WO2020097865A1 - 一种滤光片及其制造方法、显示装置和色粉 - Google Patents

一种滤光片及其制造方法、显示装置和色粉 Download PDF

Info

Publication number
WO2020097865A1
WO2020097865A1 PCT/CN2018/115688 CN2018115688W WO2020097865A1 WO 2020097865 A1 WO2020097865 A1 WO 2020097865A1 CN 2018115688 W CN2018115688 W CN 2018115688W WO 2020097865 A1 WO2020097865 A1 WO 2020097865A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
layer
metal
resonance absorption
reflection
Prior art date
Application number
PCT/CN2018/115688
Other languages
English (en)
French (fr)
Inventor
季陈纲
郭凌杰
Original Assignee
深圳市融光纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市融光纳米科技有限公司 filed Critical 深圳市融光纳米科技有限公司
Priority to PCT/CN2018/115688 priority Critical patent/WO2020097865A1/zh
Priority to CN201880098885.XA priority patent/CN113518937A/zh
Priority to JP2021523827A priority patent/JP7307978B2/ja
Publication of WO2020097865A1 publication Critical patent/WO2020097865A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the invention relates to the technical field of optics, in particular to an optical filter, a manufacturing method thereof, a display device and toner.
  • Color filters play an important role in the fields of color displays, light emitting diodes, image sensors, and optical detection.
  • Traditional filters use chemical colorants or organic dyes to produce color by selectively absorbing a portion of visible light.
  • its absorption properties result in insufficient brightness of the resulting colors.
  • traditional filters because of being susceptible to environmental factors, such as humidity, high temperature, and continuous ultraviolet radiation, traditional filters have a shorter life span.
  • Nano-structured materials are also used in optical filters. Nano-structured materials interact with specific wavelengths in visible light to produce bright colors. However, the color generated based on this will change with the incident angle and the polarization state, that is, the angle sensitivity, which affects the appearance of the color. At present, the special phase change can be achieved when the light is reflected on the interface of the semiconductor material and the metal to improve the angle sensitivity. However, due to the absorption of semiconductor materials, the purity of the colors produced is greatly affected, and the application of lower purity colors is limited.
  • the object of the present invention is to provide an optical filter, a manufacturing method thereof, a display device, and toner to improve the purity and brightness of the reflected color, and at the same time, to obtain the same color in both directions.
  • the invention proposes an optical filter.
  • the filter includes a metal layer, a first resonance absorption layer and a second resonance absorption layer symmetrically arranged on both sides of the metal layer, and a side symmetrically arranged on the side of the first resonance absorption layer and the second resonance absorption layer away from the metal layer
  • the first anti-reflection layer and the second anti-reflection layer are included in the filter.
  • the invention provides another filter.
  • the filter includes a metal layer, and a resonance absorption layer and an anti-reflection layer disposed on the metal layer in sequence, wherein the resonance absorption layer includes at least one of a semiconductor material, a first metal oxide, and a metal sulfide, and the anti-reflection layer includes At least one of a second metal oxide, a metal nitride, and an organic polymer.
  • the present invention provides a method of manufacturing an optical filter.
  • the method includes: sequentially depositing a first anti-reflection layer, a first resonance absorption layer, a metal layer, a second resonance absorption layer and a second anti-reflection layer on the substrate, wherein the first resonance absorption layer and the second resonance absorption layer are respectively Symmetrically arranged on both sides of the metal layer, the first anti-reflection layer and the second anti-affine layer are symmetrically arranged on the side of the first resonance absorption layer and the second resonance absorption layer away from the metal layer.
  • the present invention provides another method for manufacturing an optical filter.
  • the method includes: sequentially depositing a metal layer, a resonance absorption layer and an anti-reflection layer on a substrate, wherein the resonance absorption layer includes at least one of a semiconductor material, a first metal oxide, and a metal sulfide, and the anti-reflection layer includes a second metal At least one of oxides, metal nitrides, and organic polymers.
  • the invention provides a display device.
  • the display device includes the filter of the above-mentioned first aspect or second aspect.
  • the invention provides a toner.
  • the toner includes toner particles formed by pulverizing the filter of the first aspect or the second aspect.
  • the beneficial effects of the present invention are: by the first resonance absorption layer and the second resonance absorption layer and the first anti-reflection layer and the second anti-reflection layer symmetrically arranged on both sides of the metal layer, the purity and brightness of the reflected color are improved while , You can get the same color in both directions.
  • first resonance absorption layer, the second resonance absorption layer, and the first anti-reflection layer and the second anti-reflection layer are made of specific materials, they have good insensitivity to the incident angle, that is, the reflection color and the viewing angle are insensitive .
  • FIG. 1 is a schematic structural view of an optical filter according to an embodiment of the present invention
  • 2a is an example of filter application and the reflection spectrum of other filters according to an embodiment of the present invention.
  • FIG. 2b is a schematic diagram of phase analysis of an application example of a filter according to an embodiment of the present invention.
  • 2c is a schematic diagram of reflection and absorption based on first-order absorption resonance and zero-order absorption resonance;
  • FIG. 3 is an admittance diagram of an application example of a filter and other filters according to an embodiment of the present invention
  • 4a-4b are schematic diagrams of simulated and measured reflection and transmission spectra and color coordinates of a filter application example according to an embodiment of the present invention.
  • 5a-5b are schematic diagrams of simulated and measured reflection spectra that vary with incident angle and red color coordinates generated at different incident angles according to an example of filter application according to an embodiment of the present invention
  • FIG. 6 is a schematic structural view of a filter according to another embodiment of the present invention.
  • FIG. 7 is a flowchart of a method of manufacturing an optical filter according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method of manufacturing an optical filter according to another embodiment of the present invention.
  • FIG. 1 it is a schematic structural view of an optical filter according to an embodiment of the present invention.
  • the filter 100 can be applied to a display system or a display device, for example, a display, a light emitting diode, and the like.
  • the filter 100 can also be applied to optical decoration, for example, toner.
  • the filter 100 can be crushed into toner particles and added as a coating on the surface of the object to be decorated.
  • the filter 100 includes a metal layer 120, a first resonance absorption layer 130a and a second resonance absorption layer 130b that are symmetrically disposed on both sides of the metal layer 120, and a first resonance absorption layer 130a and a second resonance absorption layer that are symmetrically disposed, respectively.
  • the filter 100 When visible light illuminates the filter 100, only one of the colors is reflected, that is, color A.
  • the direction of the filter 100 is first set, and one end of the first anti-reflection layer 140a is set as a filter At the bottom end of the optical sheet 100, one end of the second anti-reflection layer 140b is set as the top end of the optical filter 100.
  • the absorption resonance is excited in the second resonance absorption layer 130b, thereby significantly reducing the reflection of some useless wavelengths.
  • the second anti-reflection layer 140b further suppresses the remaining reflection by generating anti-reflection resonance
  • some unwanted waves reach the metal layer 120, through the inherent absorption characteristics of the metal layer 120, some of the unwanted wavelengths are absorbed, and then when the metal layer 120 is transmitted to the bottom end of the metal layer 120, the first resonance absorption layer 130a and the first
  • the anti-reflection layer 140a further suppresses the reflection of unwanted waves by inducing transmission, and improves the purity of the reflected color.
  • the absorption resonance resonance is excited in the first resonance absorption layer 130a, thereby significantly reducing the reflection of some useless wavelengths.
  • the first anti-reflection layer 140a further generates anti-reflection resonance by To suppress the remaining reflection, when some unwanted waves reach the metal layer 120, through the inherent absorption characteristics of the metal layer 120, absorb some of the unwanted wavelengths, and then transmit through the metal layer 120 to the top of the metal layer 120, the second resonance absorption layer 130b By inducing transmission, the second anti-reflection layer 140b further suppresses the reflection of unwanted waves and improves the purity of the reflected color. Therefore, no matter which end the filter 100 is viewed from, the same color can be observed.
  • the purity of the reflected color is improved by the first resonance absorption layer 130a and the second resonance absorption layer 130b and the first anti-reflection layer 140a and the second anti-reflection layer 140b symmetrically disposed on both sides of the metal layer 120
  • brightness at the same time, can get the same color in the two directions (ie, the direction from the top to the bottom and the direction from the bottom to the top).
  • the first resonance absorption layer 130a and the second resonance absorption layer 130b may each include at least one of a semiconductor material, a first metal oxide, and a metal sulfide.
  • Semiconductor materials for example, amorphous silicon (a-Si), germanium, zinc selenide, etc., first metal oxides and metal sulfides, such as zinc sulfide, copper oxide, cuprous oxide, iron oxide, etc.
  • the first anti-reflection layer 140a and the second anti-reflection layer 140b may each include at least one of a second metal oxide, a metal nitride, and an organic polymer.
  • the second metal oxide and / or metal nitride for example, aluminum oxide (Al 2 O 3 ), zinc oxide, titanium oxide, silicon oxide, tungsten oxide, tantalum oxide, hafnium oxide, and the like.
  • the metal layer 120 includes one of copper (Cu) and gold (Au).
  • the metal layer 120 may include one of silver (Ag), aluminum (Al), chromium (Cr), titanium (Ti), and nickel (Ni).
  • the metal layer 120 includes alloys of copper (Cu), gold (Au), silver (Ag), aluminum (Al), chromium (Cr), titanium (Ti), and nickel (Ni) At least one, for example, copper alloy, aluminum alloy, and the like.
  • the The filter 100 has good angular insensitivity.
  • the peak shift range of the reflection spectrum of the filter 100 is less than 40 nm, 20 nm, or 10 nm.
  • the first resonance absorption layer 130a and the second resonance absorption layer 130b both include amorphous silicon
  • the metal layer 120 includes copper as an example. Not described here.
  • the thickness of the metal layer 120 is less than the thickness of the first resonance absorption layer 130a or the second resonance absorption layer 130b and the thickness of the first anti-reflection layer 140a or the second anti-reflection layer 140b.
  • the first anti-reflection layer 140 a is disposed on the substrate 110, that is, the substrate 110 is located at the bottom end of the filter 100.
  • the second anti-reflection layer 140b may be disposed on the substrate 110, that is, the substrate 110 is on the top of the filter 100.
  • the substrate 110 includes a glass substrate.
  • the filter 100 of the present invention will be described below with specific application examples.
  • both the first resonance absorption layer 130a and the second resonance absorption layer 130b include a-Si
  • the first anti-reflection layer 140a and the second anti-reflection layer 140b both include Al 2 O 3
  • the metal layer 120 Including copper as an example.
  • the thicknesses of the metal layer 120, the first resonance absorption layer 130a or the second resonance absorption layer 130b, the first anti-reflection layer 140a or the second anti-reflection layer 140b are 30 nm, 95 nm and 65 nm .
  • the thickness of the metal layer 120, the first resonance absorption layer 130a or the second resonance absorption layer 130b, the first anti-reflection layer 140a or the second anti-reflection layer 140b can be 30 ⁇ 25nm, 95 ⁇ 90nm, 65 ⁇ 60nm.
  • a second resonance absorption layer 130b on the metal layer 120 that is, a-Si with a thickness of 95nm
  • the reflection below 600nm Significantly reduced, especially the reflection between 500-600nm.
  • FIG. 2b it is a schematic diagram of phase analysis of the second resonance absorption layer 130b and the second anti-reflection layer 140b.
  • the net phase shift is equal to a multiple of 2 ⁇ , absorption resonance occurs in the second resonance absorption layer 130b, and anti-reflection resonance occurs in the second anti-reflection layer 140b.
  • the first-order absorption resonance (ie # 1) is excited at a wavelength of 550 nm, and in the second anti-reflection layer 140b, the wavelengths are 450, 505, and 590 nm
  • There are multiple anti-reflection (AR) resonances (ie # 2, # 3, and # 4) to reduce broadband reflection outside the red range. It can be seen from this that the absorption in the second resonance absorption layer 130b and the anti-reflection effect in the second anti-reflection layer 140b effectively suppress the reflection that affects the purity of red in a short wavelength range.
  • the same phase analysis can also be applied to the first resonance absorption layer 130a and the first anti-reflection layer 140a.
  • the resonance in the first resonance absorption layer 130a and the first anti-reflection layer 140a suppresses short wavelengths by inducing transmission
  • the reflection further improves the color purity.
  • Figure 2c it is based on the reflection and absorption of first-order absorption resonance and zero-order absorption resonance.
  • the reflection spectrum of the second resonance absorption layer 130b that excites first-order absorption resonance shows a steeper slope than the structure that excites only zero-order absorption resonance.
  • the second resonance absorption layer 130b in this application example is a-Si with a thickness of 95nm, and the steeper reflection spectrum is obtained by exciting the first-order resonance, which is conducive to producing a more pure color reflection.
  • the thickness of a-Si in a structure that generates zero-order resonance at a wavelength of about 550 nm is 8.1 nm.
  • the 95-nm a-Si in this application example absorbs more short waves below 600 nm than the structure that excites zero-order absorption resonance.
  • the second anti-reflection layer 140b is used as the tip of the filter
  • the first anti-reflection layer 140a is used as the tip of the filter. The results are the same as above. I will not repeat them here.
  • the anti-reflection functions of the first anti-reflection layer 140a and the second anti-reflection layer 140b may be through their optical admittance
  • optical admittance is the reciprocal of impedance, because the magnetic effect at the optical frequency is negligible, which is numerically equal to the refractive index of the material.
  • ⁇ and ⁇ are the dielectric constant and permeability coefficient, respectively.
  • the filter of this application example its admittance starts from the point (1.45, 0) of the substrate 110, and the subsequent trajectory is formed by the first anti-reflection layer 140a, the first resonance absorption layer 130a, and the metal layer 120 on the substrate 110
  • the thickness and refractive index of the second resonance absorption layer 130b and the second anti-reflection layer 140b are determined.
  • the admittance trajectory of a transparent medium and a perfect metal is a perfect arc
  • the admittance of an absorption medium, such as a semiconductor or a real metal is a spiral trajectory.
  • the filter of this application example that is, including the first anti-reflection layer 140a and the second anti-reflection layer 140b, as shown on the right side of FIG. 3
  • the filter without the anti-reflection layer (As shown on the left side of Figure 3) Admittance diagrams at different wavelengths.
  • the wave reflection can be calculated by admittance according to the following formula:
  • Y 0 and Y 1 represent the admittance of the incident medium and the admittance of the end point of the entire filter. From this formula, the reflection of the wave can be simply quantified by the distance between the admittance of the termination point and the air (1,0).
  • the filter in this application example ie, including the first anti-reflection layer 140a and the second anti-reflection layer 140b
  • has a short wavelength range ie, wavelength (400, 500, 600nm) reflection is effectively suppressed.
  • the filter in this application example was fabricated and measured, as shown in Figures 4a and 4b, respectively, the reflection and transmission spectra of the filter in this application example at normal incidence, and according to Figure 4a Schematic diagram of the color coordinates calculated by the reflection spectrum in the CIE 1931 chromaticity diagram.
  • the reflectance spectrum at normal incidence was obtained using a thin film measuring instrument (F20, Filmetrics), and the transmission was measured using a spectral ellipsometer (M-2000, J.A. Woollam).
  • the measured reflection and transmission spectra are consistent with the simulation results, and reflections below 600nm are greatly suppressed, and peak reflections of more than 80% are achieved in the long wavelength range, which illustrates this application.
  • the color coordinates of the simulation results (0.62, 0.32) and the measured results (0.61,0.34) are very close to the standard red (0.64, 0.33) used in the liquid crystal display. It should be noted that the color coordinates are calculated from the reflection line under the standard light source D65, and all the simulations are based on the refractive index of the material measured by the spectral ellipsometer and calculated by the transfer matrix method.
  • the incident angle test of the filter of this application example was carried out, that is, the reflection situation when the incident angle changed.
  • Figure 5a it was simulated and measured the filter of this application example in TE (transverse electrical, horizontal electrical ) Polarization and TM (transverse magnetic), the reflection spectrum changes with the incident angle. It can be seen that the simulation results are very consistent with the measured results, indicating that the angle of the filter to the incident light of this application example And polarization insensitivity.
  • Figure 5b it is the CIE 1931 chromaticity diagram of the color coordinates of red produced by the filter of this application example under different incident angles. The simulation results and measured results are respectively when the incident angle is 0 °.
  • the first resonance absorption layer 130a and the second resonance absorption layer 130b both include a-Si
  • the first anti-reflection layer 140a and the second anti-reflection layer 140b both include Al 2 O 3
  • the metal layer 120 includes copper as an example. Taking the reflection of blue as an example, at this time, the thickness of the metal layer 120, the first resonance absorption layer 130a or the second resonance absorption layer 130b, the first anti-reflection layer 140a or the second anti-reflection layer 140b are 15 nm, 40 nm, respectively. 130nm.
  • the thickness of the metal layer 120, the first resonance absorption layer 130a or the second resonance absorption layer 130b, the first anti-reflection layer 140a or the second anti-reflection layer 140b can be 15 ⁇ 10nm, 40 ⁇ 35nm, 130 ⁇ 125nm.
  • the first resonance absorption layer 130a and the second resonance absorption layer 130b each include a-Si
  • the first anti-reflection layer 140a and the second anti-reflection layer 140b both include Al 2 O 3
  • the metal layer 120 includes copper as an example.
  • the thicknesses of the metal layer 120, the first resonance absorption layer 130a or the second resonance absorption layer 130b, the first anti-reflection layer 140a or the second anti-reflection layer 140b are 15 nm, 55 nm, and 160 nm, respectively. .
  • the thickness of the metal layer 120, the first resonance absorption layer 130a or the second resonance absorption layer 130b, the first anti-reflection layer 140a or the second anti-reflection layer 140b can be 15 ⁇ 10nm, 55 ⁇ 50nm, 160 ⁇ 155nm.
  • the present invention also provides another optical filter, as shown in FIG. 6, which is a schematic structural diagram of an optical filter according to another embodiment of the present invention.
  • the filter includes a metal layer 620, a resonance absorption layer 630 and an anti-reflection layer 640 disposed on the metal layer 620 in this order.
  • the resonance absorption layer 630 may include at least one of a semiconductor material, a first metal oxide, and a metal sulfide.
  • Semiconductor materials for example, amorphous silicon (a-Si), germanium, zinc selenide, etc., first metal oxides and metal sulfides, such as zinc sulfide, copper oxide, cuprous oxide, iron oxide, etc.
  • the anti-reflection layer 640 may include at least one of a second metal oxide, a metal nitride, and an organic polymer.
  • the second metal oxide and / or metal nitride for example, aluminum oxide (Al 2 O 3 ), zinc oxide, titanium oxide, silicon oxide, tungsten oxide, tantalum oxide, hafnium oxide, and the like.
  • the metal layer 620 includes at least one of copper, silver, gold, aluminum, chromium, titanium, and nickel. In another example, the metal layer 620 includes at least one of alloys of copper, gold, silver, aluminum, chromium, titanium, and nickel, for example, copper alloy, aluminum alloy, and the like.
  • the present invention also provides a method of manufacturing an optical filter. As shown in FIG. 7, it is a flowchart of an optical filter manufacturing method according to an embodiment of the present invention.
  • the optical filter is described in conjunction with FIG. Filter 100.
  • the method includes the following steps:
  • a first anti-reflection layer 140a, a first resonance absorption layer 130a, a metal layer 120, a second resonance absorption layer 130b, and a second anti-reflection layer 140b are sequentially deposited on the substrate 110, wherein the first resonance absorption layer 130a and the first The two resonance absorption layers 130b are symmetrically disposed on both sides of the metal layer 120, and the first anti-reflection layer 140a and the second anti-affine layer are symmetrically disposed on the first resonance absorption layer 130a and the second resonance absorption layer 130b away from the metal layer 120 side.
  • a film system is formed to realize the filter, the cost is low, and it is convenient for large-area production.
  • the first resonance absorption layer 130a and the second resonance absorption layer 130b may each include at least one of a semiconductor material, a first metal oxide, and a metal sulfide.
  • Semiconductor materials for example, amorphous silicon (a-Si), germanium, zinc selenide, etc., first metal oxides and metal sulfides, such as zinc sulfide, copper oxide, cuprous oxide, iron oxide, etc.
  • the first anti-reflection layer 140a and the second anti-reflection layer 140b may each include at least one of a second metal oxide, a metal nitride, and an organic polymer.
  • the second metal oxide and / or metal nitride for example, aluminum oxide, zinc oxide, titanium oxide, silicon oxide, tungsten oxide, tantalum oxide, hafnium oxide, and the like.
  • the metal layer 120 includes one of copper and gold.
  • the metal layer 120 may include one of silver, aluminum, chromium, titanium, and nickel.
  • the metal layer 120 includes at least one alloy of copper, gold, silver, aluminum, chromium, titanium, and nickel, for example, copper alloy, aluminum alloy, and the like.
  • the present invention also provides another method for manufacturing an optical filter. As shown in FIG. 8, it is a flowchart of a method for manufacturing an optical filter according to an embodiment of the present invention. The optical filter is described in conjunction with FIG. Filter 600. With reference to FIG. 6, the method includes the following steps:
  • Step S810 depositing a metal layer 620, a resonance absorption layer 630 and an anti-reflection layer 640 on the substrate 610 in this order.
  • the resonance absorption layer 630 includes at least one of a semiconductor material, a first metal oxide, and a metal sulfide.
  • Semiconductor materials for example, amorphous silicon (a-Si), germanium, zinc selenide, etc .; first metal oxides and metal sulfides, such as zinc sulfide, copper oxide, cuprous oxide, iron oxide, etc.
  • the anti-reflection layer 640 may include at least one of a second metal oxide, a metal nitride, and an organic polymer.
  • the second metal oxide and / or metal nitride for example, aluminum oxide (Al 2 O 3 ), zinc oxide, titanium oxide, silicon oxide, tungsten oxide, tantalum oxide, hafnium oxide, and the like.
  • the metal layer 620 includes at least one of copper, silver, gold, aluminum, chromium, titanium, and nickel. In another example, the metal layer 620 includes at least one of alloys of copper, gold, silver, aluminum, chromium, titanium, and nickel, for example, copper alloy, aluminum alloy, and the like.
  • the present invention also provides a display device including the optical filter 100 or 600 of the above embodiment.
  • the present invention also provides a toner including toner particles formed by pulverizing the filter 100 or 600 of the above embodiment.
  • the toner can be used as a coating to attach to the surface of an object so that the object exhibits a color with high purity and high brightness.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

一种滤光片(100),包括金属层(120)、分别对称设置于金属层(120)两侧的第一共振吸收层(130a)和第二共振吸收层(130b)以及分别对称设置于第一共振吸收层(130a)和第二共振吸收层(130b)远离金属层(120)一侧的第一抗反射层(140a)和第二抗反射层(140b)。还提供了其制造方法及相关显示装置、色粉。滤光片(100)能提高反射的颜色的纯度及亮度,同时,能在正反两个方向上获得相同的颜色。

Description

一种滤光片及其制造方法、显示装置和色粉 【技术领域】
本发明涉及光学技术领域,特别是涉及一种滤光片及其制造方法、显示装置和色粉。
【背景技术】
彩色滤光片在彩色显示器、发光二极管、图像传感器和光学探测等领域发挥着重要作用。传统的滤光片使用化学着色剂或有机染料,通过选择性地吸收一部分可见光来产生颜色。然而,其吸收性质导致产生的颜色的亮度不足。此外,由于易受环境因素的影响,如湿度、高温和持续的紫外线照射,传统的滤光片寿命较短。
随着发展,纳米结构材料也被用于滤光片,纳米结构材料与可见光中的特定波长相互作用,产生明快的颜色。然而,基于此产生的颜色会随着入射角和偏振状态而变化,即角度敏感性,从而影响颜色外观,目前可以通过光在半导体材料与金属的界面上反射时特殊相变,改善角度敏感性,但是由于半导体材料的吸收,所产生的颜色的纯度受到很大影响,而较低纯度的颜色的应用范围受到局限。
【发明内容】
本发明的目的在于提供一种滤光片及其制造方法、显示装置和色粉,以提高反射的颜色的纯度及亮度,同时,能在正反两个方向上获得相同的颜色。
根据本发明第一方面,本发明提出一种滤光片。该滤光片包括金属层、分别对称设置于金属层两侧的第一共振吸收层和第二共振吸收层以及分别对称设置于第一共振吸收层和第二共振吸收层远离金属层一侧的第一抗反射层和第二抗反射层。
根据本发明第二方面,本发明提供另一种滤光片。该滤光片包括金属层以及依次设置于金属层上的共振吸收层和抗反射层,其中共振吸收层包括半导体材料、第一金属氧化物和金属硫化物中的至少一种,抗反射层包括第二金属氧化物、金属氮化物和有机聚合物中的至少一种。
根据本发明第三方面,本发明提供一种滤光片的制造方法。该方法包括:在基底上依次沉积第一抗反射层、第一共振吸收层、金属层、第二共振吸收层和第二抗反射层,其中,第一共振吸收层和第二共振吸收层分别对称设置于金属层两侧,第一抗反射层和第二抗仿射层分别对称设置于第一共振吸收层和第二共振吸收层远离金属层一侧。
根据本发明第四方面,本发明提供另一种滤光片的制造方法。该方法包括:在基底上依次沉积金属层、共振吸收层和抗反射层,其中共振吸收层包括半导体材料、第一金属氧化物和金属硫化物中的至少一种,抗反射层包括第二金属氧化物、金属氮化物和有机聚合物中的至少一种。
根据本发明第五方面,本发明提供一种显示装置。该显示装置包括上述第一方面或第二方面的滤光片。
根据本发明第六方面,本发明提供一种色粉。该色粉包括由第一方面或第二方面的滤光片粉碎而形成的色粉颗粒。
本发明的有益效果有:通过对称设置于金属层两侧的第一共振吸收层和第二共振吸收层以及第一抗反射层和第二抗反射层,提高反射的颜色的纯度及亮度,同时,能在正反两个方向上获得相同的颜色。
此外,当采用具体的材料制成第一共振吸收层、第二共振吸收层以及第一抗反射层和第二抗反射层时,具有良好的入射角度不敏感性,即反射颜色与视角不敏感。
【附图说明】
图1是根据本发明一实施例的滤光片的结构示意图;
图2a是根据本发明实施例的滤光片应用实例及其他滤光片的反射谱;
图2b是根据本发明实施例的滤光片应用实例的相位分析示意图;
图2c是基于一阶吸收共振和零阶吸收共振的反射和吸收的示意图;
图3是根据本发明实施例的滤光片应用实例及其他滤光片的导纳图;
图4a-4b是根据本发明实施例的滤光片应用实例的仿真与实测的反射与透射谱以及颜色坐标的示意图;
图5a-5b是根据本发明实施例的滤光片应用实例的仿真与实测的随着入射角度变化的反射谱以及在不同入射角度下产生的红色颜色坐标的示意图;
图6是根据本发明另一实施例的滤光片的结构示意图;
图7是根据本发明一实施例的滤光片的制造方法的流程图;以及
图8是根据本发明另一实施例的滤光片的制造方法的流程图。
【具体实施方式】
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对发明做进一步详细描述。
如图1所示,是根据本发明一实施例的滤光片的结构示意图。该滤光片100可应用于显示系统或显示装置,例如,显示器、发光二极管等。该滤光片100也可应用于光学装饰,例如,色粉。该滤光片100可以被粉碎成色粉颗粒,作为一涂层附加在所需装饰的物体表面。该滤光片100包括金属层120、分别对称设置于金属层120两侧的第一共振吸收层130a和第二共振吸收层130b以及分别对称设置于第一共振吸收层130a和第二共振吸收层130b远离金属层120一侧的第一抗反射层140a和第二抗反射层140b。
当可见光照射该滤光片100时,仅反射出其中一种颜色,即颜色A,为了方便描述,先设定该滤光片100的方向,将第一抗反射层140a的一端设定为滤光片100的底端,将第二抗反射层140b的一端设定为滤光片100的顶端。当可见光从滤光片100的顶端照射时,第二共振吸收层130b内激励吸收共振,从而明显减少某些无用波长的反射,第二抗反射层140b通过产生抗反射共振,进一步抑制剩余的反射,在某些无用波达到金属层120时,通过金属层120的固有吸收特性,吸收部分无用波长,进而通过金属层120透射到达金属层120的底端时,第一共振吸收层130a和第一抗反射层140a通过诱导透射,进一步抑制无用波的反射,提高反射出的颜色的纯度。相反地,当可见光从滤光片100的底端照射时,第一共振吸收层130a内激励吸收共振,从而明显减少某些无用波长的反射,第一抗反射层140a通过产生抗反射共振,进一步抑制剩余的反射,在某些无用波达到金属层120时,通过金属层120的固有吸收特性,吸收部分无用波长,进而通过金属层120透射到达金属层120的顶端时,第二共振吸收层130b和第二抗反射层140b通过诱导透射,进一步抑制无用波的反射,提高反射出的颜色的纯度。因此,无论从哪一端观察该滤光片100,均能观察到一样的颜色。
在本实施例中,通过对称设置于金属层120两侧的第一共振吸收层130a和第二共振吸收层130b以及第一抗反射层140a和第二抗反射层140b,提高反射的颜色的纯度及亮度,同时,能在正反两个方向(即从顶端到底端的方向和从底端到顶端的方向)上获得相同的颜色。
在一示例中,第一共振吸收层130a和第二共振吸收层130b可以均包括半导体材料、第一金属氧化物和金属硫化物中的至少一种。半导体材料,例如,非晶硅(a-Si)、锗、硒化锌等,第一金属氧化物及金属硫化物,如硫化锌、氧化铜、氧化亚铜、氧化铁等。第一抗反射层140a和第二抗反射层140b可以均包括第二金属氧化物、金属氮化物和有机聚合物中的至少一种。第二金属氧化物和或金属氮化物,例如,氧化铝(Al 2O 3)、氧化锌、氧化钛、氧化硅、氧化钨、氧化钽、氧化铪等。
在一示例中,金属层120包括铜(Cu)和金(Au)中的一种。在另一示例中,金属层120可以包括银(Ag)、铝(Al)、铬(Cr)、钛(Ti)和镍(Ni)中的一种。在又一示例中,金属层120包括铜(Cu)、金(Au)、银(Ag)、铝(Al)、铬(Cr)、钛(Ti)和镍(Ni)这些金属的合金中的至少一种,例如,铜合金、铝合金等。
此外,由于上述材料的折射率及结构,当第一共振吸收层130a、第二共振吸收层130b、第一抗反射层140a、第二抗反射层140b和金属层120分别采用上述材料时,该滤光片100具有良好的角度不敏感性,在一示例中,在滤光片100的入射角度达到60°时,滤光片100的反射谱中波峰移动范围小于40nm、20nm或10nm。下文将以第一共振吸收层130a和第二共振吸收层130b均包括非晶硅,第一抗反射层140a和第二抗反射层140b均包括氧化铝,金属层120包括铜为例进行说明,在此不进行说明。
在一示例中,金属层120的厚度小于第一共振吸收层130a或第二共振吸收层130b的厚度以及第一抗反射层140a或第二抗反射层140b的厚度。
如图1所示,第一抗反射层140a设置于基底110上,即基底110位于滤光片100的底端。当然在其他实施例中,也可以是第二抗反射层140b设置于基底110上,即基底110在滤光片100的顶端。在一示例中,基底110包括玻璃基底。
下面将以具体的应用实例描述本发明的滤光片100。
在一应用实例中,以第一共振吸收层130a和第二共振吸收层130b均包括 a-Si,第一抗反射层140a和第二抗反射层140b均包括Al 2O 3,且金属层120包括铜为例。以反射出红色为例,此时,金属层120、第一共振吸收层130a或第二共振吸收层130b、第一抗反射层140a或第二抗反射层140b的厚度分别为30nm、95nm、65nm。在一示例中,通过试验,金属层120、第一共振吸收层130a或第二共振吸收层130b、第一抗反射层140a或第二抗反射层140b的厚度可以分别为30±25nm、95±90nm、65±60nm。
下面通过试验对本应用实例中的滤光片进行分析。
如图2a所示,分别是没有第二抗反射层140b和第二共振吸收层130b的滤光片、没有第二抗反射层140b的滤光片以及本应用实例的滤光片的反射谱。可以看出,当在金属层120上有第二共振吸收层130b,即95nm厚度的a-Si时,由于第二共振吸收层130b(即a-Si)内激励吸收共振,在600nm以下的反射明显减少,特别是在500-600nm之间的反射。同时,由于第二共振吸收层130b上的第二抗反射层140b,即65nm厚度的Al 2O 3,进一步抑制了由于第二共振吸收层130b与入射介质(即空气)之间较大的折射率差而在短波长范围内存在的反射。如图2b所示,是第二共振吸收层130b和第二抗反射层140b的相位分析示意图。当净相移等于2π的倍数时,第二共振吸收层130b内发生吸收共振,第二抗反射层140b内发生抗反射共振。如图2(b)所示,在第二共振吸收层130b内,波长为550纳米处激励一阶吸收共振(即#1),在第二抗反射层140b内,波长为450,505和590nm处产生多个抗反射(anti-reflection,AR)共振(即#2、#3和#4),以减少红色范围外的宽带反射。这样可以看出,第二共振吸收层130b内的吸收以及第二抗反射层140b内的抗反射效应,有效抑制了短波长范围内影响红色纯度的反射。当然,同样的相位分析也可以应用于第一共振吸收层130a和第一抗反射层140a,通过试验可知,第一共振吸收层130a和第一抗反射层140a内的共振通过诱导透射抑制短波长反射,进一步提高了色纯度。如图2c所示,是基于一阶吸收共振和零阶吸收共振的反射和吸收。激励一阶吸收共振的第二共振吸收层130b的反射光谱显示出比只激励零阶吸收共振的结构更陡的斜率。而根据Fabry-Pérot腔的基本设计原理,本应用实例中的第二共振吸收层130b为95nm厚度的a-Si,是通过激励一阶共振来获得更陡峭的反射光谱,有利于产生更纯色的反射。注意的是,在波长大约为550nm处产生零阶共振的结构中a-Si的厚度为8.1nm。另一方面,如图2c所示,相比于激励零阶吸收共振的结构, 本应用实例中的95nm的a-Si吸收更多600nm以下的短波。
需要说明的是,此处是以第二抗反射层140b为滤光片的顶端进行分析说明的,而以第一抗反射层140a为滤光片的顶端进行分析说明,其结果与上述相同,在此不再赘述。
第一抗反射层140a和第二抗反射层140b的抗反射功能可以通过其光学导纳
Figure PCTCN2018115688-appb-000001
来说明,光学导纳是阻抗的倒数,因为在光学频率上的磁效应可以忽略不计,其在数值上等于材料的折射率。其中,ε和μ分别是介电常数和导磁系数。在本应用实例的滤光片中,其导纳从基底110的点(1.45,0)开始,随后的轨迹由基底110上的第一抗反射层140a、第一共振吸收层130a、金属层120、第二共振吸收层130b和第二抗反射层140b的厚度和折射率决定。透明的介质和完美的金属的导纳轨迹是一个完美的圆弧,而吸收介质,如半导体或真实的金属,所产生的导纳则是一段螺旋轨迹。如图3所示,为本应用实例的滤光片(即包含第一抗反射层140a和第二抗反射层140b,如图3的右侧所示)以及没有抗反射层的滤光片(如图3的左侧所示)在不同波长处的导纳图。
波的反射可以根据如下公式通过导纳计算得到:
Figure PCTCN2018115688-appb-000002
其中,Y 0和Y 1表示入射介质的导纳和整个滤光片的终止点导纳。由该公式可知,波的反射可以通过终止点导纳与空气(1,0)之间的距离来简单量化。如图3所示,对比于没有抗反射层的滤光片,本应用实例中的滤光片(即包含第一抗反射层140a和第二抗反射层140b),在短波长范围(即波长为400、500、600nm)内的反射得到了有效抑制。
最终,通过上述分析,制作并实测本应用实例中的滤光片,如图4a和4b所示,分别是本应用实例中的滤光片在正入射时的反射和透射谱,以及根据图4a中的反射谱所计算的颜色坐标在CIE 1931色度图上的示意图。其中,利用薄膜测量仪(F20,Filmetrics)获得正入射时的反射谱,利用光谱椭偏仪(M-2000,J.A.Woollam)测量透射。如图4a和4b所示,测量得到的反射和透射谱与仿真结果比较一致,并且在600nm以下的反射被大大抑制,在长波长范围内达到了80%以上的峰值反射,即说明了本应用实例中的滤光片反射出的高纯度红色。并且,仿真结果(0.62,0.32)和实测结果(0.61,0.34)的颜色坐标非常接近液晶显示器使用 的标准红色(0.64,0.33)。需要说明的是,颜色坐标由标准光源D65下的反射谱线计算得出,并且,所有的仿真都是基于利用光谱椭偏仪测量得到的材料折射率,通过传递矩阵法计算得到。此外,还对本应用实例的滤光片进行了入射角度试验,即入射角度变化时的反射情况,如图5a所示,是仿真和实测本应用实例的滤光片在TE(transverse electric,横向电)极化和TM(transverse magnetic,横向磁)极化时反射谱随着入射角度变化的示意图,可以看出,仿真结果与实测结果非常吻合,表明本应用实例的滤光片对入射光的角度和极化的不敏感性。如图5b所示,是仿真和实测本应用实例的滤光片在不同入射角度下产生红色的颜色坐标的CIE 1931色度图,其中,入射角度为0°时,仿真结果和实测结果分别为(0.62,0.32)、(0.60,0.35);入射角度为45°时,仿真结果和实测结果分别为(0.59,0.33)、(0.54,0.32);入射角度为60°时,仿真结果和实测结果分别为(0.51,0.34)、(0.49,0.30)。可以看出,本应用实例的滤光片在不同入射角度下产生的颜色坐标彼此接近,即在±60°的入射角范围内,均稳定得到红色,同时,可以看出,入射角度从0°增加到60°时,反射谱的峰值移动范围小于40nm、20nm或10nm,进一步说明本应用实例的滤光片具有良好的角度不敏感性。
在另一应用实例中,以第一共振吸收层130a和第二共振吸收层130b均包括a-Si,第一抗反射层140a和第二抗反射层140b均包括Al 2O 3,且金属层120包括铜为例。以反射出蓝色为例,此时,金属层120、第一共振吸收层130a或第二共振吸收层130b、第一抗反射层140a或第二抗反射层140b的厚度分别为15nm、40nm、130nm。在一示例中,通过试验,金属层120、第一共振吸收层130a或第二共振吸收层130b、第一抗反射层140a或第二抗反射层140b的厚度可以分别为15±10nm、40±35nm、130±125nm。
上述应用实例中的分析同样适用于本应用实例,在此不再赘述。
在又一应用实例中,以第一共振吸收层130a和第二共振吸收层130b均包括a-Si,第一抗反射层140a和第二抗反射层140b均包括Al 2O 3,且金属层120包括铜为例。以反射出绿色为例,此时,金属层120、第一共振吸收层130a或第二共振吸收层130b、第一抗反射层140a或第二抗反射层140b的厚度分别为15nm、55nm、160nm。在一示例中,通过试验,金属层120、第一共振吸收层130a或第二共振吸收层130b、第一抗反射层140a或第二抗反射层140b的厚度可以分别为15±10nm、55±50nm、160±155nm。
上述应用实例中的分析同样适用于本应用实例,在此不再赘述。
本发明还提供另一种滤光片,如图6所示,是根据本发明另一实施例的滤光片的结构示意图。该滤光片包括金属层620、依次设置于金属层620上的共振吸收层630和抗反射层640。
在本实施例中,共振吸收层630可以包括半导体材料、第一金属氧化物和金属硫化物中的至少一种。半导体材料,例如,非晶硅(a-Si)、锗、硒化锌等,第一金属氧化物及金属硫化物,如硫化锌、氧化铜、氧化亚铜、氧化铁等。抗反射层640可以包括第二金属氧化物、金属氮化物和有机聚合物中的至少一种。第二金属氧化物和或金属氮化物,例如,氧化铝(Al 2O 3)、氧化锌、氧化钛、氧化硅、氧化钨、氧化钽、氧化铪等。
在一示例中,金属层620包括铜、银、金、铝、铬、钛和镍的至少一种。在另一示例中,金属层620包括铜、金、银、铝、铬、钛和镍这些金属的合金中的至少一种,例如,铜合金、铝合金等。
本发明还提供一种滤光片的制造方法,如图7所示,是根据本发明一实施例的滤光片的制造方法的流程图,该滤光片为结合图1所示所描述的滤光片100。结合图1所示,该方法包括如下步骤:
S710:在基底110上依次沉积第一抗反射层140a、第一共振吸收层130a、金属层120、第二共振吸收层130b和第二抗反射层140b,其中,第一共振吸收层130a和第二共振吸收层130b分别对称设置于金属层120两侧,第一抗反射层140a和第二抗仿射层分别对称设置于第一共振吸收层130a和第二共振吸收层130b远离金属层120一侧。
在本实施例中,通过在基底110上依次沉积第一抗反射层140a、第一共振吸收层130a、金属层120、第二共振吸收层130b和第二抗反射层140b,即构成一个膜系,实现该滤光片,成本低,且便于大面积生产。
在一示例中,第一共振吸收层130a和第二共振吸收层130b可以均包括半导体材料、第一金属氧化物和金属硫化物中的至少一种。半导体材料,例如,非晶硅(a-Si)、锗、硒化锌等,第一金属氧化物及金属硫化物,如硫化锌、氧化铜、氧化亚铜、氧化铁等。第一抗反射层140a和第二抗反射层140b可以均包括第二金属氧化物、金属氮化物和有机聚合物中的至少一种。第二金属氧化物和或金属氮化物,例如,氧化铝、氧化锌、氧化钛、氧化硅、氧化钨、氧化 钽、氧化铪等。
在一示例中,金属层120包括铜和金中的一种。在另一示例中,金属层120可以包括银、铝、铬、钛和镍中的一种。在又一示例中,金属层120包括铜、金、银、铝、铬、钛和镍这些金属的合金的至少一种,例如,铜合金、铝合金等。
本发明还提供另一滤光片的制造方法,如图8所示,是根据本发明一实施例的滤光片的制造方法的流程图,该滤光片为结合图6所示所描述的滤光片600。结合图6所示,该方法包括如下步骤:
步骤S810:在基底610上依次沉积金属层620、共振吸收层630和抗反射层640。
其中共振吸收层630以包括半导体材料、第一金属氧化物和金属硫化物中的至少一种。半导体材料,例如,非晶硅(a-Si)、锗、硒化锌等;第一金属氧化物及金属硫化物,如硫化锌、氧化铜、氧化亚铜、氧化铁等。抗反射层640可以包括第二金属氧化物、金属氮化物和有机聚合物中的至少一种。第二金属氧化物和或金属氮化物,例如,氧化铝(Al 2O 3)、氧化锌、氧化钛、氧化硅、氧化钨、氧化钽、氧化铪等。
在一示例中,金属层620包括铜、银、金、铝、铬、钛和镍中的至少一种。在另一示例中,金属层620包括铜、金、银、铝、铬、钛和镍这些金属的合金中的至少一种,例如,铜合金、铝合金等。
本发明还提供一种显示装置,包括上述实施例的滤光片100或600。
本发明还提供一种色粉,包括由上述实施例的滤光片100或600粉碎而形成的色粉颗粒。在一示例中,该色粉可以用作涂层,以附加到物体表面,使得物体呈现高纯度且高亮度的一种颜色。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (22)

  1. 一种滤光片,其特征在于,包括:
    金属层;
    分别对称设置于所述金属层两侧的第一共振吸收层和第二共振吸收层;以及
    分别对称设置于所述第一共振吸收层和所述第二共振吸收层远离所述金属层一侧的第一抗反射层和第二抗反射层。
  2. 根据权利要求1所述的滤光片,其特征在于,所述第一共振吸收层和所述第二共振吸收层均包括半导体材料、第一金属氧化物和金属硫化物中的至少一种,所述第一抗反射层和所述第二抗反射层均包括第二金属氧化物、金属氮化物和有机聚合物中的至少一种。
  3. 根据权利要求2所述的滤光片,其特征在于,所述半导体材料、第一金属氧化物或金属硫化物包括非晶硅、锗、硫化锌、硒化锌、氧化铜、氧化亚铜和氧化铁;所述第二金属氧化物或金属氮化物包括氧化铝、氧化锌、氧化钛、氧化硅、氧化钨、氧化钽和氧化铪。
  4. 根据权利要求1所述的滤光片,其特征在于,所述金属层包括铜、银、金、铝、铬、钛和镍中的至少一种或其合金中至少一种。
  5. 根据权利要求1-4中任一项所述的滤光片,其特征在于,在所述滤光片的入射角度达到60°时,所述滤光片的反射谱中波峰移动范围小于40nm、20nm或10nm。
  6. 根据权利要求1-4中任一项所述的滤光片,其特征在于,所述金属层的厚度小于所述第一共振吸收层或所述第二共振吸收层的厚度以及所述第一抗反射层或所述第二抗反射层的厚度。
  7. 根据权利要求6所述的滤光片,其特征在于,所述第一抗反射层或所述第二抗反射层设置于基底上,所述基底包括玻璃基底。
  8. 根据权利要求6所述的滤光片,其特征在于,所述金属层、所述第一共振吸收层或所述第二共振吸收层、所述第一抗反射层或所述第二抗反射层的厚度分别为30±25nm、95±90nm、65±60nm。
  9. 根据权利要求6所述的滤光片,其特征在于,所述金属层、所述第一共 振吸收层或所述第二共振吸收层、所述第一抗反射层或所述第二抗反射层的厚度分别为15±10nm、40±35nm、130±125nm。
  10. 根据权利要求6所述的滤光片,其特征在于,所述金属层、所述第一共振吸收层或所述第二共振吸收层、所述第一抗反射层或所述第二抗反射层的厚度分别为15±10nm、55±50nm、160±155nm。
  11. 一种滤光片,其特征在于,包括:
    金属层;
    依次设置于所述金属层上的共振吸收层和抗反射层,其中所述共振吸收层包括半导体材料、第一金属氧化物和金属硫化物中的至少一种,所述抗反射层包括第二金属氧化物、金属氮化物和有机聚合物中的至少一种。
  12. 根据权利要求11所述的滤光片,其特征在于,所述半导体材料、第一金属氧化物或金属硫化物包括非晶硅、锗、硫化锌、硒化锌、氧化铜、氧化亚铜和氧化铁;所述第二金属氧化物或金属氮化物包括氧化铝、氧化锌、氧化钛、氧化硅、氧化钨、氧化钽和氧化铪。
  13. 根据权利要求11所述的滤光片,其特征在于,所述金属层包括铜、银、金、铝、铬、钛和镍中的至少一种或其合金中至少一种。
  14. 一种滤光片的制造方法,其特征在于,包括:
    在基底上依次沉积第一抗反射层、第一共振吸收层、金属层、第二共振吸收层和第二抗反射层,其中,所述第一共振吸收层和所述第二共振吸收层分别对称设置于所述金属层两侧,所述第一抗反射层和所述第二抗仿射层分别对称设置于所述第一共振吸收层和第二共振吸收层远离所述金属层一侧。
  15. 根据权利要求14所述的制造方法,其特征在于,所述第一共振吸收层和所述第二共振吸收层均包括半导体材料、第一金属氧化物和金属硫化物中的至少一种,所述第一抗反射层和所述第二抗反射层均包括第二金属氧化物、金属氮化物和有机聚合物中的至少一种。
  16. 根据权利要求15所述的制造方法,其特征在于,所述半导体材料、第一金属氧化物或金属硫化物包括非晶硅、锗、硫化锌、硒化锌、氧化铜、氧化亚铜和氧化铁;所述第二金属氧化物或金属氮化物包括氧化铝、氧化锌、氧化钛、氧化硅、氧化钨、氧化钽和氧化铪。
  17. 根据权利要求14所述的制造方法,其特征在于,所述金属层包括铜、 银、金、铝、铬、钛和镍中的至少一种或其合金中至少一种。
  18. 一种滤光片的制造方法,其特征在于,包括:
    在基底上依次沉积金属层、共振吸收层和抗反射层,其中所述共振吸收层包括半导体材料、第一金属氧化物和金属硫化物中的至少一种,所述抗反射层包括第二金属氧化物、金属氮化物和有机聚合物中的至少一种。
  19. 根据权利要求18所述的制造方法,其特征在于,所述半导体材料、第一金属氧化物或金属硫化物包括非晶硅、锗、硫化锌、硒化锌、氧化铜、氧化亚铜和氧化铁;所述第二金属氧化物或金属氮化物包括氧化铝、氧化锌、氧化钛、氧化硅、氧化钨、氧化钽和氧化铪。
  20. 根据权利要求18所述的制造方法,其特征在于,所述金属层包括铜、银、金、铝、铬、钛和镍中的至少一种或其合金中至少一种。
  21. 一种显示装置,其特征在于,包括如权利要求1-10中任一项所述的滤光片或如权利要求11-13中任一项所述的滤光片。
  22. 一种色粉,其特征在于,包括由如权利要求1-10中任一项所述的滤光片或如权利要求11-13中任一项所述的滤光片粉碎而形成的色粉颗粒。
PCT/CN2018/115688 2018-11-15 2018-11-15 一种滤光片及其制造方法、显示装置和色粉 WO2020097865A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/115688 WO2020097865A1 (zh) 2018-11-15 2018-11-15 一种滤光片及其制造方法、显示装置和色粉
CN201880098885.XA CN113518937A (zh) 2018-11-15 2018-11-15 一种滤光片及其制造方法、显示装置和色粉
JP2021523827A JP7307978B2 (ja) 2018-11-15 2018-11-15 フィルター、その製造方法、表示装置及び色粉状体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/115688 WO2020097865A1 (zh) 2018-11-15 2018-11-15 一种滤光片及其制造方法、显示装置和色粉

Publications (1)

Publication Number Publication Date
WO2020097865A1 true WO2020097865A1 (zh) 2020-05-22

Family

ID=70731280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115688 WO2020097865A1 (zh) 2018-11-15 2018-11-15 一种滤光片及其制造方法、显示装置和色粉

Country Status (3)

Country Link
JP (1) JP7307978B2 (zh)
CN (1) CN113518937A (zh)
WO (1) WO2020097865A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1713004A (zh) * 2004-06-14 2005-12-28 元太科技工业股份有限公司 彩色滤光片
CN101285905A (zh) * 2007-04-10 2008-10-15 甘国工 有吸收黄色特征光染料树脂层的滤光片及使用该片的显示器
CN101561525A (zh) * 2008-04-17 2009-10-21 胜华科技股份有限公司 反射式滤光片
CN103547948A (zh) * 2011-04-20 2014-01-29 密执安州立大学董事会 具有最小角度依赖性的用于可视显示器和成像的光谱滤光
US20150124306A1 (en) * 2013-11-06 2015-05-07 Lehigh University Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters
CN105938212A (zh) * 2016-06-27 2016-09-14 张家港康得新光电材料有限公司 透射型彩色滤光片及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628487A (en) * 1979-08-14 1981-03-20 Tokyo Shibaura Electric Co Heat reflecting plate
US6997981B1 (en) 2002-05-20 2006-02-14 Jds Uniphase Corporation Thermal control interface coatings and pigments
US20090269579A1 (en) 2007-02-19 2009-10-29 Sanyo Chemical Industries, Ltd. Multilayer structured particle
CN101881850A (zh) * 2010-06-24 2010-11-10 四川长虹电器股份有限公司 具有防电磁辐射及滤光功能的显示器滤光片及使用该滤光片的显示器
DE102011116191A1 (de) 2011-10-13 2013-04-18 Southwall Europe Gmbh Mehrschichtsysteme für eine selektive Reflexion elektromagnetischer Strahlung aus dem Wellenlängenspektrum des Sonnenlichts und Verfahren zu seiner Herstellung
US9323097B2 (en) * 2013-03-01 2016-04-26 Vladimir Kleptsyn Reflective color filter and color display device
DE102015113535B4 (de) 2014-08-28 2020-12-17 Toyota Motor Corporation Rote omnidirektionale strukturelle Farbe aus Metall und dielektrischen Schichten
DE102016110192A1 (de) 2015-07-07 2017-01-12 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirektionale rote strukturelle Farbe hoher Chroma mit Halbleiterabsorberschicht
EP3269780A1 (en) * 2016-06-27 2018-01-17 Viavi Solutions Inc. High chroma flakes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1713004A (zh) * 2004-06-14 2005-12-28 元太科技工业股份有限公司 彩色滤光片
CN101285905A (zh) * 2007-04-10 2008-10-15 甘国工 有吸收黄色特征光染料树脂层的滤光片及使用该片的显示器
CN101561525A (zh) * 2008-04-17 2009-10-21 胜华科技股份有限公司 反射式滤光片
CN103547948A (zh) * 2011-04-20 2014-01-29 密执安州立大学董事会 具有最小角度依赖性的用于可视显示器和成像的光谱滤光
US20150124306A1 (en) * 2013-11-06 2015-05-07 Lehigh University Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters
CN105938212A (zh) * 2016-06-27 2016-09-14 张家港康得新光电材料有限公司 透射型彩色滤光片及其制备方法

Also Published As

Publication number Publication date
JP7307978B2 (ja) 2023-07-13
CN113518937A (zh) 2021-10-19
JP2022506441A (ja) 2022-01-17

Similar Documents

Publication Publication Date Title
Mao et al. Angle insensitive color filters in transmission covering the visible region
CN107942540B (zh) 一种基于相变材料的具有动态色彩显示的光调制器件及其制备方法
CN104374745B (zh) 一种基于介质纳米结构Fano共振特性的传感器
Yang et al. Enhancing the purity of reflective structural colors with ultrathin bilayer media as effective ideal absorbers
US8767282B2 (en) Plasmonic in-cell polarizer
CN110146949B (zh) 一种窄带光谱滤波结构及其制作方法
Lee et al. Angular‐and polarization‐independent structural colors based on 1D photonic crystals
RU2754985C2 (ru) Настраиваемый посредством полевого эффекта поглотитель с близкой к нулю диэлектрической проницаемостью
CN110133771B (zh) 一种利用结构对称性破缺实现超窄带吸收和传感的方法
CN108469645A (zh) 一种偏振滤光元件及其制备方法
CN105388551A (zh) 无机偏光板及其制造方法
US9513415B2 (en) Optical filter configured to transmit light of a predetermined wavelength
Ji et al. Decorative near-infrared transmission filters featuring high-efficiency and angular-insensitivity employing 1D photonic crystals
TW201331614A (zh) 抗反射塗佈層及其製造方法
He et al. Transmission enhancement in coaxial hole array based plasmonic color filter for image sensor applications
US20180203170A1 (en) Structural color filter and method of manufacturing the structural color filter
CN112255716A (zh) 基于结构对称性破缺的高效光吸收装置及制备方法和应用
Lin et al. Multilayer structure for highly transmissive angle-tolerant color filter
CN110673250A (zh) 一种透射滤光片
CN110673249A (zh) 一种反射滤光片
KR101674562B1 (ko) 유전체 덮개층을 갖는 나노공진기 기반의 전방향 컬러 필터
WO2020097865A1 (zh) 一种滤光片及其制造方法、显示装置和色粉
Feng et al. Symmetric Thin Films Based on Silicon Materials for Angle‐Insensitive Full‐Color Structural Colors
Peltzer et al. Plasmonic micropolarizers for full Stokes vector imaging
CN108919405A (zh) 角度不敏感反射滤光片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021523827

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940128

Country of ref document: EP

Kind code of ref document: A1