WO2020095842A1 - Drone - Google Patents

Drone Download PDF

Info

Publication number
WO2020095842A1
WO2020095842A1 PCT/JP2019/043061 JP2019043061W WO2020095842A1 WO 2020095842 A1 WO2020095842 A1 WO 2020095842A1 JP 2019043061 W JP2019043061 W JP 2019043061W WO 2020095842 A1 WO2020095842 A1 WO 2020095842A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
diameter
drug
rotary blade
rotor blades
Prior art date
Application number
PCT/JP2019/043061
Other languages
French (fr)
Japanese (ja)
Inventor
千大 和氣
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2020517215A priority Critical patent/JP6913979B2/en
Publication of WO2020095842A1 publication Critical patent/WO2020095842A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/24Coaxial rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • B64C11/48Units of two or more coaxial propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/299Rotor guards

Definitions

  • the drone can perform a predetermined work in the target area, and the flight control unit may be configured to lower the altitude during the work more than when the work is not performed.
  • FIG. 1 is a plan view showing an embodiment of a drone according to the present invention. It is a front view of the said drone. It is a right view of the said drone. It is a rear view of the drone. It is a perspective view of the drone. It is the whole conceptual diagram of the medicine spraying system which the drone has. It is a schematic diagram showing the control function of the said drone. (a) A schematic vertical cross-sectional view showing how a one-stage rotor having a related art drone generates a swirl flow, and (b) a two-stage rotor having a drone according to the present invention has a swirl flow.
  • FIG. 4 is a schematic vertical cross-sectional view showing a state in which is generated.
  • the drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
  • the drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve to support the chemical nozzle.
  • the pump 106 is a means for discharging the medicine from the nozzle.
  • the base station 404 is a device that provides a master device function of Wi-Fi communication, etc., and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices).
  • the farm cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the operation unit 401 via a mobile phone line or the like.
  • the farming cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growing condition of the crop, and perform a process for determining a flight route. Further, the drone 100 may be provided with the stored topographical information of the field 403 and the like. In addition, the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
  • the drone 100 will take off from the landing point 406 outside the field 403 and return to the landing point 406 after spraying the drug on the field 403 or when it becomes necessary to replenish or charge the drug.
  • the flight route (entry route) from the landing point 406 to the target field 403 may be stored in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
  • the actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
  • the flight controller 501 is an example of a flight controller.
  • the software used by the flight controller 501 can be rewritten through storage media or the like for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB.
  • encryption, checksum, electronic signature, virus check software, etc. are used to protect the software from being rewritten by unauthorized software.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the operation unit 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
  • the flight controller 501 exchanges with the operation unit 401 via the Wi-Fi slave unit 503 and further via the base station 404, receives a necessary command from the operation unit 401, and outputs necessary information to the operation unit 401. Can be sent to.
  • the communication may be encrypted so as to prevent illegal acts such as interception, spoofing, and hijacking of equipment.
  • the base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi.
  • the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it may be duplicated / multiplexed, and each redundant GPS module 504 should use a different satellite to cope with the failure of a specific GPS satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is a means for measuring accelerations of the drone aircraft in three directions orthogonal to each other (further, a means for calculating speed by integrating accelerations).
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the three directions described above, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the atmospheric pressure sensor 507 is a means for measuring the atmospheric pressure, and can indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone body and the ground surface by using the reflection of sound waves such as ultrasonic waves.
  • These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to another sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount.
  • the multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. ..
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open.
  • the drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the drone's cost targets and performance requirements, and may be duplicated or multiplexed.
  • a sensor may be provided at the base station 404 outside the drone 100, the operation device 401, or at another place, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404, and information regarding wind force / wind direction may be transmitted to the drone 100 via Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge.
  • the current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
  • the LED107 is a display means for notifying the drone operator of the status of the drone.
  • a display means such as a liquid crystal display may be used instead of the LED or in addition to the LED.
  • the buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal.
  • the Wi-Fi slave device function 503 is an optional component for communicating with an external computer or the like, for example, for software transfer, in addition to the operation unit 401.
  • other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
  • the speaker 520 is an output means for notifying the drone state (particularly an error state) by the recorded human voice, synthesized voice or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice.
  • the warning light 521 is a display means such as a strobe light for notifying the state of the drone (in particular, an error state). These input / output means may be selected according to the cost target and performance requirements of the drone, or may be duplicated / multiplexed.
  • the diameters of the lower rotary blades 101-1b, 101-2b, 101-3b, 101-4b are the same as those of the upper rotary blades 101-1a, 101-2a, 101-3a, 101. It is smaller than the diameter of -4a, about 90%.
  • the elevation angles of the lower rotor blades 101-1b, 101-2b, 101-3b, 101-4b are smaller than the elevation angles of the upper rotor blades 101-1a, 101-2a, 101-3a, 101-4a.
  • the rotary blades 201-2a and 201-4a of the one-stage configuration in the drone 200 of the related art respectively generate swirling flows 261-2a and 261-4a near the outer circumferences of their respective rotation loci. Occur. Therefore, as shown in FIG. 8 (b), the rotary blades 101 are arranged coaxially to form a two-stage structure in which pairs are vertically arranged, and the upper and lower rotary blades 101 are rotated in opposite directions to each other. Swirl flow 61-2a, 61-4a generated by the rotary blades 101-2a, 101-4a of the above and swirl flow 61-2b, 61-4b generated by the lower rotary blades 101-2b, 101-4b are in opposite directions. To do. With this configuration, the swirling flows generated by the rotary blades 101 can be canceled each other. By canceling the swirling flow, it is possible to further increase the downward airflow downward by the rotor blades.
  • the diameter of the lower rotor blades 101-1b, 101-2b, 101-3b, 101-4b is smaller than the diameter of the upper rotor blades 101-1a, 101-2a, 101-3a, 101-4a. Further speaking, the diameter of the lower rotary blades 101-1b, 101-2b, 101-3b, 101-4b is 95 times the diameter of the upper rotary blades 101-1a, 101-2a, 101-3a, 101-4a. It should be smaller than%.
  • the diameter of the lower rotary blades 101-1b, 101-2b, 101-3b, 101-4b is larger than 95% of the diameter of the upper rotary blades 101-1a, 101-2a, 101-3a, 101-4a.
  • the upward airflow generated by the lower rotor blades 101-1b, 101-2b, 101-3b, 101-4b cancels the downward airflow of the upper rotor blades 101-1a, 101-2a, 101-3a, 101-4a.
  • the total amount of downdraft discharged below the two-stage rotor blade becomes small.
  • the diameter of the lower rotary blade 101-1b, 101-2b, 101-3b, 101-4b is 80% of the diameter of the upper rotary blade 101-1a, 101-2a, 101-3a, 101-4a. It should be big. If the diameter of the lower rotor blades 101-1b, 101-2b, 101-3b, 101-4b is smaller than 80% of the diameter of the upper rotor blades, the upper rotor blades 101-1a, 101-2a, 101-3a The effect of sufficiently canceling the swirling flow by 101-4a becomes small.
  • the wind force generated by the rotor blades 101-1b, 101-2b, 101-3b, 101-4b is reduced. be able to. Since the swirl flow is generated on the outer circumference of the rotation trajectory of the rotary blade, when the diameter of the rotary blade is reduced, the region where the swirl flow is generated moves inward in the radial direction.
  • the lower rotor blades 101-1b, 101-2b, 101-3b, 101-4b cause There is a large difference between the swirl flow 61-2b, 61-4b region and the swirl flow 61-1 region due to the upper rotor blades 101-1a, 101-2a, 101-3a, 101-4a, and the swirl flow is effective. Cannot cancel each other out. Therefore, to prevent the diameter of the lower rotor blade from becoming too small, the diameter of the upper rotor blade is reduced to about 90% while the elevation angle of the lower rotor blade is reduced to change the region where swirling flow occurs. Without generating a swirl flow.
  • the drone 100 may be a drug spraying drone that flies in the field and sprays a drug on the root or the tip of the crop growing in the field, or may be a growth monitoring drone that monitors the growth of the crop. Good.
  • a field is an example of a target area, and drug spraying and growth monitoring are examples of predetermined work. If the descending airflow from the rotor blades 101 is small, the crop cannot be sufficiently laid down, and in the drug spray drone, the drug may not be able to sufficiently reach the plant base of the crop. Further, in the growth monitoring drone, there is a possibility that the plant origin of the crop may not be properly photographed. According to the drone 100 of the present invention, it is possible to generate a sufficient downdraft of the wind power, and thus it is possible to more effectively carry out drug spraying and growth monitoring.
  • the flight control unit may lower the altitude during work as compared to during flight except during work. During work, that is, during spraying of chemicals or monitoring of growth, it is necessary to lay down the crops with the downdraft, so by lowering the flight altitude, it is possible to secure the wind force of the downdraft necessary to lay down the crops. it can.
  • the drug spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and can be applied to all flying bodies having a rotary wing.
  • This flying body may be capable of autonomous flight or may be capable of manual flight control.
  • the drone having the rotor blade can generate the downdraft with stronger wind force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catching Or Destruction (AREA)

Abstract

[Problem] To generate downwash with a stronger wind force in a drone having rotary wings. [Solution] A drone 100 is provided with a body 110 and a plurality of rotary wings 101 arranged around the body so as to form a plurality of pairs each disposed vertically, and the drone 100 moves through generating thrust with downwash generated downward of lower-side rotary wings 101-1b, 101-2b, 101-3b, 101-4b. Upper-side rotary wings 101-1a, 101-2a, 101-3a, 101-4a and the lower-side rotary wings rotate in directions opposite to each other. The diameters of the lower-side rotary wings are smaller than the diameters of the upper-side rotary wings.

Description

ドローンDrone
 本願発明は、ドローンに関する。 The present invention relates to drones.
 一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。比較的狭い農地においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。 The application of small helicopters (multicopters) commonly called drones is progressing. One of the important fields of application thereof is spraying chemicals such as pesticides and liquid fertilizers on agricultural land (field) (for example, Patent Document 1). In relatively small farmlands, it is often the case that drones are more suitable than manned planes and helicopters.
 準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。 Technologies such as the Quasi-Zenith Satellite System and RTK-GPS (Real Time Kinematic-Global Positioning System) have made it possible for the drone to accurately know its absolute position in centimeters during flight. Even in a farmland with a narrow and complicated terrain typical of the above, it is possible to autonomously fly with minimal manual operation, and to efficiently and accurately apply a drug.
 その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。 On the other hand, there were cases where it was difficult to say that safety considerations were sufficient for autonomous flight drones for agricultural drug spraying. A drone loaded with medicines weighs several tens of kilograms, which could have serious consequences in the event of an accident such as falling onto a person. In addition, the drone operator is usually not an expert, so a fool-proof mechanism is necessary, but the consideration for this was insufficient. Until now, there has been a drone safety technology that is premised on human control (for example, Patent Document 2), but in particular, it addresses the safety issues peculiar to an autonomous flight drone for drug spraying for agriculture. There was no technology to do this.
 農業用ドローンにおいては、ダウンウォッシュ(「下降気流」ともいう。)より圃場の作物を適宜倒伏させて、作物の株元を露出させ、薬剤を散布したり、株元を撮影する方法が知られている。作物の株元を露出させるためには、より強い風力で下降気流を発生可能なドローンが必要とされている。 In agricultural drones, a method is known in which the crops in the field are appropriately laid down by downwash (also referred to as "downdraft") to expose the crop stockers, spray the chemicals, and photograph the stock crops. ing. Drones that can generate downdrafts with stronger wind power are needed to expose crop origins.
 特許文献3には、同一軸線上に前後2個のプロペラを設け、前方プロペラおよび後方プロペラを互いに反対方向に回転させることによって推力を発生する二重反転プロペラ装置において、上記前方プロペラの直径およびピッチがそれぞれ上記後方プロペラの直径およびピッチよりも大きく設定されている二重反転プロペラ装置が開示されている。 Patent Literature 3 discloses a counter-rotating propeller device in which two front and rear propellers are provided on the same axis, and thrust is generated by rotating a front propeller and a rear propeller in mutually opposite directions. Are disclosed, each of which is set larger than the diameter and pitch of the rear propeller.
 特許文献4には、エンジンの騒音を軽減するため、前後のプロペラを持つ二重反転プロペラアレイを有するガスタービンエンジンにおいて、前プロペラの直径は後プロペラの直径よりも大きいことが開示されている。 Patent Document 4 discloses that in a gas turbine engine having a contra-rotating propeller array having front and rear propellers, the diameter of the front propeller is larger than the diameter of the rear propeller in order to reduce engine noise.
特許公開公報 特開2001-120151Patent publication gazette JP 2001-120151 特許公開公報 特開2017-163265Patent publication gazette JP 2017-163265 特許公開公報 特開昭60-226391Patent publication gazette JP-A-60-226391 特許公開公報 特開2013-144545Japanese Patent Laid-Open Publication No. 2013-144545
 回転翼を有するドローンにおいて、より強い風力で下降気流を発生可能なドローンを提供する。 -Provides a drone that can generate a downdraft with stronger wind power in a drone that has rotor blades.
 上記目的を達成するため、本発明の一の観点に係るドローンは、本体と、前記本体の周辺に配置され、上下に対を成して複数対配置される複数の回転翼と、を備え、下段の前記回転翼の下方へ向かって生じる下降気流により推力を発生させて移動するドローンであって、上段の前記回転翼および下段の前記回転翼は、互いに反対方向に回転し、下段の前記回転翼の直径は、上段の前記回転翼の直径より小さい。 In order to achieve the above object, a drone according to one aspect of the present invention includes a main body, a plurality of rotor blades arranged around the main body, and a plurality of pairs of rotor blades that are arranged in pairs vertically. A drone that moves by generating thrust by downward airflow generated toward the lower part of the lower rotary blade, wherein the upper rotary blade and the lower rotary blade rotate in mutually opposite directions, and the lower rotary blade The diameter of the blade is smaller than the diameter of the upper rotary blade.
 下段の前記回転翼の仰角は、上段の前記回転翼の仰角より小さく構成されていてもよい。 The elevation angle of the lower rotor blade may be smaller than the elevation angle of the upper rotor blade.
 下段の前記回転翼の直径は、上段の前記回転翼の直径の95%より小さく構成されていてもよい。 The diameter of the lower rotor blade may be smaller than 95% of the diameter of the upper rotor blade.
 下段の前記回転翼の直径は、上段の前記回転翼の直径の80%より大きく構成されていてもよい。 The diameter of the lower rotary blade may be configured to be larger than 80% of the diameter of the upper rotary blade.
 下段の前記回転翼の直径は、上段の前記回転翼の直径の90%であるように構成されていてもよい。 The diameter of the lower rotor blade may be configured to be 90% of the diameter of the upper rotor blade.
 複数の前記回転翼の回転数をそれぞれ制御し、上段の前記回転翼および下段の前記回転翼を互いに反対方向に回転制御可能な飛行制御部をさらに備えていてもよい。 A flight control unit may be further provided, which controls rotation speeds of each of the plurality of rotor blades, and can control rotation of the upper rotor blade and the lower rotor blade in mutually opposite directions.
 前記ドローンは、対象エリア内において所定の作業を実行可能であり、前記飛行制御部は、前記作業中における飛行速度を、前記作業中以外よりも低下させるように構成されていてもよい。 The drone may be capable of performing a predetermined work in the target area, and the flight control unit may be configured to reduce the flight speed during the work more than during the work.
 前記ドローンは、対象エリア内において所定の作業を実行可能であり、前記飛行制御部は、前記作業中における高度を、前記作業中以外よりも下降させるように構成されていてもよい。 The drone can perform a predetermined work in the target area, and the flight control unit may be configured to lower the altitude during the work more than when the work is not performed.
 前記ドローンは、薬剤を貯留する薬剤タンクと、前記薬剤を吐出する薬剤ノズルと、をさらに備える、薬剤散布用に用いられるドローンであり、複数の前記回転翼により発生する下降気流により対象物を倒伏させることで、前記対象物の根元に前記薬剤を到達させるように構成されていてもよい。 The drone is a drone used for spraying a drug, further including a drug tank for storing a drug and a drug nozzle for discharging the drug, and the object is laid down by a downdraft generated by the plurality of rotor blades. By doing so, the medicine may reach the root of the object.
 前記ドローンは、撮像部をさらに備えるドローンであり、複数の前記回転翼により発生する下降気流により対象物を倒伏させることで、前記対象物の根元を撮像するように構成されていてもよい。 The drone is a drone that further includes an imaging unit, and may be configured to image the root of the object by laying the object down due to the descending airflow generated by the plurality of rotor blades.
 回転翼を有するドローンにおいて、より強い風力で下降気流を発生させることができる。 ▽ In a drone with rotating blades, it is possible to generate a downdraft with stronger wind force.
本願発明に係るドローンの実施形態を示す平面図である。1 is a plan view showing an embodiment of a drone according to the present invention. 上記ドローンの正面図である。It is a front view of the said drone. 上記ドローンの右側面図である。It is a right view of the said drone. 上記ドローンの背面図である。It is a rear view of the drone. 上記ドローンの斜視図である。It is a perspective view of the drone. 上記ドローンが有する薬剤散布システムの全体概念図である。It is the whole conceptual diagram of the medicine spraying system which the drone has. 上記ドローンの制御機能を表した模式図である。It is a schematic diagram showing the control function of the said drone. (a)関連技術のドローンが有する1段構成の回転翼が旋回流を発生する様子を示す模式的な縦断面図、(b)本願発明に係るドローンが有する2段構成の回転翼が旋回流を発生する様子を示す模式的な縦断面図である。(a) A schematic vertical cross-sectional view showing how a one-stage rotor having a related art drone generates a swirl flow, and (b) a two-stage rotor having a drone according to the present invention has a swirl flow. FIG. 4 is a schematic vertical cross-sectional view showing a state in which is generated.
 以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. The figures are all examples. In the following detailed description, for purposes of explanation, certain specific details are set forth in order to facilitate a thorough understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, well-known structures and devices are schematically shown in order to simplify the drawing.
 本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。 In the specification of the present application, the drone, regardless of power means (electric power, prime mover, etc.), control method (whether wireless or wired, and whether it is an autonomous flight type or a manual control type), It refers to all aircraft with multiple rotors.
●ドローン●
 図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリー消費量のバランスを考慮し、本体110の周辺に8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の本体110からのび出たアーム120により本体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。
● Drone ●
As shown in FIGS. 1 to 5, the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also referred to as rotors) are It is a means to fly the drone 100, and considering the stability of flight, the size of the aircraft, and the balance of battery consumption, 8 aircraft (4 sets of two-stage rotary blades) are provided around the main body 110. ing. Each rotor 101 is arranged on four sides of the main body 110 by an arm 120 extending from the main body 110 of the drone 100. That is, the rotating blades 101-1a, 101-1b on the left rear in the traveling direction, the rotating blades 101-2a, 101-2b on the left front, the rotating blades 101-3a, 101-3b on the right rear, and the rotating blades 101-on the right front. 4a and 101-4b are arranged respectively. Note that the drone 100 has the traveling direction downward in the plane of FIG.
 モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。なお、一部の回転翼101-3b、および、モーター102-3bが図示されていないが、その位置は自明であり、もし左側面図があったならば示される位置にある。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 The motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101-. 2b, 101-3a, 101-3b, 101-4a, 101-4b is a means for rotating (typically an electric motor, but may be an engine, etc.), one for each rotor Has been. The motor 102 is an example of a propulsion device. The upper and lower rotor blades (eg 101-1a and 101-1b) and their corresponding motors (eg 102-1a and 102-1b) in one set are for drone flight stability etc. The axes are collinear and rotate in opposite directions. Although some rotor blades 101-3b and the motor 102-3b are not shown, their positions are self-explanatory, and if there is a left side view, they are at the positions shown. As shown in FIGS. 2 and 3, the radial member for supporting the propeller guard, which is provided so that the rotor does not interfere with foreign matter, is not horizontal but has a tower-like structure. This is to promote the buckling of the member to the outside of the rotor blade at the time of collision and prevent the member from interfering with the rotor.
 薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 The drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward, and are equipped with four machines. In the specification of the present application, the term "chemicals" generally refers to pesticides, herbicides, liquid fertilizers, insecticides, seeds, and liquids or powders applied to fields such as water.
 薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。 The drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance. The drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve to support the chemical nozzle. The pump 106 is a means for discharging the medicine from the nozzle.
 図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。操作器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作機(図示していない)を使用してもよい(非常用操作機は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい)。操作器401とドローン100はWi-Fi等による無線通信を行う。 FIG. 6 shows an overall conceptual diagram of a system using an example of drug spraying application of the drone 100 according to the present invention. This figure is a schematic diagram and the scale is not accurate. The operation unit 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, battery level, camera image, etc.). Yes, and may be realized by a portable information device such as a general tablet terminal that runs a computer program. Although the drone 100 according to the present invention is controlled to perform autonomous flight, it may be configured so that it can be manually operated during basic operations such as takeoff and return, and during emergencies. In addition to the portable information device, you may use an emergency operating device (not shown) that has a function dedicated to emergency stop (a large emergency stop button, etc. is provided so that the emergency operating device can respond quickly in an emergency). It may be a dedicated device with). The operation unit 401 and the drone 100 perform wireless communication by Wi-Fi or the like.
 圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。 The field 403 is a rice field, a field, etc. to which the drug is sprayed by the drone 100. Actually, the topography of the farm field 403 is complicated, and there are cases where the topographic map cannot be obtained in advance, or the topographic map and the situation at the site are inconsistent. Normally, the farm field 403 is adjacent to a house, a hospital, a school, another crop farm field, a road, a railroad, and the like. In addition, there may be obstacles such as buildings and electric wires in the field 403.
 基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようになっていてもよい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。 The base station 404 is a device that provides a master device function of Wi-Fi communication, etc., and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices). The farm cloud 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the operation unit 401 via a mobile phone line or the like. The farming cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growing condition of the crop, and perform a process for determining a flight route. Further, the drone 100 may be provided with the stored topographical information of the field 403 and the like. In addition, the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
 通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(進入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。 Normally, the drone 100 will take off from the landing point 406 outside the field 403 and return to the landing point 406 after spraying the drug on the field 403 or when it becomes necessary to replenish or charge the drug. The flight route (entry route) from the landing point 406 to the target field 403 may be stored in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
 図7に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。フライトコントローラー501は、飛行制御部の例である。 FIG. 7 shows a block diagram showing the control function of the embodiment of the drug spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, a memory, related software, and the like. The flight controller 501, based on the input information received from the operation unit 401 and the input information obtained from various sensors described later, via the control means such as ESC (Electronic Speed Control), the motor 102-1a, 102-1b , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are controlled to control the flight of the drone 100. The actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501. The flight controller 501 is an example of a flight controller.
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、営農クラウド405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 can be rewritten through storage media or the like for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, encryption, checksum, electronic signature, virus check software, etc. are used to protect the software from being rewritten by unauthorized software. Further, a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the operation unit 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
 バッテリー502は、フライトコントローラー501、および、ドローンのその他の構成要素に電力を供給する手段であり、充電式であってもよい。バッテリー502はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してフライトコントローラー501に接続されている。バッテリー502は電力供給機能に加えて、その内部状態(蓄電量、積算使用時間等)をフライトコントローラー501に伝達する機能を有するスマートバッテリーであってもよい。 The battery 502 is a means for supplying electric power to the flight controller 501 and other components of the drone, and may be rechargeable. The battery 502 is connected to the flight controller 501 via a power supply unit including a fuse or a circuit breaker. The battery 502 may be a smart battery having a function of transmitting its internal state (amount of stored electricity, accumulated use time, etc.) to the flight controller 501 in addition to the power supply function.
 フライトコントローラー501は、Wi-Fi子機503を介して、さらに、基地局404を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御されていてもよい。 The flight controller 501 exchanges with the operation unit 401 via the Wi-Fi slave unit 503 and further via the base station 404, receives a necessary command from the operation unit 401, and outputs necessary information to the operation unit 401. Can be sent to. In this case, the communication may be encrypted so as to prevent illegal acts such as interception, spoofing, and hijacking of equipment. The base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it may be duplicated / multiplexed, and each redundant GPS module 504 should use a different satellite to cope with the failure of a specific GPS satellite. It may be controlled.
 6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is a means for measuring accelerations of the drone aircraft in three directions orthogonal to each other (further, a means for calculating speed by integrating accelerations). The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the three directions described above, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The atmospheric pressure sensor 507 is a means for measuring the atmospheric pressure, and can indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone body and the ground surface by using the reflection of sound waves such as ultrasonic waves. These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to another sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
 流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 The flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103. The liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount. The multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis. The obstacle detection camera 513 is a camera for detecting a drone obstacle and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512. The switch 514 is a means for the user 402 of the drone 100 to make various settings. The obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. .. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open. The drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the drone's cost targets and performance requirements, and may be duplicated or multiplexed. Further, a sensor may be provided at the base station 404 outside the drone 100, the operation device 401, or at another place, and the read information may be transmitted to the drone. For example, a wind sensor may be provided in the base station 404, and information regarding wind force / wind direction may be transmitted to the drone 100 via Wi-Fi communication.
 フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。 The flight controller 501 sends a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge. The current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。表示手段は、LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能503は操作器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 LED107 is a display means for notifying the drone operator of the status of the drone. As the display means, a display means such as a liquid crystal display may be used instead of the LED or in addition to the LED. The buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal. The Wi-Fi slave device function 503 is an optional component for communicating with an external computer or the like, for example, for software transfer, in addition to the operation unit 401. In addition to or in addition to the Wi-Fi cordless handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used. The speaker 520 is an output means for notifying the drone state (particularly an error state) by the recorded human voice, synthesized voice or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice. The warning light 521 is a display means such as a strobe light for notifying the state of the drone (in particular, an error state). These input / output means may be selected according to the cost target and performance requirements of the drone, or may be duplicated / multiplexed.
 図1乃至図5に示すように、下段の回転翼101-1b,101-2b,101-3b,101-4bの直径は、上段の回転翼101-1a,101-2a,101-3a,101-4aの直径よりも小さく、90%程度である。また、下段の回転翼101-1b,101-2b,101-3b,101-4bの仰角は、上段の回転翼101-1a,101-2a,101-3a,101-4aの仰角よりも小さい。上下の回転翼の構成をこのように異ならせることにより、旋回流を打ち消すことができる。 As shown in FIGS. 1 to 5, the diameters of the lower rotary blades 101-1b, 101-2b, 101-3b, 101-4b are the same as those of the upper rotary blades 101-1a, 101-2a, 101-3a, 101. It is smaller than the diameter of -4a, about 90%. The elevation angles of the lower rotor blades 101-1b, 101-2b, 101-3b, 101-4b are smaller than the elevation angles of the upper rotor blades 101-1a, 101-2a, 101-3a, 101-4a. By making the configurations of the upper and lower rotary blades different in this way, the swirling flow can be canceled.
 図8を用いて、二重反転の回転翼により旋回流を打ち消し合う様子を説明する。なお、同図は縦断面図のため、関連技術のドローン200における前方の回転翼201-2a,201-4a、本発明に係るドローン100における前方の回転翼101-2,101-4のみ示されているが、後方の回転翼における旋回流の様子に関しても同様である。また、図8(a)に示すドローン200は、本体210からのび出たアームにより本体210の四方に1段構成の回転翼が配置されているドローン200であって、回転翼の段数以外はドローン100と略同様であるものとする。 Fig. 8 will be used to explain how the counter-rotating blades cancel out the swirling flow. Since the drawing is a longitudinal sectional view, only the front rotor blades 201-2a and 201-4a of the related art drone 200 and the front rotor blades 101-2 and 101-4 of the drone 100 according to the present invention are shown. However, the same applies to the state of the swirling flow in the rear rotor blade. Further, the drone 200 shown in FIG. 8 (a) is a drone 200 in which arms extending from the main body 210 are arranged on the four sides of the main body 210 to form a single-stage rotary blade. It is almost the same as 100.
 図8(a)に示すように、関連技術のドローン200における1段構成の回転翼201-2a,201-4aは、それぞれの回転軌跡の外周付近に旋回流261-2a,261-4aをそれぞれ発生する。そこで、図8(b)に示すように、回転翼101を、同軸上に配置して上下に対を成す2段構成にし、上下段の回転翼101を互いに反対方向に回転させることにより、上段の回転翼101-2a,101-4aが生じる旋回流61-2a,61-4aと、下段の回転翼101-2b,101-4bが生じる旋回流61-2b,61-4bは互いに反対方向にする。この構成により、回転翼101により生じる旋回流を互いに打ち消すことができる。旋回流を打ち消すことにより、回転翼による下向きの下降気流をより大きくすることができる。 As shown in FIG. 8 (a), the rotary blades 201-2a and 201-4a of the one-stage configuration in the drone 200 of the related art respectively generate swirling flows 261-2a and 261-4a near the outer circumferences of their respective rotation loci. Occur. Therefore, as shown in FIG. 8 (b), the rotary blades 101 are arranged coaxially to form a two-stage structure in which pairs are vertically arranged, and the upper and lower rotary blades 101 are rotated in opposite directions to each other. Swirl flow 61-2a, 61-4a generated by the rotary blades 101-2a, 101-4a of the above and swirl flow 61-2b, 61-4b generated by the lower rotary blades 101-2b, 101-4b are in opposite directions. To do. With this configuration, the swirling flows generated by the rotary blades 101 can be canceled each other. By canceling the swirling flow, it is possible to further increase the downward airflow downward by the rotor blades.
 下段の回転翼101-1b,101-2b,101-3b,101-4bの直径は、上段の回転翼101-1a,101-2a,101-3a,101-4aの直径よりも小さい。さらに言えば、下段の回転翼101-1b,101-2b,101-3b,101-4bの直径は、上段の回転翼101-1a,101-2a,101-3a,101-4aの直径の95%より小さいとよい。下段の回転翼101-1b,101-2b,101-3b,101-4bの直径が上段の回転翼101-1a,101-2a,101-3a,101-4aの直径の95%より大きいと、下段の回転翼101-1b,101-2b,101-3b,101-4bにより生じる上昇気流が上段の回転翼101-1a,101-2a,101-3a,101-4aの下降気流を打ち消してしまい、二段構成の回転翼下方へ排出される下降気流の総計が小さくなってしまう。 The diameter of the lower rotor blades 101-1b, 101-2b, 101-3b, 101-4b is smaller than the diameter of the upper rotor blades 101-1a, 101-2a, 101-3a, 101-4a. Further speaking, the diameter of the lower rotary blades 101-1b, 101-2b, 101-3b, 101-4b is 95 times the diameter of the upper rotary blades 101-1a, 101-2a, 101-3a, 101-4a. It should be smaller than%. If the diameter of the lower rotary blades 101-1b, 101-2b, 101-3b, 101-4b is larger than 95% of the diameter of the upper rotary blades 101-1a, 101-2a, 101-3a, 101-4a, The upward airflow generated by the lower rotor blades 101-1b, 101-2b, 101-3b, 101-4b cancels the downward airflow of the upper rotor blades 101-1a, 101-2a, 101-3a, 101-4a. The total amount of downdraft discharged below the two-stage rotor blade becomes small.
 また、下段の回転翼101-1b,101-2b,101-3b,101-4bの直径は、上段の回転翼101-1a,101-2a,101-3a,101-4aの直径の80%より大きいとよい。下段の回転翼101-1b,101-2b,101-3b,101-4bの直径が上段の回転翼の直径の80%より小さいと、上段の回転翼101-1a,101-2a,101-3a,101-4aによる旋回流を十分に打ち消す作用が小さくなる。そこで、下段の回転翼101-1b,101-2b,101-3b,101-4bは、上段の回転翼101-1a,101-2a,101-3a,101-4aにより発生する下降気流の風力を損なわず、旋回流を打ち消す程度の風力を生じる形状、つまり、上段の回転翼101-1a,101-2a,101-3a,101-4aの直径の95%より小さく、80%より大きくなるように構成されている。また、回転翼101-1b,101-2b,101-3b,101-4bを軽量にすることができる。下段の回転翼101-1b,101-2b,101-3b,101-4bの直径は、上段の回転翼101-1a,101-2a,101-3a,101-4aの直径の90%であるとき、最も下降気流を大きくすることができる。 Further, the diameter of the lower rotary blade 101-1b, 101-2b, 101-3b, 101-4b is 80% of the diameter of the upper rotary blade 101-1a, 101-2a, 101-3a, 101-4a. It should be big. If the diameter of the lower rotor blades 101-1b, 101-2b, 101-3b, 101-4b is smaller than 80% of the diameter of the upper rotor blades, the upper rotor blades 101-1a, 101-2a, 101-3a The effect of sufficiently canceling the swirling flow by 101-4a becomes small. Therefore, the rotor blades 101-1b, 101-2b, 101-3b, 101-4b in the lower stage generate wind force of downdraft generated by the rotor blades 101-1a, 101-2a, 101-3a, 101-4a in the upper stage. A shape that generates wind force that cancels the swirl flow without impairing it, that is, smaller than 95% and larger than 80% of the diameter of the upper rotor blades 101-1a, 101-2a, 101-3a, 101-4a. It is configured. Further, the weight of the rotor blades 101-1b, 101-2b, 101-3b, 101-4b can be reduced. When the diameter of the lower rotor blades 101-1b, 101-2b, 101-3b, 101-4b is 90% of the diameter of the upper rotor blades 101-1a, 101-2a, 101-3a, 101-4a. , The downdraft can be maximized.
 下段の回転翼101-1b,101-2b,101-3b,101-4bの仰角を小さくすることにより、回転翼101-1b,101-2b,101-3b,101-4bにより生じる風力を小さくすることができる。旋回流は回転翼の回転軌跡の外周に発生するため、回転翼の直径を小さくすると、旋回流の生じる領域が半径方向内側に移動する。そのため、下段の回転翼101-1b,101-2b,101-3b,101-4bの直径を小さくしすぎると、下段の回転翼101-1b,101-2b,101-3b,101-4bにより生じる旋回流61-2b,61-4bの領域と、上段の回転翼101-1a,101-2a,101-3a,101-4aにより旋回流61-が生じる領域に大きな差異が生じ、旋回流を効果的に打消し合うことができない。そこで、下段の回転翼の直径が小さくなりすぎないように、上段の回転翼の直径の90%程度に止める一方、下段の回転翼の仰角を小さくすることによって、旋回流が生じる領域を変化させることなく、旋回流の発生を抑制している。 By reducing the elevation angle of the lower rotor blades 101-1b, 101-2b, 101-3b, 101-4b, the wind force generated by the rotor blades 101-1b, 101-2b, 101-3b, 101-4b is reduced. be able to. Since the swirl flow is generated on the outer circumference of the rotation trajectory of the rotary blade, when the diameter of the rotary blade is reduced, the region where the swirl flow is generated moves inward in the radial direction. Therefore, if the diameter of the lower rotor blades 101-1b, 101-2b, 101-3b, 101-4b is too small, the lower rotor blades 101-1b, 101-2b, 101-3b, 101-4b cause There is a large difference between the swirl flow 61-2b, 61-4b region and the swirl flow 61-1 region due to the upper rotor blades 101-1a, 101-2a, 101-3a, 101-4a, and the swirl flow is effective. Cannot cancel each other out. Therefore, to prevent the diameter of the lower rotor blade from becoming too small, the diameter of the upper rotor blade is reduced to about 90% while the elevation angle of the lower rotor blade is reduced to change the region where swirling flow occurs. Without generating a swirl flow.
 ドローン100の回転翼101による下降気流は、ドローン100の進行方向の後方に流れる。この下降気流は、圃場の作物を一時的になぎ倒す効果を生じさせる。ドローン100の回転翼101が作り出す気流の影響を最も受ける作物は、ドローン100の進行方向に対して後方であって、俯角約60度の方向にあることが発明者の実験により明らかになっている。なお、作物は、対象物の例である。対象物は、作物の他、上方からの風により倒される種々の構成であってもよい。 ▽ The downdraft by the rotating blades 101 of the drone 100 flows backward in the traveling direction of the drone 100. This downdraft creates the effect of temporarily overriding the crops in the field. Experiments by the inventor have revealed that the crop most affected by the air flow created by the rotor blades 101 of the drone 100 is behind the traveling direction of the drone 100 and is at a depression angle of about 60 degrees. .. The crop is an example of the object. The target object may have various configurations other than the crop, which is collapsed by the wind from above.
 ドローン100は、圃場内を飛行し、圃場に生育する作物の株元や穂先に薬剤を散布する薬剤散布用ドローンであってもよいし、作物の生育を監視する生育監視用ドローンであってもよい。圃場は対象エリアの例であり、薬剤散布および生育監視は、所定の作業の例である。回転翼101による下降気流が小さいと、作物を十分倒伏させることができず、薬剤散布用ドローンにおいては作物の株元に薬剤を十分到達させることができないおそれがある。また、生育監視用ドローンにおいては、作物の株元を適切に撮影することができないおそれがある。本発明に係るドローン100によれば、十分な風力の下降気流を生じさせることができるため、薬剤散布および生育監視をより効果的に行うことができる。 The drone 100 may be a drug spraying drone that flies in the field and sprays a drug on the root or the tip of the crop growing in the field, or may be a growth monitoring drone that monitors the growth of the crop. Good. A field is an example of a target area, and drug spraying and growth monitoring are examples of predetermined work. If the descending airflow from the rotor blades 101 is small, the crop cannot be sufficiently laid down, and in the drug spray drone, the drug may not be able to sufficiently reach the plant base of the crop. Further, in the growth monitoring drone, there is a possibility that the plant origin of the crop may not be properly photographed. According to the drone 100 of the present invention, it is possible to generate a sufficient downdraft of the wind power, and thus it is possible to more effectively carry out drug spraying and growth monitoring.
 飛行制御部は、作業中における飛行速度を、作業中以外よりも低下させてもよい。作業中、すなわち薬剤散布または生育監視中においては、下降気流で作物を倒伏させる必要がある。上に述べたように、作業中の飛行速度を低下させることで、作物に到達する下降気流の風力を上昇させ、作物を倒伏させることができる。 The flight control unit may reduce the flight speed during work compared to when the work is not in progress. During work, i.e. during drug spraying or growth monitoring, it is necessary to lay down crops in a downdraft. As mentioned above, by reducing the flight speed during work, the wind force of the downdraft that reaches the crop can be increased, and the crop can be laid down.
 飛行制御部は、作業中における高度を、作業中以外における飛行中よりも下降させてもよい。作業中、すなわち薬剤散布または生育監視中においては、下降気流で作物を倒伏させる必要があるため、飛行高度を下降させることで、作物を倒伏させるのに必要な下降気流の風力を担保することができる。 -The flight control unit may lower the altitude during work as compared to during flight except during work. During work, that is, during spraying of chemicals or monitoring of growth, it is necessary to lay down the crops with the downdraft, so by lowering the flight altitude, it is possible to secure the wind force of the downdraft necessary to lay down the crops. it can.
 なお、本説明においては、薬剤散布用ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、回転翼を有する飛行体全般に適用可能である。この飛行体は、自律飛行可能なものであってもよいし、手動で飛行制御可能なものであってもよい。 Note that, in the present description, the drug spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and can be applied to all flying bodies having a rotary wing. This flying body may be capable of autonomous flight or may be capable of manual flight control.
(本願発明による技術的に顕著な効果)
 本発明に係るドローンにおいては、回転翼を有するドローンにおいて、より強い風力で下降気流を発生させることができる。

 
(Technically remarkable effect of the present invention)
In the drone according to the present invention, the drone having the rotor blade can generate the downdraft with stronger wind force.

Claims (10)

  1.  本体と、
     前記本体の周辺に配置され、上下に対を成して複数対配置される複数の回転翼と、
    を備え、下段の前記回転翼の下方へ向かって生じる下降気流により推力を発生させて移動するドローンであって、
     上段の前記回転翼および下段の前記回転翼は、互いに反対方向に回転し、
     下段の前記回転翼の直径は、上段の前記回転翼の直径より小さい、
    ドローン。
     
    Body,
    A plurality of rotor blades arranged around the main body, and a plurality of pairs of rotor blades arranged in pairs vertically.
    And a drone that moves by generating thrust by descending airflow generated toward the lower side of the lower rotor blade,
    The upper rotary blade and the lower rotary blade rotate in mutually opposite directions,
    The diameter of the lower rotary blade is smaller than the diameter of the upper rotary blade,
    Drone.
  2.  下段の前記回転翼の仰角は、上段の前記回転翼の仰角より小さい、
    請求項1記載のドローン。
     
    The elevation angle of the lower rotor blade is smaller than the elevation angle of the upper rotor blade,
    The drone according to claim 1.
  3.  下段の前記回転翼の直径は、上段の前記回転翼の直径の95%より小さい、
    請求項1又は2記載のドローン。
     
    The diameter of the lower rotary blade is smaller than 95% of the diameter of the upper rotary blade,
    The drone according to claim 1 or 2.
  4.  下段の前記回転翼の直径は、上段の前記回転翼の直径の80%より大きい、
    請求項3記載のドローン。
     
    The diameter of the lower rotary blade is greater than 80% of the diameter of the upper rotary blade,
    The drone according to claim 3.
  5.  下段の前記回転翼の直径は、上段の前記回転翼の直径の90%である、
    請求項1又は2記載のドローン。
     
    The diameter of the lower rotary blade is 90% of the diameter of the upper rotary blade,
    The drone according to claim 1 or 2.
  6.  複数の前記回転翼の回転数をそれぞれ制御し、上段の前記回転翼および下段の前記回転翼を互いに反対方向に回転制御可能な飛行制御部をさらに備える、
    請求項1乃至5のいずれかに記載のドローン。
     
    Each of the plurality of rotor blades is controlled in rotation speed, further comprising a flight control unit capable of rotating control of the upper rotor blade and the lower rotor blade in mutually opposite directions.
    The drone according to any one of claims 1 to 5.
  7.  前記ドローンは、対象エリア内において所定の作業を実行可能であり、
     前記飛行制御部は、前記作業中における飛行速度を、前記作業中以外よりも低下させる、
    請求項6記載のドローン。
     
    The drone is capable of performing certain tasks within the target area,
    The flight control unit lowers the flight speed during the work as compared with during the work,
    The drone according to claim 6.
  8.  前記ドローンは、対象エリア内において所定の作業を実行可能であり、
     前記飛行制御部は、前記作業中における高度を、前記作業中以外よりも下降させる、
    請求項6又は7記載のドローン。
     
    The drone is capable of performing certain tasks within the target area,
    The flight control unit lowers the altitude during the work, as compared with when the work is not performed,
    The drone according to claim 6 or 7.
  9.  前記ドローンは、
      薬剤を貯留する薬剤タンクと、
      前記薬剤を吐出する薬剤ノズルと、
    をさらに備える、薬剤散布用に用いられるドローンであり、
     複数の前記回転翼により発生する下降気流により対象物を倒伏させることで、前記対象物の根元に前記薬剤を到達させる、
    請求項1乃至8のいずれかに記載のドローン。
     
    The drone
    A drug tank that stores the drug,
    A drug nozzle for ejecting the drug,
    A drone used for drug spraying, further comprising:
    By laying down the object by the descending airflow generated by the plurality of rotor blades, the drug reaches the root of the object,
    The drone according to any one of claims 1 to 8.
  10.  前記ドローンは、
    撮像部をさらに備えるドローンであり、
     複数の前記回転翼により発生する下降気流により対象物を倒伏させることで、前記対象物の根元を撮像する、
    請求項1乃至9のいずれかに記載のドローン。
     

     
    The drone
    It is a drone that further has an imaging unit,
    An image of the root of the object is obtained by inclining the object by the descending airflow generated by the plurality of rotor blades,
    The drone according to any one of claims 1 to 9.


PCT/JP2019/043061 2018-11-06 2019-11-01 Drone WO2020095842A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020517215A JP6913979B2 (en) 2018-11-06 2019-11-01 Drone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-208931 2018-11-06
JP2018208931 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020095842A1 true WO2020095842A1 (en) 2020-05-14

Family

ID=70611822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043061 WO2020095842A1 (en) 2018-11-06 2019-11-01 Drone

Country Status (2)

Country Link
JP (1) JP6913979B2 (en)
WO (1) WO2020095842A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022193157A1 (en) * 2021-03-16 2022-09-22 深圳市大疆创新科技有限公司 Multi-rotor aerial vehicle
KR102473944B1 (en) * 2022-05-09 2022-12-06 에이에프아이 주식회사 Drone with improved vehicle safety
KR102473938B1 (en) * 2022-05-09 2022-12-06 남상균 Drone with improved flying stability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170174337A1 (en) * 2015-12-17 2017-06-22 Amazon Technologies, Inc. Redundant Aircraft Propulsion System Using Multiple Motors Per Drive Shaft
JP2018000109A (en) * 2016-07-01 2018-01-11 Tead株式会社 Fluid dispersion instrument of unmanned flying body
WO2018168565A1 (en) * 2017-03-12 2018-09-20 株式会社ナイルワークス Drone for capturing images of field crops
US20180281949A1 (en) * 2015-09-09 2018-10-04 Altus IP Limited Systems and methods for stabilisation of aerial vehicles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139622A1 (en) * 2017-01-30 2018-08-02 株式会社ナイルワークス Drug spreading drone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180281949A1 (en) * 2015-09-09 2018-10-04 Altus IP Limited Systems and methods for stabilisation of aerial vehicles
US20170174337A1 (en) * 2015-12-17 2017-06-22 Amazon Technologies, Inc. Redundant Aircraft Propulsion System Using Multiple Motors Per Drive Shaft
JP2018000109A (en) * 2016-07-01 2018-01-11 Tead株式会社 Fluid dispersion instrument of unmanned flying body
WO2018168565A1 (en) * 2017-03-12 2018-09-20 株式会社ナイルワークス Drone for capturing images of field crops

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022193157A1 (en) * 2021-03-16 2022-09-22 深圳市大疆创新科技有限公司 Multi-rotor aerial vehicle
KR102473944B1 (en) * 2022-05-09 2022-12-06 에이에프아이 주식회사 Drone with improved vehicle safety
KR102473938B1 (en) * 2022-05-09 2022-12-06 남상균 Drone with improved flying stability

Also Published As

Publication number Publication date
JPWO2020095842A1 (en) 2021-02-15
JP6913979B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6752481B2 (en) Drones, how to control them, and programs
JP6727525B2 (en) Drone, drone control method, and drone control program
JP6727498B2 (en) Agricultural drone with improved foolproof
JP6733948B2 (en) Drone, its control method, and control program
JP6733949B2 (en) Unmanned multi-copter for drug spraying, and control method and control program therefor
JP6745519B2 (en) Drone, drone control method, and drone control program
WO2020095842A1 (en) Drone
WO2019168079A1 (en) Agricultural drone having improved safety
WO2020137554A1 (en) Drone, method of controlling drone, and drone control program
JP7008999B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
WO2020071305A1 (en) Driving route generating device, driving route generating method, driving route generating program, and drone
WO2020085239A1 (en) Operation route generation device, operation route generation method, operation route generation program, and drone
JP6888219B2 (en) Drone
JP6806403B2 (en) Drones, drone control methods, and drone control programs
WO2020090671A1 (en) Drone, drone control method, and drone control program
WO2020085240A1 (en) Operation route generation system, operation route generation method, operation route generation program, coordinate surveying system, and drone
JP7490208B2 (en) Drone system, drone, control device, drone system control method, and drone system control program
WO2019235585A1 (en) Chemical discharge control system, control method therefor, and control program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020517215

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882168

Country of ref document: EP

Kind code of ref document: A1