WO2020100189A1 - Power feeding circuit - Google Patents

Power feeding circuit Download PDF

Info

Publication number
WO2020100189A1
WO2020100189A1 PCT/JP2018/041825 JP2018041825W WO2020100189A1 WO 2020100189 A1 WO2020100189 A1 WO 2020100189A1 JP 2018041825 W JP2018041825 W JP 2018041825W WO 2020100189 A1 WO2020100189 A1 WO 2020100189A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
input
coupler
degree
waveguides
Prior art date
Application number
PCT/JP2018/041825
Other languages
French (fr)
Japanese (ja)
Inventor
秀憲 湯川
弘人 阿戸
修次 縫村
宏昌 中嶋
優 牛嶋
高橋 徹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020556477A priority Critical patent/JP6865903B2/en
Priority to PCT/JP2018/041825 priority patent/WO2020100189A1/en
Publication of WO2020100189A1 publication Critical patent/WO2020100189A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • H01P5/20Magic-T junctions

Definitions

  • the present invention relates to a power supply circuit having a function of separating a plurality of polarized waves in a frequency band such as a VHF (Very High Frequency) band, a UHF (Ultra High Frequency) band, a microwave band and a millimeter wave band.
  • a frequency band such as a VHF (Very High Frequency) band, a UHF (Ultra High Frequency) band, a microwave band and a millimeter wave band.
  • a power supply circuit having a polarization separation function for separating a plurality of different polarization modes from each other receives the radio wave from the transmitting antenna of the artificial satellite, separates multiple types of polarization modes included in the received radio wave, and uses these polarization modes of the receiving antenna of the base station. It may have a tracking function of tracking the artificial satellite by electronically or mechanically controlling the pointing direction.
  • the receiving antenna of the artificial satellite receives the radio wave from the transmitting antenna of the base station, separates the plural types of polarization modes included in the received radio wave, and uses these polarization modes to receive the antenna of the artificial satellite. It may have a tracking function of tracking the base station by electronically or mechanically controlling the pointing direction of the.
  • the following non-patent document 1 discloses a waveguide type power supply circuit for realizing a tracking function based on a monopulse tracking method.
  • This power supply circuit includes a turnstile type junction having a coaxial horn structure and four rectangular waveguides, a plurality of magic T type couplers (magic-T junctions), It is equipped with a 90-degree phase shifter (90 ° phase shifter).
  • the coaxial horn structure includes an inner horn and an outer horn that are coaxially arranged, and a relatively high frequency band (X band) in the inner space of the inner horn.
  • Signal can be propagated, and a signal in a relatively low frequency band (S band) can be propagated in the space between the inner horn and the outer horn. Further, a 90-degree phase shifter and a magic T-type coupler are used to separate a plurality of different polarization modes.
  • S band relatively low frequency band
  • a 90-degree phase shifter and a magic T-type coupler are used to separate a plurality of different polarization modes.
  • the power supply circuit disclosed in Non-Patent Document 1 uses a 90-degree phase shifter and a magic T-type coupler to separate a plurality of different polarization modes.
  • the amount of phase shift in the 90-degree phase shifter is 90 degrees, so the isolation characteristic (polarization separation characteristic) is good.
  • the power supply circuit disclosed in Non-Patent Document 1 has a problem that it is difficult to obtain good isolation characteristics in a wide band.
  • Non-Patent Document 1 has an asymmetric structure due to the presence of the 90-degree phase shifter, so that an unnecessary space is generated in the power supply circuit, which makes it difficult to reduce the circuit size. There are challenges.
  • an object of the present invention is to provide a power supply circuit that can realize good isolation characteristics in a wide band and downsizing of circuit size without using a 90-degree phase shifter. .
  • a power supply circuit includes a plurality of tubular conductors arranged coaxially, and a conductor formed between any two tubular conductors of the plurality of tubular conductors.
  • a polarization demultiplexer having first to fourth branch waveguides that branch symmetrically with respect to the central axis of the plurality of tubular conductors from the wave space and the first to fourth branch waveguides are adjacent to each other.
  • a third combined signal is obtained by superimposing a delayed wave obtained by delaying the phase of the fourth propagation mode by 90 degrees with the propagation mode and the fourth propagation mode as inputs, and the third propagation mode.
  • a second 90-degree coupler that generates a fourth combined signal by superimposing a delayed wave obtained by delaying the phase of the third propagation mode by 90 degrees at the same time as generating the fourth synthesized signal. And inputting the first combined signal and the third combined signal, the signal components having mutually opposite phases in the combination of the signal component of the first combined signal and the signal component of the third combined signal are input.
  • a first 180-degree coupler that outputs a first circularly polarized wave signal from a first output terminal by combining, a second combined signal, and a fourth combined signal are input, and the second combined signal is input.
  • a second circularly polarized signal that is orthogonal to the first circularly polarized signal by synthesizing signal components having opposite phases from each other in a combination of the signal component of the signal and the signal component of the fourth combined signal.
  • a second 180-degree coupler for outputting from the second output terminal.
  • the power supply circuit according to one aspect of the present invention can achieve good isolation characteristics in a wide band and miniaturization of circuit size without using a 90-degree phase shifter.
  • FIG. 6 is a schematic diagram for explaining the operation of the 90-degree coupler and the 180-degree coupler of the first embodiment. It is a figure for explaining a method of generating a right-handed circularly polarized signal. It is a figure for demonstrating the method of generating a left-handed circularly polarized signal. It is a figure for explaining a method of generating a coaxial TEM mode. It is a perspective view which shows the specific structural example of the electric power feeding circuit of Embodiment 2 which concerns on this invention.
  • FIG. 6 is a perspective view of a polarization splitter according to the second embodiment.
  • FIG. 10 is a schematic view showing a cross-sectional structure taken along the line A1-A1 of the demultiplexer shown in FIG. 9.
  • FIG. 7 is a perspective view showing a configuration of a waveguide including a bent waveguide according to the second embodiment.
  • FIG. 7 is a perspective view of an H-plane cross coupler which constitutes the 90-degree coupler of the second embodiment.
  • FIG. 9 is a perspective view of a magic T circuit that constitutes the 180-degree coupler of the second embodiment.
  • 9 is a graph showing a calculation result of isolation characteristics of the power feeding circuit according to the second embodiment.
  • FIG. 19 is a top view of and the bending waveguide of the polarization splitter shown in FIG. 18.
  • 7 is a graph showing the reflection characteristic of the power supply circuit according to the second embodiment.
  • 9 is a graph showing a reflection characteristic of the power supply circuit according to the third embodiment.
  • FIG. 7 is a diagram schematically showing a configuration of a power supply circuit according to a modified example of the first embodiment.
  • Embodiment 1. 1 is a diagram schematically showing a configuration of a power supply circuit 1 according to a first embodiment of the present invention.
  • the feeding circuit 1 includes a coaxial TEM (Transverse Electric and Magnetic) mode, a left-hand circularly polarized signal included in a wideband signal input from an antenna input / output terminal 100 of a multi-frequency shared antenna (not shown) such as a horn antenna. And functions as a polarization separation circuit capable of separating a right-handed circularly polarized signal.
  • Examples of the frequency band used by the power feeding circuit 1 include the VHF band, the UHF band, the microwave band, and the millimeter wave band.
  • the feeding circuit 1 includes a polarization splitter 10 having an antenna-side terminal connected to an antenna input / output terminal 100, a 90-degree coupler (first and second 90-degree couplers) 31, 32, 180-degree couplers (first and second 180-degree couplers) 51 and 52, waveguides 21 and 22 coupling between the demultiplexer 10 and the 90-degree coupler 31, and the demultiplexer 10. And the 90-degree coupler 32, the waveguides 23 and 24, the 90-degree coupler 31 and the 180-degree couplers 51 and 52, and the 90-degree coupler 32 and the 180-degree coupler.
  • the waveguides 43 and 44 for coupling between 51 and 52 are provided.
  • the demultiplexer 10 has a multi-cylinder structure. That is, the demultiplexer 10 includes two tubular conductors 11 and 12 arranged coaxially and a waveguide space formed between the tubular conductors 11 and 12, and It has four branching waveguides 13A, 13B, 13C and 13D which branch symmetrically with respect to the central axis of.
  • the antenna-side terminal of the demultiplexer 10 includes an input / output end 10p of the inner waveguide space of the tubular conductor 11 and an input / output end 10q of the waveguide space formed between the tubular conductors 11 and 12. To be done.
  • a signal in a relatively high frequency band such as the X band in the broadband signal input to the input / output terminal 10p is used as the waveguide mode.
  • the waveguide space that is configured to propagate and is formed between the cylindrical conductors 11 and 12 has a relatively low frequency band (such as the S band) in the wideband signal input to the annular input / output terminal 10q ( Hereinafter, it will be referred to as a "low frequency band”).
  • a relatively low frequency band such as the S band
  • the demultiplexer 10 has a double cylinder structure, but the invention is not limited to this. It has three or more tubular conductors arranged coaxially, and the branch waveguides 13A to 13D branch from the waveguide space formed between any two of these tubular conductors. Such a configuration may be adopted.
  • the signal propagating in the inner waveguide space of the tubular conductor 11 is output from the high frequency band terminal (not shown) to the high frequency band polarization separation circuit 60.
  • the high frequency band polarization separation circuit 60 separates the polarization signal input to the high frequency band terminal and outputs it from the input / output terminals 60a and 60b.
  • the high frequency band polarization separation circuit 60 includes a plurality of different types of polarization signals (for example, TM01 mode or TE21 mode, or a combination of these, which are included in the signal input to the high frequency band terminal. You may have the structure which isolate
  • the configuration of such a high frequency band polarization separation circuit 60 can be configured using, for example, a waveguide structure, but is not particularly limited.
  • FIG. 2 is a diagram showing a schematic configuration of the polarization splitter 10.
  • the wideband signal input to the input / output terminal 10q may include right-hand circular polarization, left-hand circular polarization, and coaxial TEM mode.
  • the demultiplexer 10 converts the right-hand circularly polarized wave, the left-hand circularly polarized wave, and the coaxial TEM mode into the propagation modes of the branch waveguides 13A, 13B, 13C, and 13D according to the phase relationship shown in FIG.
  • phase state of the propagation mode of the branch waveguide 13A when used as a reference, that is, in the propagation mode of the branch waveguide 13A, a signal corresponding to right-handed circular polarization.
  • the phase of the component is 0 °
  • the phase of the signal component corresponding to the left-hand circularly polarized wave is 0 °
  • the phase of the signal component corresponding to the coaxial TEM mode is 0 °.
  • the branching waveguide 13B propagates the signal component corresponding to the right-handed circularly polarized wave at a relative phase of ⁇ 90 °, propagates the signal component corresponding to the left-handed circularly polarized wave at the relative phase of + 90 °, and the coaxial TEM mode.
  • the signal component corresponding to is propagated with a relative phase of 0 °.
  • the branching waveguide 13C propagates the signal component corresponding to the right-handed circularly polarized wave at a relative phase of ⁇ 180 °, propagates the signal component corresponding to the left-handed circularly polarized wave at the relative phase of + 180 °, and enters the coaxial TEM mode.
  • the corresponding signal components are propagated with a relative phase of 0 °.
  • the branching waveguide 13D propagates the signal component corresponding to the right-handed circularly polarized wave at a relative phase of -270 ° and the signal component corresponding to the left-handed circularly polarized wave at the relative phase of + 270 °, and sets the coaxial TEM mode.
  • the corresponding signal components are propagated with a relative phase of 0 °.
  • the magnitude of the phase difference of the signal component corresponding to the right-handed circularly polarized wave is 90 °, which corresponds to the left-handed circularly polarized wave.
  • the magnitude of the phase difference between the signal components is 90 °.
  • the phases of the signal components corresponding to the coaxial TEM mode are all 0 ° (in phase).
  • the 90-degree coupler 31 has four input / output terminals 31a, 31b, 31e, 31f.
  • the 90-degree coupler 31 synthesizes the propagation modes input to the input / output terminals 31a and 31b from the input / output terminals 13a and 13b (ends of the branching waveguides 13A and 13B) of the polarization demultiplexer 10 to synthesize the first mode.
  • a combined signal and a second combined signal are generated, the first combined signal is output from the input / output terminal 31e to the waveguide 41, and the second combined signal is output from the input / output terminal 31f to the waveguide 42.
  • the 90-degree coupler 32 has four input / output terminals 32c, 32d, 32g, 32h.
  • the 90-degree coupler 32 synthesizes the propagation modes input to the input / output terminals 31c and 31d from the input / output terminals 13c and 13d (ends of the branching waveguides 13C and 13D) of the polarization splitter 10 to synthesize the third mode.
  • a combined signal and a fourth combined signal are generated, the third combined signal is output from the input / output terminal 32g to the waveguide 43, and the fourth combined signal is output from the input / output terminal 32h to the waveguide 44.
  • the 180 degree coupler 51 has four input / output terminals 51e, 51g, 51p and 51q.
  • the 180-degree coupler 51 is a left-hand circularly polarized signal based on the first combined signal and the third combined signal input from the input / output terminals 31e and 32g of the 90-degree couplers 31 and 32 to the input / output terminals 51e and 51g, respectively. It is also possible to generate a coaxial TEM mode, output the left-handed circularly polarized signal to the outside from the input / output terminal 51q, and output the coaxial TEM mode to the outside from the input / output terminal 51p.
  • the 180-degree coupler 52 has four input / output terminals 52f, 52h, 52p, 52q.
  • the 180-degree coupler 52 is a right-handed circularly polarized wave based on the second combined signal and the fourth combined signal input from the input / output terminals 31f and 32h of the 90-degree couplers 31 and 32 to the input / output terminals 52f and 52h, respectively. It is possible to generate a signal and a coaxial TEM mode, output the right-handed circularly polarized wave signal to the outside from the input / output terminal 52q, and output the coaxial TEM mode to the outside from the input / output terminal 52p.
  • FIG. 3 is a schematic diagram for explaining the operation of the 90-degree couplers 31, 32 and the 180-degree couplers 51, 52.
  • the propagation mode of the phase ⁇ a input to the input / output terminal 31a of the 90 ° coupler 31 is represented by S ( ⁇ a)
  • the propagation mode of the phase ⁇ b input to the input / output terminal 31b of the 90 ° coupler 31 is S ( ⁇ b).
  • the propagation mode of the phase ⁇ c input to the input / output terminal 32c of the 90-degree coupler 32 is represented by S ( ⁇ c)
  • the propagation mode of the phase ⁇ d input to the input / output terminal 32d of the 90-degree coupler 32 is represented by S ( ⁇ c). It is represented by ( ⁇ d).
  • S ( ⁇ c) the propagation mode of the phase ⁇ d input to the input / output terminal 32d of the 90-degree coupler 32
  • ( ⁇ d) For example, since the phase of the signal component corresponding to the right-hand circularly polarized wave in the propagation mode S ( ⁇ a) input from the input / output terminal 13a to the input / output terminal 31a in FIG.
  • the phase (relative phase) of the signal component corresponding to the right-handed circularly polarized wave in the input propagation mode S ( ⁇ b) is ⁇ 90 ° as shown in FIG.
  • FIG. 4 is a diagram for explaining a method for generating a right-handed circularly polarized signal
  • FIG. 5 is a diagram for explaining a method for producing a left-handed circularly polarized signal
  • FIG. 6 is a coaxial diagram. It is a figure for explaining a method of generating a TEM mode.
  • the symbol R ( ⁇ ) represents the signal component of the phase ⁇ corresponding to the right-handed circularly polarized wave in the propagation mode input to any of the input / output terminals 31a, 31b, 32c, 32d, and FIG.
  • the symbol L ( ⁇ ) represents the signal component of the phase ⁇ corresponding to the left-handed circularly polarized wave in the propagation mode input to any of the input / output terminals 31a, 31b, 32c, 32d
  • T ( ⁇ ) represents the signal component of the phase ⁇ corresponding to the coaxial TEM mode among the propagation modes input to any of the input / output terminals 31a, 31b, 32c, 32d.
  • the 90-degree coupler 31 has a phase of only 90 degrees between the propagation mode S ( ⁇ a) input to the input / output terminal 31a and the propagation mode S ( ⁇ b) input to the input / output terminal 31b. It is configured to have a function of generating a combined signal S ( ⁇ a) + S ( ⁇ b-90 °) by superimposing (combining) the delayed wave S ( ⁇ b-90 °) obtained by delaying, and this combining The signal S ( ⁇ a) + S ( ⁇ b ⁇ 90 °) can be output to the waveguide 41 from the input / output terminal 31e as the first combined signal X 1 ( ⁇ e).
  • the 90-degree coupler 31 delays the phases of the propagation mode S ( ⁇ b) input to the input / output terminal 31b and the propagation mode S ( ⁇ a) input to the input / output terminal 31a by 90 degrees. It is configured to have a function of generating a combined signal S ( ⁇ a-90 °) + S ( ⁇ b) by superposing (combining) with the wave S ( ⁇ a-90 °). ) + S ( ⁇ b) can be output to the waveguide 42 from the input / output terminal 31f as the second combined signal X 2 ( ⁇ f). As will be described later, such a 90-degree coupler 31 can be composed of, for example, an H-plane cross coupler or a short slot coupler.
  • the 90-degree coupler 32 sets the phase of the propagation mode S ( ⁇ c) input to the input / output terminal 32c and the phase of the propagation mode S ( ⁇ d) input to the input / output terminal 32d to 90 degrees. It is configured to have a function of generating a composite signal S ( ⁇ c) + S ( ⁇ d-90 °) by superimposing (combining) the delayed wave S ( ⁇ d-90 °) obtained by delaying by This combined signal S ( ⁇ c) + S ( ⁇ d ⁇ 90 °) can be output to the waveguide 43 from the input / output terminal 32g as the third combined signal Y 2 ( ⁇ g).
  • the 90-degree coupler 32 delays the phase of the propagation mode S ( ⁇ d) input to the input / output terminal 32d and the phase of the propagation mode S ( ⁇ c) input to the input / output terminal 32c by 90 degrees. It is configured to have a function of generating a composite signal S ( ⁇ d) + S ( ⁇ c-90 °) by superimposing (combining) the wave S ( ⁇ c-90 °), and this composite signal S ( ⁇ d) + S ( ⁇ c ⁇ 90 °) can be output to the waveguide 44 from the input / output terminal 32h as the fourth combined signal Y 1 ( ⁇ h). As will be described later, such a 90-degree coupler 32 can be composed of, for example, an H-plane cross coupler or a short slot coupler.
  • the 180-degree coupler 51 includes a signal component of the first combined signal X 1 ( ⁇ e) input to the input / output terminal 51e and a signal component of the third combined signal Y 2 ( ⁇ g) input to the input / output terminal 51g.
  • a 180-degree coupler 51 can be configured by, for example, a magic T circuit or a rat race circuit.
  • the signal components corresponding to the left-handed circularly polarized signal are input to the input / output terminals 31a, 31b, 32c, 32d according to the phase relationship shown in FIG.
  • the signal components L (0 °) and L (90 °) corresponding to the left-hand circularly polarized signals are input to the input / output terminals 31a and 31b, respectively.
  • the 90-degree coupler 31 delays the phase of the signal component L (0 °) input to the input / output terminal 31a by 90 degrees, and the delayed wave L (-90 °) that is input to the input / output terminal 31b.
  • the signal component L (90 °) is superimposed.
  • the delayed wave L (-90 °) and the signal component L (90 °) have the same amplitude and are in opposite phase to each other, so they are canceled out from each other. Therefore, the input / output terminal 31f does not output the signal component corresponding to the left-handed circularly polarized wave.
  • the 90-degree coupler 31 inputs the delayed wave L (0 °) obtained by delaying the phase of the signal component L (90 °) input to the input / output terminal 31b by 90 degrees to the input / output terminal 31a.
  • the 90-degree coupler 32 shown in FIG. 5 has a delayed wave L (90 °) obtained by delaying the phase of the signal component L (180 °) input to the input / output terminal 32c by 90 degrees, and The signal component L (270 °) input to the terminal 32d is superposed.
  • the delayed wave L (90 °) and the signal component L (270 °) have equal amplitudes and opposite phases to each other, and thus are cancelled. Therefore, the input / output terminal 32h does not output the signal component corresponding to the left-handed circularly polarized wave.
  • the 90-degree coupler 32 inputs the delayed wave L (180 °) obtained by delaying the phase of the signal component L (270 °) input to the input / output terminal 32d by 90 degrees, and inputs the delayed wave L (180 °) to the input / output terminal 32c.
  • the 180-degree coupler 51 shown in FIG. 5 can combine the first combined signal X 1 (0 °) and the third combined signal Y 2 (180 °) having phases shifted from each other by 180 °.
  • the left-handed circularly polarized signal can be output to the outside from the input / output terminal 51q.
  • the 180-degree coupler 52 since the signal component corresponding to the left-hand circularly polarized wave is not input to the input / output terminals 52f and 52h of the 180-degree coupler 52, the 180-degree coupler 52 does not output the signal component corresponding to the left-hand circularly polarized wave.
  • the 180-degree coupler 52 includes a signal component of the second combined signal X 2 ( ⁇ f) input to the input / output terminal 52f and a fourth combined signal Y 1 input to the input / output terminal 52h.
  • the right-handed circularly polarized signal is output to the outside from the input / output terminal 52q by synthesizing the signal components having the opposite phases (the signal components having a phase difference of 180 °). Have a function.
  • the right-handed circularly polarized signal is not output from the input / output terminal 52p.
  • Such a 180-degree coupler 52 can be realized by, for example, a magic T circuit or a rat race circuit.
  • the signal component corresponding to the right-handed circularly polarized signal is input to the input / output terminals 31a, 31b, 32c, 32d according to the phase relationship shown in FIG.
  • the signal components R (0 °) and R (-90 °) corresponding to the right-hand circularly polarized signals are input to the input / output terminals 31a and 31b, respectively.
  • the 90-degree coupler 31 delays the phase of the signal component R (-90 °) input to the input / output terminal 31b by 90 degrees and obtains a delayed wave R (-180 °), which is input to the input / output terminal 31a.
  • the signal component L (0 °) is superimposed.
  • the delayed wave R ( ⁇ 180 °) and the signal component R (0 °) have equal amplitudes and opposite phases to each other, and therefore cancel each other. Therefore, the input / output terminal 31e does not output the signal component corresponding to the right-handed circularly polarized wave.
  • the 90-degree coupler 31 delays the phase of the signal component R (0 °) input to the input / output terminal 31a by 90 degrees, and the delayed wave R (-90 °) and the input / output terminal 31b.
  • the 90-degree coupler 32 shown in FIG. 4 delays the phase of the signal component R (-270 °) input to the input / output terminal 32d by 90 degrees, and a delayed wave R (-360 °), The signal component R ( ⁇ 180 °) input to the input / output terminal 32c is superimposed. During this superposition, the delayed wave R ( ⁇ 360 °) and the signal component L ( ⁇ 180 °) have the same amplitude and are opposite in phase to each other, and therefore cancel each other. Therefore, the input / output terminal 32g does not output the signal component corresponding to the right-handed circularly polarized wave.
  • the 90-degree coupler 32 delays the phase of the signal component R (-180 °) input to the input / output terminal 32c by 90 degrees and the delayed wave R (-270 °) and the input / output terminal 32d.
  • the 180-degree coupler 52 shown in FIG. 4 synthesizes the second combined signal X 2 ( ⁇ 90 °) and the fourth combined signal Y 2 ( ⁇ 270 °), which have phases shifted from each other by 180 °.
  • the right-handed circularly polarized wave signal can be output to the outside from the input / output terminal 52q.
  • the 180-degree coupler 51 outputs the signal component corresponding to the right-hand circularly polarized wave. do not do.
  • the 180-degree coupler 51 has a function of outputting the coaxial TEM mode from the input / output terminal 51p to the outside by synthesizing the in-phase signal components input to the input / output terminals 51e and 51g. At this time, the coaxial TEM mode is not output from the input / output terminal 51q.
  • the 180-degree coupler 52 has a function of outputting the coaxial TEM mode from the input / output terminal 52p to the outside by synthesizing the in-phase signal components input to the input / output terminals 52f and 52h. At this time, the coaxial TEM mode is not output from the input / output terminal 52q.
  • the 180-degree coupler 51 combines the first combined signal X 1 ( ⁇ e) and the third combined signal Y 2 ( ⁇ g), which have the same phase, in the coaxial TEM mode (first coaxial TEM mode).
  • the 180-degree coupler 52 combines the second combined signal X 2 ( ⁇ f) and the fourth combined signal Y 1 ( ⁇ h) having the same phase.
  • the coaxial TEM mode (second coaxial TEM mode) is output from the input / output terminal 52p to the outside. At this time, the coaxial TEM mode is not output from the input / output terminals 51q and 52q.
  • the power feeding circuit 1 includes two coaxial TEM modes, a left-hand circularly polarized signal and a right-hand circularly polarized signal, which are included in the wideband signal input from the antenna input / output terminal 100. Can be separated.
  • a 90-degree phase shifter having frequency dependence since a 90-degree phase shifter having frequency dependence is used, it is difficult to obtain good isolation characteristics in a wide band, and it is difficult to reduce the circuit size. There are challenges.
  • the power feeding circuit 1 can separate the coaxial TEM mode, the left-hand circularly polarized signal, and the right-hand circularly polarized signal without using the 90-degree phase shifter, so that the broadband It is possible to realize a good isolation characteristic and a small circuit size.
  • a set of spatially adjacent branching waveguides 13A and 13B and a set of spatially adjacent branching waveguides 13C and 13D are used for polarization. Since the wave separation is performed, there is an advantage that the circuit size of the feeding circuit 1 can be easily reduced. Furthermore, there is an advantage that the degree of freedom in selecting the arrangement of the 180-degree couplers 51 and 52 is large. For example, even if the 180-degree couplers 51 and 52 are arranged so as to intersect three-dimensionally, it is possible to obtain a configuration for performing polarization separation. Therefore, there is an advantage that the power feeding circuit 1 can be easily manufactured.
  • the power feeding circuit 1 can also generate a wideband signal based on the signals input to the input / output terminals 51p, 51q, 52p, 52q and output the wideband signal to a multi-frequency shared antenna (not shown). ..
  • FIG. 7 is a perspective view showing a specific structural example of the power feeding circuit 1.
  • the X axis, Y axis, and Z axis shown in FIG. 7 are assumed to be orthogonal to each other.
  • FIG. 8 is a top view of the power feeding circuit 1 of FIG. 7 when viewed from the Z-axis positive direction.
  • the structure of the high frequency band circular polarization generator 60 shown in FIG. 1 is not shown.
  • the power supply circuit 1 shown in FIG. 7 is a 90-degree coupler (first and second 90-degree couplers) that is composed of a turn-style OMT (OrthoMode Transducer) and a demultiplexer 10 and two H-plane cross couplers. Between 31 and 32, 180-degree couplers (first and second 180-degree couplers) 51 and 52 each composed of two waveguide type magic T circuits, and between the demultiplexer 10 and the 90-degree coupler 31.
  • Waveguides 21 and 22 made of bent waveguides, coupling waveguides 23 and 24 made of bent waveguides coupling the demultiplexer 10 and the 90-degree coupler 32, and a 90-degree coupler 31, 32 and the 180 degree couplers 51 and 52 are coupled to each other, and the waveguides 41 to 44 are formed of four rectangular waveguides.
  • FIG. 9 is a perspective view of the polarization splitter 10 according to the second embodiment.
  • the demultiplexer 10 includes branch waveguides 13A, 13B, and 13C that are four rectangular waveguides that extend radially outward from the central axes of the tubular conductors 11 and 12. , 13D.
  • the outer ends of the branch waveguides 13A, 13B, 13C, and 13D form the input / output terminals 13a, 13b, 13c, and 13d of the polarization demultiplexer 10, respectively.
  • FIG. 10 is a schematic diagram showing a cross-sectional structure taken along the line A1-A1 of the polarization splitter 10 shown in FIG.
  • a high frequency band signal input to the input / output terminal 10p of the tubular conductor 11 propagates in the inner waveguide space of the tubular conductor 11 as a waveguide mode, and the demultiplexer It is output to the high frequency band polarization separation circuit 60 (FIG. 1) from the input / output end 10s on the back side (negative side of the Z-axis) of 10.
  • the low-frequency band signal input to the input / output terminal 10q is distributed to the branch waveguides 13A, 13B, 13C, and 13D after propagating in the waveguide space formed between the cylindrical conductors 11 and 12.
  • FIG. 11 is a perspective view showing the configuration of the waveguides 21, 22, 23, and 24 formed of the four bent waveguides of the second embodiment.
  • the bending waveguide forming the waveguide 23 includes a 135 degree H-plane bend HBc and a 90 degree E-plane that are coupled to one end of the branching waveguide 13C of the demultiplexer 10.
  • An inner bent portion made of the bend EBc, and a step-shaped outer bent portion (corner cut portion) 23B having a plurality of step surfaces 23Bs and 23Bs extending at an angle of 90 ° with respect to the side wall surface of the bent waveguide. have.
  • the step surfaces 23Bs and 23Bs of the outer bent portion 23B are provided to reduce the loss due to the reflection of the signal propagating in the waveguide 23, and can be formed by machining using an end mill, for example.
  • the number of step surfaces 23Bs and 23Bs is not limited to two, and three or more step surfaces may be provided.
  • the bending waveguide forming the waveguide 21 includes a 135-degree H-plane bend HBa coupled to one end of the branching waveguide 13A of the demultiplexer 10 and an inner bend portion formed of a 90-degree E-plane bend EBa.
  • the bending waveguide to be formed is a 135 ° H-plane bend HBb coupled to one end of the branching waveguide 13B of the demultiplexer 10, an inner bending portion made of a 90 ° E-plane bend EBb, and the bending waveguide of the bending waveguide.
  • the bent waveguide forming the waveguide 24 has a stepwise outer bent portion (corner cut portion) 22B having a plurality of step surfaces 22Bs and 22Bs extending at an angle of 90 ° with respect to the side wall surface.
  • FIG. 12 is a perspective view of an H-plane cross coupler which constitutes the 90-degree coupler 31 of the second embodiment.
  • the H-plane cross coupler shown in FIG. 12 has wide wall surfaces 31W arranged on the same plane, four H-plane bends, and four rectangular waveguides. The ends of the four rectangular waveguides form the input / output terminals 31a, 31b, 31e, 31f of the 90-degree coupler 31, respectively.
  • This H-plane cross coupler includes a waveguide (waveguide conduit) extending from the input / output terminal 31a to the input / output terminal 31e and a waveguide (waveguide conduit) extending from the input / output terminal 31b to the input / output terminal 31f. ) And have a structure that intersects in a cross shape at the center.
  • the 90-degree coupler 32 may have the same structure as the 90-degree coupler 31.
  • a matching element (not shown) may be arranged inside the 90-degree couplers 31 and 32.
  • FIG. 13 is a perspective view of a waveguide type magic T circuit that constitutes the 180-degree coupler 51 of the second embodiment.
  • the magic T circuit shown in FIG. 13 has four open ends forming four input / output terminals 51g, 51e, 51p, and 51q.
  • the 180-degree coupler 52 may have the same structure as the 180-degree coupler 51.
  • the 90-degree couplers 31 and 32 are biased via the 135-degree H-plane bends HBa, HBb, HBc, HBd and the 90-degree E-plane bends EBa, EBb, EBc, and EBd (FIG. 11). It is connected to the wave device 10 and is also connected to the 180-degree couplers 51 and 52 (magic T circuit) via the H-plane bend and the E-plane bend. Further, as shown in FIG. 7, the 180-degree couplers 51 and 52 are arranged so as to be displaced from each other in the Z-axis direction (pipe axis direction) so as not to physically interfere with each other.
  • connection length between the 180-degree coupler 51 and the 90-degree coupler 31 is the same as the connection length between the 180-degree coupler 51 and the 90-degree coupler 32, and the 180-degree coupler 52 and the 90-degree coupler 31 are the same.
  • the connection length between them is also the same as the connection length between the 180-degree coupler 52 and the 90-degree coupler 32.
  • the input / output terminals 51p and 52p for outputting the coaxial TEM mode are arranged so as to face opposite directions.
  • the power feeding circuit 1 of the present embodiment has a structure that is geometrically symmetric with respect to the central axis of the demultiplexer 10 (the central axes of the cylindrical conductors 11 and 12), and has a small circuit size. It can be seen that the realization has been realized. If the lengths of the waveguides 41 and 43 are the same and the lengths of the waveguides 42 and 44 are the same, even if the lengths of the waveguides 43 and 44 are not the same, a predetermined phase relationship is obtained. Can be obtained. Therefore, since it is not necessary to strictly adjust the positions of the 180-degree couplers 51 and 52, the power feeding circuit 1 can be easily manufactured.
  • the 90-degree couplers 31 and 32 are connected to the polarization demultiplexer 10 via the 135-degree H-plane bends HBa, HBb, HBc, and HBd of the waveguides 21, 22, 23, and 24. There is also an effect that the manufacturing is easy.
  • FIG. 14 is a graph showing the calculation result of the isolation characteristic of the power feeding circuit 1 shown in FIG.
  • the horizontal axis of the graph is the normalized frequency normalized by the center frequency of the frequency band used, and the vertical axis is input / output terminals 51q and 52q when the low frequency coaxial TEM mode is input from the antenna input / output terminal 100.
  • the output isolation amount (unit: dB) is shown.
  • the solid line represents the pass characteristic between the input / output terminal of the demultiplexer 10 and the input / output terminal 51q of the 180 degree coupler 51, and the dotted line represents the input / output terminal of the demultiplexer 10 and the input of the 180 degree coupler 52.
  • the pass characteristic with the output terminal 52q is shown.
  • not only the center frequency (normalized frequency “1”) but also the isolation characteristic is good not only in the frequency range deviating from the center frequency, but also in the wide band, good isolation characteristics are realized. ing.
  • FIG. 15 is a schematic cross-sectional view of a polarization demultiplexer 10A having a triple cylindrical structure.
  • the demultiplexer 10A includes a tubular conductor 12, a tubular conductor 11A coaxially arranged inside the tubular conductor 12, and a coaxial conductor inside the tubular conductor 11A.
  • Cylindrical conductors 14 arranged in a circle, and branch waveguides (rectangular waveguides) 15B, 15D, ... Radially extending from a waveguide space formed between the cylindrical conductor 14 and the cylindrical conductor 11A. Is equipped with.
  • the cylindrical conductor 14 and the branch waveguides 15B, 15D, ... Form a turnstile OMT.
  • the high frequency band signal input to the input / output terminal 10pa propagates in the inner waveguide space of the tubular conductor 14 as a waveguide mode, and is transmitted to the rear side (Z It is possible to output to the high frequency band polarization separation circuit 60 (FIG. 1) from the input / output terminal 10sa on the negative side of the axis).
  • the signal in the first low frequency band input to the input / output terminal 10q propagates through the waveguide space formed between the cylindrical conductors 11A and 12 and then enters the branch waveguides 13A, 13B, 13C and 13D. Distributed.
  • the signal in the second low frequency band input to the input / output terminal 10pb propagates through the waveguide space formed between the cylindrical conductors 11A and 14 and is then distributed to the branch waveguides 15B, 15D, ....
  • a circuit having the same configuration as the polarization separation circuit portion of the first and second embodiments may be coupled to the input / output terminals 15b, 15d, ... Of the branch waveguides 15B, 15D ,. In this case, the effect that the circularly polarized signal and the coaxial TEM mode can be separated in a plurality of frequency bands is obtained.
  • the short slot coupler 61 includes four input / output terminals 61a, 61b, 61c and 61d, a pair of wide wall surfaces 61f and 61g arranged on the same plane, and wide wall surfaces 61f and 61g. And a waveguide for coupling the input / output terminals 61a, 61b, 61c, 61d.
  • the wide wall surfaces 61f and 61g face each other in the thickness direction of the short slot coupler 61.
  • the hybrid coupler 71 includes four twisted waveguides 72, 73, 74 and 75 having four input / output terminals 71a, 71b, 71c and 71d of the hybrid coupler 71 and a twisted pair.
  • a branch-in coupler 76 coupled to the ends of the waveguides 72, 73, 74 and 75.
  • Each of the twisted waveguides 72, 73, 74 and 75 has a structure in which a rectangular waveguide is twisted (twisted) by 90 ° about the tube axis.
  • the branch-in coupler 76 has a waveguide that couples the twisted waveguides 72, 73, 74, and 75.
  • Embodiment 3 Another specific structural example of the power supply circuit 1 of the above-described first embodiment will be described below as a third embodiment.
  • the structure of the power feeding circuit 2 of the third embodiment is implemented except that the waveguides 81, 82, 83, 84 shown in FIG. 18 are replaced with the waveguides 21, 22, 23, 24 shown in FIG. This is the same as the structure of the power feeding circuit 1 of the second aspect.
  • 19 is a top view of the polarization splitter 10 and the waveguides 81 to 84 shown in FIG.
  • the bent waveguide forming the waveguide 83 includes a 135-degree H-plane bend HBc and a 90-degree E-plane that are coupled to one end of the branching waveguide 13C of the demultiplexer 10.
  • An inner bent portion made of the bend EBc and a stepped outer bent portion (corner cut portion) 83B having a plurality of step surfaces 83Bs and 83Bs extending at an inclination angle with respect to the side wall surface of the bent waveguide are provided. is doing.
  • the step surfaces 83Bs and 83Bs of the outer bent portion 83B are provided to reduce loss due to reflection of a signal propagating in the waveguide 23, and can be formed by, for example, machining using an end mill.
  • the number of step surfaces 83Bs, 83Bs is not limited to two, and one or three or more step surfaces may be provided.
  • the wavefront of the signal output from the demultiplexer 10 to the branch waveguide 13C is oblique to the tube wall. Since the light propagates to the outer bent portion 83B, good reflection characteristics may not be obtained. Therefore, the distance between the 135 ° H-plane bend HBc and the 90 ° E-plane bend EBc can be increased so that the wavefront of the signal propagating to the outer bent portion 83B is perpendicular to the tube wall. Increases the circuit size.
  • an arcuate waveguide can be used instead of the 135 degree H-plane bend HBc, but this also has a problem that the circuit size becomes large. Therefore, in the present embodiment, since the angles of the step surfaces 83Bs and 83Bs with respect to the tube wall are changed according to the wavefront shape of the propagation signal, it is possible to obtain good reflection characteristics without increasing the circuit size. it can.
  • the bending waveguide forming the waveguide 81 has an 135 ° H-face bend HBa coupled to one end of the branching waveguide 13A of the demultiplexer 10 and an inner bent portion made of a 90 ° E-face bend EBa. And a stepwise outer bent portion (corner cut portion) 81B having a plurality of step surfaces 81Bs and 81Bs extending at an inclination angle with respect to the side wall surface of the bent waveguide, forming a waveguide 82.
  • the bent waveguide is composed of a 135 degree H-plane bend HBb coupled to one end of the branching waveguide 13B of the demultiplexer 10, an inner bend formed of a 90 degree E-plane bend EBb, and a side wall surface of the bent waveguide.
  • the bent waveguide forming the waveguide 84 has a stepwise outer bent portion (corner cut portion) 82B having a plurality of step surfaces 82Bs and 82Bs extending at an inclination angle with respect to 135 degree H plane bend HBd which couple
  • FIG. 20 is a graph showing the reflection characteristic of the power feeding circuit 1 of the second embodiment
  • FIG. 21 is a graph showing the reflection characteristic of the power feeding circuit 2 of the third embodiment.
  • the graphs of FIG. 20 and FIG. 21 respectively show the reflection characteristics of two orthogonal TE11 modes of the antenna side terminal of the demultiplexer 10 by a solid line and a dotted line.
  • the horizontal axis represents the normalized frequency normalized by the center frequency of the used frequency band
  • the vertical axis represents the reflection amount (unit: dB).
  • the worst value of the reflection amount in the case of FIG. 20 is about ⁇ 18 dB
  • the reflection amount in the case of FIG. 21 is about ⁇ 20 dB. It is confirmed that the form 3 has improved reflection characteristics as compared with the form 2 of the embodiment.
  • the number of step surfaces in each of the outer bent portions 81B, 82B, 83B, 84B is not limited to two, and may be one or three or more. Further, in each of the outer bent portions 81B, 82B, 83B, 84B, a plurality of step surfaces may have the same inclination angle, or different step surfaces may have different inclination angles. Further, the inclination angle of the step surface in each of the outer bent portions 81B, 82B, 83B, 84B is made smaller as it goes away from the 135 degree H-plane bend, or in each of the outer bent portions 81B, 82B, 83B, 84B. The inclination angle of the step surface may be set to increase as it approaches the 135 degree H-plane bend. As a result, better reflection characteristics can be obtained.
  • FIG. 22 is a diagram schematically showing a configuration of power supply circuit 1A according to the modification of the first embodiment.
  • the configuration of power supply circuit 1A shown in FIG. 22 is the same as the configuration of power supply circuit 1 of the first embodiment except that distribution distributor 90 is additionally provided.
  • the distributor / combiner 90 can function as a combiner that combines the outputs of the input / output terminals 51p and 52p and outputs the coaxial TEM mode from its own input / output terminal 90p. Further, it can function as a distributor that divides the signal input to the input / output terminal 90p into two signals and outputs the two signals to the input / output terminals 51p and 52p, respectively.
  • the power supply circuit according to the present invention is suitable for use in, for example, a radio telescope for astronomical observation, a satellite communication system, and a multi-frequency shared antenna in a satellite broadcasting system.

Abstract

In a power feeding circuit (1), a first 90-degree coupler (31) generates, on the basis of first and second propagation modes input from adjacent branch waveguides (13A, 13B) of a polarization demultiplexer (10), first and second composite signals. A second 90-degree coupler (32) generates, on the basis of third and fourth propagation modes input from other adjacent branch waveguides (13C, 13D) of the polarization demultiplexer (10), third and fourth composite signals. A first 180-degree coupler (51) generates, by compositing signal components with mutually opposite phases among combinations of signal components of the first composite signal and the third composite signal, a first circularly polarized wave signal. A second 180-degree coupler (52) generates, by compositing signal components with mutually opposite phases among combinations of signal components of the second composite signal and the fourth composite signal, a second circularly polarized wave signal orthogonal to the first circularly polarized wave signal.

Description

給電回路Power supply circuit
 本発明は、VHF(Very High Frequency)帯、UHF(Ultra High Frequency)帯、マイクロ波帯及びミリ波帯などの周波数帯において複数の偏波を分離する機能を有する給電回路に関する。 The present invention relates to a power supply circuit having a function of separating a plurality of polarized waves in a frequency band such as a VHF (Very High Frequency) band, a UHF (Ultra High Frequency) band, a microwave band and a millimeter wave band.
 衛星放送及び衛星通信の分野においては、追尾機能を実現するために、互いに異なる複数種の偏波モードを分離する偏波分離機能を有する給電回路が使用されている。たとえば、基地局の受信アンテナは、人工衛星の送信アンテナから電波を受信し、当該受信電波に含まれる複数種の偏波モードを分離し、これら偏波モードを用いて当該基地局の受信アンテナの指向方向を電子的または機械的に制御することにより人工衛星を追尾する追尾機能を有することがある。逆に、人工衛星の受信アンテナが、基地局の送信アンテナから電波を受信し、当該受信電波に含まれる複数種の偏波モードを分離し、これら偏波モードを用いて当該人工衛星の受信アンテナの指向方向を電子的または機械的に制御することにより基地局を追尾する追尾機能を有することもある。 In the field of satellite broadcasting and satellite communication, in order to realize the tracking function, a power supply circuit having a polarization separation function for separating a plurality of different polarization modes from each other is used. For example, the receiving antenna of the base station receives the radio wave from the transmitting antenna of the artificial satellite, separates multiple types of polarization modes included in the received radio wave, and uses these polarization modes of the receiving antenna of the base station. It may have a tracking function of tracking the artificial satellite by electronically or mechanically controlling the pointing direction. On the contrary, the receiving antenna of the artificial satellite receives the radio wave from the transmitting antenna of the base station, separates the plural types of polarization modes included in the received radio wave, and uses these polarization modes to receive the antenna of the artificial satellite. It may have a tracking function of tracking the base station by electronically or mechanically controlling the pointing direction of the.
 下記の非特許文献1は、モノパルス追尾(monopulse tracking)方式に基づく追尾機能を実現するための導波管型の給電回路を開示している。この給電回路は、同軸ホーン(coaxial horn)構造及び4本の矩形導波管を有するターンスタイル型結合器(turnstile type junction)と、複数個のマジックT型結合器(magic-T junctions)と、90度移相器(90°phase shifter)とを備える。非特許文献1によれば、同軸ホーン構造は、同軸状に配置された内側ホーン(inner horn)及び外側ホーン(outer horn)からなり、内側ホーンの内部空間に比較的高い周波数帯(Xバンド)の信号を伝搬させ、内側ホーンと外側ホーンとの間の空間に比較的低い周波数帯(Sバンド)の信号を伝搬させることができる。また、互いに異なる複数種の偏波モードを分離するために90度移相器とマジックT型結合器とが使用されている。 The following non-patent document 1 discloses a waveguide type power supply circuit for realizing a tracking function based on a monopulse tracking method. This power supply circuit includes a turnstile type junction having a coaxial horn structure and four rectangular waveguides, a plurality of magic T type couplers (magic-T junctions), It is equipped with a 90-degree phase shifter (90 ° phase shifter). According to Non-Patent Document 1, the coaxial horn structure includes an inner horn and an outer horn that are coaxially arranged, and a relatively high frequency band (X band) in the inner space of the inner horn. Signal can be propagated, and a signal in a relatively low frequency band (S band) can be propagated in the space between the inner horn and the outer horn. Further, a 90-degree phase shifter and a magic T-type coupler are used to separate a plurality of different polarization modes.
 前述のとおり、非特許文献1に開示されている給電回路では、互いに異なる複数種の偏波モードを分離するために90度移相器とマジックT型結合器とが使用されている。使用周波数帯域内の中心周波数では、90度移相器における移相量は90度となるので、アイソレーション特性(偏波分離特性)は良好である。しかしながら、その移相量は周波数に依存するため、当該中心周波数から外れた周波数領域では90度の移相量が得られるとは限らない。したがって、非特許文献1に開示されている給電回路では、広帯域で良好なアイソレーション特性を得ることが難しいという課題がある。 As described above, the power supply circuit disclosed in Non-Patent Document 1 uses a 90-degree phase shifter and a magic T-type coupler to separate a plurality of different polarization modes. At the center frequency in the used frequency band, the amount of phase shift in the 90-degree phase shifter is 90 degrees, so the isolation characteristic (polarization separation characteristic) is good. However, since the amount of phase shift depends on the frequency, it is not always possible to obtain the amount of phase shift of 90 degrees in the frequency region outside the center frequency. Therefore, the power supply circuit disclosed in Non-Patent Document 1 has a problem that it is difficult to obtain good isolation characteristics in a wide band.
 また、非特許文献1に開示されている給電回路は、90度移相器の存在による非対称な構造を有するため、給電回路内に不要なスペースが生じ、回路サイズの小型化を困難にするという課題がある。 Further, the power supply circuit disclosed in Non-Patent Document 1 has an asymmetric structure due to the presence of the 90-degree phase shifter, so that an unnecessary space is generated in the power supply circuit, which makes it difficult to reduce the circuit size. There are challenges.
 上記に鑑みて本発明の目的は、90度移相器を使用せずに、広帯域での良好なアイソレーション特性と回路サイズの小型化とを実現することができる給電回路を提供することである。 In view of the above, an object of the present invention is to provide a power supply circuit that can realize good isolation characteristics in a wide band and downsizing of circuit size without using a 90-degree phase shifter. .
 本発明の一態様による給電回路は、同軸状に配置された複数個の筒状導体を有し、前記複数個の筒状導体のうちのいずれか2つの筒状導体間に形成されている導波空間から、前記複数個の筒状導体の中心軸に関して対称に分岐する第1乃至第4の分岐導波路を有する偏分波器と、前記第1乃至第4の分岐導波路のうち隣り合う第1及び第2の分岐導波路からそれぞれ出力された第1の伝搬モード及び第2の伝搬モードを入力とし、前記第2の伝搬モードの位相を90度だけ遅延させて得られる遅延波と前記第1の伝搬モードとを重ね合わせることで第1の合成信号を生成すると同時に、前記第1の伝搬モードの位相を90度だけ遅延させて得られる遅延波と前記第2の伝搬モードとを重ね合わせることで第2の合成信号を生成する第1の90度カプラと、前記第1乃至第4の分岐導波路のうち隣り合う第3及び第4の分岐導波路からそれぞれ出力された第3の伝搬モード及び第4の伝搬モードを入力とし、前記第4の伝搬モードの位相を90度だけ遅延させて得られる遅延波と前記第3の伝搬モードとを重ね合わせることで第3の合成信号を生成すると同時に、前記第3の伝搬モードの位相を90度だけ遅延させて得られる遅延波と前記第4の伝搬モードとを重ね合わせることで第4の合成信号を生成する第2の90度カプラと、前記第1の合成信号及び前記第3の合成信号を入力とし、前記第1の合成信号の信号成分と前記第3の合成信号の信号成分との組み合わせのうち互いに逆相の信号成分を合成することで第1の円偏波信号を第1の出力端子から出力する第1の180度カプラと、前記第2の合成信号及び前記第4の合成信号を入力とし、前記第2の合成信号の信号成分と前記第4の合成信号の信号成分との組み合わせのうち互いに逆相の信号成分を合成することで、前記第1の円偏波信号とは直交する第2の円偏波信号を第2の出力端子から出力する第2の180度カプラとを備えることを特徴とする。 A power supply circuit according to an aspect of the present invention includes a plurality of tubular conductors arranged coaxially, and a conductor formed between any two tubular conductors of the plurality of tubular conductors. A polarization demultiplexer having first to fourth branch waveguides that branch symmetrically with respect to the central axis of the plurality of tubular conductors from the wave space and the first to fourth branch waveguides are adjacent to each other. The delayed wave obtained by delaying the phase of the second propagation mode by 90 degrees by inputting the first propagation mode and the second propagation mode output from the first and second branch waveguides, respectively, and A first composite signal is generated by superimposing the first propagation mode and at the same time, a delayed wave obtained by delaying the phase of the first propagation mode by 90 degrees and the second propagation mode are superposed. A first 90-degree coupler that generates a second combined signal by combining them, and a third 90-degree coupler output from the adjacent third and fourth branch waveguides of the first to fourth branch waveguides, respectively. A third combined signal is obtained by superimposing a delayed wave obtained by delaying the phase of the fourth propagation mode by 90 degrees with the propagation mode and the fourth propagation mode as inputs, and the third propagation mode. A second 90-degree coupler that generates a fourth combined signal by superimposing a delayed wave obtained by delaying the phase of the third propagation mode by 90 degrees at the same time as generating the fourth synthesized signal. And inputting the first combined signal and the third combined signal, the signal components having mutually opposite phases in the combination of the signal component of the first combined signal and the signal component of the third combined signal are input. A first 180-degree coupler that outputs a first circularly polarized wave signal from a first output terminal by combining, a second combined signal, and a fourth combined signal are input, and the second combined signal is input. A second circularly polarized signal that is orthogonal to the first circularly polarized signal by synthesizing signal components having opposite phases from each other in a combination of the signal component of the signal and the signal component of the fourth combined signal. And a second 180-degree coupler for outputting from the second output terminal.
 本発明の一態様による給電回路は、90度移相器を使用せずに、広帯域での良好なアイソレーション特性と回路サイズの小型化とを実現することができる。 The power supply circuit according to one aspect of the present invention can achieve good isolation characteristics in a wide band and miniaturization of circuit size without using a 90-degree phase shifter.
本発明に係る実施の形態1の給電回路1の構成を概略的に示す図である。It is a figure which shows roughly the structure of the electric power feeding circuit 1 of Embodiment 1 which concerns on this invention. 実施の形態1の偏分波器の概略構成を示す図である。It is a figure which shows schematic structure of the polarization splitter of Embodiment 1. 実施の形態1の90度カプラ及び180度カプラの動作を説明するための概略図である。FIG. 6 is a schematic diagram for explaining the operation of the 90-degree coupler and the 180-degree coupler of the first embodiment. 右旋円偏波信号を生成する方法を説明するための図である。It is a figure for explaining a method of generating a right-handed circularly polarized signal. 左旋円偏波信号を生成する方法を説明するための図である。It is a figure for demonstrating the method of generating a left-handed circularly polarized signal. 同軸TEMモードを生成する方法を説明するための図である。It is a figure for explaining a method of generating a coaxial TEM mode. 本発明に係る実施の形態2の給電回路の具体的な構造例を示す斜視図である。It is a perspective view which shows the specific structural example of the electric power feeding circuit of Embodiment 2 which concerns on this invention. 図7に示した給電回路の上面図である。It is a top view of the electric power feeding circuit shown in FIG. 実施の形態2の偏分波器の斜視図である。FIG. 6 is a perspective view of a polarization splitter according to the second embodiment. 図9に示した偏分波器のA1-A1線における断面構造を示す概略図である。FIG. 10 is a schematic view showing a cross-sectional structure taken along the line A1-A1 of the demultiplexer shown in FIG. 9. 実施の形態2の屈曲導波管からなる導波路の構成を示す斜視図である。FIG. 7 is a perspective view showing a configuration of a waveguide including a bent waveguide according to the second embodiment. 実施の形態2の90度カプラを構成するH面クロスカプラの斜視図である。FIG. 7 is a perspective view of an H-plane cross coupler which constitutes the 90-degree coupler of the second embodiment. 実施の形態2の180度カプラを構成するマジックT回路の斜視図である。FIG. 9 is a perspective view of a magic T circuit that constitutes the 180-degree coupler of the second embodiment. 実施の形態2の給電回路のアイソレーション特性の計算結果を示すグラフである。9 is a graph showing a calculation result of isolation characteristics of the power feeding circuit according to the second embodiment. 3重円筒構造の偏分波器10Aの概略断面図である。It is a schematic sectional drawing of 10 A of demultiplexers of a triple cylinder structure. ショートスロットカプラの構成例を示す図である。It is a figure which shows the structural example of a short slot coupler. ブランチラインカプラとツイスト導波管とを有するハイブリッドカプラの構成例を示す図である。It is a figure which shows the structural example of the hybrid coupler which has a branch line coupler and a twist waveguide. 本発明に係る実施の形態3の偏分波器及び屈曲導波路の概略構成を示す図である。It is a figure which shows schematic structure of the polarization splitter and bending waveguide of Embodiment 3 which concerns on this invention. 図18に示した偏分波器の及び屈曲導波路の上面図である。FIG. 19 is a top view of and the bending waveguide of the polarization splitter shown in FIG. 18. 実施の形態2の給電回路の反射特性を示すグラフである。7 is a graph showing the reflection characteristic of the power supply circuit according to the second embodiment. 実施の形態3の給電回路の反射特性を示すグラフである。9 is a graph showing a reflection characteristic of the power supply circuit according to the third embodiment. 実施の形態1の変形例に係る給電回路の構成を概略的に示す図である。FIG. 7 is a diagram schematically showing a configuration of a power supply circuit according to a modified example of the first embodiment.
 以下、図面を参照しつつ、本発明に係る種々の実施の形態について詳細に説明する。 Hereinafter, various embodiments according to the present invention will be described in detail with reference to the drawings.
実施の形態1.
 図1は、本発明に係る実施の形態1の給電回路1の構成を概略的に示す図である。この給電回路1は、ホーンアンテナなどの多周波共用アンテナ(図示せず)のアンテナ入出力端100から入力された広帯域信号に含まれる、同軸TEM(Transverse Electric and Magnetic)モード、左旋円偏波信号及び右旋円偏波信号を分離することができる偏波分離回路として機能する。給電回路1の使用周波数帯としては、たとえば、VHF帯、UHF帯、マイクロ波帯及びミリ波帯が挙げられる。
Embodiment 1.
1 is a diagram schematically showing a configuration of a power supply circuit 1 according to a first embodiment of the present invention. The feeding circuit 1 includes a coaxial TEM (Transverse Electric and Magnetic) mode, a left-hand circularly polarized signal included in a wideband signal input from an antenna input / output terminal 100 of a multi-frequency shared antenna (not shown) such as a horn antenna. And functions as a polarization separation circuit capable of separating a right-handed circularly polarized signal. Examples of the frequency band used by the power feeding circuit 1 include the VHF band, the UHF band, the microwave band, and the millimeter wave band.
 図1に示されるように、給電回路1は、アンテナ入出力端100に接続されるアンテナ側端子を有する偏分波器10と、90度カプラ(第1及び第2の90度カプラ)31,32と、180度カプラ(第1及び第2の180度カプラ)51,52と、偏分波器10と90度カプラ31との間を結合する導波路21,22と、偏分波器10と90度カプラ32との間を結合する導波路23,24と、90度カプラ31と180度カプラ51,52との間を結合する導波路41,42と、90度カプラ32と180度カプラ51,52との間を結合する導波路43,44とを備えて構成されている。 As shown in FIG. 1, the feeding circuit 1 includes a polarization splitter 10 having an antenna-side terminal connected to an antenna input / output terminal 100, a 90-degree coupler (first and second 90-degree couplers) 31, 32, 180-degree couplers (first and second 180-degree couplers) 51 and 52, waveguides 21 and 22 coupling between the demultiplexer 10 and the 90-degree coupler 31, and the demultiplexer 10. And the 90-degree coupler 32, the waveguides 23 and 24, the 90-degree coupler 31 and the 180- degree couplers 51 and 52, and the 90-degree coupler 32 and the 180-degree coupler. The waveguides 43 and 44 for coupling between 51 and 52 are provided.
 偏分波器10は、多重円筒構成を有する。すなわち、偏分波器10は、同軸状に配置された2個の筒状導体11,12と、これら筒状導体11,12間に形成されている導波空間から、筒状導体11,12の中心軸に関して対称に分岐する4個の分岐導波路13A,13B,13C,13Dとを有する。偏分波器10のアンテナ側端子は、筒状導体11の内側導波空間の入出力端10pと、筒状導体11,12間に形成されている導波空間の入出力端10qとで構成される。筒状導体11の内側導波空間は、入出力端10pに入力された広帯域信号のうちXバンドなどの比較的高い周波数帯(以下「高周波数帯」という。)の信号を導波管モードとして伝搬させるように構成されており、筒状導体11,12間に形成されている導波空間は、環状の入出力端10qに入力された広帯域信号のうちSバンドなどの比較的低い周波数帯(以下「低周波数帯」という。)の信号を同軸モードとして伝搬させるように構成されている。このような偏分波器10の具体的な構造例については、後述する。 The demultiplexer 10 has a multi-cylinder structure. That is, the demultiplexer 10 includes two tubular conductors 11 and 12 arranged coaxially and a waveguide space formed between the tubular conductors 11 and 12, and It has four branching waveguides 13A, 13B, 13C and 13D which branch symmetrically with respect to the central axis of. The antenna-side terminal of the demultiplexer 10 includes an input / output end 10p of the inner waveguide space of the tubular conductor 11 and an input / output end 10q of the waveguide space formed between the tubular conductors 11 and 12. To be done. In the inner waveguide space of the cylindrical conductor 11, a signal in a relatively high frequency band (hereinafter referred to as “high frequency band”) such as the X band in the broadband signal input to the input / output terminal 10p is used as the waveguide mode. The waveguide space that is configured to propagate and is formed between the cylindrical conductors 11 and 12 has a relatively low frequency band (such as the S band) in the wideband signal input to the annular input / output terminal 10q ( Hereinafter, it will be referred to as a "low frequency band"). A specific structural example of such a demultiplexer 10 will be described later.
 なお、図1の例では、偏分波器10は2重円筒構成を有しているが、これに限定されるものではない。同軸状に配置された3個以上の筒状導体を有し、これら筒状導体のうちのいずれか2つの筒状導体間に形成されている導波空間から分岐導波路13A~13Dが分岐するような構成が採用されてもよい。 In addition, in the example of FIG. 1, the demultiplexer 10 has a double cylinder structure, but the invention is not limited to this. It has three or more tubular conductors arranged coaxially, and the branch waveguides 13A to 13D branch from the waveguide space formed between any two of these tubular conductors. Such a configuration may be adopted.
 図1を参照すると、筒状導体11の内側導波空間を伝搬した信号は、高周波数帯端子(図示せず。)から高周波数帯偏波分離回路60に出力される。この高周波数帯偏波分離回路60は、高周波数帯端子に入力された偏波信号を分離して入出力端子60a,60bから出力するものである。追尾機能を実現するため、高周波数帯偏波分離回路60は、高周波数帯端子に入力された信号に含まれる、互いに異なる複数種の偏波信号(たとえば、TM01モードもしくはTE21モード、またはこれらの双方)を個別に分離する構成を有してもよい。このような高周波数帯偏波分離回路60の構成は、たとえば導波管構造を用いて構成可能であるが、特に限定されるものではない。 Referring to FIG. 1, the signal propagating in the inner waveguide space of the tubular conductor 11 is output from the high frequency band terminal (not shown) to the high frequency band polarization separation circuit 60. The high frequency band polarization separation circuit 60 separates the polarization signal input to the high frequency band terminal and outputs it from the input / output terminals 60a and 60b. In order to realize the tracking function, the high frequency band polarization separation circuit 60 includes a plurality of different types of polarization signals (for example, TM01 mode or TE21 mode, or a combination of these, which are included in the signal input to the high frequency band terminal. You may have the structure which isolate | separates each) separately. The configuration of such a high frequency band polarization separation circuit 60 can be configured using, for example, a waveguide structure, but is not particularly limited.
 一方、筒状導体11,12間に形成されている導波空間を同軸モードとして伝搬した信号は、分岐導波路13A,13B,13C,13Dに入力される。図2は、偏分波器10の概略構成を示す図である。入出力端10qに入力される広帯域信号は、右旋円偏波、左旋円偏波及び同軸TEMモードを含み得る。偏分波器10は、図2に示されるような位相関係に従って、右旋円偏波、左旋円偏波及び同軸TEMモードを分岐導波路13A,13B,13C,13Dの伝搬モードに変換する。 On the other hand, the signal propagated in the waveguide space formed between the cylindrical conductors 11 and 12 as a coaxial mode is input to the branch waveguides 13A, 13B, 13C and 13D. FIG. 2 is a diagram showing a schematic configuration of the polarization splitter 10. The wideband signal input to the input / output terminal 10q may include right-hand circular polarization, left-hand circular polarization, and coaxial TEM mode. The demultiplexer 10 converts the right-hand circularly polarized wave, the left-hand circularly polarized wave, and the coaxial TEM mode into the propagation modes of the branch waveguides 13A, 13B, 13C, and 13D according to the phase relationship shown in FIG.
 具体的には、図2に示されるように、分岐導波路13Aの伝搬モードの位相状態を基準とするとき、すなわち、分岐導波路13Aの伝搬モードのうち、右旋円偏波に対応する信号成分の位相を0°、左旋円偏波に対応する信号成分の位相を0°、同軸TEMモードに対応する信号成分の位相を0°とする。このとき、分岐導波路13Bは、右旋円偏波に対応する信号成分を相対位相-90°で伝搬させ、左旋円偏波に対応する信号成分を相対位相+90°で伝搬させ、同軸TEMモードに対応する信号成分を相対位相0°で伝搬させる。また、分岐導波路13Cは、右旋円偏波に対応する信号成分を相対位相-180°で伝搬させ、左旋円偏波に対応する信号成分を相対位相+180°で伝搬させ、同軸TEMモードに対応する信号成分を相対位相0°で伝搬させる。さらに、分岐導波路13Dは、右旋円偏波に対応する信号成分を相対位相-270°で伝搬させ、左旋円偏波に対応する信号成分を相対位相+270°で伝搬させ、同軸TEMモードに対応する信号成分を相対位相0°で伝搬させる。このように分岐導波路13A~13Dのうち隣り合う分岐導波路間では、右旋円偏波に対応する信号成分の位相差の大きさはいずれも90°であり、左旋円偏波に対応する信号成分の位相差の大きさはいずれも90°である。また、同軸TEMモードに対応する信号成分の位相は、いずれも0°(同相)である。 Specifically, as shown in FIG. 2, when the phase state of the propagation mode of the branch waveguide 13A is used as a reference, that is, in the propagation mode of the branch waveguide 13A, a signal corresponding to right-handed circular polarization. The phase of the component is 0 °, the phase of the signal component corresponding to the left-hand circularly polarized wave is 0 °, and the phase of the signal component corresponding to the coaxial TEM mode is 0 °. At this time, the branching waveguide 13B propagates the signal component corresponding to the right-handed circularly polarized wave at a relative phase of −90 °, propagates the signal component corresponding to the left-handed circularly polarized wave at the relative phase of + 90 °, and the coaxial TEM mode. The signal component corresponding to is propagated with a relative phase of 0 °. The branching waveguide 13C propagates the signal component corresponding to the right-handed circularly polarized wave at a relative phase of −180 °, propagates the signal component corresponding to the left-handed circularly polarized wave at the relative phase of + 180 °, and enters the coaxial TEM mode. The corresponding signal components are propagated with a relative phase of 0 °. Further, the branching waveguide 13D propagates the signal component corresponding to the right-handed circularly polarized wave at a relative phase of -270 ° and the signal component corresponding to the left-handed circularly polarized wave at the relative phase of + 270 °, and sets the coaxial TEM mode. The corresponding signal components are propagated with a relative phase of 0 °. In this way, between adjacent branch waveguides among the branch waveguides 13A to 13D, the magnitude of the phase difference of the signal component corresponding to the right-handed circularly polarized wave is 90 °, which corresponds to the left-handed circularly polarized wave. The magnitude of the phase difference between the signal components is 90 °. Further, the phases of the signal components corresponding to the coaxial TEM mode are all 0 ° (in phase).
 90度カプラ31は、4個の入出力端子31a,31b,31e,31fを有している。90度カプラ31は、偏分波器10の入出力端13a,13b(分岐導波路13A,13Bの端部)からそれぞれ入出力端子31a,31bに入力された伝搬モードを合成して第1の合成信号及び第2の合成信号を生成し、当該第1の合成信号を入出力端子31eから導波路41に出力し、当該第2の合成信号を入出力端子31fから導波路42に出力する。一方、90度カプラ32は、4個の入出力端子32c,32d,32g,32hを有している。90度カプラ32は、偏分波器10の入出力端13c,13d(分岐導波路13C,13Dの端部)からそれぞれ入出力端子31c,31dに入力された伝搬モードを合成して第3の合成信号及び第4の合成信号を生成し、当該第3の合成信号を入出力端子32gから導波路43に出力し、当該第4の合成信号を入出力端子32hから導波路44に出力する。 The 90-degree coupler 31 has four input / output terminals 31a, 31b, 31e, 31f. The 90-degree coupler 31 synthesizes the propagation modes input to the input / output terminals 31a and 31b from the input / output terminals 13a and 13b (ends of the branching waveguides 13A and 13B) of the polarization demultiplexer 10 to synthesize the first mode. A combined signal and a second combined signal are generated, the first combined signal is output from the input / output terminal 31e to the waveguide 41, and the second combined signal is output from the input / output terminal 31f to the waveguide 42. On the other hand, the 90-degree coupler 32 has four input / output terminals 32c, 32d, 32g, 32h. The 90-degree coupler 32 synthesizes the propagation modes input to the input / output terminals 31c and 31d from the input / output terminals 13c and 13d (ends of the branching waveguides 13C and 13D) of the polarization splitter 10 to synthesize the third mode. A combined signal and a fourth combined signal are generated, the third combined signal is output from the input / output terminal 32g to the waveguide 43, and the fourth combined signal is output from the input / output terminal 32h to the waveguide 44.
 180度カプラ51は、4個の入出力端子51e,51g,51p,51qを有している。180度カプラ51は、90度カプラ31,32の入出力端子31e,32gから入出力端子51e,51gにそれぞれ入力された第1の合成信号及び第3の合成信号に基づいて左旋円偏波信号及び同軸TEMモードを生成し、当該左旋円偏波信号を入出力端子51qから外部に出力し、当該同軸TEMモードを入出力端子51pから外部に出力することができる。一方、180度カプラ52は、4個の入出力端子52f,52h,52p,52qを有している。180度カプラ52は、90度カプラ31,32の入出力端子31f,32hから入出力端子52f,52hにそれぞれ入力された第2の合成信号及び第4の合成信号に基づいて右旋円偏波信号及び同軸TEMモードを生成し、当該右旋円偏波信号を入出力端子52qから外部に出力し、当該同軸TEMモードを入出力端子52pから外部に出力することができる。 The 180 degree coupler 51 has four input / output terminals 51e, 51g, 51p and 51q. The 180-degree coupler 51 is a left-hand circularly polarized signal based on the first combined signal and the third combined signal input from the input / output terminals 31e and 32g of the 90- degree couplers 31 and 32 to the input / output terminals 51e and 51g, respectively. It is also possible to generate a coaxial TEM mode, output the left-handed circularly polarized signal to the outside from the input / output terminal 51q, and output the coaxial TEM mode to the outside from the input / output terminal 51p. On the other hand, the 180-degree coupler 52 has four input / output terminals 52f, 52h, 52p, 52q. The 180-degree coupler 52 is a right-handed circularly polarized wave based on the second combined signal and the fourth combined signal input from the input / output terminals 31f and 32h of the 90- degree couplers 31 and 32 to the input / output terminals 52f and 52h, respectively. It is possible to generate a signal and a coaxial TEM mode, output the right-handed circularly polarized wave signal to the outside from the input / output terminal 52q, and output the coaxial TEM mode to the outside from the input / output terminal 52p.
 次に、図3~図6を参照しつつ、90度カプラ31,32及び180度カプラ51,52の動作について詳細に説明する。図3は、90度カプラ31,32及び180度カプラ51,52の動作を説明するための概略図である。今、90度カプラ31の入出力端子31aに入力される位相θaの伝搬モードをS(θa)と表し、90度カプラ31の入出力端子31bに入力される位相θbの伝搬モードをS(θb)と表し、90度カプラ32の入出力端子32cに入力される位相θcの伝搬モードをS(θc)と表し、90度カプラ32の入出力端子32dに入力される位相θdの伝搬モードをS(θd)と表すものとする。たとえば、図2の入出力端子13aから入出力端子31aに入力される伝搬モードS(θa)のうち右旋円偏波に対応する信号成分の位相は0°であるので、入出力端子31bに入力される伝搬モードS(θb)のうち右旋円偏波に対応する信号成分の位相(相対位相)は、図2に示したとおり、-90°である。 Next, the operations of the 90- degree couplers 31, 32 and the 180- degree couplers 51, 52 will be described in detail with reference to FIGS. 3 to 6. FIG. 3 is a schematic diagram for explaining the operation of the 90- degree couplers 31, 32 and the 180- degree couplers 51, 52. Now, the propagation mode of the phase θa input to the input / output terminal 31a of the 90 ° coupler 31 is represented by S (θa), and the propagation mode of the phase θb input to the input / output terminal 31b of the 90 ° coupler 31 is S (θb). ), The propagation mode of the phase θc input to the input / output terminal 32c of the 90-degree coupler 32 is represented by S (θc), and the propagation mode of the phase θd input to the input / output terminal 32d of the 90-degree coupler 32 is represented by S (θc). It is represented by (θd). For example, since the phase of the signal component corresponding to the right-hand circularly polarized wave in the propagation mode S (θa) input from the input / output terminal 13a to the input / output terminal 31a in FIG. The phase (relative phase) of the signal component corresponding to the right-handed circularly polarized wave in the input propagation mode S (θb) is −90 ° as shown in FIG.
 図4は、右旋円偏波信号を生成する方法を説明するための図であり、図5は、左旋円偏波信号を生成する方法を説明するための図であり、図6は、同軸TEMモードを生成する方法を説明するための図である。図4において、記号R(θ)は、入出力端子31a,31b,32c,32dのいずれかに入力された伝搬モードのうち右旋円偏波に対応する位相θの信号成分を表し、図5において、記号L(θ)は、入出力端子31a,31b,32c,32dのいずれかに入力された伝搬モードのうち左旋円偏波に対応する位相θの信号成分を表し、図6において、記号T(θ)は、入出力端子31a,31b,32c,32dのいずれかに入力された伝搬モードのうち同軸TEMモードに対応する位相θの信号成分を表している。 FIG. 4 is a diagram for explaining a method for generating a right-handed circularly polarized signal, FIG. 5 is a diagram for explaining a method for producing a left-handed circularly polarized signal, and FIG. 6 is a coaxial diagram. It is a figure for explaining a method of generating a TEM mode. In FIG. 4, the symbol R (θ) represents the signal component of the phase θ corresponding to the right-handed circularly polarized wave in the propagation mode input to any of the input / output terminals 31a, 31b, 32c, 32d, and FIG. 6, the symbol L (θ) represents the signal component of the phase θ corresponding to the left-handed circularly polarized wave in the propagation mode input to any of the input / output terminals 31a, 31b, 32c, 32d, and in FIG. T (θ) represents the signal component of the phase θ corresponding to the coaxial TEM mode among the propagation modes input to any of the input / output terminals 31a, 31b, 32c, 32d.
 図3に示されるように、90度カプラ31は、入出力端子31aに入力された伝搬モードS(θa)と、入出力端子31bに入力された伝搬モードS(θb)の位相を90度だけ遅延させて得られる遅延波S(θb-90°)とを重ね合わせる(合成する)ことで合成信号S(θa)+S(θb-90°)を生成する機能を有するように構成され、この合成信号S(θa)+S(θb-90°)を第1の合成信号X(θe)として入出力端子31eから導波路41に出力することができる。同時に、90度カプラ31は、入出力端子31bに入力された伝搬モードS(θb)と、入出力端子31aに入力された伝搬モードS(θa)の位相を90度だけ遅延させて得られる遅延波S(θa-90°)とを重ね合わせる(合成する)ことで合成信号S(θa-90°)+S(θb)を生成する機能を有するように構成され、この合成信号S(θa-90°)+S(θb)を第2の合成信号X(θf)として入出力端子31fから導波路42に出力することができる。後述するように、このような90度カプラ31は、たとえば、H面クロスカプラまたはショートスロットカプラにより構成可能である。 As shown in FIG. 3, the 90-degree coupler 31 has a phase of only 90 degrees between the propagation mode S (θa) input to the input / output terminal 31a and the propagation mode S (θb) input to the input / output terminal 31b. It is configured to have a function of generating a combined signal S (θa) + S (θb-90 °) by superimposing (combining) the delayed wave S (θb-90 °) obtained by delaying, and this combining The signal S (θa) + S (θb−90 °) can be output to the waveguide 41 from the input / output terminal 31e as the first combined signal X 1 (θe). At the same time, the 90-degree coupler 31 delays the phases of the propagation mode S (θb) input to the input / output terminal 31b and the propagation mode S (θa) input to the input / output terminal 31a by 90 degrees. It is configured to have a function of generating a combined signal S (θa-90 °) + S (θb) by superposing (combining) with the wave S (θa-90 °). ) + S (θb) can be output to the waveguide 42 from the input / output terminal 31f as the second combined signal X 2 (θf). As will be described later, such a 90-degree coupler 31 can be composed of, for example, an H-plane cross coupler or a short slot coupler.
 また、図3に示されるように、90度カプラ32は、入出力端子32cに入力された伝搬モードS(θc)と、入出力端子32dに入力された伝搬モードS(θd)の位相を90度だけ遅延させて得られる遅延波S(θd-90°)とを重ね合わせる(合成する)ことで合成信号S(θc)+S(θd-90°)を生成する機能を有するように構成され、この合成信号S(θc)+S(θd-90°)を第3の合成信号Y(θg)として入出力端子32gから導波路43に出力することができる。同時に、90度カプラ32は、入出力端子32dに入力された伝搬モードS(θd)と、入出力端子32cに入力された伝搬モードS(θc)の位相を90度だけ遅延させて得られる遅延波S(θc-90°)とを重ね合わせる(合成する)ことで合成信号S(θd)+S(θc-90°)を生成する機能を有するように構成され、この合成信号S(θd)+S(θc-90°)を第4の合成信号Y(θh)として入出力端子32hから導波路44に出力することができる。後述するように、このような90度カプラ32は、たとえば、H面クロスカプラまたはショートスロットカプラにより構成可能である。 Further, as shown in FIG. 3, the 90-degree coupler 32 sets the phase of the propagation mode S (θc) input to the input / output terminal 32c and the phase of the propagation mode S (θd) input to the input / output terminal 32d to 90 degrees. It is configured to have a function of generating a composite signal S (θc) + S (θd-90 °) by superimposing (combining) the delayed wave S (θd-90 °) obtained by delaying by This combined signal S (θc) + S (θd−90 °) can be output to the waveguide 43 from the input / output terminal 32g as the third combined signal Y 2 (θg). At the same time, the 90-degree coupler 32 delays the phase of the propagation mode S (θd) input to the input / output terminal 32d and the phase of the propagation mode S (θc) input to the input / output terminal 32c by 90 degrees. It is configured to have a function of generating a composite signal S (θd) + S (θc-90 °) by superimposing (combining) the wave S (θc-90 °), and this composite signal S (θd) + S (Θc−90 °) can be output to the waveguide 44 from the input / output terminal 32h as the fourth combined signal Y 1 (θh). As will be described later, such a 90-degree coupler 32 can be composed of, for example, an H-plane cross coupler or a short slot coupler.
 先ず、左旋円偏波信号の生成方法について説明する。180度カプラ51は、入出力端子51eに入力された第1の合成信号X(θe)の信号成分と、入出力端子51gに入力された第3の合成信号Y(θg)の信号成分との組み合わせのうち、互いに逆相の信号成分(互いに位相が180°ずれた信号成分)を合成することで左旋円偏波信号を入出力端子51qから外部に出力する機能を有する。このとき、当該左旋円偏波信号は、入出力端子51pからは出力されない。このような180度カプラ51は、たとえば、マジックT回路またはラットレース回路で構成可能である。 First, a method of generating a left-handed circularly polarized signal will be described. The 180-degree coupler 51 includes a signal component of the first combined signal X 1 (θe) input to the input / output terminal 51e and a signal component of the third combined signal Y 2 (θg) input to the input / output terminal 51g. Among the combinations of 1) and 2), there is a function of outputting a left-handed circularly polarized signal from the input / output terminal 51q to the outside by synthesizing signal components having opposite phases (signal components having a phase difference of 180 °). At this time, the left-handed circularly polarized signal is not output from the input / output terminal 51p. Such a 180-degree coupler 51 can be configured by, for example, a magic T circuit or a rat race circuit.
 より具体的に説明すると、図2に示した位相関係に従い、左旋円偏波信号に対応する信号成分が入出力端子31a,31b,32c,32dに入力される場合を考える。この場合、図5に示されるように、入出力端子31a,31bには、それぞれ、左旋円偏波信号に対応する信号成分L(0°),L(90°)が入力される。90度カプラ31は、入出力端子31aに入力された信号成分L(0°)の位相を90度だけ遅延させて得られる遅延波L(-90°)と、入出力端子31bに入力された信号成分L(90°)とを重ね合わせる。この重ね合わせの際に、遅延波L(-90°)と信号成分L(90°)とは、等振幅を有しかつ互いに逆位相であるため、互いにキャンセルされる。よって、入出力端子31fは、左旋円偏波に対応する信号成分を出力しない。このとき、90度カプラ31は、入出力端子31bに入力された信号成分L(90°)の位相を90度だけ遅延させて得られる遅延波L(0°)と、入出力端子31aに入力された信号成分L(0°)とを重ね合わせて第1の合成信号X(θe=0°)を生成し、当該第1の合成信号X(0°)を入出力端子31eから導波路41に出力する。 More specifically, consider a case where the signal components corresponding to the left-handed circularly polarized signal are input to the input / output terminals 31a, 31b, 32c, 32d according to the phase relationship shown in FIG. In this case, as shown in FIG. 5, the signal components L (0 °) and L (90 °) corresponding to the left-hand circularly polarized signals are input to the input / output terminals 31a and 31b, respectively. The 90-degree coupler 31 delays the phase of the signal component L (0 °) input to the input / output terminal 31a by 90 degrees, and the delayed wave L (-90 °) that is input to the input / output terminal 31b. The signal component L (90 °) is superimposed. At the time of this superposition, the delayed wave L (-90 °) and the signal component L (90 °) have the same amplitude and are in opposite phase to each other, so they are canceled out from each other. Therefore, the input / output terminal 31f does not output the signal component corresponding to the left-handed circularly polarized wave. At this time, the 90-degree coupler 31 inputs the delayed wave L (0 °) obtained by delaying the phase of the signal component L (90 °) input to the input / output terminal 31b by 90 degrees to the input / output terminal 31a. The generated signal component L (0 °) is superposed to generate a first combined signal X 1 (θe = 0 °), and the first combined signal X 1 (0 °) is guided from the input / output terminal 31e. Output to the waveguide 41.
 一方、図5に示される90度カプラ32は、入出力端子32cに入力された信号成分L(180°)の位相を90度だけ遅延させて得られる遅延波L(90°)と、入出力端子32dに入力された信号成分L(270°)とを重ね合わせる。この重ね合わせの際に、遅延波L(90°)と信号成分L(270°)とは、等振幅を有しかつ互いに逆位相であるため、互いにキャンセルされる。よって、入出力端子32hは、左旋円偏波に対応する信号成分を出力しない。このとき、90度カプラ32は、入出力端子32dに入力された信号成分L(270°)の位相を90度だけ遅延させて得られる遅延波L(180°)と、入出力端子32cに入力された信号成分L(180°)とを重ね合わせて第3の合成信号Y(θg=180°)を生成し、当該第3の合成信号Y(180°)を入出力端子32gから導波路43に出力する。 On the other hand, the 90-degree coupler 32 shown in FIG. 5 has a delayed wave L (90 °) obtained by delaying the phase of the signal component L (180 °) input to the input / output terminal 32c by 90 degrees, and The signal component L (270 °) input to the terminal 32d is superposed. At the time of this superposition, the delayed wave L (90 °) and the signal component L (270 °) have equal amplitudes and opposite phases to each other, and thus are cancelled. Therefore, the input / output terminal 32h does not output the signal component corresponding to the left-handed circularly polarized wave. At this time, the 90-degree coupler 32 inputs the delayed wave L (180 °) obtained by delaying the phase of the signal component L (270 °) input to the input / output terminal 32d by 90 degrees, and inputs the delayed wave L (180 °) to the input / output terminal 32c. The combined signal component L (180 °) is superimposed to generate a third combined signal Y 2 (θg = 180 °), and the third combined signal Y 2 (180 °) is guided from the input / output terminal 32g. Output to the waveguide 43.
 したがって、図5に示される180度カプラ51は、互いに180°ずれた位相を有する、第1の合成信号X(0°)及び第3の合成信号Y(180°)を合成することで左旋円偏波信号を入出力端子51qから外部に出力することができる。このとき、180度カプラ52の入出力端子52f,52hには、左旋円偏波に対応する信号成分が入力しないため、180度カプラ52は、左旋円偏波に対応する信号成分を出力しない。 Therefore, the 180-degree coupler 51 shown in FIG. 5 can combine the first combined signal X 1 (0 °) and the third combined signal Y 2 (180 °) having phases shifted from each other by 180 °. The left-handed circularly polarized signal can be output to the outside from the input / output terminal 51q. At this time, since the signal component corresponding to the left-hand circularly polarized wave is not input to the input / output terminals 52f and 52h of the 180-degree coupler 52, the 180-degree coupler 52 does not output the signal component corresponding to the left-hand circularly polarized wave.
 次に、右旋円偏波信号の生成方法について説明する。図3を参照すると、180度カプラ52は、入出力端子52fに入力された第2の合成信号X(θf)の信号成分と、入出力端子52hに入力された第4の合成信号Y(θh)の信号成分との組み合わせのうち、互いに逆相の信号成分(互いに位相が180°ずれた信号成分)を合成することで右旋円偏波信号を入出力端子52qから外部に出力する機能を有する。このとき、当該右旋円偏波信号は、入出力端子52pからは出力されない。このような180度カプラ52は、たとえば、マジックT回路またはラットレース回路で実現可能である。 Next, a method of generating a right-handed circularly polarized signal will be described. Referring to FIG. 3, the 180-degree coupler 52 includes a signal component of the second combined signal X 2 (θf) input to the input / output terminal 52f and a fourth combined signal Y 1 input to the input / output terminal 52h. Out of the combination with the signal component of (θh), the right-handed circularly polarized signal is output to the outside from the input / output terminal 52q by synthesizing the signal components having the opposite phases (the signal components having a phase difference of 180 °). Have a function. At this time, the right-handed circularly polarized signal is not output from the input / output terminal 52p. Such a 180-degree coupler 52 can be realized by, for example, a magic T circuit or a rat race circuit.
 より具体的に説明すると、図2に示した位相関係に従い、右旋円偏波信号に対応する信号成分が入出力端子31a,31b,32c,32dに入力される場合を考える。この場合、図4に示されるように、入出力端子31a,31bには、それぞれ、右旋円偏波信号に対応する信号成分R(0°),R(-90°)が入力される。90度カプラ31は、入出力端子31bに入力された信号成分R(-90°)の位相を90度だけ遅延させて得られる遅延波R(-180°)と、入出力端子31aに入力された信号成分L(0°)とを重ね合わせる。この重ね合わせの際に、遅延波R(-180°)と信号成分R(0°)とは、等振幅を有しかつ互いに逆位相であるため、互いにキャンセルされる。よって、入出力端子31eは、右旋円偏波に対応する信号成分を出力しない。このとき、90度カプラ31は、入出力端子31aに入力された信号成分R(0°)の位相を90度だけ遅延させて得られる遅延波R(-90°)と、入出力端子31bに入力された信号成分R(-90°)とを重ね合わせて第2の合成信号X(θf=-90°)を生成し、当該第2の合成信号X(-90°)を入出力端子31fから導波路42に出力する。 More specifically, consider a case where the signal component corresponding to the right-handed circularly polarized signal is input to the input / output terminals 31a, 31b, 32c, 32d according to the phase relationship shown in FIG. In this case, as shown in FIG. 4, the signal components R (0 °) and R (-90 °) corresponding to the right-hand circularly polarized signals are input to the input / output terminals 31a and 31b, respectively. The 90-degree coupler 31 delays the phase of the signal component R (-90 °) input to the input / output terminal 31b by 90 degrees and obtains a delayed wave R (-180 °), which is input to the input / output terminal 31a. The signal component L (0 °) is superimposed. At the time of this superposition, the delayed wave R (−180 °) and the signal component R (0 °) have equal amplitudes and opposite phases to each other, and therefore cancel each other. Therefore, the input / output terminal 31e does not output the signal component corresponding to the right-handed circularly polarized wave. At this time, the 90-degree coupler 31 delays the phase of the signal component R (0 °) input to the input / output terminal 31a by 90 degrees, and the delayed wave R (-90 °) and the input / output terminal 31b. The input signal component R (-90 °) is superposed to generate a second combined signal X 2 (θf = -90 °), and the second combined signal X 2 (-90 °) is input / output. Output from the terminal 31f to the waveguide 42.
 一方、図4に示される90度カプラ32は、入出力端子32dに入力された信号成分R(-270°)の位相を90度だけ遅延させて得られる遅延波R(-360°)と、入出力端子32cに入力された信号成分R(-180°)とを重ね合わせる。この重ね合わせの際に、遅延波R(-360°)と信号成分L(-180°)とは、等振幅を有しかつ互いに逆位相であるため、互いにキャンセルされる。よって、入出力端子32gは、右旋円偏波に対応する信号成分を出力しない。このとき、90度カプラ32は、入出力端子32cに入力された信号成分R(-180°)の位相を90度だけ遅延させて得られる遅延波R(-270°)と、入出力端子32dに入力された信号成分L(-270°)とを重ね合わせて第4の合成信号Y(θg=-270°)を生成し、当該第4の合成信号Y(-270°)を入出力端子32hから導波路44に出力する。 On the other hand, the 90-degree coupler 32 shown in FIG. 4 delays the phase of the signal component R (-270 °) input to the input / output terminal 32d by 90 degrees, and a delayed wave R (-360 °), The signal component R (−180 °) input to the input / output terminal 32c is superimposed. During this superposition, the delayed wave R (−360 °) and the signal component L (−180 °) have the same amplitude and are opposite in phase to each other, and therefore cancel each other. Therefore, the input / output terminal 32g does not output the signal component corresponding to the right-handed circularly polarized wave. At this time, the 90-degree coupler 32 delays the phase of the signal component R (-180 °) input to the input / output terminal 32c by 90 degrees and the delayed wave R (-270 °) and the input / output terminal 32d. The fourth combined signal Y 1 (θg = −270 °) is generated by superimposing it on the signal component L (−270 °) that has been input to, and the fourth combined signal Y 1 (−270 °) is input. Output from the output terminal 32h to the waveguide 44.
 したがって、図4に示される180度カプラ52は、互いに180°ずれた位相を有する、第2の合成信号X(-90°)及び第4の合成信号Y(-270°)を合成することで右旋円偏波信号を入出力端子52qから外部に出力することができる。このとき、180度カプラ51の入出力端子51e,51gには、右旋円偏波に対応する信号成分が入力しないため、180度カプラ51は、右旋円偏波に対応する信号成分を出力しない。 Therefore, the 180-degree coupler 52 shown in FIG. 4 synthesizes the second combined signal X 2 (−90 °) and the fourth combined signal Y 2 (−270 °), which have phases shifted from each other by 180 °. As a result, the right-handed circularly polarized wave signal can be output to the outside from the input / output terminal 52q. At this time, since the signal component corresponding to the right-hand circularly polarized wave is not input to the input / output terminals 51e and 51g of the 180-degree coupler 51, the 180-degree coupler 51 outputs the signal component corresponding to the right-hand circularly polarized wave. do not do.
 次に、同軸TEMモードの生成方法について説明する。180度カプラ51は、入出力端子51e,51gに入力された同相の信号成分を合成することで同軸TEMモードを入出力端子51pから外部に出力する機能を有する。このとき、当該同軸TEMモードは、入出力端子51qからは出力されない。同様に、180度カプラ52は、入出力端子52f,52hに入力された同相の信号成分を合成することで同軸TEMモードを入出力端子52pから外部に出力する機能を有する。このとき、当該同軸TEMモードは、入出力端子52qからは出力されない。 Next, the method of generating the coaxial TEM mode will be described. The 180-degree coupler 51 has a function of outputting the coaxial TEM mode from the input / output terminal 51p to the outside by synthesizing the in-phase signal components input to the input / output terminals 51e and 51g. At this time, the coaxial TEM mode is not output from the input / output terminal 51q. Similarly, the 180-degree coupler 52 has a function of outputting the coaxial TEM mode from the input / output terminal 52p to the outside by synthesizing the in-phase signal components input to the input / output terminals 52f and 52h. At this time, the coaxial TEM mode is not output from the input / output terminal 52q.
 より具体的に説明すると、図2に示した位相関係に従い、同軸TEMモードに対応する信号成分が入出力端子31a,31b,32c,32dに入力される場合を考える。この場合は、図6に示されるように、入出力端子31a,31b,32c,32dには、すべて同相の信号成分T(0°)が入力されるので、90度カプラ31,32は、入出力端子31e,31f,32g,32hから、同一位相を有する、第1の合成信号X(θe)、第2の合成信号X(θf)、第3の合成信号Y(θg)及び第4の合成信号Y(θh)を出力することができる。よって、180度カプラ51は、同一位相を有する、第1の合成信号X(θe)及び第3の合成信号Y(θg)を合成することで同軸TEMモード(第1の同軸TEMモード)を入出力端子51pから外部に出力し、同時に、180度カプラ52は、同一位相を有する、第2の合成信号X(θf)及び第4の合成信号Y(θh)を合成することで同軸TEMモード(第2の同軸TEMモード)を入出力端子52pから外部に出力することとなる。このとき、同軸TEMモードは、入出力端子51q,52qからは出力されない。 More specifically, consider a case where signal components corresponding to the coaxial TEM mode are input to the input / output terminals 31a, 31b, 32c, 32d in accordance with the phase relationship shown in FIG. In this case, as shown in FIG. 6, since the input / output terminals 31a, 31b, 32c, and 32d are all input with the in-phase signal component T (0 °), the 90- degree couplers 31 and 32 are not connected. output terminals 31e, 31f, 32 g, from 32h, have the same phase, the first synthesized signal X 1 (.theta.e), the second composite signal X 2 (.theta.f), the third combined signal Y 2 ([theta] g) and the The composite signal Y 1 (θh) of 4 can be output. Therefore, the 180-degree coupler 51 combines the first combined signal X 1 (θe) and the third combined signal Y 2 (θg), which have the same phase, in the coaxial TEM mode (first coaxial TEM mode). Is output from the input / output terminal 51p to the outside, and at the same time, the 180-degree coupler 52 combines the second combined signal X 2 (θf) and the fourth combined signal Y 1 (θh) having the same phase. The coaxial TEM mode (second coaxial TEM mode) is output from the input / output terminal 52p to the outside. At this time, the coaxial TEM mode is not output from the input / output terminals 51q and 52q.
 以上に説明したように実施の形態1の給電回路1は、アンテナ入出力端100から入力された広帯域信号に含まれる、2つの同軸TEMモード、左旋円偏波信号及び右旋円偏波信号を分離することができる。非特許文献1に開示されている給電回路では、周波数依存性を有する90度移相器が使用されていたため、広帯域で良好なアイソレーション特性を得ることが難しく、回路サイズの小型化が難しいという課題がある。これに対し、実施の形態1の給電回路1は、90度移相器を使用せずに、同軸TEMモード、左旋円偏波信号及び右旋円偏波信号を分離することができるので、広帯域での良好なアイソレーション特性と回路サイズの小型化とを実現することができる。 As described above, the power feeding circuit 1 according to the first embodiment includes two coaxial TEM modes, a left-hand circularly polarized signal and a right-hand circularly polarized signal, which are included in the wideband signal input from the antenna input / output terminal 100. Can be separated. In the power supply circuit disclosed in Non-Patent Document 1, since a 90-degree phase shifter having frequency dependence is used, it is difficult to obtain good isolation characteristics in a wide band, and it is difficult to reduce the circuit size. There are challenges. On the other hand, the power feeding circuit 1 according to the first embodiment can separate the coaxial TEM mode, the left-hand circularly polarized signal, and the right-hand circularly polarized signal without using the 90-degree phase shifter, so that the broadband It is possible to realize a good isolation characteristic and a small circuit size.
 また、偏分波器10の分岐導波路13A~13Dのうち、空間的に隣り合う分岐導波路13A,13Bの組と、空間的に隣り合う分岐導波路13C,13Dの組とを用いて偏波分離が行われるので、給電回路1の回路サイズを小さくしやすいという利点がある。さらに、180度カプラ51,52の配置選択の自由度が大きいという利点もある。たとえば、180度カプラ51,52が立体的に交差するように配置されても、偏波分離を行う構成を得ることができる。したがって給電回路1の製造が容易という利点がある。 Further, among the branching waveguides 13A to 13D of the demultiplexer 10, a set of spatially adjacent branching waveguides 13A and 13B and a set of spatially adjacent branching waveguides 13C and 13D are used for polarization. Since the wave separation is performed, there is an advantage that the circuit size of the feeding circuit 1 can be easily reduced. Furthermore, there is an advantage that the degree of freedom in selecting the arrangement of the 180- degree couplers 51 and 52 is large. For example, even if the 180- degree couplers 51 and 52 are arranged so as to intersect three-dimensionally, it is possible to obtain a configuration for performing polarization separation. Therefore, there is an advantage that the power feeding circuit 1 can be easily manufactured.
 なお、給電回路1は、入出力端子51p,51q,52p,52qに入力された信号に基づいて広帯域信号を生成し、当該広帯域信号を多周波共用アンテナ(図示せず)に出力することもできる。 The power feeding circuit 1 can also generate a wideband signal based on the signals input to the input / output terminals 51p, 51q, 52p, 52q and output the wideband signal to a multi-frequency shared antenna (not shown). ..
実施の形態2.
 次に、上記した実施の形態1の給電回路1の具体的な構造例を実施の形態2として以下に説明する。図7は、給電回路1の具体的な構造例を示す斜視図である。図7に示されるX軸、Y軸及びZ軸は、互いに直交するものとする。また、図8は、Z軸正方向からみたときの図7の給電回路1の上面図である。なお、図1に示した高周波数帯円偏波発生器60の構造は示されていない。
Embodiment 2.
Next, a specific structure example of the power supply circuit 1 of the above-described first embodiment will be described below as a second embodiment. FIG. 7 is a perspective view showing a specific structural example of the power feeding circuit 1. The X axis, Y axis, and Z axis shown in FIG. 7 are assumed to be orthogonal to each other. Further, FIG. 8 is a top view of the power feeding circuit 1 of FIG. 7 when viewed from the Z-axis positive direction. The structure of the high frequency band circular polarization generator 60 shown in FIG. 1 is not shown.
 図7に示される給電回路1は、ターンスタイル型OMT(OrthoMode Transducer)からなる偏分波器10と、2個のH面クロスカプラからなる90度カプラ(第1及び第2の90度カプラ)31,32と、2個の導波管型のマジックT回路からなる180度カプラ(第1及び第2の180度カプラ)51,52と、偏分波器10と90度カプラ31との間を結合する屈曲導波管からなる導波路21,22と、偏分波器10と90度カプラ32との間を結合する屈曲導波管からなる導波路23,24と、90度カプラ31,32と180度カプラ51,52との間を結合する4本の矩形導波管からなる導波路41~44とを備えて構成されている。 The power supply circuit 1 shown in FIG. 7 is a 90-degree coupler (first and second 90-degree couplers) that is composed of a turn-style OMT (OrthoMode Transducer) and a demultiplexer 10 and two H-plane cross couplers. Between 31 and 32, 180-degree couplers (first and second 180-degree couplers) 51 and 52 each composed of two waveguide type magic T circuits, and between the demultiplexer 10 and the 90-degree coupler 31. Waveguides 21 and 22 made of bent waveguides, coupling waveguides 23 and 24 made of bent waveguides coupling the demultiplexer 10 and the 90-degree coupler 32, and a 90- degree coupler 31, 32 and the 180 degree couplers 51 and 52 are coupled to each other, and the waveguides 41 to 44 are formed of four rectangular waveguides.
 図9は、実施の形態2の偏分波器10の斜視図である。図9に示されるように偏分波器10は、筒状導体11,12の中心軸から外側に向けて放射状に延在する4本の矩形導波管からなる分岐導波路13A,13B,13C,13Dを有している。分岐導波路13A,13B,13C,13Dの外側端部は、それぞれ、偏分波器10の入出力端子13a,13b,13c,13dを構成する。 FIG. 9 is a perspective view of the polarization splitter 10 according to the second embodiment. As shown in FIG. 9, the demultiplexer 10 includes branch waveguides 13A, 13B, and 13C that are four rectangular waveguides that extend radially outward from the central axes of the tubular conductors 11 and 12. , 13D. The outer ends of the branch waveguides 13A, 13B, 13C, and 13D form the input / output terminals 13a, 13b, 13c, and 13d of the polarization demultiplexer 10, respectively.
 図10は、図9に示した偏分波器10のA1-A1線における断面構造を示す概略図である。図10に示されるように、筒状導体11の入出力端10pに入力された高周波数帯の信号は、筒状導体11の内側導波空間を導波管モードとして伝搬し、偏分波器10の裏側(Z軸負方向側)の入出力端10sから高周波数帯偏波分離回路60(図1)に出力される。また、入出力端10qに入力された低周波数帯の信号は、筒状導体11,12間に形成されている導波空間を伝搬した後に、分岐導波路13A,13B,13C,13Dに分配される。 FIG. 10 is a schematic diagram showing a cross-sectional structure taken along the line A1-A1 of the polarization splitter 10 shown in FIG. As shown in FIG. 10, a high frequency band signal input to the input / output terminal 10p of the tubular conductor 11 propagates in the inner waveguide space of the tubular conductor 11 as a waveguide mode, and the demultiplexer It is output to the high frequency band polarization separation circuit 60 (FIG. 1) from the input / output end 10s on the back side (negative side of the Z-axis) of 10. The low-frequency band signal input to the input / output terminal 10q is distributed to the branch waveguides 13A, 13B, 13C, and 13D after propagating in the waveguide space formed between the cylindrical conductors 11 and 12. It
 図11は、実施の形態2の4本の屈曲導波管からなる導波路21,22,23,24の構成を示す斜視図である。図11及び図8に示されるように、導波路23を構成する屈曲導波管は、偏分波器10の分岐導波路13Cの一端と結合する135度H面ベンドHBcと、90度E面ベンドEBcからなる内側屈曲部と、当該屈曲導波管の側壁面に対して90°の角度で延在する複数の段差面23Bs,23Bsを有する階段状の外側屈曲部(コーナカット部)23Bとを有している。外側屈曲部23Bの段差面23Bs,23Bsは、導波路23を伝搬する信号の反射による損失を低減させるために設けられており、たとえばエンドミルを用いた機械加工により形成可能である。ここで、段差面23Bs,23Bsの数は2個に限らず、3個以上の段差面が設けられてもよい。 FIG. 11 is a perspective view showing the configuration of the waveguides 21, 22, 23, and 24 formed of the four bent waveguides of the second embodiment. As shown in FIGS. 11 and 8, the bending waveguide forming the waveguide 23 includes a 135 degree H-plane bend HBc and a 90 degree E-plane that are coupled to one end of the branching waveguide 13C of the demultiplexer 10. An inner bent portion made of the bend EBc, and a step-shaped outer bent portion (corner cut portion) 23B having a plurality of step surfaces 23Bs and 23Bs extending at an angle of 90 ° with respect to the side wall surface of the bent waveguide. have. The step surfaces 23Bs and 23Bs of the outer bent portion 23B are provided to reduce the loss due to the reflection of the signal propagating in the waveguide 23, and can be formed by machining using an end mill, for example. Here, the number of step surfaces 23Bs and 23Bs is not limited to two, and three or more step surfaces may be provided.
 同様に、導波路21を構成する屈曲導波管は、偏分波器10の分岐導波路13Aの一端と結合する135度H面ベンドHBaと、90度E面ベンドEBaからなる内側屈曲部と、当該屈曲導波管の側壁面に対して90°の角度で延在する複数の段差面21Bs,21Bsを有する階段状の外側屈曲部(コーナカット部)21Bとを有し、導波路22を構成する屈曲導波管は、偏分波器10の分岐導波路13Bの一端と結合する135度H面ベンドHBbと、90度E面ベンドEBbからなる内側屈曲部と、当該屈曲導波管の側壁面に対して90°の角度で延在する複数の段差面22Bs,22Bsを有する階段状の外側屈曲部(コーナカット部)22Bとを有し、導波路24を構成する屈曲導波管は、偏分波器10の分岐導波路13Dの一端と結合する135度H面ベンドHBdと、90度E面ベンドEBdからなる内側屈曲部と、当該屈曲導波管の側壁面に対して90°の角度で延在する複数の段差面24Bs,24Bsを有する階段状の外側屈曲部(コーナカット部)24Bとを有している。 Similarly, the bending waveguide forming the waveguide 21 includes a 135-degree H-plane bend HBa coupled to one end of the branching waveguide 13A of the demultiplexer 10 and an inner bend portion formed of a 90-degree E-plane bend EBa. A stepwise outer bent portion (corner cut portion) 21B having a plurality of step surfaces 21Bs, 21Bs extending at an angle of 90 ° with respect to the side wall surface of the bent waveguide, The bending waveguide to be formed is a 135 ° H-plane bend HBb coupled to one end of the branching waveguide 13B of the demultiplexer 10, an inner bending portion made of a 90 ° E-plane bend EBb, and the bending waveguide of the bending waveguide. The bent waveguide forming the waveguide 24 has a stepwise outer bent portion (corner cut portion) 22B having a plurality of step surfaces 22Bs and 22Bs extending at an angle of 90 ° with respect to the side wall surface. , An inner bent portion formed of a 135 ° H-plane bend HBd coupled to one end of the branch waveguide 13D of the demultiplexer 10 and a 90 ° E-face bend EBd, and 90 ° to the side wall surface of the bent waveguide. And a stepped outer bent portion (corner cut portion) 24B having a plurality of step surfaces 24Bs and 24Bs extending at an angle of.
 図12は、実施の形態2の90度カプラ31を構成するH面クロスカプラの斜視図である。図12に示されるH面クロスカプラは、同一面上に配置された広壁面31Wと、4個のH面ベンドと、4本の矩形導波管とを有している。4本の矩形導波管の端部は、それぞれ、90度カプラ31の入出力端子31a,31b,31e,31fを形成している。このH面クロスカプラは、入出力端子31aから入出力端子31eまで延在する導波路(導波管路)と、入出力端子31bから入出力端子31fまで延在する導波路(導波管路)とが中央部で十字状に交差する構造を有している。90度カプラ32も、90度カプラ31と同様の構造を有していればよい。なお、90度カプラ31,32の内部に整合素子(図示せず)が配置されてもよい。 FIG. 12 is a perspective view of an H-plane cross coupler which constitutes the 90-degree coupler 31 of the second embodiment. The H-plane cross coupler shown in FIG. 12 has wide wall surfaces 31W arranged on the same plane, four H-plane bends, and four rectangular waveguides. The ends of the four rectangular waveguides form the input / output terminals 31a, 31b, 31e, 31f of the 90-degree coupler 31, respectively. This H-plane cross coupler includes a waveguide (waveguide conduit) extending from the input / output terminal 31a to the input / output terminal 31e and a waveguide (waveguide conduit) extending from the input / output terminal 31b to the input / output terminal 31f. ) And have a structure that intersects in a cross shape at the center. The 90-degree coupler 32 may have the same structure as the 90-degree coupler 31. A matching element (not shown) may be arranged inside the 90- degree couplers 31 and 32.
 図13は、実施の形態2の180度カプラ51を構成する導波管型のマジックT回路の斜視図である。図13に示されるマジックT回路は、4個の入出力端子51g,51e,51p,51qを構成する4個の開口端を有している。180度カプラ52も、180度カプラ51と同様の構造を有していればよい。 FIG. 13 is a perspective view of a waveguide type magic T circuit that constitutes the 180-degree coupler 51 of the second embodiment. The magic T circuit shown in FIG. 13 has four open ends forming four input / output terminals 51g, 51e, 51p, and 51q. The 180-degree coupler 52 may have the same structure as the 180-degree coupler 51.
 図7に示されるように、90度カプラ31,32は、135度H面ベンドHBa,HBb,HBc,HBd及び90度E面ベンドEBa,EBb,EBc,EBd(図11)を介して偏分波器10と接続され、かつ、H面ベンド及びE面ベンドを介して180度カプラ51,52(マジックT回路)と接続されている。また、図7に示されるように、180度カプラ51,52は、互いに物理的に干渉しないようにZ軸方向(管軸方向)に互いの位置をずらして配置されている。180度カプラ51と90度カプラ31との間の接続長は、180度カプラ51と90度カプラ32との間の接続長と同じであり、かつ、180度カプラ52と90度カプラ31との間の接続長も、180度カプラ52と90度カプラ32との間の接続長と同じである。図7に示されるように、右旋円偏波を出力する入出力端子52qと左旋円偏波を出力する入出力端子51qとは、給電回路1の上面方向(Z軸方向)からみたときに給電回路1の中心位置に配置されており、かつ、偏分波器10の中心軸に沿って配置されている。さらに、図8に示されるように、同軸TEMモードを出力する入出力端子51p,52pは、互いに逆方向を向くように配置されている。 As shown in FIG. 7, the 90- degree couplers 31 and 32 are biased via the 135-degree H-plane bends HBa, HBb, HBc, HBd and the 90-degree E-plane bends EBa, EBb, EBc, and EBd (FIG. 11). It is connected to the wave device 10 and is also connected to the 180-degree couplers 51 and 52 (magic T circuit) via the H-plane bend and the E-plane bend. Further, as shown in FIG. 7, the 180- degree couplers 51 and 52 are arranged so as to be displaced from each other in the Z-axis direction (pipe axis direction) so as not to physically interfere with each other. The connection length between the 180-degree coupler 51 and the 90-degree coupler 31 is the same as the connection length between the 180-degree coupler 51 and the 90-degree coupler 32, and the 180-degree coupler 52 and the 90-degree coupler 31 are the same. The connection length between them is also the same as the connection length between the 180-degree coupler 52 and the 90-degree coupler 32. As shown in FIG. 7, the input / output terminal 52q that outputs a right-handed circularly polarized wave and the input / output terminal 51q that outputs a left-handed circularly polarized wave when viewed from the upper surface direction (Z-axis direction) of the power feeding circuit 1. It is arranged at the central position of the power feeding circuit 1 and along the central axis of the polarization splitter 10. Further, as shown in FIG. 8, the input / output terminals 51p and 52p for outputting the coaxial TEM mode are arranged so as to face opposite directions.
 したがって、本実施の形態の給電回路1は、偏分波器10の中心軸(筒状導体11,12の中心軸)に関して幾何学的にほぼ対称な構造を有しており、回路サイズの小型化が実現されていることが分かる。導波路41,43の長さを同一長とし、かつ、導波路42,44の長さを同一長とすれば、導波路43,44の長さを同一長としなくても、所定の位相関係を得ることができる。したがって、180度カプラ51,52のそれぞれの位置調整を厳密に行う必要がないため、給電回路1を容易に製造することができる。また、90度カプラ31,32は、導波路21,22,23,24の135度H面ベンドHBa,HBb,HBc,HBdを介して偏分波器10と接続されるので、給電回路1の製造が容易であるという効果もある。 Therefore, the power feeding circuit 1 of the present embodiment has a structure that is geometrically symmetric with respect to the central axis of the demultiplexer 10 (the central axes of the cylindrical conductors 11 and 12), and has a small circuit size. It can be seen that the realization has been realized. If the lengths of the waveguides 41 and 43 are the same and the lengths of the waveguides 42 and 44 are the same, even if the lengths of the waveguides 43 and 44 are not the same, a predetermined phase relationship is obtained. Can be obtained. Therefore, since it is not necessary to strictly adjust the positions of the 180- degree couplers 51 and 52, the power feeding circuit 1 can be easily manufactured. Further, the 90- degree couplers 31 and 32 are connected to the polarization demultiplexer 10 via the 135-degree H-plane bends HBa, HBb, HBc, and HBd of the waveguides 21, 22, 23, and 24. There is also an effect that the manufacturing is easy.
 図14は、図7に示した給電回路1のアイソレーション特性の計算結果を示すグラフである。グラフの横軸は、使用周波数帯域の中心周波数で正規化された正規化周波数、縦軸はアンテナ入出力端100から低周波数帯の同軸TEMモードを入力した場合に入出力端子51q,52qにそれぞれ出力されるアイソレーション量(単位:dB)を示している。実線は、偏分波器10の入出力端と180度カプラ51の入出力端子51qとの間の通過特性を表し、点線は、偏分波器10の入出力端と180度カプラ52の入出力端子52qとの間の通過特性を表す。図14のグラフに示されるように、中心周波数(正規化周波数「1」)だけでなく、中心周波数から外れた周波数領域でもアイソレーション特性は良好であり、広帯域で良好なアイソレーション特性が実現されている。 FIG. 14 is a graph showing the calculation result of the isolation characteristic of the power feeding circuit 1 shown in FIG. The horizontal axis of the graph is the normalized frequency normalized by the center frequency of the frequency band used, and the vertical axis is input / output terminals 51q and 52q when the low frequency coaxial TEM mode is input from the antenna input / output terminal 100. The output isolation amount (unit: dB) is shown. The solid line represents the pass characteristic between the input / output terminal of the demultiplexer 10 and the input / output terminal 51q of the 180 degree coupler 51, and the dotted line represents the input / output terminal of the demultiplexer 10 and the input of the 180 degree coupler 52. The pass characteristic with the output terminal 52q is shown. As shown in the graph of FIG. 14, not only the center frequency (normalized frequency “1”), but also the isolation characteristic is good not only in the frequency range deviating from the center frequency, but also in the wide band, good isolation characteristics are realized. ing.
 なお、偏分波器10の多重円筒構造は、2重円筒構造に限定されない。図15は、3重円筒構造の偏分波器10Aの概略断面図である。図15に示されるように、偏分波器10Aは、筒状導体12と、この筒状導体12の内側に同軸状に配置された筒状導体11Aと、筒状導体11Aの内側にさらに同軸状に配置された筒状導体14と、この筒状導体14と筒状導体11Aとの間に形成された導波空間から放射状に延びる分岐導波路(矩形導波管)15B,15D,…とを備えている。筒状導体14と分岐導波路15B,15D,…とでターンスタイル型OMTが構成される。 Note that the multi-cylinder structure of the demultiplexer 10 is not limited to the double cylinder structure. FIG. 15 is a schematic cross-sectional view of a polarization demultiplexer 10A having a triple cylindrical structure. As shown in FIG. 15, the demultiplexer 10A includes a tubular conductor 12, a tubular conductor 11A coaxially arranged inside the tubular conductor 12, and a coaxial conductor inside the tubular conductor 11A. Cylindrical conductors 14 arranged in a circle, and branch waveguides (rectangular waveguides) 15B, 15D, ... Radially extending from a waveguide space formed between the cylindrical conductor 14 and the cylindrical conductor 11A. Is equipped with. The cylindrical conductor 14 and the branch waveguides 15B, 15D, ... Form a turnstile OMT.
 図15に示されるように、入出力端10paに入力された高周波数帯の信号は、筒状導体14の内側導波空間を導波管モードとして伝搬し、偏分波器10Aの裏側(Z軸負方向側)の入出力端10saから高周波数帯偏波分離回路60(図1)に出力可能である。また、入出力端10qに入力された第1低周波数帯の信号は、筒状導体11A,12間に形成されている導波空間を伝搬した後に、分岐導波路13A,13B,13C,13Dに分配される。さらに、入出力端10pbに入力された第2低周波数帯の信号は、筒状導体11A,14間に形成されている導波空間を伝搬した後に、分岐導波路15B,15D,…に分配される。分岐導波路15B,15D,…の入出力端子15b,15d,…に上記実施の形態1,2の偏波分離回路部分と同構成の回路が結合されてもよい。この場合、複数の周波数帯で円偏波信号と同軸TEMモードとを分離することができるという効果が得られる。 As shown in FIG. 15, the high frequency band signal input to the input / output terminal 10pa propagates in the inner waveguide space of the tubular conductor 14 as a waveguide mode, and is transmitted to the rear side (Z It is possible to output to the high frequency band polarization separation circuit 60 (FIG. 1) from the input / output terminal 10sa on the negative side of the axis). In addition, the signal in the first low frequency band input to the input / output terminal 10q propagates through the waveguide space formed between the cylindrical conductors 11A and 12 and then enters the branch waveguides 13A, 13B, 13C and 13D. Distributed. Further, the signal in the second low frequency band input to the input / output terminal 10pb propagates through the waveguide space formed between the cylindrical conductors 11A and 14 and is then distributed to the branch waveguides 15B, 15D, .... It A circuit having the same configuration as the polarization separation circuit portion of the first and second embodiments may be coupled to the input / output terminals 15b, 15d, ... Of the branch waveguides 15B, 15D ,. In this case, the effect that the circularly polarized signal and the coaxial TEM mode can be separated in a plurality of frequency bands is obtained.
 また、上記したH面クロスカプラからなる90度カプラ31,32の代わりに、ショートスロットカプラまたはハイブリッドカプラが使用されてもよい。図16は、90度カプラ31,32の各々に代替しうるショートスロットカプラ61の正面図であり、図17は、90度カプラ31,32の各々に代替しうるハイブリッドカプラ71の正面図である。図16に示すようにショートスロットカプラ61は、4個の入出力端子61a,61b,61c,61dと、各々が同一面上に配置された一対の広壁面61f,61gと、広壁面61f,61gの間に形成されて入出力端子61a,61b,61c,61dの間を結合する導波路とを備える。広壁面61f,61gは、ショートスロットカプラ61の厚み方向に対向している。 Also, a short slot coupler or a hybrid coupler may be used instead of the 90- degree couplers 31 and 32 composed of the H-plane cross coupler described above. 16 is a front view of a short slot coupler 61 that can be substituted for each of the 90- degree couplers 31 and 32, and FIG. 17 is a front view of a hybrid coupler 71 that can be substituted for each of the 90- degree couplers 31 and 32. .. As shown in FIG. 16, the short slot coupler 61 includes four input / output terminals 61a, 61b, 61c and 61d, a pair of wide wall surfaces 61f and 61g arranged on the same plane, and wide wall surfaces 61f and 61g. And a waveguide for coupling the input / output terminals 61a, 61b, 61c, 61d. The wide wall surfaces 61f and 61g face each other in the thickness direction of the short slot coupler 61.
 また、図17に示すようにハイブリッドカプラ71は、当該ハイブリッドカプラ71の4個の入出力端71a,71b,71c,71dを有する4個のツイスト導波管72,73,74,75と、ツイスト導波管72,73,74,75の端部に結合されたブランチインカプラ76とを備えている。ツイスト導波管72,73,74,75の各々は、矩形導波管が管軸を中心に90°ツイストした(ねじれた)構造を有している。ブランチインカプラ76は、ツイスト導波管72,73,74,75の間を結合する導波路を有する。 Further, as shown in FIG. 17, the hybrid coupler 71 includes four twisted waveguides 72, 73, 74 and 75 having four input / output terminals 71a, 71b, 71c and 71d of the hybrid coupler 71 and a twisted pair. A branch-in coupler 76 coupled to the ends of the waveguides 72, 73, 74 and 75. Each of the twisted waveguides 72, 73, 74 and 75 has a structure in which a rectangular waveguide is twisted (twisted) by 90 ° about the tube axis. The branch-in coupler 76 has a waveguide that couples the twisted waveguides 72, 73, 74, and 75.
実施の形態3.
 次に、上記した実施の形態1の給電回路1の具体的な他の構造例を実施の形態3として以下に説明する。実施の形態3の給電回路2の構造は、図11に示した導波路21,22,23,24に代えて図18に示す導波路81,82,83,84を有する点を除いて、実施の形態2の給電回路1の構造と同じである。図19は、図18に示した偏分波器10及び導波路81~84の上面図である。
Embodiment 3.
Next, another specific structural example of the power supply circuit 1 of the above-described first embodiment will be described below as a third embodiment. The structure of the power feeding circuit 2 of the third embodiment is implemented except that the waveguides 81, 82, 83, 84 shown in FIG. 18 are replaced with the waveguides 21, 22, 23, 24 shown in FIG. This is the same as the structure of the power feeding circuit 1 of the second aspect. 19 is a top view of the polarization splitter 10 and the waveguides 81 to 84 shown in FIG.
 図18及び図19に示されるように、導波路83を構成する屈曲導波管は、偏分波器10の分岐導波路13Cの一端と結合する135度H面ベンドHBcと、90度E面ベンドEBcからなる内側屈曲部と、当該屈曲導波管の側壁面に対して傾斜角度で延在する複数の段差面83Bs,83Bsを有する階段状の外側屈曲部(コーナカット部)83Bとを有している。外側屈曲部83Bの段差面83Bs,83Bsは、導波路23を伝搬する信号の反射による損失を低減させるために設けられており、たとえばエンドミルを用いた機械加工により形成可能である。ここで、段差面83Bs,83Bsの数は2個に限らず、1個または3個以上の段差面が設けられてもよい。 As shown in FIGS. 18 and 19, the bent waveguide forming the waveguide 83 includes a 135-degree H-plane bend HBc and a 90-degree E-plane that are coupled to one end of the branching waveguide 13C of the demultiplexer 10. An inner bent portion made of the bend EBc and a stepped outer bent portion (corner cut portion) 83B having a plurality of step surfaces 83Bs and 83Bs extending at an inclination angle with respect to the side wall surface of the bent waveguide are provided. is doing. The step surfaces 83Bs and 83Bs of the outer bent portion 83B are provided to reduce loss due to reflection of a signal propagating in the waveguide 23, and can be formed by, for example, machining using an end mill. Here, the number of step surfaces 83Bs, 83Bs is not limited to two, and one or three or more step surfaces may be provided.
 分岐導波路13Cと屈曲導波管の外側屈曲部83Bとの間の距離が短いと、偏分波器10から分岐導波路13Cに出力された信号の波面が管壁に対して斜めの状態で外側屈曲部83Bに伝搬するため、良好な反射特性が得られない可能性がある。そこで、外側屈曲部83Bに伝搬する信号の波面が管壁に対し垂直となるように135度H面ベンドHBcと90度E面ベンドEBcとの間の距離を長くすることができるが、この場合は、回路サイズが大きくなる。あるいは、135度H面ベンドHBcに代えて、円弧状導波路を使用することもできるが、この場合も回路サイズが大きくなるという問題がある。そこで、本実施の形態では、伝搬信号の波面形状に応じて、管壁に対する段差面83Bs,83Bsの角度を変化させているので、回路サイズを大きくせずに、良好な反射特性を得ることができる。 When the distance between the branch waveguide 13C and the outer bent portion 83B of the bent waveguide is short, the wavefront of the signal output from the demultiplexer 10 to the branch waveguide 13C is oblique to the tube wall. Since the light propagates to the outer bent portion 83B, good reflection characteristics may not be obtained. Therefore, the distance between the 135 ° H-plane bend HBc and the 90 ° E-plane bend EBc can be increased so that the wavefront of the signal propagating to the outer bent portion 83B is perpendicular to the tube wall. Increases the circuit size. Alternatively, an arcuate waveguide can be used instead of the 135 degree H-plane bend HBc, but this also has a problem that the circuit size becomes large. Therefore, in the present embodiment, since the angles of the step surfaces 83Bs and 83Bs with respect to the tube wall are changed according to the wavefront shape of the propagation signal, it is possible to obtain good reflection characteristics without increasing the circuit size. it can.
 同様に、導波路81を構成する屈曲導波管は、偏分波器10の分岐導波路13Aの一端と結合する135度H面ベンドHBaと、90度E面ベンドEBaからなる内側屈曲部と、当該屈曲導波管の側壁面に対して傾斜角度で延在する複数の段差面81Bs,81Bsを有する階段状の外側屈曲部(コーナカット部)81Bとを有し、導波路82を構成する屈曲導波管は、偏分波器10の分岐導波路13Bの一端と結合する135度H面ベンドHBbと、90度E面ベンドEBbからなる内側屈曲部と、当該屈曲導波管の側壁面に対して傾斜角度で延在する複数の段差面82Bs,82Bsを有する階段状の外側屈曲部(コーナカット部)82Bとを有し、導波路84を構成する屈曲導波管は、偏分波器10の分岐導波路13Dの一端と結合する135度H面ベンドHBdと、90度E面ベンドEBdからなる内側屈曲部と、当該屈曲導波管の側壁面に対して傾斜角度で延在する複数の段差面84Bs,84Bsを有する階段状の外側屈曲部(コーナカット部)84Bとを有している。 Similarly, the bending waveguide forming the waveguide 81 has an 135 ° H-face bend HBa coupled to one end of the branching waveguide 13A of the demultiplexer 10 and an inner bent portion made of a 90 ° E-face bend EBa. And a stepwise outer bent portion (corner cut portion) 81B having a plurality of step surfaces 81Bs and 81Bs extending at an inclination angle with respect to the side wall surface of the bent waveguide, forming a waveguide 82. The bent waveguide is composed of a 135 degree H-plane bend HBb coupled to one end of the branching waveguide 13B of the demultiplexer 10, an inner bend formed of a 90 degree E-plane bend EBb, and a side wall surface of the bent waveguide. The bent waveguide forming the waveguide 84 has a stepwise outer bent portion (corner cut portion) 82B having a plurality of step surfaces 82Bs and 82Bs extending at an inclination angle with respect to 135 degree H plane bend HBd which couple | bonds with one end of the branch waveguide 13D of the container 10, and the inside bend part which consists of 90 degree E plane bend EBd, and it extends at an inclination angle with respect to the side wall surface of the said bending waveguide. It has a stepwise outer bent portion (corner cut portion) 84B having a plurality of step surfaces 84Bs, 84Bs.
 図20は、実施の形態2の給電回路1の反射特性を示すグラフであり、図21は、実施の形態3の給電回路2の反射特性を示すグラフである。図20及び図21のグラフは、それぞれ、偏分波器10のアンテナ側端子の、直交する2つのTE11モードの反射特性を実線と点線で示している。これらのグラフにおいて、横軸は、使用周波数帯域の中心周波数で正規化された正規化周波数、縦軸は、反射量(単位:dB)を示す。正規化周波数0.92~1.08の範囲においては、図20の場合の反射量最悪値が約-18dBであるのに対し、図21の場合の反射量は約-20dBであり、実施の形態3では、実施の形態2と比べると反射特性が向上していることが確認される。 FIG. 20 is a graph showing the reflection characteristic of the power feeding circuit 1 of the second embodiment, and FIG. 21 is a graph showing the reflection characteristic of the power feeding circuit 2 of the third embodiment. The graphs of FIG. 20 and FIG. 21 respectively show the reflection characteristics of two orthogonal TE11 modes of the antenna side terminal of the demultiplexer 10 by a solid line and a dotted line. In these graphs, the horizontal axis represents the normalized frequency normalized by the center frequency of the used frequency band, and the vertical axis represents the reflection amount (unit: dB). In the normalized frequency range of 0.92 to 1.08, the worst value of the reflection amount in the case of FIG. 20 is about −18 dB, whereas the reflection amount in the case of FIG. 21 is about −20 dB. It is confirmed that the form 3 has improved reflection characteristics as compared with the form 2 of the embodiment.
 なお、外側屈曲部81B,82B,83B,84Bの各々における段差面の数は、2個に限らず、1個あるいは3個以上であってもよい。また、外側屈曲部81B,82B,83B,84Bの各々において、複数の段差面に傾斜角度が同じでもよいし、あるいは、段差面ごとに異なる傾斜角度が形成されてもよい。さらに、外側屈曲部81B,82B,83B,84Bの各々における段差面の傾斜角度を、135度H面ベンドから離れるにつれて小さくするように、あるいは、外側屈曲部81B,82B,83B,84Bの各々における段差面の傾斜角度を、135度H面ベンドに近づくにつれて大きくするように設定してもよい。これにより、より良好な反射特性が得られる。 The number of step surfaces in each of the outer bent portions 81B, 82B, 83B, 84B is not limited to two, and may be one or three or more. Further, in each of the outer bent portions 81B, 82B, 83B, 84B, a plurality of step surfaces may have the same inclination angle, or different step surfaces may have different inclination angles. Further, the inclination angle of the step surface in each of the outer bent portions 81B, 82B, 83B, 84B is made smaller as it goes away from the 135 degree H-plane bend, or in each of the outer bent portions 81B, 82B, 83B, 84B. The inclination angle of the step surface may be set to increase as it approaches the 135 degree H-plane bend. As a result, better reflection characteristics can be obtained.
 以上、図面を参照して本発明に係る種々の実施の形態について述べた。これら実施の形態は本発明の例示であり、これら実施の形態以外の様々な実施の形態もあり得る。たとえば、図7に示す構造では、入出力端子51p,52pが互いに逆方向を向いているが、これに限定されるものではない。入出力端子51p,52pが互いに同一方向を向くように上記実施の形態の構成が変形されてもよい。 The various embodiments according to the present invention have been described above with reference to the drawings. These embodiments are examples of the present invention, and there may be various embodiments other than these embodiments. For example, in the structure shown in FIG. 7, the input / output terminals 51p and 52p face in opposite directions, but the invention is not limited to this. The configuration of the above-described embodiment may be modified so that the input / output terminals 51p and 52p face the same direction.
 また、実施の形態1,2,3において、入出力端子51p,52pの出力を合成する分配合成器が設けられてもよい。この場合、入出力端子51p,52pの個々の出力を利用する場合と比べると、より大きな電力の同軸TEMモードを利用することが可能となる。図22は、実施の形態1の変形例に係る給電回路1Aの構成を概略的に示す図である。図22に示される給電回路1Aの構成は、分配合成器90を追加で備える点を除いて、実施の形態1の給電回路1の構成と同じである。分配合成器90は、入出力端子51p,52pの出力を合成して自己の入出力端子90pから同軸TEMモードを出力する合成器として機能することができる。また、入出力端子90pに入力された信号を2つの信号に分配し、当該2つの信号をそれぞれ入出力端子51p,52pに出力する分配器として機能することができる。 In addition, in the first, second, and third embodiments, a distributor / combiner that combines the outputs of the input / output terminals 51p and 52p may be provided. In this case, it is possible to use the coaxial TEM mode of larger power, as compared with the case of using the individual outputs of the input / output terminals 51p and 52p. FIG. 22 is a diagram schematically showing a configuration of power supply circuit 1A according to the modification of the first embodiment. The configuration of power supply circuit 1A shown in FIG. 22 is the same as the configuration of power supply circuit 1 of the first embodiment except that distribution distributor 90 is additionally provided. The distributor / combiner 90 can function as a combiner that combines the outputs of the input / output terminals 51p and 52p and outputs the coaxial TEM mode from its own input / output terminal 90p. Further, it can function as a distributor that divides the signal input to the input / output terminal 90p into two signals and outputs the two signals to the input / output terminals 51p and 52p, respectively.
 なお、本発明の範囲内において、上記実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。 Note that, within the scope of the present invention, it is possible to freely combine the above-described embodiments, modify any constituent element of each embodiment, or omit any constituent element of each embodiment.
 本発明に係る給電回路は、たとえば、天体観測用の電波望遠鏡、衛星通信システム及び衛星放送システムにおける多周波共用アンテナで使用されることに適している。 The power supply circuit according to the present invention is suitable for use in, for example, a radio telescope for astronomical observation, a satellite communication system, and a multi-frequency shared antenna in a satellite broadcasting system.
 1,2,1A 給電回路、10,10A 偏分波器、11,11A,12,14 筒状導体、13A~13D 分岐導波路、15B,15D 分岐導波路、21~24 導波路、21B~24B コーナカット部(外側屈曲部)、31,32 90度カプラ、41~44 導波路、51,52 180度カプラ、60 高周波数帯偏波分離回路、61 ショートスロットカプラ、71 ハイブリッドカプラ、72~75 ツイスト導波管、76 ブランチインカプラ、81~84 導波路、81B~84B コーナカット部(外側屈曲部)、90 分配合成器、100 アンテナ入出力端、HBa~HBd 135度H面ベンド、EBa~EBd 90度E面ベンド。 1, 2, 1A feeding circuit, 10, 10A demultiplexer, 11, 11A, 12, 14 tubular conductor, 13A-13D branch waveguide, 15B, 15D branch waveguide, 21-24 waveguide, 21B-24B Corner cut part (outer bent part), 31, 32 90 degree coupler, 41-44 waveguide, 51, 52 180 degree coupler, 60 high frequency band polarization separation circuit, 61 short slot coupler, 71 hybrid coupler, 72-75 Twisted waveguide, 76 branch-in coupler, 81-84 waveguide, 81B-84B corner cut part (outer bent part), 90 distribution combiner, 100 antenna input / output end, HBa-HBd 135 degree H-plane bend, EBa- EBd 90 degree E side bend.

Claims (12)

  1.  同軸状に配置された複数個の筒状導体を有し、前記複数個の筒状導体のうちのいずれか2つの筒状導体間に形成されている導波空間から、前記複数個の筒状導体の中心軸に関して対称に分岐する第1乃至第4の分岐導波路を有する偏分波器と、
     前記第1乃至第4の分岐導波路のうち隣り合う第1及び第2の分岐導波路からそれぞれ出力された第1の伝搬モード及び第2の伝搬モードを入力とし、前記第2の伝搬モードの位相を90度だけ遅延させて得られる遅延波と前記第1の伝搬モードとを合成することで第1の合成信号を生成すると同時に、前記第1の伝搬モードの位相を90度だけ遅延させて得られる遅延波と前記第2の伝搬モードとを合成することで第2の合成信号を生成する第1の90度カプラと、
     前記第1乃至第4の分岐導波路のうち隣り合う第3及び第4の分岐導波路からそれぞれ出力された第3の伝搬モード及び第4の伝搬モードを入力とし、前記第4の伝搬モードの位相を90度だけ遅延させて得られる遅延波と前記第3の伝搬モードとを合成することで第3の合成信号を生成すると同時に、前記第3の伝搬モードの位相を90度だけ遅延させて得られる遅延波と前記第4の伝搬モードとを合成することで第4の合成信号を生成する第2の90度カプラと、
     前記第1の合成信号及び前記第3の合成信号を入力とし、前記第1の合成信号の信号成分と前記第3の合成信号の信号成分との組み合わせのうち互いに逆相の信号成分を合成することで第1の円偏波信号を第1の出力端子から出力する第1の180度カプラと、
     前記第2の合成信号及び前記第4の合成信号を入力とし、前記第2の合成信号の信号成分と前記第4の合成信号の信号成分との組み合わせのうち互いに逆相の信号成分を合成することで、前記第1の円偏波信号とは直交する第2の円偏波信号を第2の出力端子から出力する第2の180度カプラと
    を備えることを特徴とする給電回路。
    A plurality of tubular conductors arranged coaxially, and a plurality of tubular conductors are formed from a waveguide space formed between any two tubular conductors of the plurality of tubular conductors. A polarization demultiplexer having first to fourth branch waveguides that branch symmetrically with respect to the central axis of the conductor;
    Of the first to fourth branch waveguides, the first propagation mode and the second propagation mode output from the adjacent first and second branch waveguides are input, and the second propagation mode of the second propagation mode is input. A first combined signal is generated by combining a delayed wave obtained by delaying the phase by 90 degrees and the first propagation mode, and at the same time, the phase of the first propagation mode is delayed by 90 degrees. A first 90-degree coupler that generates a second combined signal by combining the obtained delayed wave and the second propagation mode,
    The third propagation mode and the fourth propagation mode output from the adjacent third and fourth branch waveguides of the first to fourth branch waveguides are input, and the fourth propagation mode of the fourth propagation mode is input. The delayed wave obtained by delaying the phase by 90 degrees and the third propagation mode are combined to generate a third combined signal, and at the same time, the phase of the third propagation mode is delayed by 90 degrees. A second 90-degree coupler that generates a fourth combined signal by combining the obtained delayed wave and the fourth propagation mode,
    The first combined signal and the third combined signal are input, and the signal components having opposite phases are combined from the combination of the signal component of the first combined signal and the signal component of the third combined signal. Therefore, a first 180-degree coupler that outputs the first circularly polarized signal from the first output terminal,
    The second combined signal and the fourth combined signal are input, and the signal components having opposite phases are combined from the combination of the signal component of the second combined signal and the signal component of the fourth combined signal. Therefore, the power feeding circuit is provided with a second 180-degree coupler that outputs a second circularly polarized signal that is orthogonal to the first circularly polarized signal from a second output terminal.
  2.  請求項1に記載の給電回路であって、前記第1の180度カプラは、前記第1の合成信号の信号成分と前記第3の合成信号の信号成分との組み合わせのうち互いに同相の信号成分を合成することで第1の同軸TEMモードを第3の出力端子から出力することを特徴とする給電回路。 The power feeding circuit according to claim 1, wherein the first 180-degree coupler has a signal component that is in phase with each other in a combination of a signal component of the first combined signal and a signal component of the third combined signal. A first coaxial TEM mode is output from a third output terminal by synthesizing the above.
  3.  請求項1または請求項2に記載の給電回路であって、前記第2の180度カプラは、前記第2の合成信号の信号成分と前記第4の合成信号の信号成分との組み合わせのうち互いに同相の信号成分を合成することで第2の同軸TEMモードを第4の出力端子から出力することを特徴とする給電回路。 The feed circuit according to claim 1 or 2, wherein the second 180-degree coupler is a combination of the signal component of the second combined signal and the signal component of the fourth combined signal. A power feeding circuit which outputs a second coaxial TEM mode from a fourth output terminal by combining in-phase signal components.
  4.  請求項1に記載の給電回路であって、前記第1の180度カプラ及び前記第2の180度カプラとそれぞれ結合された合成器をさらに備え、
     前記第1の180度カプラは、前記第1の合成信号の信号成分と前記第3の合成信号の信号成分との組み合わせのうち互いに同相の信号成分を合成して前記合成器に出力し、
     前記第2の180度カプラは、前記第2の合成信号の信号成分と前記第4の合成信号の信号成分との組み合わせのうち互いに同相の信号成分を合成して前記合成器に出力し、
     前記合成器は、前記第1の180度カプラの出力と前記第2の180度カプラの出力とを合成することを特徴とする給電回路。
    The power supply circuit according to claim 1, further comprising a combiner coupled to each of the first 180 degree coupler and the second 180 degree coupler,
    The first 180-degree coupler combines the signal components of the first combined signal and the signal component of the third combined signal, which are in phase with each other, and outputs the combined signal components to the combiner,
    The second 180-degree coupler combines the signal components of the second combined signal and the signal component of the fourth combined signal, which are in phase with each other, and outputs the combined signal components to the combiner.
    The power supply circuit, wherein the combiner combines the output of the first 180-degree coupler and the output of the second 180-degree coupler.
  5.  請求項1から請求項3のうちのいずれか1項に記載の給電回路であって、前記第1乃至第4の分岐導波路は、前記中心軸から外側に向けて放射状に延在することを特徴とする給電回路。 The power supply circuit according to any one of claims 1 to 3, wherein the first to fourth branch waveguides extend radially from the central axis toward the outside. Characteristic power supply circuit.
  6.  請求項5に記載の給電回路であって、前記第1乃至第4の分岐導波路は、矩形導波管からなることを特徴とする給電回路。 The power supply circuit according to claim 5, wherein the first to fourth branch waveguides are rectangular waveguides.
  7.  請求項1から請求項3のうちのいずれか1項に記載の給電回路であって、
     前記第1及び第2の分岐導波路の当該一端を前記第1の90度カプラにそれぞれ結合する第1及び第2の屈曲導波管と、
     前記第3及び第4の分岐導波路の当該一端を前記第2の90度カプラにそれぞれ結合する第3及び第4の屈曲導波管と
    をさらに備え、
     前記第1及び第2の屈曲導波管の各々は、90度E面ベンドからなる内側屈曲部と、当該第1及び第2の屈曲導波管の各々の側壁面に対して傾斜する単数または複数の段差面を有する外側屈曲部とを含み、
     前記第3及び第4の屈曲導波管の各々は、90度E面ベンドからなる内側屈曲部と、当該第3及び第4の屈曲導波管の各々の側壁面に対して傾斜する単数または複数の段差面を有する外側屈曲部とを含む、
    ことを特徴とする給電回路。
    The power supply circuit according to any one of claims 1 to 3,
    First and second bent waveguides respectively coupling the one ends of the first and second branch waveguides to the first 90-degree coupler,
    Further comprising third and fourth bent waveguides respectively coupling the one ends of the third and fourth branch waveguides to the second 90-degree coupler,
    Each of the first and second bent waveguides has an inner bent portion made of a 90-degree E-plane bend, and a single sloping with respect to each side wall surface of the first and second bent waveguides. Including an outer bent portion having a plurality of step surfaces,
    Each of the third and fourth bent waveguides has an inner bent portion formed of a 90-degree E-plane bend, and a single sloping with respect to each side wall surface of the third and fourth bent waveguides. An outer bent portion having a plurality of step surfaces,
    A power supply circuit characterized by the above.
  8.  請求項7に記載の給電回路であって、
     前記第1及び第2の屈曲導波管の各々における当該複数の段差面の傾斜角度はそれぞれ異なり、
     前記第3及び第4の屈曲導波管の各々における当該複数の段差面の傾斜角度はそれぞれ異なる、
    ことを特徴とする給電回路。
    The power supply circuit according to claim 7,
    The inclination angles of the plurality of step surfaces in each of the first and second bent waveguides are different,
    The inclination angles of the plurality of step surfaces in each of the third and fourth bent waveguides are different.
    A power supply circuit characterized by the above.
  9.  請求項1から請求項3のうちのいずれか1項に記載の給電回路であって、
     前記第1の90度カプラは、同一面上に配置された広壁面を有するH面クロスカプラからなり、
     前記第2の90度カプラは、同一面上に配置された広壁面を有するH面クロスカプラからなる、
    ことを特徴とする給電回路。
    The power supply circuit according to any one of claims 1 to 3,
    The first 90-degree coupler comprises an H-plane cross coupler having wide wall surfaces arranged on the same plane,
    The second 90-degree coupler is an H-plane cross coupler having wide wall surfaces arranged on the same plane,
    A power supply circuit characterized by the above.
  10.  請求項1から請求項3のうちのいずれか1項に記載の給電回路であって、
     前記第1の90度カプラは、同一面上に配置された広壁面を有するショートスロットカプラからなり、
     前記第2の90度カプラは、同一面上に配置された広壁面を有するショートスロットカプラからなる、
    ことを特徴とする給電回路。
    The power supply circuit according to any one of claims 1 to 3,
    The first 90-degree coupler comprises a short slot coupler having wide wall surfaces arranged on the same plane,
    The second 90-degree coupler comprises a short slot coupler having wide wall surfaces arranged on the same plane,
    A power supply circuit characterized by the above.
  11.  請求項1から請求項3のうちのいずれか1項に記載の給電回路であって、
     前記第1の90度カプラは、複数の第1のツイスト導波管と、前記複数の第1のツイスト導波管の端部に結合されたブランチラインカプラとを含み、
     前記第2の90度カプラは、複数の第2のツイスト導波管と、前記複数の第2のツイスト導波管の端部に結合されたブランチラインカプラとを含む、
    ことを特徴とする給電回路。
    The power supply circuit according to any one of claims 1 to 3,
    The first 90 degree coupler includes a plurality of first twisted waveguides and a branch line coupler coupled to an end of the plurality of first twisted waveguides,
    The second 90 degree coupler includes a plurality of second twisted waveguides and a branch line coupler coupled to an end of the plurality of second twisted waveguides.
    A power supply circuit characterized by the above.
  12.  請求項1から請求項3のうちのいずれか1項に記載の給電回路であって、
     前記第1の180度カプラは、マジックT回路からなり、
     前記第2の180度カプラは、マジックT回路からなる、
    ことを特徴とする給電回路。
    The power supply circuit according to any one of claims 1 to 3,
    The first 180 degree coupler comprises a magic T circuit,
    The second 180 degree coupler comprises a magic T circuit,
    A power supply circuit characterized by the above.
PCT/JP2018/041825 2018-11-12 2018-11-12 Power feeding circuit WO2020100189A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020556477A JP6865903B2 (en) 2018-11-12 2018-11-12 Power supply circuit
PCT/JP2018/041825 WO2020100189A1 (en) 2018-11-12 2018-11-12 Power feeding circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041825 WO2020100189A1 (en) 2018-11-12 2018-11-12 Power feeding circuit

Publications (1)

Publication Number Publication Date
WO2020100189A1 true WO2020100189A1 (en) 2020-05-22

Family

ID=70730422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041825 WO2020100189A1 (en) 2018-11-12 2018-11-12 Power feeding circuit

Country Status (2)

Country Link
JP (1) JP6865903B2 (en)
WO (1) WO2020100189A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839154A (en) * 2021-09-01 2021-12-24 电子科技大学 Mode converter from rectangular waveguide TE10 mode to circular waveguide rotating TE11 mode
WO2023274552A1 (en) * 2021-07-02 2023-01-05 European Space Agency (Esa) Compact feed system with developable waveguide h-plane directional coupler

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104201U (en) * 1980-12-17 1981-08-14
JPS58220502A (en) * 1982-06-04 1983-12-22 アンドリユ−・コ−ポレ−シヨン Copolarized microwave signal transmitting and receiving coupler and coupling method
JPS6181201U (en) * 1984-10-31 1986-05-29
JPH1051208A (en) * 1996-07-30 1998-02-20 Nec Corp Branching filter
JPH11112201A (en) * 1997-10-06 1999-04-23 Nec Corp Branching filter
US20110181479A1 (en) * 2010-01-26 2011-07-28 Raytheon Company Method and apparatus for tri-band feed with pseudo-monopulse tracking
US20150097747A1 (en) * 2013-10-04 2015-04-09 Ki Min HWANG Antenna system for simultaneous triple-band satellite communication
US20160134004A1 (en) * 2014-11-12 2016-05-12 Ayecka Communication Systems Dual band antenna configuration

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104201U (en) * 1980-12-17 1981-08-14
JPS58220502A (en) * 1982-06-04 1983-12-22 アンドリユ−・コ−ポレ−シヨン Copolarized microwave signal transmitting and receiving coupler and coupling method
JPS6181201U (en) * 1984-10-31 1986-05-29
JPH1051208A (en) * 1996-07-30 1998-02-20 Nec Corp Branching filter
JPH11112201A (en) * 1997-10-06 1999-04-23 Nec Corp Branching filter
US20110181479A1 (en) * 2010-01-26 2011-07-28 Raytheon Company Method and apparatus for tri-band feed with pseudo-monopulse tracking
US20150097747A1 (en) * 2013-10-04 2015-04-09 Ki Min HWANG Antenna system for simultaneous triple-band satellite communication
US20160134004A1 (en) * 2014-11-12 2016-05-12 Ayecka Communication Systems Dual band antenna configuration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023274552A1 (en) * 2021-07-02 2023-01-05 European Space Agency (Esa) Compact feed system with developable waveguide h-plane directional coupler
CN113839154A (en) * 2021-09-01 2021-12-24 电子科技大学 Mode converter from rectangular waveguide TE10 mode to circular waveguide rotating TE11 mode
CN113839154B (en) * 2021-09-01 2022-10-11 电子科技大学 Mode converter from rectangular waveguide TE10 mode to circular waveguide rotation TE11 mode

Also Published As

Publication number Publication date
JP6865903B2 (en) 2021-04-28
JPWO2020100189A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US9742069B1 (en) Integrated single-piece antenna feed
JPH02214307A (en) Horn array antenna
CN109687142B (en) Double-frequency duplex full-time single-pulse self-tracking satellite-satellite feed source
EP1612888B1 (en) Antenna device
JP6865903B2 (en) Power supply circuit
JP5822635B2 (en) Antenna feed circuit
US3560976A (en) Feed system
JPH11225017A (en) Antenna system
JP3908071B2 (en) Rotary joint
WO2013050361A1 (en) Mode generator device for a satellite antenna system and method for producing the same
KR101491725B1 (en) Duplex band feedhorn
JP6785631B2 (en) Antenna feeding circuit
US11476553B2 (en) Wideband orthomode transducer
JPH11112201A (en) Branching filter
US20160315382A1 (en) Antenna power supply circuit
JP7012910B2 (en) Demultiplexer
KR101491723B1 (en) Duplex band feedhorn
JPS6046561B2 (en) Dual polarization antenna feeder
JPS6014501A (en) Polarization coupler
JPS6251801A (en) Orthogonal polarizer
JP2825261B2 (en) Coaxial horn antenna
KR101536341B1 (en) Adapter for antenna
WO2022201457A1 (en) Demultiplexer
JP2555925B2 (en) Rotational waveguide coupler and antenna feeding device
JPH1117415A (en) Waveguide branching filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556477

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940291

Country of ref document: EP

Kind code of ref document: A1