WO2020098127A1 - 一种搭扣式暖气系统自供电控温调节系统 - Google Patents

一种搭扣式暖气系统自供电控温调节系统 Download PDF

Info

Publication number
WO2020098127A1
WO2020098127A1 PCT/CN2019/000170 CN2019000170W WO2020098127A1 WO 2020098127 A1 WO2020098127 A1 WO 2020098127A1 CN 2019000170 W CN2019000170 W CN 2019000170W WO 2020098127 A1 WO2020098127 A1 WO 2020098127A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
temperature
power supply
power generation
wireless transmission
Prior art date
Application number
PCT/CN2019/000170
Other languages
English (en)
French (fr)
Inventor
邓方
蔡烨芸
高峰
丁宁
叶子蔓
赵佳晨
徐悦
陈文颉
吴晓波
陈杰
Original Assignee
北京理工大学
邓方
蔡烨芸
高峰
丁宁
叶子蔓
赵佳晨
徐悦
陈文颉
吴晓波
陈杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学, 邓方, 蔡烨芸, 高峰, 丁宁, 叶子蔓, 赵佳晨, 徐悦, 陈文颉, 吴晓波, 陈杰 filed Critical 北京理工大学
Publication of WO2020098127A1 publication Critical patent/WO2020098127A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators

Definitions

  • the invention relates to the field of energy control, and in particular to a self-powered temperature control and adjustment system of a snap-type heating system.
  • Thermoelectric power generation is a way to generate electricity using new energy, mainly to achieve conversion between thermal energy and electrical energy. Since there is no chemical reaction or physical reaction in the power generation process, this power generation technology will not have an impact on the environment.
  • the thermoelectric power generation component is small in volume, wear and tear that occurs during use is small, and the service life can be very long. It has good performance in the use of industrial waste heat, waste heat recovery, and application in aerospace diving.
  • the temperature difference power generation sheet is magnetically attached to the wall of the heating furnace, and the self-contained water tank is used to reduce the ambient temperature and increase the temperature difference to improve the power generation efficiency, resulting in a very bulky device
  • the patent is only applicable to heating stoves, not suitable for other shapes of heating systems, and can only realize the power generation function, can not control the temperature of the heating stove in real time, nor can it self-power the system.
  • the energy storage element in the existing patent can only be a battery, and the selection range is relatively small.
  • the present invention provides a self-powered temperature control and adjustment system for a buckle-type heating system, which can realize real-time adjustment of indoor temperature and use waste heat to generate power for the adjustment system.
  • the technical scheme of the present invention is: a self-powered temperature control system of a snap-type heating system, including a fixing belt, a snap, a control module, a temperature difference power generation module controlled by the control module, a temperature detection module, a power supply module, a wireless Transmission module
  • the buckle includes two parts, which are respectively connected to the two ends of the fixing belt for fixing the fixing belt on the heating pipeline; the thermoelectric power generation module is arranged on the fixing belt, and its hot end passes through the The fixing belt is in contact with the heating pipeline;
  • the control module controls the temperature difference power generation module to work within a set power range; the control module transfers the electric energy of the temperature difference power generation module to the power supply module after voltage stabilization processing, and the temperature is determined by the power supply module Power supply for the detection module and the wireless transmission module;
  • the temperature detection module is used to detect a room temperature and send the detected room temperature to the control module, and when the detected room temperature exceeds a set temperature range in the control module, the control module activates the wireless transmission module , Send a temperature adjustment signal to the central control unit of the external heating system, the central control unit adjusts the water supply of the heating system according to the detected room temperature, keeping the room temperature within the set temperature range.
  • control module the temperature detection module, the power supply module, and the wireless transmission module are all packaged in a packaging bag B connected to a fixing belt.
  • the present invention further includes an energy storage module and a packaging bag A, the packaging bag A and the packaging bag B are detachably connected, the energy storage module is placed in the packaging bag A; the energy storage The module is connected to the output interface for supplying power to external equipment; the energy storage module is connected to the control module, and the control module transmits a part of the electric energy of the thermoelectric power generation module to the power supply module after voltage stabilization processing, and the other part To the energy storage module.
  • an electric quantity display screen is provided on the packaging bag B for displaying the electric quantity of the energy storage module.
  • the temperature detection module includes a temperature sensor, a red working status indicator A and a green working status indicator A, the red working status indicator A is used to indicate that the temperature sensor is in Power supply state, the green working state indicator A is used to indicate that the temperature sensor is in a temperature detection state; the power supply state means that the temperature sensor is controlled by the control module and is only in a normal power supply state without performing temperature detection.
  • the temperature detection state means that the temperature sensor is in a temperature detection working state.
  • thermoelectric power generation module As a preferred mode of the present invention, a heat sink is further included, and the heat sink is installed at the cold end of the thermoelectric power generation module.
  • the thermoelectric power generation module includes more than one thermoelectric power generation chip connected by a thermoelectric power generation module connection circuit, the thermoelectric power generation module connection circuit is arranged in the fixing belt and generates the thermoelectric power generation After the sheets are connected, they are arranged on the fixing belt at even intervals in the circumferential direction.
  • the packaging bag B is further provided with a red working status indicator B and a green working status indicator B, the red working status indicator B and the green working status indicator B are used respectively
  • the power supply state means that the wireless transmission module is controlled by the control module only in a normal power supply state and does not perform wireless signal transmission
  • the working state means the wireless transmission
  • the module is activated by the control module in a wireless signal transmission state.
  • the energy storage module supplies electrical energy to the power supply module for supplying the temperature detection module for temperature detection and the wireless transmission module for wireless transmission signals.
  • the present invention does not have any mechanical rotating parts and does not cause mechanical energy loss.
  • the control module controls the thermoelectric power generation module, the temperature detection module, the power supply module and the wireless transmission module respectively. Through the temperature detection module and the wireless transmission module, the indoor temperature is detected and the adjustment signal is transmitted.
  • the control module is used to control the temperature in the heating system.
  • the regulating valve adjusts the temperature of the heating system to reduce the uneven distribution of heating in residential rooms, thereby reducing energy waste.
  • the whole system has a simple structure and compact design, and is easy to install and disassemble through the buckle structure. The whole system can generate electricity according to the temperature difference between the temperature of the heating system and the room temperature, and the buckle can be installed and used without additional operation or additional energy input.
  • each module can be encapsulated with a packaging bag, which further enhances the safety and convenience of the temperature control adjustment system.
  • the heat sink can reduce the temperature of the cold end of the thermoelectric generator, thereby increasing the temperature difference between the cold and hot ends of the thermoelectric generator, and the energy utilization rate is higher. Since the heating supply of the heating pipe is stable and the indoor temperature is constant, the temperature difference of the power generating device is relatively stable, and stable electrical energy can be generated, thereby realizing self-sufficiency of the system electrical energy.
  • Figure 1 is a block diagram of the overall design of the system.
  • Figure 2 is a schematic diagram of the application of the system to the heating pipe.
  • Figure 3 is the overall structure of the system.
  • Figure 4 is a circuit diagram of the system.
  • 1-thermoelectric power generation chip 2-package bag A, 3-temperature sensor, 4-power display, 5-red working status indicator A, 6-green working status indicator A, 7-output interface, 8- Fixing strap, 9-hook, 10-bag B, 11-heating system, 12-control module, 13-temperature detection module, 14-energy storage module, 15-power supply module, 16-wireless transmission module, 17-red Working status indicator B, 18-green working status indicator B
  • This embodiment provides a self-powered temperature control system for a buckle-type heating system, which can perform real-time control of room temperature and use waste heat to generate power for the adjustment system and other equipment, which can improve energy utilization, reduce energy losses, and achieve energy conservation and environmental protection. .
  • the temperature control system includes a thermoelectric power generation module, a packaging bag B 10 and a packaging bag A.
  • the thermoelectric power generation module is composed of more than one thermoelectric power generation chip 1 and a thermoelectric power generation module connection circuit.
  • the thermoelectric power generation chip 1 passes The thermoelectric power generation module is connected to the fixing belt 8 after the connection circuit is connected, and the two ends of the fixing belt 8 are connected to the two parts of the buckle 9 respectively, and the fixing belt 8 is placed on the heating system, so that the hot end of the thermoelectric generator 1 is connected to the heating system In contact with each other, a cold fin is installed at the cold end to reduce the temperature of the cold end of the thermoelectric power generation plate 1, thereby increasing the temperature difference between the cold end and the hot end of the thermoelectric power generation plate 1.
  • the packaging bag B 10 is connected to the fixing belt 8, and the packaging bag B 10 is equipped with a control module 12, a temperature detection module 13, a power supply module 15, and a wireless transmission module 16, wherein the control module 12 and the temperature difference power generation module and the temperature detection module are respectively 13.
  • the power supply module 15 is connected to the wireless transmission module 16 for outputting control instructions to the temperature difference power generation module, the temperature detection module 13, the power supply module 15 and the wireless transmission module 16, respectively, for maximum power point temperature difference power generation, temperature detection, power transmission Wireless transmission, the power supply module 15 is also connected to the temperature detection module 13 and the wireless transmission module 16, respectively, for providing a stable current to the temperature detection module 13 and the wireless transmission module 16; the wireless transmission module 16 reaches the set temperature at the room temperature detected by the temperature detection module 13 It is activated at a fixed temperature and sends a temperature adjustment signal to the central control unit of the external heating system. It is used to control the central control unit of the heating system to output different water flows, so that the central control unit of the heating system can adjust the actual temperature according to the actual temperature. The required water flow.
  • the temperature detection module 13 is composed of a temperature sensor 3, a red working status indicator A5 and a green working status indicator A6.
  • the red working status indicator A5 is used to indicate that the temperature sensor 3 is in the power supply state A when the power is supplied, and the green working status indicator
  • the lamp A6 is used to indicate that the temperature sensor 3 is in the temperature detection state.
  • the packaging bag B 10 is also equipped with a power display 4, a red working status indicator B 17 and a green working status indicator B 18, the power display 4 is connected to the control module 12, a red working status indicator B 17 and a green working status
  • the indicator lights B 18 are respectively connected to the wireless transmission module 16 and are used to indicate that the wireless transmission module 16 is in the power supply state B and the working state.
  • the packaging bag A2 is connected to the packaging bag B10, and an energy storage module 14 is installed therein.
  • the energy storage module 14 includes an energy storage circuit and an energy storage element.
  • the energy storage circuit is connected to the control module 12 and the power supply module 15 respectively.
  • the energy storage element One end is connected to the energy storage circuit, and the other end is connected to the output interface 7 for powering other devices.
  • the energy storage module 14 feeds back the stored electric energy to the control module 12, and the control module 12 issues an instruction to display the electric quantity on the electric quantity display screen 4 on the packaging bag 10.
  • thermoelectric power generation module the packaging bag B10 and the packaging bag A2 are installed on the heating pipe 11 through a fixing belt 8 and a buckle 9, the hot end of the thermoelectric generation module is directly attached to the heating pipe 11, the heating pipe is supplied with hot water, The temperature difference between the hot end and the cold end of the thermoelectric power generating sheet 1 generates a temperature difference, and converts heat energy into electric energy.
  • Adding a heat sink to the cold end of the thermoelectric power sheet 1 can effectively reduce the temperature of the cold end of the thermoelectric power sheet 1 and further increase the temperature difference between the cold and hot ends of the thermoelectric power sheet, which is more conducive to power generation.
  • the control module 12 After the thermoelectric power generation module starts to work, the control module 12 performs MPPT (Maximum Power Point Tracking) control processing on the thermoelectric power generation module so that the generated power of the thermoelectric power generation module gradually approaches the maximum power, and the obtained electrical energy is subjected to voltage stabilization processing and circuit protection processing through the control module It is then delivered to the energy storage module 14 and the power supply module 15.
  • the energy storage module 14 and the power supply module 15 deliver power to the supercapacitor and the power supply module 15 through rectification, filtering, and voltage stabilization, respectively, and the power supply module 15 supplies power to the temperature detection module 13 and the wireless transmission module 16.
  • the energy storage module 14 is also provided with a power detection circuit, which can detect the power storage in the supercapacitor and transmit the data back to the control module 12.
  • the control module 12 performs analog-to-digital conversion on the specific data and displays it on the power display screen 4.
  • the temperature detection is not performed when the system starts working.
  • the temperature detection module 13 is in the power supply state A, and the red working status indicator 5 is always on.
  • the electrical energy stored in the energy storage module 14 can also provide the power required for the system to perform a temperature detection and adjustment when the thermoelectric power generation module cannot continue to work.
  • the control module 12 The temperature detection module 13 is activated for the first time, and the power supply module 15 supplies power to it.
  • the green working status indicator 6 is lit, the temperature sensor 3 is working, and the detection result is transmitted back to the control module 12.
  • the system activates the temperature detection module 13 every 15 minutes in order to control the interval time is too short to waste power and the interval time is too long to detect accurate temperature changes.
  • the red working status indicator 5 is turned on again.
  • the control module 12 processes the temperature data returned by the temperature detection module 13, and when it is found that the measured indoor temperature reaches the set value or is far below the set value, the control module 12 activates the wireless transmission module 16, and at this time, the power supply module 15 is
  • the wireless transmission module 16 supplies power, and the wireless transmission module 16 transmits a wireless signal to control the temperature control valve in the external communication module to perform temperature adjustment.
  • the working status of the wireless transmission module 16 is indicated by another pair of working status indicators.
  • the green working status indicator 18 lights up when working, and the red working status indicator 17 always lights up when the work is stopped and in the power supply state.
  • the thermoelectric power generation module When the thermoelectric power generation module is in the working state, the electrical energy in the energy storage module 14 does not need to deliver electrical energy to the power supply module 15, and the excess electrical energy can supply power to other external devices; when the thermoelectric power generation module fails, the electrical energy in the energy storage module 14 supplies The power supply module 15 transmits electrical energy for supplying the temperature detection module 13 and the wireless transmission module 16 to perform temperature detection and wireless transmission signal to regulate the temperature. Further, when the energy storage module 14 is fully charged, other storage devices can be replaced. When the entire temperature control and adjustment system does not need to be used, the entire temperature control and adjustment system can be detached from the heating pipe 11 by unfastening the buckle. When there is no power supply, the entire temperature control and adjustment system automatically enters the sleep state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Resistance Heating (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明公开了一种搭扣式暖气系统自供电控温调节系统,包括固定带、搭扣、控制模块和受控制模块控制的温差发电模块、温度检测模块、供电模块、无线传输模块;搭扣包含两部分,分别连接在固定带的两端,用于把固定带固定在暖气管路上;温差发电模块设置在固定带上,其热端通过固定带与暖气管路接触;控制模块控制温差发电模块在设定功率范围内工作;控制模块将温差发电模块的电能稳压处理后传输给供电模块,通过供电模块为温度检测模块及无线传输模块供电;温度检测模块检测室温,并将其发送给控制模块,当检测的室温超出设定温度时,控制模块激活无线传输模块,向外部暖气系统发送温度调节信号并调节暖气系统的供水量,使室温保持在设定温度范围。

Description

一种搭扣式暖气系统自供电控温调节系统 技术领域
本发明涉及能量控制领域,具体涉及一种搭扣式暖气系统自供电控温调节系统。
背景技术
温差发电是利用新能源发电的一种方式,主要实现热能和电能之间的转换。由于发电过程没有化学反应和物理反应,该发电技术不会对环境造成影响。温差发电组件体积小,使用时发生的磨损小,使用寿命可以很长,在工业余热的利用、废热回收与在航天潜水中的应用中有较好表现。
我国北方地区大多在冬季进行集中供暖,利用热水在暖气管道内流动来保持室温。但通常管道温度远远高于室温,大量热量因没有得到利用而浪费。并且由于没有温度反馈系统,无论是否需要,暖气始终全天供热,若遇到供暖偏热,居民只有开窗降温,使宝贵的能源白白浪费。即不能实现对室内温度监测,当温度达到需求时不能自动调节温控阀的温度,
现有专利《一种利用暖气炉温差进行发电的发电装置》中,温差发电片通过磁性粘贴在暖气炉壁上,利用自带水箱降低环境温度进而增大温差来提高发电效率,导致装置非常笨重;同时,该专利只适用于暖气炉,对于其他形状的暖气系统不适用,而且只能实现发电功能,不能对暖气炉的温度进行实时调控,也不能对系统进行自供电。另外,现有专利中的储能元件只能是蓄电池,选择范围较小。
发明内容
有鉴于此,本发明提供了一种搭扣式暖气系统自供电控温调节系统,能够实现对室内温度的实时调控并且利用余热发电为调节系统供电。
本发明的技术方案为:一种搭扣式暖气系统自供电控温调节系统,包括固定带、搭扣、控制模块和受所述控制模块控制的温差发电模块、温度检测模块、供电模块、无线传输模块;
所述搭扣包含两部分,分别连接在所述固定带的两端,用于把所述固定带固定在暖气管路上;所述温差发电模块设置在所述固定带上,其热端通过所述固定带与所述暖气管路接触;
所述控制模块控制所述温差发电模块在设定功率范围内工作;所述控制模块将所述温差发电模块的电能稳压处理后传输给所述供电模块,通过所述供电模块为所述温度检测模块及 所述无线传输模块供电;
所述温度检测模块用于检测室温,并将检测到的室温发送给所述控制模块,当所检测的室温超出所述控制模块内的设定温度范围时,所述控制模块激活所述无线传输模块,向外部暖气系统的中央控制单元发送温度调节信号,所述中央控制单元根据检测的室温调节暖气系统的供水量,使室温保持在设定温度范围内。
作为本发明的一种优选方式,所述控制模块、所述温度检测模块、所述供电模块和所述无线传输模块都封装在与固定带相连的封装袋B内。
作为本发明的一种优选方式,还包括储能模块和封装袋A,所述封装袋A与封装袋B可拆卸连接,所述储能模块放置于所述封装袋A内;所述储能模块与输出接口相连,用于给外部设备供电;所述储能模块与所述控制模块连,所述控制模块将所述温差发电模块的电能稳压处理后一部分传输给供电模块,另一部分传输给所述储能模块。
作为本发明的一种优选方式,所述封装袋B上设置电量显示屏,用于显示所述储能模块的电量。
作为本发明的一种优选方式,所述温度检测模块包括温度传感器、红色工作状态指示灯A和绿色工作状态指示灯A,所述红色工作状态指示灯A用于指示供电时所述温度传感器处于供电状态,所述绿色工作状态指示灯A用于指示所述温度传感器处于温度检测状态;所述供电状态指所述温度传感器受所述控制模块控制只处于正常供电状态不进行温度检测工作,所述温度检测状态指所述温度传感器处于温度检测工作状态。
作为本发明的一种优选方式,还包括散热片,所述散热片安装在所述温差发电模块的冷端。
作为本发明的一种优选方式,所述温差发电模块包括一个以上通过温差发电模块连接电路相连的温差发电片,所述温差发电模块连接电路排布在所述固定带内并将所述温差发电片连接后沿周向均匀间隔布置在所述固定带上。
作为本发明的一种优选方式,所述封装袋B还设置有红色工作状态指示灯B和绿色工作状态指示灯B,所述红色工作状态指示灯B和所述绿色工作状态指示灯B分别用于指示所述无线传输模块处于供电状态和工作状态;所述供电状态指所述无线传输模块受所述控制模块控制只处于供电正常状态不进行无线信号传输,所述工作状态指所述无线传输模块被所述控制模块激活处于无线信号传输状态。
作为本发明的一种优选方式,当温差发电模块处于故障状态时,储能模块给供电模块输送电能,用于供应温度检测模块进行温度检测及无线传输模块进行无线传输信号。
有益效果:
(1)本发明无任何机械转动部分,不产生机械能损耗,利用温差发电原理可将热能直接转化为电能,发电效率高,无噪声污染。控制模块分别控制温差发电模块、温度检测模块、供电模块和无线传输模块,通过温度检测模块和无线传输模块,实现对室内温度的检测和调节信号的传输,利用控制模块对暖气系统里的控温调节阀进行调节,进而对暖气系统的温度进行控制,减少出现居民房间供热分布不均的情况,进而减少能源浪费。整套系统的设备结构简单、设计紧凑,通过搭扣结构安装、拆卸方便。整个系统根据暖气系统温度和室温的温差即可发电工作,搭扣安装即用,无需额外操作,也无需额外电能输入。
(2)采用模块化设计,可利用封装袋将各个模块封装起来,进一步增强控温调节系统的安全方便。
(3)在温度检测模块上设置红色工作状态指示灯和绿色工作状态指示灯,用于清楚辨别供电状态和温度检测状态。
(4)工作时,散热片可以降低温差发电片冷端温度,进而增大温差发电片冷热两端温差,能源利用率更高。由于暖气管供热稳定,室内温度恒定,因此该发电装置温差相对稳定,可以产生稳定电能,实现系统电能自给自足。
(5)将多余的电能储存在储能模块中,可以为其他设备提供电能,进一步提高能源的转化利用率。
附图说明
图1为本系统的整体设计框图。
图2为本系统在暖气管上的应用示意图。
图3为本系统的整体结构图。
图4为本系统中电路结构图。
其中,1-温差发电片,2-封装袋A,3-温度传感器,4-电量显示屏,5-红色工作状态指示灯A,6-绿色工作状态指示灯A,7-输出接口,8-固定带,9-搭扣,10-封装袋B,11-暖气系统,12-控制模块,13-温度检测模块,14-储能模块,15-供电模块,16-无线传输模块,17-红色工作状态指示灯B,18-绿色工作状态指示灯B
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本实施例提供了一种搭扣式暖气系统自供电控温调节系统,可以对室温进行实时调控并且利用余热发电为调节系统和其他设备供电,能够提高能源利用率,降低能源损失,实现节能环保。
如图1-图4,该控温调节系统包括温差发电模块、封装袋B 10和封装袋A 2,温差发电模块由一个以上温差发电片1和温差发电模块连接电路组成,温差发电片1通过温差发电模块连接电路连接后安装在固定带8上,固定带8两端分别与搭扣9的两部分连接,将固定带8放置在暖气系统上,使温差发电片1的热端与暖气系统相接触、其冷端安装有散热片用于降低温差发电片1冷端的温度,进而增大温差发电片1冷端和热端的温差,将固定带8两端的搭扣9扣住可以将其绑定在任意暖气系统上。封装袋B 10连接在固定带8上,封装袋B 10中装有控制模块12、温度检测模块13、供电模块15、无线传输模块16,其中,控制模块12分别和温差发电模块、温度检测模块13、供电模块15和无线传输模块16连接,用于向温差发电模块、温度检测模块13、供电模块15和无线传输模块16分别输出控制指令进行最大功率点温差发电、温度检测、电能输运及无线传输,供电模块15还分别和温度检测模块13及无线传输模块16相连,用于向温度检测模块13及无线传输模块16提供稳定电流;无线传输模块16在温度检测模块13检测的室温达到设定温度时被激活,向外部的暖气系统的中央控制单元发出温度调节信号,用于控制暖气系统的中央控制单元输出不同的水流量,使暖气系统的中央控制单元可以根据实际温度需要调节实际所需的水流量。
温度检测模块13由温度传感器3、红色工作状态指示灯A 5和绿色工作状态指示灯A 6组成,红色工作状态指示灯A 5用于指示供电时温度传感器3处于供电状态A,绿色工作状态指示灯A 6用于指示温度传感器3处于温度检测状态。封装袋B 10上还装有电量显示屏4、红色工作状态指示灯B 17和绿色工作状态指示灯B 18,电量显示屏4与控制模块12连接,红色工作状态指示灯B 17和绿色工作状态指示灯B 18分别和无线传输模块16相连,用于指示无线传输模块16处于供电状态B和工作状态。封装袋A 2连接在封装袋B 10之后,其中装有储能模块14,储能模块14包括储能电路和储能元件,储能电路分别与控制模块12和供电模块15相连,储能元件的一端和储能电路相连,另一端和输出接口7相连,用于给其他设备供电。储能模块14将其存储的电能反馈到控制模块12,控制模块12发出指令将电量显示在封装袋10上的电量显示屏4上。
具体为:本实施例选择常见的暖气管作为供暖系统,超级电容作为储能元件。将温差发 电模块、封装袋B 10和封装袋A 2通过固定带8和搭扣9安装在暖气管11上,温差发电模块的热端直接与暖气管11相贴合,暖气管通热水,温差发电片1的热端与冷端产生温度差,将热能转换成电能。在温差发电片1的冷端加上散热片,可以有效降低温差发电片1的冷端的温度,进一步使温差发电片的冷热两端温度差变大,更有利于发电。温差发电模块开始工作后,控制模块12对温差发电模块进行MPPT(最大功率点跟踪)控制处理使温差发电模块的发电功率逐渐接近最大功率,所得电能通过控制模块12进行稳压处理和电路保护处理后输送到储能模块14和供电模块15。储能模块14和供电模块15通过整流、滤波、稳压,将电能分别输送给超级电容器及给供电模块15,供电模块15对温度检测模块13和无线传输模块16进行供电。储能模块14还设有电量检测电路,可以检测超级电容中的电量存储,并将数据回传给控制模块12。控制模块12对具体数据进行模数转换,显示在电量显示屏4上。系统刚开始工作时不进行温度检测,此时温度检测模块13处于供电状态A,红色工作状态指示灯5常亮。在温差发电模块工作1小时后,储存在储能模块14中的电能在温差发电模块不能继续工作的情况下也能提供系统进行一次温度检测及调节所需的电量,此时,由控制模块12第一次激活温度检测模块13,供电模块15为之供电。温度检测模块13工作时,绿色工作状态指示灯6点亮,温度传感器3工作,并将检测结果传回给控制模块12。之后,系统每隔15分钟激活一次温度检测模块13,是为了控制间隔时间太短浪费电能且间隔时间太长检测不到准确的温度变化。当温度检测模块13停止工作时,红色工作状态指示灯5重新被点亮。控制模块12处理温度检测模块13传回的温度数据,当发现测得的室内温度达到设定值或远低于设定值时,控制模块12激活无线传输模块16,此时,供电模块15为无线传输模块16供电,无线传输模块16传输无线信号控制外部的通信模块中的温控调节阀进行温度调节。无线传输模块16的工作状态由另一对工作状态指示灯指示,工作时绿色工作状态指示灯18点亮,停止工作且处于供电状态时红色工作状态指示灯17常亮。当温差发电模块处于工作状态时,储能模块14中的电能不必给供电模块15输送电能,多余的电能可以给其他外部设备供电;当温差发电模块出现故障时,储能模块14中的电能给供电模块15输送电能,用于供应温度检测模块13和无线传输模块16进行温度检测和无线传输信号调控温度。进一步的,当储能模块14充满电后,可以更换其他存储设备。当整个控温调节系统不需要使用时,解开搭扣即可将整个控温调节系统从暖气管11上拆下,没有电力供给后整个控温调节系统自动进入休眠状态。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种搭扣式暖气系统自供电控温调节系统,其特征在于,包括固定带(8)、搭扣(9)、控制模块(12)和受所述控制模块(12)控制的温差发电模块、温度检测模块(13)、供电模块(15)、无线传输模块(16);
    所述搭扣(9)包含两部分,分别连接在所述固定带(8)的两端,用于把所述固定带(8)固定在暖气管路上;所述温差发电模块设置在所述固定带(8)上,其热端通过所述固定带(8)与所述暖气管路接触;
    所述控制模块(12)控制所述温差发电模块在设定功率范围内工作;所述控制模块(12)将所述温差发电模块的电能稳压处理后传输给所述供电模块(15),通过所述供电模块(15)为所述温度检测模块(13)及所述无线传输模块(16)供电;
    所述温度检测模块(13)用于检测室温,并将检测到的室温发送给所述控制模块(12),当所检测的室温超出所述控制模块(12)内的设定温度范围时,所述控制模块(12)激活所述无线传输模块(16),向外部暖气系统的中央控制单元发送温度调节信号,所述中央控制单元根据检测的室温调节暖气系统的供水量,使室温保持在设定温度范围内。
  2. 如权利要求1所述的一种搭扣式暖气系统自供电控温调节系统,其特征在于,所述控制模块(12)、所述温度检测模块(13)、所述供电模块(15)和所述无线传输模块(16)都封装在与固定带(8)相连的封装袋B(10)内。
  3. 如权利要求2所述的一种搭扣式暖气系统自供电控温调节系统,其特征在于,还包括储能模块(14)和封装袋A(2),所述封装袋A(2)与封装袋B(10)可拆卸连接,所述储能模块(14)放置于所述封装袋A(2)内;所述储能模块(14)与输出接口(7)相连,用于给外部设备供电;所述储能模块(14)与所述控制模块连,所述控制模块(12)将所述温差发电模块的电能稳压处理后一部分传输给供电模块(15),另一部分传输给所述储能模块(14)。
  4. 如权利要求3所述的一种搭扣式暖气系统自供电控温调节系统,其特征在于,所述封装袋B(10)上设置电量显示屏(4),用于显示所述储能模块(14)的电量。
  5. 如权利要求1所述的一种搭扣式暖气系统自供电控温调节系统,其特征在于,所述温度检测模块(13)包括温度传感器(3)、红色工作状态指示灯A(5)和绿色工作状态指示灯A(6),所述红色工作状态指示灯A(5)用于指示供电时所述温度传感器(3)处于供电状态,所述绿色工作状态指示灯A(6)用于指示所述温度传感器(3)处于温度检测状态;所述供电状态指所述温度传感器(3)受所述控制模块控制只处于正常供电状态不进行温度检测 工作,所述温度检测状态指所述温度传感器(3)处于温度检测工作状态。
  6. 如权利要求1所述的一种搭扣式暖气系统自供电控温调节系统,其特征在于,还包括散热片,所述散热片安装在所述温差发电模块的冷端。
  7. 如权利要求1所述的一种搭扣式暖气系统自供电控温调节系统,其特征在于,所述温差发电模块包括一个以上通过温差发电模块连接电路相连的温差发电片(1),所述温差发电模块连接电路排布在所述固定带(8)内并将所述温差发电片(1)连接后沿周向均匀间隔布置在所述固定带(8)上。
  8. 如权利要求2所述的一种搭扣式暖气系统自供电控温调节系统,其特征在于,所述封装袋B(10)还设置有红色工作状态指示灯B(17)和绿色工作状态指示灯B(18),所述红色工作状态指示灯B(17)和所述绿色工作状态指示灯B(18)分别用于指示所述无线传输模块(16)处于供电状态和工作状态;所述供电状态指所述无线传输模块(16)受所述控制模块控制只处于供电正常状态不进行无线信号传输,所述工作状态指所述无线传输模块(16)被所述控制模块激活处于无线信号传输状态。
  9. 如权利要求3所述的一种搭扣式暖气系统自供电控温调节系统,其特征在于,当温差发电模块处于故障状态时,储能模块(14)给供电模块(15)输送电能,用于供应温度检测模块(13)进行温度检测及无线传输模块(16)进行无线传输信号。
PCT/CN2019/000170 2018-11-14 2019-08-27 一种搭扣式暖气系统自供电控温调节系统 WO2020098127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811351940.X 2018-11-14
CN201811351940.XA CN109489114A (zh) 2018-11-14 2018-11-14 一种搭扣式暖气系统自供电控温调节系统

Publications (1)

Publication Number Publication Date
WO2020098127A1 true WO2020098127A1 (zh) 2020-05-22

Family

ID=65695997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/000170 WO2020098127A1 (zh) 2018-11-14 2019-08-27 一种搭扣式暖气系统自供电控温调节系统

Country Status (2)

Country Link
CN (1) CN109489114A (zh)
WO (1) WO2020098127A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489114A (zh) * 2018-11-14 2019-03-19 北京理工大学 一种搭扣式暖气系统自供电控温调节系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1729195A1 (de) * 2005-06-03 2006-12-06 Danfoss A/S Wärmetauscherventil-Steueraufsatz, insbesondere Heizkörperventil-Thermostataufsatz, mit thermoelektrischen Generator
CN203823815U (zh) * 2013-11-20 2014-09-10 钟辅群 可自动控温的炉具总成
CN204304847U (zh) * 2015-01-09 2015-04-29 吴为生 一种水杯发光贴带
CN204730322U (zh) * 2015-03-30 2015-10-28 东北大学 一种暖气供热自动调节装置
CN205227501U (zh) * 2015-10-24 2016-05-11 任学智 一种基于单片机的智能暖气管道装置
CN109489114A (zh) * 2018-11-14 2019-03-19 北京理工大学 一种搭扣式暖气系统自供电控温调节系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1729195A1 (de) * 2005-06-03 2006-12-06 Danfoss A/S Wärmetauscherventil-Steueraufsatz, insbesondere Heizkörperventil-Thermostataufsatz, mit thermoelektrischen Generator
CN203823815U (zh) * 2013-11-20 2014-09-10 钟辅群 可自动控温的炉具总成
CN204304847U (zh) * 2015-01-09 2015-04-29 吴为生 一种水杯发光贴带
CN204730322U (zh) * 2015-03-30 2015-10-28 东北大学 一种暖气供热自动调节装置
CN205227501U (zh) * 2015-10-24 2016-05-11 任学智 一种基于单片机的智能暖气管道装置
CN109489114A (zh) * 2018-11-14 2019-03-19 北京理工大学 一种搭扣式暖气系统自供电控温调节系统

Also Published As

Publication number Publication date
CN109489114A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
CN101245938B (zh) 一种中央空调系统
CN103090440A (zh) 一种双调节功能的热力站节能装置
CN105423567A (zh) 一种温差发电燃气热水器控制器
WO2020098127A1 (zh) 一种搭扣式暖气系统自供电控温调节系统
WO2019091090A1 (zh) 通用型暖气调节系统及其通用型暖气调节系统的调节方法
CN210465527U (zh) 基于电流检测的设备运行状态监测装置及遥控器
CN204853661U (zh) 热网智能动态控制系统
CN102135782A (zh) 电力控制系统及包含其的立式炉加热设备
CN203615608U (zh) 一种流量驱动的即热节能装置
CN202614704U (zh) 基于gprs的地源热泵岩土热物性测试仪
CN210153943U (zh) 一种基于物联网的热力管道控制系统
CN107785932A (zh) 一种基于相变储热的能量实时平衡控制系统及其控制方法
CN203550027U (zh) 一种热计量缴费控制系统
CN109297190A (zh) 一种蓄热电锅炉及其控制系统
CN203323240U (zh) 无线遥控均衡发热的智能电火箱
CN212777617U (zh) 一种能降低供热主管网流量波动的换热站系统
CN205680733U (zh) 一种全钒液流电池机箱的温度监控装置
CN205481812U (zh) 一种温差发电燃气热水器控制器
CN208794561U (zh) 一种与室温监控系统相关联的智能供热系统
CN111412567A (zh) 温度监测控制系统
CN107327892B (zh) 太阳能光热集热供热管路
CN202696509U (zh) 一种太阳能电热联供系统
CN202166118U (zh) 热水供应系统及热水供应系统的控制装置
CN212618914U (zh) 温度监测控制系统
CN215175455U (zh) 一种热源厂流量保护跟踪和温度控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883425

Country of ref document: EP

Kind code of ref document: A1