WO2020098314A1 - 一种可同时检测光学元件表面和亚表面缺陷的装置及方法 - Google Patents

一种可同时检测光学元件表面和亚表面缺陷的装置及方法 Download PDF

Info

Publication number
WO2020098314A1
WO2020098314A1 PCT/CN2019/098995 CN2019098995W WO2020098314A1 WO 2020098314 A1 WO2020098314 A1 WO 2020098314A1 CN 2019098995 W CN2019098995 W CN 2019098995W WO 2020098314 A1 WO2020098314 A1 WO 2020098314A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
detection
sample
scattering
light signal
Prior art date
Application number
PCT/CN2019/098995
Other languages
English (en)
French (fr)
Inventor
孙安玉
李智宏
居冰峰
王传勇
杨筱钰
孙泽青
杜慧林
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US16/960,063 priority Critical patent/US11187662B2/en
Publication of WO2020098314A1 publication Critical patent/WO2020098314A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/19Dichroism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1706Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4702Global scatter; Total scatter, excluding reflections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4735Solid samples, e.g. paper, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/065Integrating spheres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0423Surface waves, e.g. Rayleigh waves, Love waves

Definitions

  • the invention relates to non-destructive testing technology, in particular to a device and method that can simultaneously detect surface and subsurface defects of optical elements.
  • the invention can be used for the quality inspection of precision optical components, and is particularly suitable for the inspection of finished products of ultra-precision optical components that have strict requirements on subsurface defects.
  • the surface / subsurface damage introduced during the manufacturing process simultaneously affects the damage sensitivity of the optical element from the three aspects of optical field strengthening caused by interference, enhancing the laser absorption capacity of the optical material and reducing the mechanical properties of the material, and thus causing the optical Macro damage to components.
  • the evaluation technology of the surface quality of optical components is relatively mature, but the detection and evaluation methods for subsurface defects are still incomplete. These tiny damages hidden under the surface at a depth of 1 to 100 ⁇ m directly reduce the performance and service life of the optical materials and cause irreversible damage to the components. Therefore, the subsurface defects of optical components are recognized by academic and industrial circles as one of the most critical factors for inducing laser damage.
  • the current technology has the following shortcomings: (1) the existing detection method only statically observes the position of the defect within a limited time, and the sensitivity and accuracy of subsurface defects are generally poor; (2) the existing technology uses a single Scattered light collection and analysis methods analyze the scattering effects of different defects, and it is impossible to evaluate the dynamic changes of damage in motion.
  • Subsurface defects of ultra-precision optical components are the key factors affecting their optical performance and service life.
  • the occurrence of subsurface defects is caused by optical cold processing such as cutting, grinding and polishing of optical components, and the damage morphology is closely connected with the processing process.
  • subsurface defect detection is a necessary option, but currently there are not many effective nondestructive detection methods.
  • the present invention faces the above needs, an apparatus and method that can simultaneously detect the surface and subsurface defects of an optical element, generate surface waves on the surface and subsurface of an optical element to be measured by laser, and observe and analyze subsurface defects under the modulation of surface wave motion
  • the static light scattering effect enables the detection of defects on the surface and subsurface of optical components.
  • the purpose of the present invention is to address the shortcomings of the prior art, and propose a device and method that can simultaneously detect the surface and subsurface defects of optical elements.
  • the present invention uses the following technical solutions to solve:
  • a device that can simultaneously detect the surface and subsurface defects of an optical element includes a laser excitation device, a laser interference detection device, a laser scattering detection device, a motion platform, and a sample stage. among them:
  • Laser excitation device and laser interference detection device use lasers with different wavelengths
  • the laser interference detection device and the laser scattering detection device use the same wavelength laser;
  • the sample table is connected to the motion platform, and the sample to be tested is placed on the sample table;
  • the motion platform can drive the sample to be tested to move in the three-dimensional space of X, Y and Z, and scan the surface and subsurface of the sample to be tested.
  • the motion platform is an XYZ automatic stage with precise position control capability.
  • the laser excitation device includes an excitation laser, a scanning galvanometer and a long working distance microscope objective lens, wherein:
  • the excitation laser generates a pulsed excitation laser, the wavelength of the excitation laser is preferably between 960 nanometers and 1160 nanometers, and the time domain width of the minimum pulse is less than 1500 picoseconds;
  • the scanning galvanometer flips the excitation laser angle in a scanning plane and enters the long working distance microscope objective lens from different angles;
  • the center point of the mirror of the scanning galvanometer coincides with the focal point of the image side of the long working distance microscope objective lens, and the excitation laser light incident on the long working distance microscope objective lens at different angles will remain parallel when exiting;
  • the object focal point of the long working distance microscope objective lens falls on the surface of the sample to be measured.
  • the laser interference detection device includes a detection laser, a Fabry-Perot resonator, a dichroic mirror, an interference photodetector, and an interference signal sampler, wherein:
  • the detection laser generates continuous detection laser, and the wavelength of the detection laser is preferably between 490 nm and 580 nm, and the optimal choice is 532 nm;
  • the Fabry-Perot resonator includes a collimating lens, a beam splitter prism, an interference prism, and a piezoelectric ceramic phase shifter;
  • the interference photodetector is installed on the cavity wall of the Fabry-Perot resonant cavity, and the detection surface of the interference photodetector is parallel to the mirror surface of the reflecting mirror of the piezoelectric ceramic phase shifter and is distributed on both sides of the interference prism;
  • the detection laser After the detection laser is emitted by the detection laser, it enters the Fabry-Perot resonant cavity; the beam splitter prism divides the detection laser into two beams, one for the interference detection laser and the other for the scattering detection laser; the interference detection laser After the interference prism, it is divided into two beams, one is the phase-shifted laser and the other is the detection laser; the phase-shifted laser is perpendicularly incident on the piezoelectric ceramic phase shifter and returns; the detection laser is Fabry-Perot resonance
  • the cavity exits and is reflected by the dichroic mirror to the surface of the sample to be measured; the detection laser reflected by the surface of the sample to be tested is reflected back to the interference prism by the dichroic mirror and interferes with the phase-shifted laser.
  • the laser scattering detection device includes a reflecting mirror, a scattering collector, a reflecting collector, a scattering photodetector, a reflecting photodetector, a scattered light signal sampler and a reflected light signal sampler, wherein:
  • the scattering collector is an integrating sphere with 5 ports, one port is used to install a scattering photodetector, one port is used as an entrance port for excitation laser, one port is used as a sample detection port, and one port is used for scattering detection laser incidence Port, one port is the exit port of the detection laser for scattering;
  • the reflective concentrator is an integrating sphere with two ports, one port is used to install a reflective photodetector, and one port is used as an entrance port for detecting laser light for scattering;
  • the entrance of the scattering detection laser enters the scattering collector and hits the surface of the sample to be measured in an oblique incidence; the laser light reflected by the surface of the sample to be tested is scattered from After exiting through the exit port of the detection laser, it enters the reflective collector and is finally captured by the reflective photodetector; the laser light scattered on the surface of the sample to be tested is finally reflected by the scattering photodetector after being reflected by the integrating sphere multiple times.
  • the entrance port of the excitation laser and the sample detection port are distributed on both sides of the center of the integrating sphere, and the line between the center of the entrance port of the excitation laser and the center of the sample detection port is integrated Spherical center; the entrance of the detection laser for scattering and the exit of the detection laser are conjugate.
  • a method for simultaneously detecting the surface and subsurface defects of optical components including the following steps:
  • Step 1 Turn on the excitation laser and detection laser, and preheat for a period of time to make them work in a stable state;
  • Step 2 Control the motion platform to move the sample to be tested on the sample table in the up and down direction, so that the object-side focus of the long working distance microscope objective lens falls on the sample to be tested;
  • Step 3 Control the detection laser to emit detection laser light, record the scattered light signal collected by the scattered light signal sampler, and record the reflected light signal collected by the reflected light signal sampler at the same time, and calculate the average amplitude of the scattered light signal over a period of time The value A s and the average amplitude A r of the reflected light signal;
  • Step 4 Control the excitation laser to emit a pulsed excitation laser, so that the excitation laser excites a surface acoustic wave on the sample to be tested, and at the same time triggers the interference signal sampler, scattered light signal sampler, and reflected light signal sampler to record data;
  • Step 5 Control the deflection angle of the scanning galvanometer, so that the excitation laser falls to N different positions of the sample to be measured at equal intervals, and record the interference signal, scattered light signal and reflected light signal under the influence of the surface acoustic waves excited at different positions;
  • Step 6 Analyze the change of the interference signal at the nth position, determine the arrival time t of the surface acoustic wave, extract the scattered light signal and the reflected light signal in the range of (t- ⁇ t, t + ⁇ t), and calculate the Average amplitude And the average amplitude of the extracted scattered light signal
  • Step 7 Control the motion platform to move the sample to be tested on the sample table in the left-right direction and the front-rear direction, scan and detect the specific region of the sample to be tested, and repeat the above steps;
  • the present invention can detect surface and subsurface defects of optical elements at the same time, and provide an intuitive defect distribution image by scanning;
  • the present invention modulates the scattering effect of the surface and subsurface of the optical element based on the surface acoustic waves excited by the laser, improves the sensitivity of scattering detection, and can effectively distinguish the location where the defect exists.
  • FIG. 1 is a schematic diagram of the composition of an apparatus for simultaneously detecting surface and subsurface defects of an optical element according to an embodiment of the present invention
  • FIG. 2 (b) is a top view of the port on the scattering collector of the embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for detecting surface and subsurface defects of an optical element according to an embodiment of the present invention.
  • the embodiments of the present invention relate to an apparatus and method that can simultaneously detect the surface and subsurface defects of optical components, and can be used for the quality inspection of optical components, especially suitable for the inspection of finished products of ultra-precision optical components that have strict requirements on subsurface defects .
  • the composition of a device that can simultaneously detect the surface and subsurface defects of an optical element is shown in FIG. 1 and includes a laser excitation device, a laser interference detection device, a laser scattering detection device, a motion platform, and a sample stage.
  • the laser excitation device and the laser interference detection device use lasers of different wavelengths
  • the laser interference detection device and the laser scattering detection device use lasers of the same wavelength
  • the motion platform 401 is connected to the sample stage 501, and the sample to be tested 601 is placed on the sample stage 501.
  • the motion platform 401 uses an XYZ three-dimensional motorized stage with a grating feedback system for precise position control.
  • the motion platform 401 can drive the sample 601 to be tested to move in the three-dimensional space of X, Y, and Z, and scan the surface and subsurface of the sample 601 to be tested.
  • the laser excitation device includes an excitation laser 101, a scanning galvanometer 102, and a long working distance microscope objective 103.
  • the excitation laser 101 generates a pulsed excitation laser, the wavelength of the excitation laser is preferably between 960 nm and 1160 nm, and the time domain width of the minimum pulse is less than 1500 picoseconds. In this embodiment, an excitation laser with a wavelength of 1064 nanometers is selected.
  • the scanning galvanometer 102 reverses the angle of the excitation laser in a scanning plane and enters the long working distance microscope objective 103 from different angles.
  • the center point of the mirror of the scanning galvanometer 102 coincides with the object focal point of the long working distance microscope objective 103, so as to ensure that the excitation laser light incident on the long working distance microscope objective 103 at different angles will emit a long working distance when it exits
  • the axis of the microscope objective 103 remains parallel; the object-side focal point of the long working distance microscope objective 103 falls on the surface of the sample 601 to be measured.
  • the laser interference detection device includes a detection laser 201, a Fabry-Perot resonator 202, a dichroic mirror 203, an interference photodetector 204, and an interference signal sampler 205.
  • the detection laser 201 generates a continuous detection laser
  • the wavelength of the detection laser is preferably between 490 nm and 580 nm.
  • a detection laser with a wavelength of 532 nm is selected.
  • the Fabry-Perot cavity 202 includes a collimating lens 202-1, a beam splitting prism 202-2, an interference prism 202-3, and a piezoelectric ceramic phase shifter 202-4.
  • the interference photodetector 204 is installed on the cavity wall of the Fabry-Perot resonator 202.
  • the detection surface of the interference photodetector 204 is parallel to the mirror surface of the piezoelectric ceramic phase shifter 202-4 and is distributed on the interference prism 202 -3 on both sides; the detection laser light emitted by the detection laser 201 first enters the Fabry-Perot resonator 202.
  • the dichroic prism 202-2 divides the detection laser light into two beams, one is the detection laser light L1 for interference, and the other is the detection laser light L2 for scattering.
  • the detection laser light L1 for interference is divided into two beams after passing through the interference prism 202-3, one beam is the phase-shifted laser light L1-1, and the other beam is the detection laser light L1-2.
  • the phase-shifted laser L1-1 is perpendicularly incident on the piezoelectric ceramic phase shifter 202-4 and returns.
  • the returned phase-shifted laser is denoted as L1-1R.
  • the detection laser light L1-2 exits from the Fabry-Perot resonator 202 and is reflected by the dichroic mirror 203 to the surface of the sample 601 to be measured.
  • the detection laser light L1-2R reflected by the surface of the sample to be tested 601 is reflected by the dichroic mirror 203 back to the interference prism 202-3, and interferes with the returned phase-shifted laser light L1-1R.
  • the generated laser interference signal is sampled by the interference signal sampler 205 and its change curve is displayed digitally.
  • the laser scattering detection device includes a mirror 301, a scattering collector 302, a reflecting collector 303, a scattering photodetector 304, a reflecting photodetector 305, a scattered light signal sampler 306, and a reflected light signal sampler 307.
  • the scattering collector 302 in this embodiment is an integrating sphere with five ports
  • port 302-1 is an entrance port for excitation laser
  • port 302-2 is a sample detection port
  • port 302-3 is The entrance port of the detection laser for scattering
  • port 302-4 is the exit port of the detection laser for scattering
  • the port 302-5 is used for installing a scattering photodetector.
  • the centers of five ports, such as port 302-1, port 302-2, port 302-3, port 302-4, and port 302-5 are coplanar with the center O of the integrating sphere.
  • the ports 302-1 and 302-2 are distributed on both sides of the center of the integrating sphere, and the line connecting the center point passes through the center O of the integrating sphere.
  • the ports 302-3 and 302-4 are symmetrical about the straight line OP and are conjugately distributed.
  • the reflective concentrator 303 is an integrating sphere with two ports, one port is used to install the reflective photodetector 305, and the other port is used as an entrance port for detecting laser light for scattering;
  • the reflection detection laser light L2 After the reflection detection laser light L2 is reflected by the reflector, it enters the scattering collector 302 through the port 302-3, and hits the surface of the sample 601 to be measured in an oblique incidence manner.
  • the laser light reflected by the surface of the sample 601 to be tested exits the port 302-4, enters the reflective concentrator 303, and is finally captured by the reflective photodetector 305.
  • the laser light scattered by the surface 601 of the sample to be tested is finally captured by the scattering photodetector 304 after being reflected by the integrating sphere multiple times.
  • the method implemented in this embodiment that can simultaneously detect the surface and subsurface defects of an optical element includes the following steps:
  • Start-up preheating turn on the excitation laser 101 and the detection laser 201, let them warm up for a period of time, so that the two work in a stable state;
  • the excitation laser 101 is controlled to emit a pulsed excitation laser, so that the excitation laser excites a surface acoustic wave on the sample 601 to be tested, and at the same time triggers the interference signal sampler 204, the scattered light signal sampler 304, and the reflected light signal sampler 305 to record data ;
  • the specific processing method is as follows: the interference signal change at the nth position is analyzed, the arrival time t of the surface acoustic wave is determined, and the (t- ⁇ t, t + ⁇ t) range is extracted Scattered light signal and reflected light signal, calculate the average amplitude of the extracted scattered light signal And the average amplitude of the extracted scattered light signal
  • Use formula Describe the results of subsurface defect detection at the current location, using formulas The formula is used as the result of surface detection at the current position.
  • a specific signal is digitally sampled within a certain time t, if the number of discrete data points sampled is m.
  • the method of calculating the average amplitude of the signal refers to summing the sampling values of m discrete data points, and then dividing by m.
  • a s represents the average amplitude of the scattered light signal obtained without surface wave modulation
  • Ar represents the average amplitude of the reflected light signal obtained without surface wave modulation
  • It represents the average amplitude of the nth reflected light signal obtained under the condition of surface wave modulation
  • the average amplitude of the scattered light signal is calculated to obtain the average amplitude of the scattered light signal
  • a u represents the quantized current position subsurface defect detection result value
  • Av represents the quantized current position surface defect detection result value.

Landscapes

  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

一种可同时检测光学元件表面和亚表面缺陷的装置及方法,将激光诱导超声与激光散射检测技术结合起来,通过激光在待测光学元件表面及亚表面产生表面波,观测并分析亚表面缺陷在表面波运动调制下的静态光散射效应,通过分析散射光强和反射光强的幅值和相位变化实现对光学元件表面和亚表面缺陷的检测。可用于精密光学元件的质量检测,尤其适用于对亚表面缺陷有严苛要求的超精密光学元件的成品检测。

Description

一种可同时检测光学元件表面和亚表面缺陷的装置及方法 技术领域
本发明涉及无损检测技术,具体涉及一种可同时检测光学元件表面和亚表面缺陷的装置及方法。本发明可用于精密光学元件的质量检测,尤其适用于对亚表面缺陷有严苛要求的超精密光学元件的成品检测。
背景技术
世界范围内高精密光学系统、高性能激光武器、惯性约束激光核聚变系统等领域的技术发展对光学元件的抗损伤能力提出了前所未有的严苛要求。制造过程中引入的表面/亚表面损伤从干涉引起的光场强化、裂纹杂质增强光学材料的激光吸收能力以及对材料力学性能的降低等三个方面同时影响光学元件的损伤敏感性,进而造成光学元件的宏观损伤。目前,光学元件表面质量的评价技术已经较成熟,但对亚表面缺陷的检测和评价手段却仍不完备。这些隐藏于表面之下1到100μm深度的微小损伤直接降低了光学材料的性能和使用寿命,将对元件造成不可逆转的损坏。因此,光学元件的亚表面缺陷被学术界和工业界公认为是诱导激光损伤最关键的因素之一。
光学国外部分研究人员学者基于光散射原理建立了光学元件亚表面损伤检测的新方法,例如美国的Fine K等人利用激光扫描显微镜法对光学元件表面/亚表面缺陷的位置和尺寸进行测量,美国阿贡国家实验室提出了基于偏振光散射的共焦扫描显微探测技术试图解决先进陶瓷亚表面缺陷的检测问题。Zhang JM等人在研究单晶珪的亚表面损伤探测时,利用激光扫描显微的方法获得了亚微米级的分辨率,并深入研究了散射光传输特性相关理论,针对硅片和先进陶瓷的亚表面损伤进行测量。Trost M等人利用改进的数据处理方法对亚表面损伤进行定量分析,使亚表面损伤的无损定量检测成为可能。上述研究印证了利用光散射法对光学元件的亚表面损伤进行检测的可能性。
但目前的技术存在以下不足:(1)现有的检测方法只是有限时间内对缺陷位置进行静态的观测,对亚表面缺陷的灵敏度和准确性普遍较差;(2)现有技术采用单一的散射光收集及分析手段分析不同缺陷的散射效应,无法评价损伤在运动状态下的动态变化。
超精密光学元件亚表面缺陷是影响其光学性能和使用寿命的关键因素。亚表面缺陷的产生是由光学元件的切割、研磨和抛光等光学冷加工过程带来的,损伤形貌与加工过程紧密相连。为有效控制超精密光学元件的加工质量,亚表面缺陷检测是必选项,但目前有效的无损检测手段不多。
本发明面向上述需求,一种可同时检测光学元件表面和亚表面缺陷的装置及方法,通过激光在待测光学元件表面及亚表面产生表面波,观测并分析亚表面缺陷在表面波运动调制下的静态光散射效应,实现对光学元件表面和亚表面缺陷的检测。
发明内容
本发明的目的是针对现有技术的不足,提出一种可同时检测光学元件表面和亚表面缺陷的装置及方法。
为达到上述目的,本发明采用如下技术方案予以解决:
一种可同时检测光学元件表面和亚表面缺陷的装置,包括激光激发装置、激光干涉检测装置、激光散射检测装置、运动平台以及样品台。其中:
激光激发装置与激光干涉检测装置采用不同波长的激光;
激光干涉检测装置与激光散射检测装置采用相同波长的激光;
样品台与运动平台相连,待检测样品置于样品台上;
运动平台可带动待检测样品在X、Y、Z三维空间中运动,对待检测样品表面及亚表面进行扫描检测。
优选地,运动平台是具有精确位置控制能力的XYZ自动位移台。
所述的激光激发装置,包括激发激光器、扫描振镜以及长工作距离显微物镜,其中:
所述激发激光器产生脉冲式激发激光,所述激发激光的波长优选 在960纳米与1160纳米之间,最小脉冲的时域宽度小于1500皮秒;
所述扫描振镜将所述的激发激光在一个扫描平面内进行角度翻转,并从不同角度入射到长工作距离显微物镜中;
所述扫描振镜的反射镜中心点与长工作距离显微物镜的像方焦点重合,不同角度入射到长工作距离显微物镜中的激发激光在出射时会保持平行;
所述长工作距离显微物镜的物方焦点落在待测样品表面上。
所述的激光干涉检测装置,包括检测激光器、法布里-珀罗谐振腔、二向色反射镜、干涉光电探测器以及干涉信号采样器,其中:
所述检测激光器产生连续检测激光,所述检测激光的波长优选在490纳米与580纳米之间,最优选择是532纳米;
所述法布里-珀罗谐振腔包括准直透镜、分光棱镜、干涉棱镜、压电陶瓷移相器;
所述干涉光电探测器安装在法布里-珀罗谐振腔的腔壁上,干涉光电探测器的探测面与压电陶瓷移相器的反光镜镜面平行且分布在干涉棱镜两侧;
所述检测激光由检测激光器发出后,进入法布里-珀罗谐振腔;分光棱镜将检测激光分为两束,一束为干涉用检测激光,另一束散射用检测激光;干涉用检测激光经干涉棱镜后被分为两束,一束为移相激光,另一束为探测激光;移相激光垂直入射到压电陶瓷移相器上后返回;探测激光由法布里-珀罗谐振腔出射,并经由二向色反射镜反射到待测样品表面;经待测样品表面反射后的探测激光经二向色反射镜反射回到干涉棱镜,并与移相激光发生干涉。
所述的激光散射检测装置,包括反射镜、散射集光器、反射集光器、散射光电探测器、反射光电探测器、散射光信号采样器以及反射光信号采样器,其中:
所述散射集光器是具有5个端口的积分球,一个端口用于安装散射光电探测器,一个端口作为激发激光的入射口,一个端口作为样品探测口,一个端口是散射用检测激光的入射口,一个端口是散射用检 测激光的出射口;
所述反射集光器是具有2个端口的积分球,一个端口用于安装反射光电探测器,一个端口作为散射用检测激光的入射口;
所述的散射用检测激光经反射镜反射后,经散射用检测激光的入射口进入散射集光器,并以斜入射的方式打到待测样品表面;经待测样品表面反射的激光从散射用检测激光的出射口出射后,进入反射集光器,并最终被反射光电探测器捕获;经待测样品表面散射的激光经积分球多次反射后最终被散射光电探测器捕获。
优选地,所述的散射集光器,其激发激光的入射口与其样品探测口分布在积分球球心的两侧,且激发激光的入射口中心与样品探测口中心之间的连线经过积分球球心;散射用检测激光的入射口和散射用检测激光的出射口呈共轭分布。
一种可同时检测光学元件表面和亚表面缺陷的方法,包括如下步骤:
步骤1、打开激发激光器和检测激光器,预热一段时间,使二者工作在稳定状态;
步骤2、控制运动平台使样品台上的待测样品在上下方向运动,使长工作距离显微物镜的物方焦点落到待测样品上;
步骤3、控制检测激光器发出检测激光,记录散射光信号采样器所采集到的散射光信号,同时记录反射光信号采样器所采集到的反射光信号,计算获取一段时间内的散射光信号平均幅值A s以及反射光信号平均幅值A r
步骤4、控制激发激光器发出脉冲式激发激光,使激发激光在待测样品上激发出声表面波,与此同时触发干涉信号采样器、散射光信号采样器、反射光信号采样器记录数据;
步骤5、控制扫描振镜偏转角度,使激发激光等间距地落到待测样品的N个不同位置,记录不同位置激发出的声表面波影响下的干涉信号、散射光信号和反射光信号;
步骤6、分析第n个位置的干涉信号变化,确定声表面波的到达 时间t,抽取(t-Δt,t+Δt)范围内的散射光信号和反射光信号,计算所抽取散射光信号的平均幅值
Figure PCTCN2019098995-appb-000001
以及所抽取散射光信号的平均幅值
Figure PCTCN2019098995-appb-000002
使用公式
Figure PCTCN2019098995-appb-000003
描述当前位置亚表面缺陷检测的结果,使用公式
Figure PCTCN2019098995-appb-000004
公式作为当前位置表面检测的结果;
步骤7、控制运动平台使样品台上的待测样品在左右方向和前后方向运动,对待测样品进行特定区域的扫描检测,重复上述步骤;
利用扫描平面的位置信息和特定位置对应的A u值进行可视性描述,显示该扫描区域亚表面扫描检测的结果;利用扫描平面的位置信息和特定位置对应的A v值进行可视性描述,显示该扫描区域表面扫描检测的结果。
本发明相对于现有技术的有益效果为:
第一,本发明可以同时检测光学元件的表面和亚表面缺陷,并利用扫描方式提供直观的缺陷分布图像;
第二,本发明基于激光激发的声表面波对光学元件的表面及亚表面的散射效应进行调制,提高了散射检测的灵敏度,并可有效分辨出缺陷所存在的位置。
附图说明
图1是本发明实施例的可同时检测光学元件表面和亚表面缺陷的装置组成示意图;
图2(a)是本发明实施例的散射集光器上的端口左视图;
图2(b)是本发明实施例的散射集光器上的端口俯视图;
图3是本发明实施例的检测光学元件表面和亚表面缺陷的方法流程图。
具体实施方式
下面结合附图和实施例对本发明做具体说明。
本发明的实施例涉及一种可同时检测光学元件表面和亚表面缺陷的装置及方法,可用于光学元件的质量检测,尤其适用于对亚表面缺 陷有严苛要求的超精密光学元件的成品检测。
一种可同时检测光学元件表面和亚表面缺陷的装置的组成如图1所示,包括激光激发装置、激光干涉检测装置、激光散射检测装置、运动平台以及样品台。
本实施例中,激光激发装置与激光干涉检测装置采用不同波长的激光,激光干涉检测装置与激光散射检测装置采用相同波长的激光。
本实施例中,运动平台401与样品台501相连,待测样品601置于样品台501上。
本实施例中,运动平台401采用具有光栅反馈系统可进行精确位置控制的XYZ三维电动位移台。运动平台401可带动待测样品601在X、Y、Z三维空间中运动,对待检测样品601的表面及亚表面进行扫描检测。
本实施例中,激光激发装置包括激发激光器101、扫描振镜102以及长工作距离显微物镜103。激发激光器101产生脉冲式激发激光,激发激光的波长优选在960纳米与1160纳米之间,最小脉冲的时域宽度小于1500皮秒。本实施例中,选用1064纳米波长的激发激光。扫描振镜102将所述的激发激光在一个扫描平面内进行角度翻转,并从不同角度入射到长工作距离显微物镜103中。扫描振镜102的反射镜中心点与长工作距离显微物镜103的物方焦点重合,这样可以保证不同角度入射到长工作距离显微物镜103中的激发激光在出射的时候会与长工作距离显微物镜103的轴线保持平行;长工作距离显微物镜103的物方焦点落在待测样品601的表面上。
本实施例中,激光干涉检测装置包括检测激光器201、法布里-珀罗谐振腔202、二向色反射镜203、干涉光电探测器204以及干涉信号采样器205。其中:检测激光器201产生连续检测激光,所述检测激光的波长优选在490纳米与580纳米之间.本实施例中,选择532纳米波长的检测激光。法布里-珀罗谐振腔202包括准直透镜202-1、分光棱镜202-2、干涉棱镜202-3、压电陶瓷移相器202-4。干涉光电探测器204安装在法布里-珀罗谐振腔202的腔壁上,干涉光电探测器204的 探测面与压电陶瓷移相器202-4的反光镜镜面平行且分布在干涉棱镜202-3的两侧;检测激光器201所发出的检测激光首先进入法布里-珀罗谐振腔202。经过准直透镜202-1后,分光棱镜202-2将检测激光分为两束,一束为干涉用检测激光L1,另一束散射用检测激光L2。干涉用检测激光L1经干涉棱镜202-3后被分为两束,一束为移相激光L1-1,另一束为探测激光L1-2。移相激光L1-1垂直入射到压电陶瓷移相器202-4上后返回,返回的移相激光记作L1-1R。探测激光L1-2由法布里-珀罗谐振腔202出射,并经由二向色反射镜203反射到待测样品601表面。经待测样品601表面反射后的探测激光L1-2R经二向色反射镜203反射回到干涉棱镜202-3,并与返回的移相激光L1-1R发生干涉。所发生的激光干涉信号被干涉信号采样器205采样并数字化显示其变化曲线。
本实施例中,激光散射检测装置包括反射镜301、散射集光器302、反射集光器303、散射光电探测器304、反射光电探测器305、散射光信号采样器306以及反射光信号采样器307。
如图2所示,本实施例中的散射集光器302是具有5个端口的积分球,端口302-1是激发激光的入射口,端口302-2是样品探测口,端口302-3是散射用检测激光的入射口,端口302-4是散射用检测激光的出射口,端口302-5用于安装散射光电探测器。在本实施例中,端口302-1、端口302-2、端口302-3、端口302-4、端口302-5等5个端口的中心与积分球的球心O共面。端口302-1与端口302-2分布在积分球球心的两侧,其中心点的连线过积分球球心O点。端口302-3和端口302-4关于直线OP对称且呈共轭分布。
在本实施例中,反射集光器303是具有2个端口的积分球,一个端口用于安装反射光电探测器305,另一个端口作为散射用检测激光的入射口;
上述散射用检测激光L2经反射镜反射后,经端口302-3进入散射集光器302,并以斜入射的方式打到待测样品601表面。经待测样品601表面反射的激光从端口302-4出射后,进入反射集光器303,并最 终被反射光电探测器305捕获。经待测样品表面601散射的激光在积分球多次反射后最终被散射光电探测器304捕获。
如图3所示,本实施例所实现的一种可同时检测光学元件表面和亚表面缺陷的方法,包括如下步骤:
701开机预热:打开激发激光器101和检测激光器201,让其预热一段时间,使二者工作在稳定状态;
702调整待测样品601位置:控制运动平台401使待测样品601在上下方向运动,使长工作距离显微物镜103的物方焦点落到待测样品601的表面;
703确定待测样品601的扫描检测区域;
704控制运动平台401到达要检测的指定位置p(x,y);
705获取指定位置p(x,y)点对应的散射光信号平均幅值和反射光信号平均幅值:控制检测激光器201发出检测激光,记录散射光信号采样器304所采集到的散射光信号,同时记录反射光信号采样器305所采集到的反射光信号,计算获取一段时间内的散射光信号平均幅值A s以及反射光信号平均幅值A r
706控制扫描振镜偏转角度,记录激发位置n下的干涉信号、散射光信号和反射光信号:
控制激发激光器101发出脉冲式激发激光,使激发激光在待测样品601上激发出声表面波,与此同时触发干涉信号采样器204、散射光信号采样器304、反射光信号采样器305记录数据;
在N个不同激发位置,重复完成706;
在不同的检测位置,重复完成704到705;
707计算并显示检测结果。
本实施例中,针对706所记录的信号数据,具体处理方法如下:分析第n个位置的干涉信号变化,确定声表面波的到达时间t,抽取(t-Δt,t+Δt)范围内的散射光信号和反射光信号,计算所抽取散射光信号的平均幅值
Figure PCTCN2019098995-appb-000005
以及所抽取散射光信号的平均幅值
Figure PCTCN2019098995-appb-000006
使用公式
Figure PCTCN2019098995-appb-000007
描述当前位置亚表面 缺陷检测的结果,使用公式
Figure PCTCN2019098995-appb-000008
公式作为当前位置表面检测的结果。利用扫描平面的位置信息和特定位置对应的A u值进行可视性描述,显示该扫描区域亚表面扫描检测的结果;利用扫描平面的位置信息和特定位置对应的A v值进行可视性描述,显示该扫描区域表面扫描检测的结果。
本实施例中,对一个特定信号在一定时间t内进行数字化采样,若采样的离散数据点的个数为m。信号的平均幅值的求取方法是指将m个离散数据点的采样值求和,然后除以m。
据此,A s表示没有表面波调制情况下得到的散射光信号平均幅值,A r表示没有表面波调制情况下得到的反射光信号平均幅值,
Figure PCTCN2019098995-appb-000009
表示有表面波调制情况下得到的第n个散射光信号平均幅值,
Figure PCTCN2019098995-appb-000010
表示有表面波调制情况下得到的第n个反射光信号平均幅值,取散射光信号的平均幅值计算获取一段时间内的散射光信号平均幅值A s以及反射光信号平均幅值,A u表示量化后的当前位置亚表面缺陷检测结果值,A v表示量化后的当前位置表面缺陷检测结果值。
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (6)

  1. 一种可同时检测光学元件表面和亚表面缺陷的装置,包括激光激发装置、激光干涉检测装置、激光散射检测装置、运动平台以及样品台,其特征在于:
    激光激发装置与激光干涉检测装置采用不同波长的激光;
    激光干涉检测装置与激光散射检测装置采用相同波长的激光;
    样品台与运动平台相连,待检测样品置于样品台上;
    运动平台可带动待检测样品在X、Y、Z三维空间中运动,对待检测样品表面及亚表面进行扫描检测。
    所述的激光激发装置包括激发激光器、扫描振镜以及长工作距离显微物镜,激发激光器产生脉冲式激发激光,扫描振镜将所述的激发激光在一个扫描平面内进行角度翻转,并从不同角度入射到长工作距离显微物镜中;
    所述的激光干涉检测装置包括检测激光器、法布里-珀罗谐振腔、二向色反射镜、干涉光电探测器以及干涉信号采样器;所述检测激光器产生连续检测激光;所述法布里-珀罗谐振腔包括准直透镜、分光棱镜、干涉棱镜、压电陶瓷移相器;干涉光电探测器安装在法布里-珀罗谐振腔的腔壁上,干涉光电探测器的探测面与压电陶瓷移相器的反光镜镜面平行且分布在干涉棱镜两侧;
    所述检测激光由检测激光器发出后,进入法布里-珀罗谐振腔;分光棱镜将检测激光分为两束,一束为干涉用检测激光,另一束散射用检测激光;干涉用检测激光经干涉棱镜后被分为两束,一束为移相激光,另一束为探测激光;移相激光垂直入射到压电陶瓷移相器上后返回;探测激光由法布里-珀罗谐振腔出射,并经由二向色反射镜反射到待测样品表面;经待测样品表面反射后的探测激光经二向色反射镜反射回到干涉棱镜,并与移相激光发生干涉。
  2. 如权利要求1所述的一种可同时检测光学元件表面和亚表面缺陷的装置,其特征在于:
    所述激发激光的波长在960纳米与1160纳米之间,最小脉冲的时域宽度小于1500皮秒;
    所述扫描振镜的反射镜中心点与长工作距离显微物镜的像方焦点重合,不同角度入射到长工作距离显微物镜中的激发激光在出射时会保持平行;
    所述长工作距离显微物镜的物方焦点落在待测样品表面上。
  3. 如权利要求2所述的一种可同时检测光学元件表面和亚表面缺陷的装置,其特征在于:
    所述检测激光的波长在490纳米与580纳米之间;
  4. 如权利要求3所述的一种可同时检测光学元件表面和亚表面缺陷的装置,其特征在于:
    激光散射检测装置包括反射镜、散射集光器、反射集光器、散射光电探测器、反射光电探测器、散射光信号采样器以及反射光信号采样器,
    所述散射集光器是具有5个端口的积分球,一个端口用于安装散射光电探测器,一个端口作为激发激光的入射口,一个端口作为样品探测口,一个端口是散射用检测激光的入射口,一个端口是散射用检测激光的出射口;
    所述反射集光器是具有2个端口的积分球,一个端口用于安装反射光电探测器,一个端口作为散射用检测激光的入射口;
    所述的散射用检测激光经反射镜反射后,经散射用检测激光的入射口进入散射集光器,并以斜入射的方式打到待测样品表面;经待测样品表面反射的激光从散射用检测激光的出射口出射后,进入反射集光器,并最终被反射光电探测器捕获;经待测样品表面散射的激光在积分球多次反射后最终被散射光电探测器捕获。
  5. 如权利要求4所述的一种可同时检测光学元件表面和亚表面缺陷的装置,其特征在于:所述的散射集光器,其激发激光的入射口与样品探测口分布在积分球球心的两侧,且激发激光的入射口中心与样品探测 口中心之间的连线经过积分球球心;散射用检测激光的入射口和散射用检测激光的出射口呈共轭分布。
  6. 根据权利要求5所述的一种可同时检测光学元件表面和亚表面缺陷的装置的实现方法,其特征在于包括如下步骤:
    步骤1、打开激发激光器和检测激光器,预热一段时间,使二者工作在稳定状态;
    步骤2、控制运动平台使样品台上的待测样品在上下方向运动,使长工作距离显微物镜的物方焦点落到待测样品上;
    步骤3、控制检测激光器发出检测激光,记录散射光信号采样器所采集到的散射光信号,同时记录反射光信号采样器所采集到的反射光信号,计算获取一段时间内的散射光信号平均幅值A s以及反射光信号平均幅值A r
    步骤4、控制激发激光器发出脉冲式激发激光,使激发激光在待测样品上激发出声表面波,与此同时触发干涉信号采样器、散射光信号采样器、反射光信号采样器记录数据;
    步骤5、控制扫描振镜偏转角度,使激发激光等间距地落到待测样品的N个不同位置,记录不同位置激发出的声表面波影响下的干涉信号、散射光信号和反射光信号;
    步骤6、分析第n个位置的干涉信号变化,确定声表面波的到达时间t,抽取(t-Δt,t+Δt)范围内的散射光信号和反射光信号,计算所抽取散射光信号的平均幅值
    Figure PCTCN2019098995-appb-100001
    以及所抽取散射光信号的平均幅值
    Figure PCTCN2019098995-appb-100002
    使用公式
    Figure PCTCN2019098995-appb-100003
    描述当前位置亚表面缺陷检测的结果,使用公式
    Figure PCTCN2019098995-appb-100004
    公式作为当前位置表面检测的结果;
    步骤7、控制运动平台使样品台上的待测样品在左右方向和前后方向运动,对待测样品进行特定区域的扫描检测,重复上述步骤;
    利用扫描平面的位置信息和特定位置对应的A u值进行可视性描述,显 示该扫描区域亚表面扫描检测的结果;利用扫描平面的位置信息和特定位置对应的A v值进行可视性描述,显示该扫描区域表面扫描检测的结果,其中,A s表示没有表面波调制情况下得到的散射光信号平均幅值,A r表示没有表面波调制情况下得到的反射光信号平均幅值,
    Figure PCTCN2019098995-appb-100005
    表示有表面波调制情况下得到的第n个散射光信号平均幅值,
    Figure PCTCN2019098995-appb-100006
    表示有表面波调制情况下得到的第n个反射光信号平均幅值,取散射光信号的平均幅值计算获取一段时间内的散射光信号平均幅值A s以及反射光信号平均幅值,A u表示量化后的当前位置亚表面缺陷检测结果值,A v表示量化后的当前位置表面缺陷检测结果值。
PCT/CN2019/098995 2018-11-13 2019-08-02 一种可同时检测光学元件表面和亚表面缺陷的装置及方法 WO2020098314A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/960,063 US11187662B2 (en) 2018-11-13 2019-08-02 Device and method for simultaneously inspecting defects of surface and subsurface of optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811343299.5A CN109668838B (zh) 2018-11-13 2018-11-13 一种可同时检测光学元件表面和亚表面缺陷的装置及方法
CN201811343299.5 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020098314A1 true WO2020098314A1 (zh) 2020-05-22

Family

ID=66141708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098995 WO2020098314A1 (zh) 2018-11-13 2019-08-02 一种可同时检测光学元件表面和亚表面缺陷的装置及方法

Country Status (3)

Country Link
US (1) US11187662B2 (zh)
CN (1) CN109668838B (zh)
WO (1) WO2020098314A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707616A (zh) * 2020-06-30 2020-09-25 西安工业大学 角分辨散射检测装置的多轴运动系统和检测方法
CN112666254A (zh) * 2020-12-13 2021-04-16 河南省科学院应用物理研究所有限公司 基于智能视觉和大数据的玻璃幕墙服役状态的主动安全检测方法
CN114062388A (zh) * 2021-11-18 2022-02-18 西安交通大学 一种绝缘轴承陶瓷涂层缺陷检测装置及检测方法
CN116862914A (zh) * 2023-09-04 2023-10-10 深圳长盛高精密五金有限公司 基于深度学习的金属轴表面缺陷识别方法及系统

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668838B (zh) * 2018-11-13 2020-07-03 浙江大学 一种可同时检测光学元件表面和亚表面缺陷的装置及方法
CN109916909B (zh) * 2019-03-25 2021-04-06 西安工业大学 光学元件表面形貌及亚表面缺陷信息的检测方法及其装置
CN110161037A (zh) * 2019-05-05 2019-08-23 长春理工大学 一种高峰值功率脉冲激光损伤阈值自动测试装置
CN110133108B (zh) * 2019-05-13 2020-09-22 浙江大学 一种超精密元件亚表面微纳缺陷测量系统及测量方法
CN110879229B (zh) * 2019-10-16 2022-09-27 长春理工大学 基于量子点的光学元件亚表面缺陷深度检测方法
CN110779927B (zh) * 2019-11-12 2020-10-09 浙江大学 一种基于超声调制的亚表面缺陷检测装置及方法
CN111220624A (zh) * 2020-01-18 2020-06-02 哈尔滨工业大学 表面及亚表面一体化共焦显微测量装置和方法
CN111239154A (zh) * 2020-01-18 2020-06-05 哈尔滨工业大学 一种横向差动暗场共焦显微测量装置及其方法
CN113092374B (zh) * 2021-04-12 2022-11-15 青岛科技大学 小型真空光电测试系统
CN113340910B (zh) * 2021-06-07 2022-06-07 南京航空航天大学 一种采用偏振激光散射检测纤维增强陶瓷基复合材料亚表面损伤的方法
CN113607750B (zh) * 2021-08-05 2022-06-14 浙江大学 一种用于光学元件亚表面缺陷检测的装置及方法
US11835472B2 (en) 2021-08-05 2023-12-05 Zhejiang University Device and method for detecting subsurface defect of optical component
CN114018827A (zh) * 2021-09-26 2022-02-08 宝宇(武汉)激光技术有限公司 一种基于剪切散斑干涉的激光超声无损检测设备及方法
CN114324329B (zh) * 2021-12-23 2023-10-31 中国工程物理研究院激光聚变研究中心 光学元件强激光损伤特性的无损检测与评价方法
CN114280156B (zh) * 2021-12-28 2022-10-21 杭州电子科技大学 一种基于激光超声的亚表面裂纹长度和深度测量方法
CN114414658B (zh) * 2022-01-11 2024-04-09 南京大学 一种金属表面微裂纹深度的激光超声探测方法
CN114965396B (zh) * 2022-05-12 2024-05-10 西安工业大学 基于量子点光漂白的光学元件亚表面缺陷检测方法及系统
CN114965477B (zh) * 2022-07-26 2022-10-21 哈尔滨因极科技有限公司 全自动生物信息分析取样系统及方法
CN115343360B (zh) * 2022-08-10 2024-05-17 西安交通大学 一种激光超声分层自适应模式扫查方法及系统
CN116754568B (zh) * 2023-08-22 2024-01-23 合肥工业大学 一种基于暗场成像过焦扫描的层叠缺陷分离方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120140240A1 (en) * 2009-12-04 2012-06-07 The Trustees Of Columbia University In The City Of New York Laser-scanning intersecting plane tomography such as for high speed volumetric optical imaging
CN102519976A (zh) * 2011-12-26 2012-06-27 上海大学 光学元件亚表面缺陷数字全息检测装置
CN202453298U (zh) * 2012-01-16 2012-09-26 无锡迈福光学科技有限公司 一种基于激光散射的表面微缺陷检测装置
CN104792798A (zh) * 2014-01-20 2015-07-22 南京理工大学 基于全内反射照明技术的亚表面损伤测量装置及方法
CN105092585A (zh) * 2014-05-05 2015-11-25 南京理工大学 基于全内反射及光学相干层析的亚表面测量装置及方法
CN106442564A (zh) * 2016-10-17 2017-02-22 中国科学院上海光学精密机械研究所 大口径超光滑表面缺陷的检测装置和检测方法
CN109668838A (zh) * 2018-11-13 2019-04-23 浙江大学 一种可同时检测光学元件表面和亚表面缺陷的装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486919A (en) * 1992-04-27 1996-01-23 Canon Kabushiki Kaisha Inspection method and apparatus for inspecting a particle, if any, on a substrate having a pattern
US7136159B2 (en) * 2000-09-12 2006-11-14 Kla-Tencor Technologies Corporation Excimer laser inspection system
US8436997B2 (en) * 2010-12-17 2013-05-07 Xyratex Technology Limited Optical inspection system with polarization isolation of detection system reflections
JP2013205015A (ja) * 2012-03-27 2013-10-07 Hitachi Ltd 光検査装置およびその方法
WO2018233951A1 (en) * 2017-06-21 2018-12-27 Asml Netherlands B.V. METHOD AND APPARATUS FOR DETECTING SUBSTRATE SURFACE VARIATIONS

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120140240A1 (en) * 2009-12-04 2012-06-07 The Trustees Of Columbia University In The City Of New York Laser-scanning intersecting plane tomography such as for high speed volumetric optical imaging
CN102519976A (zh) * 2011-12-26 2012-06-27 上海大学 光学元件亚表面缺陷数字全息检测装置
CN202453298U (zh) * 2012-01-16 2012-09-26 无锡迈福光学科技有限公司 一种基于激光散射的表面微缺陷检测装置
CN104792798A (zh) * 2014-01-20 2015-07-22 南京理工大学 基于全内反射照明技术的亚表面损伤测量装置及方法
CN105092585A (zh) * 2014-05-05 2015-11-25 南京理工大学 基于全内反射及光学相干层析的亚表面测量装置及方法
CN106442564A (zh) * 2016-10-17 2017-02-22 中国科学院上海光学精密机械研究所 大口径超光滑表面缺陷的检测装置和检测方法
CN109668838A (zh) * 2018-11-13 2019-04-23 浙江大学 一种可同时检测光学元件表面和亚表面缺陷的装置及方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707616A (zh) * 2020-06-30 2020-09-25 西安工业大学 角分辨散射检测装置的多轴运动系统和检测方法
CN111707616B (zh) * 2020-06-30 2023-02-21 西安工业大学 角分辨散射检测装置的多轴运动系统和检测方法
CN112666254A (zh) * 2020-12-13 2021-04-16 河南省科学院应用物理研究所有限公司 基于智能视觉和大数据的玻璃幕墙服役状态的主动安全检测方法
CN112666254B (zh) * 2020-12-13 2024-02-02 河南省科学院应用物理研究所有限公司 基于智能视觉和大数据的玻璃幕墙服役状态的主动安全检测方法
CN114062388A (zh) * 2021-11-18 2022-02-18 西安交通大学 一种绝缘轴承陶瓷涂层缺陷检测装置及检测方法
CN116862914A (zh) * 2023-09-04 2023-10-10 深圳长盛高精密五金有限公司 基于深度学习的金属轴表面缺陷识别方法及系统
CN116862914B (zh) * 2023-09-04 2023-12-26 深圳长盛高精密五金有限公司 基于深度学习的金属轴表面缺陷识别方法及系统

Also Published As

Publication number Publication date
US20210055230A1 (en) 2021-02-25
CN109668838B (zh) 2020-07-03
US11187662B2 (en) 2021-11-30
CN109668838A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2020098314A1 (zh) 一种可同时检测光学元件表面和亚表面缺陷的装置及方法
CN103439254B (zh) 一种分光瞳激光共焦拉曼光谱测试方法与装置
US6717671B1 (en) System for simultaneously measuring thin film layer thickness, reflectivity, roughness, surface profile and magnetic pattern
US6665078B1 (en) System and method for simultaneously measuring thin film layer thickness, reflectivity, roughness, surface profile and magnetic pattern in thin film magnetic disks and silicon wafers
US6392749B1 (en) High speed optical profilometer for measuring surface height variation
US5159412A (en) Optical measurement device with enhanced sensitivity
US7075058B2 (en) Photothermal imaging scanning microscopy
US20210333190A1 (en) Method for measuring light field distribution and device therefor
US20020015146A1 (en) Combined high speed optical profilometer and ellipsometer
EP0588301A2 (en) Optical measuring apparatus
WO2023010617A1 (zh) 一种用于光学元件亚表面缺陷检测的装置及方法
KR20110060041A (ko) 3차원 표면 형상 측정 장치 및 방법과 그 시스템
US20230044124A1 (en) Device and method for detecting subsurface defect of optical component
CN110779927B (zh) 一种基于超声调制的亚表面缺陷检测装置及方法
JP2001305072A (ja) 基板の欠陥検出方法及び装置
CA2345500A1 (en) Apparatus and method for light profile microscopy
JP3196945B2 (ja) 走査型光学顕微装置
JP3779352B2 (ja) 赤外顕微分光分析方法及び装置
CN205538737U (zh) 反射型双波长全息术的光学元件高景深表面疵病检测装置
JPH10267831A (ja) 複屈折測定光学系および高空間分解能偏光解析装置
JP3736361B2 (ja) 異物特定方法、異物特定装置、および発塵源特定方法
JPH07167793A (ja) 位相差半導体検査装置および半導体装置の製造方法
Stewart et al. Thermal imaging studies of laser irradiated coated optical surfaces
JP3720173B2 (ja) 微小開口プローブの評価装置
Fleming et al. FY17 Report for the Design of a Benchtop PTR System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883662

Country of ref document: EP

Kind code of ref document: A1