WO2020097894A1 - 一种聚咔唑负载纳米钯材料及其制备方法与应用 - Google Patents

一种聚咔唑负载纳米钯材料及其制备方法与应用 Download PDF

Info

Publication number
WO2020097894A1
WO2020097894A1 PCT/CN2018/115768 CN2018115768W WO2020097894A1 WO 2020097894 A1 WO2020097894 A1 WO 2020097894A1 CN 2018115768 W CN2018115768 W CN 2018115768W WO 2020097894 A1 WO2020097894 A1 WO 2020097894A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbazole
palladium
reaction
nano
nmr
Prior art date
Application number
PCT/CN2018/115768
Other languages
English (en)
French (fr)
Inventor
李红喜
郭斌
郎建平
Original Assignee
南通纺织丝绸产业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通纺织丝绸产业技术研究院, 苏州大学 filed Critical 南通纺织丝绸产业技术研究院
Priority to PCT/CN2018/115768 priority Critical patent/WO2020097894A1/zh
Publication of WO2020097894A1 publication Critical patent/WO2020097894A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Definitions

  • the invention belongs to the technical field of catalytic chemistry, and relates to a palladium nano material supported by a carbazole polymer, and a preparation method and application thereof.
  • Diaryl and polyaryl compounds have been widely used in the manufacture of medicines, chemical agricultural products, artificial substitutes for natural products, dyes and spices. At present, there are many main methods for synthesizing such compounds. At present, the research on the synthesis of such compounds mainly focuses on the use of homogeneous catalysts to heat the reaction to overcome the driving force required for its catalytic cycle. There are many shortcomings in these catalytic systems, such as the catalyst remains in the product, the catalyst cannot be recycled, high temperature or electron sacrificial agents are required to promote the reaction, and it is easy to cause environmental pollution.
  • heterogeneous catalysts overcome some of these difficulties, they have the disadvantages of high reaction temperature and electron sacrificial agents.
  • light-induced heterogeneous catalysts enter people's field of vision.
  • the object of the present invention is to provide a polymer-supported palladium nanomaterial, its preparation method and use.
  • the Suzuki reaction of aromatic bromide or aromatic chloride and aromatic boric acid is photocatalyzed to finally obtain a diaryl compound.
  • the polymer-supported palladium nanomaterial used as a catalyst can be recycled more than 3 times, and it is still stable after 3 cycles, and its catalytic activity has not been significantly reduced. It is an effective and efficient Catalyst.
  • a polycarbazole-supported nano-palladium material the nano-palladium is distributed on the carbazole polymer; the substrate is a carbazole polymer, and the nano-palladium particles are uniformly distributed on the substrate with an average particle diameter of 4 to 4.5 nm, preferably 4.2 nm, wherein
  • the valence of metal palladium is zero valence, and the nitrogen in the polymer presents two types of existence: pyridine type and pyrrole type; preferably, in the polycarbazole-supported nano-palladium material, the palladium loading is 1.3wt% ⁇ 1.4wt %.
  • a preparation method of polycarbazole-supported nano-palladium material includes the following steps: under an inert gas, an aqueous solution containing Pd (OAc) 2 and polycarbazole is stirred and mixed, and then an aqueous solution of NaBH 4 is added, and then the stirring reaction is continued to obtain Polycarbazole supported nano-palladium material.
  • the centrifugal treatment is performed after the stirring reaction is completed, and the precipitate is washed sequentially with water, ethanol, and ether, and then vacuum-dried to obtain a polycarbazole-supported nano-palladium material.
  • the stirring speed of the stirring and mixing is 1000 rpm and the time is 0.5 hours; the stirring speed of the stirring reaction is 1000 rpm and the time is 4 hours.
  • the loading amount of palladium is 1.3 wt% to 1.4 wt%, which can be obtained by using the mass percentage between the metal palladium and the polymer material.
  • the inert gas is selected from any one of nitrogen and argon, preferably nitrogen.
  • the preparation method of the above-mentioned polycarbazole-loaded nano-palladium material can be expressed as follows: under nitrogen, the suspension of Pd (OAc) 2 and polycarbazole is stirred on a magnetic stirrer at a speed of 1000 revolutions per minute for 0.5 hour, after Add an aqueous solution of NaBH 4 to the solution with a syringe, and then continue to stir the reaction for 4 hours; after the reaction is completed, the aqueous solvent is removed by centrifugation, and the resulting precipitate is washed with water, ethanol, and ether, and then dried in vacuo to obtain polycarbazole-supported nano-palladium Materials (Pd / P3, 5-diCzPy).
  • polycarbazole-supported nano-palladium material in the preparation of diaryl compounds by photocatalytic reaction of aromatic halide and aromatic boric acid; in the polycarbazole-supported nano-palladium material, nano-palladium is distributed on the carbazole polymer, and its base is Carbazole polymer, nano-palladium particles are evenly distributed on the substrate with an average particle size of 4.2nm, in which the valence of metal palladium is zero valence, and the nitrogen in the polymer presents two types of existence: pyridine type and pyrrole type; preferred In the polycarbazole-supported nano-palladium material, the loading amount of palladium is 1.3 wt% to 1.4 wt%.
  • the aromatic halide is aromatic bromide or aromatic chloride.
  • the aromatic bromide is selected from bromobenzene, alkyl substituted bromobenzene, alkoxy substituted bromobenzene, acetyl substituted bromobenzene, formyl substituted bromobenzene, cyano substituted bromobenzene, nitro substituted bromobenzene, naphthalene bromide and Any one of heteroaromatic ring bromide;
  • the aromatic chloride is selected from chlorobenzene, acetyl substituted chlorobenzene, formyl substituted chlorobenzene, cyano substituted chlorobenzene, nitro substituted chlorobenzene, naphthalene chloride and heteroaromatic Any one of the cyclic chlorides;
  • the aromatic boric acid compound is selected from phenylboronic acid, alkyl substituted phenylboronic acid, alkoxy substituted phenylboronic
  • the preparation of the diaryl compound by reacting the aromatic halide with the aromatic boric acid is carried out in the presence of a base, in the presence of water, in nitrogen or argon; preferably, the aromatic halide, aromatic boric acid, polycarbazole-supported nano
  • the dosage ratio of palladium material and alkali is 0.2mol: 0.3mol: 8mg: 0.3mol.
  • the base is selected from potassium phosphate.
  • the solvent is any one of water and N, N-dimethylformamide, preferably water.
  • the temperature of the reaction is room temperature.
  • the lighting conditions are blue LED lighting conditions.
  • reaction time when the reaction time is 12 to 48, preferably, when the aromatic halide is aromatic bromide, the reaction time is 12 hours; when the aromatic halide is aromatic chloride, the reaction time is 48 hour.
  • the photocatalytic reaction of aromatic halides with aromatic boric acid on polycarbazole-supported nano-palladium materials to prepare diaryl compounds includes the following steps:
  • the aromatic halide, aromatic boric acid and polycarbazole are loaded with nano-palladium material and base
  • a method for synthesizing diaryl compounds includes the following steps:
  • nano-palladium is distributed on the carbazole polymer
  • the substrate is a carbazole polymer
  • the nano-palladium particles are evenly distributed on the substrate with an average particle diameter of 4.2 nm
  • the valence of metal palladium is zero valence
  • the nitrogen in the polymer presents two forms of pyridine and pyrrole; preferably, in the polycarbazole-supported nano-palladium material, the loading of palladium is 1.3wt% ⁇ 1.4 wt%.
  • the aromatic halide is aromatic bromide or aromatic chloride.
  • the aromatic bromide is selected from bromobenzene, alkyl substituted bromobenzene, alkoxy substituted bromobenzene, acetyl substituted bromobenzene, formyl substituted bromobenzene, cyano substituted bromobenzene, nitro substituted bromobenzene, naphthalene bromide and Any one of heteroaromatic ring bromide;
  • the aromatic chloride is selected from chlorobenzene, acetyl substituted chlorobenzene, formyl substituted chlorobenzene, cyano substituted chlorobenzene, nitro substituted chlorobenzene, naphthalene chloride and heteroaromatic Any one of the cyclic chlorides;
  • the aromatic boric acid compound is selected from phenylboronic acid, alkyl substituted phenylboronic acid, alkoxy substituted phenylboronic
  • the dosage ratio of aromatic halide, aromatic boric acid, polycarbazole-supported nano-palladium material, and alkali is 0.2 mol: 0.3 mol: 8 mg: 0.3 mol.
  • the base is selected from potassium phosphate.
  • the solvent is any one of water and N, N-dimethylformamide, preferably water.
  • the temperature of the reaction is room temperature.
  • the lighting conditions are blue LED lighting conditions.
  • reaction time when the reaction time is 12 to 48, preferably, when the aromatic halide is aromatic bromide, the reaction time is 12 hours; when the aromatic halide is aromatic chloride, the reaction time is 48 hour.
  • the present invention discloses for the first time a carbazole-supported palladium nanomaterial as a catalyst, which can catalyze the reaction of aromatic bromide or aromatic chloride and aromatic boric acid as raw materials to prepare diaryl compounds under light conditions;
  • the carbazole polymer-loaded palladium nanomaterial described in the present invention has a uniform distribution, an average particle size distribution of 4.2 nm, a valence of palladium nanoparticles of 0 valence, and the nitrogen element exhibits two forms of pyridine type and pyrrole type Features;
  • the reaction described in the present invention has the characteristics of high conversion efficiency, wide application range, mild green reaction conditions, etc .;
  • the reaction and the like are extracted from the reaction system, and a new reaction substrate is added to the reaction system, and the next round of reaction can be carried out.
  • the palladium nanomaterial supported by the carbazole substance can be recycled at least 3 times, it can still be stable after 3 cycles, and its catalytic activity has not been significantly reduced; taking the reaction of 4'-bromoacetophenone and phenylboronic acid as an example, the yield of 3 cycles is 95%, 94 % And 93%, and transmission electron microscopy (TEM) and photoelectron spectroscopy (XPS) characterization after cyclic catalysis showed that the metal nanoparticles were basically unchanged.
  • TEM transmission electron microscopy
  • XPS photoelectron spectroscopy
  • the powder XRD diffraction peak can be classified as a characteristic peak of metal palladium by comparison with a standard PDF card;
  • Fig. 3 is the photoelectron spectrum of nitrogen of the palladium nanomaterial supported by the carbazole polymer of the present invention. Compared with the photoelectron spectrum of nitrogen before and after metal loading, the binding energy is reduced, which is caused by the coordination between nitrogen and palladium. of;
  • FIG. 4 is a transmission electron microscope and particle size distribution diagram of palladium nanomaterials supported by the carbazole polymer of the present invention, from which it can be seen that the palladium nanoparticles are evenly distributed on the carrier, the particle size is relatively concentrated, and the average particle size is 4.2 nm;
  • FIG. 5 is a high-resolution transmission electron micrograph of a palladium nanomaterial supported by a carbazole polymer of the present invention, from which the (111) crystal plane of metal palladium can be observed, and the crystal plane spacing is 0.228 nm, which is close to the theoretical value of 0.225 nm;
  • FIG. 6 is an element distribution diagram of a palladium nanomaterial supported by a carbazole polymer of the present invention, illustrating the uniform distribution of C, N, and Pd elements;
  • FIG. 7 is the efficiency diagram of the reaction recycling of the palladium nanomaterial supported on the carbazole polymer of the present invention as a catalyst, and it can be seen that the catalyst maintains a high efficiency during the recycling process, and no significant decrease has occurred ;
  • FIG. 8 is a transmission electron microscope and particle size distribution diagram of the palladium nanomaterial supported by the carbazole polymer of the present invention after recycling, from which it can be seen that the palladium nanoparticles are still uniformly distributed on the carrier, the particle size is relatively concentrated, and the average particle size is 5.1 nm;
  • FIG. 10 is a photoelectron spectrum of palladium after recycling of the palladium nanomaterial supported by the carbazole polymer of the present invention, which illustrates that the existence form of palladium is zero-valent palladium.
  • Pd (OAc) 2 (11.2mg) and carbazole polymer (120mg) were added to a 100ml three-necked round bottom flask containing a magnetic stirrer, stirred at room temperature for 30 minutes, and then NaBH 4 (0.05M) was added to it via a syringe , 5.0mL) in water at room temperature for 4 hours; after the reaction is completed, the solid is separated by centrifugation, washed with water, ethanol and ether, and then dried in vacuo to obtain the corresponding polycarbazole-supported nano-palladium material (Pd / P3 5-diCzPy).
  • Figures 1 to 6 are the powder XRD diffraction pattern, photoelectron energy spectrum, transmission electron microscope and particle size distribution, high resolution transmission electron microscope and element distribution diagram of the carbazole polymer-supported palladium nanomaterial of the present invention in sequence; powder XRD diffraction peak Compared with standard PDF cards, it can be attributed to the characteristic peak of metal palladium; the photoelectron spectrum of palladium further shows that the main form of palladium is zero-valent palladium; comparing the photoelectron spectrum of nitrogen before and after metal loading, the binding energy is reduced Small, this is caused by the coordination between palladium and nitrogen; from the transmission electron microscope, it can be seen that the uniform distribution of palladium nanoparticles on the carrier, high-resolution transmission electron microscope observed the (111) crystal plane of metal palladium, The spacing between crystal planes is 0.228nm and the theoretical value is 0.225nm, and the element distribution diagram further illustrates the uniform distribution of C, N and Pd elements.
  • Liquid nitrogen freezing-aspirating-nitrogen-filling-thawing was repeated three times, then under blue LED irradiation, the reaction was sealed at room temperature for 12h; after the reaction was completed, the catalyst was filtered off, ethyl acetate was washed, and the ethyl acetate extracted the filtrate, combined The organic phase was dried, filtered, concentrated under reduced pressure, and purified by silica gel column chromatography to obtain 2-phenylnaphthalene (yield 91%).
  • the precursor prepared by the invention is a polycarbazole material, and the prepared nanoparticles are evenly distributed on the polycarbazole substrate, with an average particle size of about 4.2 nm, which is synthesized for photocatalysis using aromatic bromide or aromatic chloride and aromatic boric acid as raw materials
  • the diaryl compound has a high catalytic efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

涉及一种聚咔唑负载纳米钯材料及其制备方法与应用。具体而言,所制备的钯纳米粒子的平均粒径分布在4.2 nm左右,其均匀分散在基底聚咔唑材料上,能够在光照、水相条件下催化芳基溴化物和芳基氯化物参与的Suzuki反应,具有转化效率高、适用范围广、反应条件绿色温和等特点。转化反应结束后,从反应体系中分离出底物,催化体系即可进行下一轮反应,循环3次后仍能保持稳定且其催化活性也未出现明显降低。

Description

一种聚咔唑负载纳米钯材料及其制备方法与应用 技术领域
本发明属于催化化学技术领域,涉及一种咔唑聚合物负载的钯纳米材料及其制备方法与应用。
背景技术
二芳基、多芳基化合物已经广泛应用于制造医药、化学农产品、天然产物人工替代品、染料和香料。目前,用于合成这类化合物的主要方法有很多,目前对于合成这类化合物的反应研究主要还是集中在使用均相催化剂加热反应来进行,以克服其催化循环所需要的驱动力。这些催化体系存在着很多不足之处,像催化剂在产物中残留、催化剂不可循环使用、需要高温或电子牺牲剂来促进反应、容易造成环境污染等等。
为了克服上述缺点,越来越多的研究都集中在发展非均相催化剂,虽然非均相催化剂克服了其中的一些困难,但是存在反应温度高和电子牺牲剂的缺陷。为克服这两个问题同时兼顾解决其他问题,光诱导的非均相催化剂进入人们的视野。
近年来,已有课题组使用金属氧化物作为载体负载钯纳米粒子或钯金合金,但是几乎未见使用具有可见光吸收的聚合物作为载体负载钯纳米粒子来实现光促进反应,而且现有技术底物主要集中在芳基碘化物和芳基溴化物,而以芳基氯化物为底物的可见光诱导反应未有报道。芳基氯比芳基碘化物和芳基溴化物更加稳定,C-Cl难断裂和活化,C-Cl的活化往往需要高温和大位阻、有毒的膦配体参与。
技术问题
针对上述情况,本发明的目的在于提供一种聚合物负载的钯纳米材料及其制备方法和用途。以该聚合物负载的钯纳米材料作为催化剂,在水溶剂中,光催化芳香溴化物或芳香氯化物和芳香硼酸的Suzuki反应,最终制得二芳基化合物。另外,在上述反应体系中,作为催化剂使用的聚合物负载的钯纳米材料可以被循环利用3次以上,循环3次后仍然稳定,并且其催化活性也未出现明显降低,是一种有效且高效的催化剂。
技术解决方案
为了实现上述目的,本发明采用如下技术方案:
一种聚咔唑负载纳米钯材料,纳米钯分布在咔唑聚合物上;其基底为咔唑聚合物,纳米钯粒子以4~4.5nm优选4.2nm的平均粒径均匀分布在基底上,其中金属钯呈现的化合价为零价,聚合物中氮呈现出两种存在形式分别为吡啶类型和吡咯类型;优选的,聚咔唑负载纳米钯材料中,钯的负载量为1.3wt%~1.4wt%。
一种聚咔唑负载纳米钯材料的制备方法,包括如下步骤:惰性气体下,将含有Pd(OAc) 2和聚咔唑的水溶液搅拌混合后再加入NaBH 4的水溶液,而后继续搅拌反应,得到聚咔唑负载纳米钯材料。
上述技术方案中,搅拌反应结束后离心处理,沉淀物依次用水、乙醇、乙醚洗涤,然后真空干燥,得到聚咔唑负载纳米钯材料。
上述技术方案中,搅拌混合的搅拌速度为1000转每分钟,时间为0.5小时;搅拌反应的搅拌速度为1000转每分钟,时间为4小时。
上述技术方案中,聚咔唑负载纳米钯材料中,钯的负载量为1.3wt%~1.4wt%,可以利用金属钯与聚合物材料之间的质量百分比获得。
上述技术方案中,所述惰性气体选自氮气、氩气中的任意一种,优选氮气。
上述聚咔唑负载纳米钯材料的制备方法可表示如下:在氮气条件下,将Pd(OAc) 2和聚咔唑的悬浮液在磁力搅拌器上以1000转每分钟的速度搅拌0.5小时,后用注射器向溶液中加入NaBH 4的水溶液,而后继续搅拌反应4小时;反应结束后通过离心除去水溶剂,得到的沉淀物依次用水、乙醇、乙醚洗涤,然后真空干燥,得到聚咔唑负载纳米钯材料(Pd/P3,5-diCzPy)。
聚咔唑负载纳米钯材料在光催化芳香卤化物与芳香硼酸反应制备二芳基化合物中的应用;所述聚咔唑负载纳米钯材料中,纳米钯分布在咔唑聚合物上,其基底为咔唑聚合物,纳米钯粒子以4.2nm的平均粒径均匀分布在基底上,其中金属钯呈现的化合价为零价,聚合物中氮呈现出两种存在形式分别为吡啶类型和吡咯类型;优选的,聚咔唑负载纳米钯材料中,钯的负载量为1.3wt%~1.4wt%。
上述技术方案中,芳香卤化物为芳香溴化物或芳香氯化物。所述芳香溴化物选自溴苯、烷基取代溴苯、烷氧基取代溴苯、乙酰基取代溴苯、甲酰基取代溴苯、氰基取代溴苯、硝基取代溴苯、萘溴和杂芳环溴化物中的任意一种;所述芳香氯化物选自氯苯、乙酰基取代氯苯、甲酰基取代氯苯、氰基取代氯苯、硝基取代氯苯、萘氯和杂芳环氯化物中的任意一种;所述芳香硼酸化合物选自苯硼酸、烷基取代苯硼酸、烷氧基取代苯硼酸、乙酰基取代苯硼酸、甲酰基取代苯硼酸、硝基取代苯硼酸、氰基取代苯硼 酸、酯基取代苯硼酸、萘硼酸和杂环硼酸中的任意一种。
上述技术方案中,芳香卤化物与芳香硼酸反应制备二芳基化合物在碱存在下、在水存在下、在氮气或者氩气中进行;优选的,芳香卤化物、芳香硼酸、聚咔唑负载纳米钯材料、碱的用量比为0.2mol:0..3mol:8mg:0.3mol。
上述技术方案中,所述碱选自磷酸钾。
上述技术方案中,所述溶剂为水、N,N-二甲基甲酰胺中的任意一种,优选水。
上述技术方案中,所述反应的温度为室温。
上述技术方案中,所述光照条件为蓝色LED灯照条件。
上述技术方案中,所述反应的时间为12~48时,优选的,当芳香卤化物为芳香溴化物时,反应的时间为12小时;芳香卤化物为芳香氯化物时,反应的时间为48小时。
具体而言,聚咔唑负载纳米钯材料光催化芳香卤化物与芳香硼酸反应制备二芳基化合物包括如下步骤:
按照芳香卤化物:芳香硼酸:聚咔唑负载纳米钯材料:碱=0.2mol:0..3mol:8mg:0.3mol的比例,将芳香卤化物、芳香硼酸、聚咔唑负载纳米钯材料、碱和溶剂在氮气条件下加入到石英反应管中,在蓝色LED灯照射条件下室温密闭反应;反应结束后,过滤除去聚咔唑负载纳米钯材料,加入水和乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到二芳基化合物。
一种合成二芳基化合物的方法,包括如下步骤:
将芳香卤化物、芳香硼酸、聚咔唑负载纳米钯材料、碱和溶剂在氮气条件下加入到石英反应管中,在光照条件下室温密闭反应,得到二芳基化合物;优选的,反应结束后,过滤除去聚咔唑负载纳米钯材料,然后加入水和乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到二芳基化合物。
上述技术方案中,所述聚咔唑负载纳米钯材料中,纳米钯分布在咔唑聚合物上,其基底为咔唑聚合物,纳米钯粒子以4.2nm的平均粒径均匀分布在基底上,其中金属钯呈现的化合价为零价,聚合物中氮呈现出两种存在形式分别为吡啶类型和吡咯类型;优选的,聚咔唑负载纳米钯材料中,钯的负载量为1.3wt%~1.4wt%。
上述技术方案中,芳香卤化物为芳香溴化物或芳香氯化物。所述芳香溴化物选自溴苯、烷基取代溴苯、烷氧基取代溴苯、乙酰基取代溴苯、甲酰基取代溴苯、氰基取代溴苯、硝基取代溴苯、萘溴和杂芳环溴化物中的任意一种;所述芳香氯化物选自氯苯、乙酰基取代氯苯、甲酰基取代氯苯、氰基取代氯苯、硝基取代氯苯、萘氯和杂芳环氯化物中的任意一种;所述芳香硼酸化合物选自苯硼酸、烷基取代苯硼酸、烷氧基取代苯硼酸、乙酰基取代苯硼酸、甲酰基取代苯硼酸、硝基取代苯硼酸、氰基取代苯硼酸、酯基取代苯硼酸、萘硼酸和杂环硼酸中的任意一种。
上述技术方案中,芳香卤化物、芳香硼酸、聚咔唑负载纳米钯材料、碱的用量比为0.2mol:0..3mol:8mg:0.3mol。
上述技术方案中,所述碱选自磷酸钾。
上述技术方案中,所述溶剂为水、N,N-二甲基甲酰胺中的任意一种,优选水。
上述技术方案中,所述反应的温度为室温。
上述技术方案中,所述光照条件为蓝色LED灯照条件。
上述技术方案中,所述反应的时间为12~48时,优选的,当芳香卤化物为芳香溴化物时,反应的时间为12小时;芳香卤化物为芳香氯化物时,反应的时间为48小时。
有益效果
与现有技术相比,采用上述技术方案的本发明具有下列优点:
(1)本发明首次披露了一种作为催化剂的咔唑物负载的钯纳米材料,其能够在光照条件下催化以芳香溴化物或芳香氯化物和芳香硼酸为原料的反应制备二芳基化合物;
(2)本发明中记载的咔唑聚合物负载的钯纳米材料具有分布均匀、平均粒径分布为4.2nm、钯纳米粒子的化合价为0价、氮元素呈现出吡啶类型和吡咯类型两种形态等特点;
(3)本发明中记载的反应具有转化效率高、适用范围广、反应条件绿色温和等特点;
(4)转化反应结束后,从反应体系中萃取出反应等物,将新的反应底物加入到反应体系中,即可进行下一轮反应,该咔唑物负载的钯纳米材料能够至少循环3次,循环3次后仍能保持稳定,并且其催化活性也未出现明显降低;以4‘-溴苯乙酮和苯硼酸的反应为例,循环3次的产率依次为95%、94%和93%,并且循环催化后的透射电镜(TEM)和光电子能谱(XPS)表征表明金属纳米粒子基本无变化。
附图说明
图1为本发明的咔唑聚合物负载的钯纳米材料的粉末XRD衍射图,粉末XRD衍射峰通过与标准 PDF卡片比较,可以归属为金属钯的特征峰;
图2为本发明的咔唑聚合物负载的钯纳米材料钯的光电子能谱,其说明钯的主要存在形式为零价钯,其中有部分未完全还原的二价钯存在;
图3为本发明的咔唑聚合物负载的钯纳米材料氮的光电子能谱,对比金属负载前后氮的光电子能谱,其结合能有所减小,这是氮钯之间的配位作用造成的;
图4为本发明的咔唑聚合物负载的钯纳米材料的透射电镜及粒径分布图,从中可以看出钯纳米粒子在载体上的均匀分布,粒径比较集中,平均粒径为4.2纳米;
图5为本发明的咔唑聚合物负载的钯纳米材料的高分辨透射电镜图,从中可以观测到了金属钯的(111)晶面,其晶面间距为0.228nm与理论值0.225nm接近;
图6为本发明的咔唑聚合物负载的钯纳米材料的元素分布图说明了C、N、Pd元素的均匀分布;
图7为本发明的咔唑聚合物负载的钯纳米材料作为催化剂催化实施例2反应循环利用的效率图,从中可以看出,在循环使用的过程中催化剂保持较高的效率,没有发生明显下降;
图8为本发明的咔唑聚合物负载的钯纳米材料循环利用以后的透射电镜及粒径分布图,从中可以看出钯纳米粒子在载体上依旧均匀分布,粒径比较集中,平均粒径为5.1纳米;
图9为本发明的咔唑聚合物负载的钯纳米材料循环利用以后的粉末XRD衍射图,粉末XRD衍射峰没有发生变化,通过与标准PDF卡片比较,可以归属为金属钯的特征峰;
图10为本发明的咔唑聚合物负载的钯纳米材料循环利用以后钯的光电子能谱,其说明钯的存在形式为零价钯。
本发明的实施方式
下面将结合附图和具体实施例对本发明做出进一步的描述。除非另有说明,下列实施例中所使用的试剂、材料、仪器等均可通过商业手段获得。
实施例1
将Pd(OAc) 2(11.2mg)、咔唑聚合物(120mg)加入到含有磁力搅拌子的100ml三颈圆底烧瓶中,室温下搅拌30分钟,而后通过注射器向其中加入NaBH 4(0.05M,5.0mL)的水溶液,室温下反应4小时;反应结束后,离心分离出固体,依次用水、乙醇和乙醚洗涤,然后真空干燥,即得相应的聚咔唑负载纳米钯材料(Pd/P3,5-diCzPy)。
ICP分析表明钯的负载量为1.37%wt。
图1到图6依次是本发明的咔唑聚合物负载的钯纳米材料的粉末XRD衍射图、光电子能谱图、透射电镜及粒径分布、高分辨透射电镜以及元素分布图;粉末XRD衍射峰通过与标准PDF卡片比较,可以归属为金属钯的特征峰;钯的光电子能谱进一步说明了钯的主要存在形式为零价钯;对比金属负载前后氮的光电子能谱,其结合能有所减小,这是氮钯之间的配位作用造成的;从透射电镜图中可以看出钯纳米粒子在载体上的的均匀分布,高分辨透射电镜则观测到了金属钯的(111)晶面,其晶面间距为0.228nm与理论值0.225nm接近,元素分布图则进一步说明了C、N、Pd元素的均匀分布。
实施例2
Figure PCTCN2018115768-appb-000001
将4’-溴苯乙酮(40mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4-联苯乙酮(产率94%);采用钯碳催化剂,收率为12%,采用氯化钯收率为29%。
所得产物的核磁数据如下:
1H NMR(600MHz,CDCl 3)δ8.03(t,J=6.9Hz,2H),7.68(dd,J=7.5,6.3Hz,2H),7.63(dd,J=10.2,3.2Hz,2H),7.52–7.44(m,2H),7.43–7.37(m,1H),2.64(d,J=5.5Hz,3H).
13C NMR(151MHz,CDCl 3)δ197.9,146.0,140.1,136.0,129.1,129.1,128.4,127.5,127.4,26.9.
高分辨质谱数据如下:
C 14H 13O[M+H] +理论值197.0961,测试值197.0961。
上述反应结束后,通过乙醚萃取的方式,从反应体系中分离出产物,再向其中加入4’-溴苯乙酮(40mg)和苯硼酸(37mg),进行下一轮转化反应;按照上述过程对催化剂进行循环利用,循环3次的产率依次为95%、94%和93%(其结果如图2所示),并且循环催化后的透射电镜(TEM)、粉末XRD 和光电子能谱(XPS)表征表明金属纳米粒子无明显变化(其结果如图7到图10所示)。
实施例3
Figure PCTCN2018115768-appb-000002
将4’-溴苯乙酮(40mg)、4-甲基苯硼酸(41mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4‘-甲基-4-联苯乙酮(产率98%),如果采用二异丙胺作为碱,收率16%。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ7.97(d,J=8.1Hz,2H),7.62(d,J=8.1Hz,2H),7.48(d,J=7.8Hz,2H),7.21(d,J=4.3Hz,2H),2.58(s,3H),2.36(s,3H).
13C NMR(151MHz,CDCl 3)δ198.0,145.9,138.4,137.1,135.8,129.9,129.1,127.3,127.2,26.9,21.4.
高分辨质谱数据如下:
C 15H 15O[M+H] +理论值211.1117,测试值211.1120。
实施例4
Figure PCTCN2018115768-appb-000003
将4’-溴苯乙酮(40mg)、3-甲基苯硼酸(41mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到3‘-甲基-4-联苯乙酮(产率94%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.01(d,J=8.2Hz,2H),7.66(d,J=8.2Hz,2H),7.41(d,J=7.9Hz,2H),7.34(t,J=7.5Hz,1H),7.20(d,J=7.3Hz,1H),2.62(s,3H),2.42(s,3H).
13C NMR(151MHz,CDCl 3)δ198.0,146.1,140.1,138.8,136.0,129.2,129.1,128.2,127.4,124.6,26.9,21.7.
高分辨质谱数据如下:
C 15H 15O[M+H] +理论值211.1117,测试值211.1125。
实施例5
Figure PCTCN2018115768-appb-000004
将4’-溴苯乙酮(40mg)、2-甲基苯硼酸(41mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到2‘-甲基-4-联苯乙酮(产率92%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.01(d,J=8.1Hz,2H),7.43(d,J=8.1Hz,2H),7.25(dd,J=20.4,9.9Hz,5H),2.65(s,3H),2.27(s,3H).
13C NMR(151MHz,CDCl 3)δ198.1,147.2,140.9,135.8,135.4,130.7,129.7,129.7,128.4,128.1,126.1,26.9,20.6.
高分辨质谱数据如下:
C 15H 15O[M+H] +理论值211.1117,测试值211.1122。
实施例6
Figure PCTCN2018115768-appb-000005
将4’-溴苯乙酮(40mg)、3,5-二甲基苯硼酸(45mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到3‘,5‘-二甲基-4-联苯乙酮(产率96%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.01(d,J=7.9Hz,2H),7.66(d,J=7.9Hz,2H),7.25(d,J=5.8Hz,3H),7.05(s,1H),2.63(s,3H),2.39(s,6H).
13C NMR(151MHz,CDCl 3)δ198.0,146.3,140.1,138.7,135.9,130.1,129.0,127.4,125.4,26.9,21.6.
高分辨质谱数据如下:
C 16H 17O[M+H] +理论值225.1274,测试值225.1274。
实施例7
Figure PCTCN2018115768-appb-000006
将4’-溴苯乙酮(40mg)、4-甲氧基苯硼酸(46mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4‘-甲氧基-4-联苯乙酮(产率98%)。
所得产物的核磁数据如下:
1H NMR(600MHz,CDCl 3)δ7.99(d,J=8.2Hz,2H),7.63(d,J=8.2Hz,2H),7.56(d,J=8.6Hz,2H),6.98(d,J=8.6Hz,2H),3.85(s,3H),2.61(s,3H).
13C NMR(151MHz,CDCl 3)δ197.8,160.1,145.6,135.5,132.5,129.2,128.6,126.8,114.6,55.6,26.9.
高分辨质谱数据如下:
C 15H 15O 2[M+H] +理论值227.1067,测试值227.1067。
实施例8
Figure PCTCN2018115768-appb-000007
将4’-溴苯乙酮(40mg)、4-叔丁基苯硼酸(53mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4‘-叔丁基-4-联苯乙酮(产率99%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.03(d,J=8.2Hz,2H),7.69(d,J=8.2Hz,2H),7.59(d,J=8.2Hz,2H),7.50(d,J=8.2Hz,2H),2.64(s,3H),1.37(s,9H).
13C NMR(151MHz,CDCl 3)δ198.0,151.7,145.8,137.1,135.8,129.1,127.2,127.1,126.1,34.9,31.5,26.9.
高分辨质谱数据如下:
C 18H 21O[M+H] +理论值253.1587,测试值253.1586。
实施例9
Figure PCTCN2018115768-appb-000008
将4’-溴苯乙酮(40mg)、4-氰基苯硼酸(44mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4‘-氰基-4-联苯乙酮(产率92%)。
所得产物的核磁数据如下:
1H NMR(600MHz,CDCl 3)δ8.05(d,J=8.1Hz,2H),7.74(d,J=8.2Hz,2H),7.70(d,J=8.2Hz,2H),7.67(d,J=8.1Hz,2H),2.63(s,3H).
13C NMR(151MHz,CDCl 3)δ197.7,144.5,143.7,137.1,132.9,129.3,128.1,127.7,118.8,112.1,26.9.
高分辨质谱数据如下:
C 15H 12NO[M+H] +理论值222.0913,测试值222.0916。
实施例10
Figure PCTCN2018115768-appb-000009
将4’-溴苯乙酮(40mg)、4-硝基苯硼酸(50mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4‘-硝基-4-联苯乙酮(产率91%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.31(d,J=8.6Hz,2H),8.06(d,J=8.2Hz,2H),7.76(d,J=8.6Hz,2H),7.70(d,J=8.2Hz,2H),2.64(s,3H).
13C NMR(151MHz,CDCl 3)δ197.7,147.9,146.4,143.3,137.3,129.4,128.3,127.8,124.4,27.0.
高分辨质谱数据如下:
C 14H 12NO 3[M+H] +理论值242.0812,测试值242.0813。
实施例11
Figure PCTCN2018115768-appb-000010
将4’-溴苯乙酮(40mg)、4-甲酰基苯硼酸(45mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4‘-甲酰基-4-联苯乙酮(产率89%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ10.08(s,1H),8.07(d,J=7.9Hz,2H),7.99(d,J=7.8Hz,2H),7.79(d,J=7.8Hz,2H),7.74(d,J=7.9Hz,2H),2.66(s,3H).
13C NMR(151MHz,CDCl 3)δ197.8,192.0,146.0,144.4,136.9,136.0,130.6,129.3,128.1,127.8,27.0.
高分辨质谱数据如下:
C 15H 13O 2[M+H] +理论值225.0910,测试值225.0912。
实施例12
Figure PCTCN2018115768-appb-000011
将4’-溴苯乙酮(40mg)、4-乙酰基苯硼酸(49mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙 酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4,-4‘-二乙酰基联苯(产率92%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ10.08(s,1H),8.07(d,J=7.9Hz,2H),7.99(d,J=7.8Hz,2H),7.79(d,J=7.8Hz,2H),7.74(d,J=7.9Hz,2H),2.66(s,3H).
13C NMR(151MHz,CDCl 3)δ197.8,192.0,146.0,144.4,136.9,136.0,130.6,129.3,128.1,127.8,27.0.
高分辨质谱数据如下:
C 15H 13O 2[M+H] +理论值225.0910,测试值225.0912。
实施例13
Figure PCTCN2018115768-appb-000012
将4’-溴苯乙酮(40mg)、4-甲酯基苯硼酸(54mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4‘-甲酯基-4-联苯乙酮(产率93%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.14(d,J=8.1Hz,2H),8.06(d,J=8.1Hz,2H),7.71(t,J=8.7Hz,4H),3.95(s,3H),2.65(s,3H).
13C NMR(151MHz,CDCl 3)δ197.9,167.0,144.7,144.4,136.7,130.4,130.0,129.2,127.7,127.5,52.5,26.9.
高分辨质谱数据如下:
C 16H 15O 3[M+H] +理论值255.1016,测试值255.1015。
实施例14
Figure PCTCN2018115768-appb-000013
将4’-溴苯乙酮(40mg)、联苯硼酸(59mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到三联苯乙酮(产率99%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.06(d,J=8.2Hz,2H),7.77–7.69(m,6H),7.65(d,J=7.5Hz,2H),7.48(t,J=7.5Hz,2H),7.38(t,J=7.2Hz,1H),2.66(s,3H).
13C NMR(151MHz,CDCl 3)δ198.0,145.5,141.3,140.6,138.9,136.1,129.2,129.1,127.9,127.9,127.8,127.3,26.9.
高分辨质谱数据如下:
C 20H 17O[M+H] +理论值273.1274,测试值273.1277。
实施例15
Figure PCTCN2018115768-appb-000014
将4’-溴苯乙酮(40mg)、1-萘硼酸(52mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到1‘-萘-4-苯乙酮(产率98%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.10(d,J=8.0Hz,2H),7.92(t,J=9.2Hz,2H),7.85(d,J=8.4Hz,1H),7.61(d,J=8.0Hz,2H),7.58–7.49(m,2H),7.45(dd,J=12.4,7.2Hz,2H),2.69(s,3H).
13C NMR(151MHz,CDCl 3)δ198.1,146.0,139.2,136.2,134.0,131.4,130.5,128.6,128.6,128.5,127.1,126.6,126.2,125.8,125.5,26.9.HRMS(CI-TOF)m/z:[M+H] +Calcd for C 18H 15O 247.1117;Found247.1119.
高分辨质谱数据如下:
C 18H 15O[M+H] +理论值247.1117,测试值247.1119。
实施例14
Figure PCTCN2018115768-appb-000015
将4’-溴苯乙酮(40mg)、苯并噻吩-2-硼酸(53mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到2‘-苯并噻吩-4-苯乙酮(产率80%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.02(d,J=8.2Hz,2H),7.85(d,J=7.6Hz,1H),7.81(d,J=8.2Hz,3H),7.68(s,1H),7.37(p,J=7.1Hz,2H),2.64(s,3H).
13C NMR(151MHz,CDCl 3)δ197.6,142.8,140.7,140.1,138.9,136.6,129.3,126.6,125.2,125.0,124.2,122.6,121.4,26.9.
高分辨质谱数据如下:
C 16H 13OS[M+H] +理论值253.0682,测试值253.0681。
实施例15
Figure PCTCN2018115768-appb-000016
将4-溴苯甲醛(37mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4-联苯甲醛(产率86%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ10.06(s,1H),7.96(d,J=8.1Hz,2H),7.76(d,J=8.1Hz,2H),7.64(d,J=7.4Hz,2H),7.49(t,J=7.4Hz,2H),7.42(t,J=7.2Hz,1H).
13C NMR(151MHz,CDCl 3)δ192.2,147.4,139.9,135.4,130.5,129.2,128.7,127.9,127.6.
高分辨质谱数据如下:
C 13H 11O[M+H] +理论值183.0804,测试值183.0812。
实施例16
Figure PCTCN2018115768-appb-000017
将4-溴苯甲腈(36mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4-联苯甲腈(产率95%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ7.73(d,J=8.1Hz,2H),7.69(d,J=8.1Hz,2H),7.59(d,J=7.4Hz,2H),7.49(t,J=7.3Hz,2H),7.46–7.38(m,1H).
13C NMR(151MHz,CDCl 3)δ145.9,139.4,132.8,129.3,128.9,127.9,127.4,119.1,111.1.
高分辨质谱数据如下:
C 13H 10N[M+H] +理论值180.0808,测试值180.0814。
实施例17
Figure PCTCN2018115768-appb-000018
将4-溴硝基苯(40mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4-硝基联苯(产率90%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.31(d,J=8.5Hz,2H),7.74(d,J=8.5Hz,2H),7.63(d,J=7.3Hz,2H),7.50(t,J=7.2Hz,2H),7.47–7.40(m,1H).
13C NMR(151MHz,CDCl 3)δ147.9,139.0,129.4,129.1,128.0,127.6,124.3.
高分辨质谱数据如下:
C 12H 10NO 2[M+H] +理论值200.0706,测试值200.0710。
实施例18
Figure PCTCN2018115768-appb-000019
将4-溴苯甲醚(37mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4-联苯甲醚(产率84%)。
所得产物的核磁数据如下:
1H NMR(600MHz,CDCl 3)δ7.57(dd,J=8.2,1.0Hz,2H),7.55–7.52(m,2H),7.43(t,J=7.7Hz,2H),7.35–7.29(m,1H),7.01–6.97(m,2H),3.86(s,3H).
13C NMR(151MHz,CDCl 3)δ159.4,141.0,134.0,128.9,128.4,126.9,126.9,114.4,55.6.
高分辨质谱数据如下:
C 13H 13O[M+H] +理论值185.0961,测试值185.0966。
实施例19
Figure PCTCN2018115768-appb-000020
将4-溴-N,N-二甲基苯胺(40mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到N,N-二甲基联苯胺(产率82%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ7.54(d,J=7.6Hz,2H),7.50(d,J=8.5Hz,2H),7.38(t,J=7.5Hz,2H),7.25(d,J=10.4Hz,2H),6.83(d,J=5.5Hz,2H),2.98(s,6H).
13C NMR(151MHz,CDCl 3)δ141.3,128.9,128.0,126.5,126.3,113.9,113.3,41.1.
高分辨质谱数据如下:
C 14H 16N[M+H] +理论值198.1277,测试值198.1281。
实施例20
Figure PCTCN2018115768-appb-000021
将2-溴萘(42mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到2-苯基萘(产率91%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.05(s,1H),7.96–7.85(m,3H),7.75(t,J=8.9Hz,3H),7.60–7.43(m,4H),7.39(t,J=7.3Hz,1H).
13C NMR(151MHz,CDCl 3)δ141.3,138.8,133.9,132.8,129.1,128.6,128.4,127.9,127.6,127.6,126.5,126.1,126.0,125.8.
高分辨质谱数据如下:
C 16H 13[M+H] +理论值205.1012,测试值205.1022。
实施例21
Figure PCTCN2018115768-appb-000022
将4-溴吡啶(32mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4-苯基吡啶(产率79%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.66(d,J=5.3Hz,2H),7.64(d,J=7.2Hz,2H),7.50(dd,J=14.0,6.6Hz,4H),7.47–7.40(m,1H).
13C NMR(101MHz,CDCl 3)δ150.2,148.8,138.2,129.3,127.2,121.9.
高分辨质谱数据如下:
C 11H 10N[M+H] +理论值156.0808,测试值156.0818。
实施例22
Figure PCTCN2018115768-appb-000023
将3-溴苯并噻吩(42mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到3-苯基苯并噻吩(产率75%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ7.96(d,J=5.5Hz,2H),7.63(d,J=7.5Hz,2H),7.52(t,J=7.5Hz,2H),7.43(t,J=8.7Hz,4H).
13C NMR(151MHz,CDCl 3)δ140.9,138.3,138.1,136.2,128.9,127.7,124.6,124.5,123.6,123.1.
高分辨质谱数据如下:
C 14H 11S[M+H] +理论值211.0576,测试值211.0581。
实施例23
Figure PCTCN2018115768-appb-000024
将2-溴喹啉(42mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化 剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到2-苯基喹啉(产率86%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.20(dd,J=18.3,8.3Hz,4H),7.88(d,J=8.5Hz,1H),7.83(d,J=8.0Hz,1H),7.74(t,J=7.4Hz,1H),7.58–7.44(m,4H).
13C NMR(101MHz,CDCl 3)δ157.5,148.3,139.7,137.2,130.0,129.8,129.6,129.1,127.8,127.7,127.4,126.6,119.3.
高分辨质谱数据如下:
C 15H 12N[M+H] +理论值206.0964,测试值206.0976。
实施例24
Figure PCTCN2018115768-appb-000025
将3-溴喹啉(42mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到3-苯基喹啉(产率86%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ9.19(s,1H),8.29(s,1H),8.16(d,J=8.4Hz,1H),7.87(d,J=7.1Hz,1H),7.71(d,J=6.7Hz,3H),7.58(d,J=6.4Hz,1H),7.51(d,J=6.6Hz,2H),7.44(d,J=6.5Hz,1H).
13C NMR(151MHz,CDCl 3)δ150.0,147.4,138.0,134.0,133.5,129.6,129.3,129.3,128.3,128.2,128.2,127.6,127.2.
高分辨质谱数据如下:
C 15H 12N[M+H] +理论值206.0964,测试值206.0973。
实施例25
Figure PCTCN2018115768-appb-000026
将4’-氯苯乙酮(31mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应48h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4-联苯乙酮(产率82%),采用现有的聚苯并双恶唑(poly(benzoxadiazole))负载钯纳米粒子(Pd@B-BO 3),收率为8%。
所得产物的核磁数据如下:
1H NMR(600MHz,CDCl 3)δ8.03(t,J=6.9Hz,2H),7.68(dd,J=7.5,6.3Hz,2H),7.63(dd,J=10.2,3.2Hz,2H),7.52–7.44(m,2H),7.43–7.37(m,1H),2.64(d,J=5.5Hz,3H).
13C NMR(151MHz,CDCl 3)δ197.9,146.0,140.1,136.0,129.1,129.1,128.4,127.5,127.4,26.9.
高分辨质谱数据如下:
C 14H 13O[M+H] +理论值197.0961,测试值197.0961。
实施例26
Figure PCTCN2018115768-appb-000027
将4’-氯苯甲醛(28mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应48h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4-联苯甲醛(产率76%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ10.06(s,1H),7.96(d,J=8.1Hz,2H),7.76(d,J=8.1Hz,2H),7.64(d,J=7.4Hz,2H),7.49(t,J=7.4Hz,2H),7.42(t,J=7.2Hz,1H).
13C NMR(151MHz,CDCl 3)δ192.2,147.4,139.9,135.4,130.5,129.2,128.7,127.9,127.6.
高分辨质谱数据如下:
C 13H 11O[M+H] +理论值183.0804,测试值183.0812。
实施例27
Figure PCTCN2018115768-appb-000028
将4-氯苯甲腈(27mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应48h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4-联苯甲腈(产率84%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ7.73(d,J=8.1Hz,2H),7.69(d,J=8.1Hz,2H),7.59(d,J=7.4Hz,2H),7.49(t,J=7.3Hz,2H),7.46–7.38(m,1H).
13C NMR(151MHz,CDCl 3)δ145.9,139.4,132.8,129.3,128.9,127.9,127.4,119.1,111.1.
高分辨质谱数据如下:
C 13H 10N[M+H] +理论值180.0808,测试值180.0814。
实施例28
Figure PCTCN2018115768-appb-000029
将4-氯硝基苯(31mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应48h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4-硝基联苯(产率81%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.31(d,J=8.5Hz,2H),7.74(d,J=8.5Hz,2H),7.63(d,J=7.3Hz,2H),7.50(t,J=7.2Hz,2H),7.47–7.40(m,1H).
13C NMR(151MHz,CDCl 3)δ147.9,139.0,129.4,129.1,128.0,127.6,124.3.
高分辨质谱数据如下:
C 12H 10NO 2[M+H] +理论值200.0706,测试值200.0710。
实施例29
Figure PCTCN2018115768-appb-000030
将氯苯(22mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应48h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到联苯(产率51%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ7.61(d,J=7.5Hz,4H),7.45(t,J=7.5Hz,4H),7.36(t,J=7.2Hz,2H).
13C NMR(151MHz,cdcl 3)δ141.4,129.0,127.5,127.4.HRMS(CI-TOF)m/z:[M+H] +Calcd for C 12H 11 155.0855;Found 155.0852.
高分辨质谱数据如下:
C 12H 11[M+H] +理论值155.0855,测试值155.0852。
实施例30
Figure PCTCN2018115768-appb-000031
将4-氯甲苯(25mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应48h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4-甲基联苯(产率35%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ7.58(d,J=7.5Hz,2H),7.50(d,J=7.8Hz,2H),7.42(t,J=7.5Hz,2H),7.32(t,J=7.3Hz,1H),7.25(d,J=8.3Hz,2H),2.40(s,3H).
13C NMR(151MHz,CDCl 3)δ141.4,138.6,137.2,129.7,128.9,127.2,127.2,21.3.
高分辨质谱数据如下:
C 13H 13[M+H] +理论值169.1012,测试值169.1021。
实施例31
Figure PCTCN2018115768-appb-000032
将2‘-氯苯乙酮(31mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应48h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到2-乙酰基联苯(产率66%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ7.56(d,J=7.6Hz,1H),7.51(t,J=7.4Hz,1H),7.47–7.37(m,5H),7.37–7.31(m,2H),2.01(s,3H).
13C NMR(151MHz,CDCl 3)δ205.0,141.0,140.8,140.6,130.8,130.4,129.0,128.8,128.0,128.0,127.6,30.6.
高分辨质谱数据如下:
C 14H 13O[M+H] +理论值197.0961,测试值197.0964。
实施例32
Figure PCTCN2018115768-appb-000033
将3‘-氯苯乙酮(31mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应48h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到3-乙酰基联苯(产率78%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.19(s,1H),7.94(d,J=7.6Hz,1H),7.80(d,J=7.6Hz,1H),7.63(d,J=7.5Hz,2H),7.54(t,J=7.7Hz,1H),7.48(t,J=7.4Hz,2H),7.39(t,J=7.2Hz,1H),2.66(s,3H).
13C NMR(151MHz,CDCl 3)δ198.2,141.9,140.3,137.8,131.9,129.2,129.1,128.0,127.4,127.1,26.9.
高分辨质谱数据如下:
C 14H 13O[M+H] +理论值197.0961,测试值197.0961。
实施例33
Figure PCTCN2018115768-appb-000034
将3‘-氯苯甲腈(27mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应48h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到3-氰基联苯(产率80%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ7.86(s,1H),7.81(d,J=7.8Hz,1H),7.63(d,J=7.6Hz,1H),7.55(t,J=8.5Hz,3H),7.49(t,J=7.4Hz,2H),7.45–7.38(m,1H).
13C NMR(151MHz,CDCl 3)δ142.6,139.0,131.6,130.8,129.7,129.3,128.5,127.2,119.0,113.1.
高分辨质谱数据如下:
C 13H 10N[M+H] +理论值180.0808,测试值180.0808。
实施例34
Figure PCTCN2018115768-appb-000035
将4-氯吡啶(23mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到4-苯基吡啶(产率65%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.66(d,J=5.3Hz,2H),7.64(d,J=7.2Hz,2H),7.50(dd,J=14.0,6.6Hz,4H),7.47–7.40(m,1H).
13C NMR(101MHz,CDCl 3)δ150.2,148.8,138.2,129.3,127.2,121.9.
高分辨质谱数据如下:
C 11H 10N[M+H] +理论值156.0808,测试值156.0818。
实施例35
Figure PCTCN2018115768-appb-000036
将3-氯吡啶(23mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到3-苯基吡啶(产率70%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.85(s,1H),8.59(d,J=4.0Hz,1H),7.87(d,J=7.8Hz,1H),7.58(d,J=7.4Hz,2H),7.48(t,J=7.4Hz,2H),7.41(d,J=7.2Hz,1H),7.36(dd,J=7.7,5.0Hz,1H).
13C NMR(101MHz,CDCl 3)δ148.5,148.4,137.9,136.8,134.6,129.2,128.3,127.3,123.7.
高分辨质谱数据如下:
C 11H 10N[M+H] +理论值156.0808,测试值156.0815。
实施例36
Figure PCTCN2018115768-appb-000037
将2-氯吡啶(23mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到2-苯基 吡啶(产率68%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.70(d,J=4.3Hz,1H),8.00(d,J=7.4Hz,2H),7.83–7.64(m,2H),7.48(t,J=7.4Hz,2H),7.42(t,J=7.2Hz,1H),7.25–7.12(m,1H).
13C NMR(151MHz,CDCl 3)δ157.6,149.8,139.5,137.0,129.2,128.9,127.1,122.3,120.8.
高分辨质谱数据如下:
C 11H 10N[M+H] +理论值156.0808,测试值156.0812。
实施例37
Figure PCTCN2018115768-appb-000038
将3-溴苯并噻吩(34mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到3-苯基苯并噻吩(产率68%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ7.96(d,J=5.5Hz,2H),7.63(d,J=7.5Hz,2H),7.52(t,J=7.5Hz,2H),7.43(t,J=8.7Hz,4H).
13C NMR(151MHz,CDCl 3)δ140.9,138.3,138.1,136.2,128.9,127.7,124.6,124.5,123.6,123.1.
高分辨质谱数据如下:
C 14H 11S[M+H] +理论值211.0576,测试值211.0581。
实施例38
Figure PCTCN2018115768-appb-000039
将2-氯喹啉(32mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到2-苯基喹啉(产率76%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ8.20(dd,J=18.3,8.3Hz,4H),7.88(d,J=8.5Hz,1H),7.83(d,J=8.0Hz,1H),7.74(t,J=7.4Hz,1H),7.58–7.44(m,4H).
13C NMR(101MHz,CDCl 3)δ157.5,148.3,139.7,137.2,130.0,129.8,129.6,129.1,127.8,127.7,127.4,126.6,119.3.
高分辨质谱数据如下:
C 15H 12N[M+H] +理论值206.0964,测试值206.0976。
实施例39
Figure PCTCN2018115768-appb-000040
将3-氯喹啉(32mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到3-苯基喹啉(产率80%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3)δ9.19(s,1H),8.29(s,1H),8.16(d,J=8.4Hz,1H),7.87(d,J=7.1Hz,1H),7.71(d,J=6.7Hz,3H),7.58(d,J=6.4Hz,1H),7.51(d,J=6.6Hz,2H),7.44(d,J=6.5Hz,1H).
13C NMR(151MHz,CDCl 3)δ150.0,147.4,138.0,134.0,133.5,129.6,129.3,129.3,128.3,128.2,128.2,127.6,127.2.
高分辨质谱数据如下:
C 15H 12N[M+H] +理论值206.0964,测试值206.0973。
实施例40
Figure PCTCN2018115768-appb-000041
将2-氯喹喔啉(33mg)、苯硼酸(37mg)、聚咔唑负载纳米钯材料(8mg)、磷酸钾(64mg)加入到装有磁力搅拌子10ml石英反应管中,加入5ml去离子水,液氮冷冻-抽气-充氮气-解冻反复进行三次,然后在蓝光LED照射下,密闭室温反应12h;反应结束后,过滤除去催化剂,乙酸乙酯洗涤催化剂,乙酸乙酯对滤液进行萃取,合并有机相,经干燥、过滤、减压浓缩、硅胶柱色谱纯化,得到2-苯基喹喔啉(产率73%)。
所得产物的核磁数据如下:
1H NMR(400MHz,CDCl 3,ppm)δ9.34(s,1H),8.25–8.10(m,4H),7.83–7.72(m,2H),7.56(dq,J=14.0,6.9Hz,3H).
13C NMR(151MHz,CDCl 3,ppm)δ152.1,143.5,142.5,141.7,137.0,130.6,130.4,129.8,129.8,129.4,129.3,127.8.
高分辨质谱数据如下:
C 14H 11N 2[M+H] +理论值207.0917,测试值207.0932。
本发明制备的前驱体是聚咔唑材料,制备的纳米粒子均匀分布在聚咔唑基底上,平均粒径4.2nm左右,其对于光催化以芳香溴化物或芳香氯化物和芳香硼酸为原料合成二芳基化合物具有高效的催化效率。

Claims (10)

  1. 一种聚咔唑负载纳米钯材料,其特征在于,纳米钯分布在咔唑聚合物上。
  2. 根据权利要求1所述聚咔唑负载纳米钯材料,其特征在于,纳米钯的负载量为1.3wt%~1.4wt%;纳米钯的平均粒径为4~4.5nm。
  3. 一种聚咔唑负载纳米钯材料的制备方法,包括如下步骤:惰性气体下,将含有Pd(OAc) 2和聚咔唑的水溶液搅拌混合后再加入NaBH 4的水溶液,而后继续搅拌反应,得到聚咔唑负载纳米钯材料。
  4. 根据权利要求3所述聚咔唑负载纳米钯材料的制备方法,其特征在于,搅拌反应结束后离心处理,沉淀物依次用水、乙醇、乙醚洗涤,然后真空干燥,得到聚咔唑负载纳米钯材料。
  5. 根据权利要求3所述聚咔唑负载纳米钯材料的制备方法,其特征在于,搅拌混合的搅拌速度为1000转每分钟,时间为0.5小时;搅拌反应的搅拌速度为1000转每分钟,时间为4小时;聚咔唑负载纳米钯材料中,钯的负载量为1.3wt%~1.4wt%;所述惰性气体选自氮气、氩气中的任意一种。
  6. 聚咔唑负载纳米钯材料在光催化芳香卤化物与芳香硼酸反应制备二芳基化合物中的应
    用;所述聚咔唑负载纳米钯材料中,纳米钯分布在咔唑聚合物上。
  7. 根据权利要求6所述的应用,其特征在于,聚咔唑负载纳米钯材料中,钯的负载量为1.3wt%~1.4wt%;纳米钯的平均粒径为4~4.5nm;聚咔唑负载纳米钯材料的制备方法包括如下步骤:惰性气体下,将含有Pd(OAc) 2和聚咔唑的水溶液搅拌混合后再加入NaBH 4的水溶液,而后继续搅拌反应,得到聚咔唑负载纳米钯材料。
  8. 根据权利要求6所述的应用,其特征在于,芳香卤化物为芳香溴化物或芳香氯化物;所述芳香溴化物选自溴苯、烷基取代溴苯、烷氧基取代溴苯、乙酰基取代溴苯、甲酰基取代溴苯、氰基取代溴苯、硝基取代溴苯、萘溴和杂芳环溴化物中的任意一种;所述芳香氯化物选自氯苯、乙酰基取代氯苯、甲酰基取代氯苯、氰基取代氯苯、硝基取代氯苯、萘氯和杂芳环氯化物中的任意一种;所述芳香硼酸化合物选自苯硼酸、烷基取代苯硼酸、烷氧基取代苯硼酸、乙酰基取代苯硼酸、甲酰基取代苯硼酸、硝基取代苯硼酸、氰基取代苯硼酸、酯基取代苯硼酸、萘硼酸和杂环硼酸中的任意一种。
  9. 根据权利要求6所述的应用,其特征在于,芳香卤化物与芳香硼酸反应制备二芳基化合物在碱存在下、在水存在下、在氮气中进行;芳香卤化物、芳香硼酸、聚咔唑负载纳米钯材料、碱的用量比为0.2mol:0..3mol:8mg:0.3mol。
  10. 根据权利要求9所述的应用,其特征在于,所述碱选自磷酸钾;所述溶剂为水、N,N-二甲基甲酰胺中的任意一种;所述反应的温度为室温;所述光照条件为蓝色LED灯照条件;所述反应的时间为12~48时。
PCT/CN2018/115768 2018-11-15 2018-11-15 一种聚咔唑负载纳米钯材料及其制备方法与应用 WO2020097894A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/115768 WO2020097894A1 (zh) 2018-11-15 2018-11-15 一种聚咔唑负载纳米钯材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/115768 WO2020097894A1 (zh) 2018-11-15 2018-11-15 一种聚咔唑负载纳米钯材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2020097894A1 true WO2020097894A1 (zh) 2020-05-22

Family

ID=70730759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115768 WO2020097894A1 (zh) 2018-11-15 2018-11-15 一种聚咔唑负载纳米钯材料及其制备方法与应用

Country Status (1)

Country Link
WO (1) WO2020097894A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109317202A (zh) * 2018-11-06 2019-02-12 苏州大学 一种聚咔唑负载纳米钯材料及其制备方法与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109317202A (zh) * 2018-11-06 2019-02-12 苏州大学 一种聚咔唑负载纳米钯材料及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, F.R. ET AL: "Synthesis of a Novel Cellulose Microencapsulated Palla- dium Nanoparticle and Its Catalytic Activities in Suzuki-Miyaura and Mizoro- ki-Heck Reactions", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 53, no. 20, 27 April 2014 (2014-04-27), pages 8339 - 8345, XP055707269, ISSN: 0888-5885, DOI: 10.1021/ie4038505 *
RAZA.F. ET AL: "Structuring Pd Nanoparticles on 2H-WS2 Nanosheets Induces Excellent Photocatalytic Activity for Cross-Coupling Reactions under Visible Light", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 139, no. 41, 27 September 2017 (2017-09-27), pages 14767 - 14774, XP055707274, ISSN: 0002-7863, DOI: 10.1021/jacs.7b08619 *
ZHOU, H. ET AL.: "Palladium nanoparticles supported on a carbazole functionalized mesoporous organic polymer: synthesis and their application as efficient catalysts for the Suzuki–Miyaura cross coupling reaction", POLYMER CHEMISTRY, vol. 8, no. 9, 26 January 2017 (2017-01-26), pages 1488 - 1494, XP055707268, ISSN: 1759-9954, DOI: 10.1039/C6PY01784C *

Similar Documents

Publication Publication Date Title
Mondal et al. Cage encapsulated gold nanoparticles as heterogeneous photocatalyst for facile and selective reduction of nitroarenes to azo compounds
Kadam et al. Hexagonal mesoporous silica supported ultrasmall copper oxides for oxidative amidation of carboxylic acids
Zhao et al. NH2-MIL-125 (Ti)/TiO2 composites as superior visible-light photocatalysts for selective oxidation of cyclohexane
Han et al. Fabrication of plasmonic Au–Pd alloy nanoparticles for photocatalytic Suzuki–Miyaura reactions under ambient conditions
Esmaeilpour et al. N-heterocyclic carbene-Pd (II) complex based on theophylline supported on Fe3O4@ SiO2 nanoparticles: Highly active, durable and magnetically separable catalyst for green Suzuki-Miyaura and Sonogashira-Hagihara coupling reactions
Chen et al. Dual heterogeneous catalyst Pd–Au@ Mn (II)-MOF for one-pot tandem synthesis of imines from alcohols and amines
Choudary et al. Layered double hydroxide supported nanopalladium catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-type coupling reactions of chloroarenes
Baran Highly recoverable, reusable, cost-effective, and Schiff base functionalized pectin supported Pd (II) catalyst for microwave-accelerated Suzuki cross-coupling reactions
Hardy et al. Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions
Ghorbani-Choghamarani et al. Modification of boehmite nanoparticles with Adenine for the immobilization of Cu (II) as organic–inorganic hybrid nanocatalyst in organic reactions
Trilla et al. Hybrid Organic‐Inorganic Materials from Di‐(2‐pyridyl) methylamine‐Palladium Dichloride Complex as Recoverable Catalysts for Suzuki, Heck and Sonogashira Reactions
Firouzabadi et al. Agarose hydrogel as an effective bioorganic ligand and support for the stabilization of palladium nanoparticles. Application as a recyclable catalyst for Suzuki–Miyaura reaction in aqueous media
CN101733162A (zh) 有机金属框架物负载钯及其制备方法、用途
Prajapati et al. Nickel mediated palladium free photocatalytic Suzuki-coupling reaction under visible light irradiation
Bagherzadeh et al. Facile synthesis of a recyclable Pd-rGO/CNT/CaFe 2 O 4 nanocomposite with high multifunctional photocatalytic activity under visible light irradiation
Sahu et al. Facile synthesis of palladium nanoparticles supported on silica: An efficient phosphine-free heterogeneous catalyst for Suzuki coupling in aqueous media
Kumar et al. Cubical palladium nanoparticles on C@ Fe3O4 for nitro reduction, Suzuki-Miyaura coupling and sequential reactions
EP2457656A1 (en) Catalyst precursor, method for producing the same, method for using the same, and reactor that uses the same
Lin et al. Pd (0)–CMC@ Ce (OH) 4 organic/inorganic hybrid as highly active catalyst for the Suzuki–Miyaura reaction
Sun et al. Synthesis and characterization of Pd based on [2, 2'-bipyridin]-4-amine functionalized nano cellulose as a novel and recyclable nano catalyst for Suzuki reaction
Panahi et al. Ultrasound-assisted suzuki-miyaura reaction catalyzed by Pd@ Cu2 (NH2-BDC) 2 (DABCO)
Jiao et al. Photocatalytic C–X borylation of aryl halides by hierarchical SiC nanowire-supported Pd nanoparticles
Ma et al. Homogenization of inorganic material-supported palladium catalysts in Suzuki coupling reaction at room temperature
CN109317202B (zh) 一种聚咔唑负载纳米钯材料及其制备方法与应用
Targhan et al. Highly efficient polymer‐stabilized palladium heterogeneous catalyst: Synthesis, characterization and application for Suzuki–Miyaura and Mizoroki–Heck coupling reactions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940081

Country of ref document: EP

Kind code of ref document: A1