WO2020098639A1 - 发送码本的方法和装置以及接收码本的方法和装置 - Google Patents

发送码本的方法和装置以及接收码本的方法和装置 Download PDF

Info

Publication number
WO2020098639A1
WO2020098639A1 PCT/CN2019/117487 CN2019117487W WO2020098639A1 WO 2020098639 A1 WO2020098639 A1 WO 2020098639A1 CN 2019117487 W CN2019117487 W CN 2019117487W WO 2020098639 A1 WO2020098639 A1 WO 2020098639A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
codebook
data channel
control channel
primary carrier
Prior art date
Application number
PCT/CN2019/117487
Other languages
English (en)
French (fr)
Inventor
李胜钰
官磊
马蕊香
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020098639A1 publication Critical patent/WO2020098639A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present application relates to the field of communications, and in particular to a method and device for sending codebooks, and a method and device for receiving codebooks.
  • the fifth generation (5G) mobile communication system's downlink data transmission supports semi-persistent scheduling (SPS) physical downlink shared channel (PDSCH) and dynamically scheduled PDSCH.
  • SPS semi-persistent scheduling
  • PDSCH physical downlink shared channel
  • HARQ hybrid automatic repeat
  • the network device responds to the acknowledgement (ACK) or negative acknowledgement (negative acknowledgement, NACK) according to the user equipment (UE) feedback
  • ACK acknowledgement
  • NACK negative acknowledgement
  • UE user equipment
  • the network device usually retransmits only when the UE feeds back a NACK, thereby improving data transmission efficiency.
  • the 5G communication system supports two kinds of HARQ codebook configurations, namely dynamic codebook and semi-static codebook. Regardless of which codebook the UE uses for feedback, it is necessary to obtain a HARQ timing indication from the network device, generate a HARQ codebook, and determine the uplink resource for feeding back the HARQ codebook.
  • the feedback of HARQ codebooks is based on time slots, that is, the HARQ codebooks fed back in a time slot need to be coded jointly, resulting in poor flexibility of feedback HARQ codebooks, especially in multi-carrier communication scenarios, The transmission of PDSCH on multiple carriers is more complicated. How to improve the flexibility of feeding back HARQ codebooks in a multi-carrier communication scenario is currently a problem that needs to be solved.
  • the present application provides a method for sending a codebook, which performs independent coding feedback on the feedback information of data channels of different carrier sets, thereby improving the flexibility of feeding back HARQ codebooks in a multi-carrier communication scenario.
  • a method for sending a codebook including: a terminal device receiving at least one data channel on at least two carrier sets, the at least two carrier sets including a first carrier set and a second carrier set; a terminal device The first codebook and / or the second codebook are determined according to the reception status of at least one data channel, the first codebook is used to indicate the reception status of the data channel corresponding to the first carrier set, and the second codebook is used to indicate the second carrier The reception status of the data channel corresponding to the set; the terminal device sends the first codebook and / or the second codebook on the main carrier, where the main carrier is one carrier in at least two carrier sets, or the main carrier and at least two There is a first correspondence between carrier sets.
  • the terminal device independently feedbacks the reception status of the data channels on different carrier sets, thereby improving the flexibility of feeding back the HARQ codebook in a multi-carrier communication scenario. For example, for a carrier set that carries a service with a higher delay requirement, the terminal device can feed back the codebook corresponding to the carrier set as soon as possible, which can meet the delay requirement of a low-latency service; for a service that carries a lower delay requirement In the carrier set, the terminal device can perform unified feedback on the reception status of multiple data channels on the carrier set, so that the consumption of air interface resources can be reduced under the premise of meeting the delay requirement.
  • the method further includes: the terminal device receives a first control channel, the first control channel is used to schedule a first data channel corresponding to the first carrier set, the first data channel belongs to the at least one data channel, the first The control channel includes first indication information for indicating the first time unit; and / or, the terminal device receives the second control channel, and the second control channel is used for scheduling the second data channel corresponding to the second carrier set, the second data channel Belongs to at least one data channel, the second control channel includes second indication information for indicating the first time unit; the terminal device sends the first codebook and / or the second codebook on the primary carrier, including: the terminal device is on the primary carrier The first codebook and / or the second codebook are sent on and in the first time unit.
  • the terminal device may send the first codebook and / or the second codebook in a time unit based on the instruction of the network device.
  • the first codebook may be a dynamic codebook or a semi-static codebook; the second codebook It can be a dynamic codebook or a semi-static codebook.
  • the terminal device receiving the first control channel includes: the terminal device receiving the first control channel on the first carrier set; the terminal device receiving the second control channel, including: the terminal device receiving the second control on the second carrier set channel.
  • the method further includes: the terminal device receives a first control channel on the first carrier set, the first control channel is used to schedule the first data channel, and the first data channel belongs to the at least one data channel, the first The control channel includes first indication information for indicating the first time unit; and / or, the terminal device receives the second control channel on the second carrier set, and the second control channel is used to schedule the second data channel, the second data channel Belongs to at least one data channel, the second control channel includes second indication information for indicating the first time unit; the terminal device sends the first codebook and / or the second codebook on the primary carrier, including: the terminal device The first codebook and / or the second codebook are sent on and in the first time unit.
  • the first carrier set may be divided based on the carrier carrying the data channel, or may be divided based on the carrier carrying the control channel, thereby improving the flexibility of sending the codebook.
  • the terminal device determining the first codebook and / or the second codebook according to the reception status of at least one data channel includes: the terminal device determining the first codebook according to the downlink allocation index DAI included in the first control channel, and A codebook is used to indicate the reception status of the first data channel; and / or, the terminal device determines the second codebook according to the DAI included in the second control channel, and the second codebook includes feedback information of the second data channel.
  • DAI is used to indicate how many data channels have been scheduled up to the current scheduling time, and the terminal device generates a dynamic codebook according to the DAI in the control channel, which can improve the flexibility of sending the codebook.
  • the first codebook is used to indicate the reception status of the M data channels corresponding to the first carrier set.
  • the M data channels include the first data channel, and between the time unit where the M data channels are located and the first time unit
  • M is a positive integer
  • the second codebook is used to indicate the reception status of the N data channels corresponding to the second carrier set
  • the N data channels include the second data channel and the N data channels
  • N is a positive integer.
  • the terminal device can determine the number of data channels corresponding to each carrier set according to preset information or information configured by high-level signaling, and generate a semi-static codebook based on the number, without requiring the network device to indicate in real time which data channel codebook to generate, thereby It can reduce the consumption of air interface resources.
  • the terminal device when the terminal device receives a control channel on the first primary carrier, and one control channel is used to schedule a data channel on the first primary carrier, and one control channel carries the first fallback downlink control information DCI , And the value of DAI in the first back-off DCI is 1, the first codebook is only used to indicate the reception status of a data channel, where the first primary carrier belongs to the first carrier set; and / or, if the terminal device A control channel is received on the second primary carrier, and a control channel is used to schedule a data channel on the second primary carrier, and a control channel carries the second fallback DCI, and the second fallback DCI
  • the value of DAI is 1, then the second codebook is only used to indicate the reception status of a data channel, where the second primary carrier belongs to the second carrier set.
  • a data channel fed back by the first codebook may be the first data channel described above, and accordingly, a control channel scheduling the one data channel is, for example, the first control channel.
  • a data channel fed back by the second codebook may be the second data channel described above, and accordingly, a control channel scheduling the one data channel is, for example, a second control channel.
  • both the first primary carrier and the second primary carrier are the primary carriers transmitting the first codebook and / or the second codebook described above; or, the first primary carrier is the primary carrier, the second The primary carrier is another carrier configured by higher layer signaling and different from the primary carrier; or, the second primary carrier is the primary carrier and the first primary carrier is configured by higher layer signaling and is different from the primary carrier Another carrier.
  • the present application provides another method for sending a codebook, including: a terminal device receiving at least one data channel in at least two transmission opportunity sets on a first carrier set, at least two transmission opportunity sets including a first Transmission opportunity set and second transmission opportunity set, the first carrier set includes the first carrier and the second carrier; the terminal device determines the first codebook and / or the second codebook according to the reception status of at least one data channel, the first codebook Used to indicate the reception status of the data channel in the first set of transmission opportunities, and the second codebook is used to indicate the reception status of the data channel in the second set of transmission opportunities; the terminal device sends the first codebook and / or on the primary carrier In the second codebook, the primary carrier is a carrier in the first carrier set, or there is a first correspondence between the primary carrier and the first carrier set.
  • the terminal device independently feedbacks the reception status of the data channels in different transmission timing sets, thereby improving the flexibility of feeding back HARQ codebooks in a multi-carrier communication scenario. For example, for a set of transmission timings for services that require high latency, the terminal device can feed back the codebook corresponding to the set of transmission timings as soon as possible, so that it can meet the delay requirements of low-latency services; Service transmission timing set. The terminal device can perform unified feedback on the reception status of multiple data channels in the transmission timing set, thereby reducing the consumption of air interface resources on the premise of meeting the delay requirement.
  • the terminal device sending the first codebook and / or the second codebook on the primary carrier includes: the terminal device sending the first codebook and / or the second codebook on the primary carrier and within the first time unit , Where the first codebook is used to indicate the reception status of the M data channels in the first set of transmission opportunities.
  • M is a positive integer; and / or, the second codebook is used to indicate the reception status of N data channels in the second set of transmission opportunities, between the time unit where the N data channels are located and the first time unit
  • N data channels belong to at least one data channel, and N is a positive integer.
  • the terminal device sending the first codebook and / or the second codebook on the primary carrier and within the first time unit includes: when the terminal device receives at least one of the first transmission opportunities on the first carrier set Aggregate downlink data channel, and the downlink control channel scheduling the downlink data channel indicates that the feedback information of the downlink data channel is fed back in the first time unit, then the terminal device is on the primary carrier and on the Sending the first codebook in the first time unit; and / or, when the terminal device receives at least one downlink data channel belonging to the second set of transmission opportunities on the first carrier set, and schedules the downlink of the downlink data channel
  • the control channel indicates that the feedback information of the downlink data channel is fed back in the first time unit
  • the terminal device sends the second codebook on the primary carrier and in the first time unit.
  • the terminal device may send the first codebook and / or the second codebook in a time unit based on the instruction of the network device, and the first codebook and the second codebook are semi-static codebooks.
  • the terminal device can determine the number of data channels corresponding to each transmission opportunity set based on preset information or information configured by high-level signaling, and generate a semi-static codebook based on the number, without requiring the network device to indicate in real time which data channel codebook to generate, Therefore, the consumption of air interface resources can be reduced.
  • the first carrier corresponds to two sets of transmission opportunity subsets, and the two sets of transmission opportunity subsets belong to the first transmission opportunity set and the second transmission opportunity set, respectively.
  • the two sets of transmission timing subsets correspond to two sets of subsets of a timing offset set, and the one set of timing offsets is pre-defined or configured by high-level signaling; or, the two sets of transmissions
  • the timing subset corresponds to two timing offset sets that are predefined or configured by high-level signaling; or, the two sets of transmission timing subsets correspond to transmission timing sets belonging to one time unit
  • the transmission opportunity set belonging to a time unit is predefined or configured by high-level parameters
  • the two subsets of transmission opportunity set belonging to a time unit are predefined or high-level parameters.
  • the above solution provides a variety of methods for dividing transmission timing subsets, thereby improving the flexibility of sending codebooks.
  • the terminal device when the terminal device receives a control channel on the first carrier, and the one control channel is used to schedule a data channel on the first carrier that belongs to the first set of transmission opportunities, and one control channel carries the first channel.
  • the first primary carrier and the second primary carrier may be the same carrier, such as both primary carriers of the first carrier set; or, the first primary carrier and the second primary carrier are different carriers, such as the first primary carrier
  • the carrier is the primary carrier of the first carrier set, and the second carrier is a carrier configured by higher layer signaling and different from the first primary carrier.
  • the above solution is applied to a communication scenario in which the network device indicates the feedback status of the data channel through the semi-static codebook.
  • the terminal device only needs to generate a codebook containing feedback information for one data channel, thereby improving This improves the reliability of sending codebooks and reduces the consumption of air interface resources.
  • the present application also provides a method for receiving a codebook, including: a network device sending at least one data channel on at least two carrier sets, where the at least two carrier sets include a first carrier set and a second carrier set; The network device receives the first codebook and / or the second codebook on the primary carrier, where the first codebook is used to indicate the reception status of the data channel corresponding to the first carrier set, and the second codebook is used to indicate the first In the reception state of the data channel corresponding to the two-carrier set, the primary carrier is one carrier in at least two carrier sets, or there is a first correspondence between the primary carrier and at least two carrier sets.
  • the network device receives independent feedback information on the reception status of the data channels on different carrier sets, thereby improving the flexibility of feeding back the HARQ codebook in a multi-carrier communication scenario. For example, for a carrier set that carries a service with a higher delay requirement, the terminal device can feed back the codebook corresponding to the carrier set as soon as possible, which can meet the delay requirement of a low-latency service; for a service that carries a lower delay requirement In the carrier set, the terminal device can perform unified feedback on the reception status of multiple data channels on the carrier set, so that the consumption of air interface resources can be reduced under the premise of meeting the delay requirement.
  • the network device sends at least one data channel on at least two carrier sets refers to: when the network device sends two data channels, the network device may send one data channel through the first carrier set and send it through the second carrier set Another data channel; or, the network device transmits the two data channels through the first carrier set and the second carrier set.
  • the network device sends a data channel the network device may send the data channel through the first carrier set or the second carrier set, that is, select one carrier set from at least two carrier sets to send the above one data channel.
  • the method further includes: the network device sends a first control channel, the first control channel is used to schedule the first data channel corresponding to the first carrier set, the first data channel belongs to at least one data channel, and the first control channel Including first indication information for indicating the first time unit; and / or, the network device sends a second control channel, the second control channel is used to schedule a second data channel corresponding to the second carrier set, and the second data channel belongs to at least One data channel, the second control channel includes second indication information for indicating the first time unit; the network device receives the first codebook and / or the second codebook on the primary carrier, including: the network device on the primary carrier and Receive the first codebook and / or the second codebook within the first time unit.
  • the network device may instruct the terminal device to send the first codebook and / or the second codebook within a time unit.
  • the first codebook may be a dynamic codebook or a semi-static codebook; the second codebook may be The dynamic codebook may also be a semi-static codebook.
  • the network device sending the first control channel includes: the network device sending the first control channel on the first carrier set; the network device sending the second control channel includes: the network device sending the second control on the second carrier set channel.
  • the method further includes: the network device sends a first control channel on the first carrier set, the first control channel is used to schedule the first data channel, and the first data channel belongs to the at least one data channel, the first The control channel includes first indication information for indicating the first time unit; and / or, the network device sends a second control channel on the second carrier set, and the second control channel is used to schedule the second data channel, the second data channel Belongs to at least one data channel, the second control channel includes second indication information used to indicate the first time unit; the network device receives the first codebook and / or the second codebook on the primary carrier, including: the network device is on the primary carrier The first codebook and / or the second codebook are received in the first time unit.
  • the first carrier set may be divided based on the carrier carrying the data channel, or may be divided based on the carrier carrying the control channel, thereby improving the flexibility of sending the codebook.
  • the DAI included in the first control channel is used to indicate the amount of feedback information included in the first codebook; and / or the DAI included in the second control channel is used to indicate the amount of feedback information included in the second codebook Quantity.
  • the terminal device uses the DAI to indicate how many data channels have been scheduled up to the current scheduling time.
  • the terminal device generates a dynamic codebook according to the DAI in the control channel, which can improve the flexibility of sending the codebook.
  • the first codebook is used to indicate the reception status of the M data channels corresponding to the first carrier set.
  • the M data channels include the first data channel, and between the time unit where the M data channels are located and the first time unit
  • M is a positive integer
  • the second codebook is used to indicate the reception status of the N data channels corresponding to the second carrier set
  • the N data channels include the second data channel and the N data channels
  • N is a positive integer
  • the network device can configure the number of data channels corresponding to each carrier set according to high-level signaling, so that the terminal device generates a semi-static codebook based on the number, without requiring the network device to indicate in real time which data channel codebook to generate, thereby reducing the air interface Resource consumption.
  • the network device sends a control channel on the first primary carrier, and the one control channel is used to schedule a data channel on the first primary carrier, and one control channel carries the first fallback DCI
  • the value of DAI in the first back-off DCI is 1, then the first codebook is only used to indicate the reception status of the one data channel, where the first primary carrier belongs to the first carrier set; and / or, if The network device sends a control channel on the second primary carrier, and the one control channel is used to schedule a data channel on the second primary carrier, and the one control channel carries the second fallback DCI, and , The value of DAI in the second back-off DCI is 1, then the second codebook is only used to indicate the reception status of the one data channel, where the second primary carrier belongs to the second carrier set.
  • a data channel fed back by the first codebook may be the first data channel described above, and accordingly, a control channel scheduling the one data channel is, for example, the first control channel.
  • a data channel fed back by the second codebook may be the second data channel described above, and accordingly, a control channel scheduling the one data channel is, for example, a second control channel.
  • both the first primary carrier and the second primary carrier are the primary carriers receiving the first codebook and / or the second codebook described above; or, the first primary carrier is the primary carrier, the second The primary carrier is another carrier configured by higher layer signaling and different from the primary carrier; or, the second primary carrier is the primary carrier and the first primary carrier is configured by higher layer signaling and is different from the primary carrier Another carrier.
  • the present application also provides a method for receiving a codebook, which includes: a network device sending at least one data channel in at least two transmission opportunity sets on a first carrier set, and the at least two transmission opportunity sets include a first The transmission opportunity set and the second transmission opportunity set.
  • the first carrier set includes the first carrier and the second carrier; the network device receives the first codebook and / or the second codebook on the primary carrier, where the first codebook is used for Indicates the reception status of the data channel in the first set of transmission opportunities, and the second codebook is used to indicate the reception status of the data channel in the second set of transmission opportunities.
  • the primary carrier is a carrier in the first carrier set, or the primary carrier There is a first correspondence with the first carrier set.
  • the network device receives independent feedback information on the reception status of the data channels in different transmission timing sets, thereby improving the flexibility of feeding back HARQ codebooks in a multi-carrier communication scenario. For example, for a set of transmission timings for services that require high latency, the terminal device can feed back the codebook corresponding to the set of transmission timings as soon as possible, so that it can meet the delay requirements of low-latency services; Service transmission timing set. The terminal device can perform unified feedback on the reception status of multiple data channels in the transmission timing set, thereby reducing the consumption of air interface resources on the premise of meeting the delay requirement.
  • the network device receiving the first codebook and / or the second codebook on the primary carrier includes: the network device receiving the first codebook and / or the second codebook on the primary carrier and within the first time unit , Where the first codebook is used to indicate the reception status of the M data channels in the first set of transmission opportunities.
  • M is a positive integer; and / or, the second codebook is used to indicate the reception status of N data channels in the second set of transmission opportunities, between the time unit where the N data channels are located and the first time unit
  • N data channels belong to at least one data channel, and N is a positive integer.
  • the method further includes: the network device sends a first downlink control channel, and the first downlink control channel is used to Scheduling at least one downlink data channel belonging to the first set of transmission opportunities; sending at least one downlink data channel belonging to the first set of transmission opportunities on the first carrier set and within the first set of transmission opportunities; and / or
  • the method further includes: the network device sends a second downlink control channel, where the second downlink control channel is used to schedule at least one set belonging to the second set of transmission opportunities Downlink data channel within; at least one downlink data channel belonging to the second set of transmission opportunities is sent on the first carrier set and within the second set of transmission opportunities.
  • the network device may instruct the terminal device to send the first codebook and / or the second codebook within a time unit.
  • the first codebook and the second codebook are semi-static codebooks.
  • the network device can configure the number of data channels corresponding to each transmission opportunity set through high-level signaling, so that the terminal device can generate a semi-static codebook based on the number, without requiring the network device to indicate in real time which data channel codebook to generate, thereby reducing the air interface Resource consumption.
  • the first carrier corresponds to two sets of transmission opportunity subsets, and the two sets of transmission opportunity subsets belong to the first transmission opportunity set and the second transmission opportunity set, respectively.
  • the two sets of transmission timing subsets correspond to two sets of subsets of a timing offset set, and the one set of timing offsets is pre-defined or configured by high-level signaling; or, the two sets of transmissions
  • the timing subset corresponds to two timing offset sets that are predefined or configured by high-level signaling; or, the two sets of transmission timing subsets correspond to transmission timing sets belonging to one time unit
  • the transmission opportunity set belonging to a time unit is predefined or configured by high-level parameters
  • the two subsets of transmission opportunity set belonging to a time unit are predefined or high-level parameters.
  • the above solution provides a variety of methods for dividing transmission timing subsets, thereby improving the flexibility of sending codebooks.
  • the network device sends a control channel on the first primary carrier, and the one control channel is used to schedule a data channel on the first primary carrier that belongs to the first set of transmission opportunities, and a control channel carries the first A back-off DCI, and the value of DAI in the first back-off DCI is 1, the first codebook is only used to indicate the reception status of the one data channel; and / or, if the network device is on the second primary carrier Send a control channel, and the one control channel is used to schedule a data channel on the second primary carrier that belongs to the second set of transmission opportunities, and one control channel carries the second fallback DCI, and the second fallback DCI
  • the value of DAI in is 1, the second codebook is only used to indicate the reception status of the one data channel.
  • the above solution is applied to a communication scenario in which the network device indicates the feedback status of the data channel through the semi-static codebook.
  • the terminal device only needs to generate a codebook containing feedback information for one data channel, thereby improving This improves the reliability of sending codebooks and reduces the consumption of air interface resources.
  • the first primary carrier and the second primary carrier may be the same carrier, such as both primary carriers of the first carrier set; or, the first primary carrier and the second primary carrier are different carriers, such as the first primary carrier
  • the carrier is the primary carrier of the first carrier set, and the second carrier is a carrier configured by higher layers and different from the first primary carrier.
  • the present application provides a communication device that can implement the functions corresponding to the steps in the methods related to the first, second, third, or fourth aspects described above.
  • the hardware implementation can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the device includes a processor configured to support the device to perform the corresponding function in the method according to the first aspect, the second aspect, the third aspect, or the fourth aspect.
  • the device may also include a memory for coupling with the processor, which stores necessary program instructions and data of the device.
  • the device further includes a transceiver, which is used to support communication between the device and other network elements.
  • the transceiver may be an independent receiver, an independent transmitter or a transceiver with integrated transceiver function.
  • the above communication device may be a chip or a chip system.
  • the above communication device may be a terminal device that implements the method of the first aspect or the second aspect.
  • the above communication device may be a network device that implements the method of the third aspect or the fourth aspect.
  • a computer-readable storage medium stores computer program code.
  • the transmission device executes the first aspect and the second aspect. Aspect, the third aspect or the method of the fourth aspect.
  • a computer program product comprising: computer program code, when the computer program code is run by a communication unit or communication interface of a device for transmitting data, and a processing unit or processor, the transmission
  • the data device performs the method of the first aspect, the second aspect, the third aspect, or the fourth aspect.
  • a communication system including the terminal device and the network device described above.
  • FIG. 1 is a schematic diagram of a communication system suitable for this application.
  • FIG. 2 is a schematic diagram of a method for sending a codebook provided by this application
  • FIG. 3 is a schematic diagram of a method for sending a dynamic codebook provided by this application.
  • FIG. 4 is a schematic diagram of a method for transmitting a semi-static codebook provided by this application.
  • FIG. 5 is a schematic diagram of a dual fallback communication scenario provided by this application.
  • FIG. 6 is a schematic diagram of another method for sending a codebook provided by this application.
  • FIG. 7 is a schematic diagram of another method for transmitting a semi-static codebook provided by this application.
  • FIG. 8 is a schematic diagram of yet another method for transmitting a semi-static codebook provided by this application.
  • FIG. 9 is a schematic diagram of a communication device provided by this application.
  • FIG. 10 is a schematic diagram of a terminal device provided by this application.
  • FIG. 11 is a schematic diagram of a network device provided by this application.
  • FIG. 1 is a schematic diagram of a communication system suitable for the present application.
  • the communication system 100 includes a network device 110 and a terminal device 120.
  • the terminal device 120 communicates with the network device 110 through electromagnetic waves.
  • the wireless communication module of the terminal device 120 can acquire the information bits to be sent to the network device 110 through the channel, for example, these information bits are generated by the processing module of the terminal device, received from other devices or in Information bits stored in the storage module of the device.
  • the terminal device 120 may include various handheld devices with wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, for example, a mobile station (MS), UE, soft terminal, home gateway, set-top box, etc.
  • MS mobile station
  • UE mobile station
  • soft terminal home gateway
  • set-top box set-top box
  • Network device 110 may be a Third Generation Partnership Project (3 rd generation partnership project, 3GPP ) defined by the base station, e.g., 5G communication system, a base station (gNB).
  • the network device 110 may also be a non-3GPP (non-3GPP) access network device, such as an access gateway (access gateway, AGF).
  • the network device may also be a relay station, an access point, an in-vehicle device, a wearable device, and other types of devices.
  • the communication system 100 is merely an example, and the communication system to which the present application is applied is not limited thereto.
  • the number of network devices and terminal devices included in the communication system 100 may be other numbers.
  • the technical solution of the present application will be described below by taking the communication system 100 as a 5G communication system as an example.
  • the 5G communication system is dedicated to supporting higher system performance and will support multiple service types, different deployment scenarios and a wider spectrum range.
  • various types of services include enhanced mobile broadband (eMBB), massive machine type communication (mMTC), ultra-reliable and low latency communication (URLLC).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra-reliable and low latency communication
  • a network device can send multiple PDSCHs with overlapping or non-overlapping time domains to a terminal device within a time unit, or a network device can send one or more PDSCHs to a terminal device on multiple carriers, thereby Increased the complexity of terminal equipment feedback ACK / NACK on physical uplink shared channel (physical uplink control channel, PUCCH). Therefore, the ACK / NACK fed back by the terminal device on the PUCCH in a time unit may correspond to multiple time domain positions or PDSCH occasions on multiple carriers.
  • PUCCH physical uplink shared channel
  • time unit and “carrier”
  • the time domain resources for wireless communication between the network device and the terminal device can be divided into multiple time units.
  • multiple time units may be continuous or discontinuous, that is, there are preset time intervals between some adjacent time units.
  • a time unit may be one or more subframes; or, it may be one or more slots; or, it may be one or more symbols.
  • the symbol is also called the time domain symbol.
  • the time domain symbol can be an orthogonal frequency division multiplexing (OFDM) symbol or a single carrier frequency division multiple access (single carrier frequency division multiple access, SC- FDMA) symbol.
  • OFDM orthogonal frequency division multiplexing
  • SC- FDMA single carrier frequency division multiple access
  • the carrier involved in this application may also be called a frequency band, a component carrier (CC), a bandwidth (part of bandwidth), or a cell (cell), or the carrier may have other names.
  • CC component carrier
  • bandwidth part of bandwidth
  • cell cell
  • a carrier set may include one or more CCs, and may also include one or more BWPs.
  • One CC may contain multiple BWPs, and subcarrier spacing (SCS) between different BWPs may be different.
  • SCS subcarrier spacing
  • the 5G communication system supports two HARQ codebook configurations.
  • the HARQ codebook can be understood as: a set of ACK / NACKs corresponding to the PDSCH that need to be fed back on a certain uplink time unit.
  • the HARQ codebook contains two meanings: first, which PDSCH ACK / NACKs are included in the HARQ codebook; and second, the order in which these PDSCH ACK / NACKs are arranged in the codebook.
  • the two HARQ codebooks include dynamic codebooks and semi-static codebooks.
  • the dynamic codebook is also called Type 2 (Type 2) codebook.
  • the terminal equipment detects the PDCCH at each monitoring timing of the PDCCH, obtains downlink control information (downlink control information, DCI), and according to the time domain resource allocation (time domain resource) field and PDSCH-to-HARQ-timing in the DCI
  • the field determines the feedback time slot of the ACK / NACK corresponding to the PDSCH scheduled by the PDCCH.
  • the terminal device first determines the slot number of the PDSCH based on the slot number of the PDCCH and the slot offset value (K0) of the PDCCH to PDSCH contained in the time domain resource allocation field, and then obtains the timing offset according to the PDSCH-to-HARQ-timing field
  • the shift amount (K1) that is, the offset value of the time slot of the PDSCH to the feedback time slot corresponding to the PDSCH, thereby determining in which time slot the ACK / NACK is sent.
  • the terminal device determines the codebook in the feedback time slot according to downlink assignment index (DAI) information contained in all PDCCHs that point to the same feedback time slot. For example, the terminal device determines the number of PDSCHs according to the DAI contained in the received DCI format 1_0 or DCI format 1_1, and the time domain resource allocation field and PDSCH-to-HARQ-timing in DCI format 1_0 or DCI format 1_1 The field determines that the ACK / NACK of the PDSCH is sent in time slot n. Subsequently, the terminal device generates a dynamic codebook according to the reception state of the PDSCH.
  • DAI downlink assignment index
  • the DCI format 1_0 can also be called back-off DCI, which means that the presence or absence of each bit field in DCI, the width of each bit field, and the physical layer parameter values corresponding to each value are predefined, and do not need High-level signaling configuration;
  • DCI format 1_1 can also be called normal DCI.
  • the bit field contained in normal DCI can be configured, added or deleted through high-level signaling, and the width and meaning of the bit field can also be configured through high-level signaling.
  • the fallback DCI is used for downlink data scheduling before the user completes the initial access (that is, when no high-level parameter is acquired), or during the change of the high-level parameter (and the high-level parameter fuzzy period).
  • Both DCI format 1_0 and DCI format 1_1 contain PDSCH-to-HARQ-timing field.
  • the size of this field is generally three bits, indicating the timing offset K1 between the PDSCH transmission slot and the corresponding feedback slot. "000” ⁇ "111", the specific indicated K1 value is configured or predefined by radio resource control (RRC) signaling.
  • RRC radio resource control
  • RRC signaling configures 8 values from 16 values, corresponding to "000" to "111” respectively; under fallback DCI, the 8 predefined values are 1 to 8.
  • the semi-static codebook is also called Type 1 (Type 1) codebook.
  • the network device configures a K1 set (K1set) and a time domain resource allocation table for the terminal device through protocol pre-defined or high-level signaling.
  • the terminal device determines the candidate time domain position of the PDSCH according to the time domain resource allocation table, and according to the candidate time domain position of the PDSCH Set with K1 to determine the time slot where the PDSCH feedback information may be located.
  • the terminal device determines the set of downlink PDSCH opportunities associated with the uplink time slot according to the candidate time domain position of the PDSCH and the K1 set, that is, the associated downlink time slot and the set of PDSCH opportunities in the downlink time slot, and then according to the association
  • the set of downlink PDSCH opportunities generates a feedback codebook.
  • the terminal device may send the codebook according to the method shown in FIG. 2.
  • the method 200 shown in FIG. 2 includes:
  • the terminal device receives at least one data channel on at least two carrier sets, where the at least two carrier sets include a first carrier set and a second carrier set.
  • the network device sends the at least one data channel to the terminal device on the at least two carrier sets.
  • the first carrier set may include one or more carriers
  • the second carrier set may include one or more carriers.
  • the foregoing data channel may be a PDSCH or other types of downlink data channels, which are not particularly limited in the embodiments of the present application.
  • the terminal device receiving at least one data channel on at least two carrier sets means that the terminal device receives one or more data channels on the carriers included in the at least two carrier sets, and the meaning of "received” here refers to
  • the terminal device successfully receives the control channel that schedules the data channel (that is, the control channel is decoded correctly), determines that there is a data channel that the network device sends to itself, and learns the transmission parameters of the data channel, such as the occupied time-frequency resources, the used Precoding methods, etc.
  • the terminal device receiving at least one data channel on at least two carrier sets includes but is not limited to the following cases: the terminal device only receives one or more data channels on the first carrier set; or, the terminal device only on the second carrier One or more data channels are received on the set; or, the terminal device receives one or more data channels on the first carrier set, and the terminal device receives one or more data channels on the second carrier set.
  • the terminal device determines the first codebook and / or the second codebook according to the reception status of at least one data channel.
  • the first codebook is used to indicate the reception status of the data channel corresponding to the first carrier set
  • the second codebook is used to Indicates the reception status of the data channel corresponding to the second carrier set.
  • the network device may determine the reception status of the data channel corresponding to the first carrier set according to the first codebook after receiving the first codebook, and / or determine according to the second codebook after receiving the second codebook The reception status of the data channel corresponding to the second carrier set.
  • the terminal device If the terminal device receives only one or more data channels on the first carrier set, the terminal device generates only the first codebook; if the terminal device receives only one or more data channels on the second carrier set, the terminal The device generates only the second codebook; if the terminal device receives the data channel on both the first carrier set and the second carrier set, the terminal device generates the first codebook and the second codebook.
  • the decoding status of the data channel includes the decoding failure status and the decoding success status, where the decoding failure status is the reception failure status, and the decoding success status is the reception success status.
  • the reception status of the data channel can also have other reasonable explanations.
  • the first codebook may be a dynamic codebook or a semi-static codebook.
  • the second codebook may be a dynamic codebook or a semi-static codebook.
  • the terminal device sends the first codebook and / or the second codebook on the primary carrier, where the primary carrier is one carrier in at least two carrier sets, or the primary carrier has a first correspondence with at least two carrier sets relationship.
  • the network device receives the first codebook and / or the second codebook on the primary carrier.
  • the processing procedure of the network device has a corresponding relationship with the processing procedure of the terminal device.
  • the terminal device receives information from the network device, which means that the network device has sent the information; That information. Therefore, even if the processing procedure of the network device is not clearly described in individual places below, those skilled in the art can clearly understand the processing procedure of the network device based on the processing procedure of the terminal device.
  • the terminal device generates the first codebook and sends the first codebook on the main carrier; the terminal device generates the second codebook and sends the second codebook on the main carrier; the terminal device generates the first codebook and the second codebook , The first codebook and the second codebook are sent on the primary carrier.
  • the primary carrier may be a carrier in the first carrier set or a carrier in the second carrier set.
  • the primary carrier may also be a carrier that has a first correspondence with the first carrier set and the second carrier set.
  • the first correspondence may be predefined by the communication protocol, or may be configured by the network device through high-level signaling.
  • the network device may configure one or more PUCCH groups (PUCCH groups) for the terminal devices, and each PUCCH group is associated with a different carrier set.
  • PUCCH groups PUCCH groups
  • the associated carrier set can be divided into multiple carrier subsets, corresponding to the above at least two carrier sets, and the network device can configure a primary carrier for the PUCCH group to transmit the carrier associated with the PUCCH group
  • the codebook of the PDSCH on the set may be configured.
  • the terminal device may independently encode the first codebook and the second codebook, and separately send the encoded first codebook and the encoded second codebook.
  • the terminal device may receive URLLC data on the first carrier set and eMBB data on the second carrier set, and the terminal device may generate a codebook corresponding to URLLC data and a codebook corresponding to eMBB data according to the method 200.
  • the terminal device can send the URLLC data codebook as soon as possible after receiving a URLLC data, so that the network device quickly retransmits when the URLLC data reception fails, and meets the low latency requirements of the URLLC service.
  • the terminal device After receiving multiple eMBB data, the terminal device can send the codebooks of the multiple eMBB data in a unified manner, while meeting the delay requirements of the eMBB service and reducing the consumption of air interface resources.
  • the terminal device can allocate different uplink resources (such as PUCCH) and different transmission methods (such as whether to use the sequence selection mode or the coding mode and what coding rate to use in the coding mode) to the URLLC data codebook and eMBB data codebook to provide Different reliability guarantees, on the one hand, ensure that the codebook of URLLC data can be transmitted with high reliability, and on the other hand, ensure that the codebook of eMBB data can be efficiently transmitted.
  • PUCCH Physical Uplink resources
  • different transmission methods such as whether to use the sequence selection mode or the coding mode and what coding rate to use in the coding mode
  • the terminal device may receive the first control channel and / or the second control channel from the network device, determine the first data channel according to the first control channel, and determine the second data channel according to the second control channel.
  • the first data channel belongs to the first carrier set and is scheduled by the first control channel; the second data channel belongs to the second carrier set and is scheduled by the second control channel.
  • the first control channel may be a PDCCH or other types of control channels.
  • the second control channel may be a PDCCH or other types of control channels.
  • the network device will also execute: send the above first control channel, and send the first data channel scheduled by the first control channel on the first carrier set; and / or, send the above second control channel, and The second data channel scheduled by the second control channel is sent on the second carrier set.
  • the terminal device When the terminal device only receives the first control channel, the terminal device only receives at least one data channel on the first carrier set and generates a first codebook; when the terminal device only receives the second control channel, the terminal device Receive at least one data channel on the second carrier set and generate a second codebook; when the terminal device receives the first control channel and the second control channel, the terminal device receives at least one data channel on the first carrier set, and, on the second At least one data channel is received on the carrier set, and a first codebook and a second codebook are generated.
  • the terminal device may receive the first control channel on the first carrier set, that is, co-carrier scheduling.
  • the terminal device may also receive the first control channel, that is, different carrier scheduling, on a carrier (for example, the second carrier set) outside the first carrier set.
  • the terminal device receives the second control channel on the second carrier set, and may also receive the second control channel on the carrier outside the second carrier set.
  • the network device may also configure the carrier set for the terminal device according to the carrier corresponding to the control channel.
  • the method 200 may further include:
  • the terminal device receives the first control channel on the first carrier set.
  • the first control channel is used to schedule the first data channel.
  • the first data channel belongs to at least one data channel.
  • the first control channel includes a first An instruction message; and / or,
  • the terminal device receives a second control channel on the second carrier set.
  • the second control channel is used to schedule the second data channel.
  • the second data channel belongs to at least one data channel.
  • the second control channel includes a first control unit for indicating the first time unit. Two instructions.
  • the network device will also perform: send the first control channel on the first carrier set and send the first data channel scheduled by the first control channel; and / or send the first control channel on the second carrier set Two control channels, and send a second data channel scheduled by the second control channel.
  • the first control channel may contain first indication information indicating in which time unit the codebook corresponding to the first data channel is fed back.
  • the second control channel may contain second indication information indicating in which time unit the codebook corresponding to the second data channel is fed back.
  • both the first indication information and the second indication information indicate a first time unit, and the terminal device sends the first codebook and / or the second codebook in the first time unit according to the first indication information and the second indication information . Therefore, the reception status of the data channel can be flexibly fed back.
  • the method of indicating the feedback time unit of the control channel is described by taking the first control channel indicating the first time unit as an example.
  • the PDCCH-to-PDSCH-Timing and / or PDSCH-to-HARQ-timing fields are the first indication information
  • the time slot 4 is the first time unit.
  • the time domain position of the first time unit can be determined according to the above method.
  • the network device may instruct the terminal device to generate a dynamic codebook or a semi-static codebook through high-level signaling. The two cases are described in detail below.
  • the terminal device may determine the first codebook according to the DAI included in the first control channel, and the first codebook is used to indicate the reception status of the first data channel; and / or, the terminal device may determine the second codebook according to the DAI included in the second control channel
  • the codebook, the second codebook includes feedback information of the second data channel.
  • FIG. 3 shows a schematic diagram of a method for sending dynamic codebooks provided by the present application.
  • the black filled rectangle (for example, the rectangle before D0) represents the PDCCH, occa. Represents the timing, DL is the English abbreviation for downlink, and the rectangle filled with slash represents the PUSCH not received by the terminal device, for example, network
  • Similar meanings in Fig. 3, Fig. 4, Fig. 5, Fig. 7 and Fig. 8 have the same meaning, and will not be repeated here.
  • the terminal equipment supports four CCs, namely CC1, CC2, CC3 and CC4.
  • the network device may configure the four CCs into two carrier sets through high-level signaling, which are the first carrier set and the second carrier set, respectively.
  • the first carrier set contains two carriers, respectively CC1 and CC2;
  • the second carrier set contains two carriers, respectively CC3 and CC4.
  • the subcarrier spacing of CC1, CC2, CC3 and CC4 is 15kHz, 15kHz, 15kHz and 30kHz respectively.
  • CC1 can be used to send PUCCH, that is, CC1 is an uplink (UL) primary carrier (primary CC, PCC).
  • the network device may configure the above two carrier sets through high-level signaling.
  • the high-level signaling may be explicit configuration information.
  • the high-level signaling explicitly indicates that CC1 and CC2 are one carrier set, and CC3 and CC4 are another carrier set.
  • the higher layer signaling may also be implicit configuration information. For example, if the high layer signaling configures the codebook identification information associated with CC1 and CC2 as HARQ1, and configures the codebook identification information associated with CC3 and CC4 as HARQ2, then CC1 and CC2 are configured For one carrier set, CC3 and CC4 are configured as another carrier set.
  • the network device indicates the use of dynamic codebooks through high-level parameters, and configures the PDCCH opportunities (PDCCH occasions) on each downlink CC through the high-level parameters. These PDCCH opportunities are sorted in chronological order in the time domain. Since the network device and the terminal device agree on the CC grouping, the network device will uniformly count the downlink data scheduling on CC1 and CC2, and uniformly count the downlink data scheduling on CC3 and CC4.
  • the PDSCH scheduling process on the first carrier set is as follows.
  • DAI_C represents the number of PDSCHs that need to feed back ACK / NACK in the uplink time slot n as of the current PDCCH and current CC on the first carrier set
  • DAI_T represents the first carrier set as of the current
  • the PDSCH scheduling process on the second carrier set is as follows.
  • the terminal device receives the PDCCH and the PDSCH scheduled by the PDCCH on the first carrier set and the second carrier set respectively, and determines a feedback slot according to K1 indicated by the PDCCH, and determines a codebook according to DAI_C and DAI_T in the PDCCH.
  • the feedback process of the decoding situation of the PDSCH on the first carrier set is as follows.
  • AN0 Taking AN0 as an example, if D0 is decoded correctly, then AN0 is ACK, if D0 is decoded incorrectly, then AN0 is NACK.
  • the feedback process of the decoding situation of the PDSCH on the second carrier set is as follows.
  • AN’0 as an example, if Q0 decoding is correct, AN’0 is ACK, and if Q0 decoding is wrong, AN’0 is NACK.
  • the feedback of Q4, AN'5 corresponds to the decoding result of Q5.
  • the terminal device determines the PUCCH resources of the first codebook and the second codebook on the uplink primary carrier and in time slot 4, namely, PUCCH1 and PUCCH2, respectively. Then the first codebook is transmitted on PUCCH1 (AN0, AN1, NACK2, AN3, AN4, AN5), and the second codebook is transmitted on PUCCH2, namely (AN'0, AN'1, AN'2, NACK'3, NACK'4, AN'5, AN'6).
  • the terminal device may generate the first codebook according to the high-level signaling of the instruction to generate the semi-static codebook.
  • the first codebook is used to indicate the reception status of the M data channels of the first carrier set.
  • the time unit in which the M data channels are located has a second correspondence with the first time unit, and the second correspondence is a high-level signaling configuration. , Or, the second correspondence is predefined by the communication protocol.
  • M is a positive integer.
  • the terminal device may generate the second codebook according to the high-layer signaling that generates the semi-static codebook according to the instruction.
  • the second codebook is used to indicate the reception status of the N data channels of the second carrier set.
  • the time unit in which the N data channels are located has a second correspondence with the first time unit.
  • the second correspondence is a high-level signaling configuration.
  • the second correspondence is predefined by the communication protocol.
  • the above N is a positive integer.
  • the terminal device may receive at least one data channel from the first carrier set and the second carrier set, respectively, and the terminal device generates the first codebook and the second codebook, which will not be described in detail.
  • the above-mentioned first codebook and second codebook are semi-static codebooks.
  • FIG. 4 shows a schematic diagram of a method for transmitting a semi-static codebook provided by this application.
  • the terminal equipment supports four CCs, namely CC1, CC2, CC3 and CC4.
  • the network device may configure the four CCs into two carrier sets through high-level signaling, which are the first carrier set and the second carrier set, respectively.
  • the first carrier set includes two carriers, respectively CC1 and CC2;
  • the second carrier set includes two carriers, respectively CC3 and CC4.
  • the subcarrier spacing of CC1, CC2, CC3 and CC4 is 15kHz, 15kHz, 15kHz and 30kHz respectively.
  • CC1 can be used to send PUCCH, that is, CC1 is the uplink primary carrier.
  • the network device may configure the above two carrier sets through high-level signaling.
  • the high-level signaling may be explicit configuration information.
  • the high-level signaling explicitly indicates that CC1 and CC2 are one carrier set, and CC3 and CC4 are another carrier set.
  • the higher layer signaling may also be implicit configuration information. For example, if the high layer signaling configures the codebook identifier associated with CC1 and CC2 as HARQ1, and configures the codebook identifier associated with CC3 and CC4 as HARQ2, CC1 and CC2 are configured as a Carrier set, CC3 and CC4 are configured as another carrier set.
  • the network device indicates the use of a semi-static codebook through high-level parameters, and configures the K1 set on each downlink CC through high-level parameters.
  • the K1 set of CC1 and CC3 is ⁇ 1,2,3,4 ⁇
  • the K1 set of CC2 and CC4 is ⁇ 1,2,3 ⁇ .
  • the network device can also configure a set of PDSCH opportunities within a time slot on each CC.
  • the set of PDSCH opportunities in a time slot on CC1 can be divided into two non-overlapping occasion groups (occasion groups), which correspond to D0 and D1 in time slot 0. It should be noted that D0, D2, D4, D6 correspond to a time group, but only in different time slots.
  • D1, D3, D5, and D7 correspond to another time group, but are located in different time slots.
  • the PDSCH timing set on CC2 can be divided into one timing group, corresponding to D8, D9, and D10.
  • the PDSCH timing set on CC3 can be divided into one timing group, corresponding to Q0, Q1, Q2, and Q3.
  • the PDSCH timing set on CC4 is divided into one timing group, corresponding to Q4, Q5, Q6, Q7, Q8, and Q9.
  • the network device transmits the PDSCH on each downlink CC, and the terminal device receives the PDSCH on each downlink CC.
  • the method for the network device to schedule the PDSCH can be referred to the scheduling method in the dynamic codebook scheme, which will not be repeated here.
  • the feedback process of the decoding situation of the PDSCH on the first carrier set is as follows.
  • the terminal device does not receive D1, including three possible cases: 1) The network device does not send D1; 2) The network device sends D1, but the terminal device misses the PDCCH corresponding to D1; 3) The terminal device receives D1 but D1 K1 indicated by the corresponding PDCCH is not equal to 4, and the ACK / NACK corresponding to D1 is not fed back in time slot 4.
  • the terminal device Since the currently configured codebook is a semi-static codebook, no matter what the actual situation is, the terminal device considers that D1 is not received, and sends feedback information NACK of D1 in time slot 4. It should be noted that, in case 3) above, the terminal device still feeds back the ACK / NACK of D1 in the time slot indicated by the PDCCH.
  • the terminal device does not receive D2, and sends the feedback information NACK of D2 in the time slot 4 of the main carrier.
  • the terminal device does not receive D5, and sends the feedback information NACK of D5 in the time slot 4 of the main carrier.
  • the terminal device does not receive D6 and D7 in the time slot 3, and sends the feedback information NACK of D5 in the time slot 4 of the main carrier.
  • the terminal device does not receive D10 in time slot 3, and sends the feedback information NACK of D10 in time slot 4 of the main carrier.
  • the terminal device does not receive Q3 in time slot 3, and sends Q3 feedback information NACK in time slot 4 of the main carrier.
  • the terminal device does not receive Q4 in time slot 2 and sends Q4 feedback information NACK in time slot 4 of the main carrier.
  • the terminal device does not receive Q6 in time slot 4, and sends Q6 feedback information NACK in time slot 4 of the main carrier.
  • the terminal device does not receive Q8 in time slot 6, and sends Q8 feedback information NACK in time slot 4 of the main carrier.
  • the first codebook is ⁇ AN0, NACK1, NACK2, AN3, AN4, NACK5, NACK6, NACK7, AN8, AN9, NACK10 ⁇ , where AN0, AN3, AN4, AN8, AN9 are D0, D3, respectively , D4, D8, D9 decoding results, NACK1, NACK2, NACK5, NACK6, NACK7, NACK10 are the feedback information of D1, D2, D5, D6, D7, D10 respectively, the terminal device did not receive these PDSCH, or, the terminal The device receives these PDSCHs, but the feedback time slot indicated by the PDCCH scheduling these PDSCHs is not the time slot 4 of the uplink primary carrier.
  • the second codebook is ⁇ AN'0, AN'1, AN'2, NACK'3, NACK'4, AN'5, NACK'6, AN'7, NACK'8, AN ' 9 ⁇ , where AN'0, AN'1, AN'2, AN'5, AN'7, AN'9 are the decoding results of Q0, Q1, Q2, Q5, Q7, Q9, respectively, NACK'3, NACK '4, NACK'6, and NACK'8 are the feedback information of Q3, Q4, Q6, and Q8, respectively, the terminal device does not receive these PDSCHs, or the terminal device receives these PDSCHs, but schedules the feedback slots indicated by the PDCCH of these PDSCHs Time slot 4 that is not the uplink primary carrier.
  • the terminal device determines the PUCCH resources of the first codebook and the second codebook on the uplink primary carrier and in time slot 4, namely, PUCCH1 and PUCCH2, respectively. And the first codebook is transmitted on PUCCH1, and the second codebook is transmitted on PUCCH2.
  • this application also provides a way to send the codebook, that is, the dual fallback mode.
  • the terminal device supports four CCs, namely CC1, CC2, CC3, and CC4.
  • the network device may configure the four CCs into two carrier sets through high-level signaling, which are the first carrier set and the second carrier set, respectively.
  • the first carrier set includes two carriers, respectively CC1 and CC2;
  • the second carrier set includes two carriers, respectively CC3 and CC4.
  • the subcarrier spacing of CC1, CC2, CC3 and CC4 is 15kHz, 15kHz, 15kHz and 30kHz respectively.
  • CC1 can be used to send PUCCH, that is, CC1 is the uplink primary carrier.
  • the network device configures one downlink primary carrier for each carrier set, the downlink primary carrier of the first carrier set is CC1, and the downlink primary carrier of the second carrier set is CC2.
  • the terminal device does not receive the corresponding PDSCH in the time domain position corresponding to the other PDSCH (D1, D2, D3, D4, D5, D6, D7, D8, D9, D10), or the terminal device receives the other PDSCH but schedules The feedback time slots indicated by the PDCCH of these PDSCHs are not slots4.
  • the terminal device determines to enter the fallback mode according to the above conditions.
  • the codebook configured by the network device is a semi-static codebook, in the fallback mode, the first codebook only includes AN0 and does not feedback D1, D2, D3, D4, D5 , D6, D7, D8, D9, D10 corresponding to the feedback information (NACK1, NACK2, NACK3, NACK4, NACK5, NACK6, NACK7, NACK8, NACK9, NACK10).
  • the terminal device does not receive the corresponding PDSCH in the time domain position corresponding to the other PDSCH (Q0, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9), or the terminal device schedules these PDSCHs although it receives other PDSCH
  • the feedback slot indicated by the PDCCH is not slot 4.
  • the terminal device determines to enter the fallback mode according to the above conditions.
  • the codebook configured by the network device is a semi-static codebook, in the fallback mode, the first codebook only includes AN'1, and does not feedback Q0, Q2, Q3, Q4 , Q5, Q6, Q7, Q8, Q9 corresponding feedback information (NACK'0, NACK'2, NACK'3, NACK'4, NACK'5, NACK'6, NACK'7, NACK'8, NACK'9 ).
  • the above-mentioned back-off process is separate.
  • the terminal device determines that the first codebook contains only one PDSCH corresponding to ACK / NACK, if the PDCCH and PDSCH received on the second carrier set do not satisfy the fallback condition, the terminal equipment installs a normal semi-static codebook processing method to determine the second codebook, and the second codebook is not only included in the second
  • the ACK / NACK of the PDSCH received on the carrier set also includes the negative feedback NACK of the PDSCH at other PDSCH timings within the K1Set.
  • the above example describes the case where the terminal device generates two codebooks at the same time, and the terminal device may also determine to generate only one codebook based on receiving one PDSCH on at least two carrier sets.
  • the method 600 includes:
  • the terminal device receives at least one data channel in at least two transmission opportunity sets on the first carrier set.
  • the at least two transmission opportunity sets include the first transmission opportunity set and the second transmission opportunity set.
  • the first carrier set includes the first One carrier and second carrier.
  • the network device sends at least one data channel in at least two transmission opportunity sets on the first carrier set, where the at least two transmission opportunity sets include the first transmission opportunity set and the second transmission opportunity set, and the first carrier set includes The first carrier and the second carrier.
  • the above-mentioned data channel may be a PDSCH or other types of downlink data channels.
  • the transmission opportunity set is, for example, a set of PDSCH opportunities (PDSCH occasions), and one transmission opportunity set may include one or more PDSCH opportunities. If a set of transmission opportunities includes multiple PDSCH opportunities, the multiple PDSCH opportunities may belong to one time unit or multiple time units. The above time unit is, for example, a time slot. If there is only one PDSCH opportunity in a time slot, the set of transmission opportunities may be equivalent to the set of time slots.
  • one carrier can correspond to two sets of transmission opportunity subsets.
  • the first carrier includes eight time slots, and the eight time slots are eight transmission opportunity subsets.
  • the eight transmission opportunity subsets can be It is divided into two groups of transmission opportunity subsets.
  • the first group of transmission opportunity subsets includes five time slots and belongs to the first transmission opportunity set.
  • the second group of transmission opportunity subsets includes three time slots and belongs to the second transmission opportunity set.
  • the terminal device receiving at least one data channel on the first carrier set refers to: the terminal device receives one or more data channels on the carrier included in the first carrier set, where "received” means the terminal device Successfully received the control channel that scheduled the data channel, determined that there was a data channel sent by the network device to itself, and learned the transmission parameters of the data channel, such as the occupied time-frequency resources, the precoding method used, and so on. With reference to this embodiment, “received” also emphasizes that the transmission timing of the received data channel belongs to at least two transmission timing sets on the first carrier set.
  • the terminal device determines the first codebook and / or the second codebook according to the reception status of at least one data channel.
  • the first codebook is used to indicate the reception status of the data channel in the first set of transmission opportunities.
  • the second codebook is used To indicate the reception status of the data channel in the second set of transmission opportunities.
  • the network device determines the reception status of the data channel in the first set of transmission opportunities according to the first codebook after receiving the first codebook, and / or determines according to the second codebook after receiving the second codebook The reception status of the data channel in the second set of transmission opportunities.
  • the terminal device If the terminal device receives only one or more data channels within the first set of transmission opportunities, the terminal device generates only the first codebook; if the terminal device receives only one or more data channels within the second set of transmission opportunities, Then, the terminal device generates only the second codebook; if the terminal device receives the data channel in both the first transmission opportunity set and the second transmission opportunity set, the terminal device generates the first codebook and the second codebook.
  • the reception status of the data channel includes reception success and reception failure.
  • the reception success can be understood as decoding success, and the reception failure can be understood as decoding failure.
  • the reception status of the data channel can also have other reasonable explanations.
  • the terminal device sends the first codebook and / or the second codebook on the primary carrier, where the primary carrier is a carrier in the first carrier set, or there is a first correspondence between the primary carrier and the first carrier set.
  • the network device receives the first codebook and / or the second codebook on the primary carrier, where the primary carrier is a carrier in the first carrier set, or there is a first correspondence between the primary carrier and the first carrier set .
  • the terminal device generates the first codebook and sends the first codebook on the main carrier; the terminal device generates the second codebook and sends the second codebook on the main carrier; the terminal device generates the first codebook and the second codebook , The first codebook and the second codebook are sent on the primary carrier.
  • the primary carrier may be a carrier in the first carrier set. After the terminal device generates the first codebook and / or the second codebook, it is used to transmit the first codebook and / or the second codebook.
  • the primary carrier may also be a carrier that has a first correspondence with the first carrier set.
  • the first correspondence may be predefined by the communication protocol, or may be configured by the network device through high-level signaling.
  • the network device may configure one or more PUCCH groups (PUCCH groups) for terminal devices, and each PUCCH group is associated with a different carrier set, and the network device may configure a primary carrier for the PUCCH group to transmit the PUCCH group The codebook of the PDSCH on the associated carrier set.
  • PUCCH groups PUCCH groups
  • the terminal device may independently encode the first codebook and the second codebook, and separately send the encoded first codebook and the encoded second codebook.
  • the terminal device may receive URLLC data in the first set of transmission opportunities and eMBB data in the second set of transmission opportunities, and the terminal device may generate a codebook corresponding to the URLLC data and a codebook corresponding to the eMBB data according to the method 600.
  • the terminal device can send the URLLC data codebook as soon as possible after receiving a URLLC data, so that the network device quickly retransmits when the URLLC data reception fails, and meets the low latency requirements of the URLLC service.
  • the terminal device can send the codebooks of the multiple eMBB data in a unified manner, while meeting the delay requirements of the eMBB service and reducing the consumption of air interface resources.
  • the terminal device sending the first codebook and / or the second codebook on the primary carrier includes: the terminal device sending the first codebook and / or the second codebook on the primary carrier and within the first time unit.
  • Both the first codebook and the second codebook in method 600 are semi-static codebooks.
  • the terminal device may generate the first codebook according to the high-level signaling of the instruction to generate the semi-static codebook.
  • the first codebook is used to indicate the reception status of the M data channels in the first set of transmission opportunities.
  • the time unit in which the M data channels are located has a second correspondence with the first time unit.
  • the second correspondence is a high-level letter. Let the configured, or, the second correspondence be predefined by the communication protocol.
  • the above M is a positive integer.
  • the terminal device may generate a second codebook according to the high-level signaling that generates a semi-static codebook.
  • the second codebook is used to indicate the reception status of the N data channels in the second set of transmission opportunities.
  • the time unit where the N data channels are located has a second correspondence with the first time unit, and the second correspondence is a high-level letter. Let the configured, or, the second correspondence be predefined by the communication protocol. The above N is a positive integer.
  • the terminal device if the terminal device receives at least one data channel from the first set of transmission opportunities and the second set of transmission opportunities, respectively, the terminal device generates the first codebook and the second code This, no longer repeat.
  • the terminal device may determine the first time unit according to the indication information in the PDCCH. For example, the terminal device receives the PDCCH in time slot 0, and the time domain resource allocation field of the PDCCH includes a PDCCH-to-PDSCH-timing field indicating that the PDSCH transmission delay is 0, so the PDSCH is also transmitted in time slot 0. Further, the value of the timing offset K1 indicated by the PDSCH-to-HARQ-timing field of the PDCCH is 8, and the terminal device determines the time according to the values of time slots 0 and K1. The slot 8 transmits the feedback information of the PDSCH.
  • the first carrier includes two sets of transmission data subsets.
  • the above two sets of transmission opportunity subsets correspond to two sets of subsets of a timing offset set, the timing offset set being pre-defined or configured by high-level signaling. or,
  • the above two sets of transmission timing subsets correspond to two timing offset sets, and the two timing offset sets are predefined or configured by high-level signaling. or,
  • the above two sets of transmission opportunity subsets correspond to two sets of transmission opportunity sets belonging to one time unit.
  • the transmission opportunity set belonging to one time unit is pre-defined or configured by high-level parameters, and the transmission belonging to one time unit
  • the two subsets of the opportunity set are predefined or configured by high-level parameters.
  • FIG. 7 shows a schematic diagram of a method for transmitting a semi-static codebook provided by this application.
  • the terminal device supports a first carrier set, and the first carrier set includes three CCs, respectively CC1, CC2, and CC3.
  • the subcarrier spacing of CC1, CC2 and CC3 is 15kHz.
  • CC1 can be used to send PUCCH, that is, CC1 is the uplink primary carrier.
  • the network device may configure the timing offset set corresponding to each carrier through higher layer signaling.
  • the configuration of the high-level signaling is configured separately for each carrier, and may be explicit configuration information.
  • the high-level signaling explicitly indicates that the first set of transmission timing subsets of CC1 corresponds to the first set of timing offset sets, And, the second set of transmission opportunity subsets corresponds to the second set of timing offset sets.
  • the higher layer signaling may also be implicit configuration information.
  • the codebook identifier associated with the first group of transmission opportunity subsets of CC1 is configured as HARQ1
  • the codebook associated with the second group of transmission opportunities subset of CC1 is configured.
  • the identifier is HARQ2, then the two sets of transmission timing subsets of CC1 correspond to different timing transmission sets.
  • the network device indicates the use of a semi-static codebook through high-level parameters, and configures the K1 set on each downlink CC through high-level parameters.
  • high-level parameters are configured with two K1 sets, namely ⁇ 4,5,6,7,8 ⁇ and ⁇ 1,2,3 ⁇ , corresponding to the two sets of transmission timing subsets of CC1, the previous K1 set The first codebook is associated, and the second K1 set is associated with the second codebook.
  • a high-level parameter configures a K1 set.
  • the K1 set is ⁇ 1,2,3,4,5,6,7,8 ⁇ , which corresponds to a subset of CC2 transmission timing.
  • the K1 set is associated with the first A codebook.
  • a high-level parameter is configured with a K1 set.
  • the K1 set is ⁇ 1,2,3,4,5,6,7,8 ⁇ , but the K1 set is divided into two subsets, which are ⁇ 5, 6,7,8 ⁇ and ⁇ 1,2,3,4 ⁇ correspond to the two sets of CC3 transmission timing subsets.
  • the former K1 subset is associated with the first codebook, and the latter K1 subset is associated with the second codebook.
  • the two subsets of the above K1 set do not overlap, and a K1 set may be divided into two overlapping K1 subsets.
  • the network device transmits the PDSCH on each downlink CC, and the terminal device receives the PDSCH on each downlink CC, and feeds back the reception status of each PDSCH on the uplink primary carrier.
  • the process of the terminal device generating the first codebook is as follows.
  • the terminal device determines to feed back the reception status of the PDSCH in the first transmission opportunity set in the time slot 8 of the uplink primary carrier according to the K1 set configured by the higher layer parameters.
  • the first transmission opportunity set includes: time slots 0 to 4 on CC1, and CC2 on the CC2. Time slots 1 to 8 and time slots 0 to 3 on CC3.
  • the terminal device receives at least one PDSCH within the first set of transmission opportunities, and, if the fallback condition is not currently met, the terminal device determines that the first codebook is ⁇ AN1-0, AN1-1, AN1-2, AN1-3, AN1-4, AN2-1, AN2-2, AN2-3, AN2-4, AN2-5, AN2-6, AN2-7, AN2-7, AN2-8, AN3-0, AN3-1, AN3- 2, AN3-3 ⁇ , corresponding to the decoding results of the PDSCH on time slots 0 to 4 on CC1, time slots 1 to 8 on CC2, and time slots 0 to 3 on CC3, respectively.
  • the terminal device receives the PDSCH in time slot 0 of CC1, but the network device indicates through PDCCH that the feedback time slot corresponding to time slot 0 of CC1 is not time slot 8, the terminal device fills NACK at AN1-0.
  • the above example is only for illustration, and other downlink time slots are also applicable to the above method.
  • the terminal device receives only one PDSCH in the first transmission opportunity set of the first primary CC (the first primary CC is configured by a higher layer and belongs to the first CC set, for example, it may be the primary CC, namely CC1) ,
  • the PDCCH scheduling the PDSCH indicates that the feedback information of the PDSCH is sent in the time slot 8 of the uplink primary carrier, and the DCI contained in the PDCCH is a fallback DCI, such as DCI format 1_0, and the fallback DCI indicates the DAI The value is 1.
  • the terminal device determines to enter the fallback mode according to the above conditions.
  • the codebook configured by the network device is a semi-static codebook, in the fallback mode, the first codebook contains only one piece of feedback information, that is, the decoding result of the PDSCH.
  • the process of generating the second codebook by the terminal device is as follows.
  • the terminal device determines the feedback status of the PDSCH in the second transmission opportunity set in the time slot 8 of the uplink primary carrier according to the K1 set configured by the higher layer parameters.
  • the second transmission opportunity set includes: time slots 5 to 7 on CC1 and CC3 on the CC3. Time slots 4-7.
  • the terminal device receives at least one PDSCH within the second set of transmission opportunities, and, if the fallback condition is not currently met, the terminal device determines that the second codebook is ⁇ AN1-5, AN1-6, AN1-6, AN3-4, AN3-5, AN3-6, AN3-7 ⁇ correspond to the decoding results of the PDSCH in time slots 5-7 on CC1 and 4-7 in CC3, respectively. If the terminal device receives the PDSCH in time slot 5 of CC1, but the network device indicates through PDCCH that the feedback time slot corresponding to time slot 5 of CC1 is not time slot 8, the terminal device fills NACK at AN1-0.
  • the above example is only for illustration, and other downlink time slots are also applicable to the above method.
  • the terminal device receives only one PDSCH in the first transmission opportunity set of the second primary CC (the second primary CC is configured by a higher layer and belongs to the first CC set, for example, it may be the primary CC, namely CC1) .
  • the PDCCH scheduling the PDSCH indicates that the feedback information of the PDSCH is sent in the time slot 8 of the uplink primary carrier, and the DCI contained in the PDCCH is a fallback DCI, such as DCI format 1_0, and the fallback DCI indicates the DAI The value is 1.
  • the terminal device determines to enter the fallback mode according to the above conditions.
  • the codebook configured by the network device is a semi-static codebook, in the fallback mode, the first codebook contains only one piece of feedback information, that is, the decoding result of the PDSCH.
  • the terminal device determines the PUCCH resources of the first codebook and the second codebook on the uplink primary carrier and in time slot 8, namely, PUCCH 1 and PUCCH 2, respectively. And the first codebook is transmitted on PUCCH1, and the second codebook is transmitted on PUCCH2.
  • the transmission timing in one time slot of one CC corresponds to only one transmission timing set.
  • the PDSCH on each CC can also be divided according to FIG. 8, that is, for one carrier, it is in one time slot
  • the transmission opportunities within belong to two sets of transmission opportunities.
  • the network device configures a carrier set for the terminal device, and the carrier set includes two CCs, CC1 and CC2, respectively.
  • the network device configures 16 PDSCH opportunities in a time slot through high-level parameters, and divides the 16 PDSCH opportunities into two groups.
  • the first group of PDSCH opportunities includes ⁇ # 0, # 1, # 2, # 3 ⁇
  • the second group of PDSCH timing includes ⁇ # 4, # 5, # 6, # 7, # 8, # 9, # 10, # 11, # 12, # 13, # 14, # 15 ⁇ .
  • the first group of PDSCH opportunities belongs to the first set of transmission opportunities, which may also be called a subset of the first transmission opportunities, and there is a corresponding relationship with the first codebook; the second group of PDSCH opportunities belongs to the second set of transmission opportunities, which may also be called the second A subset of transmission timing has a corresponding relationship with the second codebook.
  • the network device configures 8 PDSCH opportunities in a time slot through high-level parameters, and the 8 PDSCH opportunities are not grouped, the terminal device defaults these 8 PDSCH opportunities as the first group of PDSCH opportunities, and passes the first The codebook feeds back the reception status of the PDSCH in the eight PDSCH opportunities.
  • the above example only illustrates the division of PDSCH timing in one time slot, and the division of PDSCH opportunities in other time slots is similar to the above example.
  • the network device configures the same K1 set for CC1 and CC2 in FIG. 8, for example, the K1 set of CC1 and CC2 are both ⁇ 1,2,3,4 ⁇ , then the time slot of the terminal device in CC1 and CC2 ⁇ 0,1 , 2,3 ⁇ Receive the PDSCH, and send the first codebook and the second codebook in time slot 4 of the primary carrier (for example, CC1).
  • the K1 set of CC1 and CC2 are both ⁇ 1,2,3,4 ⁇
  • the time slot of the terminal device in CC1 and CC2 ⁇ 0,1 , 2,3 ⁇
  • Receive the PDSCH and send the first codebook and the second codebook in time slot 4 of the primary carrier (for example, CC1).
  • the feedback process of the decoding result of the PDSCH in the first transmission opportunity set is as follows. Only the codebook with the first transmission opportunity set in one time slot is taken as an example for description.
  • the first transmission timing subset within a time slot is, for example, ⁇ # 0, # 1, # 2, # 3 ⁇ on CC1 and ⁇ # 0, # 1, # 2, # 3 on CC2 , # 4, # 5, # 6, # 7 ⁇ .
  • the terminal device receives the PDSCH within the above-mentioned subset of transmission opportunities.
  • the terminal device receives at least one PDSCH and does not currently meet the fallback condition, then the terminal device generates the first codebook normally.
  • the feedback codebook is ⁇ AN1-0, AN1-1, AN1 -2, AN1-3 ⁇ , corresponding to the ACK / NACK feedback of the PDSCH timing in time slots 0 ⁇ 3; for CC2, due to the ⁇ # 0, # 1, # 2, # 3, # 4, # 5, # 6, # 7 ⁇ can cut three time units, so the feedback codebook is ⁇ AN2-00, AN2-01, AN2-02, AN2-10, AN2-11, AN2- 12, AN2-20, AN2-21, AN2-22, AN2-30, AN2-31, AN2-32 ⁇ , corresponding to three ACK / NACK feedbacks in time slots 0 to 3 on CC2.
  • the resulting first codebook is ⁇ AN1-0, AN1-1, AN1-2, AN1-3, AN2-00, AN2-01, AN2-02, AN2-10, AN2-11, AN2-12, AN2 -20, AN2-21, AN2-22, AN2-30, AN2-31, AN2-32 ⁇ . If the terminal device receives the PDSCH within a certain PDSCH opportunity but the network device indicates through the PDCCH that the feedback time slot corresponding to the PDSCH opportunity is not time slot 4, the terminal device fills NACK in the position corresponding to the PDSCH opportunity in the first codebook.
  • the terminal device only receives a PDSCH on the first primary carrier (the first primary CC is configured by a higher layer and belongs to the first CC set, for example, it may be the primary CC, namely CC1)
  • the PDCCH indication of the PDSCH is scheduled
  • the feedback information of the PDSCH is sent in the time slot 8 of the uplink primary carrier, and the DCI contained in the PDCCH is a fallback DCI, such as DCI format 1_0, and the value of the DAI indicated by the fallback DCI is 1, or the terminal device Other PDSCH is received, but the feedback slot of other PDSCH is not slot 4.
  • the terminal device enters the back-off mode, generates a first codebook containing only the decoding result of the above one PDSCH, and no longer fills NACK in the first codebook with the position corresponding to the potential PDSCH timing.
  • the feedback process of the decoding result of the PDSCH in the second transmission opportunity set is as follows. Only the codebook with the second transmission opportunity set in one time slot is taken as an example for description.
  • the second transmission timing set in a time slot The second transmission timing subset is, for example, on CC1 ⁇ # 4, # 5, # 6, # 7, # 8, # 9, # 10, # 11, # 12, # 13, # 14, # 15 ⁇ .
  • the terminal device receives the PDSCH within the above-mentioned subset of transmission opportunities.
  • the terminal device When the terminal device receives at least one PDSCH and does not currently meet the fallback condition, the terminal device generates the second codebook normally.
  • the feedback codebook is ⁇ AN1-00, AN1-01, AN1-02, AN1-03, AN1-10, AN1-11, AN1-12, AN1-13, AN1-20 , AN1-21, AN1-22, AN1-23, AN1-30, AN1-31, AN1-32, AN1-33 ⁇ , corresponding to the ACK / NACK feedback of the four time groups in 4 time slots on CC1,
  • AN1-00, AN1-01, AN1-02 and AN1-03 represent the feedback information of four PDSCHs in one time slot
  • AN1-10, AN1-11, AN1-12 and AN1-13 represent another time slot
  • the resulting second codebook is ⁇ AN1-00, AN1-01, AN1-02, AN1-03, AN1-10, AN1-11, AN1-12, AN1-13, AN1-20, AN1-21, AN1 -22, AN1-23, AN1-30, AN1-31, AN1-32, AN1-33 ⁇ . If the terminal device receives the PDSCH within a certain PDSCH opportunity but the network device indicates through the PDCCH that the feedback time slot corresponding to the PDSCH opportunity is not time slot 4, the terminal device fills NACK in the position corresponding to the PDSCH opportunity in the second codebook.
  • the terminal device only receives one PDSCH in the first transmission opportunity set of the second primary CC (the second primary CC is configured by higher layers and belongs to the first CC set, for example, it may be the primary CC, namely CC1) .
  • the PDCCH scheduling the PDSCH indicates that the feedback information of the PDSCH is sent in the time slot 8 of the uplink primary carrier, and the DCI contained in the PDCCH is a fallback DCI, such as DCI format 1_0, and the fallback DCI indicates the DAI
  • the value is 1, or the terminal device receives other PDSCH, but the feedback time slot of the other PDSCH is not the time slot 4).
  • the terminal device enters the back-off mode, generates a second codebook containing only the decoding result of the above one PDSCH, and no longer fills NACK in the second codebook with the position corresponding to the potential PDSCH timing.
  • the terminal device determines the PUCCH resources of the first codebook and the second codebook on the uplink primary carrier and in time slot 4, namely, PUCCH1 and PUCCH2, respectively. And the first codebook is transmitted on PUCCH1, and the second codebook is transmitted on PUCCH2.
  • the communication device includes a hardware structure and / or a software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the present application may divide the functional unit of the communication device according to the above method example, for example, each function may be divided into various functional units, or two or more functions may be integrated into one processing unit.
  • the above integrated unit may be implemented in the form of hardware or software functional unit. It should be noted that the division of the units in this application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • FIG. 9 shows a schematic structural diagram of a communication device provided by the present application.
  • the communication device 900 may be used to implement the method described in the above method embodiments.
  • the communication device 900 may be a chip, a network device, a terminal device, or other wireless communication devices.
  • the communication device 900 includes one or more processors 901, and the one or more processors 901 may support the communication device 900 to implement the codebook transmission method described in the embodiments of the present application, for example, the first aspect or the second aspect of the invention.
  • the method shown, and the method executed by the terminal device in the embodiment shown in FIG. 2 or FIG. 6; or, the one or more processors 901 may support the communication apparatus 900 to implement the codebook reception described in the embodiments of the present application Methods, such as the method described in the third or fourth aspect of the Summary of the Invention, and the method performed by the network device in the embodiment shown in FIG. 2 or FIG. 6.
  • the processor 901 may be a general-purpose processor or a dedicated processor.
  • the processor 901 may be a central processing unit (CPU) or a baseband processor.
  • the baseband processor can be used to process communication data (for example, the first codebook and / or the second codebook described above), and the CPU can be used to control and execute communication devices (for example, base stations, UEs, or chips).
  • Software program, processing software program data may further include a transceiver unit 905 to implement input (reception) and output (transmission) of signals.
  • the communication device 900 may be a chip, and the transceiving unit 905 may be an input and / or output circuit of the chip, or the transceiving unit 905 may be a communication interface of the chip, and the chip may serve as a UE or base station or other wireless communication device. component.
  • the communication device 900 may be a UE or a base station or other wireless communication device, and the transceiver unit 905 may be a transceiver or a radio frequency chip.
  • the communication device 900 may include one or more memories 902 on which a program 904 is stored.
  • the program 904 may be executed by the processor 901 to generate instructions 903, so that the processor 901 performs the method described in the above method embodiments according to the instructions 903.
  • the memory 902 may also store data.
  • the processor 901 can also read data stored in the memory 902 (for example, predefined information), the data can be stored at the same storage address as the program 904, or the data can be stored in a different Storage address.
  • the processor 901 and the memory 902 may be provided separately or integrated together, for example, integrated on a single board or a system-on-chip (SOC).
  • SOC system-on-chip
  • the communication device 900 may further include a transceiver unit 905 and an antenna 906.
  • the transceiver unit 905 may be called a transceiver, a transceiver circuit, or a transceiver, and is used to implement the transceiver function of the communication device through the antenna 906.
  • the processor 901 is configured to receive at least one data channel on at least two carrier sets through the transceiver unit 905 and the antenna 906, where the at least two carrier sets include a first carrier set and a second carrier set Then, the first codebook and / or the second codebook are determined according to the reception status of at least one data channel, the first codebook is used to indicate the reception status of the data channel corresponding to the first carrier set, and the second codebook is used to indicate The reception status of the data channel corresponding to the second carrier set; subsequently, the first codebook and / or the second codebook are sent on the primary carrier through the transceiver unit 905 and the antenna 906, where the primary carrier is among the at least two carrier sets There is a first correspondence between one carrier, or a primary carrier and at least two carrier sets. For specific methods of generating and sending codebooks, reference may be made to related descriptions in the foregoing method embodiments.
  • the processor 901 receives at least one data channel in at least two transmission opportunity sets on the first carrier set through the transceiver unit 905 and the antenna 906, the at least two transmission opportunity sets including the first transmission
  • the set of opportunities and the second set of transmission opportunities, the first set of carriers includes the first carrier and the second carrier; subsequently, the first codebook and / or the second codebook are determined according to the reception status of at least one data channel, the first codebook is used
  • the second codebook is used to indicate the reception status of the data channel in the second set of transmission opportunities;
  • a codebook and / or a second codebook where the primary carrier is a carrier in the first carrier set, or the primary carrier has a first correspondence with the first carrier set.
  • the processor 901 is used to transmit at least one data channel on at least two carrier sets through the transceiver unit 905 and the antenna 906, and the at least two carrier sets include a first carrier set and a second carrier set; Subsequently, the first codebook and / or the second codebook is received on the primary carrier through the transceiver unit 905 and the antenna 906, where the first codebook is used to indicate the reception status of the data channel corresponding to the first carrier set, and The second codebook is used to indicate the reception status of the data channel corresponding to the second carrier set.
  • the primary carrier is one carrier in at least two carrier sets, or the primary carrier has a first correspondence with at least two carrier sets.
  • the processor 901 is configured to send at least one data channel in at least two transmission opportunity sets on the first carrier set through the transceiver unit 905 and the antenna 906, and the at least two transmission opportunity sets include the first The transmission timing set and the second transmission timing set.
  • the first carrier set includes the first carrier and the second carrier; subsequently, the first codebook and / or the second codebook are received on the primary carrier through the transceiver unit 905 and the antenna 906, where ,
  • the first codebook is used to indicate the reception status of the data channel in the first set of transmission opportunities
  • the second codebook is used to indicate the reception status of the data channel in the second set of transmission opportunities
  • the primary carrier is the One carrier, or, the primary carrier and the first carrier set have a first correspondence.
  • the processor 901 may be a CPU, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices For example, discrete gates, transistor logic devices or discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the present application also provides a computer program product which, when executed by the processor 901, implements the communication method described in any method embodiment of the present application.
  • the computer program product may be stored in the memory 902, for example, the program 904.
  • the program 904 is finally converted into an executable object file that can be executed by the processor 901 after preprocessing, compiling, assembling, and linking.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, which when executed by a computer implements the communication method described in any of the method embodiments of the present application.
  • the computer program may be a high-level language program or an executable target program.
  • the computer-readable storage medium is, for example, the memory 902.
  • the memory 902 may be a volatile memory or a non-volatile memory, or the memory 902 may include both a volatile memory and a non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (random access memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous RAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data SDRAM double data SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM, DR RAM
  • FIG. 10 shows a schematic structural diagram of a terminal device provided by the present application.
  • the terminal device 1000 may be applied to the system shown in FIG. 1 to implement the functions of the terminal device in the foregoing method embodiments.
  • FIG. 10 shows only the main components of the terminal device.
  • the terminal device 1000 includes a processor, a memory, a control circuit, an antenna, and input / output devices.
  • the processor is mainly used for processing communication protocols and communication data, and for controlling the entire terminal device. For example, the processor generates the first codebook and / or the second codebook, and then transmits the first codebook and / or the second codebook through the control circuit and the antenna.
  • the memory is mainly used to store programs and data, for example, to store communication protocols and the above configuration information.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the input / output device is, for example, a touch screen, a display screen, or a keyboard, and is mainly used to receive data input by the user and output data to the user.
  • the processor can read the program in the memory, interpret and execute the instructions contained in the program, and process the data in the program.
  • the processor performs baseband processing on the information to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal after radio frequency processing to obtain the radio frequency signal, and passes the radio frequency signal through the antenna Send outside.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into information And process the information.
  • FIG. 10 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this application.
  • the processor in FIG. 10 may integrate the functions of the baseband processor and the CPU.
  • the baseband processor and the CPU may also be separate processors, which may be implemented through a bus or other technologies. interconnected.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple CPUs to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be called a baseband processing circuit or a baseband processing chip.
  • the CPU may also be called a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or may be stored in the memory in the form of a program, and the processor executes the program in the memory to realize the baseband processing function.
  • an antenna and a control circuit with a transceiver function can be regarded as the transceiver unit 1001 of the terminal device 1000, which is used to support the terminal device to implement the receiving function in the method embodiment, or to support the terminal device to implement the method embodiment Send function in.
  • the processor having a processing function is regarded as the processing unit 1002 of the terminal device 1000.
  • the terminal device 1000 includes a transceiver unit 1001 and a processing unit 1002.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, or the like.
  • the device used to implement the receiving function in the transceiver unit 1001 can be regarded as a receiving unit, and the device used to implement the sending function in the transceiver unit 1001 can be regarded as a sending unit, that is, the transceiver unit 1001 includes a receiving unit and a sending unit,
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 1002 may be used to execute a program stored in the memory to control the transceiver unit 1001 to receive signals and / or send signals to complete the functions of the terminal device in the foregoing method embodiments.
  • the function of the transceiver unit 1001 may be implemented through a transceiver circuit or a dedicated transceiver chip.
  • FIG. 11 is a schematic structural diagram of a network device provided by the present application.
  • the network device may be, for example, a base station.
  • the base station can be applied to the system shown in FIG. 1 to implement the function of gNB in the above method embodiment.
  • the base station 1100 may include one or more radio frequency units, such as a remote radio unit (RRU) 1101 and at least one baseband unit (BBU) 1102.
  • the BBU 1102 may include a distributed unit (DU) or a DU and a central unit (CU).
  • DU distributed unit
  • DU distributed unit
  • CU central unit
  • the RRU1101 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, and it may include at least one antenna 11011 and a radio frequency unit 11012.
  • RRU1101 is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for supporting the base station to implement the transmission function and the reception function in the method embodiment.
  • BBU1102 is mainly used for baseband processing and control of base stations.
  • RRU1101 and BBU1102 can be physically set together, or can be set separately, namely distributed base stations.
  • BBU1102 can also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU1102 can be used to control the base station to perform the operation flow on the network device in the above method embodiments.
  • the BBU1102 can be composed of one or more boards.
  • the multiple boards can jointly support a wireless access network with a single access indication (for example, long term evolution (LTE) network), and can also support different access standards.
  • Wireless access network (such as LTE network and 5G network).
  • the BBU 1102 also includes a memory 11021 and a processor 11022.
  • the memory 11021 is used to store necessary instructions and data.
  • the memory 11021 stores various information in the above method embodiments.
  • the processor 11022 is used to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow in the foregoing method embodiment.
  • the memory 11021 and the processor 11022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, each board can also be provided with necessary circuits.
  • the present application also provides a communication system, including the foregoing terminal device 1000 and base station 1100.
  • the disclosed system, device, and method may be implemented in other ways. For example, some features of the method embodiments described above can be ignored or not performed.
  • the device embodiments described above are only schematic. The division of units is only a division of logical functions. In actual implementation, there may be another division manner. Multiple units or components may be combined or integrated into another system.
  • the coupling between the units or the coupling between the components may be direct coupling or indirect coupling, and the coupling includes electrical, mechanical, or other forms of connection.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and inherent logic, and should not be applied to the embodiments of this application
  • the implementation process constitutes no limitation.
  • system and “network” are often used interchangeably herein.
  • the term “and / or” in this article is just an association relationship describing the associated objects, which means that there can be three kinds of relationships, for example, A and / or B, which can mean: A exists alone, A and B exist at the same time, alone There are three cases of B.
  • the character "/" in this article generally indicates that the related objects before and after are in an "or" relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送码本的方法,包括:终端设备在至少两个载波集合上接收至少一个数据信道,该至少两个载波集合包括第一载波集合和第二载波集合;终端设备根据至少一个数据信道的接收状态确定第一码本和/或第二码本,第一码本用于指示第一载波集合对应的数据信道的接收状态,第二码本用于指示第二载波集合对应的数据信道的接收状态;终端设备在主载波上发送第一码本和/或第二码本,其中,主载波为至少两个载波集合中的一个载波,或者,主载波与至少两个载波集合存在第一对应关系。在上述方案中,终端设备对不同载波集合上的数据信道的接收状态进行独立反馈,从而可以提高多载波通信场景中反馈HARQ码本的灵活性。

Description

发送码本的方法和装置以及接收码本的方法和装置
本申请要求于2018年11月14日提交中国专利局、申请号为201811353925.9、申请名称为“发送码本的方法和装置以及接收码本的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种发送码本的方法和装置,以及一种接收码本的方法和装置。
背景技术
第五代(the fifth generation,5G)移动通信系统的下行数据传输支持半持续性调度(semi-persistent scheduling,SPS)物理下行共享信道(physical downlink shared channel,PDSCH)和动态调度的PDSCH。对于下行数据传输,混合自动重传(hybrid automatic repeat request,HARQ)是一种高效的传输机制。一方面,通过重传可以极大提高下行数据传输的可靠性;另一方面,网络设备根据用户设备(user equipment,UE)反馈的肯定应答(acknowledgement,ACK)或否定应答(negative acknowledgement,NACK)确定是否进行重传,网络设备通常在UE反馈NACK时才进行重传,从而提高了数据传输效率。
5G通信系统支持两种HARQ码本配置,即动态码本(dynamic codebook)和半静态码本(semi-static codebook)。无论UE通过哪种码本进行反馈,都需要从网络设备获取HARQ定时指示、生成HARQ码本以及确定反馈HARQ码本的上行资源。目前,反馈HARQ码本都是基于时隙进行的,即,在一个时隙内反馈的HARQ码本需要联合编码,导致反馈HARQ码本的灵活性较差,特别是在多载波通信场景中,多个载波上PDSCH的传输情况更加复杂。如何提高在多载波通信场景中反馈HARQ码本的灵活性是当前需要解决的问题。
发明内容
本申请提供了一种发送码本的方法,对不同载波集合的数据信道的反馈信息进行独立编码反馈,从而提高了多载波通信场景中反馈HARQ码本的灵活性。
第一方面,提供了一种发送码本的方法,包括:终端设备在至少两个载波集合上接收至少一个数据信道,该至少两个载波集合包括第一载波集合和第二载波集合;终端设备根据至少一个数据信道的接收状态确定第一码本和/或第二码本,第一码本用于指示第一载波集合对应的数据信道的接收状态,第二码本用于指示第二载波集合对应的数据信道的接收状态;终端设备在主载波上发送第一码本和/或第二码本,其中,主载波为至少两个载波集合中的一个载波,或者,主载波与至少两个载波集合存在第一对应关系。
在上述方案中,终端设备对不同载波集合上的数据信道的接收状态进行独立反馈,从 而可以提高多载波通信场景中反馈HARQ码本的灵活性。例如,对于承载时延要求较高的业务的载波集合,终端设备可以尽快反馈该载波集合对应的码本,从而可以满足低时延业务的时延要求;对于承载时延要求较低的业务的载波集合,终端设备可以对该载波集合上多个数据信道的接收状态进行统一反馈,从而可以在满足时延要求的前提下减少空口资源的消耗。
可选地,所述方法还包括:终端设备接收第一控制信道,第一控制信道用于调度第一载波集合对应的第一数据信道,第一数据信道属于所述至少一个数据信道,第一控制信道包括用于指示第一时间单元的第一指示信息;和/或,终端设备接收第二控制信道,第二控制信道用于调度第二载波集合对应的第二数据信道,第二数据信道属于至少一个数据信道,第二控制信道包括用于指示第一时间单元的第二指示信息;终端设备在主载波上发送第一码本和/或第二码本,包括:终端设备在主载波上以及在第一时间单元内发送第一码本和/或第二码本。
终端设备可以基于网络设备的指示在一个时间单元内发送第一码本和/或第二码本,上述第一码本可以是动态码本,也可以是半静态码本;上述第二码本可以是动态码本,也可以是半静态码本。
可选地,终端设备接收第一控制信道,包括:终端设备在第一载波集合上接收第一控制信道;终端设备接收第二控制信道,包括:终端设备在第二载波集合上接收第二控制信道。
可选地,所述方法还包括:终端设备在第一载波集合上接收第一控制信道,第一控制信道用于调度第一数据信道,第一数据信道属于所述至少一个数据信道,第一控制信道包括用于指示第一时间单元的第一指示信息;和/或,终端设备在第二载波集合上接收第二控制信道,第二控制信道用于调度第二数据信道,第二数据信道属于至少一个数据信道,第二控制信道包括用于指示第一时间单元的第二指示信息;终端设备在主载波上发送第一码本和/或第二码本,包括:终端设备在主载波上以及在第一时间单元内发送第一码本和/或第二码本。
可见,第一载波集合可以是基于承载数据信道的载波进行划分,也可以是基于承载控制信道的载波进行划分,从而提高了发送码本的灵活性。
可选地,终端设备根据至少一个数据信道的接收状态确定第一码本和/或第二码本,包括:终端设备根据第一控制信道中包含的下行分配索引DAI确定第一码本,第一码本用于指示第一数据信道的接收状态;和/或,终端设备根据第二控制信道中包含的DAI确定第二码本,第二码本包括第二数据信道的反馈信息。
DAI用于指示截至当前调度时刻共调度了多少个数据信道,终端设备根据控制信道中的DAI生成动态码本,从而可以提高发送码本的灵活性。
可选地,第一码本用于指示第一载波集合对应的M个数据信道的接收状态,M个数据信道包括第一数据信道,M个数据信道所在的时间单元与第一时间单元之间存在第二对应关系,M为正整数;和/或,第二码本用于指示第二载波集合对应的N个数据信道的接收状态,N个数据信道包括第二数据信道,N个数据信道所在的时间单元与第一时间单元之间存在第三对应关系,N为正整数。
终端设备可以根据预设的信息或者高层信令配置的信息确定各个载波集合对应的数 据信道的数量,并基于该数量生成半静态码本,无需网络设备实时指示生成哪些数据信道的码本,从而可以减小空口资源的消耗。
可选地,当终端设备在第一主载波上接收一个控制信道,并且,一个控制信道用于调度第一主载波上的一个数据信道,并且,一个控制信道承载第一回退下行控制信息DCI,并且,第一回退DCI中的DAI的值为1,第一码本只用于指示一个数据信道的接收状态,其中,第一主载波属于第一载波集合;和/或,若终端设备在第二主载波上接收一个控制信道,并且,一个控制信道用于调度第二主载波上的一个数据信道,并且,一个控制信道承载第二回退DCI,并且,第二回退DCI中的DAI的值为1,则第二码本只用于指示一个数据信道的接收状态,其中,第二主载波属于第二载波集合。
第一码本所反馈的一个数据信道可以是上文所述的第一数据信道,相应地,调度该一个数据信道的一个控制信道例如是第一控制信道。第二码本所反馈的一个数据信道可以是上文所述的第二数据信道,相应地,调度该一个数据信道的一个控制信道例如是第二控制信道。上述方案应用于网络设备指示通过半静态码本反馈数据信道接收状态的通信场景,终端设备在当前通信场景满足上述条件的前提下,仅需生成包含一个数据信道的反馈信息的码本,从而提高了发送码本的可靠性,并且,减小了空口资源的消耗。
可选地,第一主载波和第二主载波都是上文所述的发送第一码本和/或第二码本的主载波;或者,第一主载波是所述主载波,第二主载波是高层信令配置的、不同于所述主载波的另一个载波;或者,第二主载波是所述主载波,第一主载波是高层信令配置的、不同于所述主载波的另一个载波。
第二方面,本申请提供了另一种发送码本的方法,包括:终端设备在第一载波集合上的至少两个传输时机集合内接收至少一个数据信道,至少两个传输时机集合包括第一传输时机集合和第二传输时机集合,第一载波集合包括第一载波和第二载波;终端设备根据至少一个数据信道的接收状态确定第一码本和/或第二码本,第一码本用于指示第一传输时机集合内的数据信道的接收状态,第二码本用于指示第二传输时机集合内的数据信道的接收状态;终端设备在主载波上发送第一码本和/或第二码本,其中,主载波为第一载波集合中的一个载波,或者,主载波与第一载波集合存在第一对应关系。
在上述方案中,终端设备对不同传输时机集合内的数据信道的接收状态进行独立反馈,从而可以提高多载波通信场景中反馈HARQ码本的灵活性。例如,对于承载时延要求较高的业务的传输时机集合,终端设备可以尽快反馈该传输时机集合对应的码本,从而可以满足低时延业务的时延要求;对于承载时延要求较低的业务的传输时机集合,终端设备可以对该传输时机集合内多个数据信道的接收状态进行统一反馈,从而可以在满足时延要求的前提下减少空口资源的消耗。
可选地,终端设备在主载波上发送第一码本和/或第二码本,包括:终端设备在主载波上以及在第一时间单元内发送第一码本和/或第二码本,其中,第一码本用于指示第一传输时机集合内M个数据信道的接收状态,M个数据信道所在的时间单元与第一时间单元之间存在第二对应关系,M个数据信道属于至少一个数据信道,M为正整数;和/或,第二码本用于指示第二传输时机集合内N个数据信道的接收状态,N个数据信道所在的时间单元与第一时间单元之间存在第三对应关系,N个数据信道属于至少一个数据信道,N为正整数。
可选地,终端设备在主载波上以及在第一时间单元内发送第一码本和/或第二码本,包括:当终端设备在第一载波集合上收到至少一个属于第一传输时机集合的下行数据信道,且调度该下行数据信道的下行控制信道指示所述下行数据信道的反馈信息在所述第一时间单元内反馈时,则所述终端设备在所述主载波上以及在所述第一时间单元内发送所述第一码本;和/或,当终端设备在第一载波集合上收到至少一个属于第二传输时机集合的下行数据信道,且调度该下行数据信道的下行控制信道指示所述下行数据信道的反馈信息在所述第一时间单元内反馈时,则所述终端设备在所述主载波上以及在所述第一时间单元内发送所述第二码本。
终端设备可以基于网络设备的指示在一个时间单元内发送第一码本和/或第二码本,上述第一码本和第二码本为半静态码本。终端设备可以根据预设的信息或者高层信令配置的信息确定各个传输时机集合对应的数据信道的数量,并基于该数量生成半静态码本,无需网络设备实时指示生成哪些数据信道的码本,从而可以减小空口资源的消耗。
可选地,第一载波对应两组传输时机子集,该两组传输时机子集分别属于第一传输时机集合和第二传输时机集合。
可选地,所述两组传输时机子集对应一个定时偏移量集合的两组子集,该一个定时偏移量集合是预定义的或高层信令配置的;或者,所述两组传输时机子集对应两个定时偏移量集合,该两个定时偏移量集合是预定义的或高层信令配置的;或者,所述两组传输时机子集对应属于一个时间单元的传输时机集合的两组子集,属于一个时间单元的传输时机集合是预定义的或高层参数配置的,属于一个时间单元的传输时机集合的两组子集是预定义的或高层参数配置的。
上述方案提供了多种划分传输时机子集的方法,从而提高了发送码本的灵活性。
可选地,当终端设备在第一载波上接收一个控制信道,并且,该一个控制信道用于调度第一载波上属于第一传输时机集合的一个数据信道,并且,一个控制信道承载第一回退DCI,并且,第一回退DCI中的DAI的值为1,第一码本只用于指示所述一个数据信道的接收状态;和/或,当终端设备在第二载波上接收一个控制信道,并且,该一个控制信道用于调度第二载波上属于第二传输时机集合的一个数据信道,并且,一个控制信道承载第二回退DCI,并且,第二回退DCI中的DAI的值为1,第二码本只用于指示所述一个数据信道的接收状态。
上述方案中,第一主载波和第二主载波可以是同一个载波,如都是第一载波集合的主载波;或者,第一主载波和第二主载波是不同的载波,如第一主载波是第一载波集合的主载波,第二载波是高层信令配置的、不同于第一主载波的一个载波。
上述方案应用于网络设备指示通过半静态码本反馈数据信道接收状态的通信场景,终端设备在当前通信场景满足上述条件的前提下,仅需生成包含一个数据信道的反馈信息的码本,从而提高了发送码本的可靠性,并且,减小了空口资源的消耗。
第三方面,本申请还提供了一种接收码本的方法,包括:网络设备在至少两个载波集合上发送至少一个数据信道,至少两个载波集合包括第一载波集合和第二载波集合;网络设备在主载波上接收第一码本和/或所述第二码本,其中,第一码本用于指示第一载波集合对应的数据信道的接收状态,第二码本用于指示第二载波集合对应的数据信道的接收状态,主载波为至少两个载波集合中的一个载波,或者,主载波与至少两个载波集合存在第 一对应关系。
在上述方案中,网络设备接收不同载波集合上的数据信道的接收状态的独立反馈信息,从而可以提高多载波通信场景中反馈HARQ码本的灵活性。例如,对于承载时延要求较高的业务的载波集合,终端设备可以尽快反馈该载波集合对应的码本,从而可以满足低时延业务的时延要求;对于承载时延要求较低的业务的载波集合,终端设备可以对该载波集合上多个数据信道的接收状态进行统一反馈,从而可以在满足时延要求的前提下减少空口资源的消耗。
上述“网络设备在至少两个载波集合上发送至少一个数据信道”指的是:当网络设备发送两个数据信道时,网络设备可以通过第一载波集合发送一个数据信道,通过第二载波集合发送另一个数据信道;或者,网络设备通过第一载波集合和第二载波集合发送这两个数据信道。当网络设备发送一个数据信道时,网络设备可以通过第一载波集合或第二载波集合发送该数据信道,即,从至少两个载波集合中选一个载波集合发送上述一个数据信道。
可选地,所述方法还包括:网络设备发送第一控制信道,第一控制信道用于调度第一载波集合对应的第一数据信道,第一数据信道属于至少一个数据信道,第一控制信道包括用于指示第一时间单元的第一指示信息;和/或,网络设备发送第二控制信道,第二控制信道用于调度第二载波集合对应的第二数据信道,第二数据信道属于至少一个数据信道,第二控制信道包括用于指示第一时间单元的第二指示信息;网络设备在主载波上接收第一码本和/或第二码本,包括:网络设备在主载波上以及在第一时间单元内接收第一码本和/或第二码本。
网络设备可以指示终端设备在一个时间单元内发送第一码本和/或第二码本,上述第一码本可以是动态码本,也可以是半静态码本;上述第二码本可以是动态码本,也可以是半静态码本。
可选地,网络设备发送第一控制信道,包括:网络设备在第一载波集合上发送第一控制信道;网络设备发送第二控制信道,包括:网络设备在第二载波集合上发送第二控制信道。
可选地,所述方法还包括:网络设备在第一载波集合上发送第一控制信道,第一控制信道用于调度第一数据信道,第一数据信道属于所述至少一个数据信道,第一控制信道包括用于指示第一时间单元的第一指示信息;和/或,网络设备在第二载波集合上发送第二控制信道,第二控制信道用于调度第二数据信道,第二数据信道属于至少一个数据信道,第二控制信道包括用于指示第一时间单元的第二指示信息;网络设备在主载波上接收第一码本和/或第二码本,包括:网络设备在主载波上以及在第一时间单元内接收第一码本和/或第二码本。
可见,第一载波集合可以是基于承载数据信道的载波进行划分,也可以是基于承载控制信道的载波进行划分,从而提高了发送码本的灵活性。
可选地,第一控制信道中包含的DAI用于指示第一码本包含的反馈信息的数量;和/或,第二控制信道中包含的DAI用于指示第二码本包含的反馈信息的数量。
DAI用于指示截止当前调度时刻共调度了多少个数据信道,终端设备根据控制信道中的DAI生成动态码本,从而可以提高发送码本的灵活性。
可选地,第一码本用于指示第一载波集合对应的M个数据信道的接收状态,M个数 据信道包括第一数据信道,M个数据信道所在的时间单元与第一时间单元之间存在第二对应关系,M为正整数;和/或,第二码本用于指示第二载波集合对应的N个数据信道的接收状态,N个数据信道包括第二数据信道,N个数据信道所在的时间单元与第一时间单元之间存在第三对应关系,所述N为正整数。
网络备可以根据通过高层信令配置各个载波集合对应的数据信道的数量,以便于终端设备基于该数量生成半静态码本,无需网络设备实时指示生成哪些数据信道的码本,从而可以减小空口资源的消耗。
可选地,若网络设备在第一主载波上发送一个控制信道,并且,所述一个控制信道用于调度第一主载波上的一个数据信道,并且,一个控制信道承载第一回退DCI,并且,第一回退DCI中的DAI的值为1,则第一码本只用于指示所述一个数据信道的接收状态,其中,第一主载波属于第一载波集合;和/或,若网络设备在第二主载波上发送一个控制信道,并且,所述一个控制信道用于调度所述第二主载波上的一个数据信道,并且,所述一个控制信道承载第二回退DCI,并且,第二回退DCI中的DAI的值为1,则第二码本只用于指示所述一个数据信道的接收状态,其中,第二主载波属于第二载波集合。
第一码本所反馈的一个数据信道可以是上文所述的第一数据信道,相应地,调度该一个数据信道的一个控制信道例如是第一控制信道。第二码本所反馈的一个数据信道可以是上文所述的第二数据信道,相应地,调度该一个数据信道的一个控制信道例如是第二控制信道。上述方案应用于网络设备指示通过半静态码本反馈数据信道接收状态的通信场景,终端设备在当前通信场景满足上述条件的前提下,仅需生成包含一个数据信道的反馈信息的码本,从而提高了发送码本的可靠性,并且,减小了空口资源的消耗。
可选地,第一主载波和第二主载波都是上文所述的接收第一码本和/或第二码本的主载波;或者,第一主载波是所述主载波,第二主载波是高层信令配置的、不同于所述主载波的另一个载波;或者,第二主载波是所述主载波,第一主载波是高层信令配置的、不同于所述主载波的另一个载波。
第四方面,本申请还提供了一种接收码本的方法,包括:网络设备在第一载波集合上的至少两个传输时机集合内发送至少一个数据信道,至少两个传输时机集合包括第一传输时机集合和第二传输时机集合,第一载波集合包括第一载波和第二载波;网络设备在主载波上接收第一码本和/或第二码本,其中,第一码本用于指示第一传输时机集合内的数据信道的接收状态,第二码本用于指示第二传输时机集合内的数据信道的接收状态,主载波为第一载波集合中的一个载波,或者,主载波与第一载波集合存在第一对应关系。
在上述方案中,网络设备接收不同传输时机集合内的数据信道的接收状态的独立反馈信息,从而可以提高多载波通信场景中反馈HARQ码本的灵活性。例如,对于承载时延要求较高的业务的传输时机集合,终端设备可以尽快反馈该传输时机集合对应的码本,从而可以满足低时延业务的时延要求;对于承载时延要求较低的业务的传输时机集合,终端设备可以对该传输时机集合内多个数据信道的接收状态进行统一反馈,从而可以在满足时延要求的前提下减少空口资源的消耗。
可选地,网络设备在主载波上接收第一码本和/或第二码本,包括:网络设备在主载波上以及在第一时间单元内接收第一码本和/或第二码本,其中,第一码本用于指示第一传输时机集合内M个数据信道的接收状态,M个数据信道所在的时间单元与第一时间单 元之间存在第二对应关系,M个数据信道属于至少一个数据信道,M为正整数;和/或,第二码本用于指示第二传输时机集合内N个数据信道的接收状态,N个数据信道所在的时间单元与第一时间单元之间存在第三对应关系,N个数据信道属于至少一个数据信道,N为正整数。
可选地,网络设备在主载波上以及在第一时间单元内接收第一码本之前,所述方法还包括:网络设备发送第一下行控制信道,所述第一下行控制信道用于调度至少一个属于第一传输时机集合内的下行数据信道;在第一载波集合上以及在第一传输时机集合内发送至少一个属于第一传输时机集合内下行数据信道;和/或,网络设备在主载波上以及在第一时间单元内接收第二码本之前,所述方法还包括:网络设备发送第二下行控制信道,所述第二下行控制信道用于调度至少一个属于第二传输时机集合内的下行数据信道;在第一载波集合上以及在第二传输时机集合内发送至少一个属于第二传输时机集合内下行数据信道。
网络设备可以指示终端设备在一个时间单元内发送第一码本和/或第二码本,上述第一码本和第二码本为半静态码本。网络设备可以通过高层信令配置各个传输时机集合对应的数据信道的数量,以便于终端设备基于该数量生成半静态码本,无需网络设备实时指示生成哪些数据信道的码本,从而可以减小空口资源的消耗。
可选地,第一载波对应两组传输时机子集,该两组传输时机子集分别属于第一传输时机集合和第二传输时机集合。
可选地,所述两组传输时机子集对应一个定时偏移量集合的两组子集,该一个定时偏移量集合是预定义的或高层信令配置的;或者,所述两组传输时机子集对应两个定时偏移量集合,该两个定时偏移量集合是预定义的或高层信令配置的;或者,所述两组传输时机子集对应属于一个时间单元的传输时机集合的两组子集,属于一个时间单元的传输时机集合是预定义的或高层参数配置的,属于一个时间单元的传输时机集合的两组子集是预定义的或高层参数配置的。
上述方案提供了多种划分传输时机子集的方法,从而提高了发送码本的灵活性。
可选地,若网络设备在第一主载波上发送一个控制信道,并且,该一个控制信道用于调度第一主载波上属于第一传输时机集合的一个数据信道,并且,一个控制信道承载第一回退DCI,并且,第一回退DCI中的DAI的值为1,则第一码本只用于指示所述一个数据信道的接收状态;和/或,若网络设备在第二主载波上发送一个控制信道,并且,该一个控制信道用于调度第二主载波上属于第二传输时机集合的一个数据信道,并且,一个控制信道承载第二回退DCI,并且,第二回退DCI中的DAI的值为1,则第二码本只用于指示所述一个数据信道的接收状态。
上述方案应用于网络设备指示通过半静态码本反馈数据信道接收状态的通信场景,终端设备在当前通信场景满足上述条件的前提下,仅需生成包含一个数据信道的反馈信息的码本,从而提高了发送码本的可靠性,并且,减小了空口资源的消耗。
上述方案中,第一主载波和第二主载波可以是同一个载波,如都是第一载波集合的主载波;或者,第一主载波和第二主载波是不同的载波,如第一主载波是第一载波集合的主载波,第二载波是高层配置的、不同于第一主载波的一个载波。
第五方面,本申请提供了一种通信装置,该装置可以实现上述第一方面、第二方面、 第三方面或第四方面所涉及的方法中各个步骤所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行上述第一方面、第二方面、第三方面或第四方面所涉及的方法中相应的功能。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。可选地,该装置还包括收发器,该收发器用于支持该装置与其它网元之间的通信。其中,所述收发器可以为独立的接收器、独立的发射器或者集成收发功能的收发器。
上述通信装置可以是芯片或芯片系统。
上述通信装置可以是实现第一方面、或第二方面所述方法的终端设备。
上述通信装置可以是实现第三方面、或第四方面所述方法的网络设备。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序代码,该计算机程序代码被处理单元或处理器执行时,使得发送装置执行第一方面、第二方面、第三方面或第四方面所述的方法。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被传输数据的装置的通信单元或通信接口、以及处理单元或处理器运行时,使得传输数据的装置执行上述第一方面、第二方面、第三方面或第四方面的方法。
第八方面,提供了一种通信系统,包括上文所述的终端设备以及网络设备。
附图说明
图1是适用于本申请的一种通信系统的示意图;
图2是本申请提供的一种发送码本的方法的示意图;
图3是本申请提供的一种发送动态码本的方法的示意图;
图4是本申请提供的一种发送半静态码本的方法的示意图;
图5是本申请提供的一种双回退通信场景的示意图;
图6是本申请提供的另一种发送码本的方法的示意图;
图7是本申请提供的另一种发送半静态码本的方法的示意图;
图8是本申请提供的再一种发送半静态码本的方法的示意图;
图9是本申请提供的一种通信装置的示意图;
图10是本申请提供的一种终端设备的示意图;
图11是本申请提供的一种网络设备的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
首先介绍本申请的应用场景,图1是一种适用于本申请的通信系统的示意图。
通信系统100包括网络设备110和终端设备120。终端设备120通过电磁波与网络设备110进行通信。当终端设备120发送信息时,终端设备120的无线通信模块可以获取要通过信道发送至网络设备110的信息比特,这些信息比特例如是终端设备的处理模块生成的、从其它设备接收的或者在终端设备的存储模块中保存的信息比特。
在本申请中,终端设备120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如,移动台(mobile station,MS),UE,软终端,家庭网关,机顶盒等等。应用于上述设备中的芯片也可以称为终端设备。
网络设备110可以是第三代合作伙伴计划(3 rd generation partnership project,3GPP)所定义的基站,例如,5G通信系统中的基站(gNB)。网络设备110也可以是非3GPP(non-3GPP)的接入网设备,例如接入网关(access gateway,AGF)。网络设备还可以是中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
通信系统100仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统100中包含的网络设备和终端设备的数量还可以是其它的数量。
下面以通信系统100为5G通信系统为例对本申请的技术方案进行说明。
5G通信系统致力于支持更高的系统性能,将支持多种业务类型、不同部署场景和更宽的频谱范围。其中,多种业务类型包括增强移动宽带(enhanced mobile broadband,eMBB)、海量机器类型通信(massive machine type communication,mMTC)、超可靠低延迟通信(ultra-reliable and low latency communications,URLLC)。
在5G通信系统中,网络设备可以在一个时间单元内向终端设备发送多个时域重叠或时域不重叠的PDSCH,网络设备也可以在多个载波上向终端设备发送一个或多个PDSCH,从而增加了终端设备在物理上行共享信道(physical uplink control channel,PUCCH)上反馈ACK/NACK的复杂性。因此,终端设备在一个时间单元内的PUCCH上反馈的ACK/NACK可能对应多个时域位置或者多个载波上的PDSCH时机(occasion)。
在这里对本申请中出现的两个概念(“时间单元”和“载波”)做简要介绍。
网络设备和终端设备之间用于无线通信的时域资源可以划分为多个时间单元。并且,在本申请中,多个时间单元可以是连续的,也可以是非连续的,即,某些相邻的时间单元之间存在预设的时间间隔。
本申请对一个时间单元的长度不做限定。例如,一个时间单元可以是一个或多个子帧(subframe);或者,也可以是一个或多个时隙(slot);或者,也可以是一个或多个符号(symbol)。其中,符号也称为时域符号,时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是单载波频分多址(single carrier frequency division multiple access,SC-FDMA)符号。
本申请涉及的载波也可以被称为频段、成员载波(component carrier,CC)、部分带宽(bandwidth part,BWP)或小区(cell),或者,载波也可以有其它的名字。
一个载波集合可以包括一个或多个CC,也可以包括一个或多个BWP。其中,一个CC可以包含多个BWP,不同的BWP之间的子载波间隔(subcarrier spacing,SCS)可以不同。
5G通信系统支持两种HARQ码本配置,HARQ码本可以被理解为:在某个上行时间单元上需要反馈的、与PDSCH对应的ACK/NACK的集合。HARQ码本包含2层含义:第一,HARQ码本包含哪些PDSCH的ACK/NACK;第二,这些PDSCH的ACK/NACK在码本中的排列顺序。两种HARQ码本包括动态码本和半静态码本。
动态码本又称为类型2(Type 2)码本。终端设备在每个PDCCH监测时机(monitoring occasion)检测PDCCH,获取下行控制信息(downlink control information,DCI),根据 DCI中的时域资源分配(time domain resource allocation)字段和PDSCH-to-HARQ-timing字段确定该PDCCH调度的PDSCH对应的ACK/NACK的反馈时隙。终端设备首先根据PDCCH的时隙编号与时域资源分配字段中包含的PDCCH到PDSCH的时隙偏移值(K0)确定PDSCH的时隙编号,然后根据PDSCH-to-HARQ-timing字段获取定时偏移量(K1),即PDSCH的时隙到该PDSCH对应的反馈时隙的偏移值,从而确定在哪个时隙内发送ACK/NACK。
然后,终端设备根据所有指向相同反馈时隙的PDCCH中包含的下行分配索引(downlink assignment index,DAI)信息确定该反馈时隙内的码本。例如,终端设备根据接收到的DCI格式(format)1_0或DCI格式1_1包含的DAI确定PDSCH的数量,并根据DCI格式1_0或DCI格式1_1中的时域资源分配字段和PDSCH-to-HARQ-timing字段确定在时隙n发送上述PDSCH的ACK/NACK。随后,终端设备根据PDSCH的接收状态生成动态码本。其中,DCI格式1_0也可称为回退DCI,表示DCI中每个比特域存在与否、每个比特域的宽度和每种取值对应的物理层参数取值都是预定义的,不需要高层信令配置;DCI格式1_1也可称为正常DCI,正常DCI包含的比特域可以通过高层信令配置,增加或删减,比特域的宽度和取值含义也可以通过高层信令配置。一般而言,回退DCI用于用户完成初始化接入之前(即没有获取高层参数时期)的下行数据调度,或者高层参数变更过程中(及高层参数模糊时期)的下行数据调度,前述“模糊时期”指的是:网络设备不确定终端设备是否收到更新后的高层参数;或者,终端设备已收到更新后的高层参数,但是,终端设备不确定“网络设备是否确定该终端设备已收到更新后的高层参数”。
DCI format 1_0和DCI format 1_1中都包含PDSCH-to-HARQ-timing字段,该字段的大小一般是三比特,指示PDSCH传输时隙与对应的反馈时隙的定时偏移量K1,取值范围是“000”~“111”,具体指示的K1值是无线资源控制(radio resource control,RRC)信令配置的或预定义的。在正常DCI下,RRC信令从16个取值中配置8个值,分别对应“000”~“111”;在回退DCI下,预定义的8个值是1~8。
半静态码本又称类型1(Type 1)码本。网络设备通过协议预定义或高层信令为终端设备配置K1集合(K1set)和时域资源分配表格,终端设备根据时域资源分配表格确定PDSCH的候选时域位置,并根据PDSCH的候选时域位置和K1集合确定该PDSCH的反馈信息可能所在的时隙。在每个上行时隙,终端设备根据PDSCH的候选时域位置和K1集合确定该上行时隙关联的下行PDSCH时机集合,即关联的下行时隙和下行时隙内的PDSCH时机集合,再根据关联的下行PDSCH时机集合生成反馈码本。
当终端设备通过多个载波集合接收网络设备的数据时,终端设备可以按照图2所示的方法发送码本。
图2所示的方法200包括:
S210,终端设备在至少两个载波集合上接收至少一个数据信道,所述至少两个载波集合包括第一载波集合和第二载波集合。
相应地,网络设备在所述至少两个载波集合上向终端设备发送所述至少一个数据信道。
上述两个载波集合中,第一载波集合可以包含一个或多个载波,第二载波集合可以包含一个或多个载波。
上述数据信道可以是PDSCH,也可以是其它类型的下行数据信道,本申请实施例对此不做特别限定。
终端设备在至少两个载波集合上接收至少一个数据信道指的是:终端设备在至少两个载波集合所包含的载波上接收到一个或多个数据信道,这里的“接收到”的含义指的是终端设备成功接收了调度数据信道的控制信道(即控制信道译码正确),确定存在一个网络设备发送给自己的数据信道并获知该数据信道的传输参数,如占据的时频资源、使用的预编码方式等等。
终端设备在至少两个载波集合上接收至少一个数据信道包括但不限于以下几种情况:终端设备仅在第一载波集合上接收到一个或多个数据信道;或,终端设备仅在第二载波集合上接收到一个或多个数据信道;或,终端设备在第一载波集合上接收到一个或多个数据信道,并且,终端设备在第二载波集合上接收到一个或多个数据信道。
S220,终端设备根据至少一个数据信道的接收状态确定第一码本和/或第二码本,第一码本用于指示第一载波集合对应的数据信道的接收状态,第二码本用于指示第二载波集合对应的数据信道的接收状态。
相应地,网络设备可以在接收到第一码本后根据第一码本确定第一载波集合对应的数据信道的接收状态,和/或,在接收到第二码本后根据第二码本确定第二载波集合对应的数据信道的接收状态。
若终端设备仅在第一载波集合上接收到一个或多个数据信道,则终端设备仅生成第一码本;若终端设备仅在第二载波集合上接收到一个或多个数据信道,则终端设备仅生成第二码本;若终端设备在第一载波集合与第二载波集合上均接收到数据信道,则终端设备生成第一码本和第二码本。
数据信道的接收状态的一种解释是:数据信道的解码状态,包括解码失败状态和解码成功状态,其中,解码失败状态即接收失败状态,解码成功状态即接收成功状态。
数据信道的接收状态还可以有其它合理的解释。
第一码本可以是动态码本,也可以是半静态码本。第二码本可以是动态码本,也可以是半静态码本。
S230,终端设备在主载波上发送第一码本和/或第二码本,其中,主载波为至少两个载波集合中的一个载波,或者,主载波与至少两个载波集合存在第一对应关系。
相应地,网络设备在主载波上接收所述第一码本和/或第二码本。需要说明的是,本文主要从终端设备的角度进行描述是为了便于读者理解技术方案,而不应被理解为仅描述发送码本的方法和装置。网络设备的处理过程与终端设备的处理过程具有对应关系,例如,终端设备从网络设备接收信息,意味着网络设备发送了该信息;终端设备向网络设备发送信息,意味着网络设备从终端设备接收该信息。因此,即使下文个别地方未明确写明网络设备的处理过程,本领域技术人员也可以基于终端设备的处理过程清楚地了解网络设备的处理过程。
终端设备生成第一码本,则在主载波上发送第一码本;终端设备生成第二码本,则在主载波上发送第二码本;终端设备生成第一码本和第二码本,则在主载波上发送第一码本和第二码本。
主载波可以是第一载波集合中的一个载波,或者是第二载波集合中的一个载波,终端 设备生成第一码本和/或第二码本后,用于传输第一码本和/或第二码本。
主载波也可以是与第一载波集合和第二载波集合存在第一对应关系的载波。该第一对应关系可以是通信协议预定义的,也可以是网络设备通过高层信令配置的。
例如,网络设备可以为终端设备配置一个或多个PUCCH组(PUCCH group),每个PUCCH组关联不同的载波集合。对于一个PUCCH group,其关联的载波集合可以分为多个载波子集,对应上述至少两个载波集合,并且,网络设备可以为该PUCCH group配置一个主载波,用于传输该PUCCH组关联的载波集合上的PDSCH的码本。
终端设备可以对第一码本和第二码本独立编码,并分别发送编码后的第一码本以及编码后的第二码本。
例如,终端设备可以在第一载波集合上接收URLLC数据,在第二载波集合上接收eMBB数据,终端设备可以根据方法200生成URLLC数据对应的码本以及eMBB数据对应的码本。终端设备可以在接收到一个URLLC数据后尽快发送URLLC数据的码本,以便于网络设备在URLLC数据接收失败时快速重传,满足URLLC业务的低时延要求。终端设备可以在接收到多个eMBB数据后统一发送该多个eMBB数据的码本,在满足eMBB业务的时延要求的同时减少空口资源的消耗。另外,终端设备可以给URLLC数据码本和eMBB数据码本分配不同的上行资源(如PUCCH)和不同的传输方式(如使用序列选择模式还是编码模式以及编码模式下使用什么编码速率),来提供不同的可靠性保障,一方面保障URLLC数据的码本可以高可靠传输,另一方面保障eMBB数据的码本可以高效传输。
终端设备在执行S210之前,可以从网络设备接收第一控制信道和/或第二控制信道,并根据第一控制信道确定第一数据信道,根据第二控制信道确定第二数据信道。其中,第一数据信道属于第一载波集合,由第一控制信道调度;第二数据信道属于第二载波集合,由第二控制信道调度。第一控制信道可以是PDCCH,也可以是其它类型的控制信道。第二控制信道可以是PDCCH,也可以是其它类型的控制信道。
相应地,网络设备也会执行:发送上述第一控制信道,并在第一载波集合上发送所述第一控制信道调度的第一数据信道;和/或,发送上述第二控制信道,并在第二载波集合上发送所述第二控制信道调度的第二数据信道。
当终端设备仅接收到第一控制信道时,终端设备仅在第一载波集合上接收至少一个数据信道并生成第一码本;当终端设备仅接收到第二控制信道时,终端设备仅在第二载波集合上接收至少一个数据信道并生成第二码本;当终端设备接收到第一控制信道和第二控制信道时,终端设备在第一载波集合接收至少一个数据信道,并且,在第二载波集合上接收至少一个数据信道,并且,生成第一码本和第二码本。
可选地,终端设备可以在第一载波集合上接收第一控制信道,即,同载波调度。终端设备也可以在第一载波集合之外的载波(例如,第二载波集合)上接收第一控制信道,即,异载波调度。
类似地,终端设备在第二载波集合上接收第二控制信道,也可以在第二载波集合以外的载波上接收第二控制信道。
上文所述的方案均为按照数据信道对应的载波划分载波集合,作为一种可选的实施方式,网络设备也可以按照控制信道对应的载波为终端设备配置载波集合。
即,在S210之前,方法200还可以包括:
终端设备在第一载波集合上接收第一控制信道,第一控制信道用于调度第一数据信道,第一数据信道属于至少一个数据信道,第一控制信道包括用于指示第一时间单元的第一指示信息;和/或,
终端设备在第二载波集合上接收第二控制信道,第二控制信道用于调度第二数据信道,第二数据信道属于至少一个数据信道,第二控制信道包括用于指示第一时间单元的第二指示信息。
相应地,网络设备也会执行:在第一载波集合上发送上述第一控制信道,并发送所述第一控制信道调度的第一数据信道;和/或,在第二载波集合上发送上述第二控制信道,并发送所述第二控制信道调度的第二数据信道。
第一控制信道可以包含第一指示信息,指示第一数据信道对应的码本在哪个时间单元内反馈。第二控制信道可以包含第二指示信息,指示第二数据信道对应的码本在哪个时间单元内反馈。可选地,第一指示信息和第二指示信息均指示第一时间单元,终端设备根据第一指示信息和第二指示信息在第一时间单元内发送第一码本和/或第二码本。从而可以灵活反馈数据信道的接收状态。
下面,以第一控制信道指示第一时间单元为例对控制信道指示反馈时间单元的方法进行说明。
终端设备在时隙n接收到PDCCH,根据该PDCCH包含的时域资源分配字段中PDCCH-to-PDSCH-Timing的取值K0,确定该PDCCH调度的PDSCH所在的时隙n+K0;进一步,根据该PDCCH包含的PDSCH-to-HARQ-timing字段所指示的定时偏移量K1,确定该PDCCH调度的PDSCH的ACK/NACK的反馈时隙。例如,终端设备在时隙0接收到PDCCH,该PDCCH包含指示的K0为0、K1=4,则终端设备确定在时隙4发送该PDSCH的ACK/NACK。上述示例中,PDCCH-to-PDSCH-Timing和/或PDSCH-to-HARQ-timing字段即第一指示信息,时隙4即第一时间单元。
需要说明的是,无论终端设备发送动态码本还是半静态码本,均可以依据上述方法确定第一时间单元的时域位置。
网络设备可以通过高层信令指示终端设备生成动态码本或者半静态码本。下面,分别对这两种情况进行详细描述。
情况一,动态码本。
终端设备可以根据第一控制信道包含的DAI确定第一码本,第一码本用于指示第一数据信道的接收状态;和/或,终端设备可以根据第二控制信道包含的DAI确定第二码本,第二码本包括第二数据信道的反馈信息。
图3示出了本申请提供的一种发送动态码本的方法的示意图。图3中,黑色填充矩形(例如,D0前的矩形)表示PDCCH,occa.表示时机,DL为下行(downlink)的英文缩写,斜线填充的矩形表示终端设备未接收到的PUSCH,例如,网络设备未发送的PDSCH或者终端设备未解码成功的PDSCH。图3、图4、图5、图7和图8中相似图形表示的含义相同,下文不再赘述。
终端设备支持四个CC,分别为CC1、CC2、CC3和CC4。网络设备可以通过高层信令将这四个CC配置为两个载波集合,分别为第一载波集合和第二载波集合。其中,第一 载波集合包含两个载波,分别为CC1和CC2;第二载波集合包含两个载波,分别为CC3和CC4。CC1、CC2、CC3与CC4的子载波间隔分别为15kHz、15kHz、15kHz和30kHz。CC1可以用于发送PUCCH,即,CC1为上行(uplink,UL)主载波(primary CC,PCC)。
网络设备可以通过高层信令配置上述两个载波集合。其中,该高层信令可以是显式的配置信息,例如,高层信令明确指示CC1和CC2为一个载波集合,以及,CC3和CC4为另一个载波集合。高层信令也可以是隐式配置信息,例如,高层信令配置CC1和CC2关联的码本标识信息为HARQ1,以及,配置CC3和CC4关联的码本标识信息为HARQ2,则CC1和CC2被配置为一个载波集合,CC3和CC4被配置为另一个载波集合。
网络设备通过高层参数指示使用动态码本,并通过高层参数配置每个下行CC上的PDCCH时机(PDCCH occasion),这些PDCCH时机在时域上按照时间先后顺序进行排序。由于网络设备和终端设备关于CC分组达成一致,网络设备会对CC1和CC2上的下行数据调度进行统一计数,并且对CC3和CC4上的下行数据调度进行统一计数。
第一载波集合上的PDSCH的调度过程如下所示。
●网络设备在时机0内调度了两个PDSCH(D0和D1),并指示K1=4,即,D0和D1对应的ACK/NACK都在上行主载波上以及在时隙4内反馈。此外,网络设备调度D0的PDCCH包括:(DAI_C=0,DAI_T=1),调度D1的PDCCH包括:(DAI_C=1,DAI_T=1)。
其中,DAI_C表示在第一载波集合上,截至当前PDCCH occasion与当前CC,网络设备调度的需要在上行时隙n内反馈ACK/NACK的PDSCH的数量,DAI_T表示在第一载波集合上,截至当前PDCCH occasion网络设备调度的需要在某个上行时隙n内反馈ACK/NACK的PDSCH的数量,其中上行时隙n是本次PDCCH调度的数据信道的ACK/NACK反馈所在时隙,例如对于上述D0、D1,时隙n是时隙4。
●网络设备在时机2内调度了两个PDSCH(D2和D3),并指示K1=3,即,D2和D3对应的ACK/NACK都在上行主载波上以及在时隙4内反馈。此外,网络设备调度D2的PDCCH包括:(DAI_C=2,DAI_T=3),调度D3的PDCCH包括:(DAI_C=3,DAI_T=3)。
●网络设备在时机3内调度了一个PDSCH(D4),并指示K1=3,即,D4对应的ACK/NACK都在上行主载波上以及在时隙4内反馈。此外,网络设备调度D4的PDCCH包括:(DAI_C=0,DAI_T=0)。
●网络设备在时机4内调度了一个PDSCH(D5),并指示K1=2,即,D5对应的ACK/NACK都在上行主载波上以及在时隙4内反馈。此外,网络设备调度D5的PDCCH包括:(DAI_C=1,DAI_T=1)。
第二载波集合上的PDSCH的调度过程如下所示。
●网络设备在时机0内调度了两个PDSCH(Q0和Q1),并指示K1=4,即,Q0和Q1对应的ACK/NACK都在上行主载波上以及在时隙4内反馈。此外,网络设备调度Q0的PDCCH包括:(DAI_C=0,DAI_T=1),调度Q0的PDCCH包括:(DAI_C=1,DAI_T=1)。
●网络设备在时机1内调度了两个PDSCH(Q2和Q3),并指示K1=4,即,Q2和Q3对应的ACK/NACK都在上行主载波上以及在时隙4内反馈。此外,网络设备调度Q2的PDCCH包括:(DAI_C=2,DAI_T=3),调度Q3的PDCCH包括:(DAI_C=3,DAI_T=3)。
●网络设备在时机2内调度了两个PDSCH(Q4和Q5),并指示K1=3,即,Q4和Q5对应的ACK/NACK都在上行主载波上以及在时隙4内反馈。此外,网络设备调度Q4的PDCCH包括:(DAI_C=0,DAI_T=0),调度Q5的PDCCH包括:(DAI_C=1,DAI_T=1)。
●网络设备在时机3内调度了一个PDSCH(Q6),并指示K1=3,即,Q6对应的ACK/NACK都在上行主载波上以及在时隙4内反馈。此外,网络设备调度Q6的PDCCH包括:(DAI_C=2,DAI_T=2)。
终端设备分别在第一载波集合和第二载波集合上接收PDCCH以及该PDCCH调度的PDSCH,并根据PDCCH指示的K1确定反馈时隙,根据PDCCH中的DAI_C和DAI_T确定码本。
第一载波集合上的PDSCH的译码情况的反馈过程如下所示。
●终端设备在时机0内检测到两个PDCCH(分别调度了D0和D1),并根据该两个PDCCH指示的K1=4确定在上行主载波上以及在时隙4内发送D0和D1的ACK/NACK,并根据D0的(DAI_C=0,DAI_T=1)与D1的(DAI_C=1,DAI_T=1)确定第一码本为(AN0,AN1),其中,AN0对应D0的译码结果,AN1对应D1的译码结果。以AN0为例,若D0译码正确,则AN0为ACK,若D0译码错误,则AN0为NACK。
●终端设备在时机2内检测到一个PDCCH(调度了D3),并根据该PDCCH指示的K1=3确定在上行主载波上以及在时隙4内发送D3的ACK/NACK,并根据D3的(DAI_C=3,DAI_T=3)更新第一码本为(AN0,AN1,NACK2,AN3),其中,NACK2是对漏检的D2的反馈信息,AN3对应D3的译码结果。
●终端设备在时机3内检测到一个PDCCH(调度了D4),并根据该PDCCH指示的K1=3确定在上行主载波上以及在时隙4内发送D4的ACK/NACK,并根据D4的(DAI_C=0,DAI_T=0)更新第一码本为(AN0,AN1,NACK2,AN3,AN4),其中,AN4对应D4的译码结果。
●终端设备在时机4内检测到一个PDCCH(调度了D5),并根据该PDCCH指示的K1=2确定在上行主载波上以及在时隙4内发送D5的ACK/NACK,并根据D5的(DAI_C=1,DAI_T=1)更新第一码本为(AN0,AN1,NACK2,AN3,AN4,AN5),其中,AN5对应D5的译码结果。
第二载波集合上的PDSCH的译码情况的反馈过程如下所示。
●终端设备在时机0内检测到两个PDCCH(调度了Q0和Q1),并根据该两个PDCCH指示的K1=4确定在上行主载波上以及在时隙4内发送Q0和Q1的ACK/NACK,并根据Q0的(DAI_C=0,DAI_T=1)与Q1的(DAI_C=1,DAI_T=1)确定第二码本为(AN’0,AN’1),其中,AN’0与AN’1分别对应Q0和Q1的译码结果。以AN’0为例,若Q0译码正确,则AN’0为ACK,若Q0译码错误,则AN’0为NACK。
●终端设备在时机1内检测到一个PDCCH(调度了Q2),并根据该PDCCH指示的K1=4确定在上行主载波上以及在时隙4内发送Q2的ACK/NACK,并根据Q2的(DAI_C=2,DAI_T=3)更新第二码本为(AN’0,AN’1,AN’2,NACK’3),其中,AN’2对应Q2的译码结果,NACK’3是对漏检的Q3的反馈信息。
●终端设备在时机2内检测到一个PDCCH(调度了Q5),并根据该PDCCH指示的K1=3确定在上行主载波上以及在时隙4内发送Q5的ACK/NACK,并根据Q5的(DAI_C=1,DAI_T=1)更新第二码本为(AN’0,AN’1,AN’2,NACK’3,NACK’4,AN’5),其中,NACK’4是对漏检的Q4的反馈,AN’5对应Q5的译码结果。
●终端设备在时机3内检测到一个PDCCH(调度了Q6),并根据该PDCCH指示的K1=3确定在上行主载波上以及在时隙4内发送Q6的ACK/NACK,并根据Q6的(DAI_C=2,DAI_T=2)更新第二码本为(AN’0,AN’1,AN’2,NACK’3,NACK’4,AN’5,AN’6),其中,AN’6对应Q6的译码结果。
最后,终端设备在上行主载波上以及在时隙4内分别确定第一码本与第二码本的PUCCH资源,即,PUCCH 1与PUCCH 2。随后在PUCCH 1上传输第一码本,即(AN0,AN1,NACK2,AN3,AN4,AN5),在PUCCH 2上传输第二码本,即(AN’0,AN’1,AN’2,NACK’3,NACK’4,AN’5,AN’6)。
情况二,半静态码本。
当终端设备在第一载波集合上接收到至少一个数据信道时,终端设备可以根据指示生成半静态码本的高层信令生成第一码本。该第一码本用于指示第一载波集合的M个数据信道的接收状态,该M个数据信道所在的时间单元与第一时间单元存在第二对应关系,第二对应关系为高层信令配置的,或者,第二对应关系为通信协议预定义的。上述M为正整数。
当终端设备在第二载波集合上接收到至少一个数据信道时,终端设备可以根据指示生成半静态码本的高层信令生成第二码本。该第二码本用于指示第二载波集合的N个数据信道的接收状态,该N个数据信道所在的时间单元与第一时间单元存在第二对应关系,第二对应关系为高层信令配置的,或者,第二对应关系为通信协议预定义的。上述N为正整数。
可以理解地,在情况二中,终端设备可以分别从第一载波集合和第二载波集合上接收到至少一个数据信道,则终端设备生成上述第一码本和第二码本,不做赘述。
上述第一码本和第二码本即半静态码本。
图4示出了本申请提供的一种发送半静态码本的方法的示意图。
终端设备支持四个CC,分别为CC1、CC2、CC3和CC4。网络设备可以通过高层信令将这四个CC配置为两个载波集合,分别为第一载波集合和第二载波集合。其中,第一载波集合包含两个载波,分别为CC1和CC2;第二载波集合包含两个载波,分别为CC3和CC4。CC1、CC2、CC3与CC4的子载波间隔分别为15kHz、15kHz、15kHz和30kHz。CC1可以用于发送PUCCH,即,CC1为上行主载波。
网络设备可以通过高层信令配置上述两个载波集合。其中,该高层信令可以是显式的配置信息,例如,高层信令明确指示CC1和CC2为一个载波集合,以及,CC3和CC4为另一个载波集合。高层信令也可以是隐式配置信息,例如,高层信令配置CC1和CC2关联的码本标识为HARQ1,以及,配置CC3和CC4关联的码本标识为HARQ2,则CC1和CC2被配置为一个载波集合,CC3和CC4被配置为另一个载波集合。
网络设备通过高层参数指示使用半静态码本,并通过高层参数配置每个下行CC上的K1集合。例如,CC1和CC3的K1集合为{1,2,3,4},CC2和CC4的K1集合为{1,2,3}。网络设备还可以配置每个CC上的一个时隙内PDSCH时机集合。例如,CC1上一个时隙 内的PDSCH时机集合可以被划分为两个不重叠的时机组(occasion group),该两个时机组对应时隙0内的D0和D1,需要注意的是,D0、D2、D4、D6对应的是一个时机组,只是位于不同时隙。类似地,D1、D3、D5、D7对应的是另一个时机组,只是位于在不同时隙。CC2上PDSCH时机集合可以被划分为一个时机组,对应D8、D9、D10。CC3上PDSCH时机集合可以被划分为一个时机组,对应Q0、Q1、Q2、Q3。CC4上PDSCH时机集合被划分为一个时机组,对应Q4、Q5、Q6、Q7、Q8、Q9。
网络设备在每个下行CC上传输PDSCH,终端设备在每个下行CC上接收PDSCH。网络设备调度PDSCH的方法可以参见动态码本方案中的调度方法,在此不再赘述。
第一载波集合上的PDSCH的译码情况的反馈过程如下所示。
在CC1上:
●终端设备在时隙0内接收到D0,通过PDCCH包含的K1=4确定在上行主载波上以及在时隙4内发送D0的ACK/NACK。终端设备没有接收到D1,包括三种可能的情况:1)网络设备没有发送D1;2)网络设备发送了D1,但是终端设备漏检了D1对应的PDCCH;3)终端设备接收到D1但是D1对应的PDCCH指示的K1不等于4,D1对应的ACK/NACK不在时隙4内反馈。由于当前配置的码本为半静态码本,无论实际情况是哪种,终端设备均认为未接收到D1,并且在时隙4内发送D1的反馈信息NACK。需要说明的是,对于上述情况3),终端设备仍然会在PDCCH指示的时隙内反馈D1的ACK/NACK。
●终端设备在时隙1内接收到D3,通过PDCCH包含的K1=3确定在上行主载波上以及在时隙4内发送D3的ACK/NACK。终端设备没有接收到D2,在主载波的时隙4内发送D2的反馈信息NACK。
●终端设备在时隙2内接收到D4,通过PDCCH包含的K1=2确定在上行主载波上以及在时隙4内发送D4的ACK/NACK。终端设备没有接收到D5,在主载波的时隙4内发送D5的反馈信息NACK。
●终端设备在时隙3内没有接收到D6与D7,在主载波的时隙4内发送D5的反馈信息NACK。
在CC2上:
●终端设备在时隙1内接收到D8,通过PDCCH包含的K1=3确定在上行主载波上以及在时隙4内发送D8的ACK/NACK。
●终端设备在时隙2内接收到D9,通过PDCCH包含的K1=2确定在上行主载波上以及在时隙4内发送D9的ACK/NACK。
●终端设备在时隙3内未接收到D10,在主载波的时隙4内发送D10的反馈信息NACK。
在CC3上:
●终端设备在时隙0内接收到Q0,通过PDCCH包含的K1=4确定在上行主载波上以及在时隙4内发送Q0的ACK/NACK。
●终端设备在时隙1内接收到Q1,通过PDCCH包含的K1=3确定在上行主载波上以及在时隙4内发送Q1的ACK/NACK。
●终端设备在时隙2内接收到Q2,通过PDCCH包含的K1=2确定在上行主载波上以及在 时隙4内发送Q2的ACK/NACK。
●终端设备在时隙3内未接收到Q3,在主载波的时隙4内发送Q3的反馈信息NACK。
在CC4上:
●终端设备在时隙2内未接收到Q4,在主载波的时隙4内发送Q4的反馈信息NACK。
●终端设备在时隙3内接收到Q5,通过PDCCH包含的K1=3确定在上行主载波上以及在时隙4内发送Q5的ACK/NACK。
●终端设备在时隙4内未接收到Q6,在主载波的时隙4内发送Q6的反馈信息NACK。
●终端设备在时隙5内接收到Q7,通过PDCCH包含的K1=2确定在上行主载波上以及在时隙4内发送Q7的ACK/NACK。
●终端设备在时隙6内未接收到Q8,在主载波的时隙4内发送Q8的反馈信息NACK。
●终端设备在时隙7内接收到Q9,通过PDCCH包含的K1=1确定在上行主载波上以及在时隙4内发送Q9的ACK/NACK。
对于第一载波集合,第一码本为{AN0,NACK1,NACK2,AN3,AN4,NACK5,NACK6,NACK7,AN8,AN9,NACK10},其中AN0、AN3、AN4、AN8、AN9分别是D0、D3、D4、D8、D9的译码结果,NACK1、NACK2、NACK5、NACK6、NACK7、NACK10分别是D1、D2、D5、D6、D7、D10的反馈信息,终端设备没有接收到这些PDSCH,或者,终端设备接收这些PDSCH,但是调度这些PDSCH的PDCCH指示的反馈时隙不是上行主载波的时隙4。
对于第二载波集合,第二码本为{AN’0,AN’1,AN’2,NACK’3,NACK’4,AN’5,NACK’6,AN’7,NACK’8,AN’9},其中AN’0、AN’1、AN’2、AN’5、AN’7、AN’9分别是Q0、Q1、Q2、Q5、Q7、Q9的译码结果,NACK’3、NACK’4、NACK’6、NACK’8分别是Q3、Q4、Q6、Q8的反馈信息,终端设备没有接收到这些PDSCH,或者,终端设备接收这些PDSCH,但是调度这些PDSCH的PDCCH指示的反馈时隙不是上行主载波的时隙4。
最后,终端设备在上行主载波上以及在时隙4内分别确定第一码本与第二码本的PUCCH资源,即,PUCCH 1与PUCCH 2。并在PUCCH 1上传输第一码本,在PUCCH 2上传输第二码本。
针对半静态码本,本申请还提供了一种发送码本的方式,即,双回退模式。
如图5所示,终端设备支持四个CC,分别为CC1、CC2、CC3和CC4。网络设备可以通过高层信令将这四个CC配置为两个载波集合,分别为第一载波集合和第二载波集合。其中,第一载波集合包含两个载波,分别为CC1和CC2;第二载波集合包含两个载波,分别为CC3和CC4。CC1、CC2、CC3与CC4的子载波间隔分别为15kHz、15kHz、15kHz和30kHz。CC1可以用于发送PUCCH,即,CC1为上行主载波。
图5与图4的不同之处在于,网络设备为每个载波集合配置了一个下行主载波,第一载波集合的下行主载波为CC1,第二载波集合的下行主载波为CC2。
对于第一载波集合,终端设备只在CC1的时隙0内接收到D0,并且,终端设备根据调度D0的PDCCH包括的信息K1=4确定在上行主载波的时隙4内发送D0的ACK/NACK, 并且,调度D0的PDCCH包含的DCI是回退DCI,如DCI format 1_0,并且,该回退DCI指示的DAI的值为1。终端设备在其它PDSCH(D1、D2、D3、D4、D5、D6、D7、D8、D9、D10)对应的时域位置没有接收到对应的PDSCH,或者,终端设备虽然接收到其它PDSCH,但是调度这些PDSCH的PDCCH指示的反馈时隙不是slot 4。终端设备根据上述条件确定进入回退模式,虽然网络设备配置的码本是半静态码本,但是在回退模式下,第一码本只包括AN0,不反馈D1、D2、D3、D4、D5、D6、D7、D8、D9、D10对应的反馈信息(NACK1、NACK2、NACK3、NACK4、NACK5、NACK6、NACK7、NACK8、NACK9、NACK10)。
对于第二载波集合,终端设备只在CC3的时隙1内接收到Q1,并且,终端设备根据调度Q1的PDCCH包括的信息K1=3确定在上行主载波的时隙4内发送Q1的ACK/NACK,并且,调度Q1的PDCCH包含的DCI是回退DCI,如DCI format 1_0,并且,该回退DCI指示的DAI的值为1。终端设备在其它PDSCH(Q0、Q2、Q3、Q4、Q5、Q6、Q7、Q8、Q9)对应的时域位置没有接收到对应的PDSCH,或者,终端设备虽然接收到其它PDSCH,但是调度这些PDSCH的PDCCH指示的反馈时隙不是slot 4。终端设备根据上述条件确定进入回退模式,虽然网络设备配置的码本是半静态码本,但是在回退模式下,第一码本只包括AN’1,不反馈Q0、Q2、Q3、Q4、Q5、Q6、Q7、Q8、Q9对应的反馈信息(NACK’0、NACK’2、NACK’3、NACK’4、NACK’5、NACK’6、NACK’7、NACK’8、NACK’9)。
需要说明的是,对于每个载波集合,上述回退处理都是单独的,当第一载波集合上接收的PDCCH和PDSCH满足回退条件时,终端设备确定第一码本只包含一个PDSCH对应的ACK/NACK,此时如果第二载波集合上接收的PDCCH和PDSCH不满足回退条件,终端设备安装正常的半静态码本处理方式确定第二码本,第二码本不仅仅包含在第二载波集合上接收到的PDSCH的ACK/NACK,还包括其他属于K1Set内的PDSCH时机上的PDSCH的否定反馈NACK。上述示例描述的是终端设备同时生成两个码本的情况,终端设备也可以基于在至少两个载波集合上接收到一个PDSCH确定仅生成一个码本。
上文详细描述了本申请提供的一种发送码本的方法,本申请还提供了另外一种发送码本的方法,如图6所示,该方法600包括:
S610,终端设备在第一载波集合上的至少两个传输时机集合内接收至少一个数据信道,该至少两个传输时机集合包括第一传输时机集合和第二传输时机集合,第一载波集合包括第一载波和第二载波。
相应地,网络设备在第一载波集合上的至少两个传输时机集合内发送至少一个数据信道,该至少两个传输时机集合包括第一传输时机集合和第二传输时机集合,第一载波集合包括第一载波和第二载波。
上述数据信道可以是PDSCH,也可以是其它类型的下行数据信道。传输时机集合例如是PDSCH时机(PDSCH occasion)的集合,一个传输时机集合可以包含一个或者多个PDSCH时机。若一个传输时机集合包含多个PDSCH时机,该多个PDSCH时机可以属于一个时间单元,也可以属于多个时间单元。上述时间单元例如是时隙,若一个时隙内仅有一个PDSCH时机,则传输时机集合可以等价于时隙集合。
此外,一个载波可以对应两组传输时机子集,以第一载波为例,第一载波包括八个时隙,该八个时隙即八个传输时机子集,该八个传输时机子集可以被分为两组传输时机子集, 第一组传输时机子集包括五个时隙,属于第一传输时机集合,第二组传输时机子集包括三个时隙,属于第二传输时机集合。
终端设备在第一载波集合上接收至少一个数据信道指的是:终端设备在第一载波集合包含的载波上接收到一个或多个数据信道,这里的“接收到”的含义指的是终端设备成功接收了调度数据信道的控制信道,确定存在一个网络设备发送给自己的数据信道并获知该数据信道的传输参数,如占据的时频资源、使用的预编码方式等等。结合本实施例,“接收到”还强调接收的数据信道的传输时机属于第一载波集合上的至少两个传输时机集合。
S620,终端设备根据至少一个数据信道的接收状态确定第一码本和/或第二码本,第一码本用于指示第一传输时机集合内的数据信道的接收状态,第二码本用于指示第二传输时机集合内的数据信道的接收状态。
相应地,网络设备在接收到第一码本后根据第一码本确定第一传输时机集合内的数据信道的接收状态,和/或,在接收到第二码本后根据第二码本确定第二传输时机集合内的数据信道的接收状态。
若终端设备仅在第一传输时机集合内接收到一个或多个数据信道,则终端设备仅生成第一码本;若终端设备仅在第二传输时机集合内接收到一个或多个数据信道,则终端设备仅生成第二码本;若终端设备在第一传输时机集合内与第二传输时机集合内均接收到数据信道,则终端设备生成第一码本和第二码本。
数据信道的接收状态包括接收成功和接收失败,接收成功可以被理解为解码成功,接收失败可以被理解为解码失败。
数据信道的接收状态还可以有其它合理的解释。
S630,终端设备在主载波上发送第一码本和/或第二码本,其中,主载波为第一载波集合中的一个载波,或者,主载波与第一载波集合存在第一对应关系。
相应地,网络设备在主载波上接收第一码本和/或第二码本,其中,主载波为第一载波集合中的一个载波,或者,主载波与第一载波集合存在第一对应关系。
终端设备生成第一码本,则在主载波上发送第一码本;终端设备生成第二码本,则在主载波上发送第二码本;终端设备生成第一码本和第二码本,则在主载波上发送第一码本和第二码本。
主载波可以是第一载波集合中的一个载波,终端设备生成第一码本和/或第二码本后,用于传输第一码本和/或第二码本。
主载波也可以是与第一载波集合存在第一对应关系的载波。该第一对应关系可以是通信协议预定义的,也可以是网络设备通过高层信令配置的。
例如,网络设备可以为终端设备配置一个或多个PUCCH组(PUCCH group),每个PUCCH组关联不同的载波集合,并且,网络设备可以为该PUCCH group配置一个主载波,用于传输该PUCCH组关联的载波集合上的PDSCH的码本。
终端设备可以对第一码本和第二码本独立编码,并分别发送编码后的第一码本以及编码后的第二码本。
例如,终端设备可以在第一传输时机集合内接收URLLC数据,在第二传输时机集合内接收eMBB数据,终端设备可以根据方法600生成URLLC数据对应的码本以及eMBB数据对应的码本。终端设备可以在接收到一个URLLC数据后尽快发送URLLC数据的码 本,以便于网络设备在URLLC数据接收失败时快速重传,满足URLLC业务的低时延要求。终端设备可以在接收到多个eMBB数据后统一发送该多个eMBB数据的码本,在满足eMBB业务的时延要求的同时减少空口资源的消耗。
终端设备在主载波上发送第一码本和/或第二码本,包括:终端设备在主载波上以及在第一时间单元内发送第一码本和/或第二码本。
方法600中的第一码本和第二码本均为半静态码本。
当终端设备在第一传输时机集合内接收到至少一个数据信道时,终端设备可以根据指示生成半静态码本的高层信令生成第一码本。该第一码本用于指示第一传输时机集合内的M个数据信道的接收状态,该M个数据信道所在的时间单元与第一时间单元存在第二对应关系,第二对应关系为高层信令配置的,或者,第二对应关系为通信协议预定义的。上述M为正整数。
当终端设备在第二传输时机集合内接收到至少一个数据信道时,终端设备可以根据指示生成半静态码本的高层信令生成第二码本。该第二码本用于指示第二传输时机集合内的N个数据信道的接收状态,该N个数据信道所在的时间单元与第一时间单元存在第二对应关系,第二对应关系为高层信令配置的,或者,第二对应关系为通信协议预定义的。上述N为正整数。
本领域技术人员可以理解,在该实施方式中,若终端设备分别从第一传输时机集合和第二传输时机集合上接收到至少一个数据信道,则终端设备生成上述第一码本和第二码本,不再赘述。
终端设备可以根据PDCCH中的指示信息确定第一时间单元,例如,终端设备在时隙0接收到PDCCH,该PDCCH的时域资源分配字段包含PDCCH-to-PDSCH-timing字段指示PDSCH传输时延是0,因此PDSCH也在时隙0传输,进一步该PDCCH的PDSCH-to-HARQ-timing字段所指示的定时偏移量K1的值为8,则终端设备根据时隙0和K1的值确定在时隙8发送该PDSCH的反馈信息。
以第一载波为例,第一载波包含的两组传输数据子集。
上述两组传输时机子集对应一个定时偏移量集合的两组子集,该定时偏移量集合是预定义的或高层信令配置的。或者,
上述两组传输时机子集对应两个定时偏移量集合,该两个定时偏移量集合是预定义的或高层信令配置的。或者,
上述两组传输时机子集对应属于一个时间单元的传输时机集合的两组子集,所述属于一个时间单元的传输时机集合是预定义的或高层参数配置的,所述属于一个时间单元的传输时机集合的两组子集是预定义的或高层参数配置的。
图7示出了本申请提供的一种发送半静态码本的方法的示意图。
终端设备支持第一载波集合,第一载波集合包括三个CC,分别为CC1、CC2和CC3。CC1、CC2与CC3的子载波间隔均为15kHz。CC1可以用于发送PUCCH,即,CC1为上行主载波。
网络设备可以通过高层信令配置各个载波对应的定时偏移量集合。其中,该高层信令的配置是每个载波单独配置的,可以是显式的配置信息,例如,高层信令明确指示CC1的第一组传输时机子集对应第一组定时偏移量集合,以及,第二组传输时机子集对应第二 组定时偏移量集合。高层信令也可以是隐式配置信息,例如,高层信令配置CC1的第一组传输时机子集关联的码本标识为HARQ1,以及,配置CC1的第二组传输时机子集关联的码本标识为HARQ2,则CC1的两组传输时机子集对应不同的定时传输集合。
网络设备通过高层参数指示使用半静态码本,并通过高层参数配置每个下行CC上的K1集合。
在CC1上,高层参数配置了两个K1集合,分别为{4,5,6,7,8}和{1,2,3},与CC1的两组传输时机子集对应,前一个K1集合关联第一码本,后一个K1集合关联第二码本。
在CC2上,高层参数配置了一个K1集合,该K1集合为{1,2,3,4,5,6,7,8},与CC2的一组传输时机子集对应,该K1集合关联第一码本。
在CC3上,高层参数配置了一个K1集合,该K1集合为{1,2,3,4,5,6,7,8},但该K1集合被分为两个子集,分别为{5,6,7,8}和{1,2,3,4},与CC3的两组传输时机子集对应,前一个K1子集关联第一码本,后一个K1子集关联第二码本。
上述K1集合的两个子集没有重叠,也可以将一个K1集合分为两个重叠的K1子集。
网络设备在每个下行CC上传输PDSCH,终端设备在每个下行CC上接收PDSCH,并在上行主载波上反馈各个PDSCH的接收状态。
终端设备生成第一码本的过程如下所示。
终端设备根据高层参数配置的K1集合确定在上行主载波的时隙8内反馈第一传输时机集合内PDSCH的接收状态,第一传输时机集合包括:CC1上的时隙0~4,CC2上的时隙1~8以及CC3上的时隙0~3。
终端设备在第一传输时机集合内接收到至少一个PDSCH,并且,当前不满足回退条件,则终端设备确定第一码本为{AN1-0,AN1-1,AN1-2,AN1-3,AN1-4,AN2-1,AN2-2,AN2-3,AN2-4,AN2-5,AN2-6,AN2-7,AN2-7,AN2-8,AN3-0,AN3-1,AN3-2,AN3-3},分别对应CC1上时隙0~4、CC2上时隙1~8以及CC3上时隙0~3上的PDSCH的译码结果。如果终端设备在CC1的时隙0内接收到PDSCH但网络设备通过PDCCH指示CC1的时隙0对应的反馈时隙不是时隙8,终端设备则在AN1-0位置填充NACK。上述示例仅是举例说明,其它下行时隙同样适用于上述方法。
若所述终端设备在第一主CC(第一主CC是高层配置的,属于第一CC集合,例如,可以是所述主CC,即CC1)的第一传输时机集合内只接收到一个PDSCH,调度该PDSCH的PDCCH指示该PDSCH的反馈信息在上行主载波的时隙8内发送,并且,该PDCCH包含的DCI是回退DCI,如DCI format 1_0,并且,该回退DCI指示的DAI的值为1。终端设备根据上述条件确定进入回退模式,虽然网络设备配置的码本是半静态码本,但是在回退模式下,第一码本只包含一个反馈信息,即,上述PDSCH的译码结果。
终端设备生成第二码本的过程如下所示。
终端设备根据高层参数配置的K1集合确定在上行主载波的时隙8内反馈第二传输时机集合内PDSCH的接收状态,第二传输时机集合包括:CC1上的时隙5~7以及CC3上的时隙4~7。
终端设备在第二传输时机集合内接收到至少一个PDSCH,并且,当前不满足回退条件,则终端设备确定第二码本为{AN1-5,AN1-6,AN1-6,AN3-4,AN3-5,AN3-6,AN3-7},分别对应CC1上时隙5~7以及CC3上时隙4~7内的PDSCH的译码结果。如果终端设备 在CC1的时隙5内接收到PDSCH但网络设备通过PDCCH指示CC1的时隙5对应的反馈时隙不是时隙8,终端设备则在AN1-0位置填充NACK。上述示例仅是举例说明,其它下行时隙同样适用于上述方法。
若所述终端设备在第二主CC(第二主CC是高层配置的,属于第一CC集合,例如,可以是所述主CC,即CC1)的第一传输时机集合内只接收到一个PDSCH,调度该PDSCH的PDCCH指示该PDSCH的反馈信息在上行主载波的时隙8内发送,并且,该PDCCH包含的DCI是回退DCI,如DCI format 1_0,并且,该回退DCI指示的DAI的值为1。终端设备根据上述条件确定进入回退模式,虽然网络设备配置的码本是半静态码本,但是在回退模式下,第一码本只包含一个反馈信息,即,上述PDSCH的译码结果。
最后,终端设备在上行主载波上以及在时隙8内分别确定第一码本与第二码本的PUCCH资源,即,PUCCH 1与PUCCH 2。并在PUCCH 1上传输第一码本,在PUCCH 2上传输第二码本。
上述示例中,一个CC的一个时隙内的传输时机仅对应一个传输时机集合,可选地,也可以按照图8对各个CC上的PDSCH进行划分,即,对于一个载波,其在一个时隙内的传输时机分别属于两个传输时机集合。
如图8所示,网络设备为终端设备配置了一个载波集合,该载波集合包括两个CC,分别为CC1和CC2。
对于CC1,网络设备通过高层参数在一个时隙内配置了16个PDSCH时机,并将这16个PDSCH时机分为两组,第一组PDSCH时机包括{#0,#1,#2,#3},第二组PDSCH时机包括{#4,#5,#6,#7,#8,#9,#10,#11,#12,#13,#14,#15}。第一组PDSCH时机属于第一传输时机集合,也可以称为第一传输时机子集,与第一码本存在对应关系;第二组PDSCH时机属于第二传输时机集合,也可以称为第二传输时机子集,与第二码本存在对应关系。
对于CC2,网络设备通过高层参数在一个时隙内配置了8个PDSCH时机,并且没有对这8个PDSCH时机分组,则终端设备默认这8个PDSCH时机为第一组PDSCH时机,并通过第一码本反馈该8个PDSCH时机内的PDSCH的接收状态。
上述示例仅举出一个时隙内的PDSCH时机的划分方式,其它时隙内的PDSCH时机的划分方式上述示例类似。
网络设备为图8中的CC1和CC2配置相同的K1集合,例如,CC1和CC2的K1集合均为{1,2,3,4},则终端设备在CC1和CC2的时隙{0,1,2,3}内接收PDSCH,并且,在主载波(例如CC1)的时隙4内发送第一码本和第二码本。
第一传输时机集合内的PDSCH的译码结果的反馈过程如下所示。仅以第一传输时机集合在一个时隙内的码本为例进行说明。
第一传输时机集合在一个时隙内的第一传输时机子集例如是CC1上的{#0,#1,#2,#3}以及CC2上{#0,#1,#2,#3,#4,#5,#6,#7}。终端设备在上述传输时机子集内接收PDSCH。
●终端设备接收到至少一个PDSCH且当前不满足回退条件,则终端设备正常生成第一码本。对于CC1,由于第一组PDSCH时机包含的{#0,#1,#2,#3}只能切分出一个时机组,因此,反馈的码本为{AN1-0,AN1-1,AN1-2,AN1-3},分别对应时隙0~3内的PDSCH时机的ACK/NACK反馈;对于CC2,由于第一组PDSCH时机包含的{#0,#1,#2,#3,#4,#5,#6,#7}能切分出三个时机组,因此,反馈的码本为{AN2-00,AN2-01,AN2-02,AN2-10,AN2-11,AN2-12, AN2-20,AN2-21,AN2-22,AN2-30,AN2-31,AN2-32},分别对应CC2上时隙0~3内三个的ACK/NACK反馈。最终生成的第一码本为{AN1-0,AN1-1,AN1-2,AN1-3,AN2-00,AN2-01,AN2-02,AN2-10,AN2-11,AN2-12,AN2-20,AN2-21,AN2-22,AN2-30,AN2-31,AN2-32}。如果终端设备在上述某个PDSCH时机内接收到PDSCH但网络设备通过PDCCH指示PDSCH时机对应的反馈时隙不是时隙4,终端设备则在第一码本中该PDSCH时机对应的位置填充NACK。
●若终端设备只在第一主载波(第一主CC是高层配置的,属于第一CC集合,例如,可以是所述主CC,即CC1)上接收到一个PDSCH,调度该PDSCH的PDCCH指示该PDSCH的反馈信息在上行主载波的时隙8内发送,并且,该PDCCH包含的DCI是回退DCI,如DCI format 1_0,并且,该回退DCI指示的DAI的值为1,或者终端设备接收到其它PDSCH,但其它PDSCH的反馈时隙不是时隙4。此时,终端设备进入回退模式,生成只包含上述一个PDSCH的译码结果的第一码本,不再对第一码本中与潜在的PDSCH时机对应的位置填充NACK。
第二传输时机集合内的PDSCH的译码结果的反馈过程如下所示。仅以第二传输时机集合在一个时隙内的码本为例进行说明。
第二传输时机集合在一个时隙内的第二传输时机子集例如是CC1上{#4,#5,#6,#7,#8,#9,#10,#11,#12,#13,#14,#15}。终端设备在上述传输时机子集内接收PDSCH。
●终端设备接收到至少一个PDSCH且当前不满足回退条件,则终端设备正常生成第二码本。对于CC1,由于第二组PDSCH时机包含的{#4,#5,#6,#7,#8,#9,#10,#11,#12,#13,#14,#15}能切分出四个时机组,因此,反馈的码本为{AN1-00,AN1-01,AN1-02,AN1-03,AN1-10,AN1-11,AN1-12,AN1-13,AN1-20,AN1-21,AN1-22,AN1-23,AN1-30,AN1-31,AN1-32,AN1-33},分别对应CC1上4个时隙内的四个时机组的ACK/NACK反馈,例如,AN1-00,AN1-01,AN1-02和AN1-03表示一个时隙中的四个PDSCH的反馈信息,AN1-10,AN1-11,AN1-12以及AN1-13表示另一个时隙中的四个PDSCH的反馈信息。最终生成的第二码本为{AN1-00,AN1-01,AN1-02,AN1-03,AN1-10,AN1-11,AN1-12,AN1-13,AN1-20,AN1-21,AN1-22,AN1-23,AN1-30,AN1-31,AN1-32,AN1-33}。如果终端设备在上述某个PDSCH时机内接收到PDSCH但网络设备通过PDCCH指示PDSCH时机对应的反馈时隙不是时隙4,终端设备则在第二码本中该PDSCH时机对应的位置填充NACK。
●若终端设备只在第二主CC(第二主CC是高层配置的,属于第一CC集合,例如,可以是所述主CC,即CC1)的第一传输时机集合内只接收到一个PDSCH,调度该PDSCH的PDCCH指示该PDSCH的反馈信息在上行主载波的时隙8内发送,并且,该PDCCH包含的DCI是回退DCI,如DCI format 1_0,并且,该回退DCI指示的DAI的值为1,或者,终端设备接收到其它PDSCH,但其它PDSCH的反馈时隙不是时隙4)。此时,终端设备进入回退模式,生成只包含上述一个PDSCH的译码结果的第二码本,不再对第二码本中与潜在的PDSCH时机对应的位置填充NACK。
最后,终端设备在上行主载波上以及在时隙4内分别确定第一码本与第二码本的PUCCH资源,即,PUCCH 1与PUCCH 2。并在PUCCH 1上传输第一码本,在PUCCH 2 上传输第二码本。
上文详细介绍了本申请提供的发送和接收码本的方法的示例。可以理解的是,通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以将各个功能划分为各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图9示出了本申请提供的一种通信装置的结构示意图。通信装置900可用于实现上述方法实施例中描述的方法。该通信装置900可以是芯片、网络设备、终端设备或者其它无线通信设备等。
通信装置900包括一个或多个处理器901,该一个或多个处理器901可支持通信装置900实现本申请实施例中所述的码本发送方法,例如发明内容第一方面或第二方面所示的方法,以及图2或图6所示的实施例中由终端设备执行的方法;或者,该一个或多个处理器901可支持通信装置900实现本申请实施例中所述的码本接收方法,例如发明内容中第三方面或第四方面所述的方法,以及图2或图6所示的实施例中由网络设备执行的方法。处理器901可以是通用处理器或者专用处理器。例如,处理器901可以是中央处理器(central processing unit,CPU)或基带处理器。基带处理器可以用于处理通信数据(例如,上文所述的第一码本和/或第二码本),CPU可以用于对通信装置(例如,基站、UE或芯片)进行控制,执行软件程序,处理软件程序的数据。通信装置900还可以包括收发单元905,用以实现信号的输入(接收)和输出(发送)。
例如,通信装置900可以是芯片,收发单元905可以是该芯片的输入和/或输出电路,或者,收发单元905可以是该芯片的通信接口,该芯片可以作为UE或基站或其它无线通信设备的组成部分。
又例如,通信装置900可以为UE或基站或其它无线通信设备,收发单元905可以是收发器或射频芯片。
通信装置900中可以包括一个或多个存储器902,其上存有程序904,程序904可被处理器901运行,生成指令903,使得处理器901根据指令903执行上述方法实施例中描述的方法。可选地,存储器902中还可以存储有数据。可选地,处理器901还可以读取存储器902中存储的数据(例如,预定义的信息),该数据可以与程序904存储在相同的存储地址,该数据也可以与程序904存储在不同的存储地址。
处理器901和存储器902可以单独设置,也可以集成在一起,例如,集成在单板或者系统级芯片(system on chip,SOC)上。
通信装置900还可以包括收发单元905以及天线906。收发单元905可以称为收发机、 收发电路或者收发器,用于通过天线906实现通信装置的收发功能。
在一种可能的设计中,处理器901用于通过收发单元905以及天线906在至少两个载波集合上接收至少一个数据信道,所述至少两个载波集合包括第一载波集合和第二载波集合;随后,根据至少一个数据信道的接收状态确定第一码本和/或第二码本,第一码本用于指示第一载波集合对应的数据信道的接收状态,第二码本用于指示第二载波集合对应的数据信道的接收状态;随后,通过收发单元905以及天线906在主载波上发送第一码本和/或第二码本,其中,主载波为至少两个载波集合中的一个载波,或者,主载波与至少两个载波集合存在第一对应关系。生成和发送码本的具体方式可以参见上述方法实施例中的相关描述。
在另一种可能的设计中,处理器901通过收发单元905以及天线906在第一载波集合上的至少两个传输时机集合内接收至少一个数据信道,该至少两个传输时机集合包括第一传输时机集合和第二传输时机集合,第一载波集合包括第一载波和第二载波;随后,根据至少一个数据信道的接收状态确定第一码本和/或第二码本,第一码本用于指示第一传输时机集合内的数据信道的接收状态,第二码本用于指示第二传输时机集合内的数据信道的接收状态;随后,通过收发单元905以及天线906在主载波上发送第一码本和/或第二码本,其中,主载波为第一载波集合中的一个载波,或者,主载波与第一载波集合存在第一对应关系。生成和发送码本的具体方式可以参见上述方法实施例中的相关描述。
在又一种可能的设计中,处理器901用于通过收发单元905以及天线906在至少两个载波集合上发送至少一个数据信道,至少两个载波集合包括第一载波集合和第二载波集合;随后,通过收发单元905以及天线906在主载波上接收第一码本和/或所述第二码本,其中,第一码本用于指示第一载波集合对应的数据信道的接收状态,第二码本用于指示第二载波集合对应的数据信道的接收状态,主载波为至少两个载波集合中的一个载波,或者,主载波与至少两个载波集合存在第一对应关系。接收码本的具体方式可以参见上述方法实施例中的相关描述。
在又一种可能的设计中,处理器901用于通过收发单元905以及天线906在第一载波集合上的至少两个传输时机集合内发送至少一个数据信道,至少两个传输时机集合包括第一传输时机集合和第二传输时机集合,第一载波集合包括第一载波和第二载波;随后,通过收发单元905以及天线906在主载波上接收第一码本和/或第二码本,其中,第一码本用于指示第一传输时机集合内的数据信道的接收状态,第二码本用于指示第二传输时机集合内的数据信道的接收状态,主载波为第一载波集合中的一个载波,或者,主载波与第一载波集合存在第一对应关系。接收码本的具体方式可以参见上述方法实施例中的相关描述。
应理解,上述方法实施例的各步骤可以通过处理器901中的硬件形式的逻辑电路或者软件形式的指令完成。处理器901可以是CPU、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,例如,分立门、晶体管逻辑器件或分立硬件组件。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器901执行时实现本申请中任一方法实施例所述的通信方法。
该计算机程序产品可以存储在存储器902中,例如是程序904,程序904经过预处理、编译、汇编和链接等处理过程最终被转换为能够被处理器901执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的通信方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质例如是存储器902。存储器902可以是易失性存储器或非易失性存储器,或者,存储器902可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
在通信装置900为终端设备的情况下,图10示出了本申请提供的一种终端设备的结构示意图。该终端设备1000可适用于图1所示的系统中,实现上述方法实施例中终端设备的功能。为了便于说明,图10仅示出了终端设备的主要部件。
如图10所示,终端设备1000包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及用于对整个终端设备进行控制。例如,处理器生成第一码本和/或第二码本,随后通过控制电路和天线发送第一码本和/或第二码本。存储器主要用于存储程序和数据,例如存储通信协议和上述配置信息。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置例如是触摸屏、显示屏或键盘,主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储器中的程序,解释并执行该程序所包含的指令,处理程序中的数据。当需要通过天线发送信息时,处理器对待发送的信息进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后得到射频信号,并将射频信号通过天线以电磁波的形式向外发送。当承载信息的电磁波(即,射频信号)到达终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为信息并对该信息进行处理。
本领域技术人员可以理解,为了便于说明,图10仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请对此不做限定。
作为一种可选的实现方式,图10中的处理器可以集成基带处理器和CPU的功能,本领域技术人员可以理解,基带处理器和CPU也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络 制式,终端设备可以包括多个CPU以增强其处理能力,终端设备的各个部件可以通过各种总线连接。基带处理器也可以被称为基带处理电路或者基带处理芯片。CPU也可以被称为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以程序的形式存储在存储器中,由处理器执行存储器中的程序以实现基带处理功能。
在本申请中,可以将具有收发功能的天线和控制电路视为终端设备1000的收发单元1001,用于支持终端设备实现方法实施例中的接收功能,或者,用于支持终端设备实现方法实施例中的发送功能。将具有处理功能的处理器视为终端设备1000的处理单元1002。如图10所示,终端设备1000包括收发单元1001和处理单元1002。收发单元也可以称为收发器、收发机、收发装置等。可选地,可以将收发单元1001中用于实现接收功能的器件视为接收单元,将收发单元1001中用于实现发送功能的器件视为发送单元,即收发单元1001包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器1002可用于执行存储器存储的程序,以控制收发单元1001接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元1001的功能可以考虑通过收发电路或者收发专用芯片实现。
在通信装置900为网络设备的情况下,图11是本申请提供的一种网络设备的结构示意图,该网络设备例如可以为基站。如图11所示,该基站可应用于如图1所示的系统中,实现上述方法实施例中gNB的功能。基站1100可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1101和至少一个基带单元(baseband unit,BBU)1102。其中,BBU1102可以包括分布式单元(distributed unit,DU),也可以包括DU和集中单元(central unit,CU)。
RRU1101可以称为收发单元、收发机、收发电路或者收发器,其可以包括至少一个天线11011和射频单元11012。RRU1101主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于支持基站实现方法实施例中的发送功能和接收功能。BBU1102主要用于进行基带处理,对基站进行控制等。RRU1101与BBU1102可以是物理上设置在一起的,也可以物理上分离设置的,即分布式基站。
BBU1102也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如,BBU1102可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
BBU1102可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(例如,长期演进(long term evolution,LTE)网),也可以分别支持不同接入制式的无线接入网(如LTE网和5G网)。BBU1102还包括存储器11021和处理器11022,存储器11021用于存储必要的指令和数据。例如,存储器11021存储上述方法实施例中的各种信息。处理器11022用于控制基站进行必要的动作,例如,用于控制基站执行上述方法实施例中的操作流程。存储器11021和处理器11022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请还提供一种通信系统,包括上述终端设备1000和基站1100。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (55)

  1. 一种发送码本的方法,其特征在于,包括:
    终端设备在至少两个载波集合上接收至少一个数据信道,所述至少两个载波集合包括第一载波集合和第二载波集合;
    所述终端设备根据所述至少一个数据信道的接收状态确定第一码本和/或第二码本,所述第一码本用于指示所述第一载波集合对应的数据信道的接收状态,所述第二码本用于指示所述第二载波集合对应的数据信道的接收状态;
    所述终端设备在主载波上发送所述第一码本和/或所述第二码本,其中,所述主载波为所述至少两个载波集合中的一个载波,或者,所述主载波与所述至少两个载波集合存在第一对应关系。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一控制信道,所述第一控制信道用于调度所述第一载波集合对应的第一数据信道,所述第一数据信道属于所述至少一个数据信道,所述第一控制信道包括用于指示第一时间单元的第一指示信息;和/或,
    所述终端设备接收第二控制信道,所述第二控制信道用于调度所述第二载波集合对应的第二数据信道,所述第二数据信道属于所述至少一个数据信道,所述第二控制信道包括用于指示第一时间单元的第二指示信息;
    所述终端设备在主载波上发送所述第一码本和/或所述第二码本,包括:
    所述终端设备在所述主载波上以及在所述第一时间单元内发送所述第一码本和/或所述第二码本。
  3. 根据权利要求2所述的方法,其特征在于,
    当所述终端设备接收所述第一控制信道,所述第一控制信道是在所述第一载波集合上接收的;和/或,
    当所述终端设备接收所述第二控制信道,所述第二控制信道是在所述第二载波集合上接收的。
  4. 根据权利要求2或3所述的方法,其特征在于,所述终端设备根据所述至少一个数据信道的接收状态确定第一码本和/或第二码本,包括:
    所述终端设备根据所述第一控制信道中包含的下行分配索引DAI确定所述第一码本,所述第一码本用于指示所述第一数据信道的接收状态;和/或,
    所述终端设备根据所述第二控制信道中包含的DAI确定所述第二码本,所述第二码本包括所述第二数据信道的反馈信息。
  5. 根据权利要求2或3所述的方法,其特征在于,
    所述第一码本用于指示所述第一载波集合对应的M个数据信道的接收状态,所述M个数据信道包括所述第一数据信道,所述M个数据信道所在的时间单元与所述第一时间单元之间存在第二对应关系,所述M为正整数;和/或,
    所述第二码本用于指示所述第二载波集合对应的N个数据信道的接收状态,所述N个数据信道包括所述第二数据信道,所述N个数据信道所在的时间单元与所述第一时间单 元之间存在第三对应关系,所述N为正整数。
  6. 根据权利要求5所述的方法,其特征在于,
    当所述终端设备在第一主载波上接收一个控制信道,并且,所述一个控制信道用于调度所述第一主载波上的一个数据信道,并且,所述一个控制信道承载第一回退下行控制信息DCI,并且,所述第一回退DCI中的DAI的值为1,所述第一码本只用于指示所述一个数据信道的接收状态,其中,所述第一主载波属于所述第一载波集合,
    和/或,
    当所述终端设备在第二主载波上接收一个控制信道,并且,所述一个控制信道用于调度所述第二主载波上的一个数据信道,并且,所述一个控制信道承载第二回退DCI,并且,所述第二回退DCI中的DAI的值为1,所述第二码本只用于指示所述一个数据信道的接收状态,其中,所述第二主载波属于所述第二载波集合。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第一主载波和所述第二主载波是所述主载波;或者,
    所述第一主载波是所述主载波,所述第二主载波是高层信令配置的、不同于所述主载波的另一个载波;或者,
    所述第二主载波是所述主载波,第一主载波是高层信令配置的、不同于所述主载波的另一个载波。
  8. 一种发送码本的方法,其特征在于,包括:
    终端设备在第一载波集合上的至少两个传输时机集合内接收至少一个数据信道,至少两个传输时机集合包括第一传输时机集合和第二传输时机集合,第一载波集合包括第一载波和第二载波;
    所述终端设备根据至少一个数据信道的接收状态确定第一码本和/或第二码本,第一码本用于指示第一传输时机集合内的数据信道的接收状态,第二码本用于指示第二传输时机集合内的数据信道的接收状态;
    所述终端设备在主载波上发送第一码本和/或第二码本,其中,所述主载波为所述第一载波集合中的一个载波,或者,所述主载波与所述第一载波集合存在第一对应关系。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备在主载波上发送第一码本和/或第二码本,包括:
    所述终端设备在所述主载波上以及在第一时间单元内发送所述第一码本和/或所述第二码本;
    其中,所述第一码本用于指示所述第一传输时机集合内M个数据信道的接收状态,所述M个数据信道所在的时间单元与所述第一时间单元之间存在第二对应关系,所述M个数据信道属于所述至少一个数据信道,M为正整数;和/或,所述第二码本用于指示所述第二传输时机集合内N个数据信道的接收状态,所述N个数据信道所在的时间单元与所述第一时间单元之间存在第三对应关系,所述N个数据信道属于所述至少一个数据信道,N为正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备在主载波上以及在第一时间单元内发送第一码本和/或第二码本,包括:
    当所述终端设备在所述第一载波集合上收到至少一个属于所述第一传输时机集合的 下行数据信道,且调度所述下行数据信道的下行控制信道指示所述下行数据信道的反馈信息在所述第一时间单元内反馈时,则所述终端设备在所述主载波上以及在所述第一时间单元内发送所述第一码本;和/或,
    当所述终端设备在所述第一载波集合上收到至少一个属于所述第二传输时机集合的下行数据信道,且调度所述下行数据信道的下行控制信道指示所述下行数据信道的反馈信息在所述第一时间单元内反馈时,则所述终端设备在所述主载波上以及在所述第一时间单元内发送所述第二码本。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述第一载波对应两组传输时机子集,所述两组传输时机子集分别属于所述第一传输时机集合和所述第二传输时机集合。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,
    所述两组传输时机子集对应一个定时偏移量集合的两组子集,所述一个定时偏移量集合是预定义的或高层信令配置的;或者,
    所述两组传输时机子集对应两个定时偏移量集合,所述两个定时偏移量集合是预定义的或高层信令配置的;或者,
    所述两组传输时机子集对应属于一个时间单元的传输时机集合的两组子集,属于一个时间单元的传输时机集合是预定义的或高层参数配置的,属于一个时间单元的传输时机集合的两组子集是预定义的或高层参数配置的。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,
    当所述终端设备在所述第一载波上接收一个控制信道,并且,所述一个控制信道用于调度所述第一载波上属于所述第一传输时机集合的一个数据信道,并且,所述一个控制信道承载第一回退DCI,并且,所述第一回退DCI中的DAI的值为1,所述第一码本只用于指示所述一个数据信道的接收状态;和/或,
    当所述终端设备在所述第二载波上接收一个控制信道,并且,所述一个控制信道用于调度所述第二载波上属于所述第二传输时机集合的一个数据信道,并且,所述一个控制信道承载第二回退DCI,并且,所述第二回退DCI中的DAI的值为1,所述第二码本只用于指示所述一个数据信道的接收状态。
  14. 一种接收码本的方法,其特征在于,包括:
    网络设备在至少两个载波集合上发送至少一个数据信道,所述至少两个载波集合包括第一载波集合和第二载波集合;
    所述网络设备在主载波上接收第一码本和/或所述第二码本,其中,所述第一码本用于指示所述第一载波集合对应的数据信道的接收状态,所述第二码本用于指示所述第二载波集合对应的数据信道的接收状态,所述主载波为所述至少两个载波集合中的一个载波,或者,所述主载波与所述至少两个载波集合存在第一对应关系。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一控制信道,所述第一控制信道用于调度所述第一载波集合对应的第一数据信道,所述第一数据信道属于所述至少一个数据信道,所述第一控制信道包括用于指示第一时间单元的第一指示信息;和/或,
    所述网络设备发送第二控制信道,所述第二控制信道用于调度所述第二载波集合对应 的第二数据信道,所述第二数据信道属于所述至少一个数据信道,所述第二控制信道包括用于指示第一时间单元的第二指示信息;
    所述网络设备在主载波上接收所述第一码本和/或所述第二码本,包括:
    所述网络设备在所述主载波上以及在所述第一时间单元内接收所述第一码本和/或所述第二码本。
  16. 根据权利要求15所述的方法,其特征在于,
    当所述网络设备发送所述第一控制信道,所述第一控制信道是在所述第一载波集合上发送的;和/或,
    当所述网络设备发送所述第二控制信道,所述第二控制信道是在所述第二载波集合上发送的。
  17. 根据权利要求15或16所述的方法,其特征在于,
    所述第一控制信道中包含的下行分配索引DAI用于指示所述第一码本包含的反馈信息的数量;和/或,
    所述第二控制信道中包含的DAI用于指示所述第二码本包含的反馈信息的数量。
  18. 根据权利要求15或16所述的方法,其特征在于,
    所述第一码本用于指示所述第一载波集合对应的M个数据信道的接收状态,所述M个数据信道包括所述第一数据信道,所述M个数据信道所在的时间单元与所述第一时间单元之间存在第二对应关系,所述M为正整数;和/或,
    所述第二码本用于指示所述第二载波集合对应的N个数据信道的接收状态,所述N个数据信道包括所述第二数据信道,所述N个数据信道所在的时间单元与所述第一时间单元之间存在第三对应关系,所述N为正整数。
  19. 根据权利要求18所述的方法,其特征在于,
    当所述网络设备在第一主载波上发送一个控制信道,并且,所述一个控制信道用于调度所述第一主载波上的一个数据信道,并且,所述一个控制信道承载第一回退下行控制信息DCI,并且,所述第一回退DCI中的DAI的值为1,所述第一码本只用于指示所述一个数据信道的接收状态,其中,所述第一主载波属于所述第一载波集合,
    和/或,
    当所述网络设备在第二主载波上发送一个控制信道,并且,所述一个控制信道用于调度所述第二主载波上的一个数据信道,并且,所述一个控制信道承载第二回退DCI,并且,所述第二回退DCI中的DAI的值为1,所述第二码本只用于指示所述一个数据信道的接收状态,其中,所述第二主载波属于所述第二载波集合。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第一主载波和所述第二主载波是所述主载波;或者,
    所述第一主载波是所述主载波,所述第二主载波是高层信令配置的、不同于所述主载波的另一个载波;或者,
    所述第二主载波是所述主载波,第一主载波是高层信令配置的、不同于所述主载波的另一个载波。
  21. 一种接收码本的方法,其特征在于,包括:
    网络设备在第一载波集合上的至少两个传输时机集合内发送至少一个数据信道,所述 至少两个传输时机集合包括第一传输时机集合和第二传输时机集合,所述第一载波集合包括第一载波和第二载波;
    所述网络设备在主载波上接收第一码本和/或第二码本,其中,所述第一码本用于指示所述第一传输时机集合内的数据信道的接收状态,所述第二码本用于指示所述第二传输时机集合内的数据信道的接收状态,所述主载波为所述第一载波集合中的一个载波,或者,所述主载波与所述第一载波集合存在第一对应关系。
  22. 根据权利要求21所述的方法,其特征在于,所述网络设备在主载波上接收第一码本和/或第二码本,包括:
    所述网络设备在所述主载波上以及在第一时间单元内接收所述第一码本和/或所述第二码本;
    其中,所述第一码本用于指示所述第一传输时机集合内M个数据信道的接收状态,所述M个数据信道所在的时间单元与所述第一时间单元之间存在第二对应关系,所述M个数据信道属于至少一个数据信道,M为正整数;和/或,所述第二码本用于指示所述第二传输时机集合内N个数据信道的接收状态,所述N个数据信道所在的时间单元与所述第一时间单元之间存在第三对应关系,所述N个数据信道属于至少一个数据信道,N为正整数。
  23. 根据权利要求22所述的方法,其特征在于,所述网络设备在主载波上以及在第一时间单元内接收第一码本之前,所述方法还包括:
    所述网络设备发送第一下行控制信道,所述第一下行控制信道用于调度至少一个属于所述第一传输时机集合内的下行数据信道;
    所述网络设备在所述第一载波集合上以及在所述第一传输时机集合内发送至少一个属于所述第一传输时机集合内的下行数据信道;和/或,
    所述网络设备在所述主载波上以及在第一时间单元内接收第二码本之前,所述方法还包括:
    所述网络设备发送第二下行控制信道,所述第二下行控制信道用于调度至少一个属于所述第二传输时机集合内的下行数据信道;
    所述网络设备在所述第一载波集合上以及在所述第二传输时机集合内发送至少一个属于所述第二传输时机集合内的下行数据信道。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述第一载波对应两组传输时机子集,所述两组传输时机子集分别属于所述第一传输时机集合和所述第二传输时机集合。
  25. 根据权利要求21至24中任一项所述的方法,其特征在于,
    所述两组传输时机子集对应一个定时偏移量集合的两组子集,所述一个定时偏移量集合是预定义的或高层信令配置的;或者,
    所述两组传输时机子集对应两个定时偏移量集合,所述两个定时偏移量集合是预定义的或高层信令配置的;或者,
    所述两组传输时机子集对应属于一个时间单元的传输时机集合的两组子集,属于一个时间单元的传输时机集合是预定义的或高层参数配置的,属于一个时间单元的传输时机集合的两组子集是预定义的或高层参数配置的。
  26. 根据权利要求21至24中任一项所述的方法,其特征在于,
    若所述网络设备在所述第一主载波上发送一个控制信道,并且,所述一个控制信道用于调度所述第一主载波上属于所述第一传输时机集合的一个数据信道,并且,所述一个控制信道承载第一回退DCI,并且,所述第一回退DCI中的DAI的值为1,则所述第一码本只用于指示所述一个数据信道的接收状态;和/或,
    若所述网络设备在所述第二主载波上发送一个控制信道,并且,所述一个控制信道用于调度所述第二主载波上属于所述第二传输时机集合的一个数据信道,并且,所述一个控制信道承载第二回退DCI,并且,所述第二回退DCI中的DAI的值为1,则所述第二码本只用于指示所述一个数据信道的接收状态。
  27. 一种发送码本的装置,其特征在于,包括接收单元、处理单元和发送单元,
    所述接收单元用于:在至少两个载波集合上接收至少一个数据信道,所述至少两个载波集合包括第一载波集合和第二载波集合;
    所述处理单元用于:根据所述至少一个数据信道的接收状态确定第一码本和/或第二码本,所述第一码本用于指示所述第一载波集合对应的数据信道的接收状态,所述第二码本用于指示所述第二载波集合对应的数据信道的接收状态;
    所述发送单元用于:在主载波上发送所述第一码本和/或所述第二码本,其中,所述主载波为所述至少两个载波集合中的一个载波,或者,所述主载波与所述至少两个载波集合存在第一对应关系。
  28. 根据权利要求27所述的装置,其特征在于,所述接收单元还用于:
    接收第一控制信道,所述第一控制信道用于调度所述第一载波集合对应的第一数据信道,所述第一数据信道属于所述至少一个数据信道,所述第一控制信道包括用于指示第一时间单元的第一指示信息;和/或,
    接收第二控制信道,所述第二控制信道用于调度所述第二载波集合对应的第二数据信道,所述第二数据信道属于所述至少一个数据信道,所述第二控制信道包括用于指示第一时间单元的第二指示信息;
    所述发送单元具体用于:
    在所述主载波上以及在所述第一时间单元内发送所述第一码本和/或所述第二码本。
  29. 根据权利要求28所述的装置,其特征在于,所述处理单元具体用于:
    根据所述第一控制信道中包含的下行分配索引DAI确定所述第一码本,所述第一码本用于指示所述第一数据信道的接收状态;和/或,
    根据所述第二控制信道中包含的DAI确定所述第二码本,所述第二码本包括所述第二数据信道的反馈信息。
  30. 根据权利要求28所述的装置,其特征在于,
    所述第一码本用于指示所述第一载波集合对应的M个数据信道的接收状态,所述M个数据信道包括所述第一数据信道,所述M个数据信道所在的时间单元与所述第一时间单元之间存在第二对应关系,所述M为正整数;和/或,
    所述第二码本用于指示所述第二载波集合对应的N个数据信道的接收状态,所述N个数据信道包括所述第二数据信道,所述N个数据信道所在的时间单元与所述第一时间单元之间存在第三对应关系,所述N为正整数。
  31. 根据权利要求30所述的装置,其特征在于,
    当所述装置在第一主载波上接收一个控制信道,并且,所述一个控制信道用于调度所述第一主载波上的一个数据信道,并且,所述一个控制信道承载第一回退下行控制信息DCI,并且,所述第一回退DCI中的DAI的值为1,所述第一码本只用于指示所述一个数据信道的接收状态,其中,所述第一主载波属于所述第一载波集合,
    和/或,
    当所述装置在第二主载波上接收一个控制信道,并且,所述一个控制信道用于调度所述第二主载波上的一个数据信道,并且,所述一个控制信道承载第二回退DCI,并且,所述第二回退DCI中的DAI的值为1,所述第二码本只用于指示所述一个数据信道的接收状态,其中,所述第二主载波属于所述第二载波集合。
  32. 根据权利要求31所述的装置,其特征在于,
    所述第一主载波和所述第二主载波是所述主载波;或者,
    所述第一主载波是所述主载波,所述第二主载波是高层信令配置的、不同于所述主载波的另一个载波;或者,
    所述第二主载波是所述主载波,第一主载波是高层信令配置的、不同于所述主载波的另一个载波。
  33. 一种发送码本的装置,其特征在于,包括接收单元、处理单元和发送单元,
    所述接收单元用于:在第一载波集合上的至少两个传输时机集合内接收至少一个数据信道,至少两个传输时机集合包括第一传输时机集合和第二传输时机集合,第一载波集合包括第一载波和第二载波;
    所述处理单元用于:根据至少一个数据信道的接收状态确定第一码本和/或第二码本,第一码本用于指示第一传输时机集合内的数据信道的接收状态,第二码本用于指示第二传输时机集合内的数据信道的接收状态;
    所述发送单元用于:在主载波上发送第一码本和/或第二码本,其中,所述主载波为所述第一载波集合中的一个载波,或者,所述主载波与所述第一载波集合存在第一对应关系。
  34. 根据权利要求33所述的装置,其特征在于,所述发送单元还用于:
    在所述主载波上以及在第一时间单元内发送所述第一码本和/或所述第二码本;
    其中,所述第一码本用于指示所述第一传输时机集合内M个数据信道的接收状态,所述M个数据信道所在的时间单元与所述第一时间单元之间存在第二对应关系,所述M个数据信道属于所述至少一个数据信道,M为正整数;和/或,所述第二码本用于指示所述第二传输时机集合内N个数据信道的接收状态,所述N个数据信道所在的时间单元与所述第一时间单元之间存在第三对应关系,所述N个数据信道属于所述至少一个数据信道,N为正整数。
  35. 根据权利要求34所述的装置,其特征在于,所述发送单元还用于:
    当所述装置在所述第一载波集合上收到至少一个属于所述第一传输时机集合的下行数据信道,且调度所述下行数据信道的下行控制信道指示所述下行数据信道的反馈信息在所述第一时间单元内反馈时,则在所述主载波上以及在所述第一时间单元内发送所述第一码本;和/或,
    当所述装置在所述第一载波集合上收到至少一个属于所述第二传输时机集合的下行数据信道,且调度所述下行数据信道的下行控制信道指示所述下行数据信道的反馈信息在所述第一时间单元内反馈时,则在所述主载波上以及在所述第一时间单元内发送所述第二码本。
  36. 根据权利要求33至35中任一项所述的装置,其特征在于,所述第一载波对应两组传输时机子集,所述两组传输时机子集分别属于所述第一传输时机集合和所述第二传输时机集合。
  37. 根据权利要求33至36中任一项所述的装置,其特征在于,
    所述两组传输时机子集对应一个定时偏移量集合的两组子集,所述一个定时偏移量集合是预定义的或高层信令配置的;或者,
    所述两组传输时机子集对应两个定时偏移量集合,所述两个定时偏移量集合是预定义的或高层信令配置的;或者,
    所述两组传输时机子集对应属于一个时间单元的传输时机集合的两组子集,属于一个时间单元的传输时机集合是预定义的或高层参数配置的,属于一个时间单元的传输时机集合的两组子集是预定义的或高层参数配置的。
  38. 根据权利要求33至37中任一项所述的装置,其特征在于,
    当所述装置在所述第一载波上接收一个控制信道,并且,所述一个控制信道用于调度所述第一载波上属于所述第一传输时机集合的一个数据信道,并且,所述一个控制信道承载第一回退DCI,并且,所述第一回退DCI中的DAI的值为1,所述第一码本只用于指示所述一个数据信道的接收状态;和/或,
    当所述装置在所述第二载波上接收一个控制信道,并且,所述一个控制信道用于调度所述第二载波上属于所述第二传输时机集合的一个数据信道,并且,所述一个控制信道承载第二回退DCI,并且,所述第二回退DCI中的DAI的值为1,所述第二码本只用于指示所述一个数据信道的接收状态。
  39. 一种接收码本的装置,其特征在于,包括发送单元和接收单元,
    所述发送单元用于:在至少两个载波集合上发送至少一个数据信道,所述至少两个载波集合包括第一载波集合和第二载波集合;
    所述接收单元用于:在主载波上接收第一码本和/或所述第二码本,其中,所述第一码本用于指示所述第一载波集合对应的数据信道的接收状态,所述第二码本用于指示所述第二载波集合对应的数据信道的接收状态,所述主载波为所述至少两个载波集合中的一个载波,或者,所述主载波与所述至少两个载波集合存在第一对应关系。
  40. 根据权利要求39所述的装置,其特征在于,所述发送单元还用于:
    发送第一控制信道,所述第一控制信道用于调度所述第一载波集合对应的第一数据信道,所述第一数据信道属于所述至少一个数据信道,所述第一控制信道包括用于指示第一时间单元的第一指示信息;和/或,
    发送第二控制信道,所述第二控制信道用于调度所述第二载波集合对应的第二数据信道,所述第二数据信道属于所述至少一个数据信道,所述第二控制信道包括用于指示第一时间单元的第二指示信息;
    所述接收单元具体用于:
    在所述主载波上以及在所述第一时间单元内接收所述第一码本和/或所述第二码本。
  41. 根据权利要求40所述的装置,其特征在于,
    所述第一控制信道中包含下行分配索引DAI,所述DAI用于指示所述第一码本包含的反馈信息的数量;和/或,
    所述第二控制信道中包含DAI,所述DAI用于指示所述第二码本包含的反馈信息的数量。
  42. 根据权利要求40所述的装置,其特征在于,
    所述第一码本用于指示所述第一载波集合对应的M个数据信道的接收状态,所述M个数据信道包括所述第一数据信道,所述M个数据信道所在的时间单元与所述第一时间单元之间存在第二对应关系,所述M为正整数;和/或,
    所述第二码本用于指示所述第二载波集合对应的N个数据信道的接收状态,所述N个数据信道包括所述第二数据信道,所述N个数据信道所在的时间单元与所述第一时间单元之间存在第三对应关系,所述N为正整数。
  43. 根据权利要求42所述的装置,其特征在于,
    当所述装置在第一主载波上发送一个控制信道,并且,所述一个控制信道用于调度所述第一主载波上的一个数据信道,并且,所述一个控制信道承载第一回退下行控制信息DCI,并且,所述第一回退DCI中的DAI的值为1,所述第一码本只用于指示所述一个数据信道的接收状态,其中,所述第一主载波属于所述第一载波集合,
    和/或,
    当所述装置在第二主载波上发送一个控制信道,并且,所述一个控制信道用于调度所述第二主载波上的一个数据信道,并且,所述一个控制信道承载第二回退DCI,并且,所述第二回退DCI中的DAI的值为1,所述第二码本只用于指示所述一个数据信道的接收状态,其中,所述第二主载波属于所述第二载波集合。
  44. 根据权利要求43所述的装置,其特征在于,
    所述第一主载波和所述第二主载波是所述主载波;或者,
    所述第一主载波是所述主载波,所述第二主载波是高层信令配置的、不同于所述主载波的另一个载波;或者,
    所述第二主载波是所述主载波,第一主载波是高层信令配置的、不同于所述主载波的另一个载波。
  45. 一种接收码本的装置,其特征在于,包括发送单元和接收单元,
    所述发送单元用于:在第一载波集合上的至少两个传输时机集合内发送至少一个数据信道,所述至少两个传输时机集合包括第一传输时机集合和第二传输时机集合,所述第一载波集合包括第一载波和第二载波;
    所述接收单元用于:在主载波上接收第一码本和/或第二码本,其中,所述第一码本用于指示所述第一传输时机集合内的数据信道的接收状态,所述第二码本用于指示所述第二传输时机集合内的数据信道的接收状态,所述主载波为所述第一载波集合中的一个载波,或者,所述主载波与所述第一载波集合存在第一对应关系。
  46. 根据权利要求45所述的装置,其特征在于,所述接收单元还用于:
    在所述主载波上以及在第一时间单元内接收所述第一码本和/或所述第二码本;
    其中,所述第一码本用于指示所述第一传输时机集合内M个数据信道的接收状态,所述M个数据信道所在的时间单元与所述第一时间单元之间存在第二对应关系,所述M个数据信道属于至少一个数据信道,M为正整数;和/或,所述第二码本用于指示所述第二传输时机集合内N个数据信道的接收状态,所述N个数据信道所在的时间单元与所述第一时间单元之间存在第三对应关系,所述N个数据信道属于至少一个数据信道,N为正整数。
  47. 根据权利要求46所述的装置,其特征在于,所述发送单元还用于:
    发送第一下行控制信道,所述第一下行控制信道用于调度至少一个属于所述第一传输时机集合内的下行数据信道;
    在所述第一载波集合上以及在所述第一传输时机集合内发送至少一个属于所述第一传输时机集合内的下行数据信道;和/或,
    发送第二下行控制信道,所述第二下行控制信道用于调度至少一个属于所述第二传输时机集合内的下行数据信道;
    在所述第一载波集合上以及在所述第二传输时机集合内发送至少一个属于所述第二传输时机集合内的下行数据信道。
  48. 根据权利要求45至47中任一项所述的装置,其特征在于,所述第一载波对应两组传输时机子集,所述两组传输时机子集分别属于所述第一传输时机集合和所述第二传输时机集合。
  49. 根据权利要求45至48中任一项所述的装置,其特征在于,
    所述两组传输时机子集对应一个定时偏移量集合的两组子集,所述一个定时偏移量集合是预定义的或高层信令配置的;或者,
    所述两组传输时机子集对应两个定时偏移量集合,所述两个定时偏移量集合是预定义的或高层信令配置的;或者,
    所述两组传输时机子集对应属于一个时间单元的传输时机集合的两组子集,属于一个时间单元的传输时机集合是预定义的或高层参数配置的,属于一个时间单元的传输时机集合的两组子集是预定义的或高层参数配置的。
  50. 根据权利要求45至49中任一项所述的装置,其特征在于,
    若所述装置在所述第一主载波上发送一个控制信道,并且,所述一个控制信道用于调度所述第一主载波上属于所述第一传输时机集合的一个数据信道,并且,所述一个控制信道承载第一回退DCI,并且,所述第一回退DCI中的DAI的值为1,则所述第一码本只用于指示所述一个数据信道的接收状态;和/或,
    若所述装置在所述第二主载波上发送一个控制信道,并且,所述一个控制信道用于调度所述第二主载波上属于所述第二传输时机集合的一个数据信道,并且,所述一个控制信道承载第二回退DCI,并且,所述第二回退DCI中的DAI的值为1,则所述第二码本只用于指示所述一个数据信道的接收状态。
  51. 一种通信系统,其特征在于,包括:
    权利要求27-32中任一项所述的装置和权利要求39-44中任一项所述的装置;或者,
    权利要求33-38中任一项所述的装置和权利要求45-50中任一项所述的装置。
  52. 一种装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器 用于存储程序,当所述程序被所述处理器执行时,使得所述装置执行如权利要求1-26中任一项所述的方法。
  53. 一种计算机可读介质,用于存储计算机程序,其特征在于,所述计算机程序包括用于实现上述权利要求1-26中任一项所述的方法的指令。
  54. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现上述权利要求1-26中任一项所述的方法。
  55. 一种芯片,其特征在于,包括:处理器,用于读取存储器中存储的指令,当所述处理器执行所述指令时,使得所述芯片实现上述权利要求1-26中任一项所述的方法。
PCT/CN2019/117487 2018-11-14 2019-11-12 发送码本的方法和装置以及接收码本的方法和装置 WO2020098639A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811353925.9 2018-11-14
CN201811353925.9A CN111193576B (zh) 2018-11-14 2018-11-14 发送码本的方法和装置以及接收码本的方法和装置

Publications (1)

Publication Number Publication Date
WO2020098639A1 true WO2020098639A1 (zh) 2020-05-22

Family

ID=70707264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117487 WO2020098639A1 (zh) 2018-11-14 2019-11-12 发送码本的方法和装置以及接收码本的方法和装置

Country Status (2)

Country Link
CN (1) CN111193576B (zh)
WO (1) WO2020098639A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070517A (zh) * 2020-08-06 2022-02-18 中国移动通信有限公司研究院 一种harq-ack码本传输方法、装置和存储介质
US20230046759A1 (en) * 2021-08-06 2023-02-16 FG Innovation Company Limited Method and apparatus for retransmission of hybrid automatic repeat request-acknowledgement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150009926A1 (en) * 2012-02-03 2015-01-08 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in wireless communication system
CN107079447A (zh) * 2014-09-27 2017-08-18 Lg电子株式会社 使用载波聚合的通信方法及其设备
CN107710661A (zh) * 2015-06-30 2018-02-16 高通股份有限公司 用于增强型载波聚合的周期信道状态信息报告

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8767797B2 (en) * 2009-10-05 2014-07-01 Qualcomm Incorporated Apparatus and method for providing HARQ feedback in a multi-carrier wireless communication system
WO2016123372A1 (en) * 2015-01-28 2016-08-04 Interdigital Patent Holdings, Inc. Uplink feedback methods for operating with a large number of carriers
WO2016161652A1 (zh) * 2015-04-10 2016-10-13 华为技术有限公司 混合自动重传应答消息的传输方法、用户设备和基站
ES2899945T3 (es) * 2015-08-10 2022-03-15 Huawei Tech Co Ltd Método y aparato de transmisión de información de control de enlace ascendente
CN108023719B (zh) * 2016-11-04 2020-01-21 华为技术有限公司 混合自动重传请求harq码本的生成方法及相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150009926A1 (en) * 2012-02-03 2015-01-08 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in wireless communication system
CN107079447A (zh) * 2014-09-27 2017-08-18 Lg电子株式会社 使用载波聚合的通信方法及其设备
CN107710661A (zh) * 2015-06-30 2018-02-16 高通股份有限公司 用于增强型载波聚合的周期信道状态信息报告

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "On NR Carrier Aggregation", 3GPP DRAFT; R1-1712160, 25 August 2017 (2017-08-25), Prague, Czech Republic, pages 1 - 11, XP051314979 *
HUAWEI ET AL: "Remaining Issues on NR CA and DC", 3GPP DRAFT; R1-1800021, 26 January 2018 (2018-01-26), Vancouver, Canada, pages 1 - 13, XP051384524 *

Also Published As

Publication number Publication date
CN111193576B (zh) 2021-08-13
CN111193576A (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
US11387951B2 (en) Communication method and device for hybrid automatic repeat request
US20230224938A1 (en) Method and device for allocating uplink control channels
US8472368B2 (en) Method and arrangements in a communication system
US12010690B2 (en) Communication method, communications apparatus, and storage medium
EP3902171A1 (en) Method and apparatus for multiplexing uplink control information
WO2021052254A1 (zh) 数据传输方法、装置和系统
CN111527719B (zh) 上行控制信息的传输方法和装置
WO2014019239A1 (en) Method and apparatus
CN110999153B (zh) 数据传输方法和装置
WO2020216314A1 (zh) 通信方法和通信装置
US11902943B2 (en) Communication method and communications apparatus
US20220123906A1 (en) Communication method and communication apparatus
US20220104236A1 (en) Response information transmission method and apparatus
WO2020098639A1 (zh) 发送码本的方法和装置以及接收码本的方法和装置
CN103580823A (zh) 处理上行harq反馈的方法
WO2021092947A1 (zh) 通信方法和通信装置
US12035314B2 (en) Method for multiplexing uplink control information and apparatus
WO2020164631A1 (zh) 发送反馈信息的方法和装置和接收反馈信息的方法和装置
RU2778146C2 (ru) Способ связи и устройство
WO2022084532A1 (en) Method and apparatus for determining processing times for enhanced cross-carrier scheduling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883809

Country of ref document: EP

Kind code of ref document: A1