WO2020099797A1 - Verre texture luminescent pour serre - Google Patents

Verre texture luminescent pour serre Download PDF

Info

Publication number
WO2020099797A1
WO2020099797A1 PCT/FR2019/052712 FR2019052712W WO2020099797A1 WO 2020099797 A1 WO2020099797 A1 WO 2020099797A1 FR 2019052712 W FR2019052712 W FR 2019052712W WO 2020099797 A1 WO2020099797 A1 WO 2020099797A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
glass
texture
glass article
article according
Prior art date
Application number
PCT/FR2019/052712
Other languages
English (en)
Inventor
Michele Schiavoni
Emmanuel Mimoun
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to EP19835444.1A priority Critical patent/EP3879969A1/fr
Publication of WO2020099797A1 publication Critical patent/WO2020099797A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/243Collecting solar energy
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/08Rolling patterned sheets, e.g. sheets having a surface pattern
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/08Glass having a rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/48Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific function
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Definitions

  • the invention relates to the field of glazing with high transparency, in particular for the manufacture of horticultural greenhouses.
  • glazings which exhibit both a high light transmission and preferably a high scattering of incident light (for example as measured by the level of blur, most often called haze according to the English term) are particularly suitable for entering the constitution of greenhouses.
  • the glasses used in the construction of greenhouses consist of float glass, preferably extra-clear glass (like the Diamant TM glass of the applicant company).
  • glazing with a smooth surface is mainly used because of their strong light transmission.
  • a smooth surface is a surface for which the surface irregularities are smaller than the wavelength of the radiation incident on the surface, so that the radiation is not deflected by these surface irregularities.
  • the incident radiation is then very essentially transmitted in a specular (or regular) manner by the surface so that incident radiation on the glazing with a given angle of incidence is transmitted by the glazing with a transmission angle depending on the angle of incidence.
  • specular transmission implies that an incident ray is transmitted in the form of a single ray.
  • a transmitted ray always includes a diffuse component, the latter being however negligible in the case of a so-called specular transmission and of a smooth surface.
  • most glazing has a smooth surface on both sides and thus a high light transmission. They are obtained from flat float glass (also known as “float” glass), the float process consisting in pouring the glass ribbon out of the oven onto a bath of metal such as tin.
  • float glass also known as “float” glass
  • Such smooth-surface glazing by virtue of its specular transmission, has the drawback of concentrating the light rays transmitted at hot spots located in the greenhouse. Certain types of crops can suffer from the existence of such hot spots and / or inhomogeneous lighting within the greenhouse.
  • Textured glasses have been proposed, on the contrary configured to diffuse and distribute the light evenly inside the greenhouse, which implies a positive impact for horticultural production as indicated above. Indeed, the diffusion effect avoids hot spots on the plants and allows better penetration of light in all areas of the greenhouse and ultimately obtaining more homogeneous lighting. In such glazing, it is sought this time to obtain a hemispherical light transmission (TLH, sometimes denoted THEM) as high as possible, the TLH being in this case the transmission averaged over several angles of incidence. For each angle of incidence, the entire light intensity passing through the glazing is measured whatever the angle of emergence.
  • TSH hemispherical light transmission
  • the applicant company has thus already developed a textured glass intended more particularly for use for horticultural greenhouses, as described in patent application WO2016 / 170261.
  • the texturing of the glazing has thus been adapted to such use, and in particular makes it possible to obtain a high blur, while keeping a TLH substantially equal to that of an identical glass but devoid of texture.
  • a texturing is voluntarily applied on the glass substrate in order to diffuse the light through the greenhouse and to avoid the concentrations of light at certain points inside the greenhouse (see page 1 lines 3-15 of WO2016 / 170261).
  • Textured glasses such as those described in WO2016 / 170261 have the drawback, however, of having generally a lower light transmission compared to the same non-textured glass, which is opposed to the primary function sought for a glass with high light transmission for horticultural production.
  • certain current extra-clear glasses in particular those of the Albarino® type sold by the applicant company, can be obtained by a lamination process.
  • such a method is the only one making it possible to obtain extraclear glasses having a very low linear absorption coefficient of wavelengths between 300 and 800 nm, at a low cost, in particular a very low absorption coefficient.
  • rolling is meant a process in which the glass is obtained by a manufacturing process by plastic deformation. This deformation is obtained by continuous compression of the glass in a softened state between two cylinders. It is known that such a process results in the appearance of defects visible to the naked eye which greatly affect the perceived quality of the glazing by the end user.
  • the object of the present invention is thus to provide a laminated glazing having a surface appearance without apparent defects, and providing under external solar radiation and / or under auxiliary radiation, optimal light transmission and suitable radiation, in particular of length wave essentially between 600 and 750 nm, for the equipment it protects such as a greenhouse.
  • the present invention relates to a laminated glass article, comprising at least one extra-clear glass substrate, having first and second main faces, said substrate having on one of said main faces a relief texture, said texture being such that its average slope Pm is greater than 0.5 ° and less than or equal to 7 °, limits included, preferably less than or equal at 5 °, terminals included, said substrate further comprising at least one layer comprising phosphors on one of said main faces of said glass substrate, or phosphor particles dispersed on one of said main faces of said glass substrate, said phosphors being made up of 'A material converting at least part of the incident radiation outside said glazing, in particular solar radiation, into radiation extracted by at least one other main face or a section of said glazing.
  • the phosphor emits main radiation centered on a wavelength between 600 and 750 nm.
  • the layer comprising phosphors or said phosphor particles is / are deposited on the main face of said substrate having said texture.
  • the layer comprising phosphors or said phosphor particles is / are deposited on the opposite main face of the substrate having said texture.
  • the glass article consists of a laminated structure from two substrates linked by a particularly plastic interlayer, preferably PVB (polyvinyl butyral) or an adhesive, the phosphor being included in said interlayer sheet or deposited on the surface of this one.
  • a particularly plastic interlayer preferably PVB (polyvinyl butyral) or an adhesive
  • a first substrate is made of extra-clear glass and the other substrate is also made of extra-clear glass or alternatively of another material, in particular a plastic which can be rigid or flexible.
  • This second plastic material is for example made of polycarbonate, PMMA
  • the glass article comprises two substrates of extra-clear glass, at least one of the substrates having on at least one of its faces turned outwards a relief texture, said texture being such that its average slope Pm is greater than 0, 5 ° and less than or equal to 7 °, limits included, said two substrates being linked by a layer of a plastic material such as PVB, said layer comprising said phosphor or said phosphor being deposited on the surface of said plastic layer.
  • a plastic material such as PVB
  • the glass article has a texture on two sides, the average slope of at least one texture, preferably of the two textures, being between 0.5 ° and 7 °, limits included in particular between 0.5 ° and 5 °, terminals included.
  • the average slope of the texture is between 0.5 ° and 3 °, limits included, especially between 0.5 ° and 2 °, limits included.
  • the average slope of the texture is between 3 ° and 7 °, limits included, especially between 3 ° and 5 °, limits included.
  • the substrate is made of a mineral glass, comprising less than 0.030%, in particular less than 0.020%, or even less than 0.015% of iron oxide, expressed as Fe 2 03.
  • the linear absorption at 650 nm of the glass substrate (s) is less than 2 nrr 1 , preferably less than 1 nrr 1 , or even less than 0.5 nrr 1 .
  • the substrate has the following mass composition, limits included:
  • the invention also relates to a light concentrator comprising a glass article as described above and at least one photoelectric device arranged on the opposite face of the substrate having said texture or on a edge of said article.
  • the light concentrator can comprise a glass article as described above and at least one external light source such as an LED device, arranged along a section of the glass substrate, said source providing a lighting function for the section of said substrate, the latter constituting a guide from said light to the phosphor.
  • an external light source such as an LED device
  • the light concentrator comprises a glass article as described above, at least one external light source such as an LED device, disposed on a first edge of the glass substrate and at least one photoelectric device arranged on the opposite face of the substrate having said texture or on a edge of said article.
  • the glazing may also include one or more anti-reflective layers to increase light transmission (TLH).
  • the anti-reflective coating can be deposited on one or both sides of the glazing, and in particular on the non-textured side. This anti-reflection effect can be obtained by depositing a layer or several layers forming a stack, by chemical attack or any other suitable technique.
  • the anti-reflective effect is chosen to be effective at wavelengths 400-700 nm.
  • An anti-reflection coating (anti-reflection layer or stack of anti-reflection effect layers) generally has a thickness in the range from 10 to 500 nm.
  • Such antireflection layers are in particular advantageously chosen from layers of porous silicon oxide, in particular of the type of those described in the publication WO2008 / 059170.
  • the invention is useful for acting as glazing allowing light to pass through greenhouses for horticulture, but could also be applied to other applications requiring high light transmission and suitable lighting such as a horticultural greenhouse but also a veranda, a lobby, public space.
  • the invention relates, however, first of all to a horticultural greenhouse equipped with at least one glazing as previously described.
  • a luminescent solar concentrator for a greenhouse comprising a laminated glass substrate, the specific composition of which allows the whole of the incident radiation crossing it over long distances through the glass matrix, with in particular the possibility of internal reflections on the surface of the substrate, without significant absorption of the radiation passing through.
  • the texturing of the glass is also configured to maintain an ideal guiding capacity in the sense described above, in combination with said composition, while visually masking surface defects, and possibly providing a diffusing effect.
  • the concentrator modifies the wavelength of part of the incident light, which in particular makes the part absorbed and then re-emitted more efficient for growing crops.
  • the transparent substrate comprises a relief texture on at least one of its two main faces, such as:
  • the average slope Pm in degrees of this textured face is greater than 1 ° and less than 5 °, limits included, and
  • each of the faces having a respective average slope (Pnrn, Pnri2).
  • Each slope Pnrn, Pnri2 can have an average slope between 0.5 ° and 7 °, limits included, in particular between 0.5 and 5 °, limits included.
  • each slope Pnrn, Pnri2 is greater than or equal to 0.5 ° and less than or equal to 3 °, limits included.
  • at least one of said textures has an average slope greater than or equal to 0.5 °, the sum of the slopes Pnrn, Pnri2 being greater than 0.5 °.
  • the slope at a point on the surface of a sheet designates the angle formed between the tangent plane at this point and the general plane of the substrate.
  • the measurement of the slope at a point is carried out from the measurement of the variation in height in the vicinity of this point and relative to the general plane of the substrate.
  • the average slope Pm of the surface is determined from the measurement of slopes at points distributed over a surface according to a square mesh of period 20 pm.
  • the devices or profilometers
  • the measurement of the average slope Pm of the surface is determined from the measurement of slopes at points distributed over a square mesh of period 20 micrometers. We then calculate the average of the slope of all these points.
  • patterns are preferably produced whose size is of the order of 100 micrometers to 3 millimeters, in particular from 500 micrometers to 2 millimeters.
  • size is meant the diameter of the smallest circle containing the pattern.
  • the texture patterns can be parallel linear patterns like parallel prisms or be patterns that can fit in a circle like cones or pyramids.
  • the patterns of the texture have for example an average depth (or average height) of between approximately 5 and 50 micrometers, on the basis of the same measurement conditions as described above and according to standard IS04287 (1997).
  • the substrate is made of mineral glass and thus has high mechanical strength. It preferably comprises iron oxide in a total weight content (expressed as Fe 2 C> 3) of at most 0.030%, in particular at most 0.020%, or even 0.015%, and is preferably of the silico- soda-lime.
  • Fe 2 C> 3 less than 0.030%, preferably less than 0.020%, more preferably less than 0.015%.
  • the present characteristics relate in particular to extra-clear type glasses, and more particularly to the Albarino TM glass matrices, sold by Saint-Gobain.
  • These glass substrates have the advantage of having a light transmission greater than 90.5%, again preferably greater than 90.8%, still preferentially greater than 91.0%, still preferentially greater than 91.2%, still preferentially greater than 91.4% for a glass thickness of 4 mm, or even for a thickness of 6 mm . They are thus distinguished from so-called “clear” glasses whose light transmission is generally less than 90%.
  • the light transmission is measured in% according to standard NF EN410-2011 (illuminant D65; 2 ° Observer) with a Lambda950 TM spectrometer from Perkin Elmer.
  • the rolling is carried out in such a way that at least one of the metal cylinders has a textured surface which corresponds to the negative of the texture to be obtained on at least one face of the glass.
  • the patterns of the texture are for example bumps or prisms such as cones or pyramids, which can for example be registered at the base of the substrate in a circle.
  • the relief patterns (texture) can come from holes / cavities / pits made, generally in the form of circles, formed on the surface and in the thickness of the substrate, and obtained by rolling rolls having relief shapes.
  • the texture is preferably obtained during the rolling of the material constituting the substrate between two rollers, a first roller being with a smooth surface and a second roller being with a textured surface, or the two rollers being with a textured surface.
  • the rolling is hot, in particular in a temperature range from 800 to 1300 ° C.
  • the rolling manufacturing process allows the use of the specific glass compositions described above having a very low absorption coefficient of solar radiation and in particular of its visible part situated between 380 and 800 nm, even though these same compositions with low absorption cannot be used in the float process because they are incompatible with the tin bath used in such a process.
  • the lamination process for obtaining smooth glass is not particularly popular in areas where the visual aspect of the glazing is important because it generally generates localized but very visible surface defects.
  • This drawback is however overcome by my use of a substrate according to the present invention.
  • the weak texture printed on the substrate has the effect according to the invention of masking any localized surface defects, with in the end obtaining a visual appearance of the textured laminated glazing close to that obtained for a smooth glass obtained. by a float process.
  • the phosphors according to the present invention can be of any type: they can in particular be organic compounds such as organic luminescent dyes or minerals. Examples of such compounds are for example described in the publication US 8,674,281 B2 (in particular column 12), this list being of course not exhaustive.
  • FIG. 1 represents a schematic sectional view of a first example of a glass article according to the invention comprising a textured substrate comprising a single textured face, as obtained by rolling;
  • FIG. 2 shows a schematic sectional view of a second example of glass article according to the invention comprising a textured substrate on one side, as obtained by rolling;
  • Figure 3 is a schematic sectional view of a third example of a glass article according to the invention comprising a set of substrates, one of which is textured on one side, at least said textured substrate being obtained by lamination and then bonded by a plastic sheet such as PVB in a structure called laminated.
  • FIG. 4 illustrates a possible embodiment of a concentrator according to the invention, comprising the glass article according to FIG. 2, making it possible to describe its operation.
  • FIG. 5 is a photograph of a top view of an example of texture according to the present invention.
  • the textured substrate 1 in the figures is made of a silica-soda-lime mineral glass with a very low coefficient of linear absorption of visible solar radiation, in particular a glass sold under the reference AlbarinoT TM by the applicant company and of thickness between 3 and 6 mm, obtained by hot rolling between two rollers, the upper roller of which has a smooth surface, while the lower roller has a textured printing surface.
  • the substrate 1 according to FIG. 1 has its first textured face 10, and its second opposite planar face 11.
  • the raised patterns of the textured face 10 correspond to the negative patterns of the textured surface (printing patterns) of the roll.
  • the patterns of the face shown diagrammatically in section in FIG. 1 are formed by a multiplicity of a succession of pyramidal patterns with an irregular base as described in application WO2016 / 17026 and obtained using a roller comprising the negative. such reasons.
  • a layer 4 of a material such as an inorganic material transparent to light, a sol-gel compound transparent to light or even a plastic material transparent to light is deposited on the non-textured side of the glass substrate.
  • This layer further comprises phosphors converting part of the incident light into radiation of another wavelength more particularly suited to the desired use, in particular a wavelength between 600 and 750 nm which is suitable for growth. optimal plants.
  • FIG. 2 The mode illustrated by FIG. 2 is identical to that of FIG. 1, but the layer comprising the phosphors is this time placed on the textured face of the substrate.
  • the interlayer may consist of a layer of glue.
  • the phosphor is included in the interlayer sheet or deposited on the surface thereof.
  • the substrate 1 is made of extra-clear glass and the substrate can also be made of extra-clear glass or any other material, in particular a rigid or flexible plastic.
  • This second substrate can in particular consist of a film which can be unwound on the surface of the first substrate and the interlayer sheet.
  • the second substrate is covered with the phosphor layer on the side of its face in contact with an intermediate sheet. The deposition of the phosphor layer on the surface of the interlayer is thus carried out in a simple and economical manner.
  • FIG. 4 illustrates the operation of an embodiment of the invention concerning a solar concentrator incorporating a glass article according to FIG. 2.
  • the operation described below remains essentially identical if the configurations illustrated by FIGS. 1 and 3 replace that of FIG. 2.
  • Part of the incident solar radiation (illustrated by the arrow 5 in FIG. 4) is transmitted and diffused by layer 4.
  • This part of the incident solar radiation, corresponding to the absorption band of the phosphor is converted via the phosphor into radiation of different wavelength more suited to the intended use.
  • Another part 8 of the incident sunlight ie the rays whose wavelength is not located in the absorption band of the phosphor) is directly transmitted and passes through the substrate without transformation glassmaker towards the interior of the greenhouse.
  • the radiation returned by the phosphor particles is re-emitted isotropically and can undergo several internal reflections on the glass surface until it reaches the opposite surface of the substrate to be extracted there.
  • the path of a light radiation re-emitted in the glass is illustrated by the dotted arrows 6.
  • the texturing of the substrate thus has the primary effect of masking the imperfections of the laminated surface but it also makes it possible concomitantly, thanks at its low average slope Pm, effectively conserving the light beam in the glass by successive internal reflections on its surface, the composition of the glass being further adjusted to greatly limit its absorption, in particular at the emission wavelength of the phosphor.
  • photovoltaic cells 7 are affixed to the opposite surface 11 of the substrate or on its edge so as to recover the radiation passing through the glass (from directly or absorbed then re-emitted) and thus obtain an additional source of energy which can in particular then be used for the proper functioning of the greenhouse, in particular its heating.
  • An economical light concentrator is thus obtained, which guarantees optimum lighting of the greenhouse and this at a wavelength radiation adjusted to the optimal development of the plants.
  • the use of a luminescent concentrator and the optimization of the spectral range of the incident light, as explained previously, can be combined with a laminated glass using a specific formulation as described above.
  • the texture of low average slope makes it possible to mask the point defects due to the process, but is sufficiently weak to allow the propagation of the light without significant loss over a long length of the glazing.
  • the choice of a lower average slope of the texture appears to be an efficient and simple means of distributing the light emitted by the phosphors between the possible photovoltaic cells. present on the surface of the glazing and crops (see Figure 4).
  • preference will be given to such low average slopes of the texture, so as to bring the radiation to said cells via the non-absorbent glass matrix.
  • an extra-clear glass substrate sold by the applicant company under the reference Albarino is manufactured by rolling.
  • the substrate is textured using a printed roller on an outside face.
  • the texture constituted by a repetition of pyramidal patterns with an irregular base in recesses of different sizes as illustrated in Figure 5, the depth being the difference in height between the lightest and darkest points of the figure.
  • the texture depth is around 25 micrometers.
  • the average texture slope as measured by a MIME profilometer, using chromatic confocal technology, is 1 °.
  • an acrylate layer containing a phosphor sold under the reference Lumogen F Red 300 sold by the company BASF is deposited on the rough side of the extra-clear laminated glass, with a volume ratio of around 10%.
  • the layer absorbs incident sunlight whose wavelength is between 480 and 600 nm, with a maximum absorbance at 578 nm (in yellow). The light is re-emitted in a band centered on a wavelength of 618 nm.
  • strips of photovoltaic material polycrystalline silicon
  • the procedure is the same as for Example 1 but in order to benefit from maximizing this time the diffusion of light directly towards the interior of the greenhouse, an average slope of the texture is printed equal to 5 °, with a 5 times greater depth of the patterns, the overall geometry of the texture remaining identical. In this case, only 6W / m 2 is produced via the photovoltaic devices.
  • the light re-emitted in the red is approximately twice as important, and more than compensates for the loss of light transmission due to the absorption of phosphors and the presence of cells, by allowing a more efficient growth of cultures, while producing some energy.
  • a glazing unit is obtained which is capable of being advantageously used in horticultural greenhouses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Article verrier laminé pour serre horticole, comprenant au moins un substrat de verre extra-clair, présentant des première et deuxième faces principales, ledit substrat présentant sur une desdites faces principales une texture en relief, ladite texture étant telle que sa pente moyenne Pm est supérieure à 0,5° et inférieure ou égale à 7°, ledit substrat comprenant en outre au moins une couche comprenant des luminophores sur une desdites faces principales dudit substrat de verre, ou des particules de luminophore dispersées sur une desdites faces principales dudit substrat de verre, lesdits luminophores étant constitués d'un matériau convertissant au moins une partie du rayonnement incident extérieur audit vitrage en un rayonnement extrait par au moins une autre face principale ou une tranche dudit vitrage, dans lequel les luminophores émettent un rayonnement principal centré sur une longueur d'onde comprise entre 600 and 750 nm.

Description

VERRE TEXTURE LUMINESCENT POUR SERRE
L’invention concerne le domaine des vitrages à forte transparence, notamment pour la fabrication de serres horticoles.
Actuellement, des vitrages plans non texturés en surface sont majoritairement utilisés pour la constitution de serres utilisées pour l’horticulture.
Cependant, depuis quelques années, les vitrages pour serres horticoles deviennent des produits de plus en plus techniques. En effet, tout particulièrement dans les climats tempérés, la productivité de la serre augmente proportionnellement au rayonnement solaire que reçoivent les plantes, notamment pendant les périodes à faible ensoleillement.
Par ailleurs, il est connu qu’une transmission diffuse de la lumière solaire incidente à travers le vitrage de la serre permet d’augmenter significativement la productivité. Il s’ensuit que des vitrages qui présentent tout à la fois une haute transmission lumineuse et de préférence une forte diffusion de la lumière incidente (par exemple telle que mesurée par le niveau de flou, le plus souvent nommé haze selon le terme anglais) sont tout particulièrement appropriés pour entrer dans la constitution de serres.
Actuellement les verres utilisés dans la construction des serres sont constitués par du verre float, de préférence extraclair (comme le verre Diamant™ de la société déposante). Au regard de certaines applications comme les serres pour horticultures, des vitrages à surface lisse sont majoritairement utilisés en raison de leur forte transmission lumineuse. De manière usuelle, une surface lisse est une surface pour laquelle les irrégularités de surface sont de dimensions inférieures à la longueur d’onde du rayonnement incident sur la surface, de sorte que le rayonnement n’est pas dévié par ces irrégularités de surface. Le rayonnement incident est alors très essentiellement transmis de manière spéculaire (ou régulière) par la surface de sorte qu’un rayonnement incident sur le vitrage avec un angle d’incidence donné est transmis par le vitrage avec un angle de transmission dépendant de l'angle d'incidence. En théorie, une transmission spéculaire implique qu'un rayon incident est transmis sous la forme d'un rayon unique. En pratique, un rayon transmis comprend toujours une composante diffuse, cette dernière étant cependant négligeable dans le cas d'une transmission dite spéculaire et d’une surface lisse. Actuellement la plupart des vitrages présentent une surface lisse sur leurs deux faces et ainsi une forte transmission lumineuse. Ils sont obtenus à partir de verre plat flotté (dit également verre « float »), le procédé de flottage consistant à déverser le ruban de verre en sortie de four sur un bain de métal comme l’étain. De tels vitrages à surface lisse, de par leur transmission spéculaire, ont pour inconvénient de concentrer les rayons lumineux transmis en des points chauds localisés dans la serre. Certains types de cultures peuvent pâtir de l’existence de tels points chauds et/ou de l’éclairage inhomogène au sein de la serre.
Des verres texturés ont été proposés, au contraire configurés pour diffuser et répartir la lumière de façon homogène à l’intérieur de la serre, ce qui implique un impact positif pour la production horticole comme indiqué précédemment. En effet, l’effet de diffusion évite les points chauds sur les plantes et permet une meilleure pénétration de la lumière dans toutes les zones de la serre et au final l’obtention d’un éclairage plus homogène. Dans de tels vitrages, on cherche à obtenir cette fois une transmission lumineuse hémisphérique (TLH, parfois notée THEM) la plus élevée possible, la TLH étant dans ce cas la transmission moyennée sur plusieurs angles d'incidence. Pour chaque angle d'incidence, on mesure toute l'intensité lumineuse traversant le vitrage quel que soit l'angle d'émergence.
La société déposante a ainsi déjà développé un verre texturé destiné plus particulièrement à un usage pour serres horticoles, tel que décrit dans la demande brevet WO2016/170261. La texturation du vitrage a ainsi été adaptée à une telle utilisation, et permet en particulier l’obtention d’un flou élevé, tout en gardant une TLH sensiblement égale à celle d’un verre identique mais dépourvu de texture. Selon cette publication, il est indiqué qu’une texturation est volontairement appliquée sur le substrat verrier afin de diffuser la lumière à travers la serre et d’éviter les concentrations de lumière en certains points à l’intérieur de la serre (voir page 1 lignes 3-15 de WO2016/170261 ). Les verres texturés tels que ceux décrits dans WO2016/170261 ont cependant pour inconvénient de présenter globalement une plus faible transmission lumineuse comparée au même verre non-texturé, ce qui s’oppose à la fonction première recherchée d’un verre à transmission lumineuse élevée pour la production horticole.
Etant donné la présence selon l’invention d’un luminophore absorbant le rayonnement solaire puis réémettant un rayonnement rouge de manière isotrope sur la face opposée du vitrage, l’homme du métier n’avait plus à résoudre le problème de la diffusion de la lumière abordé dans WO2016/170261 (puisque le luminophore réémet dans toutes les directions le rayonnement incident). Selon un autre aspect de la présente invention, il apparaît également important, notamment pour une application horticole, d’obtenir un rayonnement non seulement homogène, mais également adapté à l’application envisagée, c'est- à-dire dont la nature du rayonnement est optimale pour celle-ci. Par exemple, un tel rayonnement devrait essentiellement avoir une longueur d’onde centrée dans le rouge pour une absorption maximale pour les plantes ou alternativement ou de façon complémentaire une longueur d’onde située dans la gamme de sensibilité maximale pour l’alimentation de cellules photovoltaïques si de tels dispositifs sont également utilisés dans la serre.
En outre, certains verres extra-clairs actuels, notamment ceux du type Albarino® commercialisés par la société déposante, peuvent être obtenus par un procédé de laminage. Un tel procédé est à l’heure actuelle le seul permettant d’obtenir à moindre coût des verres extraclairs présentant un très faible coefficient d’absorption linéique des longueurs d’ondes comprises entre 300 et 800 nm, notamment un très faible coefficient d’absorption linéique d’une radiation à une longueur d’onde de l’ordre de 650 nm. Par laminage, on entend un procédé dans lequel le verre est obtenu par un procédé de fabrication par déformation plastique. Cette déformation est obtenue par compression continue du verre dans un état ramolli entre deux cylindres. Il est connu qu’un tel procédé entraîne l’apparition de défauts visibles à l’œil nu qui nuisent fortement à la qualité perçue du vitrage par l’utilisateur final.
L’objet de la présente invention est ainsi de proposer un vitrage laminé présentant un aspect de surface sans défauts apparents, et fournissant sous le rayonnement solaire extérieur et/ou sous un rayonnement auxiliaire, une transmission lumineuse optimale et un rayonnement adapté, notamment de longueur d’onde essentiellement compris entre 600 et 750 nm, pour l’équipement qu’il protège tel qu’une serre.
Plus particulièrement, la présente invention se rapporte à une article verrier laminé, comprenant au moins un substrat de verre extra-clair, présentant des première et deuxième faces principales, ledit substrat présentant sur une desdites faces principales une texture en relief, ladite texture étant telle que sa pente moyenne Pm est supérieure à 0,5° et inférieure ou égale à 7°, bornes incluses, préférentiellement inférieure ou égale à 5°, bornes incluses, ledit substrat comprenant en outre au moins une couche comprenant des luminophores sur une desdites faces principales dudit substrat de verre, ou des particules de luminophore dispersées sur une desdites faces principales dudit substrat de verre, lesdits luminophores étant constitués d’un matériau convertissant au moins une partie du rayonnement incident extérieur audit vitrage, notamment le rayonnement solaire, en un rayonnement extrait par au moins une autre face principale ou une tranche dudit vitrage.
Selon des modes de réalisation préférés mais non limitatifs de la présente invention :
- Le luminophore émet un rayonnement principal centré sur une longueur d’onde comprise entre 600 et 750 nm.
- La couche comprenant des luminophores ou lesdites particules de luminophore est/sont déposée(s) sur la face principale dudit substrat présentant ladite texture.
- La couche comprenant des luminophores ou lesdites particules de luminophore est/sont déposée(s) sur la face principale opposée du substrat présentant ladite texture.
- L’article verrier est constitué d’une structure feuilletée à partir de deux substrats liés par un intercalaire notamment plastique, de préférence en PVB (polyvinylbutyral) ou encore une colle, le luminophore étant compris dans ledit feuillet intercalaire ou déposé à la surface de celui-ci.
Dans une telle structure, selon un mode préféré, un premier substrat est en verre extra-clair et l’autre substrat est également en verre extra clair ou alternativement en une autre matière, notamment une matière plastique qui peut être rigide ou souple. Cette deuxième matière plastique est par exemple constituée de polycarbonate, de PMMA
(polyméthacrylate de méthyle), de PTFE (polytétrafluoroéthylène), d’ETFE (éthylène tétrafluoroéthylène), de PET (polytéréphtalate d'éthylène), de PU (polyuréthane), de PP(polypropylène), de PE (polyéthylène) sans que cette liste soit cependant exhaustive. L’article verrier comprend deux substrats de verre extra-clair, au moins un des substrats présentant sur au moins une de ses faces tournées vers l’extérieur une texture en relief, ladite texture étant telle que sa pente moyenne Pm est supérieure à 0,5° et inférieure ou égale à 7°, bornes incluses, lesdits deux substrats étant liés par une couche d’une matière plastique tel que le PVB, ladite couche comprenant ledit luminophore ou ledit luminophore étant déposé à la surface de ladite couche plastique.
L’article verrier présente une texture sur deux faces, la pente moyenne d’au moins une texture, de préférence des deux textures, étant comprise entre 0,5° et 7°, bornes incluses notamment entre 0,5° et 5°, bornes incluses.
La pente moyenne de la texture est comprise entre 0,5° et 3°, bornes incluses, notamment entre 0,5° et 2°, bornes incluses.
La pente moyenne de la texture est comprise entre 3° et 7°, bornes incluses, notamment entre 3° et 5°, bornes incluses.
Le substrat est en un verre minéral, comprenant moins de 0,030%, notamment moins de 0,020%, voire moins de 0,015% d’oxyde de fer, exprimé en Fe203.
L’absorption linéique à 650 nm du ou des substrats de verre est inférieure à 2 nrr1, de préférence inférieure à 1 nrr1, voire inférieure 0,5 nrr1.
Le substrat présente la composition massique suivante, bornes incluses:
- Si02 50-75%
- CaO 5-15%
- MgO 0-10%
- Na20 10-20%
- ALOs 0-5%
- K20 0-5%
- moins de 0,030% de Fe2C>3.
L’invention se rapporte également à un concentrateur de lumière comprenant un article verrier tel que décrit précédemment et au moins un dispositif photoélectrique disposé sur la face opposée du substrat présentant ladite texture ou sur une tranche dudit article.
Notamment le concentrateur de lumière peut comprendre un article verrier tel que décrit précédemment et au moins une source de lumière extérieure tel qu’un dispositif LED, disposée selon une tranche du substrat de verre, ladite source fournissant une fonction d’éclairage de la tranche dudit substrat, celui-ci constituant un guide de ladite lumière jusqu’au luminophore.
Selon des modes de réalisation de l’invention, le concentrateur de lumière comprend un article verrier tel que décrit précédemment, au moins une source de lumière extérieure telle qu’un dispositif LED, disposée sur une première tranche du substrat de verre et au moins un dispositif photoélectrique disposé sur la face opposée du substrat présentant ladite texture ou sur une tranche dudit article.
Le vitrage peut comprendre également une ou plusieurs couches antireflets pour augmenter la transmission lumineuse (TLH). Le revêtement antireflet peut être déposé sur l’une ou les deux faces du vitrage, et notamment sur la face non texturée. Cet effet antireflet peut être obtenu par le dépôt d’une couche ou de plusieurs couches formant un empilement, par attaque chimique ou toute autre technique adaptée. L’effet antireflet est choisi pour être efficace aux longueurs d’onde 400-700 nm. Un revêtement anti-reflet (couche anti-reflet ou empilement de couches à effet anti-reflet) a généralement une épaisseur comprise dans le domaine allant de 10 à 500 nm. De telles couches antireflets sont notamment avantageusement choisies parmi les couches en oxyde de silicium poreux, notamment du type de ceux décrits dans la publication W02008/059170.
L’invention est utile pour faire office de vitrage laissant passer la lumière de serres pour l’horticulture, mais pourrait également être appliquée à d’autres applications nécessitant une forte transmission lumineuse et un éclairage adapté comme une serre horticole mais également une véranda, un hall d’accueil, un espace public.
L’invention concerne cependant en tout premier lieu une serre horticole équipée d’au moins un vitrage tel que précédemment décrit.
Selon les principes de la présente invention on obtient ainsi un concentrateur solaire luminescent pour serre comprenant un substrat de verre laminé dont la composition spécifique permet le guidage de l’ensemble du rayonnement incident le traversant sur de longues distances au travers de la matrice verrière, avec notamment la possibilité de réflexions internes sur la surface du substrat, sans absorption significative du rayonnement traversant. Tout particulièrement, selon l’invention, la texturation du verre est également configurée pour conserver une capacité idéale de guidage au sens précédemment décrit, en combinaison avec ladite composition, tout en masquant visuellement les défauts de surface, et en apportant éventuellement un effet diffusant.
Selon un autre aspect avantageux de la présente invention, le concentrateur modifie la longueur d’onde d’une partie de la lumière incidente, ce qui rend en particulier la partie absorbée puis réémise plus efficace pour la croissance des cultures.
Selon des modes de réalisation complémentaires non limitatifs et avantageux pouvant être mis en œuvre :
Le substrat transparent comprend une texture en relief sur au moins l’une de ses deux faces principales, telle que :
lorsque le substrat est texturé sur une seule face, la pente moyenne Pm en degré de cette face texturée est supérieure à 1 ° et inférieure à 5°, bornes incluses, et
lorsque le substrat est texturé sur ses deux faces, chacune des faces présentant une pente moyenne respective (Pnrn, Pnri2). Chaque pente Pnrn, Pnri2 peut présenter une pente moyenne comprise entre 0,5° et 7°, bornes incluses , en particulier entre 0,5 et 5°, bornes incluses. Par exemple chaque pente Pnrn, Pnri2 est supérieure ou égale à 0,5° et inférieure ou égale à 3°, bornes incluses. Alternativement, au moins une desdites textures présente une pente moyenne supérieure ou égale à 0,5°, la somme des pentes Pnrn, Pnri2 étant supérieure à 0,5°.
La pente en un point de la surface d'une feuille désigne l'angle formé entre le plan tangent en ce point et le plan général du substrat. La mesure de la pente en un point est réalisée à partir de la mesure de la variation de hauteur au voisinage de ce point et par rapport au plan général du substrat. La pente moyenne Pm de la surface est déterminée à partir de la mesure de pentes en des points répartis sur une surface selon un maillage carré de période 20 pm. L’homme du métier connaît les appareils (ou profilomètres) capables de réaliser ce type de mesures. Notamment, les mesures ont été effectuées dans le cadre de la présente invention grâce à un profilomètre MIME, utilisant une technologie confocale chromatique. La mesure de la pente moyenne Pm de la surface est déterminée à partir de la mesure de pentes en des points répartis sur un maillage carré de période 20 micromètres. On calcule alors la moyenne de la pente de tous ces points.
Pour obtenir une texture proche de celle souhaitée, on réalise de préférence des motifs dont la taille est de l’ordre de 100 micromètres à 3 millimètres, notamment de 500 micromètres à 2 millimètres. Par taille, on entend le diamètre du plus petit cercle contenant le motif. De préférence les motifs sont jointifs. Les motifs de la texture peuvent être des motifs linéaires parallèles comme des prismes parallèles ou être des motifs pouvant s’inscrire dans un cercle comme des cônes ou des pyramides. Les motifs de la texture présentent par exemple une profondeur moyenne (ou hauteur moyenne) comprise entre environ 5 et 50 micromètres, sur la base des mêmes conditions de mesures que décrites précédemment et selon la norme IS04287 (1997).
Selon un mode de réalisation particulier, comme indiqué précédemment, le substrat est en verre minéral et présente ainsi une grande résistance mécanique. Il comprend préférentiellement de l’oxyde de fer en une teneur pondérale totale (exprimée en Fe2C>3) d’au plus 0,030%, notamment d’au plus 0,020%, voire 0,015%, et est de préférence de type silico-sodocalcique.
Avantageusement, il présente la composition massique suivante :
Si02 50-75%
CaO 5-15%
MgO 0-10%
Na20 10-20%
Al203 0-5%
K20 0-5%
Fe2C>3 : moins de 0,030%, de préférence moins de 0,020%, de préférence encore moins de 0,015%.
Les présentes caractéristiques se rapportent notamment à des verres de type extra-clair, et plus particulièrement aux matrices verrière Albarino™, commercialisées par Saint-Gobain. Ces substrats de verre ont pour avantage de présenter une transmission lumineuse supérieure à 90,5%, encore préférentiellement supérieure à 90,8%, encore préférentiellement supérieure à 91 ,0%, encore préférentiellement supérieure à 91 ,2%, encore préférentiellement supérieure à 91 ,4% pour une épaisseur de verre de 4 mm, voire pour une épaisseur de 6 mm. Ils se distinguent ainsi des verres dits « clairs » dont la transmission lumineuse est généralement inférieure à 90%. Dans l’ensemble du texte, la transmission lumineuse est mesurée en % selon la norme NF EN410- 2011 (illuminant D65 ; 2° Observateur) avec un spectromètre Lambda950™ de chez Perkin Elmer. Le laminage est effectué de telle façon qu’au moins l'un des cylindres métalliques possède une surface texturée qui correspond au négatif de la texture à obtenir sur au moins une face du verre. Les motifs de la texture (reliefs en saillie par rapport à la surface du verre plat en sortie de fabrication) sont par exemple des bosses ou des prismes comme des cônes ou des pyramides, pouvant par exemple s’inscrire à la base du substrat dans un cercle. Les motifs en relief (texture) peuvent être issus de trous/cavités/piqûres réalisés, généralement en forme de cercles, formés à la surface et dans l’épaisseur du substrat, et obtenus par le laminage de rouleaux possédant des formes en relief.
Selon l’invention, la texture est préférentiellement obtenue lors du laminage du matériau constitutif du substrat entre deux rouleaux, un premier rouleau étant à surface lisse et un second rouleau étant à surface texturée, ou les deux rouleaux étant à surface texturée. Pour un verre minéral, le laminage est à chaud, notamment dans un domaine de température allant de 800 à 1300°C. Par le procédé de laminage qui est un procédé simple, nécessitant des installations plus faciles de mise en œuvre que le procédé float, le verre texturé de l’invention est configuré pour présenter des caractéristiques visuelles proches d’un verre flotté lisse. Par ailleurs, le procédé de fabrication par laminage autorise l’utilisation des compositions verrières spécifiques décrites précédemment présentant un très faible coefficient d’absorption du rayonnement solaire et en particulier de sa partie visible située entre 380 et 800 nm, alors même que ces mêmes compositions à faible absorption ne peuvent être utilisées dans le procédé float car incompatibles avec le bain d’étain utilisé dans un tel procédé.
Le procédé de laminage pour l’obtention de verre lisse (obtenu avec des rouleaux à surface lisse) n’est pas particulièrement prisé dans les domaines où l’aspect visuel du vitrage est important car il engendre généralement des défauts de surface localisés mais très visibles. Cet inconvénient est cependant surmonté par ma mise en œuvre d’un substrat selon la présente l’invention. En effet, la faible texture imprimée sur le substrat a pour effet selon l’invention de masquer les éventuels défauts de surface localisés, avec au final l’obtention d’un aspect visuel du vitrage laminé texturé proche de celui obtenu pour un verre lisse obtenu par un procédé float.
Les luminophores selon la présente invention peuvent être de tout type : il peut notamment s’agir de composés organiques comme des colorant luminescents organiques ou de minéraux. Des exemples de tels composés sont par exemple décrits dans la publication US 8,674,281 B2 (notamment colonne 12), cette liste n’étant bien entendu pas exhaustive.
La présente invention est maintenant décrite à l’aide de différents modes de réalisations uniquement illustratifs et nullement limitatifs de la portée de l’invention, et à partir des illustrations ci-jointes, dans lesquelles :
La figure 1 représente une vue schématique en coupe d’un premier exemple d’article verrier selon l’invention comprenant un substrat texturé comprenant une seule face texturée, tel qu’obtenu par laminage ;
- La figure 2 représente une vue schématique en coupe d’un second exemple d’article verrier selon l’invention comprenant un substrat texturé sur une seule face, tel qu’obtenu par laminage ;
La figure 3 est une vue schématique en coupe d’un troisième exemple d’article verrier selon l’invention comprenant un ensemble de substrats dont l’un est texturé sur seule face, au moins ledit substrat texturé étant obtenu par laminage puis collés par une feuille de matière plastique tel que du PVB en une structure dite feuilletée.
La figure 4 illustre une réalisation possible d’un concentrateur selon l’invention, comprenant l’article verrier selon la figure 2, permettant d’en décrire son fonctionnement.
La figure 5 est une photographie d’une vue de dessus d’un exemple de texture selon la présente invention.
Les textures et épaisseurs des figures 1 à 5 ne sont pas à l’échelle. Les substrats texturés illustrés sur les figures respectives 1 à 3, en coupe selon leur tranche, sont trois exemples respectifs et distincts mais non limitatifs de réalisation selon l’invention.
Le substrat texturé 1 sur les figures est en un verre minéral silico- sodocalcique de très faible coefficient d’absorption linéique du rayonnement solaire visible, en particulier un verre commercialisé sous la référence AlbarinoT™ par la société déposante et d’épaisseur comprise entre 3 et 6 mm, obtenu par laminage à chaud entre deux rouleaux dont le rouleau supérieur est à surface lisse, tandis que le rouleau inférieur est à surface d’impression texturée.
Le substrat 1 selon la figure 1 possède sa première face 10 texturée, et sa seconde face opposée plane 11. Les motifs en relief de la face texturée 10 correspondent aux motifs en négatif de la surface texturée (des motifs d’impression) du rouleau.
Les motifs de la face schématisés en coupe sur la figure 1 sont formés d’une multiplicité d’une succession de motifs pyramidaux à base irrégulière tels que décrits dans la demande WO2016/17026 et obtenus à l’aide d’un rouleau comprenant le négatif de tels motifs.
Il est souligné ici qu’étant donné la présence selon l’invention d’un luminophore absorbant le rayonnement solaire puis réémettant un rayonnement rouge de manière isotrope sur la face opposée du vitrage, l’homme du métier n’avait plus à résoudre le problème de la diffusion de la lumière abordé dans WO2016/170261 (puisque le luminophore réémet dans toutes les directions le rayonnement incident). Ainsi dans le cas présent, les défauts présents à la surface de verre sont essentiellement subis car générés par le procédé de laminage utilisé pour la fabrication des verres extra-clairs. La mise en œuvre d’une texturation selon l’enseignement de WO2016/17026 serait donc apparue superflue dans le cas présent à la personne du métier, car elle aurait au contraire essayé de maximiser la TLH après traversée de l’article verrier. Ainsi, contrairement à l’enseignement de la présente invention, la personne du métier aurait essayé de supprimer la texturation d’un article verrier incorporant une composante luminescente, afin de maximiser le rendement lumineux du vitrage, plutôt que de l’accentuer. Selon le mode illustré par la figure 1 , une couche 4 d’un matériau tel qu’un matériau inorganique transparent à la lumière, un composé sol-gel transparent à la lumière ou encore une matière plastique transparente à la lumière, est déposé sur la face non texturée du substrat verrier. Cette couche comprend en outre des luminophores convertissant une partie de la lumière incidente en un rayonnement d’une autre longueur d’onde plus particulièrement adaptée à l’utilisation recherchée, notamment une longueur d’onde comprise 600 et 750 nm qui convient à la croissance optimale des plantes.
Le mode illustré par la figure 2 est identique à celui de la figure 1 , mais la couche comprenant les luminophores est cette fois disposée sur la face texturée du substrat.
Selon le mode illustré par la figure 3, on décrit cette fois un vitrage constitué d’une structure feuilletée à partir de deux substrats 1 et 2 liés par un intercalaire plastique 3, en particulier de PVB (polyvinylbutyral). Selon l’invention, l’intercalaire peut être constitué d’une couche de colle. Selon ce mode, le luminophore est compris dans le feuillet intercalaire ou déposé à la surface de celui-ci. Le substrat 1 est en verre extra-clair et le substrat peut être également en verre extra-clair ou en tout autre matière, notamment en une matière plastique rigide ou souple. Ce deuxième substrat peut notamment être constitué d’un film qui peut être déroulé à la surface du premier substrat et du feuillet intercalaire. Selon un mode possible, le deuxième substrat est recouvert de la couche de luminophore du côté de sa face en contact avec feuillet intercalaire. On réalise ainsi de façon simple et économique le dépôt de la couche de luminophore à la surface de l’intercalaire.
La figure 4 illustre le fonctionnement d’un mode de réalisation de l’invention concernant un concentrateur solaire incorporant un article verrier selon la figure 2. Bien entendu, le fonctionnement décrit ci-après reste essentiellement identique si les configurations illustrées par les figures 1 et 3 remplacent celle de la figure 2. Une partie du rayonnement solaire incident (illustré par la flèche 5 sur la figure 4) est transmis et diffusé par la couche 4. Cette partie du rayonnement solaire incident, correspondant à la bande d’absorption du luminophore est converti via le luminophore en un rayonnement de longueur d’onde différente plus adapté à l’utilisation recherchée. Une autre partie 8 de la lumière solaire incidente (i.e. les rayons dont la longueur d’onde n’est pas situé dans la bande d’absorption du luminophore) est directement transmise et traverse sans transformation le substrat verrier vers l’intérieur de la serre. Le rayonnement restitué par les particules de luminophores est réémis de manière isotrope et peut subir plusieurs réflexions internes à la surface du verre jusqu’à atteindre la surface opposée du substrat pour y être extrait. Le trajet d’un rayonnement lumineux réémis dans le verre est illustré par les flèches pointillées 6. Selon l’invention, la texturation du substrat a ainsi pour effet premier de masquer les imperfections de la surface laminée mais elle permet également de façon concomitante, grâce à sa faible pente moyenne Pm, de conserver efficacement le faisceau de lumière dans le verre par réflexions internes successives à sa surface, la composition du verre étant en outre ajustée pour limiter fortement son absorption, en particulier à la longueur d’onde d’émission du luminophore.
Selon un mode possible de réalisation de l’invention tel qu’illustré sur la figure 4 ci-jointe, on appose des cellules photovoltaïques 7 sur la surface opposée 11 du substrat ou sur sa tranche de manière à récupérer le rayonnement traversant le verre (de façon directe ou absorbé puis réémis) et obtenir ainsi une source d’énergie supplémentaire qui pourra notamment ensuite être utilisé pour le bon fonctionnement de la serre, notamment son chauffage.
On obtient ainsi un concentrateur de lumière de façon économique, qui permet de garantir un éclairage optimale de la serre et ce à un rayonnement de longueur d’onde ajusté au développement optimal des plantes. L’utilisation d’un concentrateur luminescent et l’optimisation de la gamme spectrale de la lumière incidente, tel qu’expliqué précédemment, peut être combinée avec un verre laminé utilisant une formulation spécifique telle que décrite précédemment. La texture de faible pente moyenne permet de masquer les défauts ponctuels dus au procédé, mais est suffisamment faible pour permettre la propagation de la lumière sans perte sensible sur une grande longueur du vitrage.
Il a été découvert par la société déposante que pour des pentes moyennes relativement faibles et proches de 3° à 7°, bornes incluses, plus particulièrement de 3° à 5°, bornes incluses, la fraction guidée diminue de façon sensible car elle est extraite rapidement du guide via la face opposée 11 de la matrice verrière, pour être ainsi renvoyée vers les cultures. L’utilisation d’une pente relativement importante, notamment de l’ordre de 3° à 5°, bornes incluses, permet ainsi de limiter au maximum l’absorption car la lumière sort de la matrice verrière rapidement. On privilégiera plutôt cette configuration très diffusante pour un système ne comprenant pas de cellules photovoltaïques et pour lequel on veut extraire au plus vite la lumière émise par les luminophores.
Alternativement, le choix d’une pente moyenne de la texture plus faible, par exemple comprise entre 0,5° et 3°, bornes incluses, apparaît être un moyen efficace et simple de répartir la lumière émise par les luminophores entre les éventuelles cellules photovoltaïques présente à la surface du vitrage et les cultures (voir la figure 4). Dans le cas de l'utilisation de cellules photovoltaïques, on privilégiera plutôt de telles faibles pentes moyennes de la texture, de manière à amener le rayonnement jusqu'audites cellules via la matrice verrière non absorbante.
Un exemple de réalisation non limitatif de la présente invention est décrit ci- après, illustrant les avantages de la présente invention :
Dans cet exemple, on fabrique par laminage un substrat verrier extra-clair commercialisé par la société déposante sous la référence Albarino. Le substrat est texturé au moyen d’un rouleau imprimé, sur une face extérieure.
La texture constituée par une répétition de motifs pyramidaux à base irrégulière en creux de tailles différentes tels qu’illustré par la figure 5, la profondeur étant la différence de hauteur entre les points les plus clairs et les plus sombres de la figure. La profondeur de la texture est de l’ordre de 25 micromètres.
La pente moyenne de la texture, telle que mesurée par un profilomètre MIME, utilisant une technologie confocale chromatique, est égale à 1 °.
On dépose ensuite sur la face rugueuse du verre laminé extra-clair une couche acrylate contenant un luminophore commercialisé sous la référence Lumogen F Red 300 commercialisé par la société BASF avec un ratio volumique de l’ordre de 10%. La couche absorbe la lumière solaire incidente dont la longueur d’onde est comprise entre 480 et 600 nm, avec une absorbance maximale à 578 nm (dans le jaune). La lumière est réémise selon une bande centrée sur une longueur d’onde de 618 nm. Sur la face opposée lisse, des bandes de matériel photovoltaïque (Silicium polycristallin) sont déposées tous les 30 cm, avec une largeur de 1 cm, conformément à la configuration représentée sur le figure 4.
La portion de lumière incidente absorbée puis réémise par le luminophore est guidée dans le verre jusqu’à atteindre une bande de matériel photovoltaïque. Une partie est également réémise vers la serre, dont la longueur d’onde correspond à la bande d’émission du luminophore. Enfin une partie est absorbée. 10W/m2 sont ainsi produits pour un rayonnement solaire incident de 1000W/m2. La transmission lumineuse du vitrage est réduite de 50% par rapport au verre sans couche ni dispositif photovoltaïque, mais en contrepartie la lumière transmise voit son spectre modifiée pour être plus beaucoup efficace pour la croissance les cultures, ce gain pouvant même aller jusqu’à limiter la perte de transmission du rayonnement utile aux cultures à moins de 10% selon le type de culture. On obtient donc un vitrage aussi efficace qu’un vitrage de serre traditionnel mais produisant de l’énergie qui peut par exemple permettre de chauffer la serre en période hivernale ou encore la refroidir en période estivale.
Selon un second exemple, on procède de la même manière que pour l’exemple 1 mais afin de bénéficier de maximiser cette fois la diffusion de la lumière directement vers l’intérieur de la serre, on imprime une pente moyenne de la texture égale à 5°, avec une profondeur 5 fois plus importante des motifs, la géométrie globale de la texture restant identique. Dans ce cas, seuls 6W/m2 sont produits via les dispositifs photovoltaïques. En revanche, la lumière réémise dans le rouge est environ deux fois plus importante, et fait plus que compenser la perte de transmission lumineuse due à l’absorption des luminophores et la présence de cellules, en permettant une croissance plus efficace des cultures, tout en produisant un peu d’énergie.
On obtient au final selon l’invention un vitrage apte à être avantageusement utilisé dans des serres horticoles.

Claims

REVENDICATIONS
1. Article verrier laminé pour serre horticole, comprenant au moins un substrat de verre extra-clair, présentant des première et deuxième faces principales, ledit substrat présentant sur une desdites faces principales une texture en relief, ladite texture étant telle que sa pente moyenne Pm est supérieure à 0,5° et inférieure ou égale à 7°, bornes incluses, ledit substrat comprenant en outre au moins une couche comprenant des luminophores sur une desdites faces principales dudit substrat de verre, ou des particules de luminophore dispersées sur une desdites faces principales dudit substrat de verre, lesdits luminophores étant constitués d’un matériau convertissant au moins une partie du rayonnement incident extérieur audit vitrage en un rayonnement extrait par au moins une autre face principale ou une tranche dudit vitrage, dans lequel les luminophores émettent un rayonnement principal centré sur une longueur d’onde comprise entre 600 et 750 nm.
2. Article verrier selon l’une des revendications précédentes, dans lequel la couche comprenant des luminophores ou lesdites particules de luminophore est/sont déposée(s) sur la face principale dudit substrat présentant ladite texture.
3. Article verrier selon l’une des revendications précédentes 1 ou 2, dans lequel la couche comprenant des luminophores ou lesdites particules de luminophore est/sont déposée(s) sur la face principale opposée du substrat présentant ladite texture.
4. Article verrier selon l’une des revendications précédentes, constitué d’une structure feuilletée à partir de deux substrats liés par un intercalaire plastique, le luminophore étant compris dans ledit feuillet intercalaire ou déposé à la surface de celui-ci.
5. Article verrier selon l’une des revendications précédentes comprenant deux substrats de verre extra-clair, au moins un des substrats présentant sur au moins une de ses faces tournées vers l’extérieur une texture en relief, ladite texture étant telle que sa pente moyenne Pm est supérieure à 0,5° et inférieure ou égale à 7°, bornes incluses, lesdits deux substrats étant liés par une couche d’une matière plastique telle que le PVB, ladite couche comprenant ledit luminophore ou ledit luminophore étant déposé à la surface de ladite couche plastique.
6. Article verrier selon l’une des revendications précédentes présentant une texture sur deux faces, la pente moyenne d’au moins une texture, de préférence des deux textures, étant comprise entre 0,5° et 7°, bornes incluses notamment entre 0,5° et 5°, bornes incluses.
7. Article verrier selon l’une des revendications précédentes, dans laquelle la pente moyenne de la texture est comprise entre 0,5° et 3°, bornes incluses, notamment entre 0,5° et 2°, bornes incluses.
8. Article verrier selon l’une des revendications 1 à 6, dans laquelle la pente moyenne de la texture est comprise entre 3° et 7°, bornes incluses, notamment entre 3° et 5°, bornes incluses.
9. Article verrier selon l’une des revendications précédentes, dans lequel le substrat est en un verre minéral, comprenant en pourcentage poids moins de 0,030%, notamment moins de 0,020%, voire moins de 0,015% d’oxyde de fer, exprimé en Fe2C>3.
10. Article verrier selon la revendication précédente, dont le substrat ou les substrats présentent la composition massique suivante, bornes incluses :
- Si02 50-75%
- CaO 5-15%
- MgO 0-10%
- Na20 10-20%
- Al203 0-5%
- K20 0-5%
- moins de 0,030% de Fe2C>3.
11. Article verrier selon l’une des revendications précédentes dans lequel l’absorption linéique à 650 nm du ou des substrats de verre est inférieure à 2 nrr1, de préférence inférieure à 1 nrr1, voire inférieure 0,5 rrr1.
12. Concentrateur de lumière comprenant un article verrier selon l’une des revendications précédentes et au moins un dispositif photoélectrique disposé sur la face opposée du substrat présentant ladite texture ou sur une tranche dudit article.
13. Concentrateur de lumière comprenant un article verrier selon l’une des revendications précédentes et au moins une source de lumière extérieure tel qu’un dispositif LED, disposée selon une tranche du substrat de verre, ladite source fournissant une fonction d’éclairage de la tranche dudit substrat, celui-ci constituant un guide de ladite lumière jusqu’au luminophore.
PCT/FR2019/052712 2018-11-16 2019-11-14 Verre texture luminescent pour serre WO2020099797A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19835444.1A EP3879969A1 (fr) 2018-11-16 2019-11-14 Verre texture luminescent pour serre

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1860581A FR3088634B1 (fr) 2018-11-16 2018-11-16 Verre texture luminescent pour serre
FR1860581 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020099797A1 true WO2020099797A1 (fr) 2020-05-22

Family

ID=66286399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052712 WO2020099797A1 (fr) 2018-11-16 2019-11-14 Verre texture luminescent pour serre

Country Status (3)

Country Link
EP (1) EP3879969A1 (fr)
FR (1) FR3088634B1 (fr)
WO (1) WO2020099797A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1104587A (en) * 1965-03-01 1968-02-28 Elmer John Brant A method of growing plants
WO2008059170A2 (fr) 2006-11-14 2008-05-22 Saint-Gobain Glass France Couche poreuse, son procede de fabrication et ses applications
WO2009115574A1 (fr) * 2008-03-19 2009-09-24 Grow Foil B.V. Serre pour une croissance végétale améliorée
WO2013116688A1 (fr) * 2012-02-03 2013-08-08 The Regents Of The University Of California Panneau luminescent générant de l'électricité pour la culture de plantes
US8674281B2 (en) 2010-08-09 2014-03-18 Palo Alto Research Center Incorporated Solar energy harvesting system using luminescent solar concentrator with distributed outcoupling structures and microoptical elements
WO2016017026A1 (fr) 2014-08-01 2016-02-04 Dic株式会社 Dispositif d'affichage à cristaux liquides
WO2016170261A1 (fr) 2015-04-23 2016-10-27 Saint-Gobain Glass France Verre texture pour serre
WO2017205641A1 (fr) * 2016-05-25 2017-11-30 Ubiqd, Llc Concentrateur luminescent en verre feuilleté

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153813A (en) * 1978-06-19 1979-05-08 Atlantic Richfield Company Luminescent solar collector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1104587A (en) * 1965-03-01 1968-02-28 Elmer John Brant A method of growing plants
WO2008059170A2 (fr) 2006-11-14 2008-05-22 Saint-Gobain Glass France Couche poreuse, son procede de fabrication et ses applications
WO2009115574A1 (fr) * 2008-03-19 2009-09-24 Grow Foil B.V. Serre pour une croissance végétale améliorée
US8674281B2 (en) 2010-08-09 2014-03-18 Palo Alto Research Center Incorporated Solar energy harvesting system using luminescent solar concentrator with distributed outcoupling structures and microoptical elements
WO2013116688A1 (fr) * 2012-02-03 2013-08-08 The Regents Of The University Of California Panneau luminescent générant de l'électricité pour la culture de plantes
WO2016017026A1 (fr) 2014-08-01 2016-02-04 Dic株式会社 Dispositif d'affichage à cristaux liquides
WO2016170261A1 (fr) 2015-04-23 2016-10-27 Saint-Gobain Glass France Verre texture pour serre
WO2017205641A1 (fr) * 2016-05-25 2017-11-30 Ubiqd, Llc Concentrateur luminescent en verre feuilleté

Also Published As

Publication number Publication date
FR3088634A1 (fr) 2020-05-22
EP3879969A1 (fr) 2021-09-22
FR3088634B1 (fr) 2022-12-23

Similar Documents

Publication Publication Date Title
EP1774372B1 (fr) Feuille transparente texturee a motifs pyramidaux qui peut être associée à des cellules photovoltaiques
EP1449017B1 (fr) Plaque transparente texturee a forte transmission de lumiere
EP3129810B1 (fr) Module photovoltaïque solaire
CA2981682C (fr) Verre texture pour serre
CA2762312C (fr) Procede de depot de couche mince et produit obtenu
EP2165372A2 (fr) Procede d'obtention d'un substrat texture pour panneau photovoltaïque
FR2908406A1 (fr) Couche poreuse, son procede de fabrication et ses applications.
EP3554826A1 (fr) Element en couches transparent comportant une zone ecran
EP2252556A2 (fr) Substrat texture muni d'un empilement a proprietes thermiques.
WO2019053391A1 (fr) Substrat transparent texture, notamment pour serre
CH660477A5 (fr) Vitrage a basse emissivite.
WO2020099797A1 (fr) Verre texture luminescent pour serre
EP0448456B1 (fr) Vitrage pour l'éclairage naturel
CA3107964A1 (fr) Vitrage texture et isolant pour serre
EP4128365B1 (fr) Bipv integrant un element transparent ou translucide a reflexion diffuse
EP4192795A1 (fr) Verre texture pour installation photovoltaique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19835444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019835444

Country of ref document: EP

Effective date: 20210616