WO2020095786A1 - Substrate - Google Patents

Substrate Download PDF

Info

Publication number
WO2020095786A1
WO2020095786A1 PCT/JP2019/042538 JP2019042538W WO2020095786A1 WO 2020095786 A1 WO2020095786 A1 WO 2020095786A1 JP 2019042538 W JP2019042538 W JP 2019042538W WO 2020095786 A1 WO2020095786 A1 WO 2020095786A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
mesh
signal wiring
dielectric layer
linear
Prior art date
Application number
PCT/JP2019/042538
Other languages
French (fr)
Japanese (ja)
Inventor
良行 生熊
Original Assignee
Agc株式会社
エージーシー グラス ユーロップ
エージーシー フラット グラス ノース アメリカ,インコーポレイテッド
エージーシー ヴィドロ ド ブラジル リミターダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社, エージーシー グラス ユーロップ, エージーシー フラット グラス ノース アメリカ,インコーポレイテッド, エージーシー ヴィドロ ド ブラジル リミターダ filed Critical Agc株式会社
Priority to JP2020556001A priority Critical patent/JPWO2020095786A1/en
Publication of WO2020095786A1 publication Critical patent/WO2020095786A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines

Definitions

  • the present disclosure provides a substrate capable of suppressing a decrease in visible light transmittance.
  • a dielectric layer having a first surface and a second surface opposite to the first surface, the dielectric layer transmitting visible light;
  • a mesh-shaped antenna conductor provided on the first surface side;
  • a substrate is provided that includes a mesh-shaped ground conductor provided on the second surface side.
  • a deviation such as a parallel, a right angle, a right angle, a horizontal direction, a vertical direction, a vertical direction, a horizontal direction, and the like is allowed to the extent that the effect of the present invention is not impaired.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction respectively represent a direction parallel to the X-axis, a direction parallel to the Y-axis, and a direction parallel to the Z-axis.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are orthogonal to each other.
  • the substrate in the present embodiment is used to propagate a signal in a high frequency band (for example, 0.3 GHz to 300 GHz) such as a microwave or a millimeter wave.
  • a high frequency band for example, 0.3 GHz to 300 GHz
  • Such high frequency bands include the UHF band of 0.3 to 3 GHz, the SHF band of 3 to 30 GHz, and the EHF band of 30 to 300 GHz.
  • Specific examples of the high frequency device formed on the substrate in the present embodiment include a planar antenna and a planar waveguide (planar transmission line).
  • FIG. 1 is a plan view of a substrate according to the first embodiment.
  • a planar antenna 101 is formed on the substrate 1 shown in FIG.
  • the substrate 1 includes a dielectric layer 40 that transmits visible light, an antenna conductor 10 provided on one surface of the dielectric layer 40, a ground conductor 20 that faces the antenna conductor 10 with the dielectric layer 40 in between, and an antenna conductor 10. And a power supply line 30 for supplying power to the.
  • the planar antenna 101 is called a patch antenna or a microstrip antenna.
  • FIG. 2 is a plan view showing the transmission line, the antenna conductor, and the ground conductor formed on the substrate according to the first embodiment.
  • the transmission line 60 formed on the substrate 1 includes the dielectric layer 40, the feeding line 30 formed on the first surface of the dielectric layer 40, and the ground conductor 20 formed on the second surface of the dielectric layer 40. It is a microstrip line having a structure including.
  • the dielectric layer 40 has a first main surface 41 and a second main surface 42 opposite to the first main surface 41.
  • the upper part of FIG. 2 shows the antenna conductor 10 and the feed line 30 provided on the side of the first main surface 41 of the dielectric layer 40.
  • the lower part of FIG. 2 shows the ground conductor 20 provided on the second main surface 42 side of the dielectric layer 40.
  • the first major surface 41 is an example of the first surface of the dielectric layer.
  • the second main surface 42 is an example of a second surface of the dielectric layer opposite to the first surface.
  • the dielectric layer 40 is a plate-shaped or sheet-shaped base material containing a dielectric material as a main component. Both the first main surface 41 and the second main surface 42 are parallel to the XY plane.
  • the dielectric layer 40 may be, for example, a dielectric substrate or a dielectric sheet.
  • the material of the dielectric layer 40 is, for example, quartz glass, soda lime glass, non-alkali glass, aluminosilicate glass, borosilicate glass, glass such as alkali borosilicate glass, ceramics, fluorine resin such as polytetrafluoroethylene, liquid crystal. Polymers, cycloolefin polymers, polycarbonates and the like, but the materials are not limited to these.
  • the material of the dielectric layer 40 may be any transparent dielectric member that transmits visible light, and the transparency includes translucent.
  • the visible light transmittance of the dielectric layer 40 is, for example, preferably 30% or more, more preferably 50% or more, further preferably 70% or more, particularly preferably 80% or more, and particularly preferably 90% from the viewpoint of suppressing blocking of visible light. The above is the most preferable.
  • the antenna conductor 10 is a planar conductor pattern whose surface is parallel to the XY plane.
  • the antenna conductor 10 is a conductor pattern formed on the first main surface 41 side, and may be formed by a conductor sheet or a conductor substrate arranged on the first main surface 41 side.
  • Examples of the material of the conductor used for the antenna conductor 10 include, but are not limited to, gold, silver, copper, platinum, aluminum and chromium.
  • the conductor used for the antenna conductor 10 may be plated with these materials.
  • the plated antenna conductor 10 is resistant to corrosion and has good design.
  • the antenna conductor 10 may be formed on the side of the first main surface 41 via an intermediate film such as polyvinyl butyral or ethylene vinyl acetate, or an adhesive layer such as an optical transparent adhesive (OCA).
  • the antenna conductor 10 is obtained by forming a conductor on a resin layer such as polyethylene terephthalate and etching the conductor pattern on the first main surface 41 side through an adhesive layer such as an optical transparent adhesive (OCA). It may be formed.
  • the antenna conductor 10 has, for example, at least one patch conductor.
  • the first embodiment shows an example in which the antenna conductor 10 constitutes an array antenna having four patch conductors 11, 12, 13, and 14.
  • the antenna conductor 10 is a solid pattern composed of a region in which the degree of transmission of visible light is lower than that of the dielectric layer 40.
  • the entire antenna conductor 10 is composed of an opaque planar conductor including the plurality of patch conductors 11 to 14.
  • the power supply line 30 is a planar conductor pattern whose surface is parallel to the XY plane.
  • the power supply line 30 is a conductor pattern formed on the first main surface 41 side, and may be formed of a conductor sheet or a conductor substrate arranged on the first main surface 41 side. Examples of the material of the conductor used for the power supply line 30 include, but are not limited to, gold, silver, copper, platinum, aluminum and chromium.
  • the feeding line 30 is formed integrally with the antenna conductor 10.
  • the power supply line 30 is an example of a signal wiring provided on the dielectric layer 40.
  • the power supply line 30 may be formed on the side of the first main surface 41 via an intermediate film of polyvinyl butyral or ethylene vinyl acetate, or an adhesive layer of an optical transparent adhesive (OCA) or the like. Further, the power supply line 30 is obtained by forming a conductor on a resin layer such as polyethylene terephthalate and etching the conductor pattern on the first main surface 41 side through an adhesive layer such as an optical transparent adhesive (OCA). It may be formed.
  • the power supply line 30 may be formed by forming a conductor on polyvinyl butyral, ethylene vinyl acetate, polyethylene terephthalate, or the like by sputtering or vapor deposition, and etching the conductor pattern on the first main surface 41 side.
  • the power supply line 30 includes one end portion 32 connected to a branch point 36 to which a branch path to the patch conductors 11 and 12 and a branch path to the patch conductors 13 and 14 are connected, and a wireless device such as a transmitter.
  • the other end 33 is a power supply end connected to an external device (not shown).
  • the power supply line 30 is a strip conductor extending in the Y-axis direction, and the end portion 32 is connected to the antenna conductor 10.
  • the power supply line 30 is a solid pattern composed of a region in which the degree of transmission of visible light is lower than that of the dielectric layer 40.
  • the entire feeding line 30 is made of an opaque planar conductor.
  • the ground conductor 20 is a conductor pattern whose surface is parallel to the XY plane.
  • the ground conductor 20 is a conductor pattern formed on the second main surface 42 side, and may be formed by a conductor sheet or a conductor substrate arranged on the second main surface 42 side.
  • Examples of the material of the conductor used for the ground conductor 20 include, but are not limited to, gold, silver, copper, platinum, aluminum and chromium.
  • the conductor used for the ground conductor 20 may be plated with these materials.
  • the plated ground conductor 20 is resistant to corrosion and has good design.
  • the ground conductor 20 is in contact with the dielectric layer 40.
  • the ground conductor 20 may be in direct contact with the second major surface 42.
  • a paste-like conductor such as silver or copper is formed on the second main surface 42 by screen printing to form a conductor pattern and then sintered.
  • the ground conductor 20 has a linear ground conductor 27 formed so as to form a gap and a planar ground conductor 26 connected to the linear ground conductor 27.
  • the planar ground conductor 26 is a ground portion provided in a strip shape on one end side of the second main surface 42.
  • the planar ground conductor 26 is a ground electrode corresponding to the end portion 33 which is a power feeding end.
  • the planar ground conductor 26 is provided on the entire one end side, but it may be provided on a part of the one end side.
  • the planar ground conductor 26 may have a part formed in a solid pattern and the remaining part formed in a mesh pattern.
  • the planar ground conductor 26 may have a solid pattern in a portion overlapping the end 33 and a mesh pattern in a portion not overlapping the end 33 in a plan view.
  • the linear ground conductor 27 is formed in a mesh shape so that a gap is created, and the gap can ensure a visual field (transparency).
  • lattice-shaped gaps are formed.
  • the mesh angle A of the linear ground conductor 27 is approximately 90 °, and the meshes are formed orthogonally, but the mesh angle A may be formed as an acute angle or an obtuse angle. May be. If the mesh angle A of the linear ground conductor 27 is formed to be an obtuse angle, an etching residue is less likely to occur when the linear ground conductor 27 is formed by etching, and the aperture ratio can be increased.
  • the mesh angle A is an obtuse angle
  • the mesh may be a regular hexagon as shown in FIG.
  • the mesh of the linear ground conductor 27 may be square or rhombic.
  • the mesh is preferably square. If the mesh is square, the design is good.
  • the mesh may have a random shape by the self-assembly method. Moiré can be prevented by using a random shape.
  • the mesh of the linear ground conductor 27 is formed of a plurality of linear conductors, but the plurality of linear conductors are different from the extending direction of the power supply line 30 or the direction orthogonal to the extending direction. Is preferably formed. If the plurality of linear conductors are formed in a direction different from the extending direction of the power feeding line 30 or the direction orthogonal to the extending direction, a desired characteristic impedance can be easily obtained and good antenna characteristics can be secured.
  • the ground conductor 20 includes an outer edge linear conductor 28 that is in contact with the linear ground conductor 27 and forms an outer edge of the ground conductor 20.
  • the outer edge linear conductor 28 surrounds the linear ground conductor 27.
  • the outer edge linear conductor 28 may be arranged so as to surround a part of the linear ground conductor 27, but the outer edge linear conductor 28 itself may not be arranged. Whether or not the outer edge linear conductor 28 is arranged is the same in the following embodiments.
  • the substrate 1 according to the present embodiment has at least the ground conductor 20 formed in a mesh shape, and thus has excellent light transmissivity for transmitting visible light. Therefore, it is possible to suppress a decrease in the transmittance of visible light.
  • the substrate 1 is directly or indirectly installed on the surface of the window glass 200, at least the ground conductor 20 is formed in a mesh shape, so that the substrate 1 (especially the ground conductor 20) has a field of view through the window glass 200. It is possible to suppress the obstruction.
  • the antenna conductor 10 includes an internal linear conductor 17 formed so that a gap is formed inside the antenna conductor 10.
  • the internal linear conductors 17 are formed in a mesh shape so that lattice-shaped gaps are formed. At least a part of the internal linear conductor 17 overlaps with the linear ground conductor 27 of the ground conductor 20 in a plan view, but when all of the internal linear conductor 17 overlaps with the linear ground conductor 27. More preferable. As described above, since both the antenna conductor 10 and the ground conductor 20 are formed by the linear conductors so as to form the gap, it is easier to secure the visual field.
  • the mesh angle A of the inner linear conductor 17 is approximately 90 °, and the meshes are formed orthogonally, but the mesh angle A may be formed to be an acute angle or an obtuse angle. May be. If the mesh angle A of the internal linear conductor 17 is formed to be an obtuse angle, an etching residue is less likely to occur when the internal linear conductor 17 is formed by etching, and the aperture ratio can be increased. As an example of the case where the mesh angle A is an obtuse angle, as shown in FIG. 6, the mesh may be a regular hexagon.
  • the mesh of the inner linear conductor 17 may be square or rhombic. When the mesh is formed in a square shape, the mesh is preferably square. If the mesh is square, the design is good. The mesh may have a random shape by the self-assembly method. Moiré can be prevented by using a random shape.
  • the mesh of the internal linear conductor 17 is formed of a plurality of linear conductors, but the plurality of linear conductors are different from the extending direction of the power supply line 30 or the direction orthogonal to the extending direction. Is preferably formed. If the plurality of linear conductors are formed in a direction different from the extending direction of the power feeding line 30 or the direction orthogonal to the extending direction, a desired characteristic impedance can be easily obtained and good antenna characteristics can be secured.
  • the antenna conductor 10 includes an outer edge linear conductor 18 that is in contact with the inner linear conductor 17 and forms an outer edge of the antenna conductor 10.
  • the outer edge linear conductor 18 surrounds the inner linear conductor 17 and is in a closed state.
  • the line width of the two sides of the outer edge linear conductor 18 facing in the H-plane direction may be formed thicker than the line widths of the other sides. Since the line width of the two sides of the outer edge linear conductor 18 facing in the H-plane direction (X-axis direction in FIG. 7) is thicker than the line widths of the other two sides, conductor loss is reduced and good antenna characteristics are secured. it can.
  • the power supply line 30 includes an internal linear conductor 37 formed so that a gap is formed inside the power supply line 30.
  • the internal linear conductors 37 are formed in a mesh shape so that lattice-shaped gaps are formed.
  • the inner linear conductor 37 does not have to overlap the linear ground conductor 27 of the ground conductor 20 in a plan view, but at least a part of the inner linear conductor 37 has a linear shape of the ground conductor 20 in a plan view. It is preferable that it overlaps with the ground conductor 27, and it is more preferable that all of the internal linear conductors 37 overlap with the linear ground conductor 27.
  • both the power supply line 30 and the ground conductor 20 are formed of linear conductors so that a gap is formed, it is easier to secure the field of view.
  • the mesh angle A of the inner linear conductor 37 is approximately 90 °, and the meshes are formed orthogonally, but the mesh angle A may be formed as an acute angle or an obtuse angle. May be. If the mesh angle A of the inner linear conductor 37 is formed to be an obtuse angle, an etching residue is less likely to occur when the inner linear conductor 37 is formed by etching, and the aperture ratio can be increased. As an example of the case where the mesh angle A is an obtuse angle, as shown in FIG. 6, the mesh may be a regular hexagon.
  • the mesh of the inner linear conductor 37 may be square or rhombic. When the mesh is formed in a square shape, the mesh is preferably square. If the mesh is square, the design is good. The mesh may have a random shape by the self-assembly method. Moiré can be prevented by using a random shape.
  • the power feeding line 30 includes an outer edge linear conductor 38 that is in contact with the inner linear conductor 37 and forms an outer edge of the power feeding line 30.
  • the outer edge linear conductor 38 surrounds the inner linear conductor 37 and is in a closed state.
  • the outer edge linear conductor 38 surrounds the inner linear conductor 37, so that the difference from the current distribution in the case of the planar conductor as in the first embodiment can be suppressed. , Good antenna characteristics can be secured.
  • the ground conductor 20 is provided in the first region 21 that overlaps with the antenna conductor 10 and the second region 22 that does not overlap with the antenna conductor 10 in plan view.
  • the linear ground conductor 27 is formed in both the first region 21 and the second region 22.
  • the ground conductor 20 may be formed on a part of the second main surface 42, but is preferably formed on the entire second main surface 42.
  • FIG. 8 is a perspective view showing a transmission line, an antenna conductor, and a ground conductor formed on the substrate according to the third embodiment.
  • a planar antenna 104 is formed on the substrate 4 shown in FIG. Descriptions of configurations and effects similar to those of the first and second embodiments will be omitted by using the description of the above-described embodiments.
  • the substrate 4 includes a dielectric layer 40 that transmits visible light, an antenna conductor 10 provided on one surface of the dielectric layer 40, a ground conductor 20 that faces the antenna conductor 10 with the dielectric layer 40 in between, and an antenna conductor 10. And a power feed line 30 for feeding power through the slot 31.
  • the transmission line 60 formed on the substrate 4 includes the dielectric layer 40, the feeding line 30 formed on the second surface of the dielectric layer 40, and the ground conductor 20 formed on the second surface of the dielectric layer 40. It is a coplanar line having a structure including.
  • the power feed line 30 and the ground conductor 20 are formed on the second main surface (the surface opposite to the first main surface 41 on which the antenna conductor 10 is formed) of the dielectric layer 40.
  • the feed line 30 has a pair of gaps running in parallel and a center conductor (center conductor of the coplanar line) sandwiched between the pair of gaps.
  • the slot 31 formed at one end of the power supply line 30 and the antenna conductor 10 formed on the first main surface 41 side are coupled with each other in terms of high frequency.
  • the ground conductor 20 has a linear ground conductor 27 formed so as to form a gap, and the linear ground conductor 27 is formed in a mesh shape so as to form a gap, and is formed by the gap.
  • the field of view can be secured.
  • at least one of the center conductor of the power feeding line 30 and the antenna conductor 10 may have a linear conductor formed in a mesh shape so as to form a gap. Thereby, further transparency can be secured.
  • the power supply line 30 includes an internal linear conductor 37 formed in a mesh shape so that a gap is formed inside the power supply line 30.
  • FIG. 9 is a plan view of a mesh conductor including a plurality of linear conductors intersecting with each other.
  • the thickness of the conductor is preferably not less than skin depth ⁇ in order to suppress the propagation loss that occurs in the conductor such as the inner linear conductor 37 through which the high frequency signal propagates.
  • a skin effect is a phenomenon in which when an alternating current flows through a conductor, the current density is relatively high on the surface of the conductor and decreases with increasing distance from the surface.
  • the skin depth ⁇ is the length at which the current decays to 1 / e (about 0.37) of the surface current.
  • the skin depth ⁇ 1 / ⁇ ( ⁇ ⁇ f ⁇ ⁇ r ⁇ ⁇ 0 ⁇ ⁇ ) It is represented by.
  • the surface resistance of the power supply line 30 decreases. It is assumed that the decrease in the surface resistance of the power feeding line 30 due to the meshing of the power feeding line 30 is that the conductivity ⁇ is reduced to 1/10, and the skin depth in this case is ⁇ ′.
  • the line width W and the thickness t of the inner linear conductor 37 are determined by the skin depth ⁇ . It is preferable that it is more than twice.
  • the thickness t is the length in the Z-axis direction.
  • the line width W and the thickness t of the inner linear conductor 37 are more preferably three times or more the skin depth ⁇ ′.
  • the line width of the inner linear conductor 37 is W
  • the frequency is f
  • the skin depth at the frequency f is ⁇ ′
  • the relative magnetic permeability of the inner linear conductor 37 is ⁇ r
  • the magnetic permeability of the vacuum is ⁇ 0
  • the inner line is
  • the electric conductivity of the conductor 37 is ⁇
  • ⁇ 0.1 0.1 ⁇ ⁇
  • the thickness of the inner linear conductor 37 is t
  • the frequency is f
  • the skin depth at the frequency f is ⁇ ′
  • the relative magnetic permeability of the inner linear conductor 37 is ⁇ r
  • the magnetic permeability of the vacuum is ⁇ 0
  • the inner line is
  • the electric conductivity of the conductor 37 is ⁇
  • ⁇ 0.1 0.1 ⁇ ⁇
  • the skin depth ⁇ of the power supply line 30 when the material is copper at a frequency of 3 GHz is about 1.2 ⁇ m.
  • the skin depth ⁇ ′ in this case is about 3.78 ⁇ m. Therefore, at least one of the line width W and the thickness t is preferably 7 ⁇ m or more, which is approximately twice ⁇ ′, in order to suppress the propagation loss in the power supply line 30. Further, at least one of the line width W and the thickness t is more preferably 10 ⁇ m or more.
  • the mesh spacing G of the mesh-like conductor is required to be sufficiently smaller than the effective wavelength ⁇ g of the used frequency in order to suppress the propagation loss in the conductor and maintain the signal quality.
  • FIG. 10 is a diagram for explaining the relationship between the amplitude change amount and the phase change amount in a sine wave simulating a high frequency signal.
  • the amplitude variation ⁇ of the high frequency propagating through the mesh spacing G which is sufficiently smaller than the effective wavelength ⁇ g is preferably 5% of the peak value. It is preferable that the amount of phase change ⁇ at that time be equal to or less than ⁇ .
  • the mesh spacing of the internal linear conductors 37 is G
  • the following formula is satisfied.
  • the mesh spacing G is the pitch between adjacent meshes or the distance between the centers of gravity of adjacent meshes.
  • the mesh spacing G shown in FIG. 9 represents the pitch between adjacent meshes.
  • ⁇ eff is an effective relative permittivity and is approximately represented by the following equation.
  • L w represents the line width of the strip conductor of the microstrip line.
  • the propagation loss generated in the power supply line 30 is In order to suppress it, it is preferable to set the mesh interval G to 444 ⁇ m or less. Further, the mesh spacing G is more preferably 400 ⁇ m or less, further preferably 350 ⁇ m or less.

Landscapes

  • Details Of Aerials (AREA)
  • Structure Of Printed Boards (AREA)
  • Waveguide Aerials (AREA)

Abstract

This substrate is provided with: a dielectric layer that transmits visible light and that has a first surface and a second surface on the opposite side from the first surface; a mesh-like antenna conductor provided on the first surface side; and a mesh-like ground conductor provided on the second surface side. For example, mesh-like signal wiring is provided on the dielectric layer, and the signal wiring supplies electrical power to the antenna conductor. Also provided is a substrate having a transmission line formed thereon, said substrate being provided with a dielectric layer that transmits visible light and a mesh-like ground conductor provided on the dielectric layer. The transmission line has a structure that includes the dielectric layer and the ground conductor.

Description

基板substrate
 本発明は、基板に関する。 The present invention relates to a substrate.
 従来、意匠上、光透過性を有するように、メッシュ状に形成されたアンテナエレメントを備える透明なフレキシブル回路基板が知られている(例えば、特許文献1参照)。 Conventionally, there is known a transparent flexible circuit board including an antenna element formed in a mesh shape so as to have a light-transmitting property in design (for example, refer to Patent Document 1).
特開2011-205635号公報JP, 2011-205635, A
 しかしながら、従来の技術では、グランド以外の領域はメッシュ状とし、グランドはソリッドとするため、グランドの大きさによっては、可視光の透過がグランドによって遮られ、可視光の透過性が低下する場合がある。 However, in the conventional technique, the region other than the ground is formed in a mesh shape, and the ground is solid. Therefore, depending on the size of the ground, the transmission of visible light may be blocked by the ground, and the transparency of visible light may be reduced. is there.
 そこで、本開示は、可視光の透過性の低下を抑制可能な基板を提供する。 Therefore, the present disclosure provides a substrate capable of suppressing a decrease in visible light transmittance.
 本開示は、
 第1面と、前記第1面とは反対側の第2面とを有し、可視光が透過する誘電体層と、
 前記第1面の側に設けられる網目状のアンテナ導体と、
 前記第2面の側に設けられる網目状の接地導体とを備える、基板を提供する。
This disclosure is
A dielectric layer having a first surface and a second surface opposite to the first surface, the dielectric layer transmitting visible light;
A mesh-shaped antenna conductor provided on the first surface side;
A substrate is provided that includes a mesh-shaped ground conductor provided on the second surface side.
 また、本開示は、
 伝送線路が形成される基板であって、
 可視光が透過する誘電体層と、
 前記誘電体層の上に設けられる網目状の接地導体とを備え、
 前記伝送線路は、前記誘電体層と前記接地導体とを含む構造を有する、基板を提供する。
In addition, the present disclosure
A substrate on which a transmission line is formed,
A dielectric layer that transmits visible light,
A grounded conductor in a mesh shape provided on the dielectric layer,
The transmission line provides a substrate having a structure including the dielectric layer and the ground conductor.
 本開示の技術によれば、可視光の透過性の低下を抑制可能な基板を提供できる。 According to the technology of the present disclosure, it is possible to provide a substrate capable of suppressing a decrease in visible light transmittance.
第1の実施形態における基板の平面図である。It is a top view of the substrate in a 1st embodiment. 第1の実施形態における基板に形成される伝送線路、アンテナ導体及び接地導体を平面視で示す図である。It is a figure which shows the transmission line, the antenna conductor, and the grounding conductor formed in the board | substrate in 1st Embodiment by planar view. 接地導体の網目が正六角形である場合の、伝送線路、アンテナ導体及び接地導体を平面視で示す図である。It is a figure which shows a transmission line, an antenna conductor, and a grounding conductor in planar view when the mesh of a grounding conductor is a regular hexagon. 第2の実施形態における基板の平面図である。It is a top view of the substrate in a 2nd embodiment. 第2の実施形態における基板に形成される伝送線路、アンテナ導体及び接地導体を平面視で示す図である。It is a figure which shows the transmission line, the antenna conductor, and the grounding conductor formed in the board | substrate in 2nd Embodiment by planar view. 接地導体及び接地導体の網目が正六角形である場合の、伝送線路、アンテナ導体及び接地導体を平面視で示す図である。It is a figure which shows a transmission line, an antenna conductor, and a grounding conductor in planar view when a grounding conductor and the mesh of a grounding conductor are regular hexagons. 外縁線状導体のH面方向(X軸方向)に対向する2辺の線幅が、他の2辺の線幅よりも太く形成されている場合の、伝送線路、アンテナ導体及び接地導体を平面視で示す図である。When the line width of two sides of the outer edge linear conductor facing in the H-plane direction (X-axis direction) is formed to be thicker than the line width of the other two sides, the transmission line, the antenna conductor, and the ground conductor are flat. FIG. 第3の実施形態における基板に形成される伝送線路、アンテナ導体及び接地導体を斜視で示す図である。It is a figure which shows the transmission line, the antenna conductor, and the grounding conductor formed in the board | substrate in 3rd Embodiment by a perspective. 相互に交差する複数の線状導体を含む網目状の導体の平面図である。FIG. 6 is a plan view of a mesh-shaped conductor including a plurality of linear conductors that intersect each other. 正弦波の振幅変化量と位相変化量との関係を説明するための図である。It is a figure for demonstrating the relationship between the amount of amplitude changes of a sine wave, and the amount of phase changes.
 以下、図面を参照して、本開示に係る実施形態の説明を行う。なお、各形態において、平行、直角、直交、水平、垂直、上下、左右などの方向には、本発明の効果を損なわない程度のずれが許容される。また、X軸方向、Y軸方向、Z軸方向は、それぞれ、X軸に平行な方向、Y軸に平行な方向、Z軸に平行な方向を表す。X軸方向とY軸方向とZ軸方向は、互いに直交する。XY平面、YZ平面、ZX平面は、それぞれ、X軸方向及びY軸方向に平行な仮想平面、Y軸方向及びZ軸方向に平行な仮想平面、Z軸方向及びX軸方向に平行な仮想平面を表す。 Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. In addition, in each of the embodiments, a deviation such as a parallel, a right angle, a right angle, a horizontal direction, a vertical direction, a vertical direction, a horizontal direction, and the like is allowed to the extent that the effect of the present invention is not impaired. Further, the X-axis direction, the Y-axis direction, and the Z-axis direction respectively represent a direction parallel to the X-axis, a direction parallel to the Y-axis, and a direction parallel to the Z-axis. The X-axis direction, the Y-axis direction, and the Z-axis direction are orthogonal to each other. An XY plane, a YZ plane, and a ZX plane are a virtual plane parallel to the X-axis direction and the Y-axis direction, a virtual plane parallel to the Y-axis direction and the Z-axis direction, and a virtual plane parallel to the Z-axis direction and the X-axis direction, respectively. Represents.
 本実施形態における基板は、例えば、マイクロ波やミリ波等の高周波帯(例えば、0.3GHz~300GHz)の信号の伝播に使用される。そのような高周波帯には、0.3~3GHzのUHF帯、3~30GHzのSHF帯、30~300GHzのEHF帯が含まれる。本実施形態における基板に形成される高周波デバイスの具体例として、平面アンテナ、平面導波路(平面伝送線路)などが挙げられる。 The substrate in the present embodiment is used to propagate a signal in a high frequency band (for example, 0.3 GHz to 300 GHz) such as a microwave or a millimeter wave. Such high frequency bands include the UHF band of 0.3 to 3 GHz, the SHF band of 3 to 30 GHz, and the EHF band of 30 to 300 GHz. Specific examples of the high frequency device formed on the substrate in the present embodiment include a planar antenna and a planar waveguide (planar transmission line).
 本実施形態における基板は、例えば、第5世代移動通信システム(いわゆる、5G)、ブルートゥース(登録商標)等の無線通信規格、IEEE802.11ac等の無線LAN(Local Area Network)規格で使用されてもよい。また、本実施形態における基板は、車両で使用される場合、レーダーを照射する車載レーダーシステムや車車間通信や路車間通信等のV2X通信システムで使用されてもよい。 The board according to the present embodiment may be used in a wireless communication standard such as a fifth generation mobile communication system (so-called 5G), Bluetooth (registered trademark), or a wireless LAN (Local Area Network) standard such as IEEE802.11ac. Good. When used in a vehicle, the substrate according to the present embodiment may be used in a vehicle-mounted radar system that radiates radar or a V2X communication system such as vehicle-to-vehicle communication or road-to-vehicle communication.
 図1は、第1の実施形態における基板の平面図である。図1に示す基板1には、平面アンテナ101が形成されている。基板1は、可視光が透過する誘電体層40と、誘電体層40の片面に設けられるアンテナ導体10と、誘電体層40を介してアンテナ導体10と対向する接地導体20と、アンテナ導体10に給電する給電ライン30とを備える。平面アンテナ101は、パッチアンテナ又はマイクロストリップアンテナと称される。 FIG. 1 is a plan view of a substrate according to the first embodiment. A planar antenna 101 is formed on the substrate 1 shown in FIG. The substrate 1 includes a dielectric layer 40 that transmits visible light, an antenna conductor 10 provided on one surface of the dielectric layer 40, a ground conductor 20 that faces the antenna conductor 10 with the dielectric layer 40 in between, and an antenna conductor 10. And a power supply line 30 for supplying power to the. The planar antenna 101 is called a patch antenna or a microstrip antenna.
 図2は、第1の実施形態における基板に形成される伝送線路、アンテナ導体及び接地導体を平面視で示す図である。基板1に形成される伝送線路60は、誘電体層40と、誘電体層40の第1面に形成される給電ライン30と、誘電体層40の第2面に形成される接地導体20とを含む構造を有するマイクロストリップ線路である。 FIG. 2 is a plan view showing the transmission line, the antenna conductor, and the ground conductor formed on the substrate according to the first embodiment. The transmission line 60 formed on the substrate 1 includes the dielectric layer 40, the feeding line 30 formed on the first surface of the dielectric layer 40, and the ground conductor 20 formed on the second surface of the dielectric layer 40. It is a microstrip line having a structure including.
 誘電体層40は、第1主面41と、第1主面41とは反対側の第2主面42とを有する。図2の上段は、誘電体層40の第1主面41の側に設けられるアンテナ導体10及び給電ライン30を示す。図2の下段は、誘電体層40の第2主面42の側に設けられる接地導体20を示す。第1主面41は、誘電体層の第1面の一例である。第2主面42は、誘電体層の第1面とは反対側の第2面の一例である。 The dielectric layer 40 has a first main surface 41 and a second main surface 42 opposite to the first main surface 41. The upper part of FIG. 2 shows the antenna conductor 10 and the feed line 30 provided on the side of the first main surface 41 of the dielectric layer 40. The lower part of FIG. 2 shows the ground conductor 20 provided on the second main surface 42 side of the dielectric layer 40. The first major surface 41 is an example of the first surface of the dielectric layer. The second main surface 42 is an example of a second surface of the dielectric layer opposite to the first surface.
 誘電体層40は、誘電体を主成分とする板状又はシート状の基材である。第1主面41及び第2主面42は、いずれも、XY平面に平行である。誘電体層40は、例えば、誘電体基板でもよいし、誘電体シートでもよい。誘電体層40の材料は、例えば、石英ガラス、ソーダライムガラス、無アルカリガラス、アルミノシリケートガラス、ホウケイ酸ガラス、アルカリホウケイ酸ガラス等のガラス、セラミックス、ポリテトラフルオロエチレン等のフッ素系樹脂、液晶ポリマー、シクロオレフィンポリマー、ポリカーボネートなどが挙げられるが、その材料は、これらに限られない。 The dielectric layer 40 is a plate-shaped or sheet-shaped base material containing a dielectric material as a main component. Both the first main surface 41 and the second main surface 42 are parallel to the XY plane. The dielectric layer 40 may be, for example, a dielectric substrate or a dielectric sheet. The material of the dielectric layer 40 is, for example, quartz glass, soda lime glass, non-alkali glass, aluminosilicate glass, borosilicate glass, glass such as alkali borosilicate glass, ceramics, fluorine resin such as polytetrafluoroethylene, liquid crystal. Polymers, cycloolefin polymers, polycarbonates and the like, but the materials are not limited to these.
 また、誘電体層40の材料は、可視光が透過する透明な誘電体部材であればよく、透明には、半透明が含まれる。誘電体層40の可視光線透過率は、可視光の遮りを抑える点で、例えば30%以上が好ましく、50%以上がより好ましく、70%以上がさらに好ましく、80%以上が特に好ましく、90%以上が最も好ましい。 Further, the material of the dielectric layer 40 may be any transparent dielectric member that transmits visible light, and the transparency includes translucent. The visible light transmittance of the dielectric layer 40 is, for example, preferably 30% or more, more preferably 50% or more, further preferably 70% or more, particularly preferably 80% or more, and particularly preferably 90% from the viewpoint of suppressing blocking of visible light. The above is the most preferable.
 アンテナ導体10は、その表面がXY平面に平行な平面状の導体パターンである。アンテナ導体10は、第1主面41の側に形成される導体パターンであり、第1主面41の側に配置される導体シート又は導体基板により形成されてもよい。アンテナ導体10に使用される導体の材料として、例えば、金、銀、銅、白金、アルミニウム、クロムなどが挙げられるが、これらに限られない。アンテナ導体10に使用される導体は、これらの材料をメッキしてもよい。メッキされたアンテナ導体10は、腐食しにくく、意匠性がよい。 The antenna conductor 10 is a planar conductor pattern whose surface is parallel to the XY plane. The antenna conductor 10 is a conductor pattern formed on the first main surface 41 side, and may be formed by a conductor sheet or a conductor substrate arranged on the first main surface 41 side. Examples of the material of the conductor used for the antenna conductor 10 include, but are not limited to, gold, silver, copper, platinum, aluminum and chromium. The conductor used for the antenna conductor 10 may be plated with these materials. The plated antenna conductor 10 is resistant to corrosion and has good design.
 なお、アンテナ導体10は、第1主面41の側に、ポリビニルブチラールもしくはエチレン酢酸ビニル等の中間膜、または光学透明粘着剤(OCA)等の接着層を介して形成されてもよい。また、アンテナ導体10は、ポリエチレンテレフタレート等の樹脂層に導体を形成し、導体パターンにエッチングしたものを、第1主面41の側に、光学透明粘着剤(OCA)等の接着層を介して形成されてもよい。アンテナ導体10は、ポリビニルブチラール、エチレン酢酸ビニル、もしくはポリエチレンテレフタレート等にスパッタ、蒸着などにより導体を形成し、導体パターンにエッチングしたものを、第1主面41の側に形成されてもよい。アンテナ導体10は、第1主面41に直接接してもよい。アンテナ導体10を第1主面41に直接形成する方法としては、ペースト状の銀、銅などの導体を第1主面41にスクリーン印刷により導体パターンを形成し、焼結することが挙げられる。 Note that the antenna conductor 10 may be formed on the side of the first main surface 41 via an intermediate film such as polyvinyl butyral or ethylene vinyl acetate, or an adhesive layer such as an optical transparent adhesive (OCA). In addition, the antenna conductor 10 is obtained by forming a conductor on a resin layer such as polyethylene terephthalate and etching the conductor pattern on the first main surface 41 side through an adhesive layer such as an optical transparent adhesive (OCA). It may be formed. The antenna conductor 10 may be formed by forming a conductor on polyvinyl butyral, ethylene vinyl acetate, polyethylene terephthalate, or the like by sputtering, vapor deposition, or the like, and etching the conductor pattern on the first main surface 41 side. The antenna conductor 10 may be in direct contact with the first major surface 41. As a method of directly forming the antenna conductor 10 on the first main surface 41, paste-like conductors such as silver and copper are formed on the first main surface 41 by screen printing to form a conductor pattern and then sintered.
 アンテナ導体10は、例えば、少なくとも一つのパッチ導体を有する。第1の実施形態では、アンテナ導体10は、4つのパッチ導体11,12,13,14を有するアレイアンテナを構成する例を示す。 The antenna conductor 10 has, for example, at least one patch conductor. The first embodiment shows an example in which the antenna conductor 10 constitutes an array antenna having four patch conductors 11, 12, 13, and 14.
 第1の実施形態では、アンテナ導体10は、可視光の透過度合いが誘電体層40よりも低い領域から構成されたソリッドなパターンである。例えば、アンテナ導体10の全体は、複数のパッチ導体11~14を含め、不透明な面状導体から構成されている。 In the first embodiment, the antenna conductor 10 is a solid pattern composed of a region in which the degree of transmission of visible light is lower than that of the dielectric layer 40. For example, the entire antenna conductor 10 is composed of an opaque planar conductor including the plurality of patch conductors 11 to 14.
 給電ライン30は、その表面がXY平面に平行な平面状の導体パターンである。給電ライン30は、第1主面41の側に形成される導体パターンであり、第1主面41の側に配置される導体シート又は導体基板により形成されてもよい。給電ライン30に使用される導体の材料として、例えば、金、銀、銅、白金、アルミニウム、クロムなどが挙げられるが、これらに限られない。第1の実施形態では、給電ライン30は、アンテナ導体10と一体的に形成されている。給電ライン30は、誘電体層40の上に設けられる信号配線の一例である。 The power supply line 30 is a planar conductor pattern whose surface is parallel to the XY plane. The power supply line 30 is a conductor pattern formed on the first main surface 41 side, and may be formed of a conductor sheet or a conductor substrate arranged on the first main surface 41 side. Examples of the material of the conductor used for the power supply line 30 include, but are not limited to, gold, silver, copper, platinum, aluminum and chromium. In the first embodiment, the feeding line 30 is formed integrally with the antenna conductor 10. The power supply line 30 is an example of a signal wiring provided on the dielectric layer 40.
 なお、給電ライン30は、第1主面41の側に、ポリビニルブチラールもしくはエチレン酢酸ビニル等の中間膜、または光学透明粘着剤(OCA)等の接着層を介して形成されてもよい。また、給電ライン30は、ポリエチレンテレフタレート等の樹脂層に導体を形成し、導体パターンにエッチングしたものを、第1主面41の側に、光学透明粘着剤(OCA)等の接着層を介して形成されてもよい。給電ライン30は、ポリビニルブチラール、エチレン酢酸ビニル、もしくはポリエチレンテレフタレート等にスパッタ、蒸着などにより導体を形成し、導体パターンにエッチングしたものを、第1主面41の側に形成されてもよい。給電ライン30は、第1主面41に直接接してもよい。給電ライン30を第1主面41に直接形成する方法としては、ペースト状の銀、銅などの導体を第1主面41にスクリーン印刷により導体パターンを形成し、焼結することが挙げられる。 The power supply line 30 may be formed on the side of the first main surface 41 via an intermediate film of polyvinyl butyral or ethylene vinyl acetate, or an adhesive layer of an optical transparent adhesive (OCA) or the like. Further, the power supply line 30 is obtained by forming a conductor on a resin layer such as polyethylene terephthalate and etching the conductor pattern on the first main surface 41 side through an adhesive layer such as an optical transparent adhesive (OCA). It may be formed. The power supply line 30 may be formed by forming a conductor on polyvinyl butyral, ethylene vinyl acetate, polyethylene terephthalate, or the like by sputtering or vapor deposition, and etching the conductor pattern on the first main surface 41 side. The power supply line 30 may be in direct contact with the first main surface 41. As a method of directly forming the power supply line 30 on the first main surface 41, a conductor such as paste-like silver or copper is formed on the first main surface 41 by screen printing to form a conductor pattern and then sintered.
 給電ライン30は、パッチ導体11,12への分岐路とパッチ導体13,14への分岐路とが接続される分岐箇所36に接続される一方の端部32と、送信機など無線装置等の不図示の外部装置に接続される給電端である他方の端部33とを有する。第1の実施形態では、給電ライン30は、Y軸方向に延伸するストリップ導体であり、端部32がアンテナ導体10に接続されている。 The power supply line 30 includes one end portion 32 connected to a branch point 36 to which a branch path to the patch conductors 11 and 12 and a branch path to the patch conductors 13 and 14 are connected, and a wireless device such as a transmitter. The other end 33 is a power supply end connected to an external device (not shown). In the first embodiment, the power supply line 30 is a strip conductor extending in the Y-axis direction, and the end portion 32 is connected to the antenna conductor 10.
 第1の実施形態では、給電ライン30は、可視光の透過度合いが誘電体層40よりも低い領域から構成されたソリッドなパターンである。例えば、給電ライン30の全体は、不透明な面状導体から構成されている。 In the first embodiment, the power supply line 30 is a solid pattern composed of a region in which the degree of transmission of visible light is lower than that of the dielectric layer 40. For example, the entire feeding line 30 is made of an opaque planar conductor.
 接地導体20は、その表面がXY平面に平行な導体パターンである。接地導体20は、第2主面42の側に形成される導体パターンであり、第2主面42の側に配置される導体シート又は導体基板により形成されてもよい。接地導体20に使用される導体の材料として、例えば、金、銀、銅、白金、アルミニウム、クロムなどが挙げられるが、これらに限られない。接地導体20に使用される導体は、これらの材料をメッキしてもよい。メッキされた接地導体20は、腐食しにくく、意匠性がよい。接地導体20は、誘電体層40に接している。 The ground conductor 20 is a conductor pattern whose surface is parallel to the XY plane. The ground conductor 20 is a conductor pattern formed on the second main surface 42 side, and may be formed by a conductor sheet or a conductor substrate arranged on the second main surface 42 side. Examples of the material of the conductor used for the ground conductor 20 include, but are not limited to, gold, silver, copper, platinum, aluminum and chromium. The conductor used for the ground conductor 20 may be plated with these materials. The plated ground conductor 20 is resistant to corrosion and has good design. The ground conductor 20 is in contact with the dielectric layer 40.
 なお、接地導体20は、第2主面42の側に、ポリビニルブチラールもしくはエチレン酢酸ビニル等の中間膜、または光学透明粘着剤(OCA)等の接着層を介して形成されてもよい。また、接地導体20は、ポリエチレンテレフタレート等の樹脂層に導体を形成し、導体パターンにエッチングしたものを、第2主面42の側に、光学透明粘着剤(OCA)等の接着層を介して形成されてもよい。接地導体20は、ポリビニルブチラール、エチレン酢酸ビニル、もしくはポリエチレンテレフタレート等にスパッタ、蒸着などにより導体を形成し、導体パターンにエッチングしたものを、第2主面42の側に形成されてもよい。接地導体20は、第2主面42に直接接してもよい。接地導体20を第2主面42に直接形成する方法としては、ペースト状の銀、銅などの導体を第2主面42にスクリーン印刷により導体パターンを形成し、焼結することが挙げられる。 The ground conductor 20 may be formed on the second main surface 42 side with an intermediate film such as polyvinyl butyral or ethylene vinyl acetate or an adhesive layer such as an optical transparent adhesive (OCA) interposed therebetween. Further, the ground conductor 20 is obtained by forming a conductor on a resin layer such as polyethylene terephthalate and etching the conductor pattern on the second main surface 42 side through an adhesive layer such as an optical transparent adhesive (OCA). It may be formed. The ground conductor 20 may be formed by forming a conductor on polyvinyl butyral, ethylene vinyl acetate, polyethylene terephthalate, or the like by sputtering or vapor deposition, and etching the conductor pattern on the second main surface 42 side. The ground conductor 20 may be in direct contact with the second major surface 42. As a method of directly forming the ground conductor 20 on the second main surface 42, a paste-like conductor such as silver or copper is formed on the second main surface 42 by screen printing to form a conductor pattern and then sintered.
 接地導体20は、隙間が生じるように形成される線状接地導体27と、線状接地導体27に接続される面状接地導体26とを有する。面状接地導体26は、第2主面42の一端辺に帯状に設けられたグランド部である。面状接地導体26は、給電端である端部33に対応するグランド電極である。本実施形態では面状接地導体26は一端辺の全体に設けられているが、一端辺の一部に設けられてもよい。 The ground conductor 20 has a linear ground conductor 27 formed so as to form a gap and a planar ground conductor 26 connected to the linear ground conductor 27. The planar ground conductor 26 is a ground portion provided in a strip shape on one end side of the second main surface 42. The planar ground conductor 26 is a ground electrode corresponding to the end portion 33 which is a power feeding end. In the present embodiment, the planar ground conductor 26 is provided on the entire one end side, but it may be provided on a part of the one end side.
 面状接地導体26は、その一部がソリッドなパターンで形成され、残りの部分が網目状のパターンで形成されてもよい。例えば、面状接地導体26は、平面視において、端部33に重複する部分をソリッドなパターンで形成され、端部33に重複しない部分を網目状のパターンで形成されてもよい。 The planar ground conductor 26 may have a part formed in a solid pattern and the remaining part formed in a mesh pattern. For example, the planar ground conductor 26 may have a solid pattern in a portion overlapping the end 33 and a mesh pattern in a portion not overlapping the end 33 in a plan view.
 第1の実施形態では、線状接地導体27は、隙間が生じるように網目状に形成され、当該隙間によって視野(透明性)を確保できる。第1の実施形態では、格子状の隙間が形成されている。本実施形態では、線状接地導体27の網目の角度Aが略90°であり、網目が直交して形成されているが、網目の角度Aは鋭角に形成されてもよく、鈍角に形成されてもよい。線状接地導体27の網目の角度Aが鈍角に形成されていれば、線状接地導体27をエッチングにより形成した場合のエッチング残りが生じにくく、開口率を大きくすることができる。網目の角度Aが鈍角である場合の一例として、図3に示すように、網目を正六角形とすることが挙げられる。 In the first embodiment, the linear ground conductor 27 is formed in a mesh shape so that a gap is created, and the gap can ensure a visual field (transparency). In the first embodiment, lattice-shaped gaps are formed. In the present embodiment, the mesh angle A of the linear ground conductor 27 is approximately 90 °, and the meshes are formed orthogonally, but the mesh angle A may be formed as an acute angle or an obtuse angle. May be. If the mesh angle A of the linear ground conductor 27 is formed to be an obtuse angle, an etching residue is less likely to occur when the linear ground conductor 27 is formed by etching, and the aperture ratio can be increased. As an example of the case where the mesh angle A is an obtuse angle, the mesh may be a regular hexagon as shown in FIG.
 また、線状接地導体27の網目は方形でもよく、菱形でもよい。網目を方形に形成する場合、網目は正方形であることが好ましい。網目が正方形であれば、意匠性が良い。また、網目は自己組織化法によるランダム形状でもよい。ランダム形状にすることでモアレを防ぐことができる。 Also, the mesh of the linear ground conductor 27 may be square or rhombic. When the mesh is formed in a square shape, the mesh is preferably square. If the mesh is square, the design is good. The mesh may have a random shape by the self-assembly method. Moiré can be prevented by using a random shape.
 本実施形態では、線状接地導体27の網目は複数の線状導体により形成されているが、複数の線状導体は、給電ライン30の延伸方向または延伸方向に直交する方向とは、異なる方向に形成されることが好ましい。複数の線状導体が、給電ライン30の延伸方向または延伸方向に直交する方向とは、異なる方向に形成されていれば、所望の特性インピーダンスが得やすく、良好なアンテナ特性を確保できる。 In the present embodiment, the mesh of the linear ground conductor 27 is formed of a plurality of linear conductors, but the plurality of linear conductors are different from the extending direction of the power supply line 30 or the direction orthogonal to the extending direction. Is preferably formed. If the plurality of linear conductors are formed in a direction different from the extending direction of the power feeding line 30 or the direction orthogonal to the extending direction, a desired characteristic impedance can be easily obtained and good antenna characteristics can be secured.
 第1の実施形態では、接地導体20は、線状接地導体27と接し、接地導体20の外縁を形成する外縁線状導体28を含む。外縁線状導体28は、線状接地導体27を囲んでいる。なお、外縁線状導体28は、線状接地導体27の一部を囲むように配置されてもよいが、外縁線状導体28自体を配置しなくてもよい。外縁線状導体28配置の有無については、以下の実施形態も同様である。 In the first embodiment, the ground conductor 20 includes an outer edge linear conductor 28 that is in contact with the linear ground conductor 27 and forms an outer edge of the ground conductor 20. The outer edge linear conductor 28 surrounds the linear ground conductor 27. The outer edge linear conductor 28 may be arranged so as to surround a part of the linear ground conductor 27, but the outer edge linear conductor 28 itself may not be arranged. Whether or not the outer edge linear conductor 28 is arranged is the same in the following embodiments.
 第1の実施形態では、図1に示されるように、平面視において、アンテナ導体10と重複する第1領域21と、アンテナ導体10と重複しない第2領域22に接地導体20を有する。より具体的に、第1の実施形態では、線状接地導体27が第1領域21と第2領域22の両方に形成されている。なお、接地導体20は、第2主面42の一部に形成されてもよいが、第2主面42の全体に形成されることが好ましい。 In the first embodiment, as shown in FIG. 1, the ground conductor 20 is provided in a first region 21 that overlaps with the antenna conductor 10 and a second region 22 that does not overlap with the antenna conductor 10 in plan view. More specifically, in the first embodiment, the linear ground conductor 27 is formed in both the first region 21 and the second region 22. The ground conductor 20 may be formed on a part of the second main surface 42, but is preferably formed on the entire second main surface 42.
 したがって、本実施形態における基板1は、少なくとも接地導体20が網目状に形成されているので、可視光を透過する光透過性に優れている。よって、可視光の透過性の低下を抑制できる。例えば、基板1を窓ガラス200の表面に直接又は間接的に設置した場合、少なくとも接地導体20が網目状に形成されているので、基板1(特に、接地導体20)が窓ガラス200越しの視野を遮ることを抑制できる。 Therefore, the substrate 1 according to the present embodiment has at least the ground conductor 20 formed in a mesh shape, and thus has excellent light transmissivity for transmitting visible light. Therefore, it is possible to suppress a decrease in the transmittance of visible light. For example, when the substrate 1 is directly or indirectly installed on the surface of the window glass 200, at least the ground conductor 20 is formed in a mesh shape, so that the substrate 1 (especially the ground conductor 20) has a field of view through the window glass 200. It is possible to suppress the obstruction.
 なお、本実施形態における基板は、窓ガラスの表面に直接又は間接的に設置される部材でもよいし、窓ガラス自体でもよい。 The substrate in this embodiment may be a member directly or indirectly installed on the surface of the window glass, or the window glass itself.
 図4は、第2の実施形態における基板の平面図である。図4に示す基板2には、平面アンテナ102が形成されている。基板2は、可視光が透過する誘電体層40と、誘電体層40の片面に設けられるアンテナ導体10と、誘電体層40を介してアンテナ導体10と対向する接地導体20と、アンテナ導体10に給電する給電ライン30とを備える。 FIG. 4 is a plan view of the substrate according to the second embodiment. A planar antenna 102 is formed on the substrate 2 shown in FIG. The substrate 2 includes a dielectric layer 40 that transmits visible light, an antenna conductor 10 provided on one surface of the dielectric layer 40, a ground conductor 20 facing the antenna conductor 10 with the dielectric layer 40 in between, and an antenna conductor 10. And a power supply line 30 for supplying power to the.
 第1の実施形態と同様の構成及び効果についての説明は、上述の実施形態の説明を援用することで省略する。図4に示す第2の実施形態では、アンテナ導体10及び給電ライン30の形態が、図1に示す第1の実施形態と異なる。 Description of configurations and effects similar to those of the first embodiment will be omitted by using the description of the above embodiment. In the second embodiment shown in FIG. 4, the configurations of the antenna conductor 10 and the feed line 30 are different from those of the first embodiment shown in FIG.
 図5は、第2の実施形態における基板に形成される伝送線路、アンテナ導体及び接地導体を平面視で示す図である。第2の実施形態では、アンテナ導体10及び給電ライン30は、いずれも、可視光の透過度合いが誘電体層40よりも低い領域を有するパターンを含む。 FIG. 5 is a plan view showing a transmission line, an antenna conductor, and a ground conductor formed on the substrate according to the second embodiment. In the second embodiment, both the antenna conductor 10 and the feed line 30 include a pattern having a region in which the degree of transmission of visible light is lower than that of the dielectric layer 40.
 アンテナ導体10は、隙間がアンテナ導体10の内部に生じるように形成される内部線状導体17を含む。第2の実施形態では、内部線状導体17は、格子状の隙間が生じるように網目状に形成されている。内部線状導体17の少なくとも一部は、平面視において、接地導体20の線状接地導体27と重複しているが、内部線状導体17の全てが線状接地導体27と重複しているとより好ましい。このように、アンテナ導体10と接地導体20の両方が、隙間が生じるように線状導体によって形成されているので、視野の確保が更に容易になる。 The antenna conductor 10 includes an internal linear conductor 17 formed so that a gap is formed inside the antenna conductor 10. In the second embodiment, the internal linear conductors 17 are formed in a mesh shape so that lattice-shaped gaps are formed. At least a part of the internal linear conductor 17 overlaps with the linear ground conductor 27 of the ground conductor 20 in a plan view, but when all of the internal linear conductor 17 overlaps with the linear ground conductor 27. More preferable. As described above, since both the antenna conductor 10 and the ground conductor 20 are formed by the linear conductors so as to form the gap, it is easier to secure the visual field.
 本実施形態では、内部線状導体17の網目の角度Aが略90°であり、網目が直交して形成されているが、網目の角度Aは鋭角に形成されてもよく、鈍角に形成されてもよい。内部線状導体17の網目の角度Aが鈍角に形成されていれば、内部線状導体17をエッチングにより形成した場合のエッチング残りが生じにくく、開口率を大きくすることができる。網目の角度Aが鈍角である場合の一例として、図6に示すように、網目を正六角形とすることが挙げられる。 In this embodiment, the mesh angle A of the inner linear conductor 17 is approximately 90 °, and the meshes are formed orthogonally, but the mesh angle A may be formed to be an acute angle or an obtuse angle. May be. If the mesh angle A of the internal linear conductor 17 is formed to be an obtuse angle, an etching residue is less likely to occur when the internal linear conductor 17 is formed by etching, and the aperture ratio can be increased. As an example of the case where the mesh angle A is an obtuse angle, as shown in FIG. 6, the mesh may be a regular hexagon.
 また、内部線状導体17の網目は方形でもよく、菱形でもよい。網目を方形に形成する場合、網目は正方形であることが好ましい。網目が正方形であれば、意匠性が良い。また、網目は自己組織化法によるランダム形状でもよい。ランダム形状にすることでモアレを防ぐことができる。 The mesh of the inner linear conductor 17 may be square or rhombic. When the mesh is formed in a square shape, the mesh is preferably square. If the mesh is square, the design is good. The mesh may have a random shape by the self-assembly method. Moiré can be prevented by using a random shape.
 本実施形態では、内部線状導体17の網目は複数の線状導体により形成されているが、複数の線状導体は、給電ライン30の延伸方向または延伸方向に直交する方向とは、異なる方向に形成されることが好ましい。複数の線状導体が、給電ライン30の延伸方向または延伸方向に直交する方向とは、異なる方向に形成されていれば、所望の特性インピーダンスが得やすく、良好なアンテナ特性を確保できる。 In the present embodiment, the mesh of the internal linear conductor 17 is formed of a plurality of linear conductors, but the plurality of linear conductors are different from the extending direction of the power supply line 30 or the direction orthogonal to the extending direction. Is preferably formed. If the plurality of linear conductors are formed in a direction different from the extending direction of the power feeding line 30 or the direction orthogonal to the extending direction, a desired characteristic impedance can be easily obtained and good antenna characteristics can be secured.
 第2の実施形態では、アンテナ導体10は、内部線状導体17と接し、アンテナ導体10の外縁を形成する外縁線状導体18を含む。外縁線状導体18は、内部線状導体17を囲んで閉じた状態になっている。このように、アンテナ導体10について、外縁線状導体18が内部線状導体17を囲む構成とすることで、第1の実施形態のような面状導体の場合の電流分布との相違を抑制でき、良好なアンテナ特性を確保できる。 In the second embodiment, the antenna conductor 10 includes an outer edge linear conductor 18 that is in contact with the inner linear conductor 17 and forms an outer edge of the antenna conductor 10. The outer edge linear conductor 18 surrounds the inner linear conductor 17 and is in a closed state. As described above, by configuring the antenna conductor 10 so that the outer edge linear conductor 18 surrounds the inner linear conductor 17, it is possible to suppress a difference from the current distribution in the case of the planar conductor as in the first embodiment. , Good antenna characteristics can be secured.
 図7に示すように、外縁線状導体18のH面方向(図7のX軸方向)に対向する2辺の線幅は、他の辺の線幅よりも太く形成されてもよい。外縁線状導体18のH面方向(図7のX軸方向)に対向する2辺の線幅が他の2辺の線幅よりも太いことにより、導体損が減り、良好なアンテナ特性を確保できる。 As shown in FIG. 7, the line width of the two sides of the outer edge linear conductor 18 facing in the H-plane direction (X-axis direction of FIG. 7) may be formed thicker than the line widths of the other sides. Since the line width of the two sides of the outer edge linear conductor 18 facing in the H-plane direction (X-axis direction in FIG. 7) is thicker than the line widths of the other two sides, conductor loss is reduced and good antenna characteristics are secured. it can.
 給電ライン30は、隙間が給電ライン30の内部に生じるように形成される内部線状導体37を含む。第2の実施形態では、内部線状導体37は、格子状の隙間が生じるように網目状に形成されている。内部線状導体37は、平面視において、接地導体20の線状接地導体27と重複しなくてもよいが、内部線状導体37の少なくとも一部は、平面視において、接地導体20の線状接地導体27と重複していると好ましく、内部線状導体37の全てが線状接地導体27と重複しているとより好ましい。このように、給電ライン30と接地導体20の両方が、隙間が生じるように線状導体によって形成されているので、視野の確保が更に容易になる。 The power supply line 30 includes an internal linear conductor 37 formed so that a gap is formed inside the power supply line 30. In the second embodiment, the internal linear conductors 37 are formed in a mesh shape so that lattice-shaped gaps are formed. The inner linear conductor 37 does not have to overlap the linear ground conductor 27 of the ground conductor 20 in a plan view, but at least a part of the inner linear conductor 37 has a linear shape of the ground conductor 20 in a plan view. It is preferable that it overlaps with the ground conductor 27, and it is more preferable that all of the internal linear conductors 37 overlap with the linear ground conductor 27. As described above, since both the power supply line 30 and the ground conductor 20 are formed of linear conductors so that a gap is formed, it is easier to secure the field of view.
 本実施形態では、内部線状導体37の網目の角度Aが略90°であり、網目が直交して形成されているが、網目の角度Aは鋭角に形成されてもよく、鈍角に形成されてもよい。内部線状導体37の網目の角度Aが鈍角に形成されていれば、内部線状導体37をエッチングにより形成した場合のエッチング残りが生じにくく、開口率を大きくすることができる。網目の角度Aが鈍角である場合の一例として、図6に示すように、網目を正六角形とすることが挙げられる。 In the present embodiment, the mesh angle A of the inner linear conductor 37 is approximately 90 °, and the meshes are formed orthogonally, but the mesh angle A may be formed as an acute angle or an obtuse angle. May be. If the mesh angle A of the inner linear conductor 37 is formed to be an obtuse angle, an etching residue is less likely to occur when the inner linear conductor 37 is formed by etching, and the aperture ratio can be increased. As an example of the case where the mesh angle A is an obtuse angle, as shown in FIG. 6, the mesh may be a regular hexagon.
 また、内部線状導体37の網目は方形でもよく、菱形でもよい。網目を方形に形成する場合、網目は正方形であることが好ましい。網目が正方形であれば、意匠性が良い。また、網目は自己組織化法によるランダム形状でもよい。ランダム形状にすることでモアレを防ぐことができる。 The mesh of the inner linear conductor 37 may be square or rhombic. When the mesh is formed in a square shape, the mesh is preferably square. If the mesh is square, the design is good. The mesh may have a random shape by the self-assembly method. Moiré can be prevented by using a random shape.
 本実施形態では、内部線状導体37の網目は複数の線状導体により形成されているが、複数の線状導体は、給電ライン30の延伸方向または延伸方向に直交する方向とは、異なる方向に形成されることが好ましい。複数の線状導体が、給電ライン30の延伸方向または延伸方向に直交する方向とは、異なる方向に形成されていれば、所望の特性インピーダンスが得やすく、良好なアンテナ特性を確保できる。 In the present embodiment, the mesh of the internal linear conductor 37 is formed by a plurality of linear conductors, but the plurality of linear conductors are different from the extending direction of the power supply line 30 or the direction orthogonal to the extending direction. Is preferably formed. If the plurality of linear conductors are formed in a direction different from the extending direction of the power feeding line 30 or the direction orthogonal to the extending direction, a desired characteristic impedance can be easily obtained and good antenna characteristics can be secured.
 第2の実施形態では、給電ライン30は、内部線状導体37と接し、給電ライン30の外縁を形成する外縁線状導体38を含む。外縁線状導体38は、内部線状導体37を囲んで閉じた状態になっている。このように、給電ライン30について、外縁線状導体38が内部線状導体37を囲む構成とすることで、第1の実施形態のような面状導体の場合の電流分布との相違を抑制でき、良好なアンテナ特性を確保できる。 In the second embodiment, the power feeding line 30 includes an outer edge linear conductor 38 that is in contact with the inner linear conductor 37 and forms an outer edge of the power feeding line 30. The outer edge linear conductor 38 surrounds the inner linear conductor 37 and is in a closed state. As described above, in the power supply line 30, the outer edge linear conductor 38 surrounds the inner linear conductor 37, so that the difference from the current distribution in the case of the planar conductor as in the first embodiment can be suppressed. , Good antenna characteristics can be secured.
 第2の実施形態でも、図4に示されるように、平面視において、アンテナ導体10と重複する第1領域21と、アンテナ導体10と重複しない第2領域22に接地導体20を有する。第2の実施形態では、線状接地導体27が第1領域21と第2領域22の両方に形成されている。なお、接地導体20は、第2主面42の一部に形成されてもよいが、第2主面42の全体に形成されることが好ましい。 Also in the second embodiment, as shown in FIG. 4, the ground conductor 20 is provided in the first region 21 that overlaps with the antenna conductor 10 and the second region 22 that does not overlap with the antenna conductor 10 in plan view. In the second embodiment, the linear ground conductor 27 is formed in both the first region 21 and the second region 22. The ground conductor 20 may be formed on a part of the second main surface 42, but is preferably formed on the entire second main surface 42.
 図8は、第3の実施形態における基板に形成される伝送線路、アンテナ導体及び接地導体を斜視で示す図である。図8に示す基板4には、平面アンテナ104が形成されている。第1および第2の実施形態と同様の構成及び効果についての説明は、上述の実施形態の説明を援用することで省略する。基板4は、可視光が透過する誘電体層40と、誘電体層40の片面に設けられるアンテナ導体10と、誘電体層40を介してアンテナ導体10と対向する接地導体20と、アンテナ導体10にスロット31を介して給電する給電ライン30とを備える。 FIG. 8 is a perspective view showing a transmission line, an antenna conductor, and a ground conductor formed on the substrate according to the third embodiment. A planar antenna 104 is formed on the substrate 4 shown in FIG. Descriptions of configurations and effects similar to those of the first and second embodiments will be omitted by using the description of the above-described embodiments. The substrate 4 includes a dielectric layer 40 that transmits visible light, an antenna conductor 10 provided on one surface of the dielectric layer 40, a ground conductor 20 that faces the antenna conductor 10 with the dielectric layer 40 in between, and an antenna conductor 10. And a power feed line 30 for feeding power through the slot 31.
 基板4に形成される伝送線路60は、誘電体層40と、誘電体層40の第2面に形成される給電ライン30と、誘電体層40の第2面に形成される接地導体20とを含む構造を有するコプレーナ線路である。 The transmission line 60 formed on the substrate 4 includes the dielectric layer 40, the feeding line 30 formed on the second surface of the dielectric layer 40, and the ground conductor 20 formed on the second surface of the dielectric layer 40. It is a coplanar line having a structure including.
 図8において、給電ライン30及び接地導体20は、誘電体層40の第2主面(アンテナ導体10が形成される第1主面41の反対側の面)の側に形成されている。給電ライン30は、並走する一対のギャップと、それらの一対のギャップに挟まれた中心導体(コプレーナ線路の中心導体)とを有する。給電ライン30の一方の端部に形成されるスロット31と、第1主面41の側に形成されるアンテナ導体10とが高周波的に結合する。 In FIG. 8, the power feed line 30 and the ground conductor 20 are formed on the second main surface (the surface opposite to the first main surface 41 on which the antenna conductor 10 is formed) of the dielectric layer 40. The feed line 30 has a pair of gaps running in parallel and a center conductor (center conductor of the coplanar line) sandwiched between the pair of gaps. The slot 31 formed at one end of the power supply line 30 and the antenna conductor 10 formed on the first main surface 41 side are coupled with each other in terms of high frequency.
 図8に示す形態では、接地導体20は、隙間が生じるように形成される線状接地導体27を有し、線状接地導体27は、隙間が生じるように網目状に形成され、当該隙間によって視野(透明性)を確保できる。なお、給電ライン30の中心導体とアンテナ導体10との少なくとも一方が、隙間が生じるように網目状に形成される線状導体を有してもよい。これにより、更なる透明性を確保できる。 In the form shown in FIG. 8, the ground conductor 20 has a linear ground conductor 27 formed so as to form a gap, and the linear ground conductor 27 is formed in a mesh shape so as to form a gap, and is formed by the gap. The field of view (transparency) can be secured. Note that at least one of the center conductor of the power feeding line 30 and the antenna conductor 10 may have a linear conductor formed in a mesh shape so as to form a gap. Thereby, further transparency can be secured.
 ところで、図4等に示す実施形態では、給電ライン30は、隙間が給電ライン30の内部に生じるように網目状に形成される内部線状導体37を含む。図9は、相互に交差する複数の線状導体を含む網目状の導体の平面図である。 By the way, in the embodiment shown in FIG. 4 etc., the power supply line 30 includes an internal linear conductor 37 formed in a mesh shape so that a gap is formed inside the power supply line 30. FIG. 9 is a plan view of a mesh conductor including a plurality of linear conductors intersecting with each other.
 高周波信号が伝搬する内部線状導体37等の導体で生ずる伝搬損失を抑える点で、当該導体の厚さは、表皮深さ(skin depth)δ以上あることが好ましい。交流電流が導体を流れるとき、電流密度が、導体の表面で比較的高く、表面から離れるほど低くなる現象を表皮効果という。表皮深さδは、電流が表面電流の1/e(約0.37)に減衰する長さである。導体を伝搬する高周波信号の周波数をf、導体の比透磁率をμ、真空の透磁率をμ、導体の導電率をσとするとき、表皮深さδは、
  δ=1/√(π・f・μ・μ・σ)
で表される。
The thickness of the conductor is preferably not less than skin depth δ in order to suppress the propagation loss that occurs in the conductor such as the inner linear conductor 37 through which the high frequency signal propagates. A skin effect is a phenomenon in which when an alternating current flows through a conductor, the current density is relatively high on the surface of the conductor and decreases with increasing distance from the surface. The skin depth δ is the length at which the current decays to 1 / e (about 0.37) of the surface current. When the frequency of the high-frequency signal propagating through the conductor is f, the relative permeability of the conductor is μ r , the permeability of the vacuum is μ 0 , and the conductivity of the conductor is σ, the skin depth δ is
δ = 1 / √ (π ・ f ・ μ r・ μ 0・ σ)
It is represented by.
 給電ライン30を網目状とした場合、給電ライン30の表面抵抗が低下する。給電ライン30を網目状にすることによる給電ライン30の表面抵抗の低下を、導電率σが1/10に低下したと擬似的に仮定し、この場合の表皮深さをδ'とする。高周波電流が網目状の導体の抵抗性を強く感じることなく効率的に流れる(つまり、伝搬損失を抑える)ためには、内部線状導体37の線路幅W及び厚さtは、表皮深さδ'の2倍以上であることが好ましい。厚さtは、Z軸方向の長さである。内部線状導体37の線路幅W及び厚さtは、表皮深さδ'の3倍以上であることがより好ましい。 When the power supply line 30 has a mesh shape, the surface resistance of the power supply line 30 decreases. It is assumed that the decrease in the surface resistance of the power feeding line 30 due to the meshing of the power feeding line 30 is that the conductivity σ is reduced to 1/10, and the skin depth in this case is δ ′. In order for the high-frequency current to flow efficiently (that is, to suppress the propagation loss) without strongly feeling the resistance of the mesh-shaped conductor, the line width W and the thickness t of the inner linear conductor 37 are determined by the skin depth δ. It is preferable that it is more than twice. The thickness t is the length in the Z-axis direction. The line width W and the thickness t of the inner linear conductor 37 are more preferably three times or more the skin depth δ ′.
 つまり、内部線状導体37の線路幅をW、周波数をf、周波数fにおける表皮深さをδ'、内部線状導体37の比透磁率をμ、真空の透磁率をμ、内部線状導体37の導電率をσ、σ0.1=0.1×σとするとき、以下の式が成立することが好ましい。以下の式が成立することで、給電ライン30で生ずる伝搬損失を抑制できる。 That is, the line width of the inner linear conductor 37 is W, the frequency is f, the skin depth at the frequency f is δ ′, the relative magnetic permeability of the inner linear conductor 37 is μ r , the magnetic permeability of the vacuum is μ 0 , the inner line is When the electric conductivity of the conductor 37 is σ, σ 0.1 = 0.1 × σ, it is preferable that the following formula is satisfied. By satisfying the following equation, it is possible to suppress the propagation loss generated in the power feeding line 30.
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
 また、内部線状導体37の厚さをt、周波数をf、周波数fにおける表皮深さをδ'、内部線状導体37の比透磁率をμ、真空の透磁率をμ、内部線状導体37の導電率をσ、σ0.1=0.1×σとするとき、以下の式が成立することが好ましい。以下の式が成立することで、給電ライン30で生ずる伝搬損失を抑制できる。 Further, the thickness of the inner linear conductor 37 is t, the frequency is f, the skin depth at the frequency f is δ ′, the relative magnetic permeability of the inner linear conductor 37 is μ r , the magnetic permeability of the vacuum is μ 0 , the inner line is When the electric conductivity of the conductor 37 is σ, σ 0.1 = 0.1 × σ, it is preferable that the following formula is satisfied. By satisfying the following equation, it is possible to suppress the propagation loss generated in the power feeding line 30.
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000006
 
 一例として、周波数3GHzにおいて材質が銅の場合の給電ライン30の表皮深さδは、約1.2μmである。この場合の表皮深さδ'は、約3.78μmである。したがって、線路幅Wと厚さtの少なくとも一方は、給電ライン30での伝搬損失を抑える点で、δ'の約2倍の7μm以上であることが好ましい。また、線路幅Wと厚さtの少なくとも一方は、10μm以上であることがより好ましい。 As an example, the skin depth δ of the power supply line 30 when the material is copper at a frequency of 3 GHz is about 1.2 μm. The skin depth δ ′ in this case is about 3.78 μm. Therefore, at least one of the line width W and the thickness t is preferably 7 μm or more, which is approximately twice δ ′, in order to suppress the propagation loss in the power supply line 30. Further, at least one of the line width W and the thickness t is more preferably 10 μm or more.
 また、網目状の導体の網目間隔Gは、その導体での伝搬損失を抑え、また信号品質を維持するため、使用周波数の実効波長λに対して、十分に小さいことが要求される。 Further, the mesh spacing G of the mesh-like conductor is required to be sufficiently smaller than the effective wavelength λ g of the used frequency in order to suppress the propagation loss in the conductor and maintain the signal quality.
 図10は、高周波信号を模擬した正弦波において、振幅変化量と位相変化量との関係を説明するための図である。例えば、信号の挙動を安定させ信号品質を維持するためには、実効波長λに対して十分に小さい網目間隔Gを、伝搬する高周波の振幅変化量Δが波高値の好ましくは5%であるときにおける位相変化量θ以下にすることが好ましい。 FIG. 10 is a diagram for explaining the relationship between the amplitude change amount and the phase change amount in a sine wave simulating a high frequency signal. For example, in order to stabilize the signal behavior and maintain the signal quality, the amplitude variation Δ of the high frequency propagating through the mesh spacing G which is sufficiently smaller than the effective wavelength λ g is preferably 5% of the peak value. It is preferable that the amount of phase change θ at that time be equal to or less than θ.
 つまり、内部線状導体37の網目間隔をG、伝搬する高周波の実効波長をλ、x=0.05とするとき、以下の式が成立することが好ましい。以下の式が成立することで、給電ライン30および平面アンテナ102で生ずる信号の挙動の乱れを抑制できる。網目間隔Gは、隣り合う網目間のピッチ、又は、隣り合う網目の重心間の距離である。図9に示す網目間隔Gは、隣り合う網目間のピッチを表す。 That is, when the mesh spacing of the internal linear conductors 37 is G, the effective wavelength of the propagating high frequency is λ g , and x = 0.05, it is preferable that the following formula is satisfied. By satisfying the following equation, it is possible to suppress the disturbance of the behavior of the signal generated in the feed line 30 and the planar antenna 102. The mesh spacing G is the pitch between adjacent meshes or the distance between the centers of gravity of adjacent meshes. The mesh spacing G shown in FIG. 9 represents the pitch between adjacent meshes.
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000007
 
 一例として、使用する周波数fが3GHzの場合を考える。 As an example, consider the case where the frequency f used is 3 GHz.
 伝搬媒体が真空の場合の波長λは、真空中の光速をC(=3.0×10[m/s])とすると、
   λ=C/f=100mm
である。
The wavelength λ 0 in the case where the propagation medium is a vacuum is C 0 (= 3.0 × 10 8 [m / s]), where C 0 is the speed of light in a vacuum.
λ 0 = C 0 / f = 100 mm
Is.
 伝搬媒体を誘電体基板とする場合、厚さhが3mmで比誘電率εが4の誘電体基板を利用するマイクロストリップ線路では、実効波長λは、
   λ=λ/√εeff=55.8mm
である。ここで、εeffは実効比誘電率であり、近似的に下式で表される。下式において、Lは、マイクロストリップ線路のストリップ導体の線路幅を表す。
When the propagation medium is a dielectric substrate, in a microstrip line that uses a dielectric substrate having a thickness h of 3 mm and a relative permittivity ε r of 4, the effective wavelength λ g is
λ g = λ 0 / √ε eff = 55.8 mm
Is. Here, ε eff is an effective relative permittivity and is approximately represented by the following equation. In the following equation, L w represents the line width of the strip conductor of the microstrip line.
Figure JPOXMLDOC01-appb-M000008
 
Figure JPOXMLDOC01-appb-M000008
 
 したがって、上記式によれば、使用する周波数fが3GHzにおいて、厚さが3mmで比誘電率εが4の誘電体層40を利用する伝送線路60の場合、給電ライン30で生ずる伝搬損失を抑制するには、網目間隔Gを444μm以下にすることが好ましい。また、網目間隔Gは、400μm以下がより好ましく、350μm以下がさらに好ましい。 Therefore, according to the above formula, in the case where the frequency f to be used is 3 GHz, in the case of the transmission line 60 utilizing the dielectric layer 40 having a thickness of 3 mm and a relative permittivity ε r of 4, the propagation loss generated in the power supply line 30 is In order to suppress it, it is preferable to set the mesh interval G to 444 μm or less. Further, the mesh spacing G is more preferably 400 μm or less, further preferably 350 μm or less.
 また、可視光の透過性(透明性)を確保するためには、網目状の導体の線路幅Wは、狭く、網目間隔Gは広いことが望ましい。透明性を確保するためには、開口率が光透過率に近似する指標であると仮定すると、網目状の導体の開口率は、好ましくは80%、より好ましくは90%であることが望ましい。 Also, in order to ensure the transparency (transparency) of visible light, it is desirable that the line width W of the mesh-shaped conductor be narrow and the mesh interval G be wide. In order to ensure transparency, assuming that the aperture ratio is an index close to the light transmittance, the aperture ratio of the mesh conductor is preferably 80%, more preferably 90%.
 つまり、内部線状導体37の線路幅をW、内部線状導体37の網目間隔をGとするとき、開口率(=(G-W)/G)は、以下の式を満たすことが好ましい。 That is, when the line width of the inner linear conductor 37 is W and the mesh spacing of the inner linear conductor 37 is G, the aperture ratio (= (GW) 2 / G 2 ) may satisfy the following equation. preferable.
Figure JPOXMLDOC01-appb-M000009
 
 
Figure JPOXMLDOC01-appb-M000009
 
 
 一例として、「Wが7μm以上、Gが444μm以下」という条件を満たす開口率を計算すると、以下の表に記載の数値が得られる。 As an example, when calculating the aperture ratio that satisfies the condition of "W is 7 μm or more and G is 444 μm or less", the numerical values shown in the table below are obtained.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1から、可視光の透過性(透明性)を確保するためには、Wは40μm以下、網目間隔Gは100μm以上であることが好ましい。Wは20μm以下がより好ましく、15μm以下がさらに好ましい。Gは200μm以上がより好ましく、250μm以上がさらに好ましい。 From Table 1, in order to secure the transparency (transparency) of visible light, it is preferable that W is 40 μm or less and the mesh spacing G is 100 μm or more. W is more preferably 20 μm or less, further preferably 15 μm or less. G is more preferably 200 μm or more, further preferably 250 μm or more.
 以上、基板を実施形態により説明したが、本発明は上記の実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。 The substrate has been described above by the embodiment, but the present invention is not limited to the above embodiment. Various modifications and improvements, such as combination with some or all of the other embodiments and substitution, are possible within the scope of the present invention.
 例えば、信号配線、アンテナ導体及び接地導体のうちの少なくとも一つは、可視光の透過度合いが、誘電体層に比べて低く又は高くてもよく、誘電体層と同じでもよい。 For example, at least one of the signal wiring, the antenna conductor, and the ground conductor may have a lower or higher degree of visible light transmission than the dielectric layer, or may be the same as the dielectric layer.
 また、アンテナ導体の外形は、円形等の他の外形でもよい。また、アンテナ導体は、給電ピンやスルーホール等の他の給電ラインによって給電されてもよい。 Also, the outer shape of the antenna conductor may be another outer shape such as a circle. Further, the antenna conductor may be fed by another feeding line such as a feeding pin or a through hole.
 本国際出願は、2018年11月6日に出願した日本国特許出願第2018-208765号及び2019年6月5日に出願した日本国特許出願第2019-105627号に基づく優先権を主張するものであり、両出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2018-208765 filed on November 6, 2018 and Japanese Patent Application No. 2019-105627 filed on June 5, 2019. The entire contents of both applications are incorporated into this international application.
1~5 基板
10 アンテナ導体
11~14 パッチ導体
17 内部線状導体
18 外縁線状導体
20 接地導体
21 第1領域
22 第2領域
27 線状接地導体
28 外縁線状導体
30 給電ライン
31 スロット
32,33 端部
36 分岐箇所
37 内部線状導体
38 外縁線状導体
40 誘電体層
41 第1主面
42 第2主面
60 伝送線路
101,102,104 平面アンテナ
200 窓ガラス
1 to 5 substrate 10 antenna conductors 11 to 14 patch conductor 17 inner linear conductor 18 outer edge linear conductor 20 ground conductor 21 first region 22 second region 27 linear ground conductor 28 outer edge linear conductor 30 feeding line 31 slot 32, 33 end part 36 branch point 37 inner linear conductor 38 outer edge linear conductor 40 dielectric layer 41 first main surface 42 second main surface 60 transmission lines 101, 102, 104 planar antenna 200 window glass

Claims (17)

  1.  第1面と、前記第1面とは反対側の第2面とを有し、可視光が透過する誘電体層と、
     前記第1面の側に設けられる網目状のアンテナ導体と、
     前記第2面の側に設けられる網目状の接地導体とを備える、基板。
    A dielectric layer having a first surface and a second surface opposite to the first surface, the dielectric layer transmitting visible light;
    A mesh-shaped antenna conductor provided on the first surface side;
    A substrate, comprising: a mesh-shaped ground conductor provided on the second surface side.
  2.  前記接地導体は、平面視において、前記アンテナ導体と重複する第1領域と、前記アンテナ導体と重複しない第2領域に配置される、請求項1に記載の基板。 The substrate according to claim 1, wherein the ground conductor is arranged in a first region that overlaps with the antenna conductor and a second region that does not overlap with the antenna conductor in plan view.
  3.  前記誘電体層の上に設けられる網目状の信号配線を備え、
     前記信号配線は、前記アンテナ導体に給電する、請求項1又は2に記載の基板。
    A mesh-shaped signal wiring provided on the dielectric layer,
    The substrate according to claim 1, wherein the signal wiring feeds the antenna conductor.
  4.  前記信号配線は、前記第1面の側に形成される、請求項3に記載の基板。 The board according to claim 3, wherein the signal wiring is formed on the side of the first surface.
  5.  前記信号配線は、マイクロストリップ線路のストリップ導体である、請求項3または4に記載の基板。 The board according to claim 3 or 4, wherein the signal wiring is a strip conductor of a microstrip line.
  6.  前記信号配線は、前記第2面の側に形成される、請求項3に記載の基板。 The board according to claim 3, wherein the signal wiring is formed on the second surface side.
  7.  前記信号配線は、コプレーナ線路の中心導体である、請求項3又は6に記載の基板。 The board according to claim 3 or 6, wherein the signal wiring is a central conductor of a coplanar line.
  8.  前記信号配線は、前記信号配線の外縁を形成する外縁線状導体を含む、請求項3から7のいずれか一項に記載の基板。 The board according to any one of claims 3 to 7, wherein the signal wiring includes an outer edge linear conductor that forms an outer edge of the signal wiring.
  9.  前記アンテナ導体は、前記アンテナ導体の外縁を形成する外縁線状導体を含む、請求項3から8のいずれか一項に記載の基板。 The board according to any one of claims 3 to 8, wherein the antenna conductor includes an outer edge linear conductor that forms an outer edge of the antenna conductor.
  10.  伝送線路が形成される基板であって、
     可視光が透過する誘電体層と、
     前記誘電体層の上に設けられる網目状の接地導体とを備え、
     前記伝送線路は、前記誘電体層と前記接地導体とを含む構造を有する、基板。
    A substrate on which a transmission line is formed,
    A dielectric layer that transmits visible light,
    A grounded conductor in a mesh shape provided on the dielectric layer,
    The substrate, wherein the transmission line has a structure including the dielectric layer and the ground conductor.
  11.  前記誘電体層の上に設けられる網目状の信号配線を備え、
     前記伝送線路は、前記信号配線をさらに含む構造を有する、請求項10に記載の基板。
    A mesh-shaped signal wiring provided on the dielectric layer,
    The substrate according to claim 10, wherein the transmission line has a structure further including the signal wiring.
  12.  前記伝送線路は、マイクロストリップ線路である、請求項11に記載の基板。 The board according to claim 11, wherein the transmission line is a microstrip line.
  13.  前記伝送線路は、コプレーナ線路である、請求項11に記載の基板。 The board according to claim 11, wherein the transmission line is a coplanar line.
  14.  前記信号配線は、網目を形成する線状導体を含み、
     前記線状導体の線路幅をW、周波数をf、周波数fにおける表皮深さをδ'、前記線状導体の比透磁率をμ、真空の透磁率をμ、前記線状導体の導電率をσ、σ0.1=0.1×σとするとき、以下の式が成立する、請求項3から8,11から13のいずれか一項に記載の基板。
    Figure JPOXMLDOC01-appb-M000001
    The signal wiring includes a linear conductor forming a mesh,
    The line width of the linear conductor is W, the frequency is f, the skin depth at the frequency f is δ ′, the relative permeability of the linear conductor is μ r , the magnetic permeability of vacuum is μ 0 , and the conductivity of the linear conductor is The substrate according to any one of claims 3 to 8 and 11 to 13, wherein the following expressions hold when the ratio is σ, σ 0.1 = 0.1 × σ.
    Figure JPOXMLDOC01-appb-M000001
  15.  前記信号配線は、網目を形成する線状導体を含み、
     前記線状導体の厚さをt、周波数をf、周波数fにおける表皮深さをδ'、前記線状導体の比透磁率をμ、真空の透磁率をμ、前記線状導体の導電率をσ、σ0.1=0.1×σとするとき、以下の式が成立する、請求項3から8,11から14のいずれか一項に記載の基板。
    Figure JPOXMLDOC01-appb-M000002
    The signal wiring includes a linear conductor forming a mesh,
    The thickness of the linear conductor is t, the frequency is f, the skin depth at the frequency f is δ ′, the relative permeability of the linear conductor is μ r , the magnetic permeability of the vacuum is μ 0 , and the conductivity of the linear conductor is The substrate according to any one of claims 3 to 8 and 11 to 14, wherein the following expressions hold when the ratio is σ, σ 0.1 = 0.1 × σ.
    Figure JPOXMLDOC01-appb-M000002
  16.  前記信号配線は、網目を形成する線状導体を含み、
     前記線状導体の網目間隔をG、伝搬する波の実効波長をλ、x=0.05とするとき、以下の式が成立する、請求項3から8,11から15のいずれか一項に記載の基板。
    Figure JPOXMLDOC01-appb-M000003
    The signal wiring includes a linear conductor forming a mesh,
    16. When the mesh spacing of the linear conductor is G, the effective wavelength of the propagating wave is λ g , and x = 0.05, the following formulas are satisfied: The substrate according to.
    Figure JPOXMLDOC01-appb-M000003
  17.  前記信号配線は、網目を形成する線状導体を含み、
     前記線状導体の線路幅をW、前記線状導体の網目間隔をGとするとき、以下の式が成立する、請求項3から8,11から16のいずれか一項に記載の基板。
    Figure JPOXMLDOC01-appb-M000004
    The signal wiring includes a linear conductor forming a mesh,
    The substrate according to any one of claims 3 to 8 and 11 to 16, wherein when the line width of the linear conductor is W and the mesh spacing of the linear conductor is G, the following expressions are established.
    Figure JPOXMLDOC01-appb-M000004
PCT/JP2019/042538 2018-11-06 2019-10-30 Substrate WO2020095786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020556001A JPWO2020095786A1 (en) 2018-11-06 2019-10-30 substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018208765 2018-11-06
JP2018-208765 2018-11-06
JP2019-105627 2019-06-05
JP2019105627 2019-06-05

Publications (1)

Publication Number Publication Date
WO2020095786A1 true WO2020095786A1 (en) 2020-05-14

Family

ID=70612231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042538 WO2020095786A1 (en) 2018-11-06 2019-10-30 Substrate

Country Status (2)

Country Link
JP (1) JPWO2020095786A1 (en)
WO (1) WO2020095786A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4002579A3 (en) * 2020-11-20 2022-08-10 u-blox AG Gnss antenna

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002511691A (en) * 1998-04-15 2002-04-16 ハラダ・インダストリーズ(ヨーロッパ)リミテッド Patch antenna
US20030142018A1 (en) * 2002-01-29 2003-07-31 California Amplifier, Inc. High-efficiency transparent microwave antennas
US6809045B1 (en) * 1997-12-10 2004-10-26 Mcdonnell Douglas Corporation Screen ink printed film carrier and electrically modulated device using same
JP2006303846A (en) * 2005-04-20 2006-11-02 Japan Radio Co Ltd Grid patch antenna
JP2010147860A (en) * 2008-12-19 2010-07-01 Hitachi Chem Co Ltd Film antenna base material and method for manufacturing the same
JP2012249204A (en) * 2011-05-30 2012-12-13 Kobe Steel Ltd Micro wave planar antenna
US20140332256A1 (en) * 2013-05-10 2014-11-13 Ronald Steven Cok Micro-wire electrode structure having non-linear gaps

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809045B1 (en) * 1997-12-10 2004-10-26 Mcdonnell Douglas Corporation Screen ink printed film carrier and electrically modulated device using same
JP2002511691A (en) * 1998-04-15 2002-04-16 ハラダ・インダストリーズ(ヨーロッパ)リミテッド Patch antenna
US20030142018A1 (en) * 2002-01-29 2003-07-31 California Amplifier, Inc. High-efficiency transparent microwave antennas
JP2006303846A (en) * 2005-04-20 2006-11-02 Japan Radio Co Ltd Grid patch antenna
JP2010147860A (en) * 2008-12-19 2010-07-01 Hitachi Chem Co Ltd Film antenna base material and method for manufacturing the same
JP2012249204A (en) * 2011-05-30 2012-12-13 Kobe Steel Ltd Micro wave planar antenna
US20140332256A1 (en) * 2013-05-10 2014-11-13 Ronald Steven Cok Micro-wire electrode structure having non-linear gaps

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4002579A3 (en) * 2020-11-20 2022-08-10 u-blox AG Gnss antenna
US11929541B2 (en) 2020-11-20 2024-03-12 U-Blox Ag GNSS antenna

Also Published As

Publication number Publication date
JPWO2020095786A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2020030135A1 (en) Liquid crystal phase shifter and operating method therefor, liquid crystal antenna, and communication device
WO2021233251A1 (en) Touch display screen and electronic device
US11870122B2 (en) Liquid crystal phase shifter and antenna
JP2022520700A (en) Antenna array based on one or more metamaterial structures
CN112771719A (en) Antenna system
US9917349B2 (en) Waveguides for digital communication devices
CN112306299A (en) Touch panel integrated with antenna and electronic equipment
CN102820544B (en) A kind of antenna reflective face phasing pad pasting and reflector antenna
JP7355026B2 (en) Planar antenna and window glass
WO2020095786A1 (en) Substrate
WO2022045084A1 (en) Transparent antenna and display module
US11967792B2 (en) Coaxial connector and substrate with coaxial connector
CN112118719B (en) Wave-absorbing unit structure
KR102590819B1 (en) Ultra-thin flexible transparent absorber
JP2024025192A (en) Antenna device and display apparatus with antenna
US11862842B2 (en) Antenna module and display apparatus
US20230318203A1 (en) Wiring board and method of manufacturing wiring board
TWI838815B (en) Antenna module, metamaterial structure and electronic device
US11888225B2 (en) Metamaterial structure, metamaterial-type transparent heater, and radar apparatus using metamaterial-type transparent heater
US11329371B2 (en) Antenna device including antenna and substrate generated with non-opaque material
WO2022262761A1 (en) Touch control structure, display assembly and electronic device
WO2021220836A1 (en) Display module
CN110165415B (en) Hollowed-out upper-layer and lower-layer coupling type electromagnetic induction transparent film
JP2023075779A (en) Position detection element with antenna, electronic device
JP2023116347A (en) Antenna device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556001

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881400

Country of ref document: EP

Kind code of ref document: A1