WO2020096804A1 - Compositions d'huile lubrifiante ayant une propreté et des performances d'usure améliorées - Google Patents
Compositions d'huile lubrifiante ayant une propreté et des performances d'usure améliorées Download PDFInfo
- Publication number
- WO2020096804A1 WO2020096804A1 PCT/US2019/058450 US2019058450W WO2020096804A1 WO 2020096804 A1 WO2020096804 A1 WO 2020096804A1 US 2019058450 W US2019058450 W US 2019058450W WO 2020096804 A1 WO2020096804 A1 WO 2020096804A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- borated
- lubricating oil
- alkaline earth
- parts per
- per million
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 175
- 239000010687 lubricating oil Substances 0.000 title claims abstract description 161
- 230000003749 cleanliness Effects 0.000 title claims abstract description 51
- 239000003599 detergent Substances 0.000 claims abstract description 166
- -1 alkaline earth metal sulfonate Chemical class 0.000 claims abstract description 134
- 239000000654 additive Substances 0.000 claims abstract description 106
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 80
- 229910052796 boron Inorganic materials 0.000 claims abstract description 80
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 68
- 239000003921 oil Substances 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 55
- 230000000996 additive effect Effects 0.000 claims abstract description 39
- 239000002270 dispersing agent Substances 0.000 claims description 67
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 50
- 239000002199 base oil Substances 0.000 claims description 45
- 238000012360 testing method Methods 0.000 claims description 38
- 239000011575 calcium Substances 0.000 claims description 37
- 229910052791 calcium Inorganic materials 0.000 claims description 35
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 34
- 239000000344 soap Substances 0.000 claims description 31
- 239000011777 magnesium Substances 0.000 claims description 30
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 28
- 229910052749 magnesium Inorganic materials 0.000 claims description 28
- 239000003795 chemical substances by application Substances 0.000 claims description 26
- 239000003607 modifier Substances 0.000 claims description 21
- 239000004034 viscosity adjusting agent Substances 0.000 claims description 21
- 239000010705 motor oil Substances 0.000 claims description 20
- 239000003963 antioxidant agent Substances 0.000 claims description 19
- 239000003112 inhibitor Substances 0.000 claims description 14
- 239000000446 fuel Substances 0.000 claims description 13
- 239000007866 anti-wear additive Substances 0.000 claims description 10
- 239000002518 antifoaming agent Substances 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 9
- 238000007254 oxidation reaction Methods 0.000 claims description 9
- 230000007797 corrosion Effects 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 claims description 6
- 238000004088 simulation Methods 0.000 claims description 6
- 239000002966 varnish Substances 0.000 claims description 6
- 230000000994 depressogenic effect Effects 0.000 claims description 5
- 239000010802 sludge Substances 0.000 claims description 5
- 230000003078 antioxidant effect Effects 0.000 claims description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 4
- 239000006078 metal deactivator Substances 0.000 claims description 4
- 239000002585 base Substances 0.000 description 59
- 239000000314 lubricant Substances 0.000 description 59
- 235000019198 oils Nutrition 0.000 description 58
- 239000002184 metal Substances 0.000 description 43
- 229910052751 metal Inorganic materials 0.000 description 43
- 238000009472 formulation Methods 0.000 description 40
- 239000000463 material Substances 0.000 description 40
- 229920000642 polymer Polymers 0.000 description 37
- 125000001183 hydrocarbyl group Chemical group 0.000 description 28
- 150000002148 esters Chemical class 0.000 description 27
- 239000001993 wax Substances 0.000 description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- 125000004432 carbon atom Chemical group C* 0.000 description 22
- 125000003118 aryl group Chemical group 0.000 description 20
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 19
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 125000000217 alkyl group Chemical group 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 17
- 229930195733 hydrocarbon Natural products 0.000 description 17
- 150000002430 hydrocarbons Chemical class 0.000 description 17
- 229910052799 carbon Inorganic materials 0.000 description 16
- 229920002367 Polyisobutene Polymers 0.000 description 15
- 239000002253 acid Substances 0.000 description 15
- 229920005862 polyol Polymers 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 14
- 150000007522 mineralic acids Chemical class 0.000 description 14
- 229920013639 polyalphaolefin Polymers 0.000 description 14
- 229910052717 sulfur Inorganic materials 0.000 description 14
- 239000011593 sulfur Substances 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 150000001336 alkenes Chemical class 0.000 description 12
- 150000007524 organic acids Chemical class 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- 150000001342 alkaline earth metals Chemical class 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- AVVIDTZRJBSXML-UHFFFAOYSA-L calcium;2-carboxyphenolate;dihydrate Chemical compound O.O.[Ca+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O AVVIDTZRJBSXML-UHFFFAOYSA-L 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 11
- 235000014113 dietary fatty acids Nutrition 0.000 description 11
- 239000000194 fatty acid Substances 0.000 description 11
- 229930195729 fatty acid Natural products 0.000 description 11
- 150000002989 phenols Chemical class 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 9
- 239000012530 fluid Substances 0.000 description 9
- 230000001050 lubricating effect Effects 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 229910052783 alkali metal Inorganic materials 0.000 description 8
- 150000001340 alkali metals Chemical class 0.000 description 8
- 150000001412 amines Chemical class 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 230000007935 neutral effect Effects 0.000 description 8
- 229960002317 succinimide Drugs 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 7
- 125000001931 aliphatic group Chemical group 0.000 description 7
- 239000002131 composite material Substances 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 239000003085 diluting agent Substances 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000011733 molybdenum Substances 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- 150000003077 polyols Chemical class 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 6
- 125000000129 anionic group Chemical group 0.000 description 6
- 150000004982 aromatic amines Chemical class 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000002480 mineral oil Substances 0.000 description 6
- 239000002530 phenolic antioxidant Substances 0.000 description 6
- 229920000058 polyacrylate Polymers 0.000 description 6
- 229920005652 polyisobutylene succinic anhydride Polymers 0.000 description 6
- 229920000193 polymethacrylate Polymers 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 6
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 5
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical class ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 5
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 5
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 5
- 241000282326 Felis catus Species 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000005642 Oleic acid Substances 0.000 description 5
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 5
- 239000012141 concentrate Substances 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 5
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 5
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 5
- 229910052755 nonmetal Inorganic materials 0.000 description 5
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 5
- 239000003208 petroleum Substances 0.000 description 5
- 229920000768 polyamine Polymers 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229940014800 succinic anhydride Drugs 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229910001868 water Inorganic materials 0.000 description 5
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 4
- NFIDBGJMFKNGGQ-UHFFFAOYSA-N 2-(2-methylpropyl)phenol Chemical compound CC(C)CC1=CC=CC=C1O NFIDBGJMFKNGGQ-UHFFFAOYSA-N 0.000 description 4
- 241000980705 Calla lily chlorotic spot virus Species 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 4
- 229960001860 salicylate Drugs 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 3
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 3
- 229910015900 BF3 Inorganic materials 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 150000001491 aromatic compounds Chemical class 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 238000004517 catalytic hydrocracking Methods 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- KWKAKUADMBZCLK-UHFFFAOYSA-N methyl heptene Natural products CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 235000013824 polyphenols Nutrition 0.000 description 3
- PDEDQSAFHNADLV-UHFFFAOYSA-M potassium;disodium;dinitrate;nitrite Chemical compound [Na+].[Na+].[K+].[O-]N=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PDEDQSAFHNADLV-UHFFFAOYSA-M 0.000 description 3
- 239000010734 process oil Substances 0.000 description 3
- 150000003333 secondary alcohols Chemical class 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 235000011044 succinic acid Nutrition 0.000 description 3
- 150000003900 succinic acid esters Chemical class 0.000 description 3
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical class [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1 -dodecene Natural products CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- RRKBRXPIJHVKIC-UHFFFAOYSA-N 2-(2-ethylhexyl)phenol Chemical compound CCCCC(CC)CC1=CC=CC=C1O RRKBRXPIJHVKIC-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- CYEJMVLDXAUOPN-UHFFFAOYSA-N 2-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=CC=C1O CYEJMVLDXAUOPN-UHFFFAOYSA-N 0.000 description 2
- IHQZONJYGAQKGK-UHFFFAOYSA-N 2-tert-butyl-4-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=C(O)C(C(C)(C)C)=C1 IHQZONJYGAQKGK-UHFFFAOYSA-N 0.000 description 2
- XCIGNJPXXAPZDP-UHFFFAOYSA-N 2-tert-butyl-4-heptylphenol Chemical compound CCCCCCCC1=CC=C(O)C(C(C)(C)C)=C1 XCIGNJPXXAPZDP-UHFFFAOYSA-N 0.000 description 2
- ZXENURKTAAQNOU-UHFFFAOYSA-N 2-tert-butyl-4-octylphenol Chemical compound CCCCCCCCC1=CC=C(O)C(C(C)(C)C)=C1 ZXENURKTAAQNOU-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical class [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 239000005639 Lauric acid Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical class C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 2
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- 229910000316 alkaline earth metal phosphate Inorganic materials 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 239000010775 animal oil Substances 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 2
- 229910052728 basic metal Inorganic materials 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- ZMRQTIAUOLVKOX-UHFFFAOYSA-L calcium;diphenoxide Chemical compound [Ca+2].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 ZMRQTIAUOLVKOX-UHFFFAOYSA-L 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 229940069096 dodecene Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 125000000743 hydrocarbylene group Chemical group 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000003879 lubricant additive Substances 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 235000012254 magnesium hydroxide Nutrition 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- 150000002790 naphthalenes Chemical class 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000003079 shale oil Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 229920006132 styrene block copolymer Polymers 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- FWMUJAIKEJWSSY-UHFFFAOYSA-N sulfur dichloride Chemical compound ClSCl FWMUJAIKEJWSSY-UHFFFAOYSA-N 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- SXYOAESUCSYJNZ-UHFFFAOYSA-L zinc;bis(6-methylheptoxy)-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Zn+2].CC(C)CCCCCOP([S-])(=S)OCCCCCC(C)C.CC(C)CCCCCOP([S-])(=S)OCCCCCC(C)C SXYOAESUCSYJNZ-UHFFFAOYSA-L 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- CIRMGZKUSBCWRL-LHLOQNFPSA-N (e)-10-[2-(7-carboxyheptyl)-5,6-dihexylcyclohex-3-en-1-yl]dec-9-enoic acid Chemical compound CCCCCCC1C=CC(CCCCCCCC(O)=O)C(\C=C\CCCCCCCC(O)=O)C1CCCCCC CIRMGZKUSBCWRL-LHLOQNFPSA-N 0.000 description 1
- AFSHUZFNMVJNKX-CLFAGFIQSA-N 1,2-dioleoylglycerol Chemical class CCCCCCCC\C=C/CCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCC\C=C/CCCCCCCC AFSHUZFNMVJNKX-CLFAGFIQSA-N 0.000 description 1
- JEJLGIQLPYYGEE-UHFFFAOYSA-N 1,2-dipalmitoylglycerol Chemical class CCCCCCCCCCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCCCCCCCCCC JEJLGIQLPYYGEE-UHFFFAOYSA-N 0.000 description 1
- RLPSARLYTKXVSE-UHFFFAOYSA-N 1-(1,3-thiazol-5-yl)ethanamine Chemical compound CC(N)C1=CN=CS1 RLPSARLYTKXVSE-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- QHZLMUACJMDIAE-UHFFFAOYSA-N 1-monopalmitoylglycerol Chemical class CCCCCCCCCCCCCCCC(=O)OCC(O)CO QHZLMUACJMDIAE-UHFFFAOYSA-N 0.000 description 1
- HBXWUCXDUUJDRB-UHFFFAOYSA-N 1-octadecoxyoctadecane Chemical compound CCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCC HBXWUCXDUUJDRB-UHFFFAOYSA-N 0.000 description 1
- HANWHVWXFQSQGJ-UHFFFAOYSA-N 1-tetradecoxytetradecane Chemical compound CCCCCCCCCCCCCCOCCCCCCCCCCCCCC HANWHVWXFQSQGJ-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- SZATXRHXOOLEFV-UHFFFAOYSA-N 2,6-ditert-butyl-4-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 SZATXRHXOOLEFV-UHFFFAOYSA-N 0.000 description 1
- OEHMRECZRLQSRD-UHFFFAOYSA-N 2,6-ditert-butyl-4-heptylphenol Chemical compound CCCCCCCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 OEHMRECZRLQSRD-UHFFFAOYSA-N 0.000 description 1
- BLDLRWQLBOJPEB-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfanylphenol Chemical class OC1=CC=CC=C1SC1=CC=CC=C1O BLDLRWQLBOJPEB-UHFFFAOYSA-N 0.000 description 1
- SZSSMFVYZRQGIM-UHFFFAOYSA-N 2-(hydroxymethyl)-2-propylpropane-1,3-diol Chemical compound CCCC(CO)(CO)CO SZSSMFVYZRQGIM-UHFFFAOYSA-N 0.000 description 1
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 1
- LIPXCSZFXJTFSK-UHFFFAOYSA-N 2-tert-butyl-4-dodecyl-6-methylphenol Chemical compound CCCCCCCCCCCCC1=CC(C)=C(O)C(C(C)(C)C)=C1 LIPXCSZFXJTFSK-UHFFFAOYSA-N 0.000 description 1
- PMRDUCIMVOFYBX-UHFFFAOYSA-N 2-tert-butyl-4-heptyl-6-methylphenol Chemical compound CCCCCCCC1=CC(C)=C(O)C(C(C)(C)C)=C1 PMRDUCIMVOFYBX-UHFFFAOYSA-N 0.000 description 1
- NUCFNMOPTGEHQA-UHFFFAOYSA-N 3-bromo-2h-pyrazolo[4,3-c]pyridine Chemical compound C1=NC=C2C(Br)=NNC2=C1 NUCFNMOPTGEHQA-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 1
- 241001133760 Acoelorraphe Species 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 239000005069 Extreme pressure additive Substances 0.000 description 1
- 238000003547 Friedel-Crafts alkylation reaction Methods 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical class CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- QAPVYZRWKDXNDK-UHFFFAOYSA-N P,P-Dioctyldiphenylamine Chemical compound C1=CC(CCCCCCCC)=CC=C1NC1=CC=C(CCCCCCCC)C=C1 QAPVYZRWKDXNDK-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004614 Process Aid Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XYRMLECORMNZEY-UHFFFAOYSA-B [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S Chemical class [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S XYRMLECORMNZEY-UHFFFAOYSA-B 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000000573 anti-seizure effect Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 150000003818 basic metals Chemical class 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- WLLCYXDFVBWGBU-UHFFFAOYSA-N bis(8-methylnonyl) nonanedioate Chemical compound CC(C)CCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC(C)C WLLCYXDFVBWGBU-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920000891 common polymer Polymers 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- WUPRCGRRQUZFAB-DEGKJRJSSA-N corrin Chemical compound N1C2CC\C1=C\C(CC/1)=N\C\1=C/C(CC\1)=N/C/1=C\C1=NC2CC1 WUPRCGRRQUZFAB-DEGKJRJSSA-N 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 125000005028 dihydroxyaryl group Chemical group 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000010696 ester oil Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- UHUSDOQQWJGJQS-UHFFFAOYSA-N glycerol 1,2-dioctadecanoate Chemical class CCCCCCCCCCCCCCCCCC(=O)OCC(CO)OC(=O)CCCCCCCCCCCCCCCCC UHUSDOQQWJGJQS-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 150000002680 magnesium Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- KHYKFSXXGRUKRE-UHFFFAOYSA-J molybdenum(4+) tetracarbamodithioate Chemical class C(N)([S-])=S.[Mo+4].C(N)([S-])=S.C(N)([S-])=S.C(N)([S-])=S KHYKFSXXGRUKRE-UHFFFAOYSA-J 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- BQLZCNHPJNMDIO-UHFFFAOYSA-N n-(4-octylphenyl)naphthalen-1-amine Chemical compound C1=CC(CCCCCCCC)=CC=C1NC1=CC=CC2=CC=CC=C12 BQLZCNHPJNMDIO-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- SNWVRVDHQRBBFG-UHFFFAOYSA-N n-phenyl-n-(2,4,4-trimethylpentan-2-yl)naphthalen-1-amine Chemical compound C=1C=CC2=CC=CC=C2C=1N(C(C)(C)CC(C)(C)C)C1=CC=CC=C1 SNWVRVDHQRBBFG-UHFFFAOYSA-N 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 150000004707 phenolate Chemical class 0.000 description 1
- 150000002990 phenothiazines Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001522 polyglycol ester Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 125000005480 straight-chain fatty acid group Chemical group 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000003930 superacid Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 229940095068 tetradecene Drugs 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical class CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 1
- PVNIQBQSYATKKL-UHFFFAOYSA-N tripalmitin Chemical class CCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PVNIQBQSYATKKL-UHFFFAOYSA-N 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical class CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 238000000214 vapour pressure osmometry Methods 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000002348 vinylic group Chemical group 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M159/00—Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
- C10M159/12—Reaction products
- C10M159/20—Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
- C10M159/24—Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing sulfonic radicals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/06—Metal compounds
- C10M2201/062—Oxides; Hydroxides; Carbonates or bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
- C10M2203/1025—Aliphatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
- C10M2205/0285—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/22—Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts
- C10M2205/223—Alkylation reaction products with aromatic type compounds, e.g. Friedel-crafts used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/14—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/144—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/26—Overbased carboxylic acid salts
- C10M2207/262—Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/2805—Esters used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/287—Partial esters
- C10M2207/289—Partial esters containing free hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbased sulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/45—Ash-less or low ash content
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/52—Base number [TBN]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/54—Fuel economy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
Definitions
- This disclosure relates to methods for improving wear control, while maintaining or improving deposit control and cleanliness, in an engine or other mechanical component lubricated with a lubricating oil, through the use of a formulated lubricating oil.
- This disclosure also relates to lubricating oil compositions having specific borated detergents which are effective for improving wear control, while maintaining or improving deposit control and cleanliness, at high boron concentrations, in an engine or other mechanical component lubricated with the lubricating oil.
- the lubricating oils are useful in internal combustion engines.
- Lubricant-related performance characteristics such as high temperature deposit and varnish control, fuel economy and wear protection are extremely advantageous attributes as measured by a variety of bench and engine tests.
- a lubricating oil additive system can significantly impact cleanliness over a wide temperature range as well as fuel efficiency and wear.
- High boron levels in a passenger vehicle engine oil (PVEO) can provide significant improvements in wear protection in industry specification engine tests.
- high boron levels can also be detrimental to cleanliness in the TEOST 33C bench test.
- a PVEO has several responsibilities including wear protection, decreased friction, heat transfer, and the like. Improving one performance characteristic of the lubricant to the detriment of another is undesirable, but sometimes unavoidable.
- Borated additives are well known as effective antiwear additives; however, their use has been limited to lower concentrations due to cleanliness debits at higher concentrations.
- Formulating a PVEO requires a careful balance of additive chemistry to achieve the desired performance characteristics in terms of wear, cleanliness, fuel economy, LSPI prevention, etc.
- a major challenge in engine oil formulation is simultaneously achieving wear, deposit, and varnish control while also maintaining fuel economy performance, over a broad temperature range. Improved cleanliness and wear performance of lubricants are of significant importance for future specifications. Additionally, such lubricants must not compromise on other performance dimensions (such as fuel economy). Therefore, it is important to formulate lubricants which can deliver step-out performance across a broad range of performance dimensions. More methods that provide the combination of wear protection and improved cleanliness will enable greater lubricant formulation flexibility, differentiation. [0007] What is needed is an additive system that enables a formulator to design a PVEO with higher boron concentrations which provide superior wear protection, while also maintaining appropriate cleanliness performance.
- This disclosure relates to methods for improving wear control, while maintaining or improving deposit control and cleanliness, in an engine or other mechanical component lubricated with a lubricating oil, through the use of a formulated lubricating oil.
- This disclosure also relates to lubricating oil compositions having specific borated detergents (i.e., borated alkaline earth metal sulfonates) as described herein, that are effective for improving wear control, while maintaining or improving deposit control and cleanliness, at high boron concentrations (e.g., a total boron concentration of about 300 parts per million or greater in the lubricating oil), in an engine or other mechanical component lubricated with the lubricating oil.
- the lubricating oils are useful in internal combustion engines.
- This disclosure relates in part to a method for improving wear protection, while maintaining or improving deposit control and cleanliness, in an engine or other mechanical component lubricated with a lubricating oil by using as the lubricating oil a formulated oil.
- the formulated oil has a composition comprising a lubricating oil base stock as a major component, and one or more lubricating oil additives, as a minor component.
- the one or more lubricating oil additives comprise at least one borated detergent.
- the at least one borated detergent comprises a borated alkaline earth metal sulfonate.
- the borated alkaline earth metal sulfonate is present in an amount sufficient to provide a total boron concentration of about 300 parts per million or greater in the formulated oil.
- Wear protection is improved, and deposit control and cleanliness are maintained or improved, as compared to wear protection, deposit control and cleanliness achieved using a lubricating oil containing a borated additive other than the at least one borated alkaline earth metal s
- This disclosure also relates in part to a lubricating oil composition
- a lubricating oil composition comprising a lubricating oil base stock as a major component, and one or more lubricating oil additives, as a minor component.
- the one or more lubricating oil additives comprise at least one borated detergent.
- the at least one borated detergent comprises a borated alkaline earth metal sulfonate.
- the borated alkaline earth metal sulfonate is present in an amount sufficient to provide a total boron concentration of about 300 parts per million or greater in the lubricating oil.
- Wear protection is improved, and deposit control and cleanliness are maintained or improved, in an engine or other mechanical component lubricated with the lubricating oil, as compared to wear protection, deposit control and cleanliness achieved using a lubricating oil containing a borated additive other than the at least one borated alkaline earth metal sulfonate.
- FIG. 1 shows the properties of various borated additives used in Figs. 2-6, in accordance with the Examples.
- Fig. 2 shows a comparison of Sequence IVB wear results and TEOST 33C deposit results, in which lubricant formulations used either a salicylate/sulfonate detergent mix or a pure sulfonate detergent system at multiple boron concentrations, in accordance with the Examples.
- Fig. 3 shows TEOST 33C results for various borated additives at high boron levels in a fully formulated oil, in accordance with the Examples.
- Fig. 4 shows TEOST 33C deposits versus boron concentration for lubricants with a mixed calcium salicylate/magnesium sulfonate detergent system at a soap level of 1.11% and 1.18%, in accordance with the Examples.
- Fig. 5 shows TEOST 33C deposits versus boron concentration for lubricants with a mixed calcium/magnesium sulfonate detergent system at a soap level of 0.59% by weight, in accordance with the Examples.
- Fig. 6 shows TEOST 33C deposits versus boron concentration for lubricants with either a mixed calcium salicylate/magnesium sulfonate detergent system or a mixed calcium/magnesium sulfonate detergent system at soap levels of 0.70%, 1.07%, or 1.11% by weight, in accordance with the Examples.
- “Major amount” as it relates to components included within the lubricating oils of the specification and the claims means greater than or equal to 50 wt.%, or greater than or equal to 60 wt.%, or greater than or equal to 70 wt.%, or greater than or equal to 80 wt.%, or greater than or equal to 90 wt.% based on the total weight of the lubricating oil.
- Minor amount as it relates to components included within the lubricating oils of the specification and the claims means less than 50 wt.%, or less than or equal to 40 wt.%, or less than or equal to 30 wt.%, or less than or equal to 20 wt.%, or less than or equal to 10 wt.%, or less than or equal to 5 wt.%, or less than or equal to 2 wt.%, or less than or equal to 1 wt.%, based on the total weight of the lubricating oil.
- Essentially free as it relates to components included within the lubricating oils of the specification and the claims means that the particular component is at 0 weight % within the lubricating oil, or alternatively is at impurity type levels within the lubricating oil (less than 100 ppm, or less than 20 ppm, or less than 10 ppm, or less than 1 ppm).
- Oil lubricating oil additives as used in the specification and the claims means other lubricating oil additives that are not specifically recited in the particular section of the specification or the claims.
- other lubricating oil additives may include, but are not limited to, antioxidants, detergents, dispersants, antiwear additives, corrosion inhibitors, viscosity modifiers, metal passivators, pour point depressants, seal compatibility agents, antifoam agents, extreme pressure agents, friction modifiers and combinations thereof.
- Alkyl group refers to a saturated hydrocarbyl group consisting of carbon and hydrogen atoms.
- Hydrocarbyl group refers to a group consisting of hydrogen and carbon atoms only.
- a hydrocarbyl group can be saturated or unsaturated, linear or branched, cyclic or acyclic, and aromatic or non-aromatic.
- Hydrocarbon refers to a compound consisting of carbon atoms and hydrogen atoms.
- Alkane refers to a hydrocarbon that is completely saturated.
- An alkane can be linear, branched, cyclic, or substituted cyclic.
- Olefin refers to a non-aromatic hydrocarbon comprising one or more carbon-carbon double bond in the molecular structure thereof.
- “Mono-olefin” refers to an olefin comprising a single carbon-carbon double bond.
- Cn group or compound refers to a group or a compound comprising carbon atoms at total number thereof of n.
- “Cm-Cn” group or compound refers to a group or compound comprising carbon atoms at a total number thereof in the range from m to n.
- a C1-C50 alkyl group refers to an alkyl group comprising carbon atoms at a total number thereof in the range from 1 to 50.
- Carbon backbone refers to the longest straight carbon chain in the molecule of the compound or the group in question.“Branch” refer to any substituted or unsubstituted hydrocarbyl group connected to the carbon backbone. A carbon atom on the carbon backbone connected to a branch is called a“branched carbon.”
- Epsilon-carbon in a branched alkane refers to a carbon atom in its carbon backbone that is (i) connected to two hydrogen atoms and two carbon atoms and (ii) connected to a branched carbon via at least four (4) methylene (CH2) groups. Quantity of epsilon carbon atoms in terms of mole percentage thereof in a alkane material based on the total moles of carbon atoms can be determined by using, e.g., 13 C NMR.
- SAE refers to SAE International, formerly known as Society of Automotive Engineers, which is a professional organization that sets standards for internal combustion engine lubricating oils.
- SAE J300 refers to the viscosity grade classification system of engine lubricating oils established by SAE, which defines the limits of the classifications in rheological terms only.
- Base stock or“base oil” interchangeably refers to an oil that can be used as a component of lubricating oils, heat transfer oils, hydraulic oils, grease products, and the like.
- “Lubricating oil” or“lubricant” interchangeably refers to a substance that can be introduced between two or more surfaces to reduce the level of friction between two adjacent surfaces moving relative to each other.
- a lubricant base stock is a material, typically a fluid at various levels of viscosity at the operating temperature of the lubricant, used to formulate a lubricant by admixing with other components.
- base stocks suitable in lubricants include API Group I, Group II, Group III, Group IV, and Group V base stocks.
- PAOs, particularly hydrogenated PAOs have recently found wide use in lubricants as a Group IV base stock, and are particularly preferred. If one base stock is designated as a primary base stock in the lubricant, additional base stocks may be called a co-base stock.
- “In the vicinity of’ a given temperature means within the range from l0°C lower than that temperature to l0°C higher than that temperature.
- substantially saturated means at least 90%, preferably at least 95%, more preferably at least 98%, by mole, of the molecules in question are saturated, based on the total moles of the relevant molecules.
- “Substantially free” of the monomer(s) means a material comprises the monomer(s) at a total concentration thereof, of no more than 5%, preferably no more than 3%, more preferably no more than 1%, by weight, based on the total weight of the material.
- kinematic viscosity values in this disclosure are as determined pursuant to ASTM D445.
- KV100 Kinematic viscosity at l00°C
- KV40 kinematic viscosity at 40°C
- KV25 kinematic viscosity at 25°C
- Units of all KV100, KV40 and KV25 values herein are cSt unless otherwise specified.
- NV Noack volatility
- CCS viscosity CCSV
- ASTM 5293 CCS viscosity
- mPa s millipascal second
- All CCSV values are measured at a temperature of interest to the lubricating oil formulation or oil composition in question.
- the temperature of interest is the temperature at which the SAE J300 imposes a minimal CCSV.
- High boron levels in a passenger vehicle engine oil can provide significant improvements in wear protection in industry specification engine tests. However, high boron levels can also be detrimental to cleanliness in the TEOST 33C bench test.
- This disclosure demonstrates lubricant compositions that are able to incorporate more than 300 ppm boron while still maintaining acceptable cleanliness in the TEOST 33C test.
- a PVEO has several responsibilities including wear protection, decreased friction, heat transfer, and the like. Improving one performance characteristic of the lubricant to the detriment of another is undesirable, but sometimes unavoidable.
- Borated additives are well known as effective antiwear additives; however, their use has been limited to lower concentrations due to cleanliness debits at higher concentrations.
- borated alkaline earth metal sulfonate i.e., borated alkaline earth metal sulfonate
- This disclosure relates to the use of a specific borated detergent (i.e., borated alkaline earth metal sulfonate) as described herein in PVEO. It has been observed that lubricants with mixed sulfonate/salicylate detergent systems and in full sulfonate detergent systems, borated dispersants with boron levels above around 300 parts per million (ppm) in the formulated oil result in increased TEOST 33C deposits. Use of the specific borated detergent (i.e., borated alkaline earth metal sulfonate) of this disclosure as the source of boron significantly improves TEOST 33C deposits.
- a specific borated detergent i.e., borated alkaline earth metal sulfonate
- the lubricating oil compositions of this disclosure contain a specific type of borated detergent (for example, a borated alkaline earth metal sulfonate) along with other typical lubricant additives.
- a specific type of borated detergent for example, a borated alkaline earth metal sulfonate
- other typical lubricant additives for example, a borated alkaline earth metal sulfonate
- the lubricating oil formulations of this disclosure provide improved cleanliness and deposit control while also minimizing wear as shown by bench and engine testing in the Examples.
- the present disclosure provides, at high boron concentrations (e.g., a total boron concentration of about 300 parts per million or greater in the lubricating oil), lubricant compositions with excellent wear control, deposit control and cleanliness performance properties attained through the use of lubricating oil compositions having specific borated detergents (i.e., borated alkaline earth metal sulfonates) as described herein.
- Antiwear additives are generally required for reducing wear in operating equipment where two solid surfaces engage in contact. In the absence of antiwear chemistry, the surfaces can rub together causing material loss on one or both surfaces which can eventually lead to equipment malfunction and failure. Antiwear additives can produce a protective surface layer which reduces wear and material loss.
- the lubricant compositions of this disclosure can provide wear control, deposit control and cleanliness performance properties, at high boron concentrations (e.g., a total boron concentration of about 300 parts per million or greater in the lubricating oil), through the use of lubricating oil compositions having specific borated detergents (i.e., borated alkaline earth metal sulfonates) as described herein.
- high boron concentrations e.g., a total boron concentration of about 300 parts per million or greater in the lubricating oil
- specific borated detergents i.e., borated alkaline earth metal sulfonates
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance, and deposit control and cleanliness performance, at high boron concentrations (e.g., a total boron concentration of about 300 parts per million or greater in the lubricating oil), in the lubrication of internal combustion engines, power trains, drivelines, transmissions, gears, gear trains, valve trains, gear sets, and the like, through the use of lubricating oil compositions having specific borated detergents (i.e., borated alkaline earth metal sulfonates) as described herein.
- specific borated detergents i.e., borated alkaline earth metal sulfonates
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance, and deposit control and cleanliness performance, at high boron concentrations (e.g., a total boron concentration of about 300 parts per million or greater in the lubricating oil), in the lubrication of mechanical components, which can include, for example, pistons, piston rings, cylinder liners, cylinders, cams, tappets, lifters, bearings (journal, roller, tapered, needle, ball, and the like), gears, valves, and the like, through the use of lubricating oil compositions having specific borated detergents (i.e., borated alkaline earth metal sulfonates) as described herein.
- specific borated detergents i.e., borated alkaline earth metal sulfonates
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance, and deposit control and cleanliness performance, at high boron concentrations (e.g., a total boron concentration of about 300 parts per million or greater in the lubricating oil), as a component in lubricant compositions, which can include, for example, lubricating liquids, semi-solids, solids, greases, dispersions, suspensions, material concentrates, additive concentrates, and the like.
- high boron concentrations e.g., a total boron concentration of about 300 parts per million or greater in the lubricating oil
- lubricant compositions which can include, for example, lubricating liquids, semi-solids, solids, greases, dispersions, suspensions, material concentrates, additive concentrates, and the like.
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance, and deposit control and cleanliness performance, at high boron concentrations (e.g., a total boron concentration of about 300 parts per million or greater in the lubricating oil), in spark-ignition internal combustion engines, compression-ignition internal combustion engines, mixed-ignition (spark-assisted and compression) internal combustion engines, and the like, through the use of lubricating oil compositions having specific borated detergents (i.e., borated alkaline earth metal sulfonates) as described herein.
- borated detergents i.e., borated alkaline earth metal sulfonates
- the lubricant compositions of this disclosure provide advantaged wear, including advantaged wear and friction, performance, and deposit control and cleanliness performance, at high boron concentrations (e.g., a total boron concentration of about 300 parts per million or greater in the lubricating oil), through the use of lubricating oil compositions having specific borated detergents (i.e., borated alkaline earth metal sulfonates) as described herein, on lubricated surfaces that include, for example, the following: metals, metal alloys, non-metals, non- metal alloys, mixed carbon-metal composites and alloys, mixed carbon-nonmetal composites and alloys, ferrous metals, ferrous composites and alloys, non-ferrous metals, non-ferrous composites and alloys, titanium, titanium composites and alloys, aluminum, aluminum composites and alloys, magnesium, magnesium composites and alloys, ion-implanted metals and alloys, plasma modified surfaces; surface modified materials; coatings; mono-
- Lubricating base oils that are useful in the present disclosure are natural oils, mineral oils and synthetic oils, and unconventional oils (or mixtures thereof) can be used unrefined, refined, or rerefined (the latter is also known as reclaimed or reprocessed oil).
- Unrefined oils are those obtained directly from a natural or synthetic source and used without added purification. These include shale oil obtained directly from retorting operations, petroleum oil obtained directly from primary distillation, and ester oil obtained directly from an esterification process. Refined oils are similar to the oils discussed for unrefined oils except refined oils are subjected to one or more purification steps to improve at least one lubricating oil property.
- Groups I, II, III, IV and V are broad base oil stock categories developed and defined by the American Petroleum Institute (API Publication 1509; www.API.org) to create guidelines for lubricant base oils.
- Group I base stocks have a viscosity index of between about 80 to 120 and contain greater than about 0.03% sulfur and/or less than about 90% saturates.
- Group II base stocks have a viscosity index of between about 80 to 120, and contain less than or equal to about 0.03% sulfur and greater than or equal to about 90% saturates.
- Group III stocks have a viscosity index greater than about 120 and contain less than or equal to about 0.03 % sulfur and greater than about 90% saturates.
- Group IV includes polyalphaolefins (PAO).
- Group V base stock includes base stocks not included in Groups I-IV. The table below summarizes properties of each of these five groups.
- Natural oils include animal oils, vegetable oils (castor oil and lard oil, for example), and mineral oils. Animal and vegetable oils possessing favorable thermal oxidative stability can be used. Of the natural oils, mineral oils are preferred. Mineral oils vary widely as to their crude source, for example, as to whether they are paraffinic, naphthenic, or mixed paraffinic-naphthenic. Oils derived from coal or shale are also useful. Natural oils vary also as to the method used for their production and purification, for example, their distillation range and whether they are straight run or cracked, hydrorefined, or solvent extracted.
- Group II and/or Group III hydroprocessed or hydrocracked base stocks are also well known base stock oils.
- Synthetic oils include hydrocarbon oil.
- Hydrocarbon oils include oils such as polymerized and interpolymerized olefins (polybutylenes, polypropylenes, propylene isobutylene copolymers, ethylene-olefin copolymers, and ethylene-alphaolefm copolymers, for example).
- Polyalphaolefm (PAO) oil base stocks are commonly used synthetic hydrocarbon oil.
- PAOs derived from Ce, Cio, C 12, C14 olefins or mixtures thereof may be utilized. See U.S. Patent Nos. 4,956,122; 4,827,064; and 4,827,073.
- the number average molecular weights of the PAOs typically vary from about 250 to about 3,000, although PAO’s may be made in viscosities up to about 150 cSt (l00°C).
- the PAOs are typically comprised of relatively low molecular weight hydrogenated polymers or oligomers of alphaolefms which include, but are not limited to, C2 to about C32 alphaolefms with the Cx to about Ci6 alphaolefms, such as l-octene, l-decene, l-dodecene and the like, being preferred.
- alphaolefms such as l-octene, l-decene, l-dodecene and the like, being preferred.
- the preferred polyalphaolefms are poly- l-octene, poly-l-decene and poly-l-dodecene and mixtures thereof and mixed olefin-derived polyolefins.
- the dimers of higher olefins in the range of C12 to Ci8 may be used to provide low viscosity base stocks of acceptably low volatility.
- the PAOs may be predominantly dimers, trimers and tetramers of the starting olefins, with minor amounts of the lower and/or higher oligomers, having a viscosity range of 1.5 cSt to 12 cSt.
- PAO fluids of particular use may include 3 cSt, 3.4 cSt, and/or 3.6 cSt and combinations thereof. Mixtures of PAO fluids having a viscosity range of 1.5 cSt to approximately 150 cSt or more may be used if desired. Unless indicated otherwise, all viscosities cited herein are measured at l00°C.
- the PAO fluids may be conveniently made by the polymerization of an alphaolefin in the presence of a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
- a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
- a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boro
- Other useful lubricant oil base stocks include wax isomerate base stocks and base oils, comprising hydroisomerized waxy stocks (e.g. waxy stocks such as gas oils, slack waxes, fuels hydrocracker bottoms, etc.), hydroisomerized Fischer-Tropsch waxes, Gas-to-Liquids (GTL) base stocks and base oils, and other wax isomerate hydroisomerized base stocks and base oils, or mixtures thereof.
- hydroisomerized waxy stocks e.g. waxy stocks such as gas oils, slack waxes, fuels hydrocracker bottoms, etc.
- hydroisomerized Fischer-Tropsch waxes e.g. waxy stocks such as gas oils, slack waxes, fuels hydrocracker bottoms, etc.
- Fischer-Tropsch waxes the high boiling point residues of Fischer-Tropsch synthesis, are highly paraffinic hydrocarbons with very low sulfur content.
- the hydroprocessing used for the production of such base stocks may use an amorphous hydrocracking/hydroisomerization catalyst, such as one of the specialized lube hydrocracking (LHDC) catalysts or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
- an amorphous hydrocracking/hydroisomerization catalyst such as one of the specialized lube hydrocracking (LHDC) catalysts or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
- LHDC specialized lube hydrocracking
- a zeolitic catalyst preferably ZSM-48 as described in U.S. Patent No. 5,075,269, the disclosure of which is incorporated herein by reference in its entirety.
- Processes for making hydrocracked/hydroisomerized distillates and hydrocracked/hydroisomerized waxes are described, for example, in U.S. Patent Nos.
- Gas-to-Liquids (GTL) base oils, Fischer-Tropsch wax derived base oils, and other wax- derived hydroisomerized (wax isomerate) base oils may be advantageously used in the instant disclosure, and may have useful kinematic viscosities at l00°C of about 2 cSt to about 50 cSt, preferably about 2 cSt to about 30 cSt, more preferably about 3 cSt to about 25 cSt, as exemplified by GTL 4 with kinematic viscosity of about 4.0 cSt at l00°C and a viscosity index of about 141.
- Gas-to-Liquids (GTL) base oils may have useful pour points of about -20°C or lower, and under some conditions may have advantageous pour points of about -25°C or lower, with useful pour points of about -30°C to about -40°C or lower.
- Useful compositions of Gas-to-Liquids (GTL) base oils, Fischer-Tropsch wax derived base oils, and wax-derived hydroisomerized base oils are recited in U.S. Patent Nos. 6,080,301; 6,090,989, and 6,165,949 for example, and are incorporated herein in their entirety by reference.
- the hydrocarbyl aromatics can be used as a base oil or base oil component and can be any hydrocarbyl molecule that contains at least about 5% of its weight derived from an aromatic moiety such as a benzenoid moiety or naphthenoid moiety, or their derivatives.
- These hydrocarbyl aromatics include alkyl benzenes, alkyl naphthalenes, alkyl biphenyls, alkyl diphenyl oxides, alkyl naphthols, alkyl diphenyl sulfides, alkylated bis-phenol A, alkylated thiodiphenol, and the like.
- the aromatic can be mono-alkylated, dialkylated, polyalkylated, and the like.
- the aromatic can be mono- or poly-functionalized.
- the hydrocarbyl groups can also be comprised of mixtures of alkyl groups, alkenyl groups, alkynyl, cycloalkyl groups, cycloalkenyl groups and other related hydrocarbyl groups.
- the hydrocarbyl groups can range from about Ce up to about C6o with a range of about C8 to about C20 often being preferred. A mixture of hydrocarbyl groups is often preferred, and up to about three such substituents may be present.
- the hydrocarbyl group can optionally contain sulfur, oxygen, and/or nitrogen containing substituents.
- the aromatic group can also be derived from natural (petroleum) sources, provided at least about 5% of the molecule is comprised of an above-type aromatic moiety. Viscosities at l00°C of approximately 2 cSt to about 50 cSt are preferred, with viscosities of approximately 3 cSt to about 20 cSt often being more preferred for the hydrocarbyl aromatic component.
- an alkyl naphthalene where the alkyl group is primarily comprised of l-hexadecene is used.
- Other alkylates of aromatics can be advantageously used.
- Naphthalene or methyl naphthalene for example, can be alkylated with olefins such as octene, decene, dodecene, tetradecene or higher, mixtures of similar olefins, and the like.
- Alkylated naphthalene and analogues may also comprise compositions with isomeric distribution of alkylating groups on the alpha and beta carbon positions of the ring structure.
- Distribution of groups on the alpha and beta positions of a naphthalene ring may range from 100: 1 to 1 : 100, more often 50: 1 to 1 :50
- Useful concentrations of hydrocarbyl aromatic in a lubricant oil composition can be about 2% to about 50%, preferably about 4% to about 20%, and more preferably about 4% to about 15%, depending on the application.
- Alkylated aromatics such as the hydrocarbyl aromatics of the present disclosure may be produced by well-known Friedel-Crafts alkylation of aromatic compounds. See Friedel-Crafts and Related Reactions, Olah, G. A. (ed.), Inter-science Publishers, New York, 1963.
- an aromatic compound such as benzene or naphthalene
- an olefin, alkyl halide or alcohol in the presence of a Friedel-Crafts catalyst. See Friedel-Crafts and Related Reactions, Vol. 2, part 1, chapters 14, 17, and 18, See Olah, G. A. (ed.), Inter-science Publishers, New York, 1964.
- catalysts are known to one skilled in the art.
- the choice of catalyst depends on the reactivity of the starting materials and product quality requirements.
- strong acids such as AlCh, BF3, or HF may be used.
- milder catalysts such as FeCb or SnC'U are preferred.
- Newer alkylation technology uses zeolites or solid super acids.
- Esters comprise a useful base stock. Additive solvency and seal compatibility characteristics may be secured by the use of esters such as the esters of dibasic acids with monoalkanols and the polyol esters of monocarboxylic acids.
- Esters of the former type include, for example, the esters of dicarboxylic acids such as phthalic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acid, alkenyl malonic acid, etc., with a variety of alcohols such as butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, etc.
- dicarboxylic acids such as phthalic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acid, alkenyl malonic acid, etc
- esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n- hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, etc.
- Particularly useful synthetic esters are those which are obtained by reacting one or more polyhydric alcohols, preferably the hindered polyols (such as the neopentyl polyols, e.g., neopentyl glycol, trimethylol ethane, 2-methyl-2-propyl-l, 3-propanediol, trimethylol propane, pentaerythritol and dipentaerythritol) with alkanoic acids containing at least about 4 carbon atoms, preferably Cs to C30 acids such as saturated straight chain fatty acids including caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, and behenic acid, or the corresponding branched chain fatty acids or unsaturated fatty acids such as oleic acid, or mixtures of any of these materials.
- the hindered polyols such as the neopentyl polyols
- Suitable synthetic ester components include the esters of trimethylol propane, trimethylol butane, trimethylol ethane, pentaerythritol and/or dipentaerythritol with one or more monocarboxylic acids containing from about 5 to about 10 carbon atoms. These esters are widely available commercially, for example, the Mobil A-41 and A-51 esters of ExxonMobil Chemical Company.
- esters derived from renewable material such as coconut, palm, rapeseed, soy, sunflower and the like. These esters may be monoesters, di-esters, polyol esters, complex esters, or mixtures thereof. These esters are widely available commercially, for example, the EsterexNP 343 ester of ExxonMobil Chemical Company.
- Engine oil formulations containing renewable esters are included in this disclosure.
- the renewable content of the ester is typically greater than about 70 weight percent, preferably more than about 80 weight percent and most preferably more than about 90 weight percent.
- Other useful fluids of lubricating viscosity include non-conventional or unconventional base stocks that have been processed, preferably catalytically, or synthesized to provide high performance lubrication characteristics.
- Non-conventional or unconventional base stocks/base oils include one or more of a mixture of base stock(s) derived from one or more Gas-to-Liquids (GTL) materials, as well as isomerate/isodewaxate base stock(s) derived from natural wax or waxy feeds, mineral and or non mineral oil waxy feed stocks such as slack waxes, natural waxes, and waxy stocks such as gas oils, waxy fuels hydrocracker bottoms, waxy raffinate, hydrocrackate, thermal crackates, or other mineral, mineral oil, or even non-petroleum oil derived waxy materials such as waxy materials received from coal liquefaction or shale oil, and mixtures of such base stocks.
- GTL Gas-to-Liquids
- GTL materials are materials that are derived via one or more synthesis, combination, transformation, rearrangement, and/or degradation/deconstructive processes from gaseous carbon- containing compounds, hydrogen-containing compounds and/or elements as feed stocks such as hydrogen, carbon dioxide, carbon monoxide, water, methane, ethane, ethylene, acetylene, propane, propylene, propyne, butane, butylenes, and butynes.
- GTL base stocks and/or base oils are GTL materials of lubricating viscosity that are generally derived from hydrocarbons; for example, waxy synthesized hydrocarbons, that are themselves derived from simpler gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feed stocks.
- GTL base stock(s) and/or base oil(s) include oils boiling in the lube oil boiling range (1) separated/fractionated from synthesized GTL materials such as, for example, by distillation and subsequently subjected to a final wax processing step which involves either or both of a catalytic dewaxing process, or a solvent dewaxing process, to produce lube oils of reduced/low pour point; (2) synthesized wax isomerates, comprising, for example, hydrodewaxed or hydroisomerized cat and/or solvent dewaxed synthesized wax or waxy hydrocarbons; (3) hydrodewaxed or hydroisomerized cat and/or solvent dewaxed Fischer-Tropsch (F-T) material (i.e., hydrocarbons, waxy hydrocarbons, waxes and possible analogous oxygenates); preferably hydrodewaxed or hydroisomerized/followed by cat and/or solvent dewaxing dewaxed F-T waxy hydrocarbons, or hydrodewaxed
- GTL base stock(s) and/or base oil(s) derived from GTL materials are characterized typically as having kinematic viscosities at l00°C of from about 2 mm 2 /s to about 50 mm 2 /s (ASTM D445). They are further characterized typically as having pour points of -5°C to about -40°C or lower (ASTM D97). They are also characterized typically as having viscosity indices of about 80 to about 140 or greater (ASTM D2270).
- the GTL base stock(s) and/or base oil(s) are typically highly paraffinic (>90% saturates), and may contain mixtures of monocycloparaffms and multicycloparaffms in combination with non-cyclic isoparaffins.
- the ratio of the naphthenic (i.e., cycloparaffm) content in such combinations varies with the catalyst and temperature used.
- GTL base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than about 10 ppm, and more typically less than about 5 ppm of each of these elements.
- GTL base stock(s) and/or base oil(s) obtained from F-T material is essentially nil.
- the absence of phosphorus and aromatics make this materially especially suitable for the formulation of low SAP products.
- GTL base stock and/or base oil and/or wax isomerate base stock and/or base oil is to be understood as embracing individual fractions of such materials of wide viscosity range as recovered in the production process, mixtures of two or more of such fractions, as well as mixtures of one or two or more low viscosity fractions with one, two or more higher viscosity fractions to produce a blend wherein the blend exhibits a target kinematic viscosity.
- the GTL material, from which the GTL base stock(s) and/or base oil(s) is/are derived is preferably an F-T material (i.e., hydrocarbons, waxy hydrocarbons, wax).
- Base oils for use in the formulated lubricating oils useful in the present disclosure are any of the variety of oils corresponding to API Group I, Group II, Group III, Group IV, and Group V oils and mixtures thereof, preferably API Group II, Group III, Group IV, and Group V oils and mixtures thereof, more preferably the Group III to Group V base oils due to their exceptional volatility, stability, viscometric and cleanliness features.
- Minor quantities of Group I stock such as the amount used to dilute additives for blending into formulated lube oil products, can be tolerated but should be kept to a minimum, i.e. amounts only associated with their use as diluent/carrier oil for additives used on an“as-received” basis.
- Even in regard to the Group II stocks it is preferred that the Group II stock be in the higher quality range associated with that stock, i.e. a Group II stock having a viscosity index in the range 100 ⁇ VI ⁇ 120.
- the base oil constitutes the major component of the engine oil lubricant composition of the present disclosure and typically is present in an amount ranging from about 6 to about 99 weight percent or from about 6 to about 95 weight percent, preferably from about 50 to about 99 weight percent or from about 70 to about 95 weight percent, and more preferably from about 85 to about 95 weight percent, based on the total weight of the composition.
- the base oil may be selected from any of the synthetic or natural oils typically used as crankcase lubricating oils for spark- ignited and compression-ignited engines.
- the base oil conveniently has a kinematic viscosity, according to ASTM standards, of about 2.5 cSt to about 18 cSt (or mm 2 /s) at l00°C and preferably of about 2.5 cSt to about 12.5 cSt (or mm 2 /s) at 100° C, often more preferably from about 2.5 cSt to about 10 cSt.
- Mixtures of synthetic and natural base oils may be used if desired.
- Bi-modal, tri- modal, and additional combinations of mixtures of Group I, II, III, IV, and/or V base stocks may be used if desired.
- the co-base stock component is present in an amount sufficient for providing solubility, compatibility and dispersancy of polar additives in the lubricating oil.
- the co-base stock component is present in the lubricating oils of this disclosure in an amount from about 1 to about 99 weight percent, preferably from about 5 to about 95 weight percent, and more preferably from about 10 to about 90 weight percent.
- Illustrative borated detergents useful in this disclosure include, for example, borated alkaline earth metal sulfonates, borated alkaline earth metal salicylates, and mixtures thereof.
- a typical borated detergent is an anionic material that contains a long chain hydrophobic portion of the molecule and a smaller anionic or oleophobic hydrophilic portion of the molecule.
- the anionic portion of the borated detergent is typically derived from an organic acid such as a sulfur-containing acid, carboxylic acid (e.g., salicylic acid), phosphorus -containing acid, phenol, or mixtures thereof.
- the counterion is typically an alkaline earth or alkali metal.
- the borated detergent can be overbased.
- the borated detergent can be a metal salt of an organic or inorganic acid, a metal salt of a phenol, or mixtures thereof.
- the metal can be an alkali metal, an alkaline earth metal, and mixtures thereof.
- the organic or inorganic acid is selected from an aliphatic organic or inorganic acid, a cycloaliphatic organic or inorganic acid, an aromatic organic or inorganic acid, and mixtures thereof.
- the metal can be an alkali metal, an alkaline earth metal, and mixtures thereof.
- the metal can be calcium (Ca), magnesium (Mg), and mixtures thereof.
- the organic acid or inorganic acid can be a sulfur-containing acid, a carboxylic acid, a phosphorus-containing acid, and mixtures thereof.
- the borated metal salt of an organic or inorganic acid or the borated metal salt of a phenol can be borated calcium sulfonate, borated magnesium sulfonate, a borated overbased detergent, and mixtures thereof.
- Salts that contain a substantially stochiometric amount of the metal are described as neutral salts and have a total base number (TBN, as measured by ASTM D2896) of from 0 to 80.
- TBN total base number
- Many compositions are overbased, containing large amounts of a metal base that is achieved by reacting an excess of a metal compound (a metal hydroxide or oxide, for example) with an acidic gas (such as carbon dioxide).
- Useful borated detergents can be neutral, mildly overbased, or highly overbased. These borated detergents can be used in mixtures of neutral, overbased, highly overbased calcium sulfonates and/or magnesium sulfonates.
- the TBN ranges can vary from low, medium to high TBN products, including as low as 0 to as high as 600.
- the TBN delivered by the detergent is between 1 and 20.
- the TBN delivered by the detergent can be between 1 and 12.
- Mixtures of low, medium, high TBN can be used, along with mixtures of calcium and magnesium metal based detergents, and including sulfonates, phenates and carboxylates.
- a borated detergent mixture with a metal ratio of 1, in conjunction of a borated detergent with a metal ratio of 2, and as high as a detergent with a metal ratio of 5, can be used.
- Borated alkaline earth phenates are another useful class of borated detergent.
- borated detergents can be made by reacting alkaline earth metal hydroxide or oxide (CaO, Ca(OH)2, BaO, Ba(OH)2, MgO, Mg(OH)2, for example) with an alkyl phenol or sulfurized alkylphenol.
- alkyl groups include straight chain or branched C1-C30 alkyl groups, particularly, C4-C20 or mixtures thereof.
- suitable phenols include isobutylphenol, 2- ethylhexylphenol, nonylphenol, dodecyl phenol, and the like. It should be noted that starting alkylphenols may contain more than one alkyl substituent that are each independently straight chain or branched and can be used from 0.5 to 6 weight percent.
- the sulfurized product may be obtained by methods well known in the art. These methods include heating a mixture of alkylphenol and sulfurizing agent (including elemental sulfur, sulfur halides such as sulfur dichloride, and the like) and then reacting the sulfurized phenol with an alkaline earth metal base.
- sulfurizing agent including elemental sulfur, sulfur halides such as sulfur dichloride, and the like
- Borated alkaline earth metal phosphates are also used as detergents and are known in the art.
- Borated detergents may be simple detergents or what is known as hybrid or complex detergents. The latter borated detergents can provide the properties of two borated detergents without the need to blend separate materials. See U.S. Patent No. 6,034,039.
- Illustrative borated detergents include borated calcium sulfonates, borated magnesium sulfonates, and other related components, and mixtures thereof.
- Illustrative mixtures of borated detergents include borated calcium sulfonate and borated magnesium sulfonate. Borated overbased detergents are also used.
- the borated detergents useful in this disclosure are present in an amount sufficient to provide a total boron concentration of about 100 parts per million, or about 150 parts per million, or about 200 parts per million, or about 250 parts per million, or about 300 parts per million, or about 350 parts per million, or about 400 parts per million, or about 450 parts per million, or about 500 parts per million, or about 550 parts per million, or about 600 parts per million, or about 650 parts per million, or about 700 parts per million, or about 750 parts per million, or about 800 parts per million, or about 850 parts per million, or about 900 parts per million, or about 950 parts per million, or about 1000 parts per million, or greater in the lubricating oil.
- the borated detergents useful in this disclosure can provide select levels of soap content to the lubricating oil compositions.
- the borated detergent provides a lower soap content, e.g., about 0.2 to about 0.9 percent soap content, or about 0.3 to about 0.8 percent soap content, or about 0.4 to about 0.7 percent soap content, to the final lubricating oil composition.
- the borated detergent provides a higher soap content, e.g., about 0.6 to about 1.5 percent soap, or about 0.7 to about 1.4 percent soap, or about 0.8 to about 1.3 percent soap, to the final lubricating oil composition.
- the borated alkaline earth metal sulfonate soap comprises about 100 percent of the total borated detergent soap
- the total amount of soap delivered is about 0.1 weight percent to about 1.0 weight percent, preferably about 0.4 weight percent to about 0.6 weight percent, more preferably 0.5 weight percent, of the lubricating oil.
- Soap content generally refers to the amount of neutral organic acid salt and reflects a detergent's cleansing ability, or detergency, and dirt suspending ability.
- the soap content can be determined by the following formula, using an exemplary calcium sulfonate detergent represented by (RS03)vCa w (C03)x(0H) y with v, w, x, and y denoting the number of sulfonate groups, the number of calcium atoms, the number of carbonate groups, and the number of hydroxyl groups respectively):
- Effective formula weight is the combined weight of all the atoms that make up the formula (RSCb)vCaw(CC)3)x(OH)y plus that of any other lubricant components. Further discussion on determining soap content can be found in Fuels and Lubricants Handbook, Technology, Properties, Performance, and Testing, George Totten, editor, ASTM International, 2003, the relevant portions thereof incorporated herein by reference.
- the weight ratio of a first borated sulfonate detergent to a second borated sulfonate detergent is from about 1:200 to about 200: 1, or from about 1 : 100 to about 100: 1, or from about 1 :50 to about 50: 1, or from about 1 :25 to about 25: 1, or from about 1 : 10 to about 10: 1, or from about 1 :5 to about 5: 1.
- the borated detergent concentration in the lubricating oils of this disclosure can range from about 0.001 weight percent to about 20 weight percent, or about 0.01 weight percent to about 10 weight percent, or about 0.5 to about 6.0 weight percent, or about 0.6 to 5.0 weight percent, or from about 0.8 weight percent to about 4.0 weight percent, based on the total weight of the lubricating oil.
- the borated detergent concentrations are given on an“as delivered” basis.
- the active detergent is delivered with a process oil.
- The“as delivered” detergent typically contains from about 20 weight percent to about 100 weight percent, or from about 40 weight percent to about 60 weight percent, of active detergent in the“as delivered” detergent product.
- the formulated lubricating oil useful in the present disclosure may additionally contain one or more of the other commonly used lubricating oil performance additives including but not limited to antiwear additives, dispersants, other detergents, viscosity modifiers, corrosion inhibitors, rust inhibitors, metal deactivators, extreme pressure additives, anti-seizure agents, wax modifiers, viscosity modifiers, fluid-loss additives, seal compatibility agents, lubricity agents, anti staining agents, chromophoric agents, defoamants, demulsifiers, densifiers, wetting agents, gelling agents, tackiness agents, colorants, and others.
- antiwear additives dispersants, other detergents, viscosity modifiers, corrosion inhibitors, rust inhibitors, metal deactivators, extreme pressure additives, anti-seizure agents, wax modifiers, viscosity modifiers, fluid-loss additives, seal compatibility agents, lubricity agents, anti staining agents, chromophor
- the additives useful in this disclosure do not have to be soluble in the lubricating oils. Insoluble additives in oil can be dispersed in the lubricating oils of this disclosure.
- a metal alkylthiophosphate and more particularly a metal dialkyl dithio phosphate in which the metal constituent is zinc, or zinc dialkyl dithio phosphate can be a useful component of the lubricating oils of this disclosure.
- ZDDP can be derived from primary alcohols, secondary alcohols or mixtures thereof.
- ZDDP compounds generally are of the formula
- R 1 and R 2 are Ci-Cis alkyl groups, preferably C2-C12 alkyl groups. These alkyl groups may be straight chain or branched.
- Alcohols used in the ZDDP can be propanol, 2-propanol, butanol, secondary butanol, pentanols, hexanols such as 4-methyl-2-pentanol, n-hexanol, n-octanol, 2-ethyl hexanol, alkylated phenols, and the like. Mixtures of secondary alcohols or of primary and secondary alcohol can be preferred. Alkyl aryl groups may also be used.
- Preferable zinc dithiophosphates which are commercially available include secondary zinc dithiophosphates such as those available from for example, The Lubrizol Corporation under the trade designations“LZ 677A”,“LZ 1095” and“LZ 1371”, from for example Chevron Oronite under the trade designation“OLOA 262” and from for example Afton Chemical under the trade designation“HITEC 7169”.
- the ZDDP is typically used in amounts of from about 0.3 weight percent to about 1.5 weight percent, preferably from about 0.4 weight percent to about 1.2 weight percent, more preferably from about 0.5 weight percent to about 1.0 weight percent, and even more preferably from about 0.6 weight percent to about 0.8 weight percent, based on the total weight of the lubricating oil, although more or less can often be used advantageously.
- the ZDDP is a secondary ZDDP and present in an amount of from about 0.6 to 1.0 weight percent of the total weight of the lubricating oil.
- Dispersants help keep these byproducts in solution, thus diminishing their deposition on metal surfaces.
- Dispersants used in the formulation of the lubricating oil may be ashless or ash-forming in nature.
- the dispersant is ashless.
- So called ashless dispersants are organic materials that form substantially no ash upon combustion.
- non-metal-containing dispersants are considered ashless.
- metal-containing detergents discussed above form ash upon combustion.
- Suitable dispersants typically contain a polar group attached to a relatively high molecular weight hydrocarbon chain.
- the polar group typically contains at least one element of nitrogen, oxygen, or phosphorus.
- Typical hydrocarbon chains contain 50 to 400 carbon atoms.
- Illustrative dispersants useful in this disclosure include, for example,
- polyalkenylsuccinic derivatives polyisobutylene succinimide (PIBSA) having a basic nitrogen content of about 1% or greater
- succinimides having a basic nitrogen content of about 1% or greater
- hydrocarbyl-substituted succinic acids hydrocarbyl- substituted succinic anhydride derivatives, or mixtures thereof, all having a basic nitrogen content of about 1% or greater.
- a useful class of dispersants are the (poly)alkenylsuccinic derivatives, typically produced by the reaction of a long chain hydrocarbyl substituted succinic compound, usually a hydrocarbyl substituted succinic anhydride, with a polyhydroxy or polyamino compound.
- the long chain hydrocarbyl group constituting the oleophilic portion of the molecule which confers solubility in the oil, is normally a polyisobutylene group.
- Many examples of this type of dispersant are well known commercially and in the literature. Exemplary U.S. patents describing such dispersants are U.S. Patent Nos.
- Hydrocarbyl-substituted succinic acid and hydrocarbyl-substituted succinic anhydride derivatives are useful dispersants.
- succinimide, succinate esters, or succinate ester amides prepared by the reaction of a hydrocarbon-substituted succinic acid compound preferably having at least 50 carbon atoms in the hydrocarbon substituent, with at least one equivalent of an alkylene amine are particularly useful.
- Succinimides are formed by the condensation reaction between hydrocarbyl substituted succinic anhydrides and amines. Molar ratios can vary depending on the polyamine. For example, the molar ratio of hydrocarbyl substituted succinic anhydride to TEPA can vary from about 1: 1 to about 5: 1. Representative examples are shown in U.S. Patent Nos. 3,087,936; 3,172,892; 3,219,666; 3,272,746; 3,322,670; and 3,652,616, 3,948,800; and Canada Patent No.
- Succinate esters are formed by the condensation reaction between hydrocarbyl substituted succinic anhydrides and alcohols or polyols. Molar ratios can vary depending on the alcohol or polyol used. For example, the condensation product of a hydrocarbyl substituted succinic anhydride and pentaerythritol is a useful dispersant.
- Succinate ester amides are formed by condensation reaction between hydrocarbyl substituted succinic anhydrides and alkanol amines.
- suitable alkanol amines include ethoxylated polyalkylpolyamines, propoxylated polyalkylpolyamines and polyalkenylpolyamines such as polyethylene polyamines.
- propoxylated hexamethylenediamine Representative examples are shown in U.S. Patent No. 4,426,305.
- the molecular weight of the hydrocarbyl substituted succinic anhydrides used in the preceding paragraphs will typically range between 800 and 2,500 or more.
- the above products can be post-reacted with various reagents such as sulfur, oxygen, formaldehyde, carboxylic acids such as oleic acid.
- the above products can also be post reacted with boron compounds such as boric acid, borate esters or highly borated dispersants, to form borated dispersants generally having from about 0.1 to about 5 moles of boron per mole of dispersant reaction product.
- Suitable dispersants include succinimides, including those derivatives from mono- succinimides, bis-succinimides, and/or mixtures of mono- and bis-succinimides, wherein the hydrocarbyl succinimide is derived from a hydrocarbylene group such as polyisobutylene having a Mn of from about 500 to about 5000, or from about 1000 to about 3000, or about 1000 to about 2000, or a mixture of such hydrocarbylene groups, often with high terminal vinylic groups.
- Other preferred dispersants include succinic acid-esters and amides, alkylphenol-polyamine-coupled Mannich adducts, their capped derivatives, and other related components.
- Illustrative dispersants useful in this disclosure include those derived from polyalkenyl-substituted mono- or dicarboxylic acid, anhydride or ester, which dispersant has a polyalkenyl moiety with a number average molecular weight of at least 900 and from greater than 1.3 to 1.7, preferably from greater than 1.3 to 1.6, most preferably from greater than 1.3 to 1.5, functional groups (mono- or dicarboxylic acid producing moieties) per polyalkenyl moiety (a medium functionality dispersant).
- Functionality (F) can be determined according to the following formula:
- SAP is the saponification number (i.e., the number of milligrams of KOH consumed in the complete neutralization of the acid groups in one gram of the succinic-containing reaction product, as determined according to ASTM D94); M n is the number average molecular weight of the starting olefin polymer; and A.I. is the percent active ingredient of the succinic-containing reaction product (the remainder being unreacted olefin polymer, succinic anhydride and diluent).
- the polyalkenyl moiety of the dispersant may have a number average molecular weight of at least 900, suitably at least 1500, preferably between 1800 and 3000, such as between 2000 and 2800, more preferably from about 2100 to 2500, and most preferably from about 2200 to about 2400.
- the molecular weight of a dispersant is generally expressed in terms of the molecular weight of the polyalkenyl moiety. This is because the precise molecular weight range of the dispersant depends on numerous parameters including the type of polymer used to derive the dispersant, the number of functional groups, and the type of nucleophilic group employed.
- Polymer molecular weight can be determined by various known techniques.
- One convenient method is gel permeation chromatography (GPC), which additionally provides molecular weight distribution information (see W. W. Yau, J. J. Kirkland and D. D. Bly, "Modem Size Exclusion Liquid Chromatography", John Wiley and Sons, New York, 1979).
- GPC gel permeation chromatography
- Another useful method for determining molecular weight, particularly for lower molecular weight polymers is vapor pressure osmometry (e.g., ASTM D3592).
- the polyalkenyl moiety in a dispersant preferably has a narrow molecular weight distribution (MWD), also referred to as polydispersity, as determined by the ratio of weight average molecular weight (M w ) to number average molecular weight (M n ).
- MWD molecular weight distribution
- M w weight average molecular weight
- M n number average molecular weight
- Suitable polymers have a polydispersity of from about 1.5 to 2.1, preferably from about 1.6 to about 1.8.
- Suitable polyalkenes employed in the formation of the dispersants include homopolymers, interpolymers or lower molecular weight hydrocarbons.
- such polymers comprise interpolymers of ethylene and at least one alpha-olefin of the above formula, wherein R 1 is alkyl of from 1 to 18 carbon atoms, and more preferably is alkyl of from 1 to 8 carbon atoms, and more preferably still of from 1 to 2 carbon atoms.
- Another useful class of polymers is polymers prepared by cationic polymerization of monomers such as isobutene and styrene.
- monomers such as isobutene and styrene.
- Common polymers from this class include poly isobutenes obtained by polymerization of a C4 refinery stream having a butene content of 35 to 75% by weight, and an isobutene content of 30 to 60% by weight.
- a preferred source of monomer for making poly-n-butenes is petroleum feedstreams such as Raffinate II. These feedstocks are disclosed in the art such as in U.S. Pat. No. 4,952,739.
- a preferred embodiment utilizes polyisobutylene prepared from a pure isobutylene stream or a Raffinate I stream to prepare reactive isobutylene polymers with terminal vinylidene olefins.
- Polyisobutene polymers that may be employed are generally based on a polymer chain of from 1500 to 3000.
- the dispersant(s) are preferably non-poly meric (e.g., mono- or bis-succinimides). Such dispersants can be prepared by conventional processes such as disclosed in U.S. Patent Application Publication No. 2008/0020950, the disclosure of which is incorporated herein by reference.
- Suitable dispersants typically contain a polar group attached to a relatively high molecular weight hydrocarbon chain.
- the polar group typically contains at least one element of nitrogen, oxygen, or phosphorus.
- Typical hydrocarbon chains contain 50 to 400 carbon atoms.
- Mannich base dispersants are made from the reaction of alkylphenols, formaldehyde, and amines. See U.S. Patent No. 4,767,551, which is incorporated herein by reference. Process aids and catalysts, such as oleic acid and sulfonic acids, can also be part of the reaction mixture. Molecular weights of the alkylphenols range from 800 to 2,500. Representative examples are shown in U.S. Patent Nos. 3,697,574; 3,703,536; 3,704,308; 3,751,365; 3,756,953; 3,798,165; and 3,803,039.
- Typical high molecular weight aliphatic acid modified Mannich condensation products useful in this disclosure can be prepared from high molecular weight alkyl-substituted hydroxyaromatics or HNR.2 group-containing reactants.
- Hydrocarbyl substituted amine ashless dispersant additives are well known to one skilled in the art; see, for example, U.S. Patent Nos. 3,275,554; 3,438,757; 3,565,804; 3,755,433, 3,822,209, and 5,084,197.
- Polymethacrylate or polyacrylate derivatives are another class of dispersants. These dispersants are typically prepared by reacting a nitrogen containing monomer and a methacrylic or acrylic acid esters containing 5 -25 carbon atoms in the ester group. Representative examples are shown in U.S. Patent Nos. 2, 100, 993, and 6,323,164. Polymethacrylate and polyacrylate dispersants are normally used as multifunctional viscosity modifiers. The lower molecular weight versions can be used as lubricant dispersants or fuel detergents.
- the dispersant(s) can be borated by conventional means, as generally disclosed in U.S. Patent Nos. 3,087,936, 3,254,025 and 5,430,105.
- Such dispersants may be used in an amount of about 0.001 to 20 weight percent or 0.01 to 10 weight percent, preferably about 0.5 to 8 weight percent, or more preferably 0.5 to 4 weight percent. Or such dispersants may be used in an amount of about 2 to 12 weight percent, preferably about 4 to 10 weight percent, or more preferably 6 to 9 weight percent. On an active ingredient basis, such additives may be used in an amount of about 0.06 to 14 weight percent, preferably about 0.3 to 6 weight percent.
- the dispersant concentrations are given on an“as delivered” basis.
- the active dispersant is delivered with a process oil.
- The“as delivered” dispersant typically contains from about 20 weight percent to about 80 weight percent, or from about 40 weight percent to about 60 weight percent, of active dispersant in the“as delivered” dispersant product.
- Illustrative other detergents useful in this disclosure include, for example, alkali metal detergents, alkaline earth metal detergents, or mixtures of one or more alkali metal detergents and one or more alkaline earth metal detergents.
- a typical detergent is an anionic material that contains a long chain hydrophobic portion of the molecule and a smaller anionic or oleophobic hydrophilic portion of the molecule.
- the anionic portion of the detergent is typically derived from an organic acid such as a sulfur-containing acid, carboxylic acid (e.g., salicylic acid), phosphorus-containing acid, phenol, or mixtures thereof.
- the counterion is typically an alkaline earth or alkali metal.
- the detergent can be overbased. Non-borated or borated detergents can be used.
- the detergent can be a metal salt of an organic or inorganic acid, a metal salt of a phenol, or mixtures thereof.
- the metal can be an alkali metal, an alkaline earth metal, and mixtures thereof.
- the organic or inorganic acid is selected from an aliphatic organic or inorganic acid, a cycloaliphatic organic or inorganic acid, an aromatic organic or inorganic acid, and mixtures thereof.
- the metal can be an alkali metal, an alkaline earth metal, and mixtures thereof.
- the metal can be calcium (Ca), magnesium (Mg), and mixtures thereof.
- the organic acid or inorganic acid can be a sulfur-containing acid, a carboxylic acid, a phosphorus-containing acid, and mixtures thereof.
- the metal salt of an organic or inorganic acid or the metal salt of a phenol can be calcium phenate, magnesium phenate, an overbased detergent, and mixtures thereof.
- Salts that contain a substantially stochiometric amount of the metal are described as neutral salts and have a total base number (TBN, as measured by ASTM D2896) of from 0 to 80.
- TBN total base number
- Many compositions are overbased, containing large amounts of a metal base that is achieved by reacting an excess of a metal compound (a metal hydroxide or oxide, for example) with an acidic gas (such as carbon dioxide).
- Useful detergents can be neutral, mildly overbased, or highly overbased. These detergents can be used in mixtures of neutral, overbased, highly overbased calcium phenates and/or magnesium phenates.
- the TBN ranges can vary from low, medium to high TBN products, including as low as 0 to as high as 600.
- the TBN delivered by the detergent is between 1 and 20.
- the TBN delivered by the detergent can be between 1 and 12.
- Mixtures of low, medium, high TBN can be used, along with mixtures of calcium and magnesium metal based detergents, and including phenates and carboxylates.
- a detergent mixture with a metal ratio of 1, in conjunction of a detergent with a metal ratio of 2, and as high as a detergent with a metal ratio of 5, can be used.
- Non-borated or borated detergents can be used.
- Alkaline earth phenates are another useful class of detergent. These detergents can be made by reacting alkaline earth metal hydroxide or oxide (CaO, Ca(OH)2, BaO, Ba(OH)2, MgO, Mg(OH)2, for example) with an alkyl phenol or sulfurized alkylphenol.
- alkaline earth metal hydroxide or oxide Ca(OH)2, BaO, Ba(OH)2, MgO, Mg(OH)2, for example
- Useful alkyl groups include straight chain or branched C1-C30 alkyl groups, particularly, C4-C20 or mixtures thereof. Examples of suitable phenols include isobutylphenol, 2-ethylhexylphenol, nonylphenol, dodecyl phenol, and the like.
- starting alkylphenols may contain more than one alkyl substituent that are each independently straight chain or branched and can be used from 0.5 to 6 weight percent.
- the sulfurized product may be obtained by methods well known in the art. These methods include heating a mixture of alkylphenol and sulfurizing agent (including elemental sulfur, sulfur halides such as sulfur dichloride, and the like) and then reacting the sulfurized phenol with an alkaline earth metal base.
- Alkaline earth metal phosphates are also used as detergents and are known in the art.
- Detergents may be simple detergents or what is known as hybrid or complex detergents. The latter detergents can provide the properties of two detergents without the need to blend separate materials. See U.S. Patent No. 6,034,039.
- Illustrative detergents include calcium phenates, magnesium phenates, and other related components (including borated detergents), and mixtures thereof.
- Illustrative mixtures of detergents include calcium phenate and magnesium phenate. Overbased detergents are also used.
- a borated calcium sulfonate detergent is OLOA 10400X.
- the detergent concentration in the lubricating oils of this disclosure can range from about 0.5 to about 6.0 weight percent, preferably about 0.6 to 5.0 weight percent, and more preferably from about 0.8 weight percent to about 4.0 weight percent, based on the total weight of the lubricating oil.
- the detergent concentration in the lubricating oils of this disclosure can range from about 0.5 to about 6.0 weight percent, preferably about 1.0 to 3.0 weight percent, and more preferably from about 1.5 weight percent to about 2.5 weight percent, based on the total weight of the lubricating oil.
- the detergent concentration in the lubricating oils of this disclosure can range from about 0.5 to about 6.0 weight percent, preferably about 1.0 to 5.5 weight percent, and more preferably from about 3.0 weight percent to about 4.0 weight percent, based on the total weight of the lubricating oil.
- the detergent concentrations are given on an“as delivered” basis.
- the active detergent is delivered with a process oil.
- The“as delivered” detergent typically contains from about 20 weight percent to about 100 weight percent, or from about 40 weight percent to about 60 weight percent, of active detergent in the“as delivered” detergent product.
- Viscosity modifiers also known as viscosity index improvers (VI improvers), and viscosity improvers
- VI improvers viscosity index improvers
- Viscosity modifiers provide lubricants with high and low temperature operability. These additives impart shear stability at elevated temperatures and acceptable viscosity at low temperatures.
- Suitable viscosity modifiers include high molecular weight hydrocarbons, polyesters and viscosity modifier dispersants that function as both a viscosity modifier and a dispersant.
- Typical molecular weights of these polymers are between about 10,000 to 1,500,000, more typically about 20,000 to 1,200,000, and even more typically between about 50,000 and 1,000,000.
- suitable viscosity modifiers are linear or star-shaped polymers and copolymers of methacrylate, butadiene, olefins, or alkylated styrenes.
- Polyisobutylene is a commonly used viscosity modifier.
- Another suitable viscosity modifier is polymethacrylate (copolymers of various chain length alkyl methacrylates, for example), some formulations of which also serve as pour point depressants.
- Other suitable viscosity modifiers include copolymers of ethylene and propylene, hydrogenated block copolymers of styrene and isoprene, and polyacrylates (copolymers of various chain length acrylates, for example). Specific examples include styrene-isoprene or styrene-butadiene based polymers of 50,000 to 200,000 molecular weight.
- Olefin copolymers are commercially available from Chevron Oronite Company LLC under the trade designation “PARATONE®” (such as “PARATONE® 8921” and “PARATONE® 8941”); from Afton Chemical Corporation under the trade designation“HiTEC®” (such as“HiTEC® 5850B”; and from The Lubrizol Corporation under the trade designation “Lubrizol® 7067C”.
- Hydrogenated polyisoprene star polymers are commercially available from Infineum International Limited, e.g., under the trade designation “SV200” and “SV600”
- Hydrogenated diene-styrene block copolymers are commercially available from Infineum International Limited, e.g., under the trade designation“SV 50”.
- the polymethacrylate or polyacrylate polymers can be linear polymers which are available from Evnoik Industries under the trade designation“Viscoplex®” (e.g., Viscoplex 6-954) or star polymers which are available from Lubrizol Corporation under the trade designation AstericTM (e.g., Lubrizol 87708 and Lubrizol 87725).
- Viscoplex® e.g., Viscoplex 6-954
- AstericTM e.g., Lubrizol 87708 and Lubrizol 87725.
- Illustrative vinyl aromatic-containing polymers useful in this disclosure may be derived predominantly from vinyl aromatic hydrocarbon monomer.
- Illustrative vinyl aromatic- containing copolymers useful in this disclosure may be represented by the following general formula:
- A-B wherein A is a polymeric block derived predominantly from vinyl aromatic hydrocarbon monomer, and B is a polymeric block derived predominantly from conjugated diene monomer.
- the viscosity modifiers may be used in an amount of less than about 10 weight percent, preferably less than about 7 weight percent, more preferably less than about 4 weight percent, and in certain instances, may be used at less than 2 weight percent, preferably less than about 1 weight percent, and more preferably less than about 0.5 weight percent, based on the total weight of the formulated oil or lubricating engine oil. Viscosity modifiers are typically added as concentrates, in large amounts of diluent oil.
- the viscosity modifier concentrations are given on an“as delivered” basis.
- the active polymer is delivered with a diluent oil.
- The“as delivered” viscosity modifier typically contains from 20 weight percent to 75 weight percent of an active polymer for polymethacrylate or polyacrylate polymers, or from 8 weight percent to 20 weight percent of an active polymer for olefin copolymers, hydrogenated polyisoprene star polymers, or hydrogenated diene-styrene block copolymers, in the“as delivered” polymer concentrate.
- Antioxidants retard the oxidative degradation of base oils during service. Such degradation may result in deposits on metal surfaces, the presence of sludge, or a viscosity increase in the lubricant.
- One skilled in the art knows a wide variety of oxidation inhibitors that are useful in lubricating oil compositions. See, Klamann in Lubricants and Related Products, op cite, and U.S. Patent Nos. 4,798,684 and 5,084,197, for example.
- Useful antioxidants include hindered phenols. These phenolic antioxidants may be ashless (metal-free) phenolic compounds or neutral or basic metal salts of certain phenolic compounds. Typical phenolic antioxidant compounds are the hindered phenolics which are the ones which contain a sterically hindered hydroxyl group, and these include those derivatives of dihydroxy aryl compounds in which the hydroxyl groups are in the o- or p-position to each other. Typical phenolic antioxidants include the hindered phenols substituted with Ce+ alkyl groups and the alkylene coupled derivatives of these hindered phenols.
- phenolic materials of this type 2-t-butyl-4-heptyl phenol; 2-t-butyl-4-octyl phenol; 2-t-butyl-4-dodecyl phenol; 2,6-di-t- butyl-4-heptyl phenol; 2,6-di-t-butyl-4-dodecyl phenol; 2-methyl-6-t-butyl-4-heptyl phenol; and 2-methyl-6-t-butyl-4-dodecyl phenol.
- Other useful hindered mono-phenolic antioxidants may include for example hindered 2,6-di-alkyl-phenolic proprionic ester derivatives.
- Bis-phenolic antioxidants may also be advantageously used in combination with the instant disclosure.
- ortho-coupled phenols include: 2,2’-bis(4-heptyl-6-t-butyl-phenol); 2,2’-bis(4-octyl- 6-t-butyl-phenol); and 2,2’-bis(4-dodecyl-6-t-butyl-phenol).
- Para-coupled bisphenols include for example 4,4’-bis(2,6-di-t-butyl phenol) and 4,4’-methylene-bis(2,6-di-t-butyl phenol).
- catalytic antioxidants comprise an effective amount of a) one or more oil soluble polymetal organic compounds; and, effective amounts ofb) one or more substituted N,N'-diaryl-o-phenylenediamine compounds or c) one or more hindered phenol compounds; or a combination of both b) and c).
- Catalytic antioxidants are more fully described in U.S. Patent No. 8, 048,833, herein incorporated by reference in its entirety.
- Non-phenolic oxidation inhibitors which may be used include aromatic amine antioxidants and these may be used either as such or in combination with phenolics.
- Typical examples of non-phenolic antioxidants include: alkylated and non-alkylated aromatic amines such as aromatic monoamines of the formula R 8 R 9 R 10 N where R 8 is an aliphatic, aromatic or substituted aromatic group, R 9 is an aromatic or a substituted aromatic group, and R 10 is H, alkyl, aryl or R n S(0)xR 12 where R 11 is an alkylene, alkenylene, or aralkylene group, R 12 is a higher alkyl group, or an alkenyl, aryl, or alkaryl group, and x is 0, 1 or 2.
- the aliphatic group R 8 may contain from 1 to about 20 carbon atoms, and preferably contains from about 6 to 12 carbon atoms.
- the aliphatic group is a saturated aliphatic group.
- both R 8 and R 9 are aromatic or substituted aromatic groups, and the aromatic group may be a fused ring aromatic group such as naphthyl.
- Aromatic groups R 8 and R 9 may be joined together with other groups such as S.
- Typical aromatic amines antioxidants have alkyl substituent groups of at least about 6 carbon atoms.
- Examples of aliphatic groups include hexyl, heptyl, octyl, nonyl, and decyl. Generally, the aliphatic groups will not contain more than about 14 carbon atoms.
- the general types of amine antioxidants useful in the present compositions include diphenylamines, phenyl naphthylamines, phenothiazines, imidodibenzyls and diphenyl phenylene diamines. Mixtures of two or more aromatic amines are also useful. Polymeric amine antioxidants can also be used.
- aromatic amine antioxidants useful in the present disclosure include: p,p’- dioctyldiphenylamine; t-octylphenyl-alpha-naphthylamine; phenyl-alphanaphthylamine; and p-octylphenyl-alpha-naphthylamine.
- Sulfurized alkyl phenols and alkali or alkaline earth metal salts thereof also are useful antioxidants.
- Preferred antioxidants include hindered phenols, arylamines. These antioxidants may be used individually by type or in combination with one another. Such additives may be used in an amount of about 0.01 to 5 weight percent, preferably about 0.01 to 1.5 weight percent, more preferably zero to less than 1.5 weight percent, more preferably zero to less than 1 weight percent. Pour Point Depressants (PPDs)
- pour point depressants also known as lube oil flow improvers
- pour point depressants may be added to lubricating compositions of the present disclosure to lower the minimum temperature at which the fluid will flow or can be poured.
- suitable pour point depressants include polymethacrylates, polyacrylates, polyarylamides, condensation products of haloparaffm waxes and aromatic compounds, vinyl carboxylate polymers, and terpolymers of dialkylfumarates, vinyl esters of fatty acids and allyl vinyl ethers.
- 1,815,022; 2,015,748; 2,191,498; 2,387,501; 2,655, 479; 2,666,746; 2,721,877; 2,721,878; and 3,250,715 describe useful pour point depressants and/or the preparation thereof.
- Such additives may be used in an amount of about 0.01 to 5 weight percent, preferably about 0.01 to 1.5 weight percent.
- Seal compatibility agents help to swell elastomeric seals by causing a chemical reaction in the fluid or physical change in the elastomer.
- Suitable seal compatibility agents for lubricating oils include organic phosphates, aromatic esters, aromatic hydrocarbons, esters (butylbenzyl phthalate, for example), and polybutenyl succinic anhydride. Such additives may be used in an amount of about 0.01 to 3 weight percent, preferably about 0.01 to 2 weight percent.
- Anti-foam agents may advantageously be added to lubricant compositions. These agents retard the formation of stable foams. Silicones and organic polymers are typical anti-foam agents. For example, polysiloxanes, such as silicon oil or poly dimethyl siloxane, provide antifoam properties. Anti-foam agents are commercially available and may be used in conventional minor amounts along with other additives such as demulsifiers; usually the amount of these additives combined is less than 1 weight percent and often less than 0.1 weight percent.
- Antirust additives are additives that protect lubricated metal surfaces against chemical attack by water or other contaminants. A wide variety of these are commercially available.
- antirust additive is a polar compound that wets the metal surface preferentially, protecting it with a film of oil.
- Another type of antirust additive absorbs water by incorporating it in a water-in-oil emulsion so that only the oil touches the metal surface.
- Yet another type of antirust additive chemically adheres to the metal to produce a non-reactive surface.
- suitable additives include zinc dithiophosphates, metal phenolates, basic metal sulfonates, fatty acids and amines. Such additives may be used in an amount of about 0.01 to 5 weight percent, preferably about 0.01 to 1.5 weight percent.
- a friction modifier is any material or materials that can alter the coefficient of friction of a surface lubricated by any lubricant or fluid containing such material(s).
- Friction modifiers also known as friction reducers, or lubricity agents or oibness agents, and other such agents that change the ability of base oils, formulated lubricant compositions, or functional fluids, to modify the coefficient of friction of a lubricated surface may be effectively used in combination with the base oils or lubricant compositions of the present disclosure if desired. Friction modifiers that lower the coefficient of friction are particularly advantageous in combination with the base oils and lube compositions of this disclosure.
- Illustrative friction modifiers may include, for example, organometallic compounds or materials, or mixtures thereof.
- Illustrative organometallic friction modifiers useful in the lubricating engine oil formulations of this disclosure include, for example, molybdenum amine, molybdenum diamine, an organotungstenate, a molybdenum dithiocarbamate, molybdenum dithiophosphates, molybdenum amine complexes, molybdenum carboxylates, and the like, and mixtures thereof. Similar tungsten based compounds may be preferable.
- illustrative friction modifiers useful in the lubricating engine oil formulations of this disclosure include, for example, alkoxylated fatty acid esters, alkanolamides, polyol fatty acid esters, borated glycerol fatty acid esters, fatty alcohol ethers, and mixtures thereof.
- Illustrative alkoxylated fatty acid esters include, for example, polyoxyethylene stearate, fatty acid polyglycol ester, and the like. These can include polyoxypropylene stearate, polyoxybutylene stearate, polyoxyethylene isosterate, polyoxypropylene isostearate, polyoxyethylene palmitate, and the like.
- Illustrative alkanolamides include, for example, lauric acid diethylalkanolamide, palmic acid diethylalkanolamide, and the like. These can include oleic acid diethyalkanolamide, stearic acid diethylalkanolamide, oleic acid diethylalkanolamide, polyethoxylated hydrocarbylamides, polypropoxylated hydrocarbylamides, and the like.
- Illustrative polyol fatty acid esters include, for example, glycerol mono-oleate, saturated mono-, di-, and tri-glyceride esters, glycerol mono-stearate, and the like. These can include polyol esters, hydroxyl-containing polyol esters, and the like.
- Illustrative borated glycerol fatty acid esters include, for example, borated glycerol mono-oleate, borated saturated mono-, di-, and tri-glyceride esters, borated glycerol mono-sterate, and the like.
- glycerol polyols these can include trimethylolpropane, pentaerythritol, sorbitan, and the like.
- esters can be polyol monocarboxylate esters, polyol dicarboxylate esters, and on occasion polyoltricarboxylate esters.
- Preferred can be the glycerol mono-oleates, glycerol dioleates, glycerol trioleates, glycerol monostearates, glycerol distearates, and glycerol tristearates and the corresponding glycerol monopalmitates, glycerol dipalmitates, and glycerol tripalmitates, and the respective isostearates, linoleates, and the like.
- the glycerol esters can be preferred as well as mixtures containing any of these. Ethoxylated, propoxylated, butoxylated fatty acid esters of polyols, especially using glycerol as underlying polyol can be preferred.
- Illustrative fatty alcohol ethers include, for example, stearyl ether, myristyl ether, and the like. Alcohols, including those that have carbon numbers from C3 to C50, can be ethoxylated, propoxylated, or butoxylated to form the corresponding fatty alkyl ethers.
- the underlying alcohol portion can preferably be stearyl, myristyl, C11 - C13 hydrocarbon, oleyl, isosteryl, and the like.
- the lubricating oils of this disclosure exhibit desired properties, e.g., wear control, in the presence or absence of a friction modifier.
- Useful concentrations of friction modifiers may range from 0.01 weight percent to 5 weight percent, or about 0.1 weight percent to about 2.5 weight percent, or about 0.1 weight percent to about 1.5 weight percent, or about 0.1 weight percent to about 1 weight percent. Concentrations of molybdenum-containing materials are often described in terms of Mo metal concentration. Advantageous concentrations of Mo may range from 25 ppm to 700 ppm or more, and often with a preferred range of 50-200 ppm. Friction modifiers of all types may be used alone or in mixtures with the materials of this disclosure. Often mixtures of two or more friction modifiers, or mixtures of friction modifier(s) with alternate surface active material(s), are also desirable.
- Typical amounts of such additives useful in the present disclosure are shown in Table 1 below.
- Anti-foam Agent 0.001-3 0 001 0.2
- additives are all commercially available materials. These additives may be added independently but are usually precombined in packages which can be obtained from suppliers of lubricant oil additives. Additive packages with a variety of ingredients, proportions and characteristics are available and selection of the appropriate package will take the requisite use of the ultimate composition into account.
- the lubricating oil base stocks used in the formulations were Group III-V base oils.
- the detergents used in the formulations were calcium salicylate (calcium salicylate A, 205 TBN, C14-18), calcium salicylate (calcium salicylate B, 64 TBN, C14-18), calcium sulfonate (calcium sulfonate A, 300 TBN, average of 28 carbon length), magnesium sulfonate (magnesium sulfonate A, 405 TBN, average of 28 carbon length), and borated calcium sulfonate (borated detergent A, 160 TBN).
- the sulfonate detergent systems used in the formulations were combinations of the calcium sulfonate A, magnesium sulfonate A, and/or borated detergent A.
- the salicylate/sulfonate detergent systems used in the formulations were combinations of calcium salicylate A, calcium salicylate B, magnesium sulfonate A, and/or borated detergent A.
- the dispersants used in the formulations were borated polyisobutenyl succinimides, borated dispersant A (0.8% boron, 1.6% nitrogen, TBN 30, and PIB length 1300 Mn), borated dispersant B (2.3% boron, 1.2% nitrogen, and TBN 26), borated dispersant C (1.2% boron, 1.2% nitrogen, and TBN 25), borated dispersant D (1.8% boron and 2.3% nitrogen), borated dispersant E (0.6% boron, 2% nitrogen, TBN 46),
- the detergents/dispersants used in the formulations were borated detergent/dispersant (0.1% calcium, 4.8% boron, 0.2% nitrogen, TBN 124).
- the friction modifiers used in the formulations were borated glycerol monooleates (GMO), borated friction modifier A (2.3% boron, TBN 10), borated friction modifier B (2.9% boron).
- GMO glycerol monooleates
- TBN 10 borated friction modifier
- B borated friction modifier B
- the additive package used in the formulations included conventional additives in conventional amounts.
- Conventional additives used in the formulations were one or more of an antioxidant, pour point depressant, corrosion inhibitor, metal deactivator, seal compatibility additive, anti-foam agent, inhibitor, anti-rust additive, optional antiwear additive, and other optional lubricant performances additives.
- Other additives used in the formulations included a mixed calcium salicylate/magnesium sulfonate detergent system, and a mixed calcium/magnesium sulfonate detergent system.
- the tests used in the Examples included both engine tests and bench tests.
- the engine tests included a wear test for measuring intake lifter wear (mm 3 ) by a Sequence IVB engine test as described herein.
- the bench tests included a deposit test for measuring deposits by thermo oxidation engine oil simulation (TEOST 33C) measured by ASTM D6335.
- the Sequence IVB engine valve train wear test is a fired engine dynamometer lubricant test which evaluates the ability of a test lubricant to reduce valve train wear.
- the test method is a low temperature cyclic test, with a total running duration of 200 hours.
- the Sequence IVB (Test profile B14, version 20150707) uses a Toyota 2NR-FE water cooled, 4 cycle, in-line cylinder, 1.5 liter engine as the test apparatus.
- the engine incorporates a dual overhead cam, four valves per cylinder (2 intake; 2 exhaust), and direct acting mechanical bucket lifter valve train design.
- the critical test parts (camshafts, direct acting mechanical bucket lifters) are replaced each test.
- the Sequence IVB valve train wear test is a flush and run type of lubricant test with one 6 minute engine oil system flush and three 38 minute engine oil system flushes conducted prior to the actual test start. The test sequence is repeated for 24,000 test cycles. Each cycle consists of four stages as outlined below. The final measured values include iron concentration at 200 hours (ppm) and average intake lifter volume loss by Keyence measurement (mm A 3). These two parameters are related to each other in that as wear increases, both the iron levels and the average volume lost increase.
- Sequence IVB test is part of the draft ILSAC GF-6 specification, in particular, the draft ILSAC GF-6A Recommendations for Passenger Car Engine Oils dated June 27, 2018, and the draft ILSAC GF-6B Recommendations for Passenger Car Engine Oils dated June 27, 2018, which are incorporated herein by reference in their entirety.
- Lubricants with high boron concentrations show reduced wear in the Sequence IVB engine test as shown in Fig. 2.
- Fig. 2 shows a comparison of Sequence IVB wear results and TEOST 33C deposit results.
- the lubricant formulations used either a salicylate/ sulfonate detergent mix or a pure sulfonate detergent system at multiple boron concentrations.
- TEOST 33C test results indicate that within this formulation space, lubricants with boron concentrations greater than 300 ppm would fail the current API/ILSAC specification limit of 30 mg of deposits.
- a formulation strategy has been developed that allows high boron concentrations for improved wear protection while maintaining acceptable TEOST 33C cleanliness.
- Preferred formulations have TEOST deposits less than about 50mg, more preferred formulations have TEOST deposits less than about 40mg, even more preferred formulations have TEOST deposits less than about 30mg, even more preferred formulations have TEOST deposits less than about 25mg, and most preferred formulations have TEOST deposits less than about 20mg.
- Boron is generally introduced into a lubricant through one of the performance additives, most often through either a dispersant, detergent, friction modifier or combination of the above.
- the borated additives used in the formulations in Fig. 2 are a borated polyisobutylene succinimide plus polyamine (PIBSA/PAM) (PIB 1300 Mn) (for 100 ppm), and a borated polyisobutylene succinimide (PIBSA) (2.3 mass % boron) (for 460 and 750 ppm) both of which are dispersants.
- the borated polyisobutylene succinimide (2.3 mass % boron) is a highly borated dispersant and was used in the formulations with higher boron concentrations to reduce the viscometric effects of adding large amounts of dispersant to a lubricant.
- Fig. 3 shows the TEOST 33C results for various borated additives at high boron levels in a fully formulated oil. Generally, as boron levels increase so does the mass of the TEOST 33C deposits, often surpassing specification limits. One interesting result from Fig. 3 was the decrease in deposits when borated calcium sulfonate was added to the formulation in higher concentrations.
- a possible cause for the deposit decrease can be that increasing the boron through borated calcium sulfonate will also increase the soap level. It is known that TEOST 33C deposits can be affected by soap levels so a more in-depth TEOST 33C study was conducted using two different additive systems.
- Additive system 1 was designed with a mixture of calcium salicylate and magnesium sulfonate detergents (soap level- 1.1%), incorporated a Group V ester, and used a molybdenum ester amide, while additive system 2 had a mixture of calcium sulfonate and magnesium sulfonate detergents (soap level-0.59%), incorporated a Group V alkylated naphthalene, and used a molybdenum oxide. Both additive systems were similar in antioxidancy, antiwear, dispersancy, and base stock composition.
- test samples were matched in soap level to one of the two reference lubricants to determine if the detergent in borated calcium sulfonate was responsible for the improved deposit results or if its chemistry was such that boron no longer affected deposits.
- Three borated additives from Fig. 3 were chosen to continue in further studies to determine if boron introduced into a formulation through borated calcium sulfonate would result in less deposits and if that effect was dependent upon the detergent system of the lubricant.
- Fig. 4 compares two borated dispersant additives in a formulation utilizing a calcium salicylate/magnesium sulfonate detergent system at a soap level of 1.1% by weight.
- PIBSA polyisobutylene succinimide
- PIBSA/PAM borated polyisobutylene succinimide plus polyamine
- borated calcium sulfonate show little if any correlation between boron concentration and cleanliness.
- Fig. 5 compares the same three borated additives in a calcium/magnesium sulfonate detergent system at approximately half the soap level (0.6%). At a lower soap level, with only sulfonate detergents, borated calcium sulfonate is the only additive that does not result in higher deposits when boron is increased.
- Fig. 6 shows TEOST 33C deposits versus boron concentration for lubricants with a mixed calcium/magnesium sulfonate detergent system.
- formulations containing high concentrations of boron typically negatively impact cleanliness as seen with TEOST 33C data.
- Formulations containing a borated calcium sulfonate detergent with high boron levels exhibit strong wear performance in the Sequence IVB engine test and provide strong cleanliness as seen with TEOST 33C data.
- the one or more lubricating oil additives further comprise one or more of an antiwear additive, viscosity modifier, antioxidant, other detergent, dispersant, pour point depressant, corrosion inhibitor, metal deactivator, seal compatibility additive, anti-foam agent, inhibitor, friction modifier, and anti-rust additive.
- a lubricating oil composition comprising a lubricating oil base stock as a major component, and one or more lubricating oil additives, as a minor component; wherein the one or more lubricating oil additives comprise at least one borated detergent; wherein the at least one borated detergent comprises a borated alkaline earth metal sulfonate; wherein the borated alkaline earth metal sulfonate is present in an amount sufficient to provide a total boron concentration of about 300 parts per million or greater in the lubricating oil; and wherein wear protection is improved, and deposit control and cleanliness are maintained or improved, in an engine or other mechanical component lubricated with the lubricating oil, as compared to wear protection, deposit control and cleanliness achieved using a lubricating oil containing a borated additive other than the at least one borated alkaline earth metal sulfonate.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
L'invention concerne un procédé d'amélioration de la protection à l'usure, tout en maintenant ou en améliorant la régulation de dépôts et la propreté, dans un moteur ou autre composant mécanique lubrifié avec une huile lubrifiante en utilisant une huile formulée en comme huile lubrifiante. L'huile formulée présente une composition comprenant une huile de base d'huile lubrifiante comme constituant majeur, et un ou plusieurs additives d'huile lubrifiante comprenant au moins un détergent boraté, comme constituant mineur. Le ou les détergents boratés comprennent un sulfonate de métal alcalino-terreux boré. Le sulfonate de métal alcalino-terreux boraté est présent en une quantité suffisante pour fournir une concentration totale en bore d'environ 300 parties par million ou plus dans l'huile formulée. La protection contre l'usure est améliorée, et la régulation de dépôts et la propreté sont maintenues ou améliorées, par comparaison avec une protection contre l'usure, une régulation de dépôts et une propreté réalisées à l'aide d'une huile lubrifiante contenant un additif boraté autre que l'au moins un sulfonate de métal alcalino-terreux boraté.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862755646P | 2018-11-05 | 2018-11-05 | |
US62/755,646 | 2018-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020096804A1 true WO2020096804A1 (fr) | 2020-05-14 |
Family
ID=68582481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2019/058450 WO2020096804A1 (fr) | 2018-11-05 | 2019-10-29 | Compositions d'huile lubrifiante ayant une propreté et des performances d'usure améliorées |
Country Status (2)
Country | Link |
---|---|
US (1) | US20200140775A1 (fr) |
WO (1) | WO2020096804A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240059999A1 (en) * | 2022-08-02 | 2024-02-22 | Afton Chemical Corporation | Detergent systems for improved piston cleanliness |
US11912955B1 (en) * | 2022-10-28 | 2024-02-27 | Afton Chemical Corporation | Lubricating compositions for reduced low temperature valve train wear |
US12146115B2 (en) | 2022-12-20 | 2024-11-19 | Afton Chemical Corporation | Low ash lubricating compositions for controlling steel corrosion |
Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US479A (en) | 1837-11-23 | Improvement in windmills | ||
US2655A (en) | 1842-05-30 | Manner of constructing portable tents | ||
US1815022A (en) | 1930-05-03 | 1931-07-14 | Standard Oil Dev Co | Hydrocarbon oil and process for manufacturing the same |
US2015748A (en) | 1933-06-30 | 1935-10-01 | Standard Oil Dev Co | Method for producing pour inhibitors |
US2100993A (en) | 1934-12-14 | 1937-11-30 | Rohm & Haas | Process for preparing esters and products |
US2191498A (en) | 1935-11-27 | 1940-02-27 | Socony Vacuum Oil Co Inc | Mineral oil composition and method of making |
US2387501A (en) | 1944-04-04 | 1945-10-23 | Du Pont | Hydrocarbon oil |
US2666746A (en) | 1952-08-11 | 1954-01-19 | Standard Oil Dev Co | Lubricating oil composition |
US2721878A (en) | 1951-08-18 | 1955-10-25 | Exxon Research Engineering Co | Strong acid as a polymerization modifier in the production of liquid polymers |
US2721877A (en) | 1951-08-22 | 1955-10-25 | Exxon Research Engineering Co | Lubricating oil additives and a process for their preparation |
US2817693A (en) | 1954-03-29 | 1957-12-24 | Shell Dev | Production of oils from waxes |
US3036003A (en) | 1957-08-07 | 1962-05-22 | Sinclair Research Inc | Lubricating oil composition |
US3087936A (en) | 1961-08-18 | 1963-04-30 | Lubrizol Corp | Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound |
US3172892A (en) | 1959-03-30 | 1965-03-09 | Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine | |
US3200107A (en) | 1961-06-12 | 1965-08-10 | Lubrizol Corp | Process for preparing acylated amine-cs2 compositions and products |
US3215707A (en) | 1960-06-07 | 1965-11-02 | Lubrizol Corp | Lubricant |
US3250715A (en) | 1964-02-04 | 1966-05-10 | Lubrizol Corp | Terpolymer product and lubricating composition containing it |
US3272746A (en) | 1965-11-22 | 1966-09-13 | Lubrizol Corp | Lubricating composition containing an acylated nitrogen compound |
US3275554A (en) | 1963-08-02 | 1966-09-27 | Shell Oil Co | Polyolefin substituted polyamines and lubricants containing them |
US3316177A (en) | 1964-12-07 | 1967-04-25 | Lubrizol Corp | Functional fluid containing a sludge inhibiting detergent comprising the polyamine salt of the reaction product of maleic anhydride and an oxidized interpolymer of propylene and ethylene |
US3322670A (en) | 1963-08-26 | 1967-05-30 | Standard Oil Co | Detergent-dispersant lubricant additive having anti-rust and anti-wear properties |
US3329658A (en) | 1962-05-14 | 1967-07-04 | Monsanto Co | Dispersency oil additives |
US3382291A (en) | 1965-04-23 | 1968-05-07 | Mobil Oil Corp | Polymerization of olefins with bf3 |
US3413347A (en) | 1966-01-26 | 1968-11-26 | Ethyl Corp | Mannich reaction products of high molecular weight alkyl phenols, aldehydes and polyaminopolyalkyleneamines |
US3438757A (en) | 1965-08-23 | 1969-04-15 | Chevron Res | Hydrocarbyl amines for fuel detergents |
US3444170A (en) | 1959-03-30 | 1969-05-13 | Lubrizol Corp | Process which comprises reacting a carboxylic intermediate with an amine |
US3449250A (en) | 1962-05-14 | 1969-06-10 | Monsanto Co | Dispersency oil additives |
US3454607A (en) | 1969-02-10 | 1969-07-08 | Lubrizol Corp | High molecular weight carboxylic compositions |
US3454555A (en) | 1965-01-28 | 1969-07-08 | Shell Oil Co | Oil-soluble halogen-containing polyamines and polyethyleneimines |
US3480548A (en) * | 1967-06-21 | 1969-11-25 | Texaco Inc | Alkaline earth metal polyborate carbonate overbased alkaline earth metal sulfonate lube oil composition |
US3519565A (en) | 1967-09-19 | 1970-07-07 | Lubrizol Corp | Oil-soluble interpolymers of n-vinylthiopyrrolidones |
US3541012A (en) | 1968-04-15 | 1970-11-17 | Lubrizol Corp | Lubricants and fuels containing improved acylated nitrogen additives |
US3630904A (en) | 1968-07-03 | 1971-12-28 | Lubrizol Corp | Lubricating oils and fuels containing acylated nitrogen additives |
US3632511A (en) | 1969-11-10 | 1972-01-04 | Lubrizol Corp | Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same |
US3652616A (en) | 1969-08-14 | 1972-03-28 | Standard Oil Co | Additives for fuels and lubricants |
US3687849A (en) | 1968-06-18 | 1972-08-29 | Lubrizol Corp | Lubricants containing oil-soluble graft polymers derived from degraded ethylene-propylene interpolymers |
US3697574A (en) | 1965-10-22 | 1972-10-10 | Standard Oil Co | Boron derivatives of high molecular weight mannich condensation products |
US3702300A (en) | 1968-12-20 | 1972-11-07 | Lubrizol Corp | Lubricant containing nitrogen-containing ester |
US3703536A (en) | 1967-11-24 | 1972-11-21 | Standard Oil Co | Preparation of oil-soluble boron derivatives of an alkylene polyamine-substituted phenol-formaldehyde addition product |
US3704308A (en) | 1965-10-22 | 1972-11-28 | Standard Oil Co | Boron-containing high molecular weight mannich condensation |
US3725480A (en) | 1968-11-08 | 1973-04-03 | Standard Oil Co | Ashless oil additives |
US3726882A (en) | 1968-11-08 | 1973-04-10 | Standard Oil Co | Ashless oil additives |
US3742082A (en) | 1971-11-18 | 1973-06-26 | Mobil Oil Corp | Dimerization of olefins with boron trifluoride |
US3751365A (en) | 1965-10-22 | 1973-08-07 | Standard Oil Co | Concentrates and crankcase oils comprising oil solutions of boron containing high molecular weight mannich reaction condensation products |
US3755433A (en) | 1971-12-16 | 1973-08-28 | Texaco Inc | Ashless lubricating oil dispersant |
US3756953A (en) | 1965-10-22 | 1973-09-04 | Standard Oil Co | Vatives of high molecular weight mannich reaction condensation concentrate and crankcase oils comprising oil solutions of boron deri |
US3769363A (en) | 1972-03-13 | 1973-10-30 | Mobil Oil Corp | Oligomerization of olefins with boron trifluoride |
US3787374A (en) | 1971-09-07 | 1974-01-22 | Lubrizol Corp | Process for preparing high molecular weight carboxylic compositions |
US3798165A (en) | 1965-10-22 | 1974-03-19 | Standard Oil Co | Lubricating oils containing high molecular weight mannich condensation products |
US3803039A (en) | 1970-07-13 | 1974-04-09 | Standard Oil Co | Oil solution of aliphatic acid derivatives of high molecular weight mannich condensation product |
GB1350257A (en) | 1970-06-05 | 1974-04-18 | Shell Int Research | Process for the preparation of a lubricating oil |
US3822209A (en) | 1966-02-01 | 1974-07-02 | Ethyl Corp | Lubricant additives |
US3876720A (en) | 1972-07-24 | 1975-04-08 | Gulf Research Development Co | Internal olefin |
GB1390359A (en) | 1971-05-13 | 1975-04-09 | Shell Int Research | Process for the preparation of lubricating oil with high viscosity index |
GB1429494A (en) | 1972-04-06 | 1976-03-24 | Shell Int Research | Process for the preparation of a lubricating oil |
US3948800A (en) | 1971-07-01 | 1976-04-06 | The Lubrizol Corporation | Dispersant compositions |
GB1440230A (en) | 1972-08-04 | 1976-06-23 | Shell Int Research | Process for the preparation of lubricating oils |
US4100082A (en) | 1976-01-28 | 1978-07-11 | The Lubrizol Corporation | Lubricants containing amino phenol-detergent/dispersant combinations |
US4149178A (en) | 1976-10-05 | 1979-04-10 | American Technology Corporation | Pattern generating system and method |
US4218330A (en) | 1978-06-26 | 1980-08-19 | Ethyl Corporation | Lubricant |
US4234435A (en) | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US4239930A (en) | 1979-05-17 | 1980-12-16 | Pearsall Chemical Company | Continuous oligomerization process |
CA1094044A (fr) | 1977-02-25 | 1981-01-20 | Norman A. Meinhardt | Traduction non-disponible |
US4367352A (en) | 1980-12-22 | 1983-01-04 | Texaco Inc. | Oligomerized olefins for lubricant stock |
US4413156A (en) | 1982-04-26 | 1983-11-01 | Texaco Inc. | Manufacture of synthetic lubricant additives from low molecular weight olefins using boron trifluoride catalysts |
US4426305A (en) | 1981-03-23 | 1984-01-17 | Edwin Cooper, Inc. | Lubricating compositions containing boronated nitrogen-containing dispersants |
US4434408A (en) | 1980-03-11 | 1984-02-28 | Sony Corporation | Oscillator having capacitor charging and discharging controlled by non-saturating switches |
US4454059A (en) | 1976-11-12 | 1984-06-12 | The Lubrizol Corporation | Nitrogenous dispersants, lubricants and concentrates containing said nitrogenous dispersants |
US4594172A (en) | 1984-04-18 | 1986-06-10 | Shell Oil Company | Process for the preparation of hydrocarbons |
US4767551A (en) | 1985-12-02 | 1988-08-30 | Amoco Corporation | Metal-containing lubricant compositions |
US4798684A (en) | 1987-06-09 | 1989-01-17 | The Lubrizol Corporation | Nitrogen containing anti-oxidant compositions |
US4827073A (en) | 1988-01-22 | 1989-05-02 | Mobil Oil Corporation | Process for manufacturing olefinic oligomers having lubricating properties |
US4827064A (en) | 1986-12-24 | 1989-05-02 | Mobil Oil Corporation | High viscosity index synthetic lubricant compositions |
US4897178A (en) | 1983-05-02 | 1990-01-30 | Uop | Hydrocracking catalyst and hydrocracking process |
US4910355A (en) | 1988-11-02 | 1990-03-20 | Ethyl Corporation | Olefin oligomer functional fluid using internal olefins |
US4921594A (en) | 1985-06-28 | 1990-05-01 | Chevron Research Company | Production of low pour point lubricating oils |
US4943672A (en) | 1987-12-18 | 1990-07-24 | Exxon Research And Engineering Company | Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403) |
US4952739A (en) | 1988-10-26 | 1990-08-28 | Exxon Chemical Patents Inc. | Organo-Al-chloride catalyzed poly-n-butenes process |
US4956122A (en) | 1982-03-10 | 1990-09-11 | Uniroyal Chemical Company, Inc. | Lubricating composition |
US4975177A (en) | 1985-11-01 | 1990-12-04 | Mobil Oil Corporation | High viscosity index lubricants |
US5068487A (en) | 1990-07-19 | 1991-11-26 | Ethyl Corporation | Olefin oligomerization with BF3 alcohol alkoxylate co-catalysts |
US5075269A (en) | 1988-12-15 | 1991-12-24 | Mobil Oil Corp. | Production of high viscosity index lubricating oil stock |
EP0464547A1 (fr) | 1990-07-05 | 1992-01-08 | Mobil Oil Corporation | Production de lubrifiants à haute indice de viscosité |
EP0464546A1 (fr) | 1990-07-05 | 1992-01-08 | Mobil Oil Corporation | Production de lubrifiants à haut indice de viscosité |
US5084197A (en) | 1990-09-21 | 1992-01-28 | The Lubrizol Corporation | Antiemulsion/antifoam agent for use in oils |
EP0471071A1 (fr) | 1990-02-23 | 1992-02-19 | Lubrizol Corp | Fluides fonctionnels a hautes temperatures. |
US5430105A (en) | 1992-12-17 | 1995-07-04 | Exxon Chemical Patents Inc. | Low sediment process for forming borated dispersant |
US5705458A (en) | 1995-09-19 | 1998-01-06 | The Lubrizol Corporation | Additive compositions for lubricants and functional fluids |
US5739088A (en) * | 1990-03-14 | 1998-04-14 | Nippon Oil Co., Ltd. | Method of lubricating an alcohol-based fuel engine with an engine oil composition |
US6034039A (en) | 1997-11-28 | 2000-03-07 | Exxon Chemical Patents, Inc. | Lubricating oil compositions |
US6080301A (en) | 1998-09-04 | 2000-06-27 | Exxonmobil Research And Engineering Company | Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins |
US6090989A (en) | 1997-10-20 | 2000-07-18 | Mobil Oil Corporation | Isoparaffinic lube basestock compositions |
US6165949A (en) | 1998-09-04 | 2000-12-26 | Exxon Research And Engineering Company | Premium wear resistant lubricant |
US6323164B1 (en) | 2000-11-01 | 2001-11-27 | Ethyl Corporation | Dispersant (meth) acrylate copolymers having excellent low temperature properties |
US20080020950A1 (en) | 2006-07-19 | 2008-01-24 | Christopher Gray | Lubricating Oil Composition |
EP2000523A1 (fr) * | 2007-05-30 | 2008-12-10 | Chevron Oronite S.A. | Huile lubrifiante dotée d'une protection améliorée contre l'usure et la corrosion |
US7704930B2 (en) | 2002-01-31 | 2010-04-27 | Exxonmobil Research And Engineering Company | Mixed TBN detergents and lubricating oil compositions containing such detergents |
US8048833B2 (en) | 2007-08-17 | 2011-11-01 | Exxonmobil Research And Engineering Company | Catalytic antioxidants |
WO2019244019A1 (fr) * | 2018-06-22 | 2019-12-26 | Chevron Oronite Company Llc | Composition d'huile lubrifiante |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7981846B2 (en) * | 2005-11-30 | 2011-07-19 | Chevron Oronite Company Llc | Lubricating oil composition with improved emission compatibility |
-
2019
- 2019-10-29 WO PCT/US2019/058450 patent/WO2020096804A1/fr active Application Filing
- 2019-10-29 US US16/666,645 patent/US20200140775A1/en not_active Abandoned
Patent Citations (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US479A (en) | 1837-11-23 | Improvement in windmills | ||
US2655A (en) | 1842-05-30 | Manner of constructing portable tents | ||
US1815022A (en) | 1930-05-03 | 1931-07-14 | Standard Oil Dev Co | Hydrocarbon oil and process for manufacturing the same |
US2015748A (en) | 1933-06-30 | 1935-10-01 | Standard Oil Dev Co | Method for producing pour inhibitors |
US2100993A (en) | 1934-12-14 | 1937-11-30 | Rohm & Haas | Process for preparing esters and products |
US2191498A (en) | 1935-11-27 | 1940-02-27 | Socony Vacuum Oil Co Inc | Mineral oil composition and method of making |
US2387501A (en) | 1944-04-04 | 1945-10-23 | Du Pont | Hydrocarbon oil |
US2721878A (en) | 1951-08-18 | 1955-10-25 | Exxon Research Engineering Co | Strong acid as a polymerization modifier in the production of liquid polymers |
US2721877A (en) | 1951-08-22 | 1955-10-25 | Exxon Research Engineering Co | Lubricating oil additives and a process for their preparation |
US2666746A (en) | 1952-08-11 | 1954-01-19 | Standard Oil Dev Co | Lubricating oil composition |
US2817693A (en) | 1954-03-29 | 1957-12-24 | Shell Dev | Production of oils from waxes |
US3036003A (en) | 1957-08-07 | 1962-05-22 | Sinclair Research Inc | Lubricating oil composition |
US3172892A (en) | 1959-03-30 | 1965-03-09 | Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine | |
US3219666A (en) | 1959-03-30 | 1965-11-23 | Derivatives of succinic acids and nitrogen compounds | |
US3341542A (en) | 1959-03-30 | 1967-09-12 | Lubrizol Corp | Oil soluble acrylated nitrogen compounds having a polar acyl, acylimidoyl or acyloxy group with a nitrogen atom attached directly thereto |
US3444170A (en) | 1959-03-30 | 1969-05-13 | Lubrizol Corp | Process which comprises reacting a carboxylic intermediate with an amine |
US3215707A (en) | 1960-06-07 | 1965-11-02 | Lubrizol Corp | Lubricant |
US3200107A (en) | 1961-06-12 | 1965-08-10 | Lubrizol Corp | Process for preparing acylated amine-cs2 compositions and products |
US3087936A (en) | 1961-08-18 | 1963-04-30 | Lubrizol Corp | Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound |
US3254025A (en) | 1961-08-18 | 1966-05-31 | Lubrizol Corp | Boron-containing acylated amine and lubricating compositions containing the same |
US3449250A (en) | 1962-05-14 | 1969-06-10 | Monsanto Co | Dispersency oil additives |
US3329658A (en) | 1962-05-14 | 1967-07-04 | Monsanto Co | Dispersency oil additives |
US3275554A (en) | 1963-08-02 | 1966-09-27 | Shell Oil Co | Polyolefin substituted polyamines and lubricants containing them |
US3322670A (en) | 1963-08-26 | 1967-05-30 | Standard Oil Co | Detergent-dispersant lubricant additive having anti-rust and anti-wear properties |
US3250715A (en) | 1964-02-04 | 1966-05-10 | Lubrizol Corp | Terpolymer product and lubricating composition containing it |
US3316177A (en) | 1964-12-07 | 1967-04-25 | Lubrizol Corp | Functional fluid containing a sludge inhibiting detergent comprising the polyamine salt of the reaction product of maleic anhydride and an oxidized interpolymer of propylene and ethylene |
US3454555A (en) | 1965-01-28 | 1969-07-08 | Shell Oil Co | Oil-soluble halogen-containing polyamines and polyethyleneimines |
US3382291A (en) | 1965-04-23 | 1968-05-07 | Mobil Oil Corp | Polymerization of olefins with bf3 |
US3438757A (en) | 1965-08-23 | 1969-04-15 | Chevron Res | Hydrocarbyl amines for fuel detergents |
US3565804A (en) | 1965-08-23 | 1971-02-23 | Chevron Res | Lubricating oil additives |
US3751365A (en) | 1965-10-22 | 1973-08-07 | Standard Oil Co | Concentrates and crankcase oils comprising oil solutions of boron containing high molecular weight mannich reaction condensation products |
US3756953A (en) | 1965-10-22 | 1973-09-04 | Standard Oil Co | Vatives of high molecular weight mannich reaction condensation concentrate and crankcase oils comprising oil solutions of boron deri |
US3798165A (en) | 1965-10-22 | 1974-03-19 | Standard Oil Co | Lubricating oils containing high molecular weight mannich condensation products |
US3704308A (en) | 1965-10-22 | 1972-11-28 | Standard Oil Co | Boron-containing high molecular weight mannich condensation |
US3697574A (en) | 1965-10-22 | 1972-10-10 | Standard Oil Co | Boron derivatives of high molecular weight mannich condensation products |
US3272746A (en) | 1965-11-22 | 1966-09-13 | Lubrizol Corp | Lubricating composition containing an acylated nitrogen compound |
US3413347A (en) | 1966-01-26 | 1968-11-26 | Ethyl Corp | Mannich reaction products of high molecular weight alkyl phenols, aldehydes and polyaminopolyalkyleneamines |
US3725277A (en) | 1966-01-26 | 1973-04-03 | Ethyl Corp | Lubricant compositions |
US3822209A (en) | 1966-02-01 | 1974-07-02 | Ethyl Corp | Lubricant additives |
US3480548A (en) * | 1967-06-21 | 1969-11-25 | Texaco Inc | Alkaline earth metal polyborate carbonate overbased alkaline earth metal sulfonate lube oil composition |
US3666730A (en) | 1967-09-19 | 1972-05-30 | Lubrizol Corp | Oil-soluble interpolymers of n-vinylthiopyrrolidones |
US3519565A (en) | 1967-09-19 | 1970-07-07 | Lubrizol Corp | Oil-soluble interpolymers of n-vinylthiopyrrolidones |
US3703536A (en) | 1967-11-24 | 1972-11-21 | Standard Oil Co | Preparation of oil-soluble boron derivatives of an alkylene polyamine-substituted phenol-formaldehyde addition product |
US3541012A (en) | 1968-04-15 | 1970-11-17 | Lubrizol Corp | Lubricants and fuels containing improved acylated nitrogen additives |
US3687849A (en) | 1968-06-18 | 1972-08-29 | Lubrizol Corp | Lubricants containing oil-soluble graft polymers derived from degraded ethylene-propylene interpolymers |
US3630904A (en) | 1968-07-03 | 1971-12-28 | Lubrizol Corp | Lubricating oils and fuels containing acylated nitrogen additives |
US3725480A (en) | 1968-11-08 | 1973-04-03 | Standard Oil Co | Ashless oil additives |
US3726882A (en) | 1968-11-08 | 1973-04-10 | Standard Oil Co | Ashless oil additives |
US3702300A (en) | 1968-12-20 | 1972-11-07 | Lubrizol Corp | Lubricant containing nitrogen-containing ester |
US3454607A (en) | 1969-02-10 | 1969-07-08 | Lubrizol Corp | High molecular weight carboxylic compositions |
US3652616A (en) | 1969-08-14 | 1972-03-28 | Standard Oil Co | Additives for fuels and lubricants |
US3632511A (en) | 1969-11-10 | 1972-01-04 | Lubrizol Corp | Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same |
GB1350257A (en) | 1970-06-05 | 1974-04-18 | Shell Int Research | Process for the preparation of a lubricating oil |
US3803039A (en) | 1970-07-13 | 1974-04-09 | Standard Oil Co | Oil solution of aliphatic acid derivatives of high molecular weight mannich condensation product |
GB1390359A (en) | 1971-05-13 | 1975-04-09 | Shell Int Research | Process for the preparation of lubricating oil with high viscosity index |
US3948800A (en) | 1971-07-01 | 1976-04-06 | The Lubrizol Corporation | Dispersant compositions |
US3787374A (en) | 1971-09-07 | 1974-01-22 | Lubrizol Corp | Process for preparing high molecular weight carboxylic compositions |
US3742082A (en) | 1971-11-18 | 1973-06-26 | Mobil Oil Corp | Dimerization of olefins with boron trifluoride |
US3755433A (en) | 1971-12-16 | 1973-08-28 | Texaco Inc | Ashless lubricating oil dispersant |
US3769363A (en) | 1972-03-13 | 1973-10-30 | Mobil Oil Corp | Oligomerization of olefins with boron trifluoride |
GB1429494A (en) | 1972-04-06 | 1976-03-24 | Shell Int Research | Process for the preparation of a lubricating oil |
US3876720A (en) | 1972-07-24 | 1975-04-08 | Gulf Research Development Co | Internal olefin |
GB1440230A (en) | 1972-08-04 | 1976-06-23 | Shell Int Research | Process for the preparation of lubricating oils |
US4100082A (en) | 1976-01-28 | 1978-07-11 | The Lubrizol Corporation | Lubricants containing amino phenol-detergent/dispersant combinations |
US4149178A (en) | 1976-10-05 | 1979-04-10 | American Technology Corporation | Pattern generating system and method |
US4454059A (en) | 1976-11-12 | 1984-06-12 | The Lubrizol Corporation | Nitrogenous dispersants, lubricants and concentrates containing said nitrogenous dispersants |
CA1094044A (fr) | 1977-02-25 | 1981-01-20 | Norman A. Meinhardt | Traduction non-disponible |
US4218330A (en) | 1978-06-26 | 1980-08-19 | Ethyl Corporation | Lubricant |
US4234435A (en) | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US4239930A (en) | 1979-05-17 | 1980-12-16 | Pearsall Chemical Company | Continuous oligomerization process |
US4434408A (en) | 1980-03-11 | 1984-02-28 | Sony Corporation | Oscillator having capacitor charging and discharging controlled by non-saturating switches |
US4367352A (en) | 1980-12-22 | 1983-01-04 | Texaco Inc. | Oligomerized olefins for lubricant stock |
US4426305A (en) | 1981-03-23 | 1984-01-17 | Edwin Cooper, Inc. | Lubricating compositions containing boronated nitrogen-containing dispersants |
US4956122A (en) | 1982-03-10 | 1990-09-11 | Uniroyal Chemical Company, Inc. | Lubricating composition |
US4413156A (en) | 1982-04-26 | 1983-11-01 | Texaco Inc. | Manufacture of synthetic lubricant additives from low molecular weight olefins using boron trifluoride catalysts |
US4897178A (en) | 1983-05-02 | 1990-01-30 | Uop | Hydrocracking catalyst and hydrocracking process |
US4594172A (en) | 1984-04-18 | 1986-06-10 | Shell Oil Company | Process for the preparation of hydrocarbons |
US4921594A (en) | 1985-06-28 | 1990-05-01 | Chevron Research Company | Production of low pour point lubricating oils |
US4975177A (en) | 1985-11-01 | 1990-12-04 | Mobil Oil Corporation | High viscosity index lubricants |
US4767551A (en) | 1985-12-02 | 1988-08-30 | Amoco Corporation | Metal-containing lubricant compositions |
US4827064A (en) | 1986-12-24 | 1989-05-02 | Mobil Oil Corporation | High viscosity index synthetic lubricant compositions |
US4798684A (en) | 1987-06-09 | 1989-01-17 | The Lubrizol Corporation | Nitrogen containing anti-oxidant compositions |
US4943672A (en) | 1987-12-18 | 1990-07-24 | Exxon Research And Engineering Company | Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403) |
US4827073A (en) | 1988-01-22 | 1989-05-02 | Mobil Oil Corporation | Process for manufacturing olefinic oligomers having lubricating properties |
US4952739A (en) | 1988-10-26 | 1990-08-28 | Exxon Chemical Patents Inc. | Organo-Al-chloride catalyzed poly-n-butenes process |
US4910355A (en) | 1988-11-02 | 1990-03-20 | Ethyl Corporation | Olefin oligomer functional fluid using internal olefins |
US5075269A (en) | 1988-12-15 | 1991-12-24 | Mobil Oil Corp. | Production of high viscosity index lubricating oil stock |
EP0471071A1 (fr) | 1990-02-23 | 1992-02-19 | Lubrizol Corp | Fluides fonctionnels a hautes temperatures. |
US5739088A (en) * | 1990-03-14 | 1998-04-14 | Nippon Oil Co., Ltd. | Method of lubricating an alcohol-based fuel engine with an engine oil composition |
EP0464547A1 (fr) | 1990-07-05 | 1992-01-08 | Mobil Oil Corporation | Production de lubrifiants à haute indice de viscosité |
EP0464546A1 (fr) | 1990-07-05 | 1992-01-08 | Mobil Oil Corporation | Production de lubrifiants à haut indice de viscosité |
US5068487A (en) | 1990-07-19 | 1991-11-26 | Ethyl Corporation | Olefin oligomerization with BF3 alcohol alkoxylate co-catalysts |
US5084197A (en) | 1990-09-21 | 1992-01-28 | The Lubrizol Corporation | Antiemulsion/antifoam agent for use in oils |
US5430105A (en) | 1992-12-17 | 1995-07-04 | Exxon Chemical Patents Inc. | Low sediment process for forming borated dispersant |
US5705458A (en) | 1995-09-19 | 1998-01-06 | The Lubrizol Corporation | Additive compositions for lubricants and functional fluids |
US6090989A (en) | 1997-10-20 | 2000-07-18 | Mobil Oil Corporation | Isoparaffinic lube basestock compositions |
US6034039A (en) | 1997-11-28 | 2000-03-07 | Exxon Chemical Patents, Inc. | Lubricating oil compositions |
US6080301A (en) | 1998-09-04 | 2000-06-27 | Exxonmobil Research And Engineering Company | Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins |
US6165949A (en) | 1998-09-04 | 2000-12-26 | Exxon Research And Engineering Company | Premium wear resistant lubricant |
US6323164B1 (en) | 2000-11-01 | 2001-11-27 | Ethyl Corporation | Dispersant (meth) acrylate copolymers having excellent low temperature properties |
US7704930B2 (en) | 2002-01-31 | 2010-04-27 | Exxonmobil Research And Engineering Company | Mixed TBN detergents and lubricating oil compositions containing such detergents |
US20080020950A1 (en) | 2006-07-19 | 2008-01-24 | Christopher Gray | Lubricating Oil Composition |
EP2000523A1 (fr) * | 2007-05-30 | 2008-12-10 | Chevron Oronite S.A. | Huile lubrifiante dotée d'une protection améliorée contre l'usure et la corrosion |
US8048833B2 (en) | 2007-08-17 | 2011-11-01 | Exxonmobil Research And Engineering Company | Catalytic antioxidants |
WO2019244019A1 (fr) * | 2018-06-22 | 2019-12-26 | Chevron Oronite Company Llc | Composition d'huile lubrifiante |
Non-Patent Citations (3)
Title |
---|
"Inter-science Publishers", 1964 |
M. W. RANNEY: "Klamann in Lubricants and Related Products", 1973, NOYES DATA CORPORATION OF PARKRIDGE |
W. W. YAUJ. J. KIRKLANDD. D. BLY: "Modern Size Exclusion Liquid Chromatography", 1979, JOHN WILEY AND SONS |
Also Published As
Publication number | Publication date |
---|---|
US20200140775A1 (en) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10487289B2 (en) | Lubricating oil compositions and methods of use thereof | |
EP3149132B1 (fr) | Composition lubrifiante avec protection d'usure pour les moteurs | |
US10738262B2 (en) | Lubricating oil compositions with engine wear protection | |
US20210189283A1 (en) | Lubricating oil compositions and methods of use | |
WO2017172254A1 (fr) | Compositions de lubrifiant | |
US20160186084A1 (en) | Lubricating oil compositions with engine wear protection | |
US20190203139A1 (en) | Friction and wear reduction using liquid crystal base stocks | |
WO2018026982A1 (fr) | Huile lubrifiante pour moteur pour une protection améliorée contre l'usure et une efficacité améliorée du carburant | |
US20200140775A1 (en) | Lubricating oil compositions having improved cleanliness and wear performance | |
WO2020123440A1 (fr) | Procédé d'amélioration de la résistance à l'oxydation et au dépôt d'huiles lubrifiantes | |
US11976251B2 (en) | Method for controlling lubrication of a rotary shaft seal | |
US20200199477A1 (en) | Method for improving high temperature antifoaming performance of a lubricating oil | |
US20200165537A1 (en) | Lubricating oil compositions with improved deposit resistance and methods thereof | |
US20200199475A1 (en) | Lubricant Compositions With Improved Wear Control | |
US20190345407A1 (en) | Method for improving engine fuel efficiency | |
US20200032158A1 (en) | Lubricating oil compositions with engine corrosion protection | |
US20200199480A1 (en) | Lubricating oil compositions with antioxidant formation and dissipation control | |
US20200199483A1 (en) | Lubricating oil compositions with viscosity control | |
WO2019133218A1 (fr) | Compositions d'huile lubrifiante avec commande d'usure et de boue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19805066 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19805066 Country of ref document: EP Kind code of ref document: A1 |