that forms the pulse width distribution can be set. This makes it possible to reduce the side lobe in the Doppler frequency direction without degrading the resolution while suppressing the loss of the main lobe. The following expression (26) is an expression representing the pulse width T p (h) when the triangular window is used.

Figure JPOXMLDOC01-appb-I000026
 窓関数をw(h)と表すとき、パルス幅T(h)は次式(27)で表される。

Figure JPOXMLDOC01-appb-I000027
When the window function is represented by w (h), the pulse width T p (h) is represented by the following equation (27).

Figure JPOXMLDOC01-appb-I000027
 窓関数w(h)としてハミング窓が使用される場合、窓関数w(h)は次式(28)で表される。

Figure JPOXMLDOC01-appb-I000028
When a Hamming window is used as the window function w (h), the window function w (h) is expressed by the following equation (28).

Figure JPOXMLDOC01-appb-I000028
 図13は、式(26)を使用した場合に得られるパルス圧縮信号FV・Ex(h,m)の電力分布の例を概略的に示すグラフである。図13に示される電力分布は、ヒット番号hが(H-1)/2のときに高いピークを形成し、パルスヒット方向において対称的な分布を形成する。よって、図11Aの場合と比べるとSNRが改善される。図14は、図11Aに示した電力分布から得られるSNRηと、図13に示した電力分布から得られるSNRηとを概略的に示すグラフである。図14において、横軸はヒット番号、縦軸は信号対雑音比(SNR)を示す。図14に示されるように、SNRが改善されることが分かる。 FIG. 13 is a graph schematically showing an example of the power distribution of the pulse compression signal F V · Ex (h, m) obtained when the formula (26) is used. The power distribution shown in FIG. 13 forms a high peak when the hit number h is (H-1) / 2, and forms a symmetrical distribution in the pulse hit direction. Therefore, the SNR is improved as compared with the case of FIG. 11A. FIG. 14 is a graph schematically showing SNR η 0 obtained from the power distribution shown in FIG. 11A and SNR η 4 obtained from the power distribution shown in FIG. 13. In FIG. 14, the horizontal axis represents the hit number and the vertical axis represents the signal-to-noise ratio (SNR). As shown in FIG. 14, it can be seen that the SNR is improved.
 また、窓関数を使用してパルス幅T(h)を設定することで、ドップラ周波数方向のサイドローブレベルを抑圧することができる。図15は、周波数領域信号の例を示すグラフである。図15において、横軸はドップラ周波数、縦軸は電力、fは目標のドップラ周波数を示す。また、実線は、段階的に増加するパルス幅分布の場合の電力を、破線は、対称的なパルス幅分布の場合の電力を、一点鎖線は、パルス幅を一定とした場合の電力をそれぞれ表している。図15に示されるように、段階的に増加するパルス幅分布の場合には、SNRが向上し、分解能の劣化はみられない。また、対称的なパルス幅分布の場合には、SNRが向上し、分解能の劣化はみられず、メインローブの両隣に現れる第1サイドローブのレベルが抑圧されていることが分かる。 Further, the side lobe level in the Doppler frequency direction can be suppressed by setting the pulse width T p (h) using the window function. FIG. 15 is a graph showing an example of the frequency domain signal. In FIG. 15, the horizontal axis represents the Doppler frequency, the vertical axis represents the power, and f D represents the target Doppler frequency. Further, the solid line represents the power in the case of a pulse width distribution that increases stepwise, the broken line represents the power in the case of a symmetrical pulse width distribution, and the dashed-dotted line represents the power in the case of a constant pulse width. ing. As shown in FIG. 15, in the case of a pulse width distribution that gradually increases, the SNR is improved and the resolution is not deteriorated. Further, in the case of the symmetrical pulse width distribution, the SNR is improved, the resolution is not deteriorated, and the level of the first side lobes appearing on both sides of the main lobe is suppressed.
 パルス幅制御部14は、周波数領域信号f(hfft,m)のSNRが予め定められた要求値ηout,rqを超えるようにパルス幅T(h)(式(25)の場合には、パルス幅変化率ΔT)を設定することが望ましい。具体的には、パルス幅制御部14は、たとえば、周波数領域信号f(hfft,m)のSNRが、次式(29)を満たすようにパルス幅T(h)を設定することが望ましい。

Figure JPOXMLDOC01-appb-I000029
 ここで、Houtは、周波数領域信号f(hfft,m)のSNRの評価値であり、Aは、受信ディジタル信号(受信ビデオ信号)V(h,m)の振幅であり、σnis は、雑音の分散である。
The pulse width control unit 14 sets the pulse width T p (h) (in the case of the formula (25) so that the SNR of the frequency domain signal f d (h fft , m) exceeds a predetermined required value η out, rq. It is desirable to set the pulse width change rate ΔT p ). Specifically, for example, the pulse width control unit 14 may set the pulse width T p (h) so that the SNR of the frequency domain signal f d (h fft , m) satisfies the following equation (29). desirable.

Figure JPOXMLDOC01-appb-I000029
Here, H out is the evaluation value of the SNR of the frequency domain signal f d (h fft , m), A is the amplitude of the received digital signal (received video signal) V 0 (h, m), and σ nis 2 is the variance of noise.
 振幅Aが一定であり、サンプリング点数M(h)が一定(=M)である場合のSNR評価値ηout,0は、式(29)から次式(30)に示すように導出される。

Figure JPOXMLDOC01-appb-I000030
The SNR evaluation value η out, 0 when the amplitude A is constant and the number of sampling points M p (h) is constant (= M 0 ) is derived from the equation (29) as shown in the following equation (30). It

Figure JPOXMLDOC01-appb-I000030
 パルス幅制御部14は、以下の条件式(31)を満たすようにパルス幅T(h)を設定することで、周波数領域信号f(hfft,m)のSNRを向上させて、目標検出性能が向上したレーダ装置1を提供することができる。

Figure JPOXMLDOC01-appb-I000031
The pulse width control unit 14 sets the pulse width T p (h) so as to satisfy the following conditional expression (31), thereby improving the SNR of the frequency domain signal f d (h fft , m) to achieve the target. The radar device 1 with improved detection performance can be provided.

Figure JPOXMLDOC01-appb-I000031
 上述したように、すべてのパルス幅が基準パルス幅Tの2倍に設定されると、送信ブラインドによる損失が増大するだけでなく、パルス送信時間(パルス幅)Tと受信時間(パルス繰り返し周期)Tpriとのデューティ比Dtyが高くなりすぎるので、送信パルス信号を生成する回路の冷却期間を十分に確保することができない事態が生じ、回路の制御が困難になりうる。デューティ比Dtyは、次式(32)で与えられる。

Figure JPOXMLDOC01-appb-I000032
As described above, when all the pulse widths are set to twice the reference pulse width T 0 , not only the loss due to the transmission blind increases but also the pulse transmission time (pulse width) T p and the reception time (pulse repetition) Since the duty ratio Dty with respect to the cycle) T pri becomes too high, a situation may occur in which the cooling period of the circuit that generates the transmission pulse signal cannot be sufficiently secured, and it becomes difficult to control the circuit. The duty ratio Dty is given by the following equation (32).

Figure JPOXMLDOC01-appb-I000032
 本実施の形態では、パルス幅分布は、段階的に増加または減少するように形成されるので、次の不等式(33)で表されるように送信ブラインドによる損失を小さくすることができる。

Figure JPOXMLDOC01-appb-I000033
In the present embodiment, since the pulse width distribution is formed so as to increase or decrease in steps, it is possible to reduce the loss due to the transmission blind as represented by the following inequality (33).

Figure JPOXMLDOC01-appb-I000033
 ここで、L2T0は、すべてのパルス幅が基準パルス幅Tの2倍に設定された場合の損失を示し、LTpは、段階的に増加または減少するパルス幅分布が形成された場合の損失を示している。 Here, L 2T0 indicates a loss when all pulse widths are set to twice the reference pulse width T 0 , and L Tp indicates a loss when a pulse width distribution that gradually increases or decreases is formed. It shows the loss.
 周波数領域信号f(hfft,m)の生成(図5のステップST14)がなされた後は、目標候補検出部51は、周波数領域信号f(hfft,m)の信号強度に基づいて目標候補を検出する(ステップST15)。具体的には、たとえば、目標候補検出部51は、公知のCA-CFAR(Cell Average-Constant False Alarm Rate)処理を用いて目標候補を検出すればよい。たとえば、CA-CFAR処理では、誤警報確率Pfaが一定値となるように最大の検出確率を得ることができるので、誤検出を制御することができ、雑音をなるべく検出せずに、周波数領域信号f(hfft,m)の信号強度に基づいて目標候補を検出することができる。 After the generation of the frequency domain signal f d (h fft , m) (step ST14 of FIG. 5), the target candidate detection unit 51 determines the frequency domain signal f d (h fft , m) based on the signal strength of the frequency domain signal f d (h fft , m). A target candidate is detected (step ST15). Specifically, for example, the target candidate detection unit 51 may detect the target candidate using a known CA-CFAR (Cell Average-Constant False Alarm Rate) process. For example, in the CA-CFAR processing, since the maximum detection probability can be obtained so that the false alarm probability Pfa becomes a constant value, the false detection can be controlled, and the noise in the frequency domain signal can be minimized. f d (h fft, m) can be detected target candidates based on the signal strength.
 目標候補検出部51は、検出された単数または複数の目標候補に割り当てられた目標候補番号ntgと、目標候補番号ntgに対応するサンプリング番号m=mntgと、目標候補番号ntgに対応する周波数領域のサンプリング番号hfft=hfft,ntgとを目標候補情報算出部52に出力することができる。説明の便宜上、目標候補番号ntgは、1~Ntgの範囲内の整数をとるものとする。 The target candidate detecting unit 51 determines the target candidate number ntg assigned to the detected single or plural target candidates, the sampling number m = m ntg corresponding to the target candidate number ntg, and the frequency region corresponding to the target candidate number ntg. it is possible to output a sampling number h fft = h fft, and ntg target candidate information calculation section 52. For convenience of explanation, it is assumed that the target candidate number ntg is an integer within the range of 1 to Ntg.
 次に、目標候補情報算出部52は、目標候補に関する相対距離及び相対速度などの目標情報を算出し、当該目標情報を示すデータを表示器60に出力する(図5のステップST16)。具体的には、たとえば、目標候補情報算出部52は、次式(34)に従い、目標候補番号ntgとサンプリング番号mntgとに基づいてntg番目の目標候補の相対距離R0,ntgを算出することができる。

Figure JPOXMLDOC01-appb-I000034
Next, the target candidate information calculation unit 52 calculates target information such as a relative distance and a relative speed regarding the target candidate, and outputs data indicating the target information to the display device 60 (step ST16 in FIG. 5). Specifically, for example, the target candidate information calculation unit 52 calculates the relative distance R 0, ntg of the ntg-th target candidate based on the target candidate number ntg and the sampling number m ntg according to the following equation (34). be able to.

Figure JPOXMLDOC01-appb-I000034
 また、目標候補情報算出部52は、次式(35)に従い、ntg番目の目標候補の相対速度V0,ntgを算出することができる。

Figure JPOXMLDOC01-appb-I000035
Further, the target candidate information calculation unit 52 can calculate the relative speed V 0, ntg of the ntg-th target candidate according to the following equation (35).

Figure JPOXMLDOC01-appb-I000035
 式(35)において、Δvfftは、次式(36)に示されるような相対速度のサンプリング間隔である。

Figure JPOXMLDOC01-appb-I000036
In Expression (35), Δv fft is a relative velocity sampling interval as shown in the following Expression (36).

Figure JPOXMLDOC01-appb-I000036
 目標候補情報算出部52は、目標候補番号ntg、相対距離R0,ntg及び相対速度V0,ntgの組み合わせを目標情報として表示器60に出力することができる。表示器60は、当該目標情報を画面に表示することができる。 The target candidate information calculation unit 52 can output a combination of the target candidate number ntg, the relative distance R 0, ntg, and the relative speed V 0, ntg to the display 60 as target information. The display device 60 can display the target information on the screen.
 以上に説明したように実施の形態1では、信号生成回路10は、基準パルス幅T以上の設定範囲内で段階的に増加または減少するパルス幅分布を形成する複数のパルス幅T(0)~T(H-1)を用いて、パルス内変調を施された送信パルス信号Tx(0,t)~Tx(H-1,t)を連続的に生成するので、相関処理部41は、送信ブラインドの影響を抑制しつつ高SNRのパルス圧縮信号FV・Ex(h,m)を生成することができる。これにより、領域変換部44は、高SNRの周波数領域信号f(hfft,m)を生成することができる。したがって、目標検出性能が向上したレーダ装置1を提供することができる。 As described above, in the first embodiment, the signal generation circuit 10 forms a plurality of pulse widths T p (0) that form a pulse width distribution that gradually increases or decreases within the set range of the reference pulse width T 0 or more. ) To T p (H-1) are used to continuously generate intra-pulse modulated transmission pulse signals Tx (0, t) to Tx (H-1, t), the correlation processing unit 41 Can generate the high SNR pulse compression signal F V · Ex (h, m) while suppressing the influence of the transmission blind. As a result, the domain conversion unit 44 can generate the high SNR frequency domain signal f d (h fft , m). Therefore, it is possible to provide the radar device 1 with improved target detection performance.
 また、段階的に増加または減少するパルス幅分布が形成されるため、信号生成回路10の冷却期間を十分に確保することができる。これにより、信号生成回路10の動作の安定性を実現することができ、耐熱性を維持したレーダ装置1を提供することができる。 Moreover, since a pulse width distribution that increases or decreases in stages is formed, a sufficient cooling period for the signal generation circuit 10 can be secured. As a result, the stability of the operation of the signal generation circuit 10 can be realized, and the radar device 1 that maintains heat resistance can be provided.
 さらに、パルス幅制御部14は、窓関数を用いて、パルスヒット方向において対称的なパルス幅分布を形成するパルス幅T(h)を設定することができるので、メインローブの損失を抑制しつつ、ドップラ周波数方向の分解能を維持しながら、サイドローブを抑圧することができる。これにより、近接する電力の低い目標との分離性能が向上するので、目標分離性能が向上したレーダ装置1を提供することができる。窓関数は、所望のサイドローブレベル分布を形成するように選択あるいは設計されればよい。このような窓関数を用いて、パルスヒット方向において対称的なパルス幅分布を形成するパルス幅T(h)を設定することにより、サイドローブレベルを効果的に抑圧することが可能である。なお、所望のサイドローブレベル分布を形成するために窓関数以外の手段(たとえば、フィルタ関数)を用いて、パルスヒット方向において対称的なパルス幅分布を形成するパルス幅T(h)を設定することにより、サイドローブレベルを抑圧してもよい。 Further, since the pulse width control unit 14 can set the pulse width T p (h) that forms a symmetrical pulse width distribution in the pulse hit direction by using the window function, the loss of the main lobe is suppressed. At the same time, the side lobe can be suppressed while maintaining the resolution in the Doppler frequency direction. As a result, the separation performance from a target having a low electric power that is close to the target is improved, so that it is possible to provide the radar device 1 having an improved target separation performance. The window function may be selected or designed to form a desired sidelobe level distribution. By using such a window function and setting the pulse width T p (h) that forms a symmetrical pulse width distribution in the pulse hit direction, it is possible to effectively suppress the side lobe level. It should be noted that a pulse width T p (h) that forms a symmetrical pulse width distribution in the pulse hit direction is set by using a means other than the window function (for example, a filter function) to form a desired side lobe level distribution. By doing so, the side lobe level may be suppressed.
実施の形態2.
 次に、本発明に係る実施の形態2について説明する。図16は、本発明に係る実施の形態2のレーダ装置2の概略構成を示すブロック図である。図16に示されるように本実施の形態のレーダ装置2は、信号生成回路10、送受信部11、受信回路13、レーダ信号処理回路32及び表示器60を備えている。本実施の形態のレーダ信号処理回路32の構成は、実施の形態1の相関処理部41に代えて図16の相関処理部42を有する点を除いて、実施の形態1のレーダ信号処理回路31の構成と同じである。
Embodiment 2.
Next, a second embodiment according to the present invention will be described. FIG. 16 is a block diagram showing a schematic configuration of the radar device 2 according to the second embodiment of the present invention. As shown in FIG. 16, the radar device 2 of this embodiment includes a signal generation circuit 10, a transmission / reception unit 11, a reception circuit 13, a radar signal processing circuit 32, and a display 60. The radar signal processing circuit 32 of the present embodiment has the configuration of the radar signal processing circuit 31 of the first embodiment except that the correlation processing unit 41 of the first embodiment is replaced by the correlation processing unit 42 of FIG. The configuration is the same as that of.
 本実施の形態の相関処理部42は、受信ディジタル信号V(h,m)が入力されると、受信ディジタル信号V(h,m)に対して参照信号Exa(h,m)及びパルス幅T(h)を用いた相関処理を実行することによりパルス圧縮信号FV・Ex(h,m)を生成する。相関処理部42の処理内容は、相関処理に使用される参照信号が異なる点を除いて、実施の形態1の相関処理部41の処理内容と同じである。相関処理は、時間領域における畳み込み演算、または、周波数領域における畳み込み演算により実行可能である。具体的には、相関処理部42は、次式(37)に示されるような参照信号Exa(h,m)を使用することが可能である。
Figure JPOXMLDOC01-appb-I000037

 ここで、mは、送信ブラインドの影響を受けない距離ビンに相当するパラメータである。参照信号Exa(h,m)は、「0≦mΔt≦T(h)」及び「m+m<M」という2つの条件を同時に満たすときに有効な値を与え、それ以外のとき(“otherwise”)には、零値を与える。よって、参照信号Ex(h,m)の幅(有効データ長あるいは有効データ範囲)は、パルス幅T(h)及びパラメータmによって制限される。
When the received digital signal V 0 (h, m) is input, the correlation processing unit 42 of the present embodiment receives the reference signal Exa (h, m) and the pulse with respect to the received digital signal V 0 (h, m). The pulse compression signal F V · Ex (h, m) is generated by performing the correlation processing using the width T p (h). The processing content of the correlation processing unit 42 is the same as the processing content of the correlation processing unit 41 of the first embodiment, except that the reference signal used for the correlation processing is different. The correlation process can be executed by a convolution operation in the time domain or a convolution operation in the frequency domain. Specifically, the correlation processing unit 42 can use the reference signal Exa (h, m) as shown in the following Expression (37).
Figure JPOXMLDOC01-appb-I000037

Here, m b is a parameter corresponding to a distance bin that is not affected by the transmission blind. The reference signal Exa (h, m) gives a valid value when the two conditions of “0 ≦ mΔt ≦ T p (h)” and “m b + m <M” are simultaneously satisfied, and otherwise (“ A zero value is given to "otherwise"). Therefore, the width (effective data length or the effective data range) of the reference signal Ex (h, m) is limited by the pulse width T p (h) and the parameter m b.
 図17Aは、実施の形態1の参照信号Ex(h,m)をサンプリング番号mについてフーリエ変換して得られる周波数領域信号Fx(h,m)(m=0~M-1)を表すグラフであり、図17Bは、実施の形態2の参照信号Exa(h,m)をサンプリング番号mについてフーリエ変換して得られる周波数領域信号Fxa(h,m)(m=0~M-1)を表すグラフである。図17A及び図17Bにおいて、「ファーストタイム周波数」とのラベルが付された軸は、周波数領域のサンプリング番号mに対応している。 FIG. 17A shows a frequency domain signal Fx (h, m f ) (m f = 0 to M−1) obtained by Fourier transforming the reference signal Ex (h, m) of the first embodiment with respect to the sampling number m. FIG. 17B is a graph, and FIG. 17B is a frequency domain signal Fxa (h, m f ) (m f = 0 to M−M obtained by Fourier transforming the reference signal Exa (h, m) of the second embodiment with respect to the sampling number m. It is a graph showing 1). In FIGS. 17A and 17B, the axis labeled “First Time Frequency” corresponds to the sampling number m f in the frequency domain.
 実施の形態1における参照信号Ex(h,m)の幅(有効データ長あるいは有効データ範囲)は、図17Aに示されるように、斜線ハッチングで示された帯域範囲Ruと対応する。実施の形態1における相関処理では、周波数領域信号成分fx(0),…,fx(h),…,fx(H-1)が使用される。これに対し、実施の形態2における参照信号Exa(h,m)の幅(有効データ長あるいは有効データ範囲)は、図17Bに示されるように、斜線ハッチングで示された帯域範囲Rnが除かれた、斜線ハッチングで示された帯域範囲Ruと対応している。実施の形態2における相関処理では、周波数領域信号成分fy(0),…,fy(h),…,fy(H-1)が使用される。帯域範囲Rnは、送信ブラインドの影響による雑音のみが存在する範囲である。パラメータmを調整することで帯域範囲Rnを除外することが可能となる。 The width (effective data length or effective data range) of the reference signal Ex (h, m) in the first embodiment corresponds to the band range Ru indicated by hatching as shown in FIG. 17A. In the correlation processing in the first embodiment, frequency domain signal components fx (0), ..., fx (h), ..., fx (H-1) are used. On the other hand, in the width (effective data length or effective data range) of the reference signal Exa (h, m) in the second embodiment, as shown in FIG. 17B, the band range Rn indicated by hatching is excluded. In addition, it corresponds to the band range Ru indicated by hatching. In the correlation processing in the second embodiment, frequency domain signal components fy (0), ..., Fy (h), ..., Fy (H-1) are used. The band range Rn is a range in which only noise due to the influence of the transmission blind exists. The band range Rn can be excluded by adjusting the parameter m b .
 図18は、周波数領域信号f(hfft,m)の信号対雑音比(SNR)と距離との関係を示すグラフである。図18において、Rp,0は、段階的に増加するパルス幅分布の形成により、送信ブラインドの影響を受ける距離の大きさを示す。また、HoutはSNRの評価値、ηout,rqは要求値、Rpriはパルス繰り返し周期相当の距離、Rnaはパルス幅について送信ブラインドの影響を受けない距離の最大値である。また、実線は、実施の形態2の場合に得られるSNRを、破線は、実施の形態1(段階的に増加するパルス幅分布)の場合に得られるSNRを、一点鎖線は、パルス幅一定の場合に得られるSNRをそれぞれ表している。実施の形態1の場合よりも、実施の形態2の場合の方が良好なSNRが得られることが分かる。 FIG. 18 is a graph showing the relationship between the signal-to-noise ratio (SNR) of the frequency domain signal f d (h fft , m) and the distance. In FIG. 18, R p, 0 represents the size of the distance affected by the transmission blind due to the formation of the pulse width distribution that increases in stages. Further, H out is an evaluation value of SNR, η out, rq is a required value, R pri is a distance corresponding to a pulse repetition period, and R na is a maximum value of a pulse width that is not affected by the transmission blind. Further, the solid line shows the SNR obtained in the case of the second embodiment, the broken line shows the SNR obtained in the case of the first embodiment (incrementally increasing pulse width distribution), and the dashed-dotted line shows the constant pulse width. The SNRs obtained in each case are shown. It can be seen that a better SNR can be obtained in the case of the second embodiment than in the case of the first embodiment.
 以上に説明したように実施の形態2では、相関処理に使用される参照信号Exa(h,m)の幅(有効データ長あるいは有効データ範囲)がパルス幅T(h)及びパラメータmによって制限されるので、送信ブラインドの影響によるSNRの劣化を回避することができる。上記のように段階的に増加または減少するパルス幅分布が形成されても、目標検出性能が良好なレーダ装置2を提供することができる。 As described above, in the second embodiment, the width (effective data length or effective data range) of the reference signal Exa (h, m) used for the correlation processing depends on the pulse width T p (h) and the parameter mb . Since it is limited, it is possible to avoid SNR deterioration due to the influence of the transmission blind. Even if the pulse width distribution that increases or decreases stepwise as described above is formed, it is possible to provide the radar device 2 with good target detection performance.
 なお、実施の形態2のパルス幅制御部14及びレーダ信号処理回路32の全部または一部のハードウェア構成は、ASICまたはFPGAなどのLSIで実現されればよい。実施の形態1の場合と同様に、実施の形態2のパルス幅制御部14及びレーダ信号処理回路32の全部または一部のハードウェア構成が、図4に示した信号処理回路70で実現されてもよい。 The hardware configuration of all or part of the pulse width control unit 14 and the radar signal processing circuit 32 according to the second embodiment may be realized by an LSI such as an ASIC or FPGA. Similar to the case of the first embodiment, the hardware configuration of all or part of the pulse width control unit 14 and the radar signal processing circuit 32 of the second embodiment is realized by the signal processing circuit 70 shown in FIG. Good.
 以上、図面を参照して本発明に係る実施の形態1,2について述べたが、実施の形態1,2は本発明の例示であり、実施の形態1,2以外の様々な実施の形態がありうる。本発明の範囲内において、実施の形態1,2の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。 Although the first and second embodiments according to the present invention have been described above with reference to the drawings, the first and second embodiments are examples of the present invention, and various embodiments other than the first and second embodiments are described. It is possible. Within the scope of the present invention, it is possible to freely combine the first and second embodiments, modify any constituent element of each embodiment, or omit any constituent element of each embodiment.
 本発明に係るレーダ装置及び信号処理方法は、目標の相対位置及び相対速度を検出するレーダシステムに利用され得る。また、本発明に係るレーダ装置は、地上に設置された状態、あるいは、航空機、人工衛星、車両もしくは船舶などの移動体に搭載された状態で使用され得る。 The radar device and the signal processing method according to the present invention can be used in a radar system that detects a relative position and a relative speed of a target. Further, the radar device according to the present invention can be used in a state of being installed on the ground or in a state of being mounted on a moving body such as an aircraft, an artificial satellite, a vehicle or a ship.
 1,2 レーダ装置、10 信号生成回路、11 送受信部、12 アンテナ、13 受信回路、14 パルス幅制御部、20 局部発振器、21 パルス生成器、22 パルス内変調器、23 出力部、24 ダウンコンバータ、25 帯域フィルタ、26 増幅器、27 位相検波器、28 A/D変換器、31,32 レーダ信号処理回路、41,42 相関処理部、44 領域変換部、50 目標検出部、51 目標候補検出部、52 目標候補情報算出部、60 表示器、70 信号処理回路、71 プロセッサ、72 メモリ、73 記憶装置、74 入出力インタフェース、75 信号路、Tgt 目標、Tw 送信波、Rw 反射波。 1, 2 radar device, 10 signal generation circuit, 11 transmission / reception unit, 12 antenna, 13 reception circuit, 14 pulse width control unit, 20 local oscillator, 21 pulse generator, 22 pulse modulator, 23 output unit, 24 down converter , 25 bandpass filter, 26 amplifier, 27 phase detector, 28 A / D converter, 31, 32 radar signal processing circuit, 41, 42 correlation processing unit, 44 area conversion unit, 50 target detection unit, 51 target candidate detection unit , 52 target candidate information calculation unit, 60 display device, 70 signal processing circuit, 71 processor, 72 memory, 73 storage device, 74 input / output interface, 75 signal path, Tgt target, Tw transmitted wave, Rw reflected wave.

Claims (11)

  1.  予め定められた基準パルス幅以上の設定範囲内で段階的に増加または減少するパルス幅分布を形成する複数のパルス幅を設定するパルス幅制御部と、
     前記複数のパルス幅をそれぞれ有し、かつパルス内変調をそれぞれ施された複数の送信パルス信号を連続的に生成する信号生成回路と、
     前記複数の送信パルス信号を外部空間に送出し、当該外部空間から前記複数の送信パルス信号にそれぞれ対応する複数の反射波信号を受信する送受信部と、
     当該複数の反射波信号の各々をサンプリングすることにより、前記複数の送信パルス信号にそれぞれ対応する複数の受信信号を生成する受信回路と、
     前記複数の受信信号の各々に対して参照信号を用いた相関処理を実行することにより複数のパルス圧縮信号を生成する相関処理部と、
     前記複数のパルス圧縮信号に対して時間領域から周波数領域への領域変換処理を実行することにより複数の周波数領域信号を生成する領域変換部と、
     前記複数の周波数領域信号に基づいて目標候補を検出する目標検出部と
    を備えることを特徴とするレーダ装置。
    A pulse width control unit that sets a plurality of pulse widths that form a pulse width distribution that gradually increases or decreases within a setting range equal to or greater than a predetermined reference pulse width,
    A signal generation circuit for continuously generating a plurality of transmission pulse signals each having the plurality of pulse widths and respectively subjected to intra-pulse modulation;
    A transmitting / receiving unit that transmits the plurality of transmission pulse signals to an external space and receives a plurality of reflected wave signals respectively corresponding to the plurality of transmission pulse signals from the external space,
    A receiving circuit that generates a plurality of received signals respectively corresponding to the plurality of transmission pulse signals by sampling each of the plurality of reflected wave signals,
    A correlation processing unit that generates a plurality of pulse compression signals by performing a correlation process using a reference signal for each of the plurality of received signals,
    A domain conversion unit that generates a plurality of frequency domain signals by performing a domain conversion process from the time domain to the frequency domain on the plurality of pulse compression signals,
    A radar apparatus comprising: a target detection unit that detects a target candidate based on the plurality of frequency domain signals.
  2.  請求項1に記載のレーダ装置であって、前記パルス幅分布は、前記設定範囲の下限値から当該設定範囲の上限値まで段階的に増加する分布であることを特徴とするレーダ装置。 The radar device according to claim 1, wherein the pulse width distribution is a distribution that gradually increases from a lower limit value of the setting range to an upper limit value of the setting range.
  3.  請求項1に記載のレーダ装置であって、前記パルス幅分布は、前記設定範囲の上限値から当該設定範囲の下限値まで段階的に減少する分布であることを特徴とするレーダ装置。 The radar device according to claim 1, wherein the pulse width distribution is a distribution that gradually decreases from an upper limit value of the setting range to a lower limit value of the setting range.
  4.  請求項1に記載のレーダ装置であって、前記パルス幅分布は、パルスヒット方向において対称的な分布を有することを特徴とするレーダ装置。 The radar device according to claim 1, wherein the pulse width distribution has a symmetrical distribution in a pulse hit direction.
  5.  請求項4に記載のレーダ装置であって、前記パルス幅分布は、対称的な分布を有する窓関数を用いて算出されることを特徴とするレーダ装置。 The radar device according to claim 4, wherein the pulse width distribution is calculated using a window function having a symmetrical distribution.
  6.  請求項1から請求項5のうちのいずれか1項に記載のレーダ装置であって、前記相関処理部は、前記パルス幅により前記参照信号の有効データ範囲を制限して前記相関処理を実行することを特徴とするレーダ装置。 The radar device according to any one of claims 1 to 5, wherein the correlation processing unit limits the effective data range of the reference signal by the pulse width and executes the correlation processing. A radar device characterized by the above.
  7.  請求項1から請求項5のうちのいずれか1項に記載のレーダ装置であって、前記相関処理部は、距離ビンに相当するパラメータと前記パルス幅とにより前記参照信号の有効データ範囲を制限して前記相関処理を実行することを特徴とするレーダ装置。 The radar device according to any one of claims 1 to 5, wherein the correlation processing unit limits an effective data range of the reference signal by a parameter corresponding to a distance bin and the pulse width. And performing the correlation process.
  8.  請求項1から請求項7のうちのいずれか1項に記載のレーダ装置であって、前記パルス内変調が周波数変調であることを特徴とするレーダ装置。 The radar device according to any one of claims 1 to 7, wherein the intra-pulse modulation is frequency modulation.
  9.  請求項1から請求項8のうちのいずれか1項に記載のレーダ装置であって、前記領域変換部は、前記領域変換処理として、所定のアルゴリズムに基づく離散フーリエ変換を実行することを特徴とするレーダ装置。 The radar device according to any one of claims 1 to 8, wherein the area conversion unit executes a discrete Fourier transform based on a predetermined algorithm as the area conversion processing. Radar device.
  10.  請求項9に記載のレーダ装置であって、前記所定のアルゴリズムは、高速フーリエ変換のアルゴリズムであることを特徴とするレーダ装置。 The radar device according to claim 9, wherein the predetermined algorithm is a fast Fourier transform algorithm.
  11.  複数の送信パルス信号を連続的に生成する信号生成回路と、前記複数の送信パルス信号を外部空間に送出し、前記外部空間から当該複数の送信パルス信号にそれぞれ対応する複数の反射波信号を受信する送受信部と、当該複数の反射波信号の各々をサンプリングすることにより、前記複数の送信パルス信号にそれぞれ対応する複数の受信信号を生成する受信回路とを備えたレーダ装置で実行される信号処理方法であって、
     予め定められた基準パルス幅以上の設定範囲内で時刻とともに段階的に増加または減少するパルス幅分布を形成する複数のパルス幅を、前記複数の送信パルス信号のパルス幅としてそれぞれ設定するステップと、
     前記複数の受信信号の各々に対して参照信号を用いた相関処理を実行することにより複数のパルス圧縮信号を生成するステップと、
     前記複数のパルス圧縮信号に対して時間領域から周波数領域への領域変換処理を実行することにより複数の周波数領域信号を生成するステップと、
     前記複数の周波数領域信号に基づいて目標候補を検出するステップと
    を備えることを特徴とする信号処理方法。
    A signal generation circuit that continuously generates a plurality of transmission pulse signals and a plurality of transmission pulse signals that are sent to an external space and that receives a plurality of reflected wave signals that correspond to the plurality of transmission pulse signals, respectively. Signal processing performed by a radar device including a transmitting / receiving unit and a receiving circuit that generates a plurality of received signals respectively corresponding to the plurality of transmission pulse signals by sampling each of the plurality of reflected wave signals. Method,
    A step of setting a plurality of pulse widths that form a pulse width distribution that increases or decreases stepwise with time within a preset range of a predetermined reference pulse width or more, respectively, as the pulse width of the plurality of transmission pulse signals,
    Generating a plurality of pulse-compressed signals by performing a correlation process using a reference signal for each of the plurality of received signals,
    Generating a plurality of frequency domain signals by performing a domain conversion process from the time domain to the frequency domain on the plurality of pulse compression signals,
    A step of detecting a target candidate based on the plurality of frequency domain signals.
PCT/JP2018/042432 2018-11-16 2018-11-16 Radar device and signal processing method WO2020100275A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019530848A JP6664554B1 (en) 2018-11-16 2018-11-16 Radar apparatus and signal processing method
PCT/JP2018/042432 WO2020100275A1 (en) 2018-11-16 2018-11-16 Radar device and signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/042432 WO2020100275A1 (en) 2018-11-16 2018-11-16 Radar device and signal processing method

Publications (1)

Publication Number Publication Date
WO2020100275A1 true WO2020100275A1 (en) 2020-05-22

Family

ID=70000318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042432 WO2020100275A1 (en) 2018-11-16 2018-11-16 Radar device and signal processing method

Country Status (2)

Country Link
JP (1) JP6664554B1 (en)
WO (1) WO2020100275A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116830A (en) * 1999-10-21 2001-04-27 Mitsubishi Electric Corp Radar system
JP2001133541A (en) * 1999-11-08 2001-05-18 Nec Corp Pulse compression radar device
JP2002006031A (en) * 2000-06-16 2002-01-09 Japan Radio Co Ltd Pulse compression-type radar device
JP2012202923A (en) * 2011-03-28 2012-10-22 Toshiba Corp Transmission module for radar apparatus
JP2016138787A (en) * 2015-01-27 2016-08-04 三菱電機株式会社 Passive radar device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977610B2 (en) * 2003-10-10 2005-12-20 Raytheon Company Multiple radar combining for increased range, radar sensitivity and angle accuracy
JP5848944B2 (en) * 2011-10-19 2016-01-27 日本無線株式会社 Radar equipment
JP6164918B2 (en) * 2013-05-13 2017-07-19 三菱電機株式会社 Radar equipment
JP6279187B2 (en) * 2016-02-29 2018-02-14 三菱電機株式会社 Radar equipment
EP3657209B1 (en) * 2017-08-28 2022-04-27 Mitsubishi Electric Corporation Radar apparatus
CA3087977C (en) * 2018-02-13 2021-03-02 Mitsubishi Electric Corporation Radar device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116830A (en) * 1999-10-21 2001-04-27 Mitsubishi Electric Corp Radar system
JP2001133541A (en) * 1999-11-08 2001-05-18 Nec Corp Pulse compression radar device
JP2002006031A (en) * 2000-06-16 2002-01-09 Japan Radio Co Ltd Pulse compression-type radar device
JP2012202923A (en) * 2011-03-28 2012-10-22 Toshiba Corp Transmission module for radar apparatus
JP2016138787A (en) * 2015-01-27 2016-08-04 三菱電機株式会社 Passive radar device

Also Published As

Publication number Publication date
JP6664554B1 (en) 2020-03-13
JPWO2020100275A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6279187B2 (en) Radar equipment
KR102204839B1 (en) Apparatus and method of detecting target using radar
JP6818541B2 (en) Radar device and positioning method
JP6830311B2 (en) Phase calibration of stepped chirp signals for synthetic aperture radar
JP2016151425A (en) Radar system
JP5871559B2 (en) Radar equipment
WO2013080570A1 (en) Radar device
JP4834370B2 (en) Correlation reception processing device
US9194947B1 (en) Radar system using matched filter bank
JP2007064671A (en) Radar system
US20210190903A1 (en) Radar apparatus and signal processing method
US8760340B2 (en) Processing radar return signals to detect targets
JPWO2019043749A1 (en) Radar equipment
JP6820130B2 (en) Target detection device, angle measuring device and radar device
CN109581537B (en) Method and device for detecting living body
US10921441B2 (en) Synthetic aperture radar signal processing device
JP5460290B2 (en) Radar equipment
JP6164918B2 (en) Radar equipment
JP4999592B2 (en) Radar equipment
JP6573748B2 (en) Radar equipment
WO2020100275A1 (en) Radar device and signal processing method
JP5574907B2 (en) Radar equipment
US11892558B2 (en) Method and apparatus for estimating direction of arrival of radar reception signal using antenna array extrapolation
JP2020051842A (en) Signal processing device, sensing device, signal processing method, and control program
JP5197125B2 (en) Pulse radar equipment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019530848

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939831

Country of ref document: EP

Kind code of ref document: A1