WO2020098608A1 - 一种分光偏振成像的设备和方法 - Google Patents

一种分光偏振成像的设备和方法 Download PDF

Info

Publication number
WO2020098608A1
WO2020098608A1 PCT/CN2019/117177 CN2019117177W WO2020098608A1 WO 2020098608 A1 WO2020098608 A1 WO 2020098608A1 CN 2019117177 W CN2019117177 W CN 2019117177W WO 2020098608 A1 WO2020098608 A1 WO 2020098608A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
polarization
light
spectroscopic
light beam
Prior art date
Application number
PCT/CN2019/117177
Other languages
English (en)
French (fr)
Inventor
邢诗萍
高山
周建同
吴振华
曾建洪
王向炯
肖晶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020098608A1 publication Critical patent/WO2020098608A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B41/00Special techniques not covered by groups G03B31/00 - G03B39/00; Apparatus therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present application relates to the field of optical imaging, and in particular to a method and device for split polarization imaging.
  • the traditional imaging device adopts the method of presenting all the received light information directly in the output image.
  • the illumination is low (such as dusk or night) or the interference light information is strong (such as rain and fog weather or the high reflection of the shooting object)
  • the output Of color images cannot effectively represent the target object.
  • the light information received by the device is processed and screened in real time through the polarization state of the received light, and the filtered light information is used for imaging, which has become the main means to solve these problems.
  • the method of acquiring the polarization state of received light in real time and generating a color image is mainly to add a polarization sensor on the imaging optical path.
  • the common structure of the polarization sensor is shown in Figure 1, including microlens array, polarizer array and physical pixel array.
  • Each microlens corresponds to a polarizer and a physical pixel.
  • the light condensed by the microlens illuminates the corresponding physical pixel through the corresponding polarizer, so that the polarization direction of the light received by each physical pixel is The polarization direction of the corresponding polarizer.
  • four adjacent polarizers can be a group, including four polarization directions of 0 °, 45 °, 90 °, and 135 °.
  • the four physical pixels corresponding to these four adjacent polarizers are: A virtual pixel.
  • the respective light amounts of the four polarized directions of the light received by the virtual pixel can be obtained, and then this can be obtained
  • the polarization state of the light received by the virtual pixel is obtained.
  • the light shines on the pixels, and the physical pixel array will also generate a color image.
  • the present application provides a split polarization imaging device, and a split polarization imaging method applied by the device. By dividing the light into two paths, one of them is polarized, and the images generated by the two beams are fused, which effectively improves the situation where the final image brightness is too low due to the polarization.
  • the present application provides a spectroscopic polarization imaging device, which may include a spectroscopic module, a polarization state acquisition module, an image generation module, and an image synthesis module.
  • the beam splitting module may be used to split the received light into a first light beam and a second light beam.
  • the polarization state acquisition module may be used to acquire the polarization state of the first light beam.
  • the image generation module may be used to generate a first image with a first light beam and a second image with a second light beam.
  • the image synthesis module may synthesize the first image and the second image according to the polarization state acquired from the first light beam to generate a synthesized image. Divide the light into two paths, obtain the polarization state of the light from one of the paths, and generate two images from the two light beams to synthesize multiple images, which effectively reduces the influence of the polarization state on the light brightness and improves the imaging quality.
  • the image synthesis module may determine the interference light information according to the polarization state, reducing the amount of interference between the first image and the second image The interference light information, and the first image and the second image after reducing the interference light information are combined to generate a combined image.
  • the image synthesis module may first synthesize the first image and the second image to generate a synthesized image, and then reduce the interference light information in the synthesized image. Reducing the interference light information can better present the shooting target and improve the imaging quality.
  • the light splitting module may be used to adaptively adjust the light split ratio during light splitting, and adjust the light amount ratio of the two beams according to actual needs.
  • the use of a splitting module with an adaptive adjustment of the splitting ratio can increase the flexibility of imaging and meet different usage requirements.
  • the polarization state acquisition module may be specifically configured to acquire the polarization state of the first light beam by using a focal plane. Compared with other ways to obtain the polarization state, adopting the defocusing plane method can obtain the polarization state of the first light beam in real time, and the system is relatively simple and lightweight.
  • the beam splitting module may be specifically used to divide the received light beam into a first light beam and a second light beam by using a coating beam splitting method.
  • a coating beam splitting method it is easier to maintain the original polarization state of the beam and improve the accuracy of subsequent acquisition of the polarization state.
  • the image synthesis module may superimpose the brightness of the first image and the second image when they are synthesized.
  • the image synthesis module may first align the first image and the second image, and then superimpose the brightness of the corresponding position to obtain brightness information of the synthesized image.
  • By superimposing the brightness of the first image and the second image the effect of reducing the brightness of the first image on the brightness of the synthesized image due to the acquisition of the polarization state is effectively reduced.
  • the image generation module may generate a second color image and a first color image.
  • the second image and the first image are both color images, the final composite image can achieve better results in brightness and color.
  • the image generation module may generate a second image in color and a first image in black and white.
  • Black and white images have better brightness than color images. Therefore, generating a black and white first image and a second color image can make the final color composite image have better brightness, and further reduce the brightness of the synthesized image. influences.
  • the spectroscopic polarization imaging device may further include a beam filtering module, configured to determine the interference polarization angle according to the polarization state of the first light beam, and reduce light rays whose polarization angle is the interference polarization angle in the second light beam And send the processed second beam to the image generation module.
  • the light beam filtering module can remove the interference light in the polarization direction of the second light beam as the interference polarization angle, improve the imaging quality of the second image, and further improve the imaging quality of the composite image.
  • the present application provides a spectroscopic polarization imaging device, which may include a lens, a spectroscopic device, a polarization sensor, an image sensor, and an image processor.
  • the lens is used to concentrate the light on the beam splitter; the beam splitter is used to split the light received from the lens into a first beam and a second beam; the polarization sensor is used to generate a first image from the first beam, the first image band There is polarization information; the image sensor is used to generate the second image through the second light beam; the image processor is used to determine the polarization state of the first light beam according to the polarization information, and synthesize the first image and the second image according to the polarization state to generate a synthesis image.
  • the light is divided into two paths, and the polarization state of the light is obtained from one of the paths, and multiple images are generated by the two paths of light beams for synthesis, which effectively reduces the influence of the polarization state on the brightness of the light and improves the imaging quality.
  • the image processor when synthesizing the first image and the second image according to the polarization state, may determine the interference light information according to the polarization state, reducing the difference between the first image and the second image The interference light information, and the first image and the second image after reducing the interference light information are combined to generate a combined image.
  • the image processor may first synthesize the first image and the second image to generate a synthesized image, and then reduce the interference light information in the synthesized image. Reducing the interference light information can better present the shooting target and improve the imaging quality.
  • the light splitting device may be used to adaptively adjust the light split ratio during light splitting, and adjust the light amount ratio of the two beams according to actual needs.
  • the use of a splitting module with an adaptive adjustment of the splitting ratio can increase the flexibility of imaging and meet different usage requirements.
  • the imaging device may acquire the polarization state of the first light beam by using a focal plane.
  • the polarization sensor may be used to make the first image carry polarization information by using a focal plane, and the image processor determines the polarization state of the first light beam according to the polarization information.
  • adopting the defocusing plane method can obtain the polarization state of the first light beam in real time, and the system is relatively simple and lightweight.
  • the beam splitting device may be specifically used to divide the received light beam into a first light beam and a second light beam by using a coating beam splitting method.
  • a coating beam splitting method it is easier to maintain the original polarization state of the beam and improve the accuracy of subsequent acquisition of the polarization state.
  • the image processor when the image processor combines the first image and the second image, the brightness of the two images may be superimposed.
  • the image processor may first align the first image and the second image, and then superimpose the brightness of the corresponding position to obtain the brightness information of the synthesized image.
  • the function of the image processor may be realized by hardware or software.
  • the image sensor may generate a colored second image
  • the polarization sensor may generate a colored first image.
  • the final composite image can achieve better results in brightness and color.
  • the image sensor may generate a second image in color
  • the polarization sensor may generate a first image in black and white.
  • Black and white images have better brightness than color images. Therefore, generating a black and white first image and a second color image can make the final color composite image have better brightness, and further reduce the brightness of the synthesized image. influences.
  • the spectroscopic polarization imaging device may further include a polarizer control mechanism and a polarizer, and the polarizer is located on the optical path of the second light beam.
  • the image processor can be used to determine the interference polarization angle according to the polarization state, and the polarizer control mechanism can be used to adjust the angle of the polarizer to reduce light in the second beam whose polarization angle is the interference polarization angle.
  • the imaging quality of the second image is improved, which further improves the imaging quality of the composite image.
  • the present application provides a spectroscopic polarization imaging method, which includes: dividing light into a first light beam and a second light beam; acquiring a polarization state of the first light beam; generating a first image according to the first light beam, according to the second The light beam generates a second image; according to the polarization state, the first image and the second image are combined to generate a combined image.
  • the light is divided into two paths, and the polarization state of the light is obtained from one of the paths, and multiple images are generated by the two paths of light beams to be combined to effectively reduce the influence of the polarization state on the brightness of the light and improve the imaging quality.
  • the interference light information may be determined according to the polarization state to reduce the interference light information in the first image and the second image , And the first image and the second image after reducing the interference light information are combined to generate a composite image; optionally, the first image and the second image can be combined first to generate a composite image, and then the composite image is reduced Interference light information. Reducing the interference light information can better present the shooting target and improve the imaging quality.
  • the splitting ratio can be adaptively adjusted during splitting, and the light quantity ratio of the two beams can be adjusted according to actual needs.
  • the flexibility during imaging can be increased to meet different usage requirements.
  • the polarization state of the first light beam may be obtained by using a focal plane method. Compared with other ways to obtain the polarization state, adopting the defocusing plane method can obtain the polarization state of the first light beam in real time, and the system is relatively simple and lightweight.
  • the light received may be divided into a first light beam and a second light beam by coating spectroscopic means.
  • the coating splitting method it is easier to maintain the original polarization state of the beam and improve the accuracy of subsequent acquisition of the polarization state.
  • the brightness of the two images may be superimposed.
  • the first image and the second image may be aligned first, and then the brightness of the corresponding position may be superimposed to obtain the brightness information of the synthesized image.
  • the effect of reducing the brightness of the first image on the brightness of the synthesized image due to the acquisition of the polarization state is effectively reduced.
  • the first image and the second image may both be color images.
  • the final composite image can achieve better results in both brightness and color.
  • the first image may be a black-and-white image
  • the second image may be a color image.
  • Black and white images have better brightness than color images. Therefore, generating a black and white first image and a second color image can make the final color composite image have better brightness, and further reduce the brightness of the synthesized image. influences.
  • the interference polarization angle may also be determined according to the polarization state, and light rays whose polarization angle in the second light beam is the interference polarization angle may be reduced.
  • the imaging quality of the second image is improved, which further improves the imaging quality of the composite image.
  • the present application provides a terminal device, which includes the splitting polarization imaging module described in any possible implementation manner of the first to second aspects, and may further include a main processing module for generating the splitting polarization imaging module. Combine images for image processing.
  • the terminal device may further include a communication module for transmitting the image or video corresponding to the composite image to other devices through interface transmission or wireless transmission.
  • the present application provides a camera, which includes the spectroscopic polarization imaging module described in any possible implementation manner of the first to second aspects, and may further include a communication module for passing the image or video corresponding to the composite image Interface transmission or wireless transmission to other devices.
  • the present application provides a digital camera, including the split polarization imaging module as described in any possible implementation manner of the first to second aspects, and may further include a shutter for controlling whether light can enter the aforementioned split polarization Imaging module.
  • FIG. 1 is a schematic structural diagram of a polarization sensor in the prior art
  • FIG. 2 is a schematic diagram of a polarizer array arrangement of virtual pixels in the prior art
  • FIG. 3 is a schematic structural diagram of a split polarization imaging device according to Embodiment 1 of the present application.
  • FIG. 4 is a schematic diagram of a logical structure of still another split polarization imaging device according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method of splitting polarization imaging according to an embodiment of the present application
  • FIG. 6 is a schematic flowchart of still another method of splitting polarization imaging according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a logical structure of a camera according to Embodiment 1 of the present application.
  • FIG. 8 is a schematic diagram of a logical structure of a digital camera according to Embodiment 1 of the present application.
  • FIG. 9 is a schematic diagram of a logical structure of a terminal device according to Embodiment 1 of the present application.
  • FIG. 3 is a schematic diagram of an apparatus of a possible embodiment of the split polarization imaging device of the present application.
  • the imaging apparatus 100 includes a lens 110, a beam splitter 120, a polarization sensor 130, an image sensor 140 and an image processor 150.
  • the lens 110 is used to collect light and condense the light onto the beam splitter 120.
  • the lens 110 may be composed of multiple lenses or a single lens, which is not limited herein.
  • the beam splitter 120 is used to split the light received from the lens 110 into a first light beam and a second light beam.
  • the first light beam may be composed of light transmitted through the beam splitter 120
  • the second light beam may be composed of light reflected from the beam splitter 120.
  • the first light beam may also be composed of light reflected from the beam splitter 120
  • the second light beam may also be composed of light transmitted through the beam splitter 120, which is not limited herein.
  • the light splitting device 120 may be implemented as a beam splitting coating prism, and the light beam is split into a first light beam and a second light beam by a coating beam splitting method.
  • the first light beam is irradiated on the polarization sensor 130, and the second light beam is irradiated on the image sensor 140.
  • the ratio of the amount of light transmitted and reflected when the light passes through the dichroic coating prism can be 1: 1.
  • the light quantity ratio may also be other ratios, such as 1: 2, 2: 1, etc., which is not limited herein.
  • the beam splitter 120 may also be implemented as other types of beam splitter such as a diffraction beam splitter prism, a mechanical blocking device, etc., which is not limited herein.
  • the polarization sensor 130 is used to generate a first image through the first light beam, and the first image carries polarization information of the first light beam.
  • the polarization sensor 130 may be implemented as a defocused plane sensor.
  • the polarization sensor in the embodiment of the present application uses virtual pixels composed of four physical pixels, and the corresponding polarizer polarizing angles are 0 °, 45 °, and 90, respectively. ° and 135 ° implementation.
  • the polarization sensor 130 can also be implemented as any sensor that can be used to obtain the polarization state of the light, and when a defocused plane sensor is used, the number of physical pixels that constitute a virtual pixel can be any number, and the corresponding polarization angle of the polarizer can be Any angle for realizing the purpose of the present invention is not limited in this application.
  • the polarization information contained in the first image refers to the amount of polarized light received in each direction (in this embodiment, 0 °, 45 °, 90 °, 135 ° for example) received by each virtual pixel included in the first image .
  • Each virtual pixel includes four physical pixels, each of which corresponds to four polarizers with different polarization directions, and each physical pixel receives light in the corresponding polarization direction of the polarizer. In this way, four times the amount of light of any physical pixel in the virtual pixel can be approximated as the total amount of light in the polarization direction corresponding to the physical pixel received by the virtual pixel, and four physical pixels are recorded separately The amount of light received is equivalent to the total amount of light in each polarization direction of the light received by the virtual pixel.
  • the polarization sensor 130 converts the optical signal received by each physical pixel point into an electrical signal to generate a first image, so that the first image contains the polarization information of the first light beam.
  • the first image here may be a color image, and the polarization sensor 130 may separately convert the received light of different colors into different electrical signals, thereby generating a color image.
  • the first image may also be a black-and-white image, and the polarization sensor 130 directly converts the received optical signal into an electrical signal, thereby generating a black-and-white image.
  • the image sensor 140 is used to generate a second image through the second light beam.
  • the second image here may be a color image, and the image sensor 140 may respectively convert the received light of different colors into different electrical signals, thereby generating a color image.
  • the image processor 150 is used to determine the polarization state of the first light beam according to the polarization information, and synthesize the first image and the second image according to the polarization state to generate a composite image.
  • the polarization state of the first beam refers to the set of polarization states of all virtual pixels receiving the first beam light.
  • the polarization state of a virtual pixel includes the degree of polarization DoLP (degree of linear polarization) and the angle of polarization AoLP (Angle of linear polarization) ) Two aspects.
  • the specific way to determine the polarization state of a virtual pixel is as follows:
  • the brightness of a pixel represents the amount of light received by the physical pixel
  • the set of these polarization states and their corresponding virtual pixel point coordinates is the polarization state of the first light beam.
  • the polarization state of the first light beam may also be a set of polarization states and corresponding coordinates of some virtual pixel points, such as a set of polarization states and corresponding coordinates of one or several specific virtual pixel points, or The set of polarization states and corresponding coordinates of a certain proportion (such as 40% or 60%, etc.) of all virtual pixel points is not limited here.
  • the above-mentioned method of acquiring the polarization state through the polarization sensor 130 and the image processor 150 belongs to the method of the focal plane.
  • the first image and the second image are synthesized according to the polarization state, which may be to identify the subject information and the interference light information in the acquired image by the polarization state, to reduce the interference light information when the image is synthesized, or to enhance the subject information, and
  • the first image and the second image are aligned, and the brightness of the corresponding pixel is superimposed to generate a composite image.
  • the first image and the second image are respectively reduced in interference light information or enhanced in the subject information before the image is synthesized, and then synthesized; or the first image and the second image are synthesized to generate a synthesized image, and then synthesized
  • the image is weakened to interfere with light information or enhance the subject information, which is not limited here. Specific implementation functions include but are not limited to rain and fog removal algorithms.
  • the spectroscopic polarization imaging apparatus 100 includes an adaptive filter 160 in addition to the lens 110, the beam splitter 120, the polarization sensor 130, the image sensor 140, and the image processor 150.
  • an adaptive filter 160 in addition to the lens 110, the beam splitter 120, the polarization sensor 130, the image sensor 140, and the image processor 150.
  • the image processor 150 is used to determine the polarization state of the first light beam according to the polarization information, and determine the interference polarization angle according to the polarization state of the first light beam.
  • the interference polarization angle here refers to the polarization angle of the interference light (such as reflected light) in the first light beam.
  • the adaptive filter 160 is used to reduce the light of a specific polarization angle in the second light beam.
  • the adaptive filter 160 may include a polarizer and a micro-actuator.
  • the micro-actuator adjusts the angle of the polarizer according to the instructions, thereby reducing or even filtering out the light whose polarization angle is the interference polarization angle. Taking de-reflection as an example, the purpose of reducing the interference polarization angle in the second beam can be achieved as follows:
  • the image processor 150 determines the polarization state of the first light beam according to the first light beam. For a specific determination method, please refer to the related descriptions above, which will not be repeated here;
  • a reflective area (such as a car window) is selected, and the average AoLP of virtual pixel points in the reflective area that meet a preset condition is determined, and the average AoLP is used as the interference polarization angle.
  • the virtual pixels satisfying the preset conditions may be virtual pixels whose DoLP value is in the top 50% from high to low, or virtual pixels whose DoLP value is higher than a certain set value, or other similar conditions. Make a limit
  • the interference polarization angle is fed back to the adaptive filter 160, and the micro-actuator in the adaptive filter 160 rotates the polarizer to the orthogonal direction of the interference polarization angle, thereby reducing the polarization direction in the second beam to the interference polarization angle
  • the light in the direction reduces the reflection. In this way, in the second image generated by the second light beam, the reflective information is significantly reduced, and the imaging quality is improved.
  • the image processor 150 may reduce the reflective information in the first image through an algorithm according to the interference polarization angle. After that, the image processor 150 can positionally align the first image and the second image, superimpose the brightness of the corresponding pixels, and generate a composite image. In some possible implementation manners, the reflective information in the synthesized image may also be reduced after the synthesized image, which is not limited herein.
  • FIG. 4 is a schematic diagram of an apparatus of another possible embodiment of the split polarization imaging device of the present application.
  • the imaging device 200 includes a spectroscopic module 210, a polarization state acquisition module 220, an image generation module 230 and an image synthesis module 240.
  • the imaging device 200 may further include a beam filtering module 250.
  • the beam splitting module 210 is used to split the received light into a first light beam and a second light beam.
  • the light splitting module 210 may divide the light into a first light beam and a second light beam by coating and splitting.
  • the first light beam is sent to the polarization state acquisition module 220, and the second light beam is sent to the image generation module 230.
  • the light splitting module 210 divides the light into the first light beam and the second light beam, and the light quantity ratio may be 1: 1.
  • the light quantity ratio may also be other ratios, such as 1: 2, 2: 1, etc., which is not limited herein.
  • the beam splitting module 210 may also use other types of beam splitting methods such as diffraction beam splitting, mechanical blocking beam splitting, and the like, which are not limited herein.
  • the polarization state obtaining module 220 is used to obtain the polarization state of the first light beam.
  • the polarization state obtaining module can obtain the polarization state by means of a defocusing plane.
  • obtaining method please refer to the related description in FIG. 3, which will not be repeated here.
  • the image generation module 230 is used to generate a first image from the first light beam and generate a second image from the second light beam. At least one of the first image and the second image here is a color image.
  • the image synthesis module 240 is used to synthesize the first image and the second image according to the polarization state of the first light beam to generate a synthesized image.
  • the first image and the second image are synthesized according to the polarization state of the first light beam, which may be to identify the subject information and the interference light information in the acquired image by the polarization state, to weaken the interference light information when synthesizing the image, or to enhance the shooting Object information, positionally align the first image and the second image, and superimpose the brightness of corresponding pixels to generate a composite image.
  • the first image and the second image are respectively reduced in interference light information or enhanced in the subject information before the image is synthesized, and then synthesized; or the first image and the second image are synthesized to generate a synthesized image, and then synthesized
  • the image is weakened to interfere with light information or enhance the subject information, which is not limited here.
  • Specific implementation functions include but are not limited to rain and fog removal algorithms.
  • the light beam filtering module 250 is used to determine the interference polarization angle according to the polarization state of the first light beam, and reduce the light rays whose polarization angle is the interference polarization angle in the second light beam.
  • the beam filtering module 250 reduces the light in the second beam whose polarization angle is the interference polarization angle, which can be specifically implemented by a polarizer structure or other means capable of filtering polarized light, which is not limited here .
  • FIG. 5 is a schematic flowchart of a possible embodiment of a split polarization imaging method of the present application.
  • S310 splits the light into a first light beam and a second light beam.
  • the light beam can be divided into a first light beam and a second light beam by means of coating beam splitting, diffraction beam splitting, and mechanical blocking beam splitting.
  • the light quantity ratio of the first light beam and the second light beam may be 1: 1. In some possible implementation manners, the light quantity ratio may also be other ratios, such as 1: 2, 2: 1, etc., which is not limited herein.
  • the S320 acquires the polarization state of the first light beam.
  • the polarization state of the first light beam can be obtained by using a focal plane.
  • the specific acquisition method please refer to the foregoing description, which will not be repeated here.
  • S330 generates a first image based on the first light beam and generates a second image based on the second light beam. At least one of the first image and the second image here is a color image.
  • S340 combines the first image and the second image according to the polarization state to generate a composite image.
  • the first image and the second image are synthesized according to the polarization state of the first light beam, which may be to identify the subject information and the interference light information in the acquired image by the polarization state, to weaken the interference light information when synthesizing the image, or enhance the shooting Object information, positionally align the first image and the second image, and superimpose the brightness of corresponding pixels to generate a composite image.
  • the first image and the second image are respectively reduced in interference light information or enhanced in the subject information before the image is synthesized, and then synthesized; or the first image and the second image are synthesized to generate a synthesized image, and then synthesized
  • the image is weakened to interfere with light information or enhance the subject information, which is not limited here.
  • Specific implementation functions include but are not limited to rain and fog removal algorithms.
  • FIG. 6 is a schematic flowchart of another possible embodiment of the split polarization imaging method of the present application.
  • S410 splits the light into a first light beam and a second light beam.
  • S420 Obtain the polarization state of the first light beam.
  • S410 and S420 please refer to the description of S310 and S320 in FIG. 5, which will not be repeated here.
  • S430 determines the interference polarization angle according to the polarization state of the first light beam, and reduces the light beam whose polarization angle is the interference polarization angle in the second light beam.
  • the method of determining the interference polarization angle and reducing the light rays whose polarization angle in the second light beam is the interference polarization angle please refer to the foregoing description, which will not be repeated here.
  • S440 generates a first image based on the first light beam and generates a second image based on the second light beam.
  • S450 combines the first image and the second image according to the polarization state to generate a composite image.
  • the interference light information in the first image can be reduced according to the polarization state, and then the first image and the second image are synthesized to generate a synthesized image.
  • FIG. 7 is a possible embodiment of a video camera adopting the split polarization imaging method of the present application.
  • the camera 500 includes a split polarization imaging module 510 and a communication module 520.
  • the spectroscopic polarization imaging module 510 may be implemented in any form of the foregoing embodiments of the spectroscopic polarization imaging device.
  • the communication module 520 is used to send the image or video corresponding to the composite image to other devices through interface transmission or wireless transmission.
  • FIG. 8 is a possible embodiment of a digital camera adopting the split polarization imaging method of the present application.
  • the digital camera 600 includes a shutter 610 and a split polarization imaging module 620.
  • the shutter 610 is used to control whether light can enter the spectroscopic polarization imaging module 620.
  • the splitting polarization imaging module 620 may be implemented in any form of the foregoing splitting polarization imaging device embodiments.
  • the terminal device 700 includes a split polarization imaging module 710 and a main processing module 720, and in some possible implementations, a communication module 730.
  • the spectroscopic polarization imaging module 710 may be implemented in any form of the foregoing embodiments of the spectroscopic polarization imaging device.
  • the main processing module 720 is used to perform image processing on the composite image generated by the spectral polarization imaging module.
  • the communication module 730 is used to send the image or video corresponding to the composite image to other devices through interface transmission or wireless transmission.
  • the technical solution of the present application does not limit the color synthesis method when the first image and the second image are synthesized, and the colors in the first image and the second image may be selected, merged, and superimposed in any form.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium and executed by a hardware-based processing unit.
  • the method of image fusion in this application can be implemented by hardware or software.
  • you can use application specific integrated circuits application specific integrated circuits (application specific integrated circuits (ASIC), digital signal processors (DSP), programmable logic devices (programmable logic devices (PLD), field programmable gate arrays (PLD) at least one of an electronic unit such as a field programmable gate (FPGA), a processor, a controller, a microcontroller, and / or a microprocessor to implement the embodiments of the present application.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • PLD programmable logic devices
  • PLD field programmable gate arrays
  • FPGA field programmable gate arrays
  • implementations such as processes and functions may be implemented using software modules that perform at least one function and operation.
  • the software module can be implemented in a software program written in any appropriate software language.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean determining B based on A alone, and B may also be determined based on A and / or other information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Endoscopes (AREA)
  • Polarising Elements (AREA)

Abstract

一种分光偏振成像的设备和方法。成像方法将接收到的光线采用镀膜分光的方式分为两路光束,并采用分焦平面的方法获取其中一路光束的偏振态。使用两路光束分别生成图像,并根据偏振态对两路图像进行去雨雾、去反光等算法处理,然后将两路图像融合,生成最终图像。还可以根据偏振态确定反光的偏振角,然后使用自适应偏振机构去除另一路光束中的反光光线,达到去反光的目的。

Description

一种分光偏振成像的设备和方法
本申请要求于2018年11月16日提交中国国家知识产权局、申请号为201811372124.7、申请名称为“一种分光偏振成像的设备和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学成像领域,尤其涉及一种分光偏振成像的方法及装置。
背景技术
近些年来,人们对成像设备输出彩色图像质量的要求越来越高,在一些特殊场景下,传统成像设备越来越难以满足需求。传统成像设备采取的方式是将接收到的光信息全部直接呈现在输出图像中,当照度较低(比如黄昏或夜晚)或干扰光信息较强(比如雨雾天气或拍摄物体高反光)时,输出的彩色图像无法有效呈现目标物体。而利用光的偏振特性,通过接收的光线的偏振态来实时的对设备接收的光信息进行处理和筛选,以筛选过的光信息来成像,成为解决这些问题的主要手段。
现有技术中,实时获取接收光线的偏振态并生成彩色图像的方法主要是在成像光路上添加偏振传感器。偏振传感器的常用结构如图1所示,包括微透镜阵列、偏振片阵列和物理像素阵列。每一个微透镜都对应着一个偏振片和一个物理像素点,微透镜汇聚的光线通过对应的偏振片照射在对应的物理像素点上,使得每个物理像素点所接收的光的偏振方向都为对应的偏振片的偏振方向。如图2所示,可以是四个相邻偏振片为一组,包括0°、45°、90°和135°四个偏振方向,这四个相邻偏振片对应的四个物理像素点为一个虚拟像素点。这样,通过一个虚拟像素点对应的一组四个物理像素点各自的光量,就能得出该虚拟像素点接收的光线中四个偏振方向的光的各自光量占比,进而就能够得出这个虚拟像素点接收的光的偏振态。在确定所有虚拟像素点的偏振态之后,便获得了传感器接收的光线的偏振态。同时,光线照射在像素点上,物理像素阵列还会同时生成彩色图像。
然而,光线在通过偏振片结构时亮度损失较大,故设备在获取光线的偏振态后,成像的亮度往往会非常低;同时由于将多个物理像素点作为一个虚拟像素点处理,最终输出的图像分辨率有明显降低,影响成像质量。因此,如何实时获取成像光线的偏振态,同时生成图像,并避免成像的亮度和图像分辨率明显降低,成为亟待本领域技术人员解决的一个问题。
发明内容
本申请提供了一种分光偏振成像设备,以及该设备应用的分光偏振成像方法。通过将光线分为两路,对其中一路进行偏振态获取,并将两路光束生成的图像进行融合,有效改善了获取偏振态导致最终图像亮度过低的情况。
第一方面,本申请提供一种分光偏振成像设备,可以包括分光模块、偏振态获取模块、图像生成模块和图像合成模块。分光模块可以用于将接收到的光线分为第一光束和第二光束。偏振态获取模块可以用于获取第一光束的偏振态。图像生成模块可以用于通过第一光束生成第一图像,通过第二光束生成第二图像。图像合成模块可以根据从第一光束获取的偏振态,来将第一图像和第二图像进行合成,生成合成图像。将光线分为两路,从其中一路获取光线的偏振态,并将两路光束分别生成多个图像进行合成,有效减少了获取偏振态对光线亮度的 影响,提高了成像质量。
在第一方面一种可能的实现方式中,在根据偏振态将第一图像和第二图像进行合成时,图像合成模块可以根据偏振态确定干扰光信息,减少第一图像和第二图像中的该干扰光信息,并将减少干扰光信息之后的第一图像和第二图像进行合成以生成合成图像。可选的,图像合成模块也可以先将第一图像和第二图像合成,生成合成图像,然后再减少合成图像中的干扰光信息。减少干扰光信息,能够更好的呈现拍摄目标,提升成像质量。
在上述第一方面各可能的实现方式中,分光模块可以用于在分光时自适应的调整分光比例,根据实际需要来调整两路光束的光量比例。采用具有自适应调整分光比例功能的分光模块,可以增加成像时的灵活性,满足不同的使用需求。
在上述第一方面各可能的实现方式中,偏振态获取模块可以具体用于采用分焦平面的方式获取第一光束的偏振态。相比于其他获取偏振态的方式,采用分焦平面的方式能够实时获取第一光束的偏振态,并且系统相对简单轻便。
在上述第一方面各可能的实现方式中,分光模块可以具体用于采用镀膜分光的方式将接收到的光线分为第一光束和第二光束。采用镀膜分光的方式,更容易保持光束的原始偏振态,提高后续获取偏振态的准确性。
在上述第一方面各可能的实现方式中,图像合成模块在将第一图像和第二图像进行合成时,可以对二者的亮度进行叠加。图像合成模块可以首先将第一图像和第二图像进行位置对准,然后将对应位置的亮度进行叠加,得到合成图像的亮度信息。通过将第一图像和第二图像的亮度进行叠加,有效降低了由于获取偏振态导致第一图像亮度降低对合成图像亮度所带来的影响。
在上述第一方面各可能的实现方式中,图像生成模块可以生成彩色的第二图像和彩色的第一图像。第二图像和第一图像均为彩色图像时,最终的合成图像在亮度和色彩上都能取得较好的效果。
在上述第一方面各可能的实现方式中,图像生成模块可以生成彩色的第二图像和黑白的第一图像。黑白图像相比彩色图像具有更好的亮度,因此生成黑白的第一图像和彩色的第二图像,能够使得最终合成的彩色合成图像具有更好的亮度,进一步降低获取偏振态对合成图像亮度的影响。
在上述第一方面各可能的实现方式中,分光偏振成像设备还可以包括光束过滤模块,用于根据第一光束的偏振态确定干扰偏振角,减少第二光束中偏振角为干扰偏振角的光线,并将处理后的第二光束发送给图像生成模块。光束过滤模块可以去除第二光束中偏振方向为干扰偏振角的干扰光线,提升了第二图像的成像质量,进而进一步的提高了合成图像的成像质量。
第二方面,本申请提供一种分光偏振成像设备,可以包括镜头、分光装置、偏振传感器、图像传感器和图像处理器。镜头用于将光线汇聚在分光装置上;分光装置用于将从镜头接收到的光线分为第一光束和第二光束;偏振传感器用于通过第一光束生成第一图像,该第一图像带有偏振信息;图像传感器用于通过第二光束生成第二图像;图像处理器用于根据偏振信息确定第一光束的偏振态,并根据该偏振态将第一图像和第二图像进行合成,生成合成图像。将光线分为两路,从其中一路获取光线的偏振态,并将两路光束分别生成多个图像进行合成,有效减少了获取偏振态对光线亮度的影响,提高了成像质量。
在第二方面一种可能实现方式中,在根据偏振态将第一图像和第二图像进行合成时,图像处理器可以根据偏振态确定干扰光信息,减少第一图像和第二图像中的该干扰光信息,并 将减少干扰光信息之后的第一图像和第二图像进行合成以生成合成图像。在另一种可能实现方式中,图像处理器也可以先将第一图像和第二图像合成,生成合成图像,然后再减少合成图像中的干扰光信息。减少干扰光信息,能够更好的呈现拍摄目标,提升成像质量。
在上述第二方面各可能的实现方式中,分光装置可以用于在分光时自适应的调整分光比例,根据实际需要来调整两路光束的光量比例。采用具有自适应调整分光比例功能的分光模块,可以增加成像时的灵活性,满足不同的使用需求。
在上述第二方面各可能的实现方式中,成像设备可以采用分焦平面的方式获取第一光束的偏振态。具体的,偏振传感器可以用于采用分焦平面的方式使第一图像带有偏振信息,图像处理器根据该偏振信息确定第一光束的偏振态。相比于其他获取偏振态的方式,采用分焦平面的方式能够实时获取第一光束的偏振态,并且系统相对简单轻便。
在上述第二方面各可能的实现方式中,分光装置可以具体用于采用镀膜分光的方式将接收到的光线分为第一光束和第二光束。采用镀膜分光的方式,更容易保持光束的原始偏振态,提高后续获取偏振态的准确性。
在上述第二方面各可能的实现方式中,图像处理器在将第一图像和第二图像进行合成时,可以对二者的亮度进行叠加。图像处理器可以首先将第一图像和第二图像进行位置对准,然后将对应位置的亮度进行叠加,得到合成图像的亮度信息。通过将第一图像和第二图像的亮度进行叠加,有效降低了由于获取偏振态导致第一图像亮度降低对合成图像亮度所带来的影响。可选的,图像处理器的功能可以由硬件实现,也可以由软件来实现。
在上述第二方面各可能的实现方式中,图像传感器可以生成彩色的第二图像,并且偏振传感器可以生成彩色的第一图像。第二图像和第一图像均为彩色图像时,最终的合成图像在亮度和色彩上都能取得较好的效果。
在上述第二方面各可能的实现方式中,图像传感器可以生成彩色的第二图像,并且偏振传感器可以生成黑白的第一图像。黑白图像相比彩色图像具有更好的亮度,因此生成黑白的第一图像和彩色的第二图像,能够使得最终合成的彩色合成图像具有更好的亮度,进一步降低获取偏振态对合成图像亮度的影响。
在上述第二方面各可能的实现方式中,分光偏振成像设备还可以包括偏振片控制机构和偏振片,偏振片位于第二光束的光路上。图像处理器可以用于根据偏振态确定干扰偏振角,偏振片控制机构可以用于调整偏振片的角度以减少第二光束中偏振角为干扰偏振角的光线。通过去除第二光束中偏振方向为干扰偏振角的干扰光线,提升了第二图像的成像质量,进而进一步的提高了合成图像的成像质量。
第三方面,本申请提供一种分光偏振成像方法,该方法包括:将光线分为第一光束和第二光束;获取第一光束的偏振态;根据第一光束生成第一图像,根据第二光束生成第二图像;根据该偏振态,将第一图像和第二图像进行合成,生成合成图像。将光线分为两路,从其中一路获取光线的偏振态,并将两路光束分别生成多个图像进行合成,有效减少了获取偏振态对光线亮度的影响,提高了成像质量。
在第三方面一种可能实现方式中,在根据偏振态将第一图像和第二图像进行合成时,可以根据偏振态确定干扰光信息,减少第一图像和第二图像中的该干扰光信息,并将减少干扰光信息之后的第一图像和第二图像进行合成以生成合成图像;可选的,也可以先将第一图像和第二图像合成,生成合成图像,然后再减少合成图像中的干扰光信息。减少干扰光信息,能够更好的呈现拍摄目标,提升成像质量。
在上述第三方面各可能的实现方式中,分光时可以自适应的调整分光比例,根据实际需 要来调整两路光束的光量比例。通过自适应的调整分光比例,可以增加成像时的灵活性,满足不同的使用需求。
在上述第三方面各可能的实现方式中,可以采用分焦平面的方法获取第一光束的偏振态。相比于其他获取偏振态的方式,采用分焦平面的方式能够实时获取第一光束的偏振态,并且系统相对简单轻便。
在上述第三方面各可能的实现方式中,可以采用镀膜分光的方式将接收到的光线分为第一光束和第二光束。采用镀膜分光的方式,更容易保持光束的原始偏振态,提高后续获取偏振态的准确性。
在上述第三方面各可能的实现方式中,在将第一图像和第二图像进行合成时,可以对二者的亮度进行叠加。可以首先将第一图像和第二图像进行位置对准,然后将对应位置的亮度进行叠加,得到合成图像的亮度信息。通过将第一图像和第二图像的亮度进行叠加,有效降低了由于获取偏振态导致第一图像亮度降低对合成图像亮度所带来的影响。
在上述第三方面各可能的实现方式中,第一图像和第二图像可以均为彩色图像。在第一图像和第二图像均为彩色图像时,最终的合成图像在亮度和色彩上都能取得较好的效果。
在上述第三方面各可能的实现方式中,第一图像可以是黑白图像,并且第二图像可以是彩色图像。黑白图像相比彩色图像具有更好的亮度,因此生成黑白的第一图像和彩色的第二图像,能够使得最终合成的彩色合成图像具有更好的亮度,进一步降低获取偏振态对合成图像亮度的影响。
在上述第三方面各可能的实现方式中,还可以根据偏振态确定干扰偏振角,并减少第二光束中偏振角为干扰偏振角的光线。通过去除第二光束中偏振方向为干扰偏振角的干扰光线,提升了第二图像的成像质量,进而进一步的提高了合成图像的成像质量。
第四方面,本申请提供一种终端设备,包括如第一至第二方面任一可能实现方式所描述的分光偏振成像模块,同时还可以包括主处理模块,用于对分光偏振成像模块生成的合成图像进行图像处理。
可选的,该终端设备还可以包括通信模块,用于将合成图像对应的图像或视频通过接口传输或无线发射的方式发送给其它设备。
第五方面,本申请提供一种摄像机,包括如第一至第二方面任一可能实现方式所描述的分光偏振成像模块,同时还可以包括通信模块,用于将合成图像对应的图像或视频通过接口传输或无线发射的方式发送给其它设备。
第六方面,本申请提供一种数码相机,包括如第一至第二方面任一可能实现方式所描述的分光偏振成像模块,同时还可以包括快门,用于控制是否能有光线进入前述分光偏振成像模块。
附图说明
图1为现有技术中一种偏振传感器结构示意图;
图2为现有技术中一种虚拟像素的偏振片阵列排布示意图;
图3为本申请实施例一分光偏振成像设备结构示意图;
图4为本申请实施例又一分光偏振成像设备的逻辑结构示意图;
图5为本申请实施例一分光偏振成像方法流程示意图;
图6为本申请实施例又一分光偏振成像方法流程示意图;
图7为本申请实施例一摄像机逻辑结构示意图;
图8为本申请实施例一数码相机逻辑结构示意图;
图9为本申请实施例一终端设备逻辑结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。
请参阅图3,为本申请分光偏振成像设备一可能实施例的装置示意图。如图3所示,成像设备100包括镜头110、分光装置120、偏振传感器130、图像传感器140和图像处理器150。
镜头110用于收集光线并将光线汇聚到分光装置120上。镜头110可以由多片镜片组成,也可以是由单个镜片组成,此处不做限定。
分光装置120用于将从镜头110接收的光线分为第一光束和第二光束。其中,第一光束可以由透射过分光装置120的光线组成,第二光束可以由从分光装置120上反射的光线组成。在一些可能的实施方式中,第一光束也可以是由从分光装置120上反射的光线组成,第二光束也可以是由透射过分光装置120的光线组成,此处不做限定。分光装置120可以实现为分光镀膜棱镜,采用镀膜分光的方式将光线分为第一光束和第二光束。其中,第一光束照射在偏振传感器130上,第二光束照射在图像传感器140上。光线在经过分光镀膜棱镜时透射和反射的光量比例可以为1:1。在一些可能的实施方式中,该光量比例也可以为其他比例,比如1:2、2:1等,此处不做限定。在一些可能的实施方式中,分光装置120也可以实现为如衍射分光棱镜、机械遮拦装置等其他类型的分光装置,此处不做限定。
偏振传感器130用于通过第一光束生成第一图像,第一图像中带有第一光束光线的偏振信息。偏振传感器130可以实现为分焦平面传感器,为方便说明,本申请实施例中的偏振传感器采用虚拟像素点由四个物理像素点组成、对应的偏振片偏振角度分别为0°、45°、90°和135°的实现方式。偏振传感器130也可以实现为任意能够用于获取光线偏振态的传感器,并且当采用分焦平面传感器时,组成一个虚拟像素点的物理像素点数可以为任意个,对应的偏振片偏振角度可以为能够实现本发明目的的任意角度,本申请不做限定。第一图像中带有的偏振信息是指第一图像中包含的每个虚拟像素点接收到的各个方向(本实施例以0°、45°、90°、135°为例)偏振光的光量。每一个虚拟像素点包含四个物理像素点,四个物理像素点分别对应四个偏振方向不同的偏振片,每一个物理像素点接收到对应的偏振片偏振方向的光。这样,虚拟像素点中任何一个物理像素点的光量的四倍,就可以近似认为是该虚拟像素点接收到的该物理像素点对应的偏振方向的光的总量,分别记录四个物理像素点接收的光量就相当于记录了该虚拟像素点接收到的光中各个偏振方向的光的总量。偏振传感器130将每个物理像素点接收到的光信号转换为电信号,生成第一图像,这样第一图像中就包含了第一光束的偏振信息。这里的第一图像可以是彩色图像,偏振传感器130可以将接收到的不同颜色的光分别转换成不同的电信号,进而生成彩色图像。在一些可能的实施方式中,第一图像也可以是黑白图像,偏振传感器130将接收到的光信号直接转换为电信号,进而生成黑白图像。
图像传感器140用于通过第二光束生成第二图像。这里的第二图像可以是彩色图像,图像传感器140可以将接收到的不同颜色的光分别转换成不同的电信号,进而生成彩色图像。
图像处理器150用于根据偏振信息确定第一光束的偏振态,并根据偏振态将第一图像和第二图像进行合成,生成合成图像。这里第一光束的偏振态是指所有接收到第一光束光线的虚拟像素的偏振态的集合,一个虚拟像素的偏振态包括偏振程度DoLP(degree of linear polarization)和偏振角度AoLP(Angle of linear polarization)两个方面。确定一个虚 拟像素点的偏振态的具体方式如下:
获得该虚拟像素点对应的四个物理像素点接收的光线的光量,可以用I0、I45、I90、I135分别表示偏振角度为0°、45°、90°和135°的偏振片所对应的物理像素点的亮度,表征了该物理像素点接收到的光量;
根据I0、I45、I90、I135确定该虚拟像素点的斯托克斯向量S0、S1和S2,具体公式为
Figure PCTCN2019117177-appb-000001
根据S0、S1和S2确定DoLP和AoLP,具体公式为
Figure PCTCN2019117177-appb-000002
Figure PCTCN2019117177-appb-000003
确定所有虚拟像素点的偏振态后,这些偏振态及其对应的虚拟像素点坐标的集合,便是第一光束的偏振态。在一些可能的实施方式中,第一光束的偏振态也可能是部分虚拟像素点的偏振态和对应坐标的集合,比如某一个或几个特定虚拟像素点的偏振态和对应坐标的集合,或所有虚拟像素点中一定比例(比如40%或60%等)的虚拟像素点的偏振态和对应坐标的集合,此处不做限定。上述通过偏振传感器130和图像处理器150获取偏振态的方法属于分焦平面的方法。
根据偏振态将第一图像和第二图像进行合成,可以是通过偏振态来识别所获取图像中的拍摄对象信息和干扰光信息,在合成图像时减弱干扰光信息,或者增强拍摄对象信息,并将第一图像和第二图像进行位置对准,将对应像素的亮度进行叠加,生成合成图像。这里可以是在合成图像前分别对第一图像和第二图像减弱干扰光信息或增强拍摄对象信息,然后进行合成;也可以是先将第一图像和第二图像合成生成合成图像,然后对合成图像减弱干扰光信息或增强拍摄对象信息,此处不做限定。具体实现功能包括但不限于去雨雾算法等。
在另一可能的实施方式中,分光偏振成像设备100除镜头110、分光装置120、偏振传感器130、图像传感器140和图像处理器150之外,还包括自适应滤光器160。镜头110、分光装置120、偏振传感器130和图像传感器140的具体功能请参见前文描述,此处不再赘述。
图像处理器150用于根据偏振信息确定第一光束的偏振态,并根据第一光束的偏振态确定干扰偏振角。这里的干扰偏振角是指第一光束中干扰光(比如反光)光线的偏振角度。
自适应滤光器160用于减少第二光束中特定偏振角的光线。自适应滤光器160可以包括偏振片和微执行机构,微执行机构会根据指令调整偏振片的角度,进而减少甚至滤除偏振角度为干扰偏振角的光线。以去反光为例,减少第二光束中干扰偏振角的目的可以通过如下方式实现:
图像处理器150根据第一光束确定第一光束的偏振态,具体确定方式请参见前文相关描述,此处不再赘述;
针对特定场景,选出反光区域(比如汽车车窗),并确定该反光区域中满足预设条件的虚拟像素点的平均AoLP,将该平均AoLP作为干扰偏振角。这里满足预设条件的虚拟像素可以是DoLP值由高到低排在前50%的虚拟像素,也可以是DoLP值高于某一设定值的虚拟像素,抑或是其他类似条件,此处不做限定;
将该干扰偏振角反馈给自适应滤光器160,自适应滤光器160中的微执行机构将偏振片旋转至干扰偏振角的正交方向,从而减少第二光束中偏振方向为干扰偏振角方向的光线,即 减少了反光。这样,由第二光束生成的第二图像中,反光信息明显减少,成像质量得到提升。
图像处理器150可以根据干扰偏振角,通过算法来减少第一图像中的反光信息。之后图像处理器150可以将第一图像和第二图像进行位置对准,将对应像素的亮度进行叠加,生成合成图像。在一些可能的实施方式中,也可以在合成图像之后减少合成图像中的反光信息,此处不做限定。
请参阅图4,为本申请分光偏振成像设备又一可能实施例的装置示意图。如图4所示,成像设备200包括分光模块210、偏振态获取模块220、图像生成模块230和图像合成模块240。在一些可能的实施方式中,成像设备200还可能包括光束过滤模块250。
分光模块210用于将接收到的光线分为第一光束和第二光束。分光模块210可以采用镀膜分光的方式将光线分为第一光束和第二光束。其中,第一光束发送给偏振态获取模块220,第二光束发送给图像生成模块230上。分光模块210将光线分为第一光束和第二光束的光量比例可以为1:1。在一些可能的实施方式中,该光量比例也可以为其他比例,比如1:2、2:1等,此处不做限定。在一些可能的实施方式中,分光模块210也可以采用诸如衍射分光、机械遮拦分光等其他类型的分光方式进行分光,此处不做限定。
偏振态获取模块220用于获取第一光束的偏振态。偏振态获取模块可以通过分焦平面的方式获取偏振态,具体获取方法请参见图3中的相关描述,此处不再赘述。
图像生成模块230用于通过第一光束生成第一图像,以及通过第二光束生成第二图像。这里的第一图像和第二图像中至少有一个是彩色图像。
图像合成模块240用于根据第一光束的偏振态,将第一图像和第二图像进行合成,生成合成图像。根据第一光束的偏振态将第一图像和第二图像进行合成,可以是通过偏振态来识别所获取图像中的拍摄对象信息和干扰光信息,在合成图像时减弱干扰光信息,或者增强拍摄对象信息,并将第一图像和第二图像进行位置对准,将对应像素的亮度进行叠加,生成合成图像。这里可以是在合成图像前分别对第一图像和第二图像减弱干扰光信息或增强拍摄对象信息,然后进行合成;也可以是先将第一图像和第二图像合成生成合成图像,然后对合成图像减弱干扰光信息或增强拍摄对象信息,此处不做限定。具体实现功能包括但不限于去雨雾算法等。
光束过滤模块250用于根据第一光束的偏振态确定干扰偏振角,并减少第二光束中偏振角为干扰偏振角的光线。确定干扰偏振角的方式请参见前文描述,此处不再赘述。在确定干扰偏振角后,光束过滤模块250减少第二光束中偏振角为干扰偏振角的光线,具体可以通过偏振片结构实现,也可以通过其他能够筛选偏振光线的手段实现,此处不做限定。
请参阅图5,为本申请分光偏振成像方法一可能实施例的流程示意图。
S310将光线分为第一光束和第二光束。这里可以采用镀膜分光、衍射分光、机械遮拦分光等方式将光线分为第一光束和第二光束。第一光束和第二光束的光量比例可以为1:1。在一些可能的实施方式中,该光量比例也可以为其他比例,比如1:2、2:1等,此处不做限定。
S320获取第一光束的偏振态。这里可以采用分焦平面的方式获取第一光束的偏振态,具体获取方式请参阅前文描述,此处不再赘述。
S330根据第一光束生成第一图像,根据第二光束生成第二图像。这里的第一图像和第二图像中至少有一个是彩色图像。
S340根据偏振态,将第一图像和第二图像进行合成,生成合成图像。根据第一光束的偏振态将第一图像和第二图像进行合成,可以是通过偏振态来识别所获取图像中的拍摄对象信息和干扰光信息,在合成图像时减弱干扰光信息,或者增强拍摄对象信息,并将第一图像和 第二图像进行位置对准,将对应像素的亮度进行叠加,生成合成图像。这里可以是在合成图像前分别对第一图像和第二图像减弱干扰光信息或增强拍摄对象信息,然后进行合成;也可以是先将第一图像和第二图像合成生成合成图像,然后对合成图像减弱干扰光信息或增强拍摄对象信息,此处不做限定。具体实现功能包括但不限于去雨雾算法等。
请参阅图6,为本申请分光偏振成像方法又一可能实施例的流程示意图。
S410将光线分为第一光束和第二光束。S420获取第一光束的偏振态。S410和S420的具体内容请参见图5中S310和S320的描述,此处不再赘述。
S430根据第一光束的偏振态确定干扰偏振角,减少第二光束中偏振角为干扰偏振角的光线。确定干扰偏振角以及减少第二光束中偏振角为干扰偏振角的光线的方式,请参见前文描述,此处不再赘述。
S440根据第一光束生成第一图像,根据第二光束生成第二图像。
S450根据偏振态,将第一图像和第二图像进行合成,生成合成图像。可以根据偏振态,减少第一图像中的干扰光信息,然后将第一图像和第二图像进行合成,生成合成图像。
请参阅图7,为采用本申请分光偏振成像方法的一种摄像机的可能实施例。摄像机500包括分光偏振成像模块510和通信模块520。分光偏振成像模块510可以实现为前述各分光偏振成像装置实施例中的任意一种形式。通信模块520用于将合成图像对应的图像或视频通过接口传输或无线发射的方式发送给其它设备。
请参阅图8,为采用本申请分光偏振成像方法的一种数码相机的可能实施例。数码相机600包括快门610和分光偏振成像模块620。快门610用于控制是否能有光线进入分光偏振成像模块620。分光偏振成像模块620可以实现为前述各分光偏振成像装置实施例中的任意一种形式。
请参阅图9,为采用本申请分光偏振成像方法的一种终端设备的可能实施例。终端设备700包括分光偏振成像模块710和主处理模块720,在一些可能的实施方式中还包括通信模块730。分光偏振成像模块710可以实现为前述各分光偏振成像装置实施例中的任意一种形式。主处理模块720用于对分光偏振成像模块生成的合成图像进行图像处理。通信模块730用于将合成图像对应的图像或视频通过接口传输或无线发射的方式发送给其它设备。
本申请的技术方案对第一图像和第二图像合成时的色彩合成方式不做限定,可以以任意形式对第一图像和第二图像中的色彩进行取舍、融合、叠加等处理。
在一个或多个实例中,所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件实施,则功能可作为一个或多个指令或代码而存储于计算机可读媒体上或经由计算机可读媒体而发送,且通过基于硬件的处理单元执行。
应理解,说明书通篇中提到的“一个实施例”、“一实施例”或“一些可能的实施方式”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”、“在一实施例中”或“在一些可能的实施方式中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
本申请中图像融合的方法可用硬件或软件来实现。在硬件实现方式下,可以使用专用集成电路(application specific integrated circuit,ASIC)、数字信号处理器(digital signal processor,DSP)、可编程逻辑器件(programmable logic device,PLD)、现场可编程门阵列(field programmable gate array,FPGA)、处理器、控制器、微控制器和/或微处理器等电子单元中的至少一个来实现本申请的实施方式。在软件实现方式下,诸如过程和功 能的实施方式可以使用执行至少一个功能和操作的软件模块实现。软件模块可以以任意适当的软件语言编写的软件程序来实现。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考方法实施例中的对应过程,在此不再赘述。

Claims (32)

  1. 一种分光偏振成像设备,其特征在于,包括:
    分光模块,用于将接收到的光线分为第一光束和第二光束;
    偏振态获取模块,用于获取所述第一光束的偏振态;
    图像生成模块,用于通过所述第一光束生成第一图像,通过所述第二光束生成第二图像;
    图像合成模块,用于根据所述偏振态,将所述第一图像和所述第二图像进行合成,生成合成图像。
  2. 如权利要求1所述的分光偏振成像设备,其特征在于,所述偏振态获取模块具体用于采用分焦平面的方式获取所述第一光束的偏振态。
  3. 如权利要求1或2所述的分光偏振成像设备,其特征在于,所述分光模块具体用于采用镀膜分光的方式将接收到的光线分为所述第一光束和所述第二光束。
  4. 如权利要求1-3任一项所述的分光偏振成像设备,所述图像合成模块具体用于:根据所述偏振态确定干扰光信息,减少所述第一图像中的所述干扰光信息和所述第二图像中的所述干扰光信息,并将减少所述干扰光信息之后的所述第一图像和所述第二图像进行合成以生成合成图像。
  5. 如权利要求4所述的分光偏振成像设备,所述图像合成模块具体用于:根据所述偏振态确定干扰光信息,减少所述第一图像中的所述干扰光信息和所述第二图像中的所述干扰光信息,并将减少所述干扰光信息之后的所述第一图像和所述第二图像的亮度进行叠加,以生成合成图像。
  6. 如权利要求1-3任一项所述的分光偏振成像设备,其特征在于,所述图像合成模块具体用于:根据所述偏振态确定干扰光信息,将所述第一图像和所述第二图像进行合成以生成合成图像,减少所述合成图像中的所述干扰光信息。
  7. 如权利要求6所述的分光偏振成像设备,所述图像合成模块具体用于:根据所述偏振态确定干扰光信息,将所述第一图像和所述第二图像的亮度进行叠加以生成合成图像,并减少所述合成图像中的所述干扰光信息。
  8. 如权利要求1-7任一项所述的分光偏振成像设备,其特征在于,所述图像生成模块具体用于通过所述第二光束生成彩色的第二图像,并通过所述第一光束生成彩色的第一图像。
  9. 如权利要求1-7任一项所述的分光偏振成像设备,其特征在于,所述图像生成模块具体用于通过所述第二光束生成彩色的第二图像,并通过所述第一光束生成黑白的第一图像。
  10. 如权利要求1-9任一项所述的分光偏振成像设备,其特征在于,所述设备还包括光束过滤模块,用于根据所述第一光束的偏振态确定干扰偏振角,减少所述第二光束中偏振角为所述干扰偏振角的光线,并将处理后的所述第二光束发送给所述图像生成模块。
  11. 一种分光偏振成像设备,其特征在于,包括:
    镜头,用于将光线汇聚在分光装置上;
    分光装置,用于将从所述镜头接收到的所述光线分为第一光束和第二光束;
    偏振传感器,用于通过所述第一光束生成第一图像,所述第一图像带有偏振信息;
    图像传感器,用于通过所述第二光束生成第二图像;
    图像处理器,用于根据所述偏振信息确定所述第一光束的偏振态,并根据所述偏振态将所述第一图像和所述第二图像进行合成,生成合成图像。
  12. 如权利要求11所述的分光偏振成像设备,其特征在于,所述偏振传感器具体用于采用分焦平面的方式使第一图像带有所述偏振信息。
  13. 如权利要求11或12所述的分光偏振成像设备,其特征在于,所述分光装置具体用于采用镀膜分光的方式将接收到的光线分为所述第一光束和所述第二光束。
  14. 如权利要求11-13任一项所述的分光偏振成像设备,其特征在于,所述图像处理器具体用于:根据所述偏振态确定干扰光信息,减少所述第一图像中的所述干扰光信息和所述第二图像中的所述干扰光信息,并将减少所述干扰光信息之后的所述第一图像和所述第二图像进行合成以生成合成图像。
  15. 如权利要求14所述的分光偏振成像设备,其特征在于,所述图像处理器具体用于:根据所述偏振态确定干扰光信息,减少所述第一图像中的所述干扰光信息和所述第二图像中的所述干扰光信息,并将减少所述干扰光信息之后的所述第一图像和所述第二图像的亮度进行叠加,以生成合成图像。
  16. 如权利要求11-13任一项所述的分光偏振成像设备,其特征在于,所述图像处理器具体用于:根据所述偏振态确定干扰光信息,将所述第一图像和所述第二图像进行合成以生成合成图像,减少所述合成图像中的所述干扰光信息。
  17. 如权利要求16所述的分光偏振成像设备,其特征在于,所述图像处理器具体用于:根据所述偏振态确定干扰光信息,将所述第一图像和所述第二图像的亮度进行叠加以生成合成图像,减少所述合成图像中的所述干扰光信息。
  18. 如权利要求11-17任一项所述的分光偏振成像设备,其特征在于,所述图像传感器具体用于通过所述第二光束生成彩色的第二图像,并且所述偏振传感器具体用于通过所述第一光束生成彩色的第一图像。
  19. 如权利要求11-17任一项所述的分光偏振成像设备,其特征在于,所述图像传感器具体用于通过所述第二光束生成彩色的第二图像,并且所述偏振传感器通过所述第一光束生成黑白的第一图像。
  20. 如权利要求11-19任一项所述的分光偏振成像设备,其特征在于,所述图像处理器还用于根据所述偏振态确定干扰偏振角;所述设备还包括偏振片控制机构和偏振片,所述偏振片位于所述第二光束的光路上,所述偏振片控制机构用于调整所述偏振片的角度以减少所述第二光束中偏振角为所述干扰偏振角的光线。
  21. 一种分光偏振成像方法,其特征在于,包括:
    将光线分为第一光束和第二光束;
    获取所述第一光束的偏振态;
    根据所述第一光束生成第一图像,根据所述第二光束生成第二图像;
    根据所述偏振态,将所述第一图像和所述第二图像进行合成,生成合成图像。
  22. 如权利要求21所述的分光偏振成像方法,其特征在于,所述获取第一光束的偏振态具体为采用分焦平面的方式获取所述第一光束的偏振态。
  23. 如权利要求21或22所述的分光偏振成像方法,其特征在于,所述将光线分为第一光束和第二光束具体为:采用镀膜分光的方式将光线分为所述第一光束和所述第二光束。
  24. 如权利要求21-23任一项所述的分光偏振成像方法,其特征在于,所述根据所述偏振态将所述第一图像和所述第二图像进行合成具体为:根据所述偏振态确定干扰光信息,减少所述第一图像中的所述干扰光信息和所述第二图像中的所述干扰光信息,并将减少所述干扰光信息之后的所述第一图像和所述第二图像进行合成以生成合成图像。
  25. 如权利要求24所述的分光偏振成像方法,其特征在于,所述将减少所述干扰光信息之后的所述第一图像和所述第二图像进行合成以生成合成图像具体为:将减少所述干扰光信 息之后的所述第一图像和所述第二图像的亮度进行叠加,以生成合成图像。
  26. 如权利要求21-23任一项所述的分光偏振成像方法,其特征在于,所述根据所述偏振态将所述第一图像和所述第二图像进行合成具体为:根据所述偏振态确定干扰光信息,将所述第一图像和所述第二图像进行合成以生成合成图像,减少所述合成图像中的所述干扰光信息。
  27. 如权利要求26所述的分光偏振成像方法,其特征在于,所述将所述第一图像和所述第二图像进行合成以生成合成图像具体为:将所述第一图像和所述第二图像的亮度进行叠加,以生成合成图像。
  28. 如权利要求21-27任一项所述的分光偏振成像方法,其特征在于,所述第一图像和所述第二图像均为彩色图像。
  29. 如权利要求21-27任一项所述的分光偏振成像方法,其特征在于,所述第一图像为黑白图像,所述第二图像为彩色图像。
  30. 如权利要求21-29任一项所述的分光偏振成像方法,其特征在于,所述方法还包括,根据所述第一光束的偏振态确定干扰偏振角,并减少所述第二光束中偏振角为所述干扰偏振角的光线。
  31. 一种终端设备,包括如权利要求1-20任一项所述的分光偏振成像模块,其特征在于,所述终端设备还包括主处理模块,所述主处理模块用于对所述合成图像进行图像处理。
  32. 如权利要求31所述的终端设备,其特征在于,所述终端设备还包括通信模块,所述通信模块用于将所述合成图像对应的图像或视频通过接口传输或无线发射的方式发送给其它设备。
PCT/CN2019/117177 2018-11-16 2019-11-11 一种分光偏振成像的设备和方法 WO2020098608A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811372124.7A CN111198445B (zh) 2018-11-16 2018-11-16 一种分光偏振成像的设备和方法
CN201811372124.7 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020098608A1 true WO2020098608A1 (zh) 2020-05-22

Family

ID=70731922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117177 WO2020098608A1 (zh) 2018-11-16 2019-11-11 一种分光偏振成像的设备和方法

Country Status (2)

Country Link
CN (1) CN111198445B (zh)
WO (1) WO2020098608A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115265781A (zh) * 2022-07-14 2022-11-01 长春理工大学 一种快速面阵偏振光谱图像获取系统及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114077102B (zh) * 2020-08-14 2023-03-17 华为技术有限公司 偏振器及阵列、偏振可控方法及装置、电子设备
CN115134480A (zh) * 2021-03-24 2022-09-30 华为技术有限公司 一种摄像头模组、终端设备及成像方法
CN113491497B (zh) * 2021-07-27 2022-08-12 重庆西山科技股份有限公司 偏振光内窥镜装置
CN114176484A (zh) * 2021-12-16 2022-03-15 重庆西山科技股份有限公司 偏振光内窥镜装置、摄像头及摄像头光学系统
CN114650373A (zh) * 2022-03-21 2022-06-21 维沃移动通信有限公司 成像方法及装置、图像传感器、成像设备和电子设备
CN117137433A (zh) * 2023-07-10 2023-12-01 深圳信息职业技术学院 一种多波长共聚焦散斑成像系统、方法、存储介质和设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222631B1 (en) * 1998-01-08 2001-04-24 Minolta Co., Ltd. Two-dimensional spectral characteristic measuring apparatus
CN101960859A (zh) * 2008-07-08 2011-01-26 松下电器产业株式会社 图像处理方法、图像处理装置、图像处理程序、图像合成方法和图像合成装置
CN206650741U (zh) * 2017-02-14 2017-11-17 浙江大华技术股份有限公司 一种共轴图像融合装置
CN206671690U (zh) * 2017-04-11 2017-11-24 中国科学技术大学 基于偏振分光镜的分光装置
CN206865574U (zh) * 2017-03-30 2018-01-09 成都通甲优博科技有限责任公司 一种低照度环境下彩色图像获取装置
CN107592465A (zh) * 2017-10-10 2018-01-16 联想(北京)有限公司 一种成像系统以及成像方法
CN108107003A (zh) * 2017-12-15 2018-06-01 哈尔滨工业大学 基于微透镜阵列的快照式光场-偏振成像仪及成像方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100149519A1 (en) * 2008-06-12 2010-06-17 Mehrdad Toofan Polarization contrast imager (pci)
CN104216135A (zh) * 2014-09-05 2014-12-17 西北工业大学 一种获取全偏振参数的微偏振片阵列、制备方法及其应用
CN107548502B (zh) * 2015-02-25 2021-02-09 脸谱科技有限责任公司 基于由对象反射的光的特性识别体元中的对象
US10460422B2 (en) * 2015-11-10 2019-10-29 Sony Corporation Image processing device and image processing method
CN106127134B (zh) * 2016-06-20 2019-07-26 联想(北京)有限公司 光学装置、电子设备及其控制方法
CN107014490A (zh) * 2017-04-17 2017-08-04 大连理工大学 一种分焦面型实时偏振成像系统
CN108731810A (zh) * 2018-06-07 2018-11-02 合肥工业大学 分焦平面偏振成像测量方法与装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222631B1 (en) * 1998-01-08 2001-04-24 Minolta Co., Ltd. Two-dimensional spectral characteristic measuring apparatus
CN101960859A (zh) * 2008-07-08 2011-01-26 松下电器产业株式会社 图像处理方法、图像处理装置、图像处理程序、图像合成方法和图像合成装置
CN206650741U (zh) * 2017-02-14 2017-11-17 浙江大华技术股份有限公司 一种共轴图像融合装置
CN206865574U (zh) * 2017-03-30 2018-01-09 成都通甲优博科技有限责任公司 一种低照度环境下彩色图像获取装置
CN206671690U (zh) * 2017-04-11 2017-11-24 中国科学技术大学 基于偏振分光镜的分光装置
CN107592465A (zh) * 2017-10-10 2018-01-16 联想(北京)有限公司 一种成像系统以及成像方法
CN108107003A (zh) * 2017-12-15 2018-06-01 哈尔滨工业大学 基于微透镜阵列的快照式光场-偏振成像仪及成像方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115265781A (zh) * 2022-07-14 2022-11-01 长春理工大学 一种快速面阵偏振光谱图像获取系统及方法
CN115265781B (zh) * 2022-07-14 2024-04-09 长春理工大学 一种快速面阵偏振光谱图像获取系统及方法

Also Published As

Publication number Publication date
CN111198445A (zh) 2020-05-26
CN111198445B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2020098608A1 (zh) 一种分光偏振成像的设备和方法
JP6391316B2 (ja) 撮像装置
US20170330053A1 (en) Color night vision system and operation method thereof
CN108462830B (zh) 摄像装置及摄像装置的控制方法
US20100225783A1 (en) Temporally Aligned Exposure Bracketing for High Dynamic Range Imaging
WO2021184362A1 (zh) 一种摄像装置
US11729500B2 (en) Lowpass filter control apparatus and lowpass filter control method for controlling variable lowpass filter
WO2019076150A1 (zh) 一种摄像机以及图像生成方法
WO2011095026A1 (zh) 摄像方法及系统
WO2013058085A1 (ja) ステレオ撮像装置
JP2016219974A (ja) 撮影装置及び撮影方法、画像処理装置及び画像処理方法、並びにプログラム
JP2017011634A (ja) 撮像装置およびその制御方法、並びにプログラム
US20210149283A1 (en) Signal processing apparatus and imaging apparatus
JP2010245870A (ja) マルチスペクトル撮影用レンズアダプタ装置、マルチスペクトル撮影装置、および画像処理装置
JP6516510B2 (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体
CN107995396B (zh) 一种双摄像头模组以及终端
JP2006064969A (ja) オートフォーカスシステム
WO2021039011A1 (ja) 撮像装置、処理装置、データ伝送システム、及びデータ伝送方法
JP7446804B2 (ja) 撮像装置およびその制御方法、プログラム
US10616493B2 (en) Multi camera system for zoom
CN115578710A (zh) 一种汽车后视全景图像处理系统
WO2020241205A1 (ja) 光分離装置及び撮像装置
JP6497977B2 (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体
JP2018182470A (ja) 波長選択偏光分離方式を採用した立体撮像装置
JPH10164413A (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884594

Country of ref document: EP

Kind code of ref document: A1