WO2020096333A1 - Plastic road barrier capable of removing nitrogen oxide - Google Patents
Plastic road barrier capable of removing nitrogen oxide Download PDFInfo
- Publication number
- WO2020096333A1 WO2020096333A1 PCT/KR2019/014947 KR2019014947W WO2020096333A1 WO 2020096333 A1 WO2020096333 A1 WO 2020096333A1 KR 2019014947 W KR2019014947 W KR 2019014947W WO 2020096333 A1 WO2020096333 A1 WO 2020096333A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium dioxide
- nox
- boundary stone
- road
- parts
- Prior art date
Links
- 239000004033 plastic Substances 0.000 title claims abstract description 20
- 229920003023 plastic Polymers 0.000 title claims abstract description 20
- 230000004888 barrier function Effects 0.000 title abstract 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title description 51
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 132
- 239000011941 photocatalyst Substances 0.000 claims abstract description 75
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 60
- 229910052751 metal Inorganic materials 0.000 claims abstract description 51
- 239000002184 metal Substances 0.000 claims abstract description 34
- 239000011247 coating layer Substances 0.000 claims abstract description 19
- 239000011575 calcium Substances 0.000 claims abstract description 14
- 239000003973 paint Substances 0.000 claims abstract description 14
- 239000011734 sodium Substances 0.000 claims abstract description 14
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 10
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 8
- 239000004575 stone Substances 0.000 claims description 54
- 229920003002 synthetic resin Polymers 0.000 claims description 21
- 239000000057 synthetic resin Substances 0.000 claims description 21
- 239000002699 waste material Substances 0.000 claims description 19
- 239000002243 precursor Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- 239000006227 byproduct Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 235000013311 vegetables Nutrition 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 238000001125 extrusion Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 238000003915 air pollution Methods 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 16
- 239000000243 solution Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 229910052745 lead Inorganic materials 0.000 description 6
- 230000001699 photocatalysis Effects 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 241000209094 Oryza Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 239000010903 husk Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000004298 light response Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- -1 platinum ions Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 239000003232 water-soluble binding agent Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C11/00—Details of pavings
- E01C11/22—Gutters; Kerbs ; Surface drainage of streets, roads or like traffic areas
- E01C11/221—Kerbs or like edging members, e.g. flush kerbs, shoulder retaining means ; Joint members, connecting or load-transfer means specially for kerbs
- E01C11/222—Raised kerbs, e.g. for sidewalks ; Integrated or portable means for facilitating ascent or descent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C11/00—Details of pavings
- E01C11/24—Methods or arrangements for preventing slipperiness or protecting against influences of the weather
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C2201/00—Paving elements
- E01C2201/06—Sets of paving elements
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C2201/00—Paving elements
- E01C2201/16—Elements joined together
Definitions
- the present invention relates to a road boundary stone among road facilities, and particularly to a road boundary stone that is made of plastic as a main raw material and can remove nitrogen oxides (NOx).
- NOx nitrogen oxides
- Road boundary seats usually have a continuous shape as shown in Figs. 1 and 2, and refer to installations continuously installed along the borders of roads to distinguish roads, sidewalks, roads, roads, or roads and non-roads.
- Traditionally concrete or stone has been used as a material, so this is called a boundary stone, but recently, many plastic road boundary stones have been proposed.
- nitrogen oxides is a compound of nitrogen and oxygen. It is an air pollutant generated by the oxidation of nitrogen in the air at high temperatures during the combustion process, and there are automobiles, ships, aircraft, incinerators, etc. It is a car driving. As a countermeasure to this emission, it is important to reduce emissions through improving the performance of automobiles, but it is also important to remove the emitted nitrogen oxides. Therefore, it is of great technical significance that the present invention intends to apply a photocatalyst capable of effectively removing nitrogen oxide by reacting widely in the visible light region to the road boundary stone above.
- a photocatalyst is a semiconductor that can purify pollutants by decomposing / removing harmful organic substances into harmless components as it has strong oxidizing and reducing power by reacting when a certain amount of light energy is received and forming electrons and holes.
- Titanium dioxide (TiO 2 ) is typically used to remove nitrogen oxides and the like.
- This titanium dioxide photocatalyst has the advantage of being chemically stable, harmless to the human body, and relatively inexpensive, but the energy band gap is 30-32 eV, and light in the ultraviolet region is required for its action. However, since most of the sunlight is in the visible region and the ultraviolet region is less than 5%, the photocatalyst needs to be able to absorb light in the visible region, which occupies most of the sunlight, in order to effectively use solar energy, which ultimately determines semiconductor properties. It is possible by changing the band spacing structure.
- a method of doping an element having a different valence number is mainly used in a titanium dioxide lattice, which creates a new trap site between the band gaps, a visible light region that is lower than ultraviolet light. It is to be able to absorb the light of.
- a metal for example, Fe, Cr, V, Co, Si, etc.
- the object of the present invention is based on a plastic road boundary stone formed of synthetic resin, and by adding a photocatalytic function capable of efficiently removing harmful substances, especially NOx, caused by exhaust of automobiles, NOx effective in preventing air pollution on the roadside and improving the environment
- the aim is to provide a removable plastic road boundary stone.
- a block-shaped plastic body formed in the longitudinal direction, and a coating layer coated on the surface of the body;
- the coating includes a titanium dioxide-based photocatalyst capable of removing NOx;
- TiO2 titanium dioxide lattice structure in which one selected from lead (Pb) as a necessary metal element and sodium (Na) and calcium (Ca) as a selected metal element is simultaneously doped;
- the total content of the necessary and optional metal elements contained in the titanium dioxide is 5 parts by weight to 15 parts by weight with respect to 100 parts by weight of titanium dioxide;
- each content of the required and selected metal elements contained in the titanium dioxide is preferably 2.5 parts by weight to 10 parts by weight with respect to 100 parts by weight of titanium dioxide, and more specifically, it is necessary with respect to 100 parts by weight of titanium dioxide
- the metal element is 7 ⁇ 0.5 parts by weight and the selected metal element is 5 ⁇ 0.5 parts by weight.
- a connecting rod connecting successively through a plurality of bodies by sequentially passing through adjacent through holes of the block;
- the through hole and the connecting rod are formed in an elliptical shape to prevent rotation of any axis of the main body.
- the main body and the connecting rod may be formed using a low-cost waste synthetic resin as a vegetable by-product, rice husk, sawdust, or a mixed raw material.
- the road boundary stone of the present invention is based on a plastic road boundary stone formed of synthetic resin, and is configured by adding a photocatalytic function capable of efficiently removing road harmful substances, especially NOx, due to exhaust of automobiles. Accordingly, it is possible to prevent air pollution and provide a comfortable road environment by removing harmful substances, especially NOx, caused by exhaust of automobiles on the road and around the road.
- the connecting rod structure that passes through the boundary stone bodies arranged one after another, there is an effect that it is easy to arrange and construct road boundary stones continuously in the field, and can be maintained firmly without fear of being separated after construction.
- the appearance is maintained as a coating layer coating, there is an effect that can improve the economic efficiency, productivity.
- 1 and 2 is a state diagram of a normal road boundary seats.
- FIG. 3 is a perspective view of a road boundary stone according to the present invention.
- Figure 4 is an exploded view of Figure 3;
- FIG. 5 is a cross-sectional view taken along line 'A-A' in FIG. 3;
- road boundary stone capable of removing nitrogen oxides
- FIG. 3 the road boundary stone according to the present invention is indicated by reference numeral 10.
- the road boundary stone refers to a road installation such as FIGS. 1 and 2 extending along the boundary of a roadway to distinguish a roadway and a roadway or a roadway
- the roadway boundarystone 10 of the present invention is also the same in this regard. 3 to 5
- the road boundary stone 10 of the present invention includes a block-type plastic body 11 formed in the longitudinal direction and a coating layer 12 applied to the surface of the body 11,
- the paint is to include a special photocatalyst in the present invention.
- the present inventor doped lead (Pb), which is known as the heaviest metal among stable elements in the titanium dioxide lattice structure, but at this time, selected other metal elements and simultaneously doped it with a certain content, thereby remarkably excellent response characteristics to ultraviolet light and visible light After confirming that the photocatalyst function was exhibited, the photocatalyst development was completed. Accordingly, the photocatalyst applied to the present invention is a titanium dioxide-based photocatalyst, and one selected from lead (Pb) as a required metal element and sodium (Na) and calcium (Ca) as a required metal element in a titanium dioxide (TiO2) lattice structure is simultaneously doped. It is characterized by being.
- the total content of the necessary and optional metal elements contained in the titanium dioxide is 5 parts by weight to 15 parts by weight with respect to 100 parts by weight of titanium dioxide.
- the content of the metal element doped in titanium dioxide exceeds the above range, excitation electrons do not work effectively, and thus, the photocatalytic function tends to decrease.
- the visible light response property tends to significantly decrease.
- each content of the required and selected metal elements contained in the titanium dioxide is 2.5 parts by weight to 10 parts by weight with respect to 100 parts by weight of titanium dioxide, and more specifically, the necessary metal elements with respect to 100 parts by weight of titanium dioxide 7 It is preferable that the content of the required metal element is slightly larger than the content of the selected metal element, such as ⁇ 0.5 parts by weight and the selected metal element 5 ⁇ 0.5 parts by weight. However, there is no significant difference in optical properties in terms of content between the required metal elements.
- the titanium dioxide precursor solution, a lead precursor solution as a required metal element, and a precursor solution selected from sodium and calcium as a metal element are simultaneously mixed and stirred, so that Pb and one of the selected metal elements are simultaneously doped in a lattice structure. Titanium dioxide photocatalyst in (sol) state is produced.
- the titanium dioxide precursor solution and the lead precursor solution, which is a required metal element are first mixed, and the mixed solution is mixed and stirred by mixing the selected metal element precursor, and the result is the same, but the doping state is more stable. Seems to.
- the specific configuration of the doping can be divided into 'Pb, Na-TiO 2 ' and 'Pb, Ca-TiO 2 ', but there is no significant difference in optical properties between them.
- the titanium dioxide precursor is a conventional titanium tetraisopropoxide (TTIP) and isopropyl alcohol is used as a dispersion solvent.
- the lead precursor is Pb (NO 3 ) 2 and a mixed solution of water and ethanol is used as a dispersion solvent.
- the sodium precursor is NaNO 3 and an aqueous nitric acid solution is used as a dispersion solvent
- the calcium precursor is Ca (NO 3 ) 2 ⁇ 4H 2 O and distilled water is used as a dispersion solvent.
- the doped titanium dioxide in the above-described sol state is evaporated under reduced pressure at 40 to 50 ° C. to form a titanium dioxide photocatalyst in a powdered state. And for the solid crystallization of the titanium dioxide photocatalyst, the titanium dioxide photocatalyst is calcined at 450 to 550 ° C for 3 to 5 hours. Depending on the firing process and firing temperature, the nanoparticle size and properties of the titanium dioxide photocatalyst may vary slightly, for example, when the firing temperature is 500 ° C, the most efficient maximum photolysis efficiency is exhibited.
- the calcined photocatalyst can be washed with water, filtered and dried to remove impurities on the surface.
- the titanium dioxide photocatalyst according to the present invention is prepared, and the finally obtained titanium dioxide photocatalyst is doped with platinum ions and nitrogen ions in the titanium dioxide lattice structure, wherein the titanium dioxide photocatalyst has a particle size of 5 to 10 nm.
- the first solution is prepared by dissolving Pb (NO 3 ) 2 in water-ethanol mixture
- the second solution is prepared by dissolving NaNO 3 in nitric acid aqueous solution for doping of the selected metal element.
- the first and second solutions were simultaneously mixed in an isopropyl alcohol solution containing titanium tetraisopropoxide (TTIP) and sufficiently stirred for at least 12 hours to react with each other, so as to sol doped titanium dioxide.
- Photocatalyst Pb, Na-TiO 2
- the lead and sodium doped titanium dioxide photocatalyst (Pb, Na-TiO 2 ) was prepared.
- the total content of Pb and Na contained in titanium dioxide was adjusted to 12 ⁇ 1 parts by weight relative to 100 parts by weight of titanium dioxide, but each content was set to 7 ⁇ 0.5 parts by weight and 5 ⁇ 0.5 parts by weight.
- titanium dioxide photocatalyst Pb, Ca-TiO 2
- lead and calcium were selected in the same manner as above.
- the content of the doped metal element with respect to 100 parts by weight of titanium dioxide is shown in [Table 1].
- Comparative Example 3 The reason why all the selected metal elements are described in Comparative Example 3 is that even if any element is selected, there is little difference in the properties of the titanium dioxide photocatalyst. On the other hand, if necessary, a Degussa P25 product known to have excellent efficiency among commercially available titanium dioxide photocatalysts was used as Comparative Example 4.
- titanium dioxide photocatalyst in which one of the required metal element and the selected metal manuscript is doped at the same time in the present invention forms more trap sites between band gaps than in other cases.
- the crystal structure of the powder was examined using X-ray diffraction analysis.
- the photocatalysts of Examples 1 and 2 also have a mixture of anatase phase and some rutile phase, and it is judged that a part of the anatase phase transition to rutile at the firing temperature.
- the photocatalyst powder exhibits better photocatalytic properties when the anatase phase coexists with the rutile phase in a proper ratio than when it is a pure anatase phase, so that the photocatalyst according to the embodiment of the present invention is not at all disadvantageous in nature. It can be seen that it does not.
- Reactors were used to evaluate the photoactivity for each photocatalyst of the examples and comparative examples.
- Examples 1, 2 and Comparative Examples 1 to 4 into a photocatalyst of the reactor was determined and analysis of the exhaust gas within the NO 2 concentration for 6 hours while injecting a gas containing 100 ppm of the concentration of nitrogen oxides NO 2.
- light having a wavelength of 290 nm or more is transmitted through ultraviolet light irradiation
- light having a wavelength of 430 nm or higher is transmitted through visible light irradiation. Table 4 shows the measurement results.
- the photocatalysts of Comparative Examples 1, 3, and 4 under ultraviolet light irradiation are not activated by visible light, so they are shown to be fine enough to say that almost no decomposition occurs, and the photocatalyst of Comparative Example 2 shows some decomposition efficiency.
- the decomposition efficiency close to perfection was shown. This is considered to be because the specific catalysts of Examples 1 and 2 had a relatively high specific surface area.
- the investigation targeting NO showed that the removal efficiency was better than the above case.
- the above photocatalyst can exhibit excellent responsiveness and photocatalytic efficacy in a wide wavelength range from the ultraviolet region to the visible ray region, it is particularly applied to paints for road boundary stone to effectively decompose and remove harmful NOx emitted from vehicles. It is expected to help greatly in purification.
- the paint is constructed and used for the purpose of forming the coating layer 12 on the surface of the plastic road boundary stone 10, and the paint contains at least the above-described titanium dioxide photocatalyst.
- This paint normally contains a composition for the production of a paint, in addition to the photocatalyst, for example, a water-soluble binder resin, a dispersant, and a pigment. If necessary, it may further contain a luminous material that absorbs and emits light.
- This coating may be applied by a method such as spray, brush, roller, printing, etc., but the coating layer 12 is applied to the surface of the road boundary stone 10 by being applied and dried and cured by a double extrusion method in the embodiment of the present invention. Is formed.
- the road boundary stone 10 of the present invention like a general road boundary stone, is a continuous installation along a road boundary to distinguish a road and a sidewalk, a road and a road, or a road and a non-road.
- the road boundary stone 10 of the present invention is a road boundary stone coated with the titanium dioxide photocatalyst coating capable of removing harmful elements such as nitrogen oxides discharged from the vehicle based on plastic.
- the road boundary stone 10 of the present invention comprises a block-shaped plastic body 11 formed in the longitudinal direction and a coating layer 12 coated with 0.1 to 0.3 mm on the surface of the body 11, wherein the paint Is to include the photocatalyst described above.
- a representative emission source of nitrogen oxides (NOx) is a vehicle driving on the road. Therefore, it can be said that the present invention is technically meaningful to apply a photocatalyst capable of effectively removing nitrogen oxide by reacting widely in the visible light region to a road boundary stone installed on a road.
- the road boundary stone 10 of the present invention comprises a plurality of bodies 11 and a coating layer 12 formed on the surface of the bodies 11.
- the main body 11 has a plurality of main bodies 11 by sequentially passing through a block 14 in which a longitudinal through hole 13 is formed in a central portion and an adjacent through hole 13 of the block 14. It includes a connecting rod 15 that connects one after another.
- the coating layer 12 is a coating layer of the paint containing the above photocatalyst.
- the main body 11 is a plastic block 14 in which a longitudinal through hole 13 is formed in a central portion, and a plurality of successively arranged side-to-side faces, wherein each through hole 13 is It is configured to communicate with each other.
- the connecting rod 15 is installed while passing through the adjacent through-holes 13 of the plurality of bodies 11 arranged as above in close order to the inner wall to connect the plurality of bodies 11 to arrange the road boundary stones 10 , It is a flexible plastic rod that facilitates construction and maintenance.
- the through hole 13 and the connecting rod 15 are formed in an elliptical shape to prevent rotation of any axis of the body 11.
- the main body 11 and the connecting rod 15 are extruded using a low-temperature waste synthetic resin as a predominant vegetable by-product chaff, sawdust, or a mixed raw material.
- the waste synthetic resin is a mixture of PP, PE, and vinyl, which can be commonly collected, or only waste vinyl, which is the easiest to collect and process.
- the waste synthetic resin has low durability compared to concrete or stone road boundary stone and is not broken or damaged, but has excellent durability, but has weak physical strength. Accordingly, in this embodiment, the waste synthetic resin, a vegetable by-product, rice husk, sawdust or a mixture thereof is used as a fiber-reinforced filler. At this time, the vegetable by-product is mixed in 20-30 parts by weight with respect to 100 parts by weight of the waste synthetic resin.
- the vegetable by-products are also inexpensive and mixed in the waste synthetic resin to actually improve the strength and bonding strength of the whole body 11 and connecting rod 15, but if the content is more than the proper range, cracks or breakage may occur. It may occur, and below that, the desired function cannot be exerted. Therefore, the content of the vegetable by-product is meaningful, and there is no significant difference as a result within the range. Along with this, a small amount of an anti-aging agent and a foaming agent are added to the waste synthetic resin and extruded through an extruder, whereby the body 11 and the connecting rod 15 are manufactured.
- the connecting rod 15 is installed while sequentially passing through the through-holes 13 of each body 11 in a state where a plurality of bodies 11 are successively arranged, so as to connect the plurality of bodies 11, the arrangement, construction, and Easy to maintain.
- the through hole 13 of the body 11 may be straight or curved
- the connecting rod 15 corresponding thereto may also be straight or curved.
- the connecting rod 15 is a plastic rod using waste synthetic resin, and has the advantage of being able to flexibly adapt to the curvature of the through hole 13 due to its bending characteristics.
- the road boundary stone 10 of the present invention has an advantage in that the connection relationship and the arrangement relationship are not damaged by external force even after construction because a plurality of bodies 11 are physically connected by the connecting rod 15.
- the unit body 11 may be axially rotated on the connecting rod 15 according to circumstances such as ground or shock.
- the connecting rod 15 is formed into an elliptical shape to prevent any axial rotation of the body 11, and more preferably, the inner wall of the through hole 13 and the connecting rod 15 for mutually strong coupling
- the surface of the can be made to correspond in the form of radial irregularities.
- the coating layer 13 is a coating layer in which the above-described photocatalyst material is added to the synthetic resin, and the luminous material may be further mixed.
- the synthetic resin material of the surface layer 13 is a new material in which the waste synthetic resin, which is a waste material, is not used. When the waste synthetic resin is exposed as it is, it is not actually aesthetically pleasing, and it is difficult to express various colors, and it is difficult to express the optical properties of the material. Because it loses.
- the main body 11 and the connecting rod 15 are individually made of the same material.
- the low-cost recycled waste synthetic resin was collected without screening and pulverized and mixed to a size of 10 mm3 to prepare a waste synthetic resin mixture.
- 25 parts by weight of rice husk as a by-product of the mixture was mixed with 100 parts by weight, and then heated to a high temperature to prepare a recycled plastic raw material.
- a main body 11 and a connecting rod 15 were provided.
- a coating layer 12 is formed on the provided body 11 by applying the paint.
- the paint is constructed and used for the purpose of forming the coating layer 12 on the surface of the plastic body 11, which is a photo-reactive material to a conventional polyethylene resin with a luminous material and a titanium dioxide photocatalyst material added. It is prepared by properly containing a binder, a dispersant, and a pigment.
- This paint may be applied by a method such as spray, brush, roller, printing, etc. In this embodiment, it is formed on the surface of the body 11 in a cavity and continuous process with the body 11 by a double extrusion method, and is dried and cured. By doing so, the coating layer 12 is formed on the surface of the body 11.
- the main body 11 having the coating layer 12 and the connecting rod 15 are provided as described above, first, the main body 11 is successively arranged in a state where the side faces on the support or the ground, and in this state, the By connecting the connecting rods 15 to the through holes 13 of the arranged body 11 in sequence, a plurality of bodies 11 are connected to complete the construction of the road boundary stone 10.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Abstract
The present invention relates to a road barrier among road facilities, the road barrier comprising a block-shaped plastic body formed in the longitudinal direction and a paint-coating layer coated on the surface of the body. The paint contains a titanium dioxide-based photocatalyst capable of removing NOx, and the photocatalyst is formed by being simultaneously doped with lead (Pb) as a required metal element and one selected from sodium (Na) and calcium (Ca) as a selective metal element in a titanium dioxide (TiO 2) lattice structure. According to the present invention, there is an effect that can prevent air pollution and provide a comfortable road environment by removing harmful substances, especially NOx, due to vehicle exhaust.
Description
본 발명은 도로 시설물 중 도로 경계석에 관한 것으로, 특히 플라스틱을 주 원료로 제작되며 질소산화물(NOx)을 제거할 수 있는 도로 경계석에 관한 것이다.The present invention relates to a road boundary stone among road facilities, and particularly to a road boundary stone that is made of plastic as a main raw material and can remove nitrogen oxides (NOx).
도로 경계석은 통상적으로는 도 1 및 도 2와 같은 연속적 형태를 가지며, 차도와 인도, 차도와 길가 또는 도로와 비도로 등을 구분하기 위하여 도로의 경계를 따라 연속하여 설치되는 설치물을 말한다. 재료로서 전통적으로는 주로 콘크리트나 석재가 사용되었으므로 이를 경계석이라 하지만, 최근에는 플라스틱 도로 경계석이 다수 제안되고 있다. Road boundary seats usually have a continuous shape as shown in Figs. 1 and 2, and refer to installations continuously installed along the borders of roads to distinguish roads, sidewalks, roads, roads, or roads and non-roads. Traditionally, concrete or stone has been used as a material, so this is called a boundary stone, but recently, many plastic road boundary stones have been proposed.
한편 질소산화물(NOx)은 질소와 산소의 화합물로, 연소과정에서 공기 중의 질소가 고온에서 산화되어 발생하는 대기오염 물질이며 그 배출원으로서는 자동차, 선박, 항공기, 소각로 등이 있지만 실생활에서 대표적인 배출원은 도로를 주행하는 자동차이다. 이 배출에 대한 대책으로 자동차의 성능개선을 통한 배출량 저감도 중요하겠지만, 그 배출된 질소산화물을 제거하는 것 역시 중요한 일이다. 따라서 본 발명이, 특히 가시광 영역에서 폭넓게 반응하여 질소산화물을 효과적으로 제거할 수 있는 광촉매를 위의 도로 경계석에 적용하고자 하는 것은 기술적 의미가 크다.On the other hand, nitrogen oxides (NOx) is a compound of nitrogen and oxygen. It is an air pollutant generated by the oxidation of nitrogen in the air at high temperatures during the combustion process, and there are automobiles, ships, aircraft, incinerators, etc. It is a car driving. As a countermeasure to this emission, it is important to reduce emissions through improving the performance of automobiles, but it is also important to remove the emitted nitrogen oxides. Therefore, it is of great technical significance that the present invention intends to apply a photocatalyst capable of effectively removing nitrogen oxide by reacting widely in the visible light region to the road boundary stone above.
일반적으로 광촉매는 일정 이상의 빛 에너지를 받으면 반응하여 전자 및 정공이 형성되어 강한 산화력과 환원력을 가지게 되면서 유해 유기물질을 인체에 무해한 성분으로 분해/제거하여 오염원을 정화할 수 있는 반도체를 말하며, 그 중에서 질소산화물 등을 제거하는데 대표적으로 사용되는 것이 이산화티타늄(TiO2)이다. In general, a photocatalyst is a semiconductor that can purify pollutants by decomposing / removing harmful organic substances into harmless components as it has strong oxidizing and reducing power by reacting when a certain amount of light energy is received and forming electrons and holes. Titanium dioxide (TiO 2 ) is typically used to remove nitrogen oxides and the like.
이 이산화티타늄 광촉매는 화학적으로 안정하고 인체에 무해하며 비교적 가격이 저렴한 장점이 있으나, 에너지 띠 간격(band gap)이 30-32 eV로 그 작용을 위하여는 자외선 영역의 빛이 필요하다. 그러나 태양광선은 대부분 가시광 영역이며 자외선 영역은 5% 미만에 불과하므로, 광촉매가 태양에너지를 효과적으로 이용하기 위해서는 태양광선의 대부분을 차지하는 가시광 영역의 빛을 흡수할 수 있어야 하는데, 이는 결국 반도체 물성을 결정하는 띠 간격 구조를 변경함으로써 가능하다.This titanium dioxide photocatalyst has the advantage of being chemically stable, harmless to the human body, and relatively inexpensive, but the energy band gap is 30-32 eV, and light in the ultraviolet region is required for its action. However, since most of the sunlight is in the visible region and the ultraviolet region is less than 5%, the photocatalyst needs to be able to absorb light in the visible region, which occupies most of the sunlight, in order to effectively use solar energy, which ultimately determines semiconductor properties. It is possible by changing the band spacing structure.
잘 알려진 바와 같이, 반도체 구조를 변경하기 위해서 주로 이산화티타늄 격자 내에 가전자 수가 다른 원소를 도핑하는 방법을 사용하는데, 이는 띠 간격 사이에 새로운 트랩 사이트(trap site)를 만들어 자외선보다 낮은 에너지인 가시광 영역의 빛을 흡수할 수 있도록 하는 것이다. 특히 양이온 자리를 금속(예컨대 Fe, Cr, V, Co, Si 등) 원소로 치환했을 때 가시광 조사에서 광소재 특성을 나타내는 것으로 보고되어 있으며, 상기한 도핑을 통하여 금속원소로 치환된 이산화티타늄 광촉매의 가시광 응답특성이 순수 이산화티타늄 광촉매에 비하여 향상된다.As is well known, in order to change the semiconductor structure, a method of doping an element having a different valence number is mainly used in a titanium dioxide lattice, which creates a new trap site between the band gaps, a visible light region that is lower than ultraviolet light. It is to be able to absorb the light of. In particular, when the cation site is replaced with a metal (for example, Fe, Cr, V, Co, Si, etc.) element, it has been reported to exhibit optical material properties in visible light irradiation, and the titanium dioxide photocatalyst substituted with a metal element through the above doping. Visible light response properties are improved compared to pure titanium dioxide photocatalyst.
그러나 도핑된 이산화티타늄 광촉매의 가시광 흡수 및 유기물 분해 효율은 실제로 만족할 수준에 이르지 못하고 있는 실정이며, 자외선 영역에서는 광촉매 특성이 현저하게 떨어지는 현상을 나타내고 있다. 한편으로는, 전이금속을 도핑하였을 때 전하 불균형으로 인해 나타나는 여러 가지 결함도 보고되고 있다.However, the visible light absorption of the doped titanium dioxide photocatalyst and the decomposition efficiency of organic matter have not actually reached a satisfactory level, and in the ultraviolet region, the photocatalytic properties are significantly deteriorated. On the one hand, various defects due to charge imbalance when doping a transition metal have been reported.
<선행기술문헌><Prior Art Document>
등록특허공보 제10-0666780호, Patent Registration No. 10-0666780,
등록특허공보 제10-1439264호Registered Patent Publication No. 10-1439264
공개특허공보 제2014-0011728호Published Patent Publication No. 2014-0011728
등록특허공보 제10-1782540호Registered Patent Publication No. 10-1782540
등록특허공보 제10-0807171호Registered Patent Publication No. 10-0807171
등록특허공보 제10-0654331호Patent Registration No. 10-0654331
본 발명 목적은, 합성수지로 형성되는 플라스틱 도로 경계석을 기반으로, 자동차의 배기로 인한 도로 유해물질 특히 NOx를 효율적으로 제거할 수 있는 광촉매 기능을 부가함으로써, 도로변의 대기오염 방지 및 환경 개선에 효과적인 NOx 제거 가능한 플라스틱 도로 경계석을 제공하고자 하는 것이다.The object of the present invention is based on a plastic road boundary stone formed of synthetic resin, and by adding a photocatalytic function capable of efficiently removing harmful substances, especially NOx, caused by exhaust of automobiles, NOx effective in preventing air pollution on the roadside and improving the environment The aim is to provide a removable plastic road boundary stone.
본 발명의 다른 목적은, 현장에서 연속하는 도로 경계석의 수직·수평 배치 및 시공이 용이하고 시공 후에도 견고하게 유지될 수 있는 플라스틱 도로 경계석을 제공하고자 하는 것이다. 본 발명의 또 다른 목적은, 폐합성수지를 이용하여 제작함으로써 경제성, 생산성, 내구성, 취급성을 향상시킬 수 있는 플라스틱 도로 경계석을 제공하고자 하는 것이다.Another object of the present invention is to provide a plastic road boundary stone which is easy to vertically and horizontally arrange and construct a continuous road boundary stone in the field and that can be firmly maintained even after construction. Another object of the present invention is to provide a plastic road boundary stone capable of improving economic efficiency, productivity, durability, and handling properties by manufacturing using waste synthetic resin.
본 발명의 도로 경계석은:Road boundary stone of the present invention:
차도와 인도, 차도와 길가 또는 도로와 비도로를 구분하기 위하여 도로의 경계를 따라 연속 설치되는 도로 경계석에 있어서,In a road boundary stone continuously installed along a road boundary to distinguish a road and a road, a road and a road, or a road and a non-road,
길이방향으로 형성되는 블록형 플라스틱 본체와, 상기 본체의 표면에 도포된 도료 코팅층을 포함하며;A block-shaped plastic body formed in the longitudinal direction, and a coating layer coated on the surface of the body;
상기 도료는 NOx 제거 가능한 이산화티타늄계 광촉매를 포함하며;The coating includes a titanium dioxide-based photocatalyst capable of removing NOx;
상기 광촉매는:The photocatalyst:
이산화티타늄(TiO2) 격자구조 내에 필요 금속원소로서 납(Pb)과 선택 금속원소로서 나트륨(Na), 칼슘(Ca) 중에서 선택된 하나가 동시 도핑되어 있는 것;A titanium dioxide (TiO2) lattice structure in which one selected from lead (Pb) as a necessary metal element and sodium (Na) and calcium (Ca) as a selected metal element is simultaneously doped;
을 특징으로 하며, Characterized by,
이때 상기 이산화티타늄에 포함된 필요 및 선택 금속요소의 총 함량은 이산화티타늄 100 중량부에 대하여 5 중량부 내지 15 중량부인 것;At this time, the total content of the necessary and optional metal elements contained in the titanium dioxide is 5 parts by weight to 15 parts by weight with respect to 100 parts by weight of titanium dioxide;
을 특징으로 한다.It is characterized by.
바람직하게, 상기 이산화티타늄에 포함된 필요 및 선택 금속원소의 각 함량은 바람직하게 이산화티타늄 100 중량부에 대하여 2.5 중량부 내지 10 중량부이며, 더욱 구체적으로는, 이산화티타늄 100 중량부에 대하여 상기 필요 금속원소 7±0.5 중량부 및 상기 선택 금속원소 5±0.5 중량부이다.Preferably, each content of the required and selected metal elements contained in the titanium dioxide is preferably 2.5 parts by weight to 10 parts by weight with respect to 100 parts by weight of titanium dioxide, and more specifically, it is necessary with respect to 100 parts by weight of titanium dioxide The metal element is 7 ± 0.5 parts by weight and the selected metal element is 5 ± 0.5 parts by weight.
상기 본체는:The body:
중앙 부분에 길이 방향의 관통공이 형성된 블록과;A block in which a through hole in the longitudinal direction is formed in the central portion;
상기 블록의 인접한 관통공을 차례로 통과함으로써, 다수의 본체를 연이어 연결해 주는 연결봉;A connecting rod connecting successively through a plurality of bodies by sequentially passing through adjacent through holes of the block;
을 포함한다.It includes.
바람직하게, 상기 관통공과 연결봉은 본체의 임의 축 회전을 방지하기 위한 타원형으로 형성된다. 여기에서 상기 본체와 연결봉은 저가 폐합성수지를 주재로 식물성 부산물인 왕겨, 톱밥 또는 그 혼합 원료를 이용하여 형성될 수 있다.Preferably, the through hole and the connecting rod are formed in an elliptical shape to prevent rotation of any axis of the main body. Here, the main body and the connecting rod may be formed using a low-cost waste synthetic resin as a vegetable by-product, rice husk, sawdust, or a mixed raw material.
본 발명의 도로 경계석은 합성수지로 형성되는 플라스틱 도로 경계석을 기반으로, 자동차의 배기로 인한 도로 유해물질 특히 NOx를 효율적으로 제거할 수 있는 광촉매 기능을 부가하여 구성된 것이다. 따라서 도로 및 도로 주변에 자동차 배기로 인한 유해물질 특히 NOx를 제거함으로써 대기오염을 방지하고 쾌적한 도로 환경을 제공할 수 있는 효과가 있다.The road boundary stone of the present invention is based on a plastic road boundary stone formed of synthetic resin, and is configured by adding a photocatalytic function capable of efficiently removing road harmful substances, especially NOx, due to exhaust of automobiles. Accordingly, it is possible to prevent air pollution and provide a comfortable road environment by removing harmful substances, especially NOx, caused by exhaust of automobiles on the road and around the road.
한편, 연이어 배치된 경계석 본체를 차례로 통과하는 연결봉 구조에 의하여, 현장에서 연속하는 도로 경계석의 배치 및 시공이 용이하고, 시공 후에도 이탈될 염려없이 견고하게 유지될 수 있는 효과가 있다. 또한, 상기 블록의 형성에 폐합성수지를 이용하는 경우, 외관은 도료 코팅층으로 유지되면서 경제성, 생산성을 향상시킬 수 있는 효과가 있다.On the other hand, by the connecting rod structure that passes through the boundary stone bodies arranged one after another, there is an effect that it is easy to arrange and construct road boundary stones continuously in the field, and can be maintained firmly without fear of being separated after construction. In addition, when using a waste synthetic resin for the formation of the block, the appearance is maintained as a coating layer coating, there is an effect that can improve the economic efficiency, productivity.
도 1 및 도 2는 통상의 도로 경계석의 설치 상태도.1 and 2 is a state diagram of a normal road boundary seats.
도 3은 본 발명에 따른 도로 경계석의 사시도.3 is a perspective view of a road boundary stone according to the present invention.
도 4는 도 3의 분해도.Figure 4 is an exploded view of Figure 3;
도 5는 도 3의 'A-A'선 단면도.5 is a cross-sectional view taken along line 'A-A' in FIG. 3;
[부호의 설명][Description of codes]
10. 도로 경계석10. Road boundary stone
11. 본체11. Main body
12. 코팅층12. Coating layer
13. 관통공13. Through hole
14. 블록14. Block
15. 연결봉15. Connecting rod
16. 논-슬립16. Non-slip
이상 기재된 또는 기재되지 않은 본 발명 "질소산화물 제거 가능한 도로 경계석"(이하 '도로 경계석')의 특징과 효과들은, 이하에서 첨부 도면을 참조하여 설명하는 본 발명의 실시예 기재를 통하여 더욱 명백해질 것이다. 도 3 이하의 도면에서, 본 발명에 따른 도로 경계석이 부호 10으로 표시되어 있다.The features and effects of the above-described or not described "road boundary stone capable of removing nitrogen oxides" (hereinafter referred to as "road boundary stone") will become more apparent through the description of embodiments of the present invention described below with reference to the accompanying drawings. . In the drawings below FIG. 3, the road boundary stone according to the present invention is indicated by reference numeral 10.
통상적으로 도로 경계석은 차도와 인도 또는 차도와 길가를 구분하기 위하여 차도의 경계를 따라 연장되는 도 1 및 도 2와 같은 도로 설치물을 말하는 것으로, 이 점에서 본 발명의 도로 경계석(10) 또한 같다. 도 3 내지 도 5를 참조하면, 본 발명의 도로 경계석(10)은 길이방향으로 형성되는 블록형 플라스틱 본체(11)와 상기 본체(11)의 표면에 도포된 도료 코팅층(12)을 포함하며, 상기 도료는 본 발명에서 특별한 광촉매를 포함하는 것이다.In general, the road boundary stone refers to a road installation such as FIGS. 1 and 2 extending along the boundary of a roadway to distinguish a roadway and a roadway or a roadway, and the roadway boundarystone 10 of the present invention is also the same in this regard. 3 to 5, the road boundary stone 10 of the present invention includes a block-type plastic body 11 formed in the longitudinal direction and a coating layer 12 applied to the surface of the body 11, The paint is to include a special photocatalyst in the present invention.
이하에서는 먼저 상기 '광촉매'에 대하여 설명하고 난 다음, 도료 및 도로 경계석의 구조를 차례로 설명하기로 한다. 참고로, 이하에서 언급되는 '광촉매'는 본 출원인의 특허출원 제2018-0070142호에 기재된 것과 동일한 것이다.Hereinafter, the 'photocatalyst' will be first described, and then the structure of the paint and road boundary stone will be described in turn. For reference, the 'photocatalyst' mentioned below is the same as described in the applicant's patent application No. 2018-0070142.
[광촉매][Photocatalyst]
본 발명자는, 이산화티타늄 격자 구조 내에 안정 원소 중 가장 무거운 금속으로 알려진 납(Pb)을 도핑하되 이때 특정한 다른 금속원소를 선택하여 일정 함량으로 동시 도핑함으로써 자외선 및 가시광선에 대하여 현저하게 우수한 응답특성과 광촉매 기능을 발휘하는 것을 확인하고, 광촉매 개발을 완성하게 되었다. 이에, 본 발명에 적용되는 광촉매는 이산화티타늄계 광촉매로서 이산화티타늄(TiO2) 격자 구조 내에 필요 금속원소로서 납(Pb)과 선택 금속원소로서 나트륨(Na), 칼슘(Ca) 중에서 선택된 하나가 동시에 도핑되어 있는 것을 특징으로 한다.The present inventor doped lead (Pb), which is known as the heaviest metal among stable elements in the titanium dioxide lattice structure, but at this time, selected other metal elements and simultaneously doped it with a certain content, thereby remarkably excellent response characteristics to ultraviolet light and visible light After confirming that the photocatalyst function was exhibited, the photocatalyst development was completed. Accordingly, the photocatalyst applied to the present invention is a titanium dioxide-based photocatalyst, and one selected from lead (Pb) as a required metal element and sodium (Na) and calcium (Ca) as a required metal element in a titanium dioxide (TiO2) lattice structure is simultaneously doped. It is characterized by being.
그리고 이때 상기 이산화티타늄에 포함된 필요 및 선택 금속요소의 총 함량은 이산화티타늄 100 중량부에 대하여 5 중량부 내지 15 중량부이다. 예컨대 이산화티타늄에 도핑된 금속원소 함량이 상기 범위를 초과하면 여기 전자가 유효하게 작용하지 않고 따라서 광촉매 기능이 저하되는 경향이 있으며 반대로, 그 범위에 미달하면 가시광 응답특성이 현저히 저하되는 경향이 있다.In this case, the total content of the necessary and optional metal elements contained in the titanium dioxide is 5 parts by weight to 15 parts by weight with respect to 100 parts by weight of titanium dioxide. For example, when the content of the metal element doped in titanium dioxide exceeds the above range, excitation electrons do not work effectively, and thus, the photocatalytic function tends to decrease. On the contrary, when it is less than the range, the visible light response property tends to significantly decrease.
바람직하게, 상기 이산화티타늄에 포함된 필요 및 선택 금속원소의 각 함량은 이산화티타늄 100 중량부에 대하여 2.5 중량부 내지 10 중량부이며, 더욱 구체적으로, 이산화티타늄 100 중량부에 대하여 상기 필요 금속원소 7±0.5 중량부 및 상기 선택 금속요소 5±0.5 중량부인 것과 같이, 필요 금속원소의 함량이 선택 금속요소의 함량에 비하여 조금 큰 것이 좋다. 다만, 상기 필요 금속원소 간에는 함량 면에서 광 특성상 유의한 차이가 없다.Preferably, each content of the required and selected metal elements contained in the titanium dioxide is 2.5 parts by weight to 10 parts by weight with respect to 100 parts by weight of titanium dioxide, and more specifically, the necessary metal elements with respect to 100 parts by weight of titanium dioxide 7 It is preferable that the content of the required metal element is slightly larger than the content of the selected metal element, such as ± 0.5 parts by weight and the selected metal element 5 ± 0.5 parts by weight. However, there is no significant difference in optical properties in terms of content between the required metal elements.
[제조][Produce]
이산화티타늄 전구체 용액과, 필요 금속원소인 납 전구체 용액과 선택 금속원소인 나트륨, 칼슘 중에서 선택된 하나의 전구체 용액을 동시에 혼합 및 교반하여, Pb와 상기 선택 금속원소 중 하나가 격자구조 내 동시 도핑된 졸(sol) 상태의 이산화티타늄 광촉매가 생성된다. 경우에 따라, 이산화티타늄 전구체 용액과 필요 금속원소인 납 전구체 용액을 1차 혼합하고, 그 혼합 용액에 선택 금속원소 전구체를 2차로 혼합하여 교반하여도 결과적으로는 마찬가지이지만, 도핑 상태는 좀 더 안정적으로 보인다. 당연하게, 상기 도핑의 구체적 구성상태는 'Pb,Na-TiO2' 및 'Pb,Ca-TiO2'로 나누어 볼 수 있으나, 이들 간 광 특성상 유의한 차이가 있는 것은 아니다.The titanium dioxide precursor solution, a lead precursor solution as a required metal element, and a precursor solution selected from sodium and calcium as a metal element are simultaneously mixed and stirred, so that Pb and one of the selected metal elements are simultaneously doped in a lattice structure. Titanium dioxide photocatalyst in (sol) state is produced. In some cases, the titanium dioxide precursor solution and the lead precursor solution, which is a required metal element, are first mixed, and the mixed solution is mixed and stirred by mixing the selected metal element precursor, and the result is the same, but the doping state is more stable. Seems to. Of course, the specific configuration of the doping can be divided into 'Pb, Na-TiO 2 ' and 'Pb, Ca-TiO 2 ', but there is no significant difference in optical properties between them.
상기 이산화티타늄 전구체는 통상의 티타늄테트라이소프로폭사이드(TTIP)이며 분산 용매로서 이소프로필알코올이 사용된다. 상기 납 전구체는 Pb(NO3)2 이며 분산 용매로서 물과 에탄올의 혼합액이 사용된다. 선택 금속원소 중 상기 나트륨의 전구체는 NaNO3 이며 분산 용매로서 질산수용액이 사용되고, 상기 칼슘의 전구체는 Ca(NO3)2·4H2O 이며 분산 용매로서 증류수가 사용된다.The titanium dioxide precursor is a conventional titanium tetraisopropoxide (TTIP) and isopropyl alcohol is used as a dispersion solvent. The lead precursor is Pb (NO 3 ) 2 and a mixed solution of water and ethanol is used as a dispersion solvent. Among the selected metal elements, the sodium precursor is NaNO 3 and an aqueous nitric acid solution is used as a dispersion solvent, and the calcium precursor is Ca (NO 3 ) 2 · 4H 2 O and distilled water is used as a dispersion solvent.
다만, 이상에 기재된 각 전구체 및 용매는 대표적인 일 예에 해당하는 것일 뿐이므로, 본 발명이 그 종류에 한정되는 것은 아니다.However, the precursors and solvents described above are only representative examples, and the present invention is not limited to those types.
상기한 졸 상태의 도핑된 이산화티타늄을 40 내지 50℃ 하에서 감압 증발시켜, 분말화된 상태의 이산화티타늄 광촉매가 형성된다. 그리고 상기 이산화티타늄 광촉매의 견고한 결정화를 위하여, 상기 이산화티타늄 광촉매를 450 내지 550℃에서 3 내지 5시간 동안 소성시킨다. 상기 소성과정 및 소성온도에 따라 이산화티타늄 광촉매의 나노입자 크기 및 특성이 약간씩 달라질 수 있으며, 예컨대 상기 소성온도가 500℃일 때 가장 효율적인 최대 광분해 효능을 나타내었다.The doped titanium dioxide in the above-described sol state is evaporated under reduced pressure at 40 to 50 ° C. to form a titanium dioxide photocatalyst in a powdered state. And for the solid crystallization of the titanium dioxide photocatalyst, the titanium dioxide photocatalyst is calcined at 450 to 550 ° C for 3 to 5 hours. Depending on the firing process and firing temperature, the nanoparticle size and properties of the titanium dioxide photocatalyst may vary slightly, for example, when the firing temperature is 500 ° C, the most efficient maximum photolysis efficiency is exhibited.
상기와 같이 소성된 광촉매는 표면에 있는 불순물을 제거하기 위해 물로 세척 및 여과하고 건조시키는 과정을 거칠 수 있다. 이로써 본 발명에 따른 이산화티타늄 광촉매가 제조되며, 최종 수득된 이산화 티탄 광촉매는 이산화티타늄 격자구조 내에 백금이온 및 질소이온으로 도핑되어 있으며, 이때 상기 이산화티타늄 광촉매는 5 내지 10nm의 입자 크기를 갖는다.The calcined photocatalyst can be washed with water, filtered and dried to remove impurities on the surface. As a result, the titanium dioxide photocatalyst according to the present invention is prepared, and the finally obtained titanium dioxide photocatalyst is doped with platinum ions and nitrogen ions in the titanium dioxide lattice structure, wherein the titanium dioxide photocatalyst has a particle size of 5 to 10 nm.
[실시예][Example]
필요 금속원소의 도핑을 위하여 Pb(NO3)2 정량을 물-에탄올 혼합액에 용해하여 제1 용액을 준비하고, 선택 금속요소의 도핑을 위하여 NaNO3 정량을 질산수용액에 용해하여 제2 용액을 준비하였다. 그리고 상기 제1 및 제2 용액을 티타늄테트라이소프로폭사이드(TTIP)가 포함된 이소프로필알코올 용액에 동시에 혼합하고 12시간 이상 충분히 교반시켜 줌으로써 상호 반응하여, 졸(sol) 상태의 도핑된 이산화티타늄 광촉매(Pb,Na-TiO2)가 생성된다.For the doping of the required metal element, the first solution is prepared by dissolving Pb (NO 3 ) 2 in water-ethanol mixture, and the second solution is prepared by dissolving NaNO 3 in nitric acid aqueous solution for doping of the selected metal element. Did. Then, the first and second solutions were simultaneously mixed in an isopropyl alcohol solution containing titanium tetraisopropoxide (TTIP) and sufficiently stirred for at least 12 hours to react with each other, so as to sol doped titanium dioxide. Photocatalyst (Pb, Na-TiO 2 ) is produced.
그리고 졸 상태의 상기 광촉매의 결정상을 얻기 위하여 이를 45℃에서 감압 증발시킨 후 다시 500℃에서 4시간 동안 소성하였다. 그리고 소성된 광촉매의 표면 불순물을 제거하기 위해 물로 세척하고 건조시켜, 본 발명의 납과 나트륨이 도핑된 이산화티타늄 광촉매(Pb,Na-TiO2)를 제조하였다. 이때 이산화티타늄에 포함된 Pb 및 Na의 총 함량은 이산화티타늄 100 중량부에 대하여 12±1 중량부로 조절하되, 각 함량은 7±0.5 중량부 및 5±0.5 중량부가 되도록 하였다.Then, in order to obtain the crystalline phase of the photocatalyst in the sol state, it was evaporated under reduced pressure at 45 ° C and then calcined at 500 ° C for 4 hours. And washed with water and dried to remove the surface impurities of the calcined photocatalyst, the lead and sodium doped titanium dioxide photocatalyst (Pb, Na-TiO 2 ) was prepared. At this time, the total content of Pb and Na contained in titanium dioxide was adjusted to 12 ± 1 parts by weight relative to 100 parts by weight of titanium dioxide, but each content was set to 7 ± 0.5 parts by weight and 5 ± 0.5 parts by weight.
또한, 선택 금속요소 중 나트륨 대신 칼슘을 선택하고 위와 동일한 방법으로 납과 칼슘이 도핑된 이산화티타늄 광촉매(Pb,Ca-TiO2)를 제조하였다. 이상 실시예에 의하여 제조된 각 광촉매에 있어서, 이산화티타늄 100 중량부에 대한 도핑 금속원소의 함량을 [표 1]로 나타내었다.In addition, calcium was selected instead of sodium among the selected metal elements, and a titanium dioxide photocatalyst (Pb, Ca-TiO 2 ) doped with lead and calcium was prepared in the same manner as above. In each photocatalyst prepared by the above example, the content of the doped metal element with respect to 100 parts by weight of titanium dioxide is shown in [Table 1].
한편, 각 실시예에서 분석한 결과, 상기 Pb 및 선택 금속원소의 각 함량이 유효범위 2 중량부 내지 10 중량부 내이고 총 함량이 15 중량부를 넘지 않는 범위 내에서는 이산화티타늄 광촉매의 특성상 특이한 차이를 발생시키지 않는 것으로 나타났으며, 다만, 필요 금속원소(Pb)의 함량이 선택 금속요소의 함량에 비하여 조금 큰 경우에 미세하게 유리한 것으로 나타났다. 따라서, 상기 Pb 및 선택 금속원소의 총량 및 각 함량을 달리하는 경우에 대하여는 별도로 기재하지 않는다.On the other hand, as a result of analysis in each example, the specific content of the titanium dioxide photocatalyst within the range that the content of the Pb and the selected metal element is within the effective range of 2 parts by weight to 10 parts by weight and the total content does not exceed 15 parts by weight It was found not to occur, but it was found to be advantageous when the content of the required metal element (Pb) was slightly larger than the content of the selected metal element. Therefore, the case where the total amount and each content of the Pb and the selected metal element are different is not described separately.
[비교예][Comparative example]
위 실시예에 기재된 방법과 동일한 졸-겔 방법을 사용하되, 금속원소가 첨가되지 않은 순수 이산화타타늄 광촉매(undoped TiTO2), 단지 납이 도핑된 이산화타타늄 광촉매(Pb-TiTO2) 및 단지 선택 금속요소 중 하나가 도핑된 이산화타타늄 광촉매(Na,Ca or Ni-TiTO2)를 제조하여 각각 비교예 1 내지 3으로 사용하였다. 이상 비교에 의하여 제조된 각 광촉매에 있어서, 이산화티타늄 100 중량부에 대한 도핑 금속원소의 함량을 [표 2]로 나타내었다.The same sol-gel method as described in the above example was used, but pure titanium dioxide photocatalyst without metal elements added (undoped TiTO 2 ), only lead doped titanium dioxide photocatalyst (Pb-TiTO 2 ) and only A titanium dioxide photocatalyst (Na, Ca or Ni-TiTO 2 ) doped with one of the selected metal elements was prepared and used as Comparative Examples 1 to 3, respectively. In each photocatalyst prepared by the above comparison, the content of the doped metal element relative to 100 parts by weight of titanium dioxide is shown in [Table 2].
비교예 3에서 선택 금속원소가 모두 기재된 것은, 어떤 원소가 선택되는 경우라도 그 이산화티타늄 광촉매의 특성에는 차이가 거의 없기 때문이다. 한편, 필요한 경우에, 시중에서 입수 가능한 이산화티타늄 광촉매 중 효율이 우수한 것으로 알려진 데구사(Degussa) P25 제품을 비교예 4로 사용하였다.The reason why all the selected metal elements are described in Comparative Example 3 is that even if any element is selected, there is little difference in the properties of the titanium dioxide photocatalyst. On the other hand, if necessary, a Degussa P25 product known to have excellent efficiency among commercially available titanium dioxide photocatalysts was used as Comparative Example 4.
[흡광도][Absorbance]
실시예 및 비교예의 각 광촉매에 대하여 자외선-가시광선 흡광도를 확산 반사 분광법(Diffuse Reflectance UV-Visable Spectrophotometer: DRS)을 이용하여 측정하였다. 그 결과, 비교예 1 및 3의 광촉매의 경우 가시광 영역의 빛을 거의 흡수하지 않았다. 반면, 비교예 2의 광촉매는 400-500nm 범위의 가시광 영역의 빛을 흡수하였으며, 실시예 1 및 2의 광촉매는 그보다 훨씬 넓은 전 범위의 가시광 영역의 빛을 효율적으로 흡수하는 것으로 조사되었다. 이때 실시예 1 내지 3 상호 간 유의한 차이는 없었다.For each photocatalyst of Examples and Comparative Examples, ultraviolet-visible light absorbance was measured using a Diffuse Reflectance UV-Visable Spectrophotometer (DRS). As a result, the photocatalysts of Comparative Examples 1 and 3 hardly absorbed light in the visible region. On the other hand, the photocatalyst of Comparative Example 2 absorbed light in the visible light region in the range of 400-500 nm, and the photocatalysts in Examples 1 and 2 were investigated to efficiently absorb light in the visible region in a much wider range. At this time, there was no significant difference between Examples 1-3.
이는 본 발명에서 필요 금속원소와 선택 금속원고의 하나가 동시 도핑된 이산화티타늄 광촉매가, 다른 경우에 비하여, 띠 간격 사이에 더 많은 트랩 사이트를 형성하기 때문인 것으로 판단된다.This is considered to be because the titanium dioxide photocatalyst in which one of the required metal element and the selected metal manuscript is doped at the same time in the present invention forms more trap sites between band gaps than in other cases.
[결정구조][Crystal structure]
실시예 및 비교예의 각 광촉매에 대하여 X-선 회절 분석법을 이용하여 분말의 결정구조를 검토하였다. 비교예들과 마찬가지로, 실시예 1 및 2의 광촉매 역시 아나타제(anatase) 상과 일부 루틸(rutile) 상이 혼재하는 것으로 것을 알 수 있는데, 상기 소성 온도에서 아나타제의 일부가 루틸로 상전이되는 것으로 판단된다. For each photocatalyst of Examples and Comparative Examples, the crystal structure of the powder was examined using X-ray diffraction analysis. As in the comparative examples, it can be seen that the photocatalysts of Examples 1 and 2 also have a mixture of anatase phase and some rutile phase, and it is judged that a part of the anatase phase transition to rutile at the firing temperature.
알려진 바와 같이 이산화티타늄 광촉매에 있어 광촉매 분말이 순수 아나타제 상일 때보다는 아나타제 상이 루틸 상과 적절한 비율로 공존할 때 더욱 우수한 광촉매 특성을 나타내는 것으로 알려져 있으므로, 본 발명의 실시예에 의한 광촉매가 특성상 전혀 불리하지 않음을 알 수 있다.As is known, in the titanium dioxide photocatalyst, it is known that the photocatalyst powder exhibits better photocatalytic properties when the anatase phase coexists with the rutile phase in a proper ratio than when it is a pure anatase phase, so that the photocatalyst according to the embodiment of the present invention is not at all disadvantageous in nature. It can be seen that it does not.
[비표면적][Specific surface area]
실시예 및 비교예의 각 광촉매에 대하여 그 비표면적을 측정하고, 그 결과를 [표 3]에 나타내었다. The specific surface area of each photocatalyst of Examples and Comparative Examples was measured, and the results are shown in [Table 3].
참고로, 실시예 1, 2의 경우 각 광촉매 간 비표면적 상의 특이한 차이가 없으므로 그 평균치를 기재하였다. 위 [표 3]을 참조하면, 실시예 1, 2의 광촉매의 경우 비교예 1 내지 3의 광촉매에 비하여 비표면적이 많게는 2배 이상 증가함을 알 수 있었다. 따라서 비표면적 증가에 따른 광 활성 효율의 증대를 기대할 수 있다.For reference, in the case of Examples 1 and 2, since there is no specific difference on the specific surface area between each photocatalyst, the average value was described. Referring to [Table 3] above, it can be seen that in the case of the photocatalysts of Examples 1 and 2, the specific surface area increased more than 2 times as compared to the photocatalysts of Comparative Examples 1 to 3. Therefore, it is expected to increase the photoactive efficiency with increasing specific surface area.
[광 활성][Light active]
실시예 및 비교예의 각 광촉매에 대하여 광 활성을 평가하기 위하여 반응기를 이용하였다. 실시예 1, 2 및 비교예 1 내지 4의 광촉매를 상기 반응기에 넣고, 100 ppm 농도의 질소산화물 NO2를 포함하는 가스를 주입하면서 6시간 동안 배출 가스 내 NO2 농도를 측정 및 분석하였다. 이때, 자외광 조사에는 290nm 이상 파장의 갖는 빛이 투과되도록 하고, 가시광 조사에는 430nm 이상의 파장의 빛이 투과되도록 하였다. 그 측정 결과를 [표 4]에 나타내었다.Reactors were used to evaluate the photoactivity for each photocatalyst of the examples and comparative examples. Examples 1, 2 and Comparative Examples 1 to 4 into a photocatalyst of the reactor, was determined and analysis of the exhaust gas within the NO 2 concentration for 6 hours while injecting a gas containing 100 ppm of the concentration of nitrogen oxides NO 2. In this case, light having a wavelength of 290 nm or more is transmitted through ultraviolet light irradiation, and light having a wavelength of 430 nm or higher is transmitted through visible light irradiation. Table 4 shows the measurement results.
위 [표 4]를 참조하면, 자외광 조사하에서 비교예 4의 P25 광촉매가 NO2를 가장 효율적으로 분해 제거하였으며, 실시예 1 및 2의 광촉매는 P25 광촉매에 비해 약간 낮은 분해효율을 보였으나 비교예 1 내지 3의 광촉매에 비하여는 월등히 우수한 효율을 보여주고 있다.Referring to [Table 4] above, P25 photocatalyst of Comparative Example 4 most effectively decomposed and removed NO 2 under ultraviolet light irradiation, and the photocatalysts of Examples 1 and 2 showed slightly lower decomposition efficiency than P25 photocatalyst. Compared to the photocatalysts of Examples 1 to 3, it shows superior efficiency.
한편, 자외광 조사하에서 비교예 1, 3 및 4의 광촉매의 경우 가시광에 의해 활성화되지 않으므로 분해가 거의 일어나지 않는다고 할 수 있을 정도로 미세하게 보이고 있고 비교예 2의 광촉매의 경우에는 약간의 분해 효율을 보이는 반면, 실시예 1 및 2의 광촉매의 경우에는 완벽에 가까운 분해효율을 나타내었다. 이는 실시예 1 및 2의 광촉매의 경우 비표면적이 상대적으로 월등하게 증가하였기 때문인 것으로 판단한다. 또한, 기재하지는 않았으나, NO를 대상으로 하는 조사에서는 위의 경우보다 더 우수한 제거 효율을 보인 것으로 나타났다.On the other hand, the photocatalysts of Comparative Examples 1, 3, and 4 under ultraviolet light irradiation are not activated by visible light, so they are shown to be fine enough to say that almost no decomposition occurs, and the photocatalyst of Comparative Example 2 shows some decomposition efficiency. On the other hand, in the case of the photocatalysts of Examples 1 and 2, the decomposition efficiency close to perfection was shown. This is considered to be because the specific catalysts of Examples 1 and 2 had a relatively high specific surface area. In addition, although not described, the investigation targeting NO showed that the removal efficiency was better than the above case.
이와 같이, 이상의 광촉매는 자외선 영역부터 가시광선 영역까지의 넓은 파장 범위에서 우수한 응답성 및 광촉매 효능을 발휘할 수 있기 때문에, 특히 도로 경계석용 도료에 적용되어 차량에서 배출된 유해 NOx를 효과적으로 분해 제거함으로써 환경정화에 크게 도움이 될 것으로 기대된다.As described above, since the above photocatalyst can exhibit excellent responsiveness and photocatalytic efficacy in a wide wavelength range from the ultraviolet region to the visible ray region, it is particularly applied to paints for road boundary stone to effectively decompose and remove harmful NOx emitted from vehicles. It is expected to help greatly in purification.
[도료][varnish]
상기 도료는 플라스틱 도로 경계석(10)의 표면에 코팅층(12)을 형성하기 위한 목적으로 구성 및 사용되는 것이며, 이 도료는 적어도 상기한 이산화티타늄 광촉매를 포함하는 것이다. 이 도료는 상기 광촉매 이외에 통상 도료의 제조를 위한 조성 예컨대, 수용성 바인더 수지, 분산제, 안료 등을 적절히 함유한다. 필요에 따라, 빛을 흡수하였다가 방출하는 야광재료를 더 함유할 수 있다. 이 도료는 스프레이, 솔, 롤러, 인쇄 등의 방법으로 도포될 수 있으나 본 발명의 실시예에서 이중압출의 방법으로 도포되고 건조 및 경화시킴으로써 도로 경계석(10)의 표면에 상기 도료 코팅층(12)이 형성된다.The paint is constructed and used for the purpose of forming the coating layer 12 on the surface of the plastic road boundary stone 10, and the paint contains at least the above-described titanium dioxide photocatalyst. This paint normally contains a composition for the production of a paint, in addition to the photocatalyst, for example, a water-soluble binder resin, a dispersant, and a pigment. If necessary, it may further contain a luminous material that absorbs and emits light. This coating may be applied by a method such as spray, brush, roller, printing, etc., but the coating layer 12 is applied to the surface of the road boundary stone 10 by being applied and dried and cured by a double extrusion method in the embodiment of the present invention. Is formed.
[도로 경계석][Road boundary stone]
도 3 내지 5를 참조하면, 본 발명의 도로 경계석(10)은, 일반적인 도로 경계석과 마찬가지로, 차도와 인도, 차도와 길가 또는 도로와 비도로를 구분하기 위하여 도로의 경계를 따라 연속되는 설치물이다. 특히, 본 발명의 도로 경계석(10)은 플라스틱을 기반으로, 자동차로부터 도로상에 배출된 질소산화물 등 유해요소를 제거할 수 있는 상기 이산화티타늄 광촉매 도료가 코팅된 도로 경계석이다. 3 to 5, the road boundary stone 10 of the present invention, like a general road boundary stone, is a continuous installation along a road boundary to distinguish a road and a sidewalk, a road and a road, or a road and a non-road. In particular, the road boundary stone 10 of the present invention is a road boundary stone coated with the titanium dioxide photocatalyst coating capable of removing harmful elements such as nitrogen oxides discharged from the vehicle based on plastic.
본 발명의 도로 경계석(10)은 길이방향으로 형성되는 블록형 플라스틱 본체(11)와 상기 본체(11)의 표면에 0.1 내지 0.3mm 도포된 도료 코팅층(12)을 포함하여 이루어지는 것이며, 이때 상기 도료는 상술한 광촉매를 포함하는 것이다. 그리하여, 자동차 주행 도로상에서 차량의 안전한 주행을 유도하는 것은 물론, 질소산화물 및 기타 유해물질의 제거를 효율적으로 수행함으로써 운전자, 탑승자 및 주변 거주자에게 안전하고 위생적인 환경을 제공할 수 있게 되는 것이다.The road boundary stone 10 of the present invention comprises a block-shaped plastic body 11 formed in the longitudinal direction and a coating layer 12 coated with 0.1 to 0.3 mm on the surface of the body 11, wherein the paint Is to include the photocatalyst described above. Thus, it is possible to provide a safe and sanitary environment for drivers, passengers, and surrounding residents by efficiently driving nitrogen vehicles and other harmful substances as well as inducing safe driving of vehicles on a vehicle driving road.
전술한 바와 같이, 질소산화물(NOx)의 대표적인 배출원은 도로를 주행하는 자동차이다. 따라서 본 발명이 특히 가시광 영역에서 폭넓게 반응하여 질소산화물을 효과적으로 제거할 수 있는 광촉매를, 도로상에 설치되는 도로 경계석에 적용하고자 하는 것은 기술적으로 큰 의미가 있다고 할 수 있다.As described above, a representative emission source of nitrogen oxides (NOx) is a vehicle driving on the road. Therefore, it can be said that the present invention is technically meaningful to apply a photocatalyst capable of effectively removing nitrogen oxide by reacting widely in the visible light region to a road boundary stone installed on a road.
본 발명의 상기 도로 경계석(10)은 다수의 본체(11)와, 상기 본체(11)의 표면에 형성되는 코팅층(12)을 포함하여 이루어진다. 구체적으로, 상기 본체(11)는 중앙 부분에 길이 방향의 관통공(13)이 형성된 블록(14)과, 상기 블록(14)의 인접한 관통공(13)을 차례로 통과함으로써 다수의 본체(11)를 연이어 연결해 주는 연결봉(15)을 포함한다. 그리고 상기 코팅층(12)은 상기한 광촉매를 포함하는 도료의 코팅층이다.The road boundary stone 10 of the present invention comprises a plurality of bodies 11 and a coating layer 12 formed on the surface of the bodies 11. Specifically, the main body 11 has a plurality of main bodies 11 by sequentially passing through a block 14 in which a longitudinal through hole 13 is formed in a central portion and an adjacent through hole 13 of the block 14. It includes a connecting rod 15 that connects one after another. And the coating layer 12 is a coating layer of the paint containing the above photocatalyst.
좀 더 구체적으로, 상기 본체(11)는 중앙 부분에 길이 방향의 관통공(13)이 형성된 플라스틱 블록(14)으로서, 다수가 측면이 대면하는 상태로 연이어 배열되고 이때 각 관통공(13)이 서로 연통하도록 구성된다. 또한, 상기 연결봉(15)은 위와 같이 배열된 다수 본체(11)의 인접한 관통공(13)을 내벽에 밀접하게 차례로 통과하면서 설치되어 다수의 본체(11)를 연결해 줌으로써 도로 경계석(10)의 배치, 시공 및 유지를 용이하게 하는 유연 플라스틱 봉이다. 바람직하게, 상기 관통공(13)과 연결봉(15)은 본체(11)의 임의 축 회전을 방지하기 위한 타원형으로 형성된다. More specifically, the main body 11 is a plastic block 14 in which a longitudinal through hole 13 is formed in a central portion, and a plurality of successively arranged side-to-side faces, wherein each through hole 13 is It is configured to communicate with each other. In addition, the connecting rod 15 is installed while passing through the adjacent through-holes 13 of the plurality of bodies 11 arranged as above in close order to the inner wall to connect the plurality of bodies 11 to arrange the road boundary stones 10 , It is a flexible plastic rod that facilitates construction and maintenance. Preferably, the through hole 13 and the connecting rod 15 are formed in an elliptical shape to prevent rotation of any axis of the body 11.
여기에서 상기 본체(11)와 연결봉(15)은 저가 폐합성수지를 주재로 식물성 부산물인 왕겨, 톱밥 또는 그 혼합 원료를 이용하여 압출 형성된다. 상기 폐합성수지는 흔하게 수집될 수 있는 PP, PE, 비닐의 혼합물이거나 또는 그 중에서도 수집 및 가공이 가장 용이한 단지 폐비닐이다. 상기 폐합성수지는 콘크리트 또는 석재 도로 경계석에 비해 저가이면서 깨지거나 파손되지 않아 내구성이 뛰어나지만, 물리적 강도가 약하다. 이에 본 실시예에서는 상기 폐합성수지에, 섬유질 보강 충전재로서 식물성 부산물인 왕겨, 톱밥 또는 그 혼합 원료를 이용한다. 이때 상기 식물성 부산물은 상기 폐합성수지 100 중량부에 대하여 20-30 중량부로 혼합된다.Here, the main body 11 and the connecting rod 15 are extruded using a low-temperature waste synthetic resin as a predominant vegetable by-product chaff, sawdust, or a mixed raw material. The waste synthetic resin is a mixture of PP, PE, and vinyl, which can be commonly collected, or only waste vinyl, which is the easiest to collect and process. The waste synthetic resin has low durability compared to concrete or stone road boundary stone and is not broken or damaged, but has excellent durability, but has weak physical strength. Accordingly, in this embodiment, the waste synthetic resin, a vegetable by-product, rice husk, sawdust or a mixture thereof is used as a fiber-reinforced filler. At this time, the vegetable by-product is mixed in 20-30 parts by weight with respect to 100 parts by weight of the waste synthetic resin.
상기 식물성 부산물은 역시 저가이면서 상기 폐합성수지에 혼합되어 실제로 상기 본체(11) 및 연결봉(15) 전체의 강도 및 결합 강도를 개선하는 기능을 할 수 있지만, 그 함량이 적정범위 이상이면 균열 또는 파손이 생길 수 있으며, 그 이하이면 원하는 기능을 발휘할 수 없게 된다. 이에 상기 식물성 부산물의 함량이 의미가 있으며, 그 범위 내에서 결과적으로 유의한 차이는 없다. 이와 함께 소량의 노화방지제 및 발포제 등이 폐합성수지에 첨가되고 압출기를 통하여 압출됨으로써 본체(11) 및 연결봉(15)이 제조되는 것이다.The vegetable by-products are also inexpensive and mixed in the waste synthetic resin to actually improve the strength and bonding strength of the whole body 11 and connecting rod 15, but if the content is more than the proper range, cracks or breakage may occur. It may occur, and below that, the desired function cannot be exerted. Therefore, the content of the vegetable by-product is meaningful, and there is no significant difference as a result within the range. Along with this, a small amount of an anti-aging agent and a foaming agent are added to the waste synthetic resin and extruded through an extruder, whereby the body 11 and the connecting rod 15 are manufactured.
상기 연결봉(15)은 다수의 본체(11)가 연이어 배치된 상태에서 각 본체(11)의 관통공(13)을 차례로 통과하면서 설치되어 다수의 본체(11)를 연결해 줌으로써 본체의 배치, 시공 및 유지를 용이하게 한다. 상기 본체(11)의 관통공(13)이 직선형이거나 곡선형일 수 있는 것과 같이, 이에 대응하는 연결봉(15) 역시 직선형이거나 곡선형일 수 있다. The connecting rod 15 is installed while sequentially passing through the through-holes 13 of each body 11 in a state where a plurality of bodies 11 are successively arranged, so as to connect the plurality of bodies 11, the arrangement, construction, and Easy to maintain. As the through hole 13 of the body 11 may be straight or curved, the connecting rod 15 corresponding thereto may also be straight or curved.
한편, 상기 연결봉(15)은 폐합성수지를 이용한 플라스틱 봉으로서 자체의 휨 특성으로 인하여 상기 관통공(13)의 곡률에 대하여 유연적으로 적응하여 대응할 수 있는 장점이 있다. 또한, 본 발명의 도로 경계석(10)은 다수의 본체(11)가 상기 연결봉(15)에 의해 물리적으로 연결된 관계에 있으므로, 시공 후에도 외력에 의하여 연결관계 및 배치관계가 훼손되지 않는 장점이 있다.On the other hand, the connecting rod 15 is a plastic rod using waste synthetic resin, and has the advantage of being able to flexibly adapt to the curvature of the through hole 13 due to its bending characteristics. In addition, the road boundary stone 10 of the present invention has an advantage in that the connection relationship and the arrangement relationship are not damaged by external force even after construction because a plurality of bodies 11 are physically connected by the connecting rod 15.
다만, 단위 본체(11)는 지반 또는 충격 등의 사정에 따라 연결봉(15)에 축 회전할 수가 있다. 이에 도시된 바와 같이, 상기 연결봉(15)은 본체(11)의 임의 축 회전을 방지하기 위한 타원형으로 성형되며, 더욱 바람직하게 상호 견고한 결합을 위하여 상기 관통공(13)의 내벽과 연결봉(15)의 표면은 방사상의 요철(凹凸) 형태로 대응되도록 할 수 있다.However, the unit body 11 may be axially rotated on the connecting rod 15 according to circumstances such as ground or shock. As shown in this, the connecting rod 15 is formed into an elliptical shape to prevent any axial rotation of the body 11, and more preferably, the inner wall of the through hole 13 and the connecting rod 15 for mutually strong coupling The surface of the can be made to correspond in the form of radial irregularities.
상기 코팅층(13)은, 합성수지에 상기한 광촉매 재료를 첨가한 도료층이며, 야광재료가 더 혼합될 수도 있다. 이 표면층(13)의 합성수지 재료로는 폐자재인 폐합성수지가 사용되지 않은 신자재인데, 폐합성수지를 그대로 노출시키는 경우에는 실제로 미관상 좋지 않고, 다양한 색상의 표현도 어려우며, 재료의 광특성 발현이 어려워지기 때문이다.The coating layer 13 is a coating layer in which the above-described photocatalyst material is added to the synthetic resin, and the luminous material may be further mixed. The synthetic resin material of the surface layer 13 is a new material in which the waste synthetic resin, which is a waste material, is not used. When the waste synthetic resin is exposed as it is, it is not actually aesthetically pleasing, and it is difficult to express various colors, and it is difficult to express the optical properties of the material. Because it loses.
[실시예][Example]
이상에서, 상기 본체(11)와 연결봉(15)는 같은 재료를 가지고 개별적으로 제작된다. 저가의 재활용 폐합성수지를 선별과정 없이 수집하고 10㎣ 크기로 분쇄 혼합하여 폐합성수지 혼합물을 구비하였다. 그리고 상기 혼합물 100 중량부에 대하여 식물성 부산물인 왕겨 25 중량부를 혼합한 후 고온으로 가열하여 재생 플라스틱 원료를 제조하였다. 그리고 별도의 압출기에 상기 원료를 투입 압출함으로써 본체(11)와 연결봉(15)을 구비하였다.In the above, the main body 11 and the connecting rod 15 are individually made of the same material. The low-cost recycled waste synthetic resin was collected without screening and pulverized and mixed to a size of 10 ㎣ to prepare a waste synthetic resin mixture. Then, 25 parts by weight of rice husk as a by-product of the mixture was mixed with 100 parts by weight, and then heated to a high temperature to prepare a recycled plastic raw material. Then, by inserting and extruding the raw material into a separate extruder, a main body 11 and a connecting rod 15 were provided.
그 후, 상기 구비된 본체(11)에는 상기 도료 도포에 의한 코팅층(12)이 형성된다. 상기 도료는 상기 플라스틱 몸체(11)의 표면에 코팅층(12)을 형성하기 위한 목적으로 구성 및 사용되는 것으로, 이 도료는 통상의 폴리에틸렌 수지에 광 반응 재료로서 야광재료와 이산화티타늄 광촉매 재료가 첨가된 것이며 바인더, 분산제, 안료를 적절히 함유하여 제조한다. 이 도료는 스프레이, 솔, 롤러, 인쇄 등의 방법으로 도포될 수도 있으나, 본 실시예에서는 이중 압출법에 의해 본체(11)와의 공동 및 연속 공정에서 본체(11)의 표면에 형성되고 건조 및 경화시킴으로써 본체(11)의 표면에 코팅층(12)이 형성된다.Thereafter, a coating layer 12 is formed on the provided body 11 by applying the paint. The paint is constructed and used for the purpose of forming the coating layer 12 on the surface of the plastic body 11, which is a photo-reactive material to a conventional polyethylene resin with a luminous material and a titanium dioxide photocatalyst material added. It is prepared by properly containing a binder, a dispersant, and a pigment. This paint may be applied by a method such as spray, brush, roller, printing, etc. In this embodiment, it is formed on the surface of the body 11 in a cavity and continuous process with the body 11 by a double extrusion method, and is dried and cured. By doing so, the coating layer 12 is formed on the surface of the body 11.
이와 같이 도료 코팅층(12)을 갖는 본체(11)와 그 연결봉(15)이 구비되면, 먼저 상기 본체(11)를 그 지지대 또는 지면상에 측면이 대면하는 상태로 연이어 배치하고, 이 상태에서 상기 연결봉(15)을 배열된 본체(11)의 관통공(13)에 차례로 끼워지도록 하여 다수의 본체(11)가 연결되도록 함으로써 도로 경계석(10)의 시공을 완성한다.When the main body 11 having the coating layer 12 and the connecting rod 15 are provided as described above, first, the main body 11 is successively arranged in a state where the side faces on the support or the ground, and in this state, the By connecting the connecting rods 15 to the through holes 13 of the arranged body 11 in sequence, a plurality of bodies 11 are connected to complete the construction of the road boundary stone 10.
예컨대 인접한 본체(11) 사이에 고무 또는 플라스틱 논-슬립(non-sleep)(도 3의 부호 '16' 참조) 등 다른 필요한 요소가 배치되고 끼워질 필요가 있다면, 거기에 관통공을 만들어 상기 연결봉(15)이 관통하도록 한다. 따라서 이 구조는 예컨대 인접한 도로 경계석(10) 몸체 사이에 다른 구조물이 배치되어야 하는 경우에도 적응성이 우수한 장점이 있다.If other necessary elements such as rubber or plastic non-sleep (for example, reference numeral '16' in FIG. 3) are needed to be placed and fitted between adjacent bodies 11, a through hole is made there to make the connecting rod. Let (15) penetrate. Therefore, this structure has an advantage of excellent adaptability even when other structures need to be disposed between, for example, adjacent road boundary stones 10 bodies.
Claims (11)
- 차도와 인도, 차도와 길가 또는 도로와 비도로를 구분하기 위하여 도로의 경계를 따라 연속 설치되는 도로 경계석에 있어서,In a road boundary stone continuously installed along a road boundary to distinguish a road and a road, a road and a road, or a road and a non-road,길이방향으로 형성되는 블록형 플라스틱 본체(11)와, 상기 본체(11)의 표면에 도포된 도료 코팅층(12)을 포함하며;A block-shaped plastic body 11 formed in the longitudinal direction, and a coating layer 12 coated on the surface of the body 11;상기 도료는 NOx 제거 가능한 이산화티타늄계 광촉매를 포함하며;The coating includes a titanium dioxide-based photocatalyst capable of removing NOx;상기 광촉매는:The photocatalyst:이산화티타늄(TiO2) 격자구조 내에 필요 금속원소로서 납(Pb)과 선택 금속원소로서 나트륨(Na), 칼슘(Ca) 중에서 선택된 하나가 동시 도핑되어 있으며; 이때In the titanium dioxide (TiO2) lattice structure, one selected from lead (Pb) as a required metal element and sodium (Na) and calcium (Ca) as a selected metal element is simultaneously doped; At this time상기 이산화티타늄에 포함된 필요 및 선택 금속요소의 총 함량은 이산화티타늄 100 중량부에 대하여 5 중량부 내지 15 중량부인 것;The total content of the necessary and optional metal elements contained in the titanium dioxide is 5 parts by weight to 15 parts by weight based on 100 parts by weight of titanium dioxide;을 특징으로 하는 NOx 제거 가능한 도로 경계석.Characterized by NOx removable road boundary stone.
- 제1항에 있어서,According to claim 1,상기 이산화티타늄에 포함된 필요 및 선택 금속원소의 각 함량은, 이산화티타늄 100 중량부에 대하여 2.5 중량부 내지 10 중량부인 것을 특징으로 하는 NOx 제거 가능한 도로 경계석.Each content of the required and optional metal elements contained in the titanium dioxide, NOx removable road boundary stone, characterized in that 2.5 to 10 parts by weight based on 100 parts by weight of titanium dioxide.
- 제2항에 있어서,According to claim 2,상기 이산화티타늄에 포함된 필요 및 선택 금속원소의 각 함량은, 이산화티타늄 100 중량부에 대하여 상기 필요 금속원소 7±0.5 중량부 및 상기 선택 금속원소 5±0.5 중량부인 것을 특징으로 하는 NOx 제거 가능한 도로 경계석.Each content of the necessary and optional metal elements contained in the titanium dioxide is a NOx removable road, characterized in that the required metal element is 7 ± 0.5 parts by weight and the selected metal element is 5 ± 0.5 parts by weight relative to 100 parts by weight of titanium dioxide. boundary stone.
- 제1항에 있어서,According to claim 1,상기 도핑은:The doping is:이산화티타늄 전구체 용액, 납 전구체 용액, 선택 금속원소 중에서 선택된 하나의 전구체 용액을 동시에 혼합 및 교반하여 이루어지는 것;A mixture of titanium dioxide precursor solution, lead precursor solution, and one precursor solution selected from a metal element;을 특징으로 하는 NOx 제거 가능한 도로 경계석.Characterized by NOx removable road boundary stone.
- 제1항에 있어서,According to claim 1,상기 도핑은:The doping is:이산화티타늄 전구체 용액과 납 전구체 용액을 1차로 혼합 및 교반하고, 그 혼합 용액에 선택 금속원소 중에서 선택된 하나의 전구체 용액을 2차로 혼합 및 교반하여 이루어지는 것;A titanium dioxide precursor solution and a lead precursor solution are first mixed and stirred, and the mixture solution is mixed and stirred by a second precursor solution selected from among selected metal elements;을 특징으로 하는 NOx 제거 가능한 도로 경계석.Characterized by NOx removable road boundary stone.
- 제1항에 있어서,According to claim 1,상기 도료는, 빛을 흡수하였다가 방출하는 야광재료가 혼합된 것을 특징으로 하는 NOx 제거 가능한 도로 경계석.The paint, NOx removable road boundary stone, characterized in that a mixture of luminous materials that absorb and emit light.
- 제1항에 있어서,According to claim 1,상기 본체(11)는:The main body 11 is:중앙 부분에 길이 방향의 관통공(13)이 형성된 블록(14)과;A block 14 in which a through hole 13 in the longitudinal direction is formed in the central portion;상기 블록(14)의 인접한 관통공(13)을 차례로 통과함으로써, 다수의 본체(11)를 연이어 연결해 주는 연결봉(15);A connecting rod 15 that sequentially connects the plurality of bodies 11 by sequentially passing through the adjacent through holes 13 of the block 14;을 포함하는 것을 특징으로 하는 NOx 제거 가능한 도로 경계석.NOx removable road boundary stone, characterized in that it comprises a.
- 제7항에 있어서,The method of claim 7,상기 본체(11) 또는 연결봉(15)은, 저가 폐합성수지를 주재로 식물성 부산물인 왕겨, 톱밥 또는 그 혼합 원료를 이용하여 성형되는 것을 특징으로 하는 NOx 제거 가능한 도로 경계석.The main body 11 or connecting rod 15, NOx removable road boundary stone characterized in that it is molded using low-cost waste synthetic resin as a vegetable by-product chaff, sawdust or a mixture thereof.
- 제7항에 있어서,The method of claim 7,상기 연결봉(15)은 몸체(11)의 임의 축 회전을 방지하기 위한 타원형으로 성형되는 것을 특징으로 하는 NOx 제거 가능한 도로 경계석.The connecting rod 15 is NOx removable road boundary stone characterized in that it is formed in an elliptical shape to prevent any axis rotation of the body (11).
- 제8항에 있어서,The method of claim 8,상기 식물성 부산물은 상기 폐합성수지 100 중량부에 대하여 20-30 중량부로 혼합되는 것을 특징으로 하는 NOx 제거 가능한 도로 경계석.The vegetable by-product, NOx removable road boundary stone, characterized in that mixed with 20-30 parts by weight based on 100 parts by weight of the waste synthetic resin.
- 제1항에 있어서,According to claim 1,상기 코팅층(12)은 이중 압출법에 의해 상기 본체(11)의 표면에 형성되는 것을 특징으로 하는 NOx 제거 가능한 도로 경계석.The coating layer 12 is NOx removable road boundary stone, characterized in that formed on the surface of the body 11 by a double extrusion method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0135174 | 2018-11-06 | ||
KR1020180135174A KR102024748B1 (en) | 2018-11-06 | 2018-11-06 | Plastic boundary stone of road capable of removing NOx |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020096333A1 true WO2020096333A1 (en) | 2020-05-14 |
Family
ID=68068717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/014947 WO2020096333A1 (en) | 2018-11-06 | 2019-11-06 | Plastic road barrier capable of removing nitrogen oxide |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102024748B1 (en) |
WO (1) | WO2020096333A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2590446A (en) * | 2019-12-18 | 2021-06-30 | Three Smith Group Ltd | Kerb barrier |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102024748B1 (en) * | 2018-11-06 | 2019-09-24 | 주식회사 카리스 | Plastic boundary stone of road capable of removing NOx |
KR102537789B1 (en) * | 2021-10-15 | 2023-05-26 | 곽은구 | LED Boundary Block Having a Luminous Function for Road Visibility |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR940020777U (en) * | 1993-02-02 | 1994-09-17 | 송덕봉 | Road boundary block |
US20030129412A1 (en) * | 1998-07-29 | 2003-07-10 | Noboru Nonoyama | Air purification-functioning road and method for purifying polluted air over road |
KR100875458B1 (en) * | 2008-08-14 | 2008-12-22 | 희망산업주식회사 | Manufacturing method of sidewalk block using photocatalyst recovered from wastewater |
KR20140010806A (en) * | 2012-07-17 | 2014-01-27 | 주완규 | Road boundary stone using a waste plastics |
KR101768705B1 (en) * | 2016-02-29 | 2017-08-17 | 동국대학교 산학협력단 | PHOTOCATALYST COATING ZEOLITE SURFACE MEDIA and GREEN INFRASTRUCTURE USING THE SAME |
KR102024748B1 (en) * | 2018-11-06 | 2019-09-24 | 주식회사 카리스 | Plastic boundary stone of road capable of removing NOx |
-
2018
- 2018-11-06 KR KR1020180135174A patent/KR102024748B1/en active IP Right Grant
-
2019
- 2019-11-06 WO PCT/KR2019/014947 patent/WO2020096333A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR940020777U (en) * | 1993-02-02 | 1994-09-17 | 송덕봉 | Road boundary block |
US20030129412A1 (en) * | 1998-07-29 | 2003-07-10 | Noboru Nonoyama | Air purification-functioning road and method for purifying polluted air over road |
KR100875458B1 (en) * | 2008-08-14 | 2008-12-22 | 희망산업주식회사 | Manufacturing method of sidewalk block using photocatalyst recovered from wastewater |
KR20140010806A (en) * | 2012-07-17 | 2014-01-27 | 주완규 | Road boundary stone using a waste plastics |
KR101768705B1 (en) * | 2016-02-29 | 2017-08-17 | 동국대학교 산학협력단 | PHOTOCATALYST COATING ZEOLITE SURFACE MEDIA and GREEN INFRASTRUCTURE USING THE SAME |
KR102024748B1 (en) * | 2018-11-06 | 2019-09-24 | 주식회사 카리스 | Plastic boundary stone of road capable of removing NOx |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2590446A (en) * | 2019-12-18 | 2021-06-30 | Three Smith Group Ltd | Kerb barrier |
GB2590446B (en) * | 2019-12-18 | 2022-05-18 | Three Smith Group Ltd | Kerb barrier |
US11634873B2 (en) | 2019-12-18 | 2023-04-25 | Three Smith Group Limited | Deformable curb barrier |
Also Published As
Publication number | Publication date |
---|---|
KR102024748B1 (en) | 2019-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020096333A1 (en) | Plastic road barrier capable of removing nitrogen oxide | |
JP2007532287A5 (en) | ||
EP1512728B1 (en) | Photocatalytic coating material, photocatalytic composite material and process for producing the same, self-cleaning water-based coating compositions, and self-cleaning member | |
KR20010030773A (en) | Road provided with air cleaning function and method of cleaning polluted air on road | |
ATE232511T1 (en) | CORDIERITE STRUCTURES | |
WO2019245149A1 (en) | Photocatalyst and guardrail capable of removing nitrogen oxides | |
EP3535229B1 (en) | Glaze for a ceramic article | |
Cassar | Nanotechnology and photocatalysis in cementitious materials | |
KR102221814B1 (en) | Hybrid flame retardant paint manufacturing method, flame retardant paint construction method using factory flame retardant paint | |
WO2022102809A1 (en) | Air-cleaning device and air-cleaning method | |
WO2021080296A1 (en) | Method for preparing lightweight porous composition | |
RU2006139088A (en) | CARBON-CONTAINING PHOTOCATALIZER BASED ON TITANIUM DIOXIDE, METHOD FOR ITS PRODUCTION AND APPLICATION (OPTIONS) | |
JPH08196902A (en) | Inorganic cured body for air purification | |
JP3860707B2 (en) | Combustion exhaust gas treatment method | |
WO2021172829A1 (en) | Method for removing residual chlorine, scr catalyst for reducing nitrogen oxide by same method, and preparation method therefor | |
US7608297B2 (en) | Procedure for the realisation of ceramic manufactures, in particular, porcelain stoneware tiles and trim pieces, with anti pollution and anti-bacterial properties and products thereby obtained | |
JP3124491B2 (en) | How to clean sound insulation walls | |
KR20070029377A (en) | Insulator coated with hydrophilic photocatalyst | |
WO2020130748A1 (en) | Catalyst for decomposing perfluorocompounds, and preparation method therefor | |
WO2021112405A1 (en) | Isomerization method of cyclohexane dicarboxylic acid | |
CN1137787C (en) | Nanometer optical catalyst mother solution and its preparing method and use | |
WO2023219397A1 (en) | Hydrogen-doped reduced titania powder and preparation method therefor | |
WO2024043417A1 (en) | Core-shell-structured composite particles and preparation method therefor | |
WO2022045564A1 (en) | Nanoplatelet vanadium oxide-supported denitration catalyst and manufacturing method therefor | |
WO2022245078A1 (en) | Process for simultaneously reducing isopropanol and ammonia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19882354 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19882354 Country of ref document: EP Kind code of ref document: A1 |