WO2020098632A1 - 寻呼方法、定位信息发送方法、核心网节点及基站 - Google Patents

寻呼方法、定位信息发送方法、核心网节点及基站 Download PDF

Info

Publication number
WO2020098632A1
WO2020098632A1 PCT/CN2019/117462 CN2019117462W WO2020098632A1 WO 2020098632 A1 WO2020098632 A1 WO 2020098632A1 CN 2019117462 W CN2019117462 W CN 2019117462W WO 2020098632 A1 WO2020098632 A1 WO 2020098632A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal
paging
communication system
information
Prior art date
Application number
PCT/CN2019/117462
Other languages
English (en)
French (fr)
Inventor
孙建成
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to US17/294,369 priority Critical patent/US11917577B2/en
Priority to EP19885770.8A priority patent/EP3883278A4/en
Publication of WO2020098632A1 publication Critical patent/WO2020098632A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18545Arrangements for managing station mobility, i.e. for station registration or localisation
    • H04B7/18547Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18558Arrangements for managing communications, i.e. for setting up, maintaining or releasing a call between stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18563Arrangements for interconnecting multiple systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18578Satellite systems for providing broadband data service to individual earth stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/04User notification, e.g. alerting and paging, for incoming communication, change of service or the like multi-step notification using statistical or historical mobility data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a paging method, a positioning information sending method, a core network node, and a base station.
  • Satellite Internet has the advantages of wide coverage and little impact from natural disasters and physical attacks. It can be deeply integrated with the ground mobile communication network (5G) network to make up for the lack of coverage of the ground mobile network, and forms a complementary network system with complementary advantages, tight integration and three-dimensional layering with the ground network to achieve the global transmission and information transmission. Interaction.
  • 5G ground mobile communication network
  • Satellites in the satellite Internet are divided into geostationary satellites, medium-orbit satellites and low-orbit satellites; the characteristics of low-orbit satellites are that they are closer to the ground and the communication delay with the ground terminal is moderate, and it also has fast movement and road loss Features such as large and limited on-board power.
  • a basic assumption of the traditional mobile communication access network is that the base station in the radio access network (RAN) is fixed, and the UE is mobile. All network designs, from the physical layer parameters to the design of the network logo, are based on the above assumptions.
  • the base station in the RAN is not necessarily stationary, for example, for low-orbit satellites, when the satellite carries a base station, in this case the base station It may be moving at high speed.
  • the base station In addition to considering the user equipment (User Equipment, UE, also called terminal) 's own mobility, with the rapid movement of low-orbit satellites, the coverage of base stations in the RAN also changes rapidly, which proposes new solutions for mobility management. challenge.
  • UE User Equipment
  • the coverage of the cell is fixed, the tracking area (Tracking Area, TA) area is fixed, and the network performs paging management for the UE based on the UE's registration area (TA list).
  • the satellite may be mobile in the satellite Internet communication system. In this case, there is no solution to how to plan the TA and how to page the UE.
  • Embodiments of the present disclosure provide a paging method, a positioning information sending method, a core network node, and a base station, to solve the problem that the terminal paging cannot be realized and the satellite Internet cannot be guaranteed because there is no planning method for a tracking area in the satellite Internet communication system The problem of communication reliability of the communication system.
  • an embodiment of the present disclosure provides a paging method, which is applied to a core network node in a satellite Internet communication system, including:
  • the setting mode determine the base station for paging terminal
  • the setting mode includes one of the following modes:
  • the satellite Internet communication system is divided into one TA;
  • the determining the base station for paging terminal includes:
  • All base stations in the satellite Internet communication system are determined as base stations for paging terminals this time.
  • the determining of the base station for paging the terminal includes:
  • the base station used for paging the terminal this time is determined.
  • the determining of the base station for paging the terminal includes:
  • the location of the terminal determine the base station used for paging the terminal this time.
  • the setting mode is to set at least two fixed TAs
  • a ground cell corresponding to a beam of a base station belonging to a fast-moving medium-low orbit satellite is a fixed cell
  • one fixed TA includes at least one ground Community.
  • the updating method of the fixed TA is: Statically planned location of fixed TA and the location and beam coverage of the base station, when it is determined that the cell under the control of the base station moves to the next fixed TA area, the base station performs reconfiguration of the fixed TA and uses system information The update will broadcast the reconfigured TA information in the broadcast.
  • the determining the base station for paging the terminal includes:
  • the base station used for paging the terminal this time is determined according to the latest TA information and the TA registered by the terminal.
  • the determining the base station for paging the terminal includes:
  • the base station used for paging the terminal this time is determined according to the TA update rule and the TA registered by the terminal.
  • the determining the base station for paging the terminal includes:
  • the base station used for paging the terminal this time is determined according to the TA information and the pre-configured ephemeris.
  • the determining the base station for paging the terminal includes:
  • the base station corresponding to the TA to which the terminal belongs is determined as the base station for paging the terminal this time.
  • An embodiment of the present disclosure also provides a paging method, which is applied to a base station in a satellite Internet communication system, and includes:
  • the setting mode includes one of the following modes:
  • the satellite Internet communication system is divided into one TA;
  • the paging method further includes:
  • the first TA update information is sent to the core network node.
  • the paging method further includes:
  • the second TA update information is sent to the core network node.
  • the paging method further includes:
  • the statically planned location of the fixed TA and the location and beam coverage of the base station when it is determined that the cell managed by the base station moves to the area of the next fixed TA, reconfiguration of the fixed TA is performed, and the reconfiguration is performed through system information update
  • the TA information is broadcast in the broadcast;
  • the base station is a base station belonging to a fast-moving medium-low orbit satellite.
  • An embodiment of the present disclosure also provides a method for transmitting positioning information, which is applied to a base station in a satellite Internet communication system, and includes:
  • the tracking area TA in the satellite Internet communication system is set to divide the satellite Internet communication system into a TA, and the terminal has the positioning capability, when the terminal releases the connection, the terminal's positioning information is sent to the core network node; or
  • the setting method of TA in the satellite Internet communication system is to divide the satellite Internet communication system into a TA, and the terminal does not have the positioning capability
  • the terminal's serving base station, serving cell and time stamp information are sent to the core network node.
  • An embodiment of the present disclosure also provides a core network node in a satellite Internet communication system, including a memory, a processor, and a computer program stored on the memory and executable on the processor; the processor executes the The computer program implements the following steps:
  • the setting mode determine the base station for paging terminal
  • the setting mode includes one of the following modes:
  • the satellite Internet communication system is divided into one TA;
  • the processor when the setting mode is to divide the satellite Internet communication system into one TA, the processor implements the following steps when executing the computer program:
  • All base stations in the satellite Internet communication system are determined as base stations for paging terminals this time.
  • the processor when the setting mode is to divide the satellite Internet communication system into one TA, and the terminal has positioning capability, the processor implements the following steps when executing the computer program:
  • the base station used for paging the terminal this time is determined.
  • the processor executes the computer program to implement the following steps:
  • the location of the terminal determine the base station used for paging the terminal this time.
  • the setting mode is to set at least two fixed TAs
  • a ground cell corresponding to a beam of a base station belonging to a fast-moving medium-low orbit satellite is a fixed cell
  • one fixed TA includes at least one ground Community.
  • the updating method of the fixed TA is Statically planned location of fixed TA and the location and beam coverage of the base station, when it is determined that the cell under the control of the base station moves to the next fixed TA area, the base station performs reconfiguration of the fixed TA and uses system information The update will broadcast the reconfigured TA information in the broadcast.
  • the base station used for paging the terminal this time is determined according to the latest TA information and the TA registered by the terminal.
  • the base station for paging the terminal this time is determined according to the TA update rule and the TA registered by the terminal.
  • the base station used for paging the terminal this time is determined according to the TA information and the pre-configured ephemeris.
  • the processor when the setting mode is to set at least two non-fixed TAs, the processor implements the following steps when executing the computer program:
  • the base station corresponding to the TA to which the terminal belongs is determined as the base station for paging the terminal this time.
  • An embodiment of the present disclosure also provides a base station in a satellite Internet communication system, including a memory, a processor, and a computer program stored on the memory and executable on the processor; the processor executes the computer program The following steps are implemented:
  • the setting mode includes one of the following modes:
  • the satellite Internet communication system is divided into one TA;
  • the processor when the setting mode includes: setting at least two fixed TAs, the processor implements the following steps when executing the computer program:
  • the first TA update information is sent to the core network node.
  • the processor when the setting mode includes: setting at least two fixed TAs, the processor implements the following steps when executing the computer program:
  • the second TA update information is sent to the core network node.
  • the processor when the setting mode includes: setting at least two fixed TAs, the processor implements the following steps when executing the computer program:
  • the statically planned location of the fixed TA and the location and beam coverage of the base station when it is determined that the cell managed by the base station moves to the area of the next fixed TA, reconfiguration of the fixed TA is performed, and the reconfiguration is performed through system information update
  • the TA information is broadcast in the broadcast;
  • the base station is a base station belonging to a fast-moving medium-low orbit satellite.
  • An embodiment of the present disclosure also provides a base station in a satellite Internet communication system, including a memory, a processor, and a computer program stored on the memory and executable on the processor; the processor executes the computer program The following steps are implemented:
  • the tracking area TA in the satellite Internet communication system is set to divide the satellite Internet communication system into a TA, and the terminal has the positioning capability, when the terminal releases the connection, the terminal's positioning information is sent to the core network node; or
  • the setting method of TA in the satellite Internet communication system is to divide the satellite Internet communication system into a TA, and the terminal does not have the positioning capability
  • the terminal's serving base station, serving cell and time stamp information are sent to the core network node.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, which is characterized in that, when the computer program is executed by a processor, the foregoing paging method or the foregoing positioning information transmission method is implemented.
  • An embodiment of the present disclosure also provides a core network node in a satellite Internet communication system, including:
  • the acquisition module is used to acquire the setting method of the tracking area TA in the satellite Internet communication system
  • a determining module configured to determine a base station for paging the terminal according to the setting mode
  • a first sending module configured to send a paging message to the base station
  • the setting mode includes one of the following modes:
  • the satellite Internet communication system is divided into one TA;
  • An embodiment of the present disclosure also provides a base station in a satellite Internet communication system, including:
  • the receiving module is used to receive the paging message sent by the core network node according to the setting mode of the tracking area TA;
  • the setting mode includes one of the following modes:
  • the satellite Internet communication system is divided into one TA;
  • An embodiment of the present disclosure also provides a base station in a satellite Internet communication system, including:
  • the second sending module is used to set the tracking area TA in the satellite Internet communication system to divide the satellite Internet communication system into a TA, and the terminal has positioning capability, and send the terminal's positioning information to the core when the terminal releases the connection Network node; or
  • the terminal is used to set the TA in the satellite Internet communication system to divide the satellite Internet communication system into a TA and the terminal does not have the positioning capability.
  • the terminal releases the connection, the terminal ’s serving base station, serving cell and timestamp information are sent to Core network node.
  • the above solution determines the base station for paging the terminal when terminal paging is required according to the setting method of the TA in the satellite Internet communication system, thereby improving the paging process in the satellite Internet communication system and ensuring the satellite Internet Communication system communication reliability.
  • Figure 1 shows the architecture diagram of the satellite Internet communication system
  • FIG. 2 shows a schematic flowchart of a paging method applied to a core network node according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic flowchart of a paging method applied to a base station according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for transmitting positioning information applied to a base station according to an embodiment of the present disclosure
  • FIG. 5 shows a schematic block diagram of a core network node according to an embodiment of the present disclosure
  • FIG. 6 shows a structural diagram of a core network node of an embodiment of the present disclosure
  • FIG. 9 shows a second schematic block diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 10 shows a second structural diagram of a base station according to an embodiment of the present disclosure.
  • Satellite Internet is a new type of communication network that combines satellite communications with the Internet and other information networks. It is an information network infrastructure that uses high, medium, and low-orbit broadband satellites to provide global real-time and seamless broadband Internet services for various users such as land, ocean, and sky. Satellite Internet, terrestrial 5G network, and terrestrial Internet complement each other to realize that information is at your fingertips and everything is within reach. As shown in Figure 1, it is an architecture diagram of a satellite Internet communication system.
  • Satellite Internet on the basis of 5G and terrestrial Internet, takes advantage of the characteristics of global coverage of satellite access technology, low-cost access, and is less affected by physical attacks and natural disasters. It provides services such as aviation communications, marine communications, and universal services.
  • the ground network has formed a complementary network system with complementary advantages, close integration, and three-dimensional layering to realize the transmission and interaction of information on a global scale.
  • the beam of the satellite will quickly sweep across the ground, so if the satellite carries a base station, these beams that sweep across the ground correspond to the actual physical cell (one or more beams are mapped to a cell), This means that the physical cell will change rapidly on the ground.
  • the TA area will continue to change.
  • paging to the UE in mobile communication is based on the registration area (TA) of the UE.
  • TA registration area
  • embodiments of the present disclosure provide a paging method, a positioning information sending method, a core network node, and a base station.
  • the paging method according to an embodiment of the present disclosure is applied to a core network node in a satellite Internet communication system, including:
  • Step 21 Obtain the setting method of the tracking area TA in the satellite Internet communication system
  • the setting method includes at least one of the following methods:
  • A1 divide the satellite Internet communication system into a TA
  • TA-based paging means that it may need to be performed in the entire TA, that is, the paging terminal is located under all base stations of the entire satellite network.
  • the implementation of paging in this setting mode is relatively simple.
  • fixed TA means that the division of the TA is fixed relative to the ground, that is, the TA at a specific position on the ground is fixed.
  • paging the terminal is paging in the terminal's registration area, and the TA update process will be performed when the terminal moves out of the registration.
  • A3. Set at least two non-fixed TAs
  • the non-fixed TA means that the division of the TA is not fixed relative to the ground, that is, the TA is bound to the base station on the satellite, or the TA is bound to the cell under the base station on the satellite, TA moves as the base station on the satellite moves.
  • the paging terminal is based on the TA where the terminal is located, but the terminal needs to constantly update the TA.
  • Step 22 According to the setting mode, determine a base station for paging the terminal;
  • Step 23 Send a paging message to the base station.
  • the setting method is to divide the satellite Internet communication system into a TA
  • the first implementation manner of step 22 is:
  • All base stations in the satellite Internet communication system are determined as base stations for paging terminals this time.
  • the above-mentioned first implementation method will carry out a large amount of signaling transmission in the satellite Internet communication system, resulting in a large resource overhead for paging.
  • Use the location information of the terminal including the historical location information of the terminal and the current location of the terminal to determine the base station that pages the terminal.
  • step 22 when the terminal requiring paging has positioning capability, the second implementation manner of step 22 is:
  • the base station used for paging the terminal this time is determined.
  • the base station connected before the terminal releases the connection will send the positioning information of the terminal to the core network node, and the core network node according to the terminal positioning information reported by the base station And the movement trajectory of the satellite determines which satellite is currently serving the relevant area, and the base station currently serving the terminal at the location where the terminal was last connected is used as the base station for paging the terminal this time; in this way, When the core network node fails to page to the terminal, all the base stations in the satellite Internet communication system are newly determined as the base station for paging the terminal, and the terminal is paged again.
  • the base station when the terminal is released from the connected state back to the idle state (for example: registration or end of service), the base station sends the positioning information of the terminal acquired in the connected state to the core network; when the core network pages the terminal, according to the stored The positioning information of the terminal and the movement trajectory of the satellite determine which satellite is currently serving the relevant area, and then page the terminal only at the base station on the satellite where the terminal was last connected. If it fails, the paging range is further extended to all base stations of the entire TA.
  • step 22 when the terminal requiring paging does not have positioning capability, the third implementation manner of step 22 is:
  • the location of the terminal determine the base station used for paging the terminal this time.
  • the core network node determines the location of the terminal to be paged according to the relevant information reported by the base station, and determines the base station that serves the area containing this location This is the base station used for paging the terminal; in this way, when the core network node fails to page to the terminal, then all the base stations in the satellite Internet communication system are again determined as the base station for this time. Paging the base station of the terminal and re-paging the terminal.
  • the terminal's current serving base station, serving cell, and time stamp information and other related information are sent to the core network through signaling.
  • the core network judges which satellite is currently serving in the relevant area based on the stored terminal historical information (serving base station, serving cell, time stamp, etc.) and the movement trajectory of the satellite, and then only enters the terminal The base station on the satellite in the idle position pages the terminal. If it fails, the paging range is further extended to all base stations of the entire TA.
  • the setting method is to set at least two fixed TA
  • a transparently transmitted satellite that is, the satellite only forwards radio signals from the ground base station, the base station is still on the ground
  • the satellite is actually not related to the TA
  • the TA to which the satellite cell belongs is entirely determined by the ground service base station.
  • each of the fixed TAs includes at least one ground cell.
  • the satellite In the case where the ground cell is a fixed cell, the satellite is in a certain orbit, the cell on the ground is unchanged, and several cells (hundreds or even thousands of cells) are statically divided in the entire satellite orbit, the same satellite should be in Different locations produce different cells. Therefore, the planning of the terrestrial TA can also be planned according to the statically divided cells, and several cells are divided into one TA. Therefore, the satellite cell needs to be reconfigured at intervals during the satellite movement.
  • 500 satellite cells are deployed around the world, and their locations are fixed, similar to cells in traditional communication networks.
  • a satellite (for example, satellite A) adjusts the antenna angle and some parameters for a period of time so that the cell it projects on the ground is fixed, for example, satellite A always projects cell 1 for a period of time.
  • satellite A When satellite A is far from the location of this cell and cannot continue to serve it, it will be replaced by the next satellite (for example, satellite B), and satellite A continues to serve the ground cell in front (for example, cell 2).
  • the TA planning can be consistent with the traditional mobile communication network.
  • a static ground area may cover multiple cells.
  • the paging terminal can reuse the existing 4G and 5G-based paging methods based on the location of the terminal.
  • the way to update the fixed TA is: according to the statically planned position of the fixed TA and the position of the base station and beam coverage, When it is determined that the cell under the control of the base station moves to the area of the next fixed TA, the base station performs reconfiguration of the fixed TA, and broadcasts the reconfigured TA information through broadcasting through system information update.
  • the ground cell When the ground cell is a mobile cell, one satellite supports one or several cells. During the movement of the satellite, the beam will quickly sweep across the ground, and the ground cells will also move quickly. In this case, according to the position of the statically planned TA, the satellite combines its own position and beam coverage to determine whether a cell under its jurisdiction moves to the next TA area, and the base station on the satellite makes corresponding reconfigurations. And broadcast the new TA information in the broadcast through the system information update.
  • step 22 is:
  • the base station used for paging the terminal this time is determined according to the latest TA information and the TA registered by the terminal.
  • the above-mentioned first base station refers to a base station where TA update occurs, and there may be one or more base stations. That is, when the TA served by a certain base station changes, the core network node can be notified of the configuration update process through the NG interface (that is, the interface between the base station and the core network node);
  • the base station when the interface is initially established, the base station only reports one or more TAs where the cell under its jurisdiction is located to the core network node, that is, the list of TAs it actually serves. For example, the five cells of Satellite A are initially in TA1. Within the area, as the satellite cell moves on the ground, cell 1 enters TA2, and cells 2 to 5 are still in TA1. At this time, the base station needs to update the supported TA to TA1 + TA2 to the core network node; after a period of time, 5 All cells have moved to TA2. At this time, the base station needs to update the supported TA to the CN again.
  • the core network node accurately grasps the TA conditions supported by each base station at each moment. According to the TA or TA list registered by the terminal, the corresponding base station is accurately found for paging when paging. It should be noted that, in this case, the base stations on all satellites must continuously update the TA, which is detrimental to signaling overhead and power saving.
  • step 22 is:
  • the base station used for paging the terminal this time is determined according to the TA update rule and the TA registered by the terminal.
  • the second base station refers to a base station where TA update occurs within a preset time, and the base station may be one or more.
  • the base station where TA update occurs does not report TA update information at all times, but only updates the supported TA to the core network node within a period of time;
  • the base station when the interface is initially established, the base station only reports one or more TAs where the cell under its jurisdiction is located to the core network node, that is, the list of TAs that it really serves; ), When the supported TA changes, report to the core network node. For example, the five cells of Satellite A are initially in the area of TA1. Within two days, as the satellite cell moves on the ground, On the first day, cell 1 enters TA2, and cells 2 to 5 are still in TA1. At this time, the base station needs to update the supported TA to TA1 + TA2; the next day, all 5 cells move to TA2. The base station needs to update the supported TA to the core network node again. On the third day, when the TA supported by the base station changes, it will no longer update the supported TA to the core network node.
  • the core network records the law of TA update of the base stations on each satellite to infer which satellite base station or base stations provide service in a certain TA area at a certain time.
  • the base station on the relevant satellite can send the paging message.
  • step 22 is:
  • the base station used for paging the terminal this time is determined according to the TA information and the pre-configured ephemeris.
  • the base station does not update the supported TA to the core network.
  • the base station can tell all core TAs on the entire track as a list of supported TAs to the core network node.
  • the core network node can clearly know the running trajectory of each satellite, the exact coverage of each satellite at each time point, and the exact range of each TA according to the pre-configured ephemeris.
  • the core network node needs to page the terminal, it is only necessary to determine which satellite base stations serve the TA where the terminal is located, and accurately send the paging message to the corresponding satellite base station.
  • the setting method is to set at least two non-fixed TAs
  • the non-fixed TA means that the division of the TA is not fixed relative to the ground, that is, the TA is bound to the base station on the satellite, and the TA moves with the movement of the base station on the satellite.
  • the specific implementation of step 22 is: determining the base station corresponding to the TA to which the terminal belongs as the base station for paging the terminal this time.
  • satellite A supports cells 1 to 5, corresponding to TA1. No matter where the satellite moves, it supports the cell and TA1. In this way, the base station on the satellite does not need to adjust the antenna and parameters, and does not need to reconfigure the cell. It still paging the terminal based on the TA area where the terminal is located. However, with the movement of satellites and changes in TA, stationary terminals still need frequent TA updates, which increases the signaling load of the system to a certain extent.
  • the base station for paging the terminal is determined when the terminal paging is needed, so as to improve the search in the satellite Internet communication system
  • the paging process can ensure the communication reliability of the satellite Internet communication system.
  • an embodiment of the present disclosure also provides a paging method, which is applied to a base station in a satellite Internet communication system, and includes:
  • Step 31 Receive a paging message sent by the core network node according to the setting mode of the tracking area TA;
  • the setting mode includes one of the following modes:
  • the satellite Internet communication system is divided into one TA;
  • the paging method further includes:
  • the first TA update information is sent to the core network node.
  • the paging method further includes:
  • the second TA update information is sent to the core network node.
  • the paging method further includes:
  • the statically planned location of the fixed TA and the location and beam coverage of the base station when it is determined that the cell managed by the base station moves to the area of the next fixed TA, reconfiguration of the fixed TA is performed, and the reconfiguration is performed through system information update
  • the TA information is broadcast in the broadcast;
  • the base station is a base station belonging to a fast-moving medium-low orbit satellite.
  • an embodiment of the present disclosure also provides a method for sending positioning information, which is applied to a base station in a satellite Internet communication system, and includes:
  • Step 41 when the tracking area TA in the satellite Internet communication system is set to divide the satellite Internet communication system into a TA, and the terminal has positioning capability, when the terminal releases the connection, the terminal's positioning information is sent to the core network node; or
  • the setting method of TA in the satellite Internet communication system is to divide the satellite Internet communication system into a TA, and the terminal does not have the positioning capability
  • the terminal's serving base station, serving cell and time stamp information are sent to the core network node.
  • an embodiment of the present disclosure provides a core network node 50 in a satellite Internet communication system, including:
  • the obtaining module 51 is used to obtain the setting method of the tracking area TA in the satellite Internet communication system;
  • the determining module 52 is configured to determine the base station for paging the terminal according to the setting mode
  • the first sending module 53 is used to send a paging message to the base station
  • the setting mode includes one of the following modes:
  • the satellite Internet communication system is divided into one TA;
  • the determination module 52 is used to:
  • All base stations in the satellite Internet communication system are determined as base stations for paging terminals this time.
  • the determination module 52 includes:
  • the first obtaining unit is used to obtain positioning information and satellite movement trajectory when the terminal releases the connection;
  • the first determining unit is used to determine the base station for paging the terminal this time based on the positioning information and the movement trajectory of the satellite.
  • the determination module 52 includes:
  • a second obtaining unit configured to obtain the serving base station, serving cell and time stamp information when the terminal releases the connection;
  • a second determining unit configured to determine the location of the terminal according to the serving base station, serving cell, and time stamp information
  • the third determining unit is used to determine the base station for paging the terminal this time according to the location of the terminal.
  • the setting mode is to set at least two fixed TAs
  • a ground cell corresponding to a beam of a base station belonging to a fast-moving medium-low orbit satellite is a fixed cell
  • one fixed TA includes at least one ground Community.
  • the updating method of the fixed TA is: Statically planned location of fixed TA and the location and beam coverage of the base station, when it is determined that the cell under the control of the base station moves to the next fixed TA area, the base station performs reconfiguration of the fixed TA and uses system information The update will broadcast the reconfigured TA information in the broadcast.
  • the determination module 52 includes:
  • a third acquiring unit configured to acquire first TA update information sent by the first base station where TA update occurs
  • a fourth determining unit configured to determine the latest TA information of the current satellite Internet communication system according to the first TA update information
  • the fifth determining unit is used to determine the base station for paging the terminal this time according to the latest TA information and the TA registered by the terminal when the terminal needs to be paged.
  • the determination module 52 includes:
  • a fourth obtaining unit configured to obtain second TA update information sent by a second base station that has undergone TA update within a preset time
  • a sixth determining unit configured to determine the TA update rule of the base station according to the second TA update information
  • the seventh determining unit is used to determine the base station for paging the terminal this time according to the TA update rule and the TA registered by the terminal when the terminal needs to be paged.
  • the determination module 52 includes:
  • the fifth acquisition unit is used to acquire TA information supported on the entire satellite orbit
  • the eighth determining unit is used to determine the base station for paging the terminal this time according to the TA information and the pre-configured ephemeris when paging the terminal.
  • the determining module 52 is used to:
  • the base station corresponding to the TA to which the terminal belongs is determined as the base station for paging the terminal this time.
  • the embodiment of the core network node is a core network node corresponding one-to-one with the above method embodiment. All the implementation methods in the above method embodiment are applicable to the embodiment of the core network node, and the same Technical effect.
  • an embodiment of the present disclosure further provides a core network node 60, including a processor 61, a transceiver 62, a memory 63, and a computer stored on the memory 63 and capable of running on the processor 61 Program; wherein, the transceiver 62 is connected to the processor 61 and the memory 63 through the bus interface, wherein the processor 61 is used to read the program in the memory, perform the following process:
  • the setting mode includes one of the following modes:
  • the satellite Internet communication system is divided into one TA;
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 61 and various circuits of the memory represented by the memory 63 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 62 may be a plurality of elements, including a transmitter and a transceiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 61 is responsible for managing the bus architecture and general processing, and the memory 63 can store data used by the processor 61 when performing operations.
  • the processor when the setting mode is to divide the satellite Internet communication system into one TA, the processor implements the following steps when executing the computer program:
  • All base stations in the satellite Internet communication system are determined as base stations for paging terminals this time.
  • the processor when the setting mode is to divide the satellite Internet communication system into one TA, and the terminal has positioning capability, the processor implements the following steps when executing the computer program:
  • the base station used for paging the terminal this time is determined.
  • the processor when the setting mode is to divide the satellite Internet communication system into a TA and the terminal does not have positioning capability, the processor implements the following steps when executing the computer program:
  • the location of the terminal determine the base station used for paging the terminal this time.
  • the setting mode is to set at least two fixed TAs
  • a ground cell corresponding to a beam of a base station belonging to a fast-moving medium-low orbit satellite is a fixed cell
  • one fixed TA includes at least one ground Community.
  • the updating method of the fixed TA is: Statically planned location of fixed TA and the location and beam coverage of the base station, when it is determined that the cell under the control of the base station moves to the next fixed TA area, the base station performs reconfiguration of the fixed TA and uses system information The update will broadcast the reconfigured TA information in the broadcast.
  • the base station used for paging the terminal this time is determined according to the latest TA information and the TA registered by the terminal.
  • the base station used for paging the terminal this time is determined according to the TA update rule and the TA registered by the terminal.
  • the base station used for paging the terminal this time is determined according to the TA information and the pre-configured ephemeris.
  • the processor when the setting mode is to set at least two non-fixed TAs, the processor implements the following steps when executing the computer program:
  • the base station corresponding to the TA to which the terminal belongs is determined as the base station for paging the terminal this time.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, wherein, when the computer program is executed by a processor, the steps of the paging method applied to the core network node are implemented.
  • an embodiment of the present disclosure provides a base station 70 in a satellite Internet communication system, including:
  • the receiving module 71 is used to receive the paging message sent by the core network node according to the setting mode of the tracking area TA;
  • the setting mode includes one of the following modes:
  • the satellite Internet communication system is divided into one TA;
  • the base station 70 further includes:
  • the first update information sending module is configured to send the first TA update information to the core network node if the TA information is updated.
  • the base station 70 further includes:
  • the second update information sending module is configured to send the second TA update information to the core network node if the TA information is updated within a preset time.
  • the base station 70 further includes:
  • the reconfiguration module is used to perform reconfiguration of the fixed TA when it is determined that the cell managed by the base station moves to the area of the next fixed TA according to the statically planned position of the fixed TA and the position and beam coverage of the base station
  • the system information update broadcasts the reconfigured TA information in the broadcast;
  • the base station is a base station belonging to a fast-moving medium-low orbit satellite.
  • the base station embodiment is a base station that corresponds one-to-one with the above method embodiment. All implementations in the above paging method embodiment are applicable to the base station embodiment, and the same technical effect can be achieved.
  • an embodiment of the present disclosure also provides a base station 80, including a processor 81, a transceiver 82, a memory 83, and a computer program stored on the memory 83 and executable on the processor 81;
  • the transceiver 82 is connected to the processor 81 and the memory 83 through a bus interface, wherein the processor 81 is used to read a program in the memory and perform the following process:
  • the setting mode includes one of the following modes:
  • the satellite Internet communication system is divided into one TA;
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 81 and various circuits of the memory represented by the memory 83 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 82 may be a plurality of elements, including a transmitter and a transceiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 81 is responsible for managing the bus architecture and general processing, and the memory 83 may store data used by the processor 81 when performing operations.
  • the processor when the setting mode includes: setting at least two fixed TAs, the processor implements the following steps when executing the computer program:
  • the first TA update information is sent to the core network node.
  • the processor when the setting mode includes: setting at least two fixed TAs, the processor implements the following steps when executing the computer program:
  • the second TA update information is sent to the core network node.
  • the processor when the setting mode includes: setting at least two fixed TAs, the processor implements the following steps when executing the computer program:
  • the statically planned location of the fixed TA and the location and beam coverage of the base station when it is determined that the cell managed by the base station moves to the area of the next fixed TA, reconfiguration of the fixed TA is performed, and the reconfiguration is performed through system information update
  • the TA information is broadcast in the broadcast;
  • the base station is a base station belonging to a fast-moving medium-low orbit satellite.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, wherein, when the computer program is executed by a processor, the steps of the paging method applied to the base station are implemented.
  • an embodiment of the present disclosure provides a base station 90 in a satellite Internet communication system, including:
  • the second sending module 91 is used to set the tracking area TA in the satellite Internet communication system to divide the satellite Internet communication system into a TA, and the terminal has positioning capability, and send the terminal's positioning information to the terminal when the terminal releases the connection Core network node; or
  • the terminal is used to set the TA in the satellite Internet communication system to divide the satellite Internet communication system into a TA and the terminal does not have the positioning capability.
  • the terminal releases the connection, the terminal ’s serving base station, serving cell and timestamp information are sent to Core network node.
  • the base station embodiment is a base station that corresponds one-to-one with the above method embodiment. All the implementation methods in the above positioning information sending method embodiment are applicable to the base station embodiment, and the same technical effect can also be achieved.
  • an embodiment of the present disclosure further provides a base station 100, including a processor 101, a transceiver 102, a memory 103, and a computer program stored on the memory 103 and executable on the processor 101;
  • the transceiver 102 is connected to the processor 101 and the memory 103 through a bus interface, wherein the processor 101 is used to read a program in the memory and perform the following process:
  • the tracking area TA in the satellite Internet communication system is set to divide the satellite Internet communication system into a TA, and the terminal has the positioning capability, when the terminal releases the connection, the terminal's positioning information is sent to the core network node; or
  • the setting method of TA in the satellite Internet communication system is to divide the satellite Internet communication system into a TA and the terminal does not have the positioning capability
  • the transceiver's serving base station, serving cell and time stamp are sent through the transceiver 102 Information to the core network node.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 101 and various circuits of the memory represented by the memory 103 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 102 may be a plurality of elements, including a transmitter and a transceiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 101 is responsible for managing the bus architecture and general processing, and the memory 103 can store data used by the processor 101 when performing operations.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, wherein, when the computer program is executed by a processor, the steps of a positioning information transmission method applied to a base station are implemented.
  • the base station mentioned in the embodiment of the present disclosure may be a Global Mobile System (Global System of Mobile Communication, GSM) or a Base Station (Base Transceiver Station, BTS) in Code Division Multiple Access (CDMA), or It can be a base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point , Or a base station in a future 5G network, etc., which is not limited herein, where the base station may be a base station deployed on the ground or a base station located on a satellite (also called a satellite base station).
  • GSM Global System of Mobile Communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • NodeB, NB Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • Evolutional Node B, eNB or eNodeB Evolutional Node B, eNB

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种寻呼方法、定位信息发送方法、核心网节点及基站,涉及通信技术领域。该寻呼方法,应用于卫星互联网通信系统中的核心网节点,包括:获取卫星互联网通信系统中跟踪区域TA的设置方式;根据所述设置方式,确定用于进行寻呼终端的基站;发送寻呼消息给所述基站;其中,所述设置方式包括以下方式中的一项:将卫星互联网通信系统划分为一个TA;设置至少两个固定TA;设置至少两个非固定TA。

Description

寻呼方法、定位信息发送方法、核心网节点及基站
相关申请的交叉引用
本申请主张在2018年11月14日在中国提交的中国专利申请号No.201811352020.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,特别涉及一种寻呼方法、定位信息发送方法、核心网节点及基站。
背景技术
卫星互联网有着覆盖广、受自然灾害和物理攻击的影响小等优点。它与地面移动通信网(5G)网络可以深度融合,弥补地面移动网络的覆盖不足,与地面网络形成了优势互补、紧密融合、立体分层的融合网络系统,实现信息在全球范围内的传输和交互。
卫星互联网中的卫星分为同步卫星、中轨卫星和低轨卫星;低轨卫星距离的特点是距离地面较近,和地面终端间的通信时延适中,同时它还有移动速度快、路损大、星上功率受限等特点。
传统的移动通信接入网络的一个基本假设就是无线接入网(RAN)中的基站是固定的,UE是移动的。所有的网络设计,从物理层参数到网络标识的设计都基于上述假设。
卫星互联网的接入网与传统移动通信的接入网的一个非常重要的区别就是RAN中的基站不一定是静止的,比如,对于低轨卫星,当卫星上携带基站时,此种情况下基站可能是高速移动的。除了考虑用户设备(User Equipment,UE,也称终端)自身的移动性,随着低轨卫星的快速移动,RAN中的基站的覆盖也快速的发生变化,这就给移动性管理提出了新的挑战。
在传统的移动通信系统中,小区的覆盖是固定的,跟踪区域(Tracking Area,TA)的区域是固定的,网络是基于UE的注册区(TA list)对UE进行寻呼管理的。但在卫星互联网通信系统中卫星可能是移动的,在这种情况下, 如何规划TA以及如何对UE寻呼还没有方案解决。
发明内容
本公开实施例提供一种寻呼方法、定位信息发送方法、核心网节点及基站,以解决因在卫星互联网通信系统中没有规定跟踪区的规划方式,造成无法实现终端寻呼,无法保证卫星互联网通信系统通信可靠性的问题。
为了解决上述技术问题,本公开实施例提供一种寻呼方法,应用于卫星互联网通信系统中的核心网节点,包括:
获取卫星互联网通信系统中跟踪区域TA的设置方式;
根据所述设置方式,确定用于进行寻呼终端的基站;
发送寻呼消息给所述基站;
其中,所述设置方式包括以下方式中的一项:
将卫星互联网通信系统划分为一个TA;
设置至少两个固定TA;
设置至少两个非固定TA。
可选地,当所述设置方式为将卫星互联网通信系统划分为一个TA时,所述确定用于进行寻呼终端的基站,包括:
将卫星互联网通信系统中的所有基站,确定为本次用于进行寻呼终端的基站。
可选地,当所述设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,所述确定用于进行寻呼终端的基站,包括:
获取终端释放连接时的定位信息和卫星的移动轨迹;
根据所述定位信息和所述卫星的移动轨迹,确定本次用于进行寻呼终端的基站。
可选地,当所述设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,所述确定用于进行寻呼终端的基站,包括:
获取终端释放连接时的服务基站、服务小区和时间戳信息;
根据所述服务基站、服务小区和时间戳信息,确定所述终端的位置;
根据所述终端的位置,确定本次用于进行寻呼终端的基站。
可选地,当所述设置方式为设置至少两个固定TA时,当属于快速移动的中低轨道卫星的基站的波束对应的地面小区为固定小区时,一个所述固定TA中包含至少一个地面小区。
可选地,当所述设置方式为设置至少两个固定TA时,当属于快速移动的中低轨道卫星的基站的波束对应的地面小区为移动小区时,所述固定TA的更新方式为:根据静态规划的固定TA的位置以及所述基站的位置和波束覆盖情况,当确定所述基站所辖小区移动到下一个固定TA的区域时,所述基站进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播报。
进一步地,所述确定用于进行寻呼终端的基站,包括:
获取发生TA更新的第一基站发送的第一TA更新信息;
根据所述第一TA更新信息,确定当前卫星互联网通信系统的最新的TA信息;
在需要寻呼终端时,根据所述最新的TA信息和终端所注册的TA,确定本次用于进行寻呼终端的基站。
进一步地,所述确定用于进行寻呼终端的基站,包括:
获取在预设时间内发生TA更新的第二基站发送的第二TA更新信息;
根据所述第二TA更新信息,确定基站的TA更新规律;
在需要寻呼终端时,根据所述TA更新规律以及终端所注册的TA,确定本次用于进行寻呼终端的基站。
进一步地,所述确定用于进行寻呼终端的基站,包括:
获取整个卫星轨道上所支持的TA信息;
在需要寻呼终端时,根据所述TA信息和预配置的星历表,确定本次用于进行寻呼终端的基站。
可选地,当所述设置方式为设置至少两个非固定TA时,所述确定用于进行寻呼终端的基站,包括:
将终端所属的TA对应的基站,确定为本次用于进行寻呼终端的基站。
本公开实施例还提供一种寻呼方法,应用于卫星互联网通信系统中的基站,包括:
接收核心网节点根据跟踪区域TA的设置方式发送的寻呼消息;
其中,所述设置方式包括以下方式中的一项:
将卫星互联网通信系统划分为一个TA;
设置至少两个固定TA;
设置至少两个非固定TA。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述寻呼方法,还包括:
若TA信息发生更新,则发送第一TA更新信息给所述核心网节点。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述寻呼方法,还包括:
在预设时间内,若TA信息发生更新,则发送第二TA更新信息给所述核心网节点。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述寻呼方法,还包括:
根据静态规划的固定TA的位置以及基站的位置和波束覆盖情况,当确定所述基站所辖小区移动到下一个固定TA的区域时,进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播报;
其中,所述基站为属于快速移动的中低轨道卫星的基站。
本公开实施例还提供一种定位信息发送方法,应用于卫星互联网通信系统中的基站,包括:
当卫星互联网通信系统中跟踪区域TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,在终端释放连接时,发送终端的定位信息给核心网节点;或者
当卫星互联网通信系统中TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,在终端释放连接时,发送终端的服务基站、服务小区和时间戳信息给核心网节点。
本公开实施例还提供一种卫星互联网通信系统中的核心网节点,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述计算机程序时实现以下步骤:
获取卫星互联网通信系统中跟踪区域TA的设置方式;
根据所述设置方式,确定用于进行寻呼终端的基站;
发送寻呼消息给所述基站;
其中,所述设置方式包括以下方式中的一项:
将卫星互联网通信系统划分为一个TA;
设置至少两个固定TA;
设置至少两个非固定TA。
可选地,当所述设置方式为将卫星互联网通信系统划分为一个TA时,所述处理器执行所述计算机程序时实现以下步骤:
将卫星互联网通信系统中的所有基站,确定为本次用于进行寻呼终端的基站。
可选地,当所述设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,所述处理器执行所述计算机程序时实现以下步骤:
获取终端释放连接时的定位信息和卫星的移动轨迹;
根据所述定位信息和所述卫星的移动轨迹,确定本次用于进行寻呼终端的基站。
可选地,当所述设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,所述处理器执行所述计算机程序时实现以下步骤:
获取终端释放连接时的服务基站、服务小区和时间戳信息;
根据所述服务基站、服务小区和时间戳信息,确定所述终端的位置;
根据所述终端的位置,确定本次用于进行寻呼终端的基站。
可选地,当所述设置方式为设置至少两个固定TA时,当属于快速移动的中低轨道卫星的基站的波束对应的地面小区为固定小区时,一个所述固定TA中包含至少一个地面小区。
可选地,当所述设置方式为设置至少两个固定TA时,当属于快速移动的中低轨道卫星的基站的波束对应的地面小区为移动小区时,所述固定TA的更新方式为:根据静态规划的固定TA的位置以及所述基站的位置和波束覆盖情况,当确定所述基站所辖小区移动到下一个固定TA的区域时,所述基站进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播 报。
进一步地,所述处理器执行所述计算机程序时实现以下步骤:
获取发生TA更新的第一基站发送的第一TA更新信息;
根据所述第一TA更新信息,确定当前卫星互联网通信系统的最新的TA信息;
在需要寻呼终端时,根据所述最新的TA信息和终端所注册的TA,确定本次用于进行寻呼终端的基站。
进一步地,所述处理器执行所述计算机程序时实现以下步骤:
获取在预设时间内发生TA更新的第二基站发送的第二TA更新信息;
根据所述第二TA更新信息,确定基站的TA更新规律;
在需要寻呼终端时,根据所述TA更新规律以及终端所注册的TA,确定本次用于进行寻呼终端的基站。
进一步地,所述处理器执行所述计算机程序时实现以下步骤:
获取整个卫星轨道上所支持的TA信息;
在需要寻呼终端时,根据所述TA信息和预配置的星历表,确定本次用于进行寻呼终端的基站。
可选地,当所述设置方式为设置至少两个非固定TA时,所述处理器执行所述计算机程序时实现以下步骤:
将终端所属的TA对应的基站,确定为本次用于进行寻呼终端的基站。
本公开实施例还提供一种卫星互联网通信系统中的基站,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述计算机程序时实现以下步骤:
接收核心网节点根据跟踪区域TA的设置方式发送的寻呼消息;
其中,所述设置方式包括以下方式中的一项:
将卫星互联网通信系统划分为一个TA;
设置至少两个固定TA;
设置至少两个非固定TA。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述处理器执行所述计算机程序时实现以下步骤:
若TA信息发生更新,则发送第一TA更新信息给所述核心网节点。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述处理器执行所述计算机程序时实现以下步骤:
在预设时间内,若TA信息发生更新,则发送第二TA更新信息给所述核心网节点。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述处理器执行所述计算机程序时实现以下步骤:
根据静态规划的固定TA的位置以及基站的位置和波束覆盖情况,当确定所述基站所辖小区移动到下一个固定TA的区域时,进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播报;
其中,所述基站为属于快速移动的中低轨道卫星的基站。
本公开实施例还提供一种卫星互联网通信系统中的基站,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述计算机程序时实现以下步骤:
当卫星互联网通信系统中跟踪区域TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,在终端释放连接时,发送终端的定位信息给核心网节点;或者
当卫星互联网通信系统中TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,在终端释放连接时,发送终端的服务基站、服务小区和时间戳信息给核心网节点。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现上述的寻呼方法或上述的定位信息发送方法。
本公开实施例还提供一种卫星互联网通信系统中的核心网节点,包括:
获取模块,用于获取卫星互联网通信系统中跟踪区域TA的设置方式;
确定模块,用于根据所述设置方式,确定用于进行寻呼终端的基站;
第一发送模块,用于发送寻呼消息给所述基站;
其中,所述设置方式包括以下方式中的一项:
将卫星互联网通信系统划分为一个TA;
设置至少两个固定TA;
设置至少两个非固定TA。
本公开实施例还提供一种卫星互联网通信系统中的基站,包括:
接收模块,用于接收核心网节点根据跟踪区域TA的设置方式发送的寻呼消息;
其中,所述设置方式包括以下方式中的一项:
将卫星互联网通信系统划分为一个TA;
设置至少两个固定TA;
设置至少两个非固定TA。
本公开实施例还提供一种卫星互联网通信系统中的基站,包括:
第二发送模块,用于当卫星互联网通信系统中跟踪区域TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,在终端释放连接时,发送终端的定位信息给核心网节点;或者
用于当卫星互联网通信系统中TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,在终端释放连接时,发送终端的服务基站、服务小区和时间戳信息给核心网节点。
本公开的有益效果是:
上述方案,根据卫星互联网通信系统中TA的设置方式,确定在需要进行终端寻呼时,用于进行寻呼终端的基站,以此完善了卫星互联网通信系统中的寻呼流程,可以保证卫星互联网通信系统通信可靠性。
附图说明
图1表示卫星互联网通信系统架构图;
图2表示本公开实施例的应用于核心网节点的寻呼方法的流程示意图;
图3表示本公开实施例的应用于基站的寻呼方法的流程示意图;
图4表示本公开实施例的应用于基站的定位信息发送方法的流程示意图;
图5表示本公开实施例的核心网节点的模块示意图;
图6表示本公开实施例的核心网节点的结构图;
图7表示本公开实施例的基站的模块示意图之一;
图8表示本公开实施例的基站的结构图之一;
图9表示本公开实施例的基站的模块示意图之二;
图10表示本公开实施例的基站的结构图之二。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本公开进行详细描述。
下面先对本公开中提到的一些概念进行具体说明如下。
卫星互联网是卫星通信与互联网等信息网络结合的新型通信网,是利用高中低轨宽带卫星为陆地、海洋和天空等各类用户提供全球实时、无缝的宽带互联网服务的信息网络基础设施。卫星互联网与地面5G网络、地面互联网相互补充共同实现了信息随心至、万物触手可及。如图1所示,为卫星互联网通信系统的架构图。
卫星互联网在5G和地面互联网的基础上,发挥卫星接入技术全球覆盖、低成本接入、受物理攻击和自然灾害影响较小的特点,提供了航空通信、海洋通信和普遍服务等业务,与地面网络形成了优势互补、紧密融合、立体分层的融合网络系统,实现信息在全球范围内的传输和交互。
以我国自主可控的卫星互联网新技术为牵引,制定具有自主知识产权的标准体系,从而指导卫星互联网空间段、地面段、应用段的系统研制、接口设计、终端研发、信息安全等工作,在满足业务需求的基础上具备较强的先进性、国际性以及通用性,推动新技术产品、新应用场景的创新与产品研发产业化。
在我国卫星互联网建设过程中,天地深度融合是系统的核心目标,天地融合的作用将体现在“优势互补、业务透明、网络通用、技术借鉴、产业协同”五个方面。
在卫星的高速移动的情况下,卫星的波束会快速的扫过地面,因此如果卫星携带基站的话,这些扫过地面的波束就对应实际的物理小区(一个或多个波束映射到一个小区),这就意味着物理小区会在地表快速的发生变化。
如果TA是和卫星上的基站绑定,或者TA与卫星上的基站下的小区绑定, 那么从地面来看,TA区也会不停的变化。
目前移动通信性中对UE的寻呼是基于UE的注册区(TA list)进行寻呼的。在卫星互联网通信系统中如何TA区如何规划,如何能更有效地支持对UE的寻呼尚没有明确方案。
针对上述问题,本公开实施例提供一种寻呼方法、定位信息发送方法、核心网节点及基站。
具体地,如图2所示,本公开一实施例的寻呼方法,应用于卫星互联网通信系统中的核心网节点,包括:
步骤21,获取卫星互联网通信系统中跟踪区域TA的设置方式;
需要说明的是,该设置方式包括以下方式中的至少一项:
A1、将卫星互联网通信系统划分为一个TA;
需要说明的是,整个卫星互联网通信系统只有一个TA,实际弱化了TA的概念。基于TA的寻呼意味着可能需要在整个TA内进行,也就是在整张卫星网络的所有基站下寻呼终端,此种设置方式的寻呼实现比较简单。
A2、设置至少两个固定TA;
需要说明的是固定TA指的是TA的划分相对于地面来说是固定的,即在地面的特定位置上的TA是固定的。
对于此种方式下的TA,对终端的寻呼,是在终端的注册区内进行寻呼,当终端移动到注册去之外会进行TA更新的过程。
A3、设置至少两个非固定TA;
需要说明的是,非固定TA指的是TA的划分相对于地面来说是非固定的,即TA是与卫星上的基站绑定的,或TA是与卫星上的基站下的小区绑定的,TA随着卫星上的基站的移动而移动。
此种设置方式下,寻呼终端是基于终端所处的TA,但需要终端不停的进行TA更新。
步骤22,根据所述设置方式,确定用于进行寻呼终端的基站;
步骤23,发送寻呼消息给所述基站。
下面分别在不同的设置方式下,对如何确定用于进行寻呼终端的基站的具体方式进行详细说明如下。
一、设置方式为将卫星互联网通信系统划分为一个TA
可选地,在此种方式下,步骤22的第一种实现方式为:
将卫星互联网通信系统中的所有基站,确定为本次用于进行寻呼终端的基站。
需要说明的是,此种方式下,每次需要进行寻呼终端时,都需要在卫星互联网通信系统中的所有基站下进行寻呼。
需要说明的是,上述的第一种实现方式,会在卫星互联网通信系统进行大量信令的传输,造成寻呼的资源开销较大,为了避免此种情况,本公开实施例中,可选的,采用终端的位置信息(包括终端的历史位置信息、终端的现在可能处于的位置)进行寻呼终端的基站的确定。
可选地,当需要寻呼的终端具有定位能力时,步骤22的第二种实现方式为:
获取终端释放连接时的定位信息和卫星的移动轨迹;
根据所述定位信息和所述卫星的移动轨迹,确定本次用于进行寻呼终端的基站。
需要说明的是,在此种实现方式下,当终端释放连接的时候,终端释放连接前所连接的基站会将终端的定位信息发送给核心网节点,核心网节点根据基站上报的终端的定位信息以及卫星的移动轨迹确定当前由哪个卫星在相关区域提供服务,并将当前为终端在上次连接所处的位置提供服务的基站作为本次用于寻呼终端的基站;在此种方式下,当核心网节点未能成功的寻呼到终端时,则重新将卫星互联网通信系统中的所有基站确定为本次用于进行寻呼终端的基站,重新进行终端的寻呼。
例如,当终端从连接态释放回空闲态的时候(比如:注册或业务结束),基站将连接态下获取的终端的定位信息发给核心网;核心网在寻呼终端的时候,根据存储的终端的定位信息,以及卫星的移动轨迹判断当前由哪个卫星在相关区域提供服务,进而只在终端上次在连接态所处位置的卫星上的基站寻呼终端。如果失败,则进一步扩大寻呼范围到整个TA的所有基站。
可选地,当需要寻呼的终端不具有定位能力时,步骤22的第三种实现方式为:
获取终端释放连接时的服务基站、服务小区和时间戳信息;
根据所述服务基站、服务小区和时间戳信息,确定所述终端的位置;
根据所述终端的位置,确定本次用于进行寻呼终端的基站。
需要说明的是,在此种实现方式下,当终端释放连接的时候,因终端不具有定位能力,终端释放连接前所连接的基站会将为终端提供服务的服务基站、服务小区以及终端释放连接时的时间戳信息发送给核心网节点,核心网节点在寻呼该终端时,根据基站上报的相关信息,确定待寻呼的终端的位置,并将为包含此位置的区域提供服务的基站确定为本次用于进行寻呼终端的基站;在此种方式下,当核心网节点未能成功的寻呼到终端时,则重新将卫星互联网通信系统中的所有基站确定为本次用于进行寻呼终端的基站,重新进行终端的寻呼。
例如,当终端从连接态释放回空闲态的时候(比如:注册或业务结束),终端当前的服务基站、服务小区以及时间戳信息等相关信息通过信令发给核心网。核心网在寻呼终端的时候,根据存储的终端的历史信息(服务基站、服务小区、时间戳等),以及卫星的移动轨迹判断当前由哪个卫星在相关区域提供服务,进而只在终端在进入空闲态时所处位置的卫星上的基站寻呼终端。如果失败,则进一步扩大寻呼范围到整个TA的所有基站。
二、设置方式为设置至少两个固定TA
需要说明的是,对于透明传输的卫星(即卫星只对地面基站的信号进行射频转发,基站还是位于地面上)卫星实际上和TA没有关系,卫星小区所属TA完全由地面服务基站决定。
对于卫星携带基站的情况,需要说明的是,当属于快速移动的中低轨道卫星的基站的波束对应的地面小区为固定小区时,一个所述固定TA中包含至少一个地面小区。
在地面小区为固定小区的情况下,卫星在某一段轨道内,地面的小区是不变的,在整个卫星轨道内静态划分若干小区(上百个甚至上千个小区),同一颗卫星要在不同的位置产生不同的小区。因此,地面TA的规划也可以根据静态划分的小区进行规划,将若干个小区划为一个TA。因此在卫星移动过程中每隔一段时间要对卫星小区进行重配。
例如,环球一圈部署了500个卫星小区(假设1~500),它们的位置是固定的,和传统通信网络中的小区类似。一颗卫星(例如,卫星A)在一段时间内通过调整天线角度和一些参数,使得它在地面投射的小区是固定的,例如,在一段时间内卫星A始终投射小区1。当卫星A远离这个小区的位置,不能够继续为其服务,则由下一颗卫星(例如,卫星B)接替,卫星A继续服务于前方的地面小区(例如,小区2)。
在上述情况下,因为地面小区和传统移动通信网络一样是固定的,因此,TA的规划可以和传统移动通信网络中一致,一个静态的地面区域,可能覆盖多个小区。这种情况下寻呼终端可以重用现有的4G、5G中的基于终端位置的寻呼方法。
当属于快速移动的中低轨道卫星的基站的波束对应的地面小区为移动小区时,所述固定TA的更新方式为:根据静态规划的固定TA的位置以及所述基站的位置和波束覆盖情况,当确定所述基站所辖小区移动到下一个固定TA的区域时,所述基站进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播报。
在地面小区为移动小区的情况下,一颗卫星固定支持一个或几个小区。在卫星的移动过程中,波束会快速掠过地面,地面小区也会快速移动。在这种情况下需要根据静态规划的TA的位置,卫星结合自己的位置和波束覆盖情况,来判断所辖某个小区是否移动到下一个TA的区域,卫星上的基站做相应的重配,并通过系统信息更新将新的TA信息在广播中播报。
进一步,在地面小区为移动小区的情况下,步骤22的第一种实现方式为:
获取发生TA更新的第一基站发送的第一TA更新信息;
根据所述第一TA更新信息,确定当前卫星互联网通信系统的最新的TA信息;
在需要寻呼终端时,根据所述最新的TA信息和终端所注册的TA,确定本次用于进行寻呼终端的基站。
需要说明的是,上述的第一基站指的是发生TA更新的基站,该基站可以为一个或多个。即当某个基站所服务的TA发生变化时,可以通过NG接口(即基站与核心网节点之间的接口)将配置更新过程通知给核心网节点;
例如,初始建立接口的时候,基站只给核心网节点上报当前所辖小区所处的一个或多个TA,也就是它真实服务的TA列表,比如卫星A的5个小区初始都处在TA1的区域之内,随着卫星小区在地面移动,小区1进入了TA2,小区2~5仍然在TA1,这时基站需要向核心网节点更新所支持的TA为TA1+TA2;再过一段时间,5个小区全部移动到了TA2,这时基站需要再次向CN更新所支持的TA。
核心网节点据此精确掌握每个基站每个时刻的支持的TA情况。根据终端所注册的TA或TA列表,在寻呼的时候精准的找到相应的基站进行寻呼。需要说明的是,在此种情况下,所有卫星上的基站都要不断的周而复始的进行TA的更新,这对信令开销和省电都是不利的。
进一步,在地面小区为移动小区的情况下,步骤22的第二种实现方式为:
获取在预设时间内发生TA更新的第二基站发送的第二TA更新信息;
根据所述第二TA更新信息,确定基站的TA更新规律;
在需要寻呼终端时,根据所述TA更新规律以及终端所注册的TA,确定本次用于进行寻呼终端的基站。
需要说明的是,该第二基站指的是在预设时间内发生TA更新的基站,该基站可以为一个或多个。在此种情况下,发生TA更新的基站并不是在所有的时间内均进行TA更新信息的上报,其只是在一段时间内向核心网节点更新所支持的TA;
例如,初始建立接口的时候,基站只给核心网节点上报当前所辖小区所处的一个或多个TA,也就是它真实服务的TA列表;基站在开始运行的一段时间(比如,几天内),在支持的TA发生变化的时候,向核心网节点上报,比如,卫星A的5个小区初始都处在TA1的区域之内,在两天的时间内,随着卫星小区在地面移动,第一天,小区1进入了TA2,小区2~5仍然在TA1,这时基站需要向核心网节点更新所支持的TA为TA1+TA2;第二天,5个小区全部移动到了TA2,这时基站需要再次向核心网节点更新所支持的TA,第三天,当基站所支持的TA在发生变化时,就不会再向核心网节点更新所支持的TA。
核心网记录每个卫星上的基站的TA更新的规律,用以推断某个时刻某 个TA区域由哪个或哪些卫星上的基站提供服务,需要在该TA内寻呼终端的时候,只需向相关卫星上的基站发送寻呼消息即可。
进一步,在地面小区为移动小区的情况下,步骤22的第三种实现方式为:
获取整个卫星轨道上所支持的TA信息;
在需要寻呼终端时,根据所述TA信息和预配置的星历表,确定本次用于进行寻呼终端的基站。
需要说明的是,在此种情况下,基站并不向核心网更新所支持的TA,在初始NG接口建立的时候,基站可以把整个轨道上所有的TA都作为支持TA列表告诉核心网节点。核心网节点根据预配置的星历表,可以清楚知道每颗卫星的运行轨迹、每个时间点每颗卫星的确切的覆盖范围以及每个TA的确切范围。当核心网节点需要寻呼终端时,只需判断由哪些卫星上的基站为终端所在的TA提供服务,并准确的将寻呼消息发给相应的卫星上的基站即可。
三、设置方式为设置至少两个非固定TA
需要说明的是,非固定TA指的是TA的划分相对于地面来说是非固定的,即TA是与卫星上的基站绑定的,TA随着卫星上的基站的移动而移动。该方式下,步骤22的具体实现方式为:将终端所属的TA对应的基站,确定为本次用于进行寻呼终端的基站。
例如,卫星A支持小区1~5,对应TA1,无论卫星移动到什么位置,均支持上述小区和TA1。此种方式下,卫星上的基站不需要调整天线和参数,不需要对小区进行重配,仍然是基于终端所处的TA区来寻呼终端。但随着卫星的移动和TA的变化,静止的终端仍需要频繁的进行TA更新,一定程度上增加了系统的信令负荷。
需要说明的是,本公开实施例,根据卫星互联网通信系统中TA的设置方式,确定在需要进行终端寻呼时,用于进行寻呼终端的基站,以此完善了卫星互联网通信系统中的寻呼流程,可以保证卫星互联网通信系统通信可靠性。
如图3所示,本公开实施例还提供一种寻呼方法,应用于卫星互联网通信系统中的基站,包括:
步骤31,接收核心网节点根据跟踪区域TA的设置方式发送的寻呼消息;
其中,所述设置方式包括以下方式中的一项:
将卫星互联网通信系统划分为一个TA;
设置至少两个固定TA;
设置至少两个非固定TA。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述寻呼方法,还包括:
若TA信息发生更新,则发送第一TA更新信息给所述核心网节点。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述寻呼方法,还包括:
在预设时间内,若TA信息发生更新,则发送第二TA更新信息给所述核心网节点。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述寻呼方法,还包括:
根据静态规划的固定TA的位置以及基站的位置和波束覆盖情况,当确定所述基站所辖小区移动到下一个固定TA的区域时,进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播报;
其中,所述基站为属于快速移动的中低轨道卫星的基站。
其中,上述实施例中,所有关于基站的描述,均适用于该应用于基站的寻呼方法的实施例中,也能达到与其相同的技术效果。
如图4所示,本公开实施例还提供一种定位信息发送方法,应用于卫星互联网通信系统中的基站,包括:
步骤41,当卫星互联网通信系统中跟踪区域TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,在终端释放连接时,发送终端的定位信息给核心网节点;或者
当卫星互联网通信系统中TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,在终端释放连接时,发送终端的服务基站、服务小区和时间戳信息给核心网节点。
其中,上述实施例中,所有关于基站的描述,均适用于该应用于基站的定位信息发送方法的实施例中,也能达到与其相同的技术效果。
如图5所示,本公开实施例提供一种卫星互联网通信系统中的核心网节点50,包括:
获取模块51,用于获取卫星互联网通信系统中跟踪区域TA的设置方式;
确定模块52,用于根据所述设置方式,确定用于进行寻呼终端的基站;
第一发送模块53,用于发送寻呼消息给所述基站;
其中,所述设置方式包括以下方式中的一项:
将卫星互联网通信系统划分为一个TA;
设置至少两个固定TA;
设置至少两个非固定TA。
可选地,当所述设置方式为将卫星互联网通信系统划分为一个TA时,所述确定模块52用于:
将卫星互联网通信系统中的所有基站,确定为本次用于进行寻呼终端的基站。
可选地,当所述设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,所述确定模块52包括:
第一获取单元,用于获取终端释放连接时的定位信息和卫星的移动轨迹;
第一确定单元,用于根据所述定位信息和所述卫星的移动轨迹,确定本次用于进行寻呼终端的基站。
可选地,当所述设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,所述确定模块52包括:
第二获取单元,用于获取终端释放连接时的服务基站、服务小区和时间戳信息;
第二确定单元,用于根据所述服务基站、服务小区和时间戳信息,确定所述终端的位置;
第三确定单元,用于根据所述终端的位置,确定本次用于进行寻呼终端的基站。
可选地,当所述设置方式为设置至少两个固定TA时,当属于快速移动的中低轨道卫星的基站的波束对应的地面小区为固定小区时,一个所述固定TA中包含至少一个地面小区。
可选地,当所述设置方式为设置至少两个固定TA时,当属于快速移动的中低轨道卫星的基站的波束对应的地面小区为移动小区时,所述固定TA的更新方式为:根据静态规划的固定TA的位置以及所述基站的位置和波束覆盖情况,当确定所述基站所辖小区移动到下一个固定TA的区域时,所述基站进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播报。
进一步地,所述确定模块52包括:
第三获取单元,用于获取发生TA更新的第一基站发送的第一TA更新信息;
第四确定单元,用于根据所述第一TA更新信息,确定当前卫星互联网通信系统的最新的TA信息;
第五确定单元,用于在需要寻呼终端时,根据所述最新的TA信息和终端所注册的TA,确定本次用于进行寻呼终端的基站。
进一步地,所述确定模块52包括:
第四获取单元,用于获取在预设时间内发生TA更新的第二基站发送的第二TA更新信息;
第六确定单元,用于根据所述第二TA更新信息,确定基站的TA更新规律;
第七确定单元,用于在需要寻呼终端时,根据所述TA更新规律以及终端所注册的TA,确定本次用于进行寻呼终端的基站。
进一步地,所述确定模块52,包括:
第五获取单元,用于获取整个卫星轨道上所支持的TA信息;
第八确定单元,用于在需要寻呼终端时,根据所述TA信息和预配置的星历表,确定本次用于进行寻呼终端的基站。
可选地,当所述设置方式为设置至少两个非固定TA时,所述确定模块52用于:
将终端所属的TA对应的基站,确定为本次用于进行寻呼终端的基站。
需要说明的是,该核心网节点实施例是与上述方法实施例一一对应的核心网节点,上述方法实施例中所有实现方式均适用于该核心网节点的实施例 中,也能达到相同的技术效果。
如图6所示,本公开实施例还提供一种核心网节点60,包括处理器61、收发机62、存储器63及存储在所述存储器63上并可在所述处理器61上运行的计算机程序;其中,收发机62通过总线接口与处理器61和存储器63连接,其中,所述处理器61用于读取存储器中的程序,执行下列过程:
获取卫星互联网通信系统中跟踪区域TA的设置方式;根据所述设置方式,确定用于进行寻呼终端的基站;通过收发机62发送寻呼消息给所述基站;
其中,所述设置方式包括以下方式中的一项:
将卫星互联网通信系统划分为一个TA;
设置至少两个固定TA;
设置至少两个非固定TA。
需要说明的是,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器61代表的一个或多个处理器和存储器63代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机62可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,处理器61负责管理总线架构和通常的处理,存储器63可以存储处理器61在执行操作时所使用的数据。
可选地,当所述设置方式为将卫星互联网通信系统划分为一个TA时,所述处理器执行所述计算机程序时实现以下步骤:
将卫星互联网通信系统中的所有基站,确定为本次用于进行寻呼终端的基站。
可选地,当所述设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,所述处理器执行所述计算机程序时实现以下步骤:
获取终端释放连接时的定位信息和卫星的移动轨迹;
根据所述定位信息和所述卫星的移动轨迹,确定本次用于进行寻呼终端的基站。
可选地,当所述设置方式为将卫星互联网通信系统划分为一个TA,且终 端不具有定位能力时,所述处理器执行所述计算机程序时实现以下步骤:
获取终端释放连接时的服务基站、服务小区和时间戳信息;
根据所述服务基站、服务小区和时间戳信息,确定所述终端的位置;
根据所述终端的位置,确定本次用于进行寻呼终端的基站。
可选地,当所述设置方式为设置至少两个固定TA时,当属于快速移动的中低轨道卫星的基站的波束对应的地面小区为固定小区时,一个所述固定TA中包含至少一个地面小区。
可选地,当所述设置方式为设置至少两个固定TA时,当属于快速移动的中低轨道卫星的基站的波束对应的地面小区为移动小区时,所述固定TA的更新方式为:根据静态规划的固定TA的位置以及所述基站的位置和波束覆盖情况,当确定所述基站所辖小区移动到下一个固定TA的区域时,所述基站进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播报。
进一步地,所述处理器执行所述计算机程序时实现以下步骤:
获取发生TA更新的第一基站发送的第一TA更新信息;
根据所述第一TA更新信息,确定当前卫星互联网通信系统的最新的TA信息;
在需要寻呼终端时,根据所述最新的TA信息和终端所注册的TA,确定本次用于进行寻呼终端的基站。
进一步地,所述处理器执行所述计算机程序时实现以下步骤:
获取在预设时间内发生TA更新的第二基站发送的第二TA更新信息;
根据所述第二TA更新信息,确定基站的TA更新规律;
在需要寻呼终端时,根据所述TA更新规律以及终端所注册的TA,确定本次用于进行寻呼终端的基站。
进一步地,所述处理器执行所述计算机程序时实现以下步骤:
获取整个卫星轨道上所支持的TA信息;
在需要寻呼终端时,根据所述TA信息和预配置的星历表,确定本次用于进行寻呼终端的基站。
可选地,当所述设置方式为设置至少两个非固定TA时,所述处理器执 行所述计算机程序时实现以下步骤:
将终端所属的TA对应的基站,确定为本次用于进行寻呼终端的基站。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现应用于核心网节点的寻呼方法的步骤。
如图7所示,本公开实施例提供一种卫星互联网通信系统中的基站70,包括:
接收模块71,用于接收核心网节点根据跟踪区域TA的设置方式发送的寻呼消息;
其中,所述设置方式包括以下方式中的一项:
将卫星互联网通信系统划分为一个TA;
设置至少两个固定TA;
设置至少两个非固定TA。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述基站70,还包括:
第一更新信息发送模块,用于若TA信息发生更新,则发送第一TA更新信息给所述核心网节点。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述基站70,还包括:
第二更新信息发送模块,用于在预设时间内,若TA信息发生更新,则发送第二TA更新信息给所述核心网节点。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述基站70,还包括:
重配模块,用于根据静态规划的固定TA的位置以及基站的位置和波束覆盖情况,当确定所述基站所辖小区移动到下一个固定TA的区域时,进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播报;
其中,所述基站为属于快速移动的中低轨道卫星的基站。
需要说明的是,该基站实施例是与上述方法实施例一一对应的基站,上述寻呼方法实施例中所有实现方式均适用于该基站的实施例中,也能达到相 同的技术效果。
如图8所示,本公开实施例还提供一种基站80,包括处理器81、收发机82、存储器83及存储在所述存储器83上并可在所述处理器81上运行的计算机程序;其中,收发机82通过总线接口与处理器81和存储器83连接,其中,所述处理器81用于读取存储器中的程序,执行下列过程:
通过收发机82接收核心网节点根据跟踪区域TA的设置方式发送的寻呼消息;
其中,所述设置方式包括以下方式中的一项:
将卫星互联网通信系统划分为一个TA;
设置至少两个固定TA;
设置至少两个非固定TA。
需要说明的是,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器81代表的一个或多个处理器和存储器83代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机82可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,处理器81负责管理总线架构和通常的处理,存储器83可以存储处理器81在执行操作时所使用的数据。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述处理器执行所述计算机程序时实现以下步骤:
若TA信息发生更新,则发送第一TA更新信息给所述核心网节点。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述处理器执行所述计算机程序时实现以下步骤:
在预设时间内,若TA信息发生更新,则发送第二TA更新信息给所述核心网节点。
可选地,在所述设置方式包括:设置至少两个固定TA时,所述处理器执行所述计算机程序时实现以下步骤:
根据静态规划的固定TA的位置以及基站的位置和波束覆盖情况,当确 定所述基站所辖小区移动到下一个固定TA的区域时,进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播报;
其中,所述基站为属于快速移动的中低轨道卫星的基站。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现应用于基站的寻呼方法的步骤。
如图9所示,本公开实施例提供一种卫星互联网通信系统中的基站90,包括:
第二发送模块91,用于当卫星互联网通信系统中跟踪区域TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,在终端释放连接时,发送终端的定位信息给核心网节点;或者
用于当卫星互联网通信系统中TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,在终端释放连接时,发送终端的服务基站、服务小区和时间戳信息给核心网节点。
需要说明的是,该基站实施例是与上述方法实施例一一对应的基站,上述定位信息发送方法实施例中所有实现方式均适用于该基站的实施例中,也能达到相同的技术效果。
如图10所示,本公开实施例还提供一种基站100,包括处理器101、收发机102、存储器103及存储在所述存储器103上并可在所述处理器101上运行的计算机程序;其中,收发机102通过总线接口与处理器101和存储器103连接,其中,所述处理器101用于读取存储器中的程序,执行下列过程:
当卫星互联网通信系统中跟踪区域TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,在终端释放连接时,发送终端的定位信息给核心网节点;或者
当卫星互联网通信系统中TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,在终端释放连接时,通过收发机102发送终端的服务基站、服务小区和时间戳信息给核心网节点。
需要说明的是,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器101代表的一个或多个处理器和存储器103代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管 理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机102可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,处理器101负责管理总线架构和通常的处理,存储器103可以存储处理器101在执行操作时所使用的数据。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现应用于基站的定位信息发送方法的步骤。
其中,本公开实施例中提到的基站可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定,其中,该基站可以为部署于地面的基站,也可以为位于卫星上的基站(也可以称作卫星基站)。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (34)

  1. 一种寻呼方法,应用于卫星互联网通信系统中的核心网节点,所述寻呼方法包括:
    获取卫星互联网通信系统中跟踪区域TA的设置方式;
    根据所述设置方式,确定用于进行寻呼终端的基站;
    发送寻呼消息给所述基站;
    其中,所述设置方式包括以下方式中的一项:
    将卫星互联网通信系统划分为一个TA;
    设置至少两个固定TA;
    设置至少两个非固定TA。
  2. 根据权利要求1所述的寻呼方法,其中,当所述设置方式为将卫星互联网通信系统划分为一个TA时,所述确定用于进行寻呼终端的基站,包括:
    将卫星互联网通信系统中的所有基站,确定为本次用于进行寻呼终端的基站。
  3. 根据权利要求1所述的寻呼方法,其中,当所述设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,所述确定用于进行寻呼终端的基站,包括:
    获取终端释放连接时的定位信息和卫星的移动轨迹;
    根据所述定位信息和所述卫星的移动轨迹,确定本次用于进行寻呼终端的基站。
  4. 根据权利要求1所述的寻呼方法,其中,当所述设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,所述确定用于进行寻呼终端的基站,包括:
    获取终端释放连接时的服务基站、服务小区和时间戳信息;
    根据所述服务基站、服务小区和时间戳信息,确定所述终端的位置;
    根据所述终端的位置,确定本次用于进行寻呼终端的基站。
  5. 根据权利要求1所述的寻呼方法,其中,当所述设置方式为设置至少两个固定TA时,当属于快速移动的中低轨道卫星的基站的波束对应的地面 小区为固定小区时,一个所述固定TA中包含至少一个地面小区。
  6. 根据权利要求1所述的寻呼方法,其中,当所述设置方式为设置至少两个固定TA时,当属于快速移动的中低轨道卫星的基站的波束对应的地面小区为移动小区时,所述固定TA的更新方式为:根据静态规划的固定TA的位置以及所述基站的位置和波束覆盖情况,当确定所述基站所辖小区移动到下一个固定TA的区域时,所述基站进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播报。
  7. 根据权利要求6所述的寻呼方法,其中,所述确定用于进行寻呼终端的基站,包括:
    获取发生TA更新的第一基站发送的第一TA更新信息;
    根据所述第一TA更新信息,确定当前卫星互联网通信系统的最新的TA信息;
    在需要寻呼终端时,根据所述最新的TA信息和终端所注册的TA,确定本次用于进行寻呼终端的基站。
  8. 根据权利要求6所述的寻呼方法,其中,所述确定用于进行寻呼终端的基站,包括:
    获取在预设时间内发生TA更新的第二基站发送的第二TA更新信息;
    根据所述第二TA更新信息,确定基站的TA更新规律;
    在需要寻呼终端时,根据所述TA更新规律以及终端所注册的TA,确定本次用于进行寻呼终端的基站。
  9. 根据权利要求6所述的寻呼方法,其中,所述确定用于进行寻呼终端的基站,包括:
    获取整个卫星轨道上所支持的TA信息;
    在需要寻呼终端时,根据所述TA信息和预配置的星历表,确定本次用于进行寻呼终端的基站。
  10. 根据权利要求1所述的寻呼方法,其中,当所述设置方式为设置至少两个非固定TA时,所述确定用于进行寻呼终端的基站,包括:
    将终端所属的TA对应的基站,确定为本次用于进行寻呼终端的基站。
  11. 一种寻呼方法,应用于卫星互联网通信系统中的基站,所述寻呼方 法包括:
    接收核心网节点根据跟踪区域TA的设置方式发送的寻呼消息;
    其中,所述设置方式包括以下方式中的一项:
    将卫星互联网通信系统划分为一个TA;
    设置至少两个固定TA;
    设置至少两个非固定TA。
  12. 根据权利要求11所述的寻呼方法,其中,在所述设置方式包括:设置至少两个固定TA时,所述寻呼方法,还包括:
    若TA信息发生更新,则发送第一TA更新信息给所述核心网节点。
  13. 根据权利要求11所述的寻呼方法,其中,在所述设置方式包括:设置至少两个固定TA时,所述寻呼方法,还包括:
    在预设时间内,若TA信息发生更新,则发送第二TA更新信息给所述核心网节点。
  14. 根据权利要求11所述的寻呼方法,其中,在所述设置方式包括:设置至少两个固定TA时,所述寻呼方法,还包括:
    根据静态规划的固定TA的位置以及基站的位置和波束覆盖情况,当确定所述基站所辖小区移动到下一个固定TA的区域时,进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播报;
    其中,所述基站为属于快速移动的中低轨道卫星的基站。
  15. 一种定位信息发送方法,应用于卫星互联网通信系统中的基站,所述方法包括:
    当卫星互联网通信系统中跟踪区域TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,在终端释放连接时,发送终端的定位信息给核心网节点;或者
    当卫星互联网通信系统中TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,在终端释放连接时,发送终端的服务基站、服务小区和时间戳信息给核心网节点。
  16. 一种卫星互联网通信系统中的核心网节点,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处 理器执行所述计算机程序时实现以下步骤:
    获取卫星互联网通信系统中跟踪区域TA的设置方式;
    根据所述设置方式,确定用于进行寻呼终端的基站;
    发送寻呼消息给所述基站;
    其中,所述设置方式包括以下方式中的一项:
    将卫星互联网通信系统划分为一个TA;
    设置至少两个固定TA;
    设置至少两个非固定TA。
  17. 根据权利要求16所述的核心网节点,其中,当所述设置方式为将卫星互联网通信系统划分为一个TA时,所述处理器执行所述计算机程序时实现以下步骤:
    将卫星互联网通信系统中的所有基站,确定为本次用于进行寻呼终端的基站。
  18. 根据权利要求16所述的核心网节点,其中,当所述设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,所述处理器执行所述计算机程序时实现以下步骤:
    获取终端释放连接时的定位信息和卫星的移动轨迹;
    根据所述定位信息和所述卫星的移动轨迹,确定本次用于进行寻呼终端的基站。
  19. 根据权利要求16所述的核心网节点,其中,当所述设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,所述处理器执行所述计算机程序时实现以下步骤:
    获取终端释放连接时的服务基站、服务小区和时间戳信息;
    根据所述服务基站、服务小区和时间戳信息,确定所述终端的位置;
    根据所述终端的位置,确定本次用于进行寻呼终端的基站。
  20. 根据权利要求16所述的核心网节点,其中,当所述设置方式为设置至少两个固定TA时,当属于快速移动的中低轨道卫星的基站的波束对应的地面小区为固定小区时,一个所述固定TA中包含至少一个地面小区。
  21. 根据权利要求16所述的核心网节点,其中,当所述设置方式为设置 至少两个固定TA时,当属于快速移动的中低轨道卫星的基站的波束对应的地面小区为移动小区时,所述固定TA的更新方式为:根据静态规划的固定TA的位置以及所述基站的位置和波束覆盖情况,当确定所述基站所辖小区移动到下一个固定TA的区域时,所述基站进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播报。
  22. 根据权利要求21所述的核心网节点,其中,所述处理器执行所述计算机程序时实现以下步骤:
    获取发生TA更新的第一基站发送的第一TA更新信息;
    根据所述第一TA更新信息,确定当前卫星互联网通信系统的最新的TA信息;
    在需要寻呼终端时,根据所述最新的TA信息和终端所注册的TA,确定本次用于进行寻呼终端的基站。
  23. 根据权利要求21所述的核心网节点,其中,所述处理器执行所述计算机程序时实现以下步骤:
    获取在预设时间内发生TA更新的第二基站发送的第二TA更新信息;
    根据所述第二TA更新信息,确定基站的TA更新规律;
    在需要寻呼终端时,根据所述TA更新规律以及终端所注册的TA,确定本次用于进行寻呼终端的基站。
  24. 根据权利要求21所述的核心网节点,其中,所述处理器执行所述计算机程序时实现以下步骤:
    获取整个卫星轨道上所支持的TA信息;
    在需要寻呼终端时,根据所述TA信息和预配置的星历表,确定本次用于进行寻呼终端的基站。
  25. 根据权利要求16所述的核心网节点,其中,当所述设置方式为设置至少两个非固定TA时,所述处理器执行所述计算机程序时实现以下步骤:
    将终端所属的TA对应的基站,确定为本次用于进行寻呼终端的基站。
  26. 一种卫星互联网通信系统中的基站,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述计算机程序时实现以下步骤:
    接收核心网节点根据跟踪区域TA的设置方式发送的寻呼消息;
    其中,所述设置方式包括以下方式中的一项:
    将卫星互联网通信系统划分为一个TA;
    设置至少两个固定TA;
    设置至少两个非固定TA。
  27. 根据权利要求26所述的基站,其中,在所述设置方式包括:设置至少两个固定TA时,所述处理器执行所述计算机程序时实现以下步骤:
    若TA信息发生更新,则发送第一TA更新信息给所述核心网节点。
  28. 根据权利要求26所述的基站,其中,在所述设置方式包括:设置至少两个固定TA时,所述处理器执行所述计算机程序时实现以下步骤:
    在预设时间内,若TA信息发生更新,则发送第二TA更新信息给所述核心网节点。
  29. 根据权利要求26所述的基站,其中,在所述设置方式包括:设置至少两个固定TA时,所述处理器执行所述计算机程序时实现以下步骤:
    根据静态规划的固定TA的位置以及基站的位置和波束覆盖情况,当确定所述基站所辖小区移动到下一个固定TA的区域时,进行固定TA的重配,并通过系统信息更新将重配的TA信息在广播中播报;
    其中,所述基站为属于快速移动的中低轨道卫星的基站。
  30. 一种卫星互联网通信系统中的基站,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;其中,所述处理器执行所述计算机程序时实现以下步骤:
    当卫星互联网通信系统中跟踪区域TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,在终端释放连接时,发送终端的定位信息给核心网节点;或者
    当卫星互联网通信系统中TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,在终端释放连接时,发送终端的服务基站、服务小区和时间戳信息给核心网节点。
  31. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至14任一项所述的寻呼方法或如 权利要求15所述的定位信息发送方法。
  32. 一种卫星互联网通信系统中的核心网节点,包括:
    获取模块,用于获取卫星互联网通信系统中跟踪区域TA的设置方式;
    确定模块,用于根据所述设置方式,确定用于进行寻呼终端的基站;
    第一发送模块,用于发送寻呼消息给所述基站;
    其中,所述设置方式包括以下方式中的一项:
    将卫星互联网通信系统划分为一个TA;
    设置至少两个固定TA;
    设置至少两个非固定TA。
  33. 一种卫星互联网通信系统中的基站,包括:
    接收模块,用于接收核心网节点根据跟踪区域TA的设置方式发送的寻呼消息;
    其中,所述设置方式包括以下方式中的一项:
    将卫星互联网通信系统划分为一个TA;
    设置至少两个固定TA;
    设置至少两个非固定TA。
  34. 一种卫星互联网通信系统中的基站,包括:
    第二发送模块,用于当卫星互联网通信系统中跟踪区域TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端具有定位能力时,在终端释放连接时,发送终端的定位信息给核心网节点;或者
    用于当卫星互联网通信系统中TA的设置方式为将卫星互联网通信系统划分为一个TA,且终端不具有定位能力时,在终端释放连接时,发送终端的服务基站、服务小区和时间戳信息给核心网节点。
PCT/CN2019/117462 2018-11-14 2019-11-12 寻呼方法、定位信息发送方法、核心网节点及基站 WO2020098632A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/294,369 US11917577B2 (en) 2018-11-14 2019-11-12 Paging method, positioning information sending method, core network node and base station
EP19885770.8A EP3883278A4 (en) 2018-11-14 2019-11-12 PAGING METHOD, LOCATION INFORMATION TRANSMISSION METHOD, CORE NETWORK NODE AND BASE STATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811352020.XA CN111194080B (zh) 2018-11-14 2018-11-14 一种寻呼方法、定位信息发送方法、核心网节点及基站
CN201811352020.X 2018-11-14

Publications (1)

Publication Number Publication Date
WO2020098632A1 true WO2020098632A1 (zh) 2020-05-22

Family

ID=70706996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117462 WO2020098632A1 (zh) 2018-11-14 2019-11-12 寻呼方法、定位信息发送方法、核心网节点及基站

Country Status (4)

Country Link
US (1) US11917577B2 (zh)
EP (1) EP3883278A4 (zh)
CN (1) CN111194080B (zh)
WO (1) WO2020098632A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208452A1 (en) * 2021-04-01 2022-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Selective reporting of tracking area identity to core network in non-terrestrial networks
EP4207628A4 (en) * 2020-09-18 2024-03-13 Samsung Electronics Co Ltd TECHNIQUE AND APPARATUS FOR MANAGING THE MOBILITY OF A TERMINAL IN A SATELLITE COMMUNICATION SYSTEM

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11683088B2 (en) 2019-11-07 2023-06-20 Qualcomm Incorporated Systems and methods for supporting fixed tracking areas and fixed cells for mobile satellite wireless access
US11811488B2 (en) 2019-11-07 2023-11-07 Qualcomm Incorporated Systems and methods for support of a 5G satellite radio access technology
US11696106B2 (en) * 2019-11-07 2023-07-04 Qualcomm Incorporated Configuration of fixed tracking areas and fixed cells for a 5G satellite rat
CN112075108B (zh) * 2020-07-31 2022-11-04 北京小米移动软件有限公司 随机接入方法和装置、配置指示方法和装置
CN114126047B (zh) * 2020-08-28 2023-02-03 大唐移动通信设备有限公司 一种寻呼方法及装置
CN115119300A (zh) * 2021-03-22 2022-09-27 展讯通信(上海)有限公司 用于卫星通信的寻呼方法及装置、计算机可读存储介质、基站
CN117395743A (zh) * 2021-04-13 2024-01-12 北京小米移动软件有限公司 一种服务小区确定方法及装置
CN113904710A (zh) * 2021-09-27 2022-01-07 中国电子科技集团公司第五十四研究所 一种基于低轨卫星星历的用户寻呼方法
CN117279088A (zh) * 2022-06-14 2023-12-22 华为技术有限公司 一种寻呼方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198103A (zh) * 2007-12-21 2008-06-11 中国移动通信集团北京有限公司 一种发布导游信息的方法及装置
CN104540116A (zh) * 2015-01-05 2015-04-22 北京邮电大学 基于机动式基站的移动通信网络下的tal更新方法和设备
CN106506061A (zh) * 2016-11-08 2017-03-15 中国电子科技集团公司第七研究所 卫星通信系统的数据传输方法和系统
US20180098360A1 (en) * 2016-09-30 2018-04-05 Sierra Wireless, Inc. Methods and apparatuses for user equipment access to a wireless communication system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424831B1 (en) 1999-03-30 2002-07-23 Qualcomm, Inc. Apparatus and method for paging a user terminal in a satellite communication system
US20020052180A1 (en) 2000-08-09 2002-05-02 Hughes Electronics System and method for mobility management for a satellite based packet data system
ATE483341T1 (de) * 2006-10-27 2010-10-15 Mitsubishi Electric Corp Verfahren und vorrichtung zur bestimmung eines nachführgebiets eines drahtlosen zellularen telekommunikationsnetzes mit einer mehrzahl von nachführgebieten
US8428625B2 (en) * 2009-02-27 2013-04-23 Cisco Technology, Inc. Paging heuristics in packet based networks
ES2596286T3 (es) * 2014-02-28 2017-01-05 Nokia Solutions And Networks Oy Determinación del área de seguimiento real cuando se aplican técnicas de listas de área de seguimiento (TA) dinámica o área de seguimiento (TA) inteligente
US11483877B2 (en) * 2015-06-17 2022-10-25 Hughes Network Systems, Llc Approaches for high speed global packet data services for LEO/MEO satellite systems
US10863380B2 (en) * 2017-03-16 2020-12-08 Ofinno, Llc Buffer status reporting procedure in a wireless device and wireless network
US20200077358A1 (en) * 2018-08-31 2020-03-05 Nokia Technologies Oy Idle mode mobility in new radio based non-terrestrial networks
CA3017007A1 (en) * 2018-09-10 2020-03-10 Telesat Canada Resource deployment optimizer for non-geostationary communications satellites
EP3858099A1 (en) * 2018-09-24 2021-08-04 Sony Group Corporation Telecommunications apparatus and methods
CN112806095A (zh) * 2018-09-27 2021-05-14 中兴通讯股份有限公司 基于地理位置的跟踪区域管理
WO2020034333A1 (en) * 2018-09-28 2020-02-20 Zte Corporation Tracking area update and paging method for non-terrestrial satellite networks
EP3874825A1 (en) * 2018-10-30 2021-09-08 IDAC Holdings, Inc. Idle/inactive mobility and reachability in moving networks
WO2020091647A1 (en) * 2018-11-01 2020-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Methods for tracking area management for moving ran
US11032793B2 (en) * 2019-10-10 2021-06-08 Netscout Systems, Inc Processing paging requests messages in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198103A (zh) * 2007-12-21 2008-06-11 中国移动通信集团北京有限公司 一种发布导游信息的方法及装置
CN104540116A (zh) * 2015-01-05 2015-04-22 北京邮电大学 基于机动式基站的移动通信网络下的tal更新方法和设备
US20180098360A1 (en) * 2016-09-30 2018-04-05 Sierra Wireless, Inc. Methods and apparatuses for user equipment access to a wireless communication system
CN106506061A (zh) * 2016-11-08 2017-03-15 中国电子科技集团公司第七研究所 卫星通信系统的数据传输方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3883278A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4207628A4 (en) * 2020-09-18 2024-03-13 Samsung Electronics Co Ltd TECHNIQUE AND APPARATUS FOR MANAGING THE MOBILITY OF A TERMINAL IN A SATELLITE COMMUNICATION SYSTEM
WO2022208452A1 (en) * 2021-04-01 2022-10-06 Telefonaktiebolaget Lm Ericsson (Publ) Selective reporting of tracking area identity to core network in non-terrestrial networks

Also Published As

Publication number Publication date
CN111194080B (zh) 2021-07-09
CN111194080A (zh) 2020-05-22
US20220007328A1 (en) 2022-01-06
US11917577B2 (en) 2024-02-27
EP3883278A4 (en) 2022-03-02
EP3883278A1 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
WO2020098632A1 (zh) 寻呼方法、定位信息发送方法、核心网节点及基站
US11990980B2 (en) Handover control method and device
WO2020073757A1 (zh) 移动性管理的方法、无线接入网、终端及计算机存储介质
US20220015058A1 (en) Method and device for positioning configuration and reporting
CN112787712B (zh) 面向低轨道卫星基站-飞行器用户终端的通信连接建立方法
US20210212013A1 (en) Communications method and apparatus
EP2568753A1 (en) Control processing method of energy-saving cell and base station
EP4044454A1 (en) Switching method and device for network
US20240031984A1 (en) Method and apparatus for paging in wireless communication system
US20220225208A1 (en) Neighboring cell relationship configuration method and apparatus applicable to satellite network
WO2021056547A1 (en) Methods for communication, terminal device, network device, and computer readable media
US11490244B2 (en) Mobility information reporting and exchange method, terminal device, and network device
WO2022120841A1 (zh) 候选目标小区的确定方法及装置、设备、计算机存储介质
JP2023518964A (ja) 非地上ネットワークにおけるシグナリング効率の改善
US20230030149A1 (en) Indication method and indication device
US20220086750A1 (en) Network access method of terminal device and apparatus
EP3902312A1 (en) Methods for managing neighbor relations and coordinating physical cell identifiers for moving high altitude platform systems
JP2024500522A (ja) 通信方法及び装置
WO2018127242A1 (zh) 位置管理方法及装置
CN116158136A (zh) 用于确定用户设备是否位于注册区域中的装置和方法
WO2022151361A1 (en) System information adaptation for non-terrestrial networks
JP2024513102A (ja) ユーザ機器、ネットワークノード、及びユーザ機器又はネットワークノードにおける方法
WO2023002832A1 (en) Method, base station, core network node, user equipment, neighbour cell relation table
WO2024008022A1 (zh) 一种非地面网络的通信方法、装置及系统
WO2018023500A1 (en) Method and device for transmitting tracking area information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019885770

Country of ref document: EP

Effective date: 20210614