WO2020097934A1 - 太阳能光电模块的仿真效能检测方法 - Google Patents

太阳能光电模块的仿真效能检测方法 Download PDF

Info

Publication number
WO2020097934A1
WO2020097934A1 PCT/CN2018/116001 CN2018116001W WO2020097934A1 WO 2020097934 A1 WO2020097934 A1 WO 2020097934A1 CN 2018116001 W CN2018116001 W CN 2018116001W WO 2020097934 A1 WO2020097934 A1 WO 2020097934A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
efficiency
solar photovoltaic
photovoltaic module
generation efficiency
Prior art date
Application number
PCT/CN2018/116001
Other languages
English (en)
French (fr)
Inventor
陈进雄
林培钦
颜来平
蒋瑞康
李金颖
林献章
Original Assignee
艾思特能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾思特能源有限公司 filed Critical 艾思特能源有限公司
Priority to PCT/CN2018/116001 priority Critical patent/WO2020097934A1/zh
Publication of WO2020097934A1 publication Critical patent/WO2020097934A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a simulation efficiency detection method of a solar photovoltaic module, in particular to a simulation efficiency detection method which can obtain the equivalent of the test result in the laboratory without disassembling the solar photovoltaic module at the inspection site back to the laboratory for testing.
  • the standard of the power generation efficiency of the so-called solar photovoltaic module is measured in the laboratory environment under standard test conditions (such as 25 °C, atmospheric quality AM (Air Mass 1.5) standard lighting conditions), and the power generation efficiency
  • the so-called performance guarantee on the market is generally based on the power generation efficiency measured under this standard test condition.
  • the measurement of the power generation efficiency of the solar photovoltaic module under the actual conditions on site in addition to environmental factors, in order to determine the effect of the solar photovoltaic module itself on the degradation of its power generation efficiency due to the loss of use time, it is necessary to measure After disassembling the solar photovoltaic module, it is transported to the laboratory for measurement under standard test conditions.
  • this method is not only inefficient, but also because the solar photovoltaic modules during disassembly cannot generate electricity, it will also affect economic benefits.
  • the present inventors have actively engaged in research and development, hoping to provide a method for testing the efficiency of simulation of solar photovoltaic modules. According to this method, the efficiency of solar photovoltaic modules can be directly measured on site and simulated in the laboratory The measurement results under the standard conditions are in line with economic benefits. Through continuous experiments and efforts, the present invention was finally developed.
  • the method of the present invention includes:
  • the efficiency ratio is corrected for different light intensities to simulate the process of generating efficiency ratio of the solar photovoltaic module under standard test conditions
  • Q A the best power generation efficiency under actual use conditions
  • S rated power
  • F measurement of light intensity
  • C power temperature coefficient
  • T actual temperature
  • T S standard temperature
  • W A solar photovoltaic module
  • the correction table is created according to the following steps:
  • Step 1 Measure the actual power generation efficiency of the solar photovoltaic module under different light intensity standard test conditions
  • Step 2 Calculate the optimal power generation efficiency of the solar photovoltaic module under standard test conditions with different light intensities according to formula (C);
  • Step 3 Calculate the efficiency ratio of the actual power generation efficiency of the solar photovoltaic module under standard test conditions of different light intensities to the optimal power generation efficiency of the solar photovoltaic module under standard test conditions according to formula (D);
  • Step 4 Tabulate the performance ratio calculated in Step 3 against different light intensities
  • Q B the optimal power generation efficiency under standard test conditions
  • W B the ratio of actual power generation efficiency under standard test conditions to the optimal power generation efficiency of solar photovoltaic modules under standard test conditions
  • Q C standard test conditions Under the actual power generation efficiency.
  • step 4 is to calculate the efficiency ratio of the light intensity of the solar photovoltaic module according to the linear relationship of the fixed slope exhibited by each efficiency ratio calculated in step 3.
  • step 4 is based on the linear relationship between the efficiency ratio of the light intensity of the solar photovoltaic module and the two efficiency ratios closest to the performance ratio calculated according to step 3 to calculate the illumination of the solar photovoltaic module Intensity efficiency ratio.
  • the efficiency measurement of the solar photovoltaic module can be directly performed on the spot and the measurement result under the standard conditions of the laboratory can be simulated to meet the economic benefits.
  • FIG. 1 is a process diagram for explaining the simulation efficiency detection method of the solar photovoltaic module of the present invention.
  • FIG. 2 is a diagram for explaining the procedure for creating a correction table.
  • FIG. 1 is a process diagram for explaining the simulation efficiency detection method of the solar photovoltaic module of the present invention.
  • FIG. 2 is a diagram for explaining the procedure for creating a correction table.
  • the symbols used in the present invention will be described below. The symbols described below apply to the entire contents of the present invention.
  • Q in the present invention ? QA ? QB ? , Q C? , WA ? , W A%? , W B? , W B%? , W f% , E ? middle?
  • Q 100 is the value of actual power generation efficiency at a sunshine intensity of 100 W / m 2 ).
  • the method of the present invention includes:
  • Correction table is corrected based on the light intensity of each of the performance ratio W A simulation step to solar photovoltaic power generation module performance ratio at standard test conditions of S104.
  • step S101 the actual power generation efficiency Q of the solar photovoltaic module under actual use conditions is measured.
  • the operator can measure the solar photovoltaic module at any installation location of the solar photovoltaic module.
  • the data to be measured includes the temperature, light intensity, and power generation efficiency of the solar photovoltaic module at the installation location.
  • the solar photovoltaic module with a rated power of 250W is measured, and the measurement result is that the temperature of the installation site is 20 ° C, the light intensity is 100W / m 2 , and the solar photovoltaic module's power generation efficiency Q 100 is 25W; at noon The solar photovoltaic module was measured at the time, and the temperature of the installation place was 40 °C, the light intensity was 600W / m 2 , and the solar photovoltaic module ’s power generation efficiency Q 600 was 150W.
  • the solar photovoltaic module was measured at the afternoon, A measurement result is obtained that the temperature of the installation site is 60 ° C., the light intensity is 1200 W / m 2 , and the power generation efficiency Q 1200 of the solar photovoltaic module is 240 W.
  • step S102 the optimal power generation efficiency Q A of the solar photovoltaic module under actual use conditions is calculated according to the above formula (A), where the power temperature coefficient C is a predetermined value of 0.005, which is the standard test condition of 25 ° C, AM1 Values under .5, standard temperature T S is 25 ° C.
  • the optimal power generation efficiency of the solar photovoltaic module under the above three conditions can be obtained as follows:
  • step S103 an efficiency ratio W A of the actual power generation efficiency Q and the optimal power generation efficiency Q A of the solar photovoltaic module under the above conditions is calculated according to the above formula (B). Based on the above formula (B), we can get:
  • step S104 the efficiency percentage W A% is corrected for each light intensity based on the correction table to simulate the power generation efficiency percentage W f% of the solar photovoltaic module under standard test conditions.
  • the optimal power generation efficiency Q A under actual conditions calculated based on this formula (A) is already equivalent to the power generation efficiency obtained under standard conditions (for example, the temperature coefficient of power in formula (A) is the standard test condition 25 °C, the values under AM1.5, T S is 25 °C, formula (a) in 1000 as a reference light intensity, etc.), and the performance is based on the optimum ratio of W a power generation performance and actual performance Q a Q obtained Ratio, but in fact, even under the standard test conditions of the laboratory, the actual power generation efficiency Q C and the optimal power generation performance Q There are still inconsistencies in B.
  • Table 1 is a corresponding table of light intensity relative to the percentage of efficacy.
  • Table 2 is an example of the correction table.
  • the correction table used in the simulation efficiency detection method of the solar photovoltaic module of the present invention is made according to the following steps:
  • Step 1 Measure the actual power generation efficiency Q C of the solar photovoltaic module under different light intensity standard test conditions
  • Step 2 Calculate the optimal power generation efficiency Q B of the solar photovoltaic module under standard test conditions of different light intensities according to formula (C);
  • Step 3 According to formula (D), calculate the efficiency ratio W of the actual power generation efficiency Q C of the solar photovoltaic module under the standard test conditions of different light intensities and the optimal power generation efficiency Q B of the solar photovoltaic module under the standard test conditions B ;
  • Step 4 Tabulate the performance ratio calculated in Step 3 against different light intensities.
  • step 1 the actual power generation efficiency under standard test conditions of different light intensities is measured for the solar photovoltaic module.
  • different light intensities eg 200W / m 2 , 400W / m 2 , 800W / m 2
  • Q C the measured value of the actual power generation efficiency under standard test conditions
  • the optimal power generation efficiency Q B of the solar photovoltaic module under standard test conditions of different light intensities is calculated according to the above formula (C).
  • step 3 the actual power generation efficiency Q C of the solar photovoltaic module under standard test conditions of different light intensities and the optimal power generation efficiency Q of the solar photovoltaic module under standard test conditions are calculated according to the above formula (D) B 's efficiency ratio W B.
  • step 4 Table 1 is made for different light intensities according to the calculated efficiency percentage WB % in step 3.
  • 80% of W B% 1000 is regarded as the correction value of 0, and the efficiency percentage corresponding to other different light intensities is subtracted by 80%, and the performance percentage of the solar photovoltaic module under different light intensities will be obtained Correct the value E, and create the correction table of Table 2.
  • the correction value E of the percentage of performance of other light intensity not actually measured can be calculated based on this relationship .
  • a solar photovoltaic module in the light intensity of the case 600W / m 2 since the light intensity 400W / m 2 and 800W / m 2 corresponding to the Efficiency percentage W B% 95%, 85%, therefore the introduction of 600W / m 2
  • the corresponding efficiency percentage W B% is 90%
  • the corresponding efficiency percentage correction value E 600 in the correction table of Table 2 is 10%.
  • the efficiency percentage correction value E is a positive value, and it is a negative value when it is higher than the reference light intensity.
  • the correction table obtained in the above Table 2 can be used to correct the performance percentage.
  • the correction percentage E in the correction table corresponding to the light intensity of 100W / m 2 , 600W / m 2 , and 1200W / m 2 is 22.5%, 10%, and -5%, respectively, so it is based on the following formula (E )
  • W A% to obtain the power generation efficiency percentage W f% under the simulation standard test conditions:
  • W f% W A% -E ... Formula (E).
  • W f% 100 , W f% 600 , W f% 1200 are the percentage of power generation efficiency of the solar photovoltaic module under actual conditions under simulated standard test conditions. Therefore, it is possible to directly measure the power generation efficiency of the solar photovoltaic module at the installation site and simulate its measurement results under standard laboratory conditions.
  • step 1 the actual power generation efficiency under standard test conditions of different light intensities is measured for the solar photovoltaic module.
  • different light intensities eg 200W / m 2 , 400W / m 2 , 600W / m 2 , 800W / m 2 , 1000W / m 2
  • the optimal power generation efficiency Q B of the solar photovoltaic module under standard test conditions of different light intensities is calculated according to the above formula (C). From this formula (C), for example, a solar photovoltaic module with a rated power of 250W at different light intensities (eg 200W / m 2 , 400W / m 2 , 600W / m 2 , 800W / m 2 , 1000W / m 2 )
  • the actual power generation efficiency ratio W B of the solar photovoltaic module under the standard test conditions of different light intensities is calculated according to the above formula (D), and the solar photovoltaic module can
  • step 4 table 3 is made for different light intensities according to the calculated efficiency percentage W B% in step 3.
  • the W B% value of other different light intensities can be directly subtracted by 92% to obtain solar
  • the efficiency percentage correction value E of the photoelectric module under the standard test conditions of different light intensities, and the correction table of Table 4 is made.
  • the efficiency of the solar photovoltaic module can be directly measured at the installation place and the measurement result under the standard conditions of the laboratory can be directly simulated, so there is no need to disassemble the solar photovoltaic module to the laboratory Carrying out measurements is in line with economic benefits.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一种太阳能光电模块的仿真效能检测方法,包括:测量太阳能光电模块在实际使用条件下的实际发电效能的工序(S101);根据公式(A)计算该太阳能光电模块在该实际使用条件下的最佳发电效能的工序,其中Q A=S×(F/1000)×[1-C×(T-T S)]…公式(A) (S102);根据公式(B)计算该太阳能光电模块的实际发电效能与最佳发电效能的效能比率的工序,其中W A=Q/Q A…公式(B) (S103);以及基于修正表来针对不同光照强度修正该效能比率以仿真该太阳能光电模块在标准测试条件下的发电效能比率的工序(S104)。其中,Q A:实际使用条件下的最佳发电效能,S:额定功率,F:测量光照强度,C:功率温度系数,T:实际温度,T S:标准温度,W A:太阳能光电模块的实际发电效能与最佳发电效能的效能比率,Q:实际发电效能。

Description

太阳能光电模块的仿真效能检测方法 技术领域
本发明涉及一种太阳能光电模块的仿真效能检测方法,尤其涉及一种不需将检测现场的太阳能光电模块拆卸回实验室进行测试便能获得等同于实验室中测试结果的仿真效能检测方法。
背景技术
能源在人类生活中是一个重要的依存要素。人类的发展史上,无论何时都无法避免去思考如何地有效管理能源的使用。自工业革命以来,化石燃料(即石油)严然已成为人类主要能源的来源。然而,随着石油资源逐渐耗尽、温室效应所致气候极端改变以及生态系统的失调,以致世界各国都积极发展替代能源,如太阳能、风能、地热能、水力能等,其中,最受瞩目的便是太阳能。由于太阳能发电具有不会枯竭、容易与建物结合等优点,再加上近年来半导体科技的长足进展等,都使得太阳能的光电转换效能持续提升,因此使得太阳能光电模块逐渐被广泛应用。
但是,环境因素对于太阳能光电模块的发电效能影响很大,例如,日夜、季节、气候等因素均会对太阳能光电模块的发电效能造成极大的影响。另外,太阳能光电模块在正常使用的情况下,本身就会因器材使用年限的问题而使得发电效能逐渐下降。因此,对于太阳能光电模块的发电效能会造成影响者,除了上述环境因素外,太阳能光电模块本身因使用时间上的损耗也会对其发电效能的下降带来巨大的影响。
另外,所谓太阳能光电模块的发电效能的标准是在实验室的环境下,以标准测试条件(例如25℃,大气质量AM(Air Mass)1.5的标准光照条件)来进行测量,并以该发电效能来作为太阳能光电模块发电效能的标准,一般市面上所谓的效能保证,便是采用此标准测试条件下所测得的发电效能为基准。但在对现场实际条件下进行太阳能光电模块的发电效能测量时,除环境因素外,为了判断太阳能光电模块本身因使用时间上的损耗而使其发电效能下降的影响的情况,便需要把所要测量的太阳能光电模块拆解后,再搬送至实验 室来进行标准测试条件下的测量。但这种方法不仅无效率,且由于拆解期间的太阳能光电模块无法进行发电,因此也会影响经济效益。
本发明人针对上述需要,积极着手从事研究开发,以期待可提供一种太阳能光电模块的仿真效能检测方法,根据此方法,便能直接在现场对太阳能光电模块进行效能测量并仿真出在实验室的标准条件下的测量结果,以符合经济效益。经由不断的试验及努力,终于研发出本发明。
发明内容
本发明的方法,包括:
测量太阳能光电模块在实际使用条件下的实际发电效能的工序;
根据下列公式(A)计算该太阳能光电模块在该实际使用条件下的最佳发电效能的工序;
Q A=S×(F/1000)×[1-C×(T-T S)]…公式(A);
根据下列公式(B)计算该太阳能光电模块的实际发电效能与最佳发电效能的效能比率的工序;
W A=Q/Q A…公式(B);以及
基于修正表来针对不同光照强度修正该效能比率以仿真该太阳能光电模块在标准测试条件下的发电效能比率的工序;
其中,Q A:实际使用条件下的最佳发电效能,S:额定功率,F:测量光照强度,C:功率温度系数,T:实际温度,T S:标准温度;W A:太阳能光电模块的实际发电效能与最佳发电效能的效能比率,Q:实际发电效能。
上述方法中,该修正表根据下述步骤来制作:
步骤1:测量该太阳能光电模块在不同光照强度的标准测试条件下的实际发电效能;
步骤2:根据公式(C)计算该太阳能光电模块在不同光照强度的标准测试条件下的最佳发电效能;
Q B=S×(F/1000)…公式(C);
步骤3:根据公式(D)分别计算该太阳能光电模块在不同光照强度的标 准测试条件下的实际发电效能与该太阳能光电模块在标准测试条件下的最佳发电效能的效能比率;
W B=Q C/Q B…公式(D);以及
步骤4:根据步骤3所计算出的效能比率相对于不同光照强度来制表;
其中,Q B:标准测试条件下的最佳发电效能,W B:标准测试条件下的实际发电效能与太阳能光电模块在标准测试条件下的最佳发电效能的效能比率,Q C:标准测试条件下的实际发电效能。
上述方法中,步骤4是根据步骤3所计算出的各效能比率所呈现出的固定斜率的线性关系来计算出该太阳能光电模块的光照强度的效能比率。
上述方法中,步骤4是根据该太阳能光电模块的光照强度的效能比率与最邻近该效能比率的根据步骤3所计算出的2个效能比率所呈现的线性关系来计算出该太阳能光电模块的光照强度的效能比率。
根据本发明的方法,便能直接在现场对太阳能光电模块进行效能测量并仿真在实验室的标准条件下的测量结果,以符合经济效益。
附图说明
图1是用来说明本发明的太阳能光电模块的仿真效能检测方法的工序图;以及
图2是用来说明制作修正表的步骤的图式。
具体实施方式
以下,参考图1至图2来说明本发明的太阳能光电模块的仿真效能检测方法。图1是用来说明本发明的太阳能光电模块的仿真效能检测方法的工序图。图2是用来说明制作修正表的步骤的图式。另外,以下便就本发明所使用的符号进行说明。以下所说明的符号适用于本发明全部内容。
Q:在实际使用条件下的实际发电效能;Q A:实际使用条件下的最佳发电效能;W A:太阳能光电模块的实际发电效能与最佳发电效能的效能比率;W A%:W A的效能百分比;W f%:仿真标准测试条件下的发电效能百分比;Q B: 在标准测试条件下的最佳发电效能;Q C:在标准测试条件下的实际发电效能;W B:太阳能光电模块在不同光照强度的标准测试条件下的实际发电效能与该太阳能光电模块在标准测试条件下的最佳发电效能的效能比率;W B%:W B的效能百分比;E:效能百分比修正值;S:额定功率;F:测量光照强度;C:功率温度系数;T:实际温度;T S:标准温度。
另外,本发明中的Q 、Q A?、Q B?、Q C?、W A?、W A%?、W B?、W B%?、W f%、E 中的?为日照强度的数值,这些符号表示在?所示的日照强度的数值下的该参数的数值(例如Q 100为日照强度为100W/m 2下的实际发电效能的数值)。
首先,参考图1,来说明本发明的太阳能光电模块效能检测的仿真方法。
本发明的方法,包括:
测量太阳能光电模块在实际使用条件下的实际发电效能Q的工序S101;
根据下列公式(A)计算该太阳能光电模块在该实际使用条件下的最佳发电效能Q A的工序S102;
Q A=S×(F/1000)×[1-C×(T-T S)]…公式(A);
根据下列公式(B)计算该太阳能光电模块的实际发电效能与最佳发电效能的效能比率W A的工序S103;
W A=Q/Q A…公式(B);以及
基于修正表来就各光照强度修正该效能比率W A以仿真太阳能光电模块在标准测试条件下的发电效能比率的工序S104。
接着,就本发明方法的各工序进行详细说明。
在工序S101中,测量太阳能光电模块在实际使用条件下的实际发电效能Q。具体而言,操作者可在任何太阳能光电模块的设置场所来对该太阳能光电模块进行测量,所需要测量的数据包含有设置场所的温度、光照强度以及太阳能光电模块的发电效能。例如,在上午时分对额定功率250W的太阳能光电模块进行测量,而得到设置场所的温度为20℃,光照强度为100W/m 2,太阳能光电模块的发电效能Q 100为25W的测量结果;在中午时分对太阳能光电模块进行测量,而得到设置场所的温度为40℃,光照强度为600W/m 2,太阳能光电模块的发电效能Q 600为150W的测量结果,在下午时分对太阳能 光电模块进行测量,而得到设置场所的温度为60℃,光照强度为1200W/m 2,太阳能光电模块的发电效能Q 1200为240W的测量结果。
接着,在工序S102中,根据上述公式(A)计算太阳能光电模块在实际使用条件下的最佳发电效能Q A,其中功率温度系数C为既定值0.005,此数值为标准测试条件25℃,AM1.5下的数值,标准温度T S为25℃。例如,基于此公式(A),便可分别得到该太阳能光电模块在上述3个条件下的最佳发电效能为:
Q A100=250×(100/1000)×[1-0.005×(20-25)]=25.625W;
Q A600=250×(600/1000)×[1-0.005×(40-25)]=138.75W;
Q A1200=250×(1200/1000)×[1-0.005×(60-25)]=247.5W。
接着,在工序S103中根据上述公式(B)计算该太阳能光电模块在上述各条件下的实际发电效能Q与最佳发电效能Q A的效能比率W A。基于上述公式(B),便可得到:
W A100=Q 100/Q A100=25/25.625=0.9756;
W A600=Q 600/Q A600=150/138.75=1.081;
W A1200=Q 1200/Q A1200=240/247.5=0.969;
换算为效能百分比W A%则分别为97.56%、100.81%、96.9%。
最后,在工序S104中,基于修正表来就各光照强度修正效能百分比W A%以仿真该太阳能光电模块在标准测试条件下的发电效能百分比W f%。虽然基于此公式(A)所计算出的实际条件下的最佳发电效能Q A已经是相当于在标准条件下所得到发电效能(例如,公式(A)中的功率温度系数C为标准测试条件25℃,AM1.5下的数值,T S为25℃,公式(A)中的1000为基准光照强度等),且效能比率W A也是基于最佳发电效能Q A及实际发电效能Q所得到的比率,但实际上就算是在实验室的标准测试条件下,由于太阳能光电模块因使用时间导致太阳能光电模块损耗而影响到发电效能的缘故,而使实际发电效能Q C与最佳发电效能Q B仍有不一致的情况产生。由上述可知,就算是依据相当于标准条件下所得到最佳发电效能Q A,仍存在有上述太阳能光电模块因时间损耗所致的误差,因此还是需要以在标准测试条件下所制得的修正表来 对所算出的效能百分比进行修正。从而,便进行下述修正表的制作。
接着,参考图2及下述表1及表2,就本发明方法中所使用的修正表的制作方法来进行说明。表1是光照强度相对于效能百分比的对应表。表2是修正表的一个示例。
如图2所示,本发明的太阳能光电模块的仿真效能检测方法中所使用的修正表是根据下述步骤来制作:
步骤1:测量太阳能光电模块在不同光照强度的标准测试条件下的实际发电效能Q C
步骤2:根据公式(C)计算该太阳能光电模块在不同光照强度的标准测试条件下的最佳发电效能Q B
Q B=S×(F/1000)…公式(C);
步骤3:根据公式(D)分别计算该太阳能光电模块在不同光照强度的标准测试条件下的实际发电效能Q C与该太阳能光电模块在标准测试条件下的最佳发电效能Q B的效能比率W B
W B=Q C/Q B…公式(D);以及
步骤4:根据步骤3所计算出的效能比率相对于不同光照强度来制表。
以下,对各步骤的细节进行说明。
在步骤1中,针对太阳能光电模块来测量在不同光照强度的标准测试条件下的实际发电效能。例如,在标准测试条件下(例如25℃,大气质量AM1.5),针对额定功率为250W的太阳能光电模块进行不同光照强度(例如200W/m 2、400W/m 2、800W/m 2)的测量,而得到标准测试条件下的实际发电效能的测量值Q C(例如Q C200=50W、Q C400=95W、Q C800=170W)。
其次,在步骤2中,根据上述公式(C)计算该太阳能光电模块在不同光照强度的标准测试条件下的最佳发电效能Q B。根据公式(C),便可得到例如额定功率为250W的太阳能光电模块在不同光照强度(例如200W/m 2、400W/m 2、800W/m 2)的最佳发电效能Q B,例如Q B200=250×(200/1000)=50W,Q B400=250×(400/1000)=100W,Q B800=250×(800/1000)=200W。
再次,在步骤3中,根据上述公式(D)分别计算该太阳能光电模块在不同 光照强度的标准测试条件下的实际发电效能Q C与该太阳能光电模块在标准测试条件下的最佳发电效能Q B的效能比率W B
根据公式(D),便可得到该太阳能光电模块在不同光照强度的标准测试条件下的实际发电效能Q C与最佳发电效能Q B的效能比率W B,例如,W B200=Q C200/Q B200=50/50=1,W B400=Q C400/Q B400=95/100=0.95,W B800=Q C800/Q B800=170/200=0.85,换算为效能百分比W B%即为100%、95%、85%。
最后,在步骤4中,根据步骤3所计算出的效能百分比W B%针对不同光照强度来制作表1。
[表1]
光照强度[W/m 2] 效能百分比W B%
200 100%
400 95%
800 85%
基于表1的数据,由于光照强度与效能百分比W B%200、W B%400、W B%800呈现出具有依次递减的关系(例如,每提升200W/m 2光照强度便降低5%效能百分比的关系),因此应可推出W B%1000(即光照强度为1000W/m 2)为80%。由于光照强度1000W/m 2即为额定功率测量时的基准光照强度,因此便以基准光照强度1000W/m 2的修正值为0的基准来制作修正表。具体而言,是将W B%1000的80%视为修正值0,而将其他不同光照强度所对应的效能百分比同减去80%,便会得到太阳能光电模块在不同光照强度下的效能百分比修正值E,并制作出表2的修正表。例如,太阳能光电模块在光照强度为200W/m 2、400W/m 2、800W/m 2时所对应的效能百分比修正值E为E 200=20%、E 400=15%、E 800=5%。
[表2]
光照强度[W/m 2] 效能百分比修正值E
100 22.5%
200 20%
300 17.5%
400 15%
500 12.5%
600 10%
700 7.5%
800 5%
900 2.5%
1000 0
1100 -2.5%
1200 -5%
另外,由于表1中,W B%200、W B%400、W B%800呈现出依次递减的关系,因此其他未实际测量的不同光照强度的效能百分比修正值E都可依据该关系来推算。例如,太阳能光电模块在光照强度为600W/m 2的情况,由于光照强度400W/m 2与800W/m 2所对应的效能百分比W B%为95%、85%,因此可推出600W/m 2所对应的效能百分比W B%为90%,而在表2的修正表中所对应的效能百分比修正值E 600为10%。另外,在光照强度低于基准光照强度(1000W/m 2)的情况下,效能百分比修正值E为正值,而在高于基准光照强度的情况下则为负值。
以上述实际条件下所算出的效能百分比为例,便可利用上述表2所得到的修正表,来对效能百分比进行修正。具体而言,修正表中对应于光照强度100W/m 2、600W/m 2、1200W/m 2的效能百分比修正值E分别为22.5%、10%、-5%,故基于下述公式(E)来修正效能百分比W A%,可得到仿真标准测试条件下的发电效能百分比W f%
W f%=W A%-E…公式(E)。
W f%100=W A%100-E 100=97.56%-22.5%=75.06%;
W f%600=W A%600-E 600=100.81%-10%=90.81%;
W f%1200=W A%1200-E 1200=96.9%-(-5%)=101.9%。
W f%100、W f%600、W f%1200即为该太阳能光电模块在实际条件下仿真标准测试条件的发电效能百分比。因此,便能直接在设置场所对太阳能光电模块进行发电效能测量并仿真其在实验室标准条件下的测量结果。
以下,便参考图2及表三、表四,就制作修正表的另一示例来进行说明。
首先,参考图2,在步骤1中,针对太阳能光电模块来测量在不同光照强度的标准测试条件下的实际发电效能。例如,在标准测试条件下,针对额定功率为250W的太阳能光电模块进行不同光照强度(例如200W/m 2、400W/m 2、600W/m 2、800W/m 2、1000W/m 2)的测量,而得到标准测试条件下的实际发电效能的测量值Q C,例如Q C200=50W、Q C400=95W、Q C600=160W、Q C800=200W、Q C1000=230W。
其次,在步骤2中,根据上述公式(C)计算该太阳能光电模块在不同光照强度的标准测试条件下的最佳发电效能Q B。由此公式(C),便可得到例如额定功率为250W的太阳能光电模块在不同光照强度(例如200W/m 2、400W/m 2、600W/m 2、800W/m 2、1000W/m 2)的最佳发电效能Q B,例如Q B200=50W,Q B400=100W,Q B600=150W,Q B800=200W,Q B1000=250W。
再次,在步骤3中,根据上述公式(D)分别计算该太阳能光电模块在不同光照强度的标准测试条件下的实际发电效能比率W B,由公式(D),便可得到该太阳能光电模块在不同光照强度的标准测试条件下的效能比率W B,例如,W B200=50/50=1,W B400=95/100=0.95,W B600=160/150=1.067,W B800=200/200=1,W B1000=230/250=0.92,换算为效能百分比W B%即为100%、95%、106.67%、100%、92%。
最后在步骤4中,根据步骤3所计算出的效能百分比W B%针对不同光照强度来制作表3。
[表3]
光照强度[W/m 2] 效能百分比W B%
200 100%
400 95%
600 106.67%
800 100%
1000 92%
如上述实施例的表1所说明的,因为作为基准光照强度的W B%1000的数值为92%,因此可直接将其他不同光照强度的W B%值同减去92%,便可得到太阳能光电模块在不同光照强度的标准测试条件下的效能百分比修正值E,并制作出表4的修正表。例如,太阳能光电模块在光照强度为200W/m 2、400W/m 2、600W/m 2、800W/m 2所对应的效能百分比修正值E为E 200=8%、E 400=3%、E 600=15%、E 800=8%。基于表3的显示,由于表3中的各效能百分比W B%所构成的关系并不是表1所呈现的依次递减的关系,因此关于其他未对太阳能光电模块进行实际测量的光照强度的效能百分比修正值E ,则以太阳能光电模块的光照强度的效能百分比W B%?与最邻近该效能百分比W B%?的2个已实际测量的光照强度的效能百分比W B%所呈现的线性关系来进行推算。例如,在太阳能光电模块在光照强度为300W/m 2的效能百分比修正值E 的情况,由于最邻近于光照强度300W/m 2的2个已实际测量的光照强度为200W/m 2、400W/m 2,而该2个光照强度的效能百分比W B%值分别为100%及95%,因此可推算出光照强度为300W/m 2的效能百分比W B%?值为97.5%,而可推出光照强度为300W/m 2的效能百分比修正值E 值为97.5%-92%=5.5%。另外,关于其他未实际测量的光照强度的效能百分比修正值E 值是以该方式来进行推算,从而制作出表4的修正表。
[表4]
光照强度[W/m 2] 效能百分比修正值E
100 10.5%
200 8%
300 5.5%
400 3%
500 8.83%
600 15%
700 11.33%
800 8%
900 4%
1000 0
1100 -2%
1200 -4%
由上述可知,即便太阳能光电模块面板在标准条件下的各光照强度所对应的效能百分比未呈现出如表1所示的固定斜率的线性关系,仍可以上述方式来制作出修正表,并以该修正表来修正实际条件下所计算出的效能百分比W A%
以上虽已参考图式来详细说明本发明较佳实施方式,但本发明不限于上述实施方式。本发明的所述本领域技术人员应当可在申请专利范围所记载的范围内做各种变化,且可明了该变化等当然也属于本发明的技术范围。
根据本发明的太阳能光电模块的仿真效能检测方法,便能直接在设置场所对太阳能光电模块进行效能测量并直接仿真在实验室的标准条件下的测量结果,因此无需将太阳能光电模块拆卸至实验室进行测量,符合经济效益。
【符号说明】
Q B、QA…最佳发电效能
Q C…实际发电效能的测量值
Q…实际发电效能
W B%、W A%、W f%…效能百分比
S…额定功率
F…测量光照强度
C…功率温度系数
T…实际温度
T S…标准温度

Claims (6)

  1. 一种太阳能光电模块的仿真效能检测方法,包括:
    测量太阳能光电模块在实际使用条件下的实际发电效能的工序;
    根据下列公式(A)计算所述太阳能光电模块在所述实际使用条件下的最佳发电效能的工序;
    Q A=S×(F/1000)×[1-C×(T-T S)]…公式(A);
    根据下列公式(B)计算所述太阳能光电模块的实际发电效能与最佳发电效能的效能比率的工序;
    W A=Q/Q A…公式(B);以及
    基于修正表来针对不同光照强度修正所述效能比率以仿真所述太阳能光电模块在标准测试条件下的发电效能比率的工序;
    其中,Q A:实际使用条件下的最佳发电效能,S:额定功率,F:测量光照强度,C:功率温度系数,T:实际温度,T S:标准温度,W A:太阳能光电模块的实际发电效能与最佳发电效能的效能比率,Q:实际发电效能。
  2. 根据权利要求1所述的太阳能光电模块的仿真效能检测方法,其中所述修正表根据以下述步骤来制作:
    步骤1:测量所述太阳能光电模块在不同光照强度的标准测试条件下的实际发电效能;
    步骤2:根据公式(C)计算所述太阳能光电模块在不同光照强度的标准测试条件下的最佳发电效能;
    Q B=S×(F/1000)…公式(C);
    步骤3:根据公式(D)分别计算所述太阳能光电模块在不同光照强度的标准测试条件下的实际发电效能与所述太阳能光电模块在标准测试条件下的最佳发电效能的效能比率;
    W B=Q C/Q B…公式(D);以及
    步骤4:根据步骤3所计算出的效能比率相对于不同光照强度来制表;
    其中,Q B:准测试条件下的最佳发电效能,W B:标准测试条件下的实 际发电效能与太阳能光电模块在标准测试条件下的最佳发电效能的效能比率,Q C:标准测试条件下的实际发电效能。
  3. 根据权利要求2所述的太阳能光电模块的仿真效能检测方法,其中在步骤4中,根据步骤3所计算出的各效能比率所呈现出的固定斜率的线性关系来计算出所述太阳能光电模块的光照强度的效能比率。
  4. 根据权利要求2所述的太阳能光电模块的仿真效能检测方法,其中在步骤4中,根据所述太阳能光电模块的光照强度的效能比率与最邻近所述效能比率的根据步骤3所计算出的2个效能比率所呈现的线性关系来计算出所述太阳能光电模块的光照强度的效能比率。
  5. 根据权利要求1-4中任一项所述的太阳能光电模块的仿真效能检测方法,其中所述各效能比率是换算成效能百分比来进行计算的。
  6. 根据权利要求5所述的太阳能光电模块的仿真效能检测方法,其中所述基于修正表来仿真所述太阳能光电模块在标准测试条件下的发电效能比率的工序中,基于下述的公式(E)来修正效能百分比,以得到仿真标准测试条件下的发电效能百分比:
    W f%=W A%-E…公式(E)
    其中,E是太阳能光电模块在不同光照强度下的效能百分比修正值,W A%是效能百分比,W f%是仿真标准测试条件下的发电效能百分比。
PCT/CN2018/116001 2018-11-16 2018-11-16 太阳能光电模块的仿真效能检测方法 WO2020097934A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/116001 WO2020097934A1 (zh) 2018-11-16 2018-11-16 太阳能光电模块的仿真效能检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/116001 WO2020097934A1 (zh) 2018-11-16 2018-11-16 太阳能光电模块的仿真效能检测方法

Publications (1)

Publication Number Publication Date
WO2020097934A1 true WO2020097934A1 (zh) 2020-05-22

Family

ID=70731298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116001 WO2020097934A1 (zh) 2018-11-16 2018-11-16 太阳能光电模块的仿真效能检测方法

Country Status (1)

Country Link
WO (1) WO2020097934A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124918A (zh) * 2014-06-26 2014-10-29 国家电网公司 一种适用于光伏电站的发电效率综合检测方法
CN104167988A (zh) * 2014-09-09 2014-11-26 河海大学常州校区 一种光伏系统效率异常告警的判断方法
CN105634405A (zh) * 2014-12-01 2016-06-01 国家电网公司 光伏发电系统发电性能的检测方法及装置
CN105932965A (zh) * 2016-05-13 2016-09-07 何旭 一种光伏电站系统效能的测量方法
CN107229824A (zh) * 2017-05-22 2017-10-03 华北电力科学研究院有限责任公司 光伏电站发电单元功率曲线建模方法及装置
CN107425534A (zh) * 2017-08-25 2017-12-01 电子科技大学 一种基于优化蓄电池充放电策略的微电网调度方法
JP2018025493A (ja) * 2016-08-10 2018-02-15 メイン—エナージア インコーポレイテッド 太陽光電池モジュールの表面の汚染度測定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124918A (zh) * 2014-06-26 2014-10-29 国家电网公司 一种适用于光伏电站的发电效率综合检测方法
CN104167988A (zh) * 2014-09-09 2014-11-26 河海大学常州校区 一种光伏系统效率异常告警的判断方法
CN105634405A (zh) * 2014-12-01 2016-06-01 国家电网公司 光伏发电系统发电性能的检测方法及装置
CN105932965A (zh) * 2016-05-13 2016-09-07 何旭 一种光伏电站系统效能的测量方法
JP2018025493A (ja) * 2016-08-10 2018-02-15 メイン—エナージア インコーポレイテッド 太陽光電池モジュールの表面の汚染度測定装置
CN107229824A (zh) * 2017-05-22 2017-10-03 华北电力科学研究院有限责任公司 光伏电站发电单元功率曲线建模方法及装置
CN107425534A (zh) * 2017-08-25 2017-12-01 电子科技大学 一种基于优化蓄电池充放电策略的微电网调度方法

Similar Documents

Publication Publication Date Title
Ma et al. An improved and comprehensive mathematical model for solar photovoltaic modules under real operating conditions
Wang et al. Comparison of different simplistic prediction models for forecasting PV power output: assessment with experimental measurements
Akhsassi et al. Experimental investigation and modeling of the thermal behavior of a solar PV module
Cuce et al. An accurate model for photovoltaic (PV) modules to determine electrical characteristics and thermodynamic performance parameters
Banda et al. Performance evaluation of 830 kWp grid-connected photovoltaic power plant at Kamuzu International Airport-Malawi
Zhou et al. A novel model for photovoltaic array performance prediction
Deschamps et al. Optimization of inverter loading ratio for grid connected photovoltaic systems
Kichou et al. Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure
Nikolaeva‐Dimitrova et al. Seasonal variations on energy yield of a‐Si, hybrid, and crystalline Si PV modules
Bouaichi et al. In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco
Fanni et al. A detailed analysis of gains and losses of a fully-integrated flat roof amorphous silicon photovoltaic plant
Haibaoui et al. Performance indicators for grid-connected PV systems: a case study in Casablanca, Morocco
Ishii et al. Change in I–V characteristics of thin‐film photovoltaic (PV) modules induced by light soaking and thermal annealing effects
WO2014203431A1 (ja) 予測システム、予測装置および予測方法
Tahri et al. Monitoring and evaluation of photovoltaic system
Polo et al. Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications
CN111784030B (zh) 一种基于空间相关性的分布式光伏功率预测方法及装置
Kurtz et al. Considerations for how to rate CPV
CN106452354A (zh) 一种并网型光伏电站发电性能的验证方法
Morcillo-Herrera et al. Practical method to estimate energy potential generated by photovoltaic cells: practice case at Merida City
Sun et al. The I–V characteristics of solar cell under the marine environment: Experimental research
WO2020097934A1 (zh) 太阳能光电模块的仿真效能检测方法
Adar et al. Simulation study of three PV systems
Dindar et al. Comparison of simulation results for 25 kw power output rooftop pv system
TWI668955B (zh) Simulation performance detection method of solar photovoltaic module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940233

Country of ref document: EP

Kind code of ref document: A1