WO2021220836A1 - Display module - Google Patents

Display module Download PDF

Info

Publication number
WO2021220836A1
WO2021220836A1 PCT/JP2021/015641 JP2021015641W WO2021220836A1 WO 2021220836 A1 WO2021220836 A1 WO 2021220836A1 JP 2021015641 W JP2021015641 W JP 2021015641W WO 2021220836 A1 WO2021220836 A1 WO 2021220836A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
display module
touch panel
twice
electrodes
Prior art date
Application number
PCT/JP2021/015641
Other languages
French (fr)
Japanese (ja)
Inventor
康夫 森本
伸宏 中村
眞誠 一色
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022517630A priority Critical patent/JPWO2021220836A1/ja
Publication of WO2021220836A1 publication Critical patent/WO2021220836A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces

Definitions

  • the present invention relates to a display module including a transparent antenna and a display panel.
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • millimeter waves called the 5th generation mobile communication system have strong directivity, a relatively short reach, and are easily shielded by metal or the like. Therefore, as an antenna for 5G, a display (OLED, LCD, A technique for arranging a transparent antenna on a touch panel (including a metal wire panel with an integrated display) or a touch panel (for example, Patent Document 1 and Patent Document 2) has been proposed.
  • the antenna when the antenna is arranged on the display or the touch panel, if the resistance of the display or the touch panel is large, the radio waves are absorbed without being reflected, and the loss in transmitting and receiving the antenna becomes large. Twice
  • an object of the present invention is to provide a display module including an antenna capable of transmitting and receiving in the 5G band and capable of suppressing loss of electromagnetic waves at a frequency used by the antenna.
  • a transparent base material a transparent antenna provided with a mesh-like fine metal wire layer having an opening ratio of 80% or more on the upper side of the transparent base material, and a display.
  • a display module comprising a panel has at least one good reflector between the transparent antenna and the display panel, or on the surface of the display panel, the good reflector between 2 GHz ⁇ f ⁇ 50 GHz.
  • the reflection amplitude of the electromagnetic wave > the transmission amplitude
  • the reflection coefficient S11 is -1 dB or more.
  • a display module including an antenna capable of transmitting and receiving in the 5G band, loss of electromagnetic waves at a frequency used by the antenna can be suppressed.
  • FIG. 1 is a cross-sectional view taken along the line AA of the electronic device of FIG. Schematic configuration of the display module of the present invention (No. 1).
  • the schematic diagram of the sensor pattern of the projection type capacitance system The figure which shows the detailed structure of the sensor pattern of a general touch panel. Explanatory drawing of the floating conductor of a sensor pattern.
  • FIG. 5 is a partially enlarged view of a corner portion, a stretched portion, and a jumper of the electrode of FIG.
  • FIG. 5 is a diagram showing frequency characteristics of S11 and S12 parameters of horizontally polarized waves and vertically polarized waves when a pseudo display module including a general touch panel of FIG. 10 is used.
  • FIG. 3 is a partially enlarged view of a sensor pattern of a touch panel according to a first configuration example of the present invention.
  • FIG. 6 is a diagram showing frequency characteristics of S11 and S21 parameters when a pseudo display module is formed by including the touch panel configuration of FIG. 13. A partially enlarged view of the sensor pattern of the touch panel according to the second configuration example of the present invention.
  • FIG. 5 is a diagram showing frequency characteristics of S11 and S12 parameters of horizontally polarized waves and vertically polarized waves when a pseudo display module including a general touch panel of FIG. 10 is used.
  • FIG. 3 is a partially enlarged view of a sensor pattern of a touch panel according to
  • FIG. 5 is a diagram showing frequency characteristics of S11 parameters when a pseudo display module including the touch panel configuration of FIG. 15 is used.
  • FIG. 6 is a diagram showing frequency characteristics of S11 parameters when a pseudo display module including the touch panel configuration of FIG. 17 is used.
  • FIG. 3 is a partially enlarged view of a sensor pattern of a touch panel according to a fourth configuration example of the present invention.
  • FIG. 5 is a diagram showing frequency characteristics of S11 parameters when a pseudo display module including the touch panel configuration of FIG. 19 is used.
  • FIG. 5 is a partially enlarged view of a sensor pattern of a touch panel according to a fifth configuration example of the present invention.
  • FIG. 5 is a cross-sectional explanatory view of a touch panel according to a sixth configuration example of the present invention.
  • FIG. 6 is a diagram showing frequency characteristics of S11 and S21 parameters when a pseudo display module is formed by including the touch panel configuration of FIG. 23.
  • FIG. 5 is a cross-sectional explanatory view of a touch panel according to a seventh configuration example of the present invention.
  • FIG. 2 is a schematic configuration diagram of the display module of the present invention.
  • FIG. 3 is a schematic configuration diagram of the display module of the present invention.
  • FIG. 4 is a schematic configuration diagram of the display module of the present invention. Configuration example of the electrode of the touch panel on the upper side of the transparent antenna. Configuration example of the electrode of the touch panel on the upper side of the transparent antenna.
  • 6G 6th generation mobile communication system
  • the display modules according to the present invention will be described in the order shown below.
  • 1. Electronic equipment, 2. Schematic configuration of the display module 1 of the present invention (No. 1), 2-1.
  • Sensor pattern and characteristics of the touch panel according to the first configuration example of the present invention 3-2.
  • Sensor pattern and characteristics of the touch panel according to the second configuration example of the present invention 3-3.
  • Sensor pattern and characteristics of the touch panel according to the fourth configuration example of the present invention 3-5.
  • Sensor pattern and characteristics of the touch panel according to the fifth configuration example of the present invention 3-6.
  • FIG. 1 is an overall view of the electronic device 200 mounted on the display module D of the present invention and a diagram showing the position of the transparent antenna 100.
  • FIG. 2 is a cross-sectional view taken along the A side of the electronic device 200 of FIG. Twice
  • the X direction is the horizontal direction of the electronic device 200
  • the Y direction is the vertical direction of the electronic device 200
  • the Z direction is the height direction of the electronic device 200.
  • the XYZ coordinate system will be defined and described.
  • the plan view refers to the XY plane view
  • the lateral direction (side) with respect to the vertical direction are used.
  • the X direction, the Y direction, and the Z direction represent a direction parallel to the X axis, a direction parallel to the Y axis, and a direction parallel to the Z axis, respectively.
  • the X, Y, and Z directions are orthogonal to each other.
  • the XY plane, the YZ plane, and the ZX plane represent a virtual plane parallel to the X direction and the Y direction, a virtual plane parallel to the Y direction and the Z direction, and a virtual plane parallel to the Z direction and the X direction, respectively. Twice
  • the electronic device 200 is, for example, an information processing terminal such as a smartphone, a tablet computer, or a notebook type PC (Personal Computer). Further, the electronic device 200 is not limited to these, for example, a structure such as a pillar or a wall, a digital signage, an electronic device including a display panel in a train, an electronic device including various display panels in a vehicle, and the like. It may be. Twice
  • a display module D capable of executing a display function is arranged on the entire upper surface of the electronic device 200, or at least a part of the upper surface.
  • the transparent antenna 100 of the present invention is arranged above the touch panel 230 on the display panel 220.
  • the transparent antenna 100 of the present invention is visible from the outside of the electronic device 200 through the transparent cover 240, and is transparent so that the display panel 220 can be visually recognized from the outside through the transparent antenna 100. Twice
  • the display panel 220, the touch panel 230, the transparent antenna 100, and the transparent cover 240 are collectively referred to as a display module 1 (also referred to as a display module). Twice
  • the electronic device 200 includes a housing 210, a wiring board 250, electronic components 260A, 260B, 260C, 260D, a battery 270, and the like. Twice
  • the electronic device 200 on which the transparent antenna 100 is mounted is a smartphone, but the electronic device on which the transparent antenna of the present invention is mounted includes a housing 210, a transparent cover 240, and the like. Other configurations may be used as long as the electronic device includes the display panel 220 and the display panel 220. Further, the electronic device 200 may be a device that does not have the touch panel 230. Twice
  • the housing 210 is, for example, a metal and / or resin case, and covers the lower surface side and the side surface side of the electronic device 200.
  • the housing 210 has an opening end 211 that is the upper end of the peripheral wall, and a transparent cover 240 is attached to the opening end 211.
  • the housing 210 has a storage portion 212 which is an internal space communicating with the opening end 211, and the storage portion 212 houses a wiring board 250, electronic components 260A to 260D, a battery 270, and the like. Twice
  • the transparent cover 240 which is an example of the cover glass, is a transparent glass plate provided on the uppermost surface, and has a size matched to the opening end 211 of the housing 210 in a plan view.
  • the transparent cover 240 is a glass plate having a shape in which most of the transparent cover 240 is flat and both ends in the lateral direction (+ -X direction) are gently curved downward, but the transparent cover 240 is flat in the lateral direction. It may be a glass plate.
  • the transparent cover 240 may have a shape in which both ends are gently curved downward even in the vertical direction (Y direction) of the electronic device 200.
  • the transparent cover 240 may be made of resin. Twice
  • the transparent cover 240 By attaching the transparent cover 240 to the open end 211 of the housing 210, the storage portion 212 of the housing 210 is sealed.
  • the upper surface of the transparent cover 240 is an example of the outer surface of the transparent cover 240, and the lower surface of the transparent cover 240 is an example of the inner surface of the transparent cover 240.
  • a transparent antenna 100 and a touch panel 230 are provided on the inner surface side of the transparent cover 240. Since the transparent cover 240 is transparent, the touch panel 230 and the display panel 220 provided inside can be seen from the outside of the electronic device 200 via the transparent cover 240. Twice
  • Electronic components 260A to 260C are mounted on the wiring board 250.
  • a feeding line or the like extending from the feeding region 120 (see FIG. 5) of the transparent antenna is connected to the wiring board 250.
  • the wiring board 250 and the feeding region 120 of the transparent antenna 100 may be connected by using a connector, an ACF (Anisotropic Conductive Film), or the like, or may be connected by using other components. Twice
  • the electronic component 260A is a communication module that is connected to the power feeding unit 120 of the transparent antenna 100 via the wiring of the wiring board 250 and processes a signal transmitted or received via the transparent antenna 100.
  • the central electronic component 260B is, for example, a camera. Twice
  • the electronic parts 260C and 260D are, for example, parts that perform information processing and the like related to the operation of the electronic device 200, and are, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and so on. It is realized by a computer including HDD (Hard Disk Drive), input / output interface, internal bus, etc. Twice
  • the battery 270 is a rechargeable secondary battery and supplies electric power necessary for the operation of the display module 1, the electronic components 260A to 260D, and the like. Twice
  • FIG. 3 is an exploded cross-sectional view of the display module 1. Twice
  • the display module 1 has an inner adhesive layer 281, a polarizing plate 282, and an outer adhesive layer 283 between the touch panel 230 and the transparent cover 240. ing.
  • the inner adhesive layer 281 and the outer adhesive layer 283 are composed of a transparent optical adhesive OCA (Optical Clear Adhesive). Twice
  • the transparent antenna 100 of the present embodiment is provided between the inner adhesive layer 281 and the polarizing plate 282.
  • the transparent antenna is changed to the configuration shown in FIG. 3, as shown by the dotted line arrow in FIG. , It may be provided between the touch panel 230 and the inner adhesive layer 281 or between the polarizing plate 282 and the outer adhesive layer 283. Twice
  • the touch panel 230 is a "metal thin wire layer for an on-cell touch panel".
  • "on-cell” refers to a structure in which an electrode layer is directly formed on the surface of the display panel 220, instead of attaching a touch panel formed on a substrate independent of the display panel 220.
  • the touch panel 230 formed on an independent substrate may be bonded to the display panel 220, and may be a non-on-cell touch panel fine metal wire (wiring layer). Twice
  • the display panel 220 is, for example, a liquid crystal display panel, an organic EL (Electro-luminescence), or an OLED (Organic Light Emitting Diode) display panel, and is arranged at the lowermost side of the display module 1 in any configuration. Twice
  • the transparent antenna 100 is partially provided in the display module 1, the area where the transparent antenna 100 is provided is the touch panel 230, the inner adhesive layer 281, the polarizing plate 282, and / and the outer side, as compared with the other parts.
  • the adhesive layer 283 may be thinned, or the structure may be such that the inner adhesive layer 281, the polarizing plate 282, and / and the outer adhesive layer 283 are not provided. As a result, in the display module 1, it is possible to prevent only the portion of the transparent antenna 100 from rising. Twice
  • the thickness of the transparent antenna 100 is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and particularly preferably 100 ⁇ m or less. Further, from the viewpoint of ease of handling, the thickness of the transparent antenna 100 is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more. Twice
  • the display module 1 shows an example in which both ends in the + -Y direction have a gently curved shape, but the display module D has a flat shape in which the ends do not bend. There may be.
  • the transparent antenna 100 may also have a planar shape.
  • the feeding region described later has a curved surface shape. Twice
  • the adhesive layers 281,283 and the polarizing plate 282 are layers through which electromagnetic waves are transmitted. Twice
  • FIGS. 4 to 7 show the configuration of the sensor pattern in the projected capacitive touch panel (also referred to as a touch sensor). It will be described using.
  • FIG. 4 is a schematic diagram of a sensor pattern of a general projection type capacitance type touch panel 230. Twice
  • the touch panel 230 is provided with a plurality of first electrodes 31 and a plurality of second electrodes 32 on a substrate, and a plurality of first wirings 38 and a plurality of first electrodes 38 connected to the plurality of first electrodes 31.
  • a plurality of second wirings 39 for connecting to the second electrode 32 of the above are provided. Twice
  • a plurality of electrodes 31 and 32 are arranged in a matrix, and adjacent electrodes are capacitively coupled to each other.
  • a conductive substance such as a finger approaches an electrode
  • a capacitive coupling occurs between the finger and the electrode, and a portion where the capacitive coupling value between the electrodes changes is detected as a contact position.
  • a plurality of positions on the touch panel 230 can be detected at the same time. Twice
  • the first electrode 31 and the second electrode 32 may be provided on different surfaces or on the same surface as when they are provided on different layers. Specific examples are shown below. For example, (1) a first electrode 31 is provided on one surface and a second electrode 32 is provided on the other surface with respect to one glass substrate. (2) In a structure in which glass (printed circuit board) is stacked in two layers, a first electrode 31 is provided on the upper glass substrate and a second electrode 32 is provided on the lower glass substrate. (3) A first electrode 31 is provided on one surface and a second electrode 32 is provided on the other surface of one film. (4) In a structure in which films are stacked in two layers, a first electrode 31 is provided on the upper film and a second electrode 32 is provided on the lower film.
  • the rhombic electrode portion of the first electrode 31 is provided in the same plane as the second electrode 32, and the rhombic electrodes are connected by bridge electrodes provided in different layers.
  • (1) to (4) are cases where they are provided on different surfaces or different layers, and (5) are cases where they are provided on the same layer. Twice
  • the first electrode 31 is connected in a skewer shape in the horizontal direction (X direction), and the second electrode 32 is connected in a skewer shape in the vertical direction (Y direction).
  • the contours of the first electrode 31 and the second electrode 32 are a rhombus or a square shape formed by a common first straight line L1 and a second straight line orthogonal to the first straight line. Twice
  • the adjacent sides are separated by a distance d. Twice
  • the size of the interval d may be, for example, larger than 0 and 10 mm or less, preferably 1 ⁇ m or more and 5 mm or less, more preferably 3 ⁇ m or more and 1 mm or less, and more preferably 5 ⁇ m or more and 500 ⁇ m or less. Twice
  • FIG. 5 is a diagram showing a detailed configuration of a sensor pattern of a general touch panel 230X.
  • two types of electrodes 31 and 32 are periodically arranged
  • FIG. 5 is a diagram in which a plurality of periodic structures are arranged side by side. Twice
  • FIG. 6 is an enlarged view of a grid of thin metal wires constituting the electrodes.
  • FIG. 7 is a partially enlarged view of a corner portion, an extension portion, and a jumper of the electrode of the sensor pattern of the touch panel 230X of FIG.
  • FIG. 7 is an enlarged view of the portion surrounded by the solid line ⁇ in FIG. 5, which is an enlarged view of the intersecting portion of the periodic structure. Twice
  • the electrode 31 and the electrode 32 are formed of a lattice-shaped (mesh-shaped) metal wire.
  • the electrode 31 has a contour side 311 parallel to the straight line L1 and a contour side 312 parallel to the straight line L2, a plurality of dividing lines 313 parallel to the straight line L1 direction, and a plurality of dividing lines parallel to the straight line L2 direction. It has line 314.
  • the electrode 32 has a contour side 321 parallel to the straight line L1 and a contour side 322 parallel to the straight line L2, and has a plurality of dividing lines 323 parallel to the straight line L1 direction and a plurality of dividing lines 324 parallel to the straight line L2 direction. Have. Twice
  • FIG. 6 is an enlarged view of the portion surrounded by the square ⁇ of FIG. 5, and is an enlarged view of a grid of thin metal wires constituting the electrodes.
  • the dividing lines 313 and 314, which are the metal wire wires (lines forming the lattice) constituting the mesh of the electrodes, are composed of a plurality of finer metal wire Ws.
  • the pitch between the thin metal wires W is about 34 ⁇ m
  • the thickness of the thin metal wires is about 300 nm
  • the width of the thin metal wires is about 3 ⁇ m.
  • the insides of the dividing lines 313 and 314 indicated by the thick lines in FIG. 6 are connected by a ladder-shaped thin metal line W, but the thin metal lines protruding from the region of the dividing lines 313 and 314 are interrupted in the middle. ..
  • the thin metal wire in the space (dark portion indicated by F) partitioned by the dividing lines 313 and 314 is not conductive with the dividing lines 313 and 314.
  • the substantially square portion surrounded by the inside does not conduct with the surroundings and constitutes a so-called floating conductor (float) F.
  • float floating conductor
  • the light emitting layers (light emitting elements) 25R and 25G of the lower display panel 220 are used.
  • 25B see FIG. 28
  • FIG. 6 shows an enlarged view of the dividing lines 313 and 314 of the electrode 31, the dividing lines 323 and 324 of the electrode 32 have the same configuration. Further, also in the space including the contour side 311 and the contour side 312, which are the corners of the electrode 31, and surrounded by the dividing lines 313 and 314, the inside of the partitioned space also becomes a floating conductor F. There is. The same applies to the electrode 32. Twice
  • the wiring is suitable for position detection. It is possible to operate the thin metal wire layer as a touch panel.
  • the width of the narrowest portion of the thin metal wire W of the electrode 31 and the electrode 32 is preferably 30 nm or more and 100 ⁇ m or less, preferably 50 nm or more and 50 ⁇ m or less, and more preferably 50 nm or more and 20 ⁇ m or less.
  • a conductive film having a pattern width of 10 ⁇ m or less is preferable because it is extremely difficult for the user to visually recognize it.
  • conductive nanowires may be used for the electrode 31 and the electrode 32. By dispersing the adjacent nanowires at an appropriate density so that they come into contact with each other, a two-dimensional network is formed, and the film can function as a conductive film having extremely high translucency.
  • nanowires having an average diameter of 1 nm or more and 100 nm or less, preferably 5 nm or more and 50 nm or less, and more preferably 5 nm or more and 25 nm or less can be used.
  • As the nanowires Ag nanowires, metal nanowires such as Cu nanowires and Al nanowires, carbon nanotubes, and the like can be used. Twice
  • FIG. 7 is a simulated diagram simplified within a reasonable range as an electromagnetic wave in the frequency band of interest.
  • One side of the rhombus constituting the electrodes 31 and 32 is about 4 mm.
  • the dark-colored portion and the light-colored portion are not electrically connected, and the dark-colored portions (32) and the light-colored portions (31) are short-circuited by a bridge electrode or the like so as to be electrically connected to each other. That is, the lines 311, 312, 313, 314 and the extending portions 331, 332, 333, 334 which form the electrode 31 shown in FIGS. 5 and 7 are conducting with each other.
  • the wires 321, 322, 323, 324 and the extending portions 341, 342, 343, and 344 that form the electrode 32 are conductive. Twice
  • the boundary portion between the electrode 31 and the electrode 32 which is shown by a linear blank in FIG. 7, is slits S1 and S2.
  • the distance d between the contour lines of the electrodes 31 and 32 is 30 um.
  • the floating conductor F in FIG. 6 is replaced as if it were not present. Even in this way, it has been confirmed that it is appropriate in the GHz band, which is the frequency band of 5G. Twice
  • the distance between the electrodes 31 and 32 can be shortened without changing the position of the diamond-shaped contours of the electrodes 31 and 32. Further, with such a configuration, it is possible to prevent the region of the distance d where the electrodes 31 and 32 do not exist from being visually recognized. Twice
  • the boundary portion between the stretched portion 331 of the first electrode 31 extending perpendicular to the sides 311 and 321 parallel to the straight line L1 and the stretched portion 341 of the second electrode 32 becomes the slit S1. Further, the boundary portion between the stretched portion 332 of the first electrode 31 and the stretched portion 342 of the second electrode 32 extending orthogonally to the sides 312 and 322 parallel to the straight line L2 becomes the slit S2. Twice
  • the first electrode 31 is in contact with each other due to the contact between the corner extension portions 334 which are the conductive stretched portions adjacent to each other in the X direction.
  • the two electrodes 32 are not in contact with each other in the stretched portions 343. Therefore, the wiring of the jumper 35 is formed so as to connect the corner extension portion 343 of the second electrode 32 in the Y direction.
  • the jumper 35 is provided at a portion serving as an intersection of the Y-axis and the X-axis.
  • the first electrode 31 is continuously formed in the X-axis direction by connecting the corner extension portions 333 to each other.
  • the electrode 32 is not connected in the Y-axis direction. Twice
  • FIG. 8 is an example of a cross-sectional view of the touch panel 230X.
  • the rhombic electrode portion of the first electrode 31 is provided in the same plane as the above-mentioned (5) second electrode 32, and the rhombic electrodes are connected by bridge electrodes provided in different layers. An example is shown. Twice
  • the touch panel 230X has an electrode layer 301, an insulating layer 302, a bridge layer 303, and an insulating protective layer 304.
  • the electrode layer 301 is partitioned by an insulating hole 306 to form an electrode 31 and an electrode 32.
  • the insulating hole 306 that separates the electrode 31 and the electrode 32 corresponds to the slits S1 and S2.
  • the insulating hole 306 and the insulating protective layer 304 are integrally formed. Twice
  • Through holes 305 that penetrate vertically are formed in the insulating layer 302, and the electrode layer 301 and the bridge layer 303 are conductive through the through holes 305.
  • the bridge layer 303 and the through hole 305 function as jumpers 35. Twice
  • the electrode layer 301, the bridge layer 303, and the through hole 305 are configured to contain, for example, a metal such as Ti or Al.
  • the insulating layer 302 is made of, for example, SiNx.
  • the insulating protective layer 304 and the insulating hole 306 do not have a conductor and are made of, for example, acrylic. Twice
  • the inventors of the present application measured the characteristics of the touch panel 230X shown in FIGS. 5 and 6 and the pseudo display module SD including the transparent antenna 100. Twice
  • FIG. 9 is a diagram showing an example of a pseudo display module SD including a transparent antenna.
  • a monopole antenna is used as an example of the transparent antenna 100. Twice
  • the transparent antenna 100 includes a transparent base material 101, and an antenna pattern 110 and a planar feeding portion 120 which is a wiring region are provided on the upper surface of the transparent base material 101.
  • the antenna pattern in the transparent antenna 100 of the present invention is not limited to a monopole antenna, and the antenna pattern is suitable in that the antenna thickness can be reduced if it is a type of antenna having no background on the lower surface side. be. Twice
  • the antenna pattern 110 and the planar feeding portion 120 are formed of, for example, a thin metal wire layer which is a mesh-like transparent conductor.
  • the thickness of the transparent conductor may be 1 to 40 ⁇ m.
  • the thickness of the transparent conductor is more preferably 5 ⁇ m or more, further preferably 8 ⁇ m or more.
  • the thickness of the transparent conductor is more preferably 30 ⁇ m or less, further preferably 20 ⁇ m or less, and particularly preferably 15 ⁇ m or less. Twice
  • the display panel 220 was not provided, and the layer imitating the touch panel 230X was used as the bottom layer. Twice
  • FIG. 10 is a diagram showing an example of a touch panel sensor pattern in the pseudo display module for measurement of FIG.
  • FIG. 10 is a portion surrounded by the dotted line ⁇ in FIG. 5, and in the touch panel 230X in the pseudo display module SD, the partially cut out electrodes 31 and 32 are one by one (two divided into two). ) Included, centered around the corner with the jumper 35. Twice
  • the thickness of the transparent cover 240 500
  • the thickness of the outer adhesive layer 283 150
  • the thickness of the polarizing plate 282 150
  • the thickness of the thin metal wire layers 110, 120 1
  • Thickness of transparent base material 101 75
  • Thickness of inner adhesive layer 281 150
  • Thickness of slits S1 and S2 10. Twice
  • FIG. 11 is a diagram showing the frequency characteristics of the S11 and S21 parameters of horizontally polarized waves and vertically polarized waves obtained by simulating electromagnetic waves for the pseudo display module SD of FIG.
  • the horizontal axis represents the frequency (GHz) and the vertical axis represents the parameter value (dB).
  • This value is an amount that can be actually measured by a known electromagnetic wave measuring method such as the free space method. Twice
  • the reflectance coefficient S11 indicating reflection amplification is as low as -3.45 dB. That is, in the pseudo display module SD of FIG. 9, the loss rate of electromagnetic waves from the antenna is large in the 28 GHz band. Therefore, when the touch panel 230X having the configuration shown in FIG. 8 is used in the 28 GHz band in the electronic device 200, the radio wave loss of the transparent antenna 100 in the display module 1 becomes large. Twice
  • the reflectance coefficient S11 is preferably -1 dB or more, more preferably -0.8 dB or more, further preferably -0.6 dB or more, and particularly preferably -0.4 dB or more. Twice
  • the surface resistance [ ⁇ / sq] of the good reflector (touch panel 230 in this example) calculated in this way is preferably 5 ⁇ / sq or less, more preferably 3 ⁇ / sq or less, and 1 ⁇ / sq or less. It is particularly preferable that it is sq. Twice
  • the horizontally polarized waves and the vertically polarized waves have substantially the same frequency characteristics, and there is no difference in the characteristics. Twice
  • FIG. 12 is a diagram showing a frequency band assigned to the 5th generation mobile communication system (5G) of each country. Twice
  • one frequency band is 24.2 to 29.5 GHz
  • the second frequency band is 37.3 to 40 GHz
  • the third frequency band is 1.0 to 5.0 GHz. Is. Therefore, the transparent antenna 100 of the present invention is set to resonate in one of the above three frequency bands in the 5G band. Twice
  • 24.2 to 29.5 GHz (for example, the center frequency is 28 GHz) is a band used in many countries, so it is more preferable to be able to resonate in this frequency band. be. Twice
  • the reflection coefficient is -1 dB or more at 37.3 to 40 GHz and 1.0 to 5.0 GHz, so that it is suitable for use, but 24.2 to 29.5 GHz is suitable. Since the reflection coefficient is -3.45 dB, there is little reflection and it absorbs electromagnetic waves, so it is considered unsuitable for use. Twice
  • FIG. 13 is an enlarged view of the sensor pattern of the touch panel 230 according to the first configuration example of the present invention.
  • the stretched portions 331 and 333 extending from the side 311 of the first electrode 31 and the stretched portions 341 and 343 extending from the side 321 of the second electrode 32
  • the slit SA which is the boundary portion of the above, is thinner than the slit S1.
  • the slit SB which is the boundary portion between the extending portion 332 extending from the side 312 of the first electrode 31 and the extending portion 342 extending from the side 322 of the second electrode 32, is thinner than the slit S2. Twice
  • FIG. 14 is a diagram showing the frequency characteristics of the S11 and S21 parameters when the pseudo display module includes the configuration of the touch panel 230 of FIG. 13 in the lowermost layer.
  • the thicknesses of the slits SA and SB of the touch panel 230 are set to 2 ⁇ m, and the other dimensions are the same as the dimensions of the pseudo display module SD described above. Twice
  • the peak position is shifted to the low frequency side, and the peak value of S11 is large. Therefore, in the characteristics of the pseudo display module having the configuration of the touch panel 230 of FIG. 14, the reflectance coefficient S11 is -1 dB at any frequency of 24.2 to 29.5 GHz, 37.3 to 40 GHz, and 1.0 to 5.0 GHz, and all of them. It is a band, and the relationship is that the reflection coefficient S11> the transmission coefficient S21.
  • the touch panel 230 having the present configuration on the lowermost layer in the pseudo display module has the reflection amplitude> the transmission amplitude of the electromagnetic wave, and is a good reflection plate with respect to the transparent antenna 100. Twice
  • the position of the peak can be shifted and the touch panel can be optimized so as not to interfere with the radio wave of the frequency of the antenna to be used. Twice
  • the transparent antenna 10 is provided in a part of the display module 1. Therefore, in the touch panel 230, at least the region provided in the lower layer of the antenna is preferably configured to be a “good reflector” at the frequency at which the antenna is used, as shown in FIG. Twice
  • FIG. 15 is an enlarged view of the sensor pattern of the touch panel 230A according to the second configuration example of the present invention.
  • the stretched portions 331 and 333 extending from the side 311 of the first electrode 31 and the stretched portions 341 and 343 extending from the side 321 of the second electrode 32
  • the slit SC which is the boundary portion of the above, is thicker than the slit S1.
  • the slit SD which is the boundary between the stretched portions 332 and 334 extending from the side 312 of the first electrode 31 and the stretched portions 342 and 344 extending from the side 322 of the second electrode 32, is thicker than the slit S2. .. Twice
  • FIG. 16 is a diagram showing the frequency characteristics of the S11 parameter when the pseudo display module includes the configuration of the touch panel 230A of FIG.
  • the thicknesses of the slits SC and SD of the touch panel 230A are set to 20 ⁇ m, and the other dimensions are the same as the dimensions of the pseudo display module SD described above. Twice
  • the cutting interval G shown in FIG. it is preferable that the cutting interval on the outer periphery constituting the floating conductor and the cutting interval in the slit S1 region are different. Twice
  • FIG. 17 is an enlarged view of the sensor pattern of the touch panel 230B according to the third configuration example of the present invention.
  • the length per side of the contours of the electrodes 31B and 32B is shorter than that in FIG. Comparing the size with the scale in the figure, the size per grid does not change, and while FIG. 10 is composed of nine grids per side including the invisible part, FIG. 17 Then, each side is composed of seven grids. In this way, the length of the side of the electrode is short, the periodic size is small, and the outer length of the geometric pattern is shortened, so that the position of the peak is shifted. Twice
  • FIG. 18 is a diagram showing the frequency characteristics of the S11 parameter when the pseudo display module includes the configuration of the touch panel 230B of FIG. In the waveform shown in FIG. 18, it can be seen that the peak position is shifted to the higher frequency side as compared with the graph of FIG. Twice
  • FIG. 19 is an enlarged view of the sensor pattern of the touch panel 230C according to the fourth configuration example of the present invention.
  • the length per side of the contours of the electrodes 31C and 32C is even shorter than that in FIG. Twice
  • FIG. 17 is composed of seven grids per side including the invisible part
  • FIG. 19 shows. It is composed of 5 grids per side. In this way, the peaks are further shifted to higher frequencies by further shortening the side lengths of the electrodes 31 and 32, reducing the periodic size, and shortening the outer length of the rhombus. Twice
  • FIG. 20 is a diagram showing the frequency characteristics of the S11 parameter when the pseudo display module includes the configuration of the touch panel 230C of FIG. In the waveform shown in FIG. 20, it can be seen that the peak position is shifted to the higher frequency side as compared with the graphs of FIGS. 11 and 18. Twice
  • FIG. 21 is an enlarged view of the sensor pattern of the touch panel 230D according to the fifth configuration example of the present invention.
  • the configuration shown in FIG. 21 is different from the configuration shown in FIG. 6 in that the jumper 35 is not provided.
  • the skewer shape in the vertical direction is not connected to the portion where the jumper 35 is not provided, and the connection of the second electrode 32 is in a floating state. Twice
  • FIG. 22 is a diagram showing the frequency characteristics of the parameters of S11 and S21 of vertically polarized waves and horizontally polarized waves when the pseudo display module includes the configuration of the touch panel 230D of FIG. 21.
  • the position of the peak of horizontally polarized waves is almost the same as that of the waveform of FIG. 11, but the characteristics of vertically polarized waves are changed. Twice
  • the resistance increases, and in the electrical contact between the skewer-shaped electrodes 32 of the same type that were connected via the jumper 35 on the Y axis, the contribution of capacitance rather than conductive contact Will increase and the resonance frequency will be lowered. By doing so, the peak for the polarization of the person who adjusted the jumper 35 can be adjusted. Twice
  • the conductor of the thin metal wire W constituting the mesh grid of the electrodes 31 and 32.
  • the width may be widened to the limit so as not to cover the light emitting pixels of the display panel (OLED) 220. As a result, it is possible to reduce the transparency of radio waves in the cutoff region and improve the reflection characteristics. Twice
  • the spacing between the metal wires (lattices) constituting the lattices of the electrodes 31 and 32 may be narrowed. That is, the contour sizes of the electrodes 31 and 32 are the same, and the metal wires having the same line width are made denser. With this configuration, it can be expected that the peak characteristics will change by increasing the capacitance in parallel. In the case of this configuration, it is preferable to align the openings of the grids in the display panel 220 located below with the positions of the light emitting layers 25R, 25G, and 25B, and to provide the positions of the metal wires so as not to interfere with the light emission. Is. Twice
  • the position of the reflection peak is shifted and the characteristics of the touch panel are optimized so as not to interfere with the radio wave of the frequency of the antenna to be used. can do. Twice
  • FIG. 23 is a cross-sectional explanatory view of the touch panel 230E according to the sixth configuration example of the present invention.
  • the materials of the insulating materials constituting the insulating protective layer 304E and the insulating hole 306E on the electrode layer 301 are different from the cross-sectional view of the touch panel 230 shown in FIG. Twice
  • a resin material having a dielectric constant different from that of acrylic for example, a material containing a polycarbonate resin or a fluororesin is used. It is composed. As a result, the transparency of radio waves in the cutoff area can be reduced. Twice
  • FIG. 24 is a diagram showing the frequency characteristics of the S11 and S21 parameters when the pseudo display module includes the configuration of the touch panel 230E of FIG. 23. Twice
  • the peak position is shifted to the low frequency side, and the peak value of S11 is large. Therefore, in the pseudo display module having the touch panel configuration shown in FIG. 23, the reflectance coefficient is -1 dB at any frequency of 24.2 to 29.5 GHz, 37.3 to 40 GHz, and 1.0 to 5.0 GHz. Twice
  • the touch panel 230E of the lowermost layer in the pseudo display module has the reflection amplitude> the transmission amplitude of the electromagnetic wave, and becomes a good reflection plate in all the 5G bands. Twice
  • the touch panel can be optimized so as not to shift the position of the peak and interfere with the radio wave of the frequency of the antenna to be used. Twice
  • FIG. 25 is a cross-sectional explanatory view of the touch panel 230F according to the seventh configuration example of the present invention.
  • the thickness of the electrode layer 301F is larger than that of the cross-sectional view of the touch panel 230 shown in FIG.
  • FIG. 26 is a schematic configuration diagram of the display module 2 according to the second embodiment of the present invention. Unlike FIG. 3, the display module 2 of the present embodiment is provided with an on-cell metal thin wire layer 300, which is not a touch panel 230.
  • the thin metal wire layer 300 is used for a specific purpose by creating an arbitrary pattern shape by cutting or bridging a part of the thin metal wire W as shown in FIG. Twice
  • the on-cell metal thin wire layer 300 is a thin wire layer for a non-contact touch panel (touchless touch panel) that operates a touch panel without touching the screen by, for example, ultrasonic technology, sensor technology, or the like.
  • the on-cell thin metal wire layer 300 may be wiring for other uses other than the touch panel. Twice
  • the position where the transparent antenna 100 is provided is not limited to immediately above the on-cell thin metal wire layer 300 shown in FIG. 26, and may be provided at the position indicated by the dotted arrow in FIG. 26. Twice
  • the on-cell thin metal wire layer 300 provided under the transparent antenna 100 has a reflection coefficient of electromagnetic waves> transmission amplitude at any frequency f in the 5G band with which the transparent antenna 100 communicates. It is preferable that S11 functions as a good reflecting plate having -1 dB or more. Twice
  • FIG. 27 is a schematic configuration diagram of the display module 3 according to the third embodiment of the present invention.
  • the present embodiment as shown in FIGS. 3 and 26, there is no touch panel or other thin line layer under the transparent antenna 100, and the transparent antenna 100 is provided on the display panel 220A. Twice
  • the cathode portion which is the uppermost layer (surface) of the display panel 220, has a low resistance so that the transparent antenna 100 functions as a good reflector. Twice
  • FIG. 28 is a schematic view of an OLED display panel 220 which is an example of a general display panel.
  • (a) is a cross-sectional view
  • (b) is a plan view (top view). Twice
  • the OLED display panel 220 includes a substrate 21, a backplane 22, a lower reflective electrode 23, an aperture insulating film 24, light emitting layers 25R, 25G, 25B, and a transparent electrode 26.
  • the substrate 21 is, for example, glass
  • the backplane 22 is a TFT (Thin Film Transistor).
  • the light emitting layers 25R, 25G, 25B are composed of a laminated thin film, and the lower reflective electrode 23, the aperture insulating film 24, the light emitting layer (laminated thin film) 25R, 25G, 25B, and the transparent electrode 26 are OLED elements of each color. (Organic light-emitting diode) 27R, 27G, 27B. Twice
  • the uppermost transparent electrode 26 is made of a metal such as an alloy of Al or Mg and Ag thin enough to allow light to pass through, or is made of a metal oxide such as ITO. Therefore, the resistance is high, and when the transparent antenna 100 is brought into contact with the upper portion as shown in FIG. 27, the power input to the transparent antenna 100 is consumed by the transparent electrode 26. In this case, the sheet resistance of the transparent electrode is 2 to 100 ⁇ / ⁇ . Twice
  • the pattern electrode 28 is provided above the transparent electrode 26. Twice
  • FIG. 29 is a schematic view of the OLED display panel 220A of the present invention.
  • (a) is a cross-sectional view and (b) is a plan view. Twice
  • the pattern electrode 28 is arranged in a portion other than the upper portion of the light emitting layers 25R, 25G, and 25B composed of the laminated thin film in order to reduce the resistance.
  • the pattern electrode 28 may be made of any material as long as the material and film thickness are selected so as to reduce the resistance. Specifically, Al, Ag, an alloy of Ag and Mg, Cr, Ti, Cu, It may be a metal film such as Au, ITO, SnO, ZnO, or a metal oxide film. Twice
  • FIG. 29B shows a plan view of the pattern electrode 28 when the pattern electrode 28 is formed by the mask pattern method of FIGS. 30 and 31 described later. Twice
  • the pattern electrode 28 is made of a material having a resistivity smaller than that of the transparent electrode 26, and is placed on the transparent electrode 26 by a mask pattern method or another film forming method on a portion other than the upper part of the light emitting layers 25R, 25B, 25G.
  • the transparent electrode 26 may be formed by forming a thick film on a portion other than the upper portion of the light emitting layers 25R, 25G, and 25B. Twice
  • FIG. 30 is a diagram showing a mask example of the pattern electrode of FIG. 29.
  • FIG. 30A shows the first mask M1
  • FIG. 30B shows the second mask M2.
  • FIG. 31 is a diagram showing a mask pattern method of the pattern electrode of FIG. 29 using the mask of FIG. 30. Twice
  • two different types of masks are combined to form the pattern electrode 28.
  • two masks a first mask M1 connected vertically and horizontally as shown in FIG. 30 (a) and a second mask M2 connected diagonally as shown in FIG. 30 (b), are used. Twice
  • a pattern in which the light emitting layers 25R, 25G, and 25B are left isolated in dots cannot be formed with only one mask, so that two masks cannot be formed. Is required.
  • the pattern electrode 28 can be formed on the transparent electrode 26 of the general OLED display panel 220.
  • the mask-shaped pattern electrode 28 with holes can be formed without using any other material. Twice
  • FIG. 32 is a diagram showing a method of forming a pattern electrode of FIG. 29 when a resist is used.
  • (a) shows a cross-sectional shape of a general OLED display panel 220
  • (b) shows a state in which a resist mask R is applied on (a)
  • (c) shows a pattern electrode 28. The shape of the film is shown. Twice
  • a material pattern R that repels the pattern electrode material is formed only on the light emitting layers 25R, 25G, and 25B shown in FIG. 32 (a), and then the pattern shown in FIG. 32 (c) is formed.
  • the pattern electrode 28 is formed in a portion other than the material pattern R that repels the pattern electrode material. Twice
  • a material that repels the pattern electrode that becomes the material pattern R for example, it constitutes a nucleation inhibiting coating described in US Pat. No. 10,270,033 B2 (Japanese Patent Publication No. 2018-533183). It may be a material. Alternatively, the fluorine material described in the non-patent document "Material Horizon, 2020, 7, P143-148" may be used. Twice
  • fluorine material the following fluorine-containing polymer (1) or fluorine-containing polymer (2) may be used. Twice
  • Fluorine-containing polymer (1) A fluorine-containing polymer having no aliphatic ring in the main chain and having a repeating unit derived from a fluoroolefin. Twice
  • Fluorine-containing polymer (2) A fluorine-containing polymer having an aliphatic ring in the main chain. Twice
  • fluorine-containing polymer (1) examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoro.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • tetrafluoro examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoro.
  • Ethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymer EPA
  • Ethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymer EPA
  • Ethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymer EPA
  • Ethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymer EPA
  • Ethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymer EPA
  • Ethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymer EPA
  • Ethylene / perfluoroethylene copolymer EPA
  • fluorine-containing polymer (2) examples include a cyclized polymer of perfluoro (3-butenyl vinyl ether) (manufactured by AGC: Cytop®) and tetrafluoroethylene / perfluoro (4-methoxy-1,3-).
  • Dioxol) copolymer Solvey: Argoflon (registered trademark) AD
  • tetrafluoroethylene / perfluoro (2,2-dimethyl-1,3-dioxol) copolymer Kemers: Teflon (registered trademark)) AF
  • perfluoro (4-methyl-2-methylene-1,3-dioxolane) polymer and the like can be mentioned. Twice
  • the material pattern R which is formed by the method of FIG. 32 and repels the pattern electrode formed of the fluorine material or the nucleation-inhibiting coating, remains on the light emitting layers 25R, 25G, and 25B even after the pattern electrode 28 is formed. Since these fluorine materials or nucleation-inhibiting coatings transmit light, they do not affect the display function of the lower OLED display panel 220. Twice
  • the pattern electrode 28 is formed on the uncovered portion while the light emitting layers 25R, 25G, and 25B are covered by the fluorine material or the nucleation-inhibiting coating, so that the alignment accuracy of the pattern electrode 28 is improved. Further, the thickness of the pattern electrode 28 is the same everywhere. Twice
  • the pattern electrode 28 formed on the display panel in this configuration is a low resistance film (for example, a metal film), and the display surface of the OLED display panel 220A including the low resistance film. Is a good reflector. Twice
  • the sheet resistance of the upper electrode including the pattern electrode is smaller than 2 ⁇ / ⁇ .
  • 1 ⁇ / ⁇ or less is desirable, and 0.5 ⁇ / ⁇ is even more desirable. Therefore, in the display panel 220A including the pattern electrode, in the state of the display module 3 including the transparent antenna 100 above, the reflection amplitude of the electromagnetic wave> the transmission amplitude, and the reflection coefficient S11 is -1 dB or more. Twice
  • FIG. 33 is a schematic configuration diagram of the display module 4 of the fourth embodiment of the present invention.
  • the touch panel 230 is an on-cell metal thin wire layer and is provided immediately above the display panel 220.
  • the touch panel 400 is a transparent antenna 100. It may be provided on top. Twice
  • the touch panel 400 in this case is a panel separate from the display panel 220, and is referred to as an out-cell touch panel here. Twice
  • FIG. 34 is a configuration example of the electrodes of the touch panel 400 provided on the upper side of the transparent antenna 100.
  • the touch panel 400 has a sensor pattern in which a plurality of first electrodes 41 and a plurality of second electrodes 42 are arranged in a matrix, as in FIG.
  • the touch panel is a projection type capacitance type. Twice
  • the basic configuration shown in FIG. 34 (a) is the same as the basic configuration of the touch panel provided on the lower side shown in FIG. 4, but the structures of the electrodes 41 and 42 are suitable for transmitting radio waves. It has become. Twice
  • a grid is formed only on the outside, and no grid is provided at the center.
  • a portion other than the intersection is cut off in the grid in the contour, resulting in discontinuity.
  • various combinations can be considered.
  • a discontinuous wiring as in (c) may be provided in the central portion of (b), or a part of (b) may be cut off.
  • the upper end and the lower end must be electrically connected.
  • the right end and the left end need to be electrically connected. Twice
  • FIG. 35 is another configuration example of the electrodes of the touch panel provided on the upper side of the transparent antenna.
  • the electrode 41 may have a shape that is not based on a grid, but the upper end and the lower end need to be electrically connected. Further, in the case of the electrode 42, the right end and the left end need to be electrically connected. Twice
  • the electrode 41B shown in FIG. 35 (a) has a triple frame structure in which lines that bend with respect to the connection direction with the same electrode are provided in triplicate.
  • the electrode 41C shown in FIG. 35B has a structure in which a rectangular slit is provided in the rhombus. Twice
  • the electrode 41D shown in FIG. 35 (c) is configured by a frame line having a substantially C-shaped outer shape, lacking a part of the frame portion.
  • the electrode 41E shown in FIG. 35 (d) has a curved line that meanders in a single stroke, and is configured to have a substantially quadrangular outer shape.
  • the electrode 41F shown in FIG. 35 (e) has a zigzag shape in which the lines meander in a single stroke, and is configured to have a substantially quadrangular outer shape. Twice
  • the quadrangle constituting the electrode may be made smaller.
  • the metal wires constituting the frames and wires of the electrodes 41 do not interfere with the light emission from the lower display panel 220. Provide a metal wire to avoid. Twice
  • the touch panel configured as shown in FIGS. 34 and 35 has a sparser structure with fewer metal thin lines than the configuration of FIG. 5 in which electrodes are formed on the entire surface in a quadrangular shape with grid-shaped metal fine lines. ..
  • the proportion of thin metal wires in the electrodes is less than 10%. Twice
  • the touch panel 400 including such electrodes functions as a "good transmission plate” in which the reflection amplitude of the electromagnetic wave is less than the transmission amplitude at the frequency used by the antenna. Twice
  • the conductor portion of these linear, frame-shaped, or filled-shaped electrodes is a ladder as shown in FIG. It may be formed by a thin metal wire W.
  • a conductive structure such as the electrodes 41 to 41F can be created by cutting a part of the thin metal wire.
  • the floating conductor shown as F in FIG. 6 may remain around the structure of the electrodes 41 to 41F, but this does not affect the transparency of the radio wave currently being focused on. Therefore, the floating conductor may or may not be present. Twice
  • the touch panel 400 serving as a good transmissive plate is provided on the upper side of the transparent antenna 100
  • the touch panel 400 is It may be provided on the same surface as the transparent antenna.
  • the touch panel 400 serving as a good transmissive plate may be provided above the display panel 220A serving as a good reflecting plate and below the transparent antenna 100 as shown in FIG. 26. This is because the touch panel 400 having a sparse configuration allows radio waves reflected by the display panel 220A to be transmitted and does not interfere with the touch panel 400. Twice
  • one transparent antenna of the present invention can transmit and receive, in order to further enhance the characteristics, it may be arranged in an array state (antenna array) in which a plurality of transparent antennas are collected. Twice
  • Display module 2 Display module 3
  • Display module 4 Display module 25R, 25G, 25B Light emitting layer (light emitting part) 26
  • Transparent electrode (cathode) 28
  • Pattern electrode (metal film) 31
  • First electrode 32
  • Second electrode 331, 332, 341 342 Stretched part 35
  • Jumper 38 1st wiring 39
  • 2nd wiring 41
  • 1st electrode 42 2nd electrode
  • Transparent antenna 101
  • Transparent base material 110
  • Antenna pattern (metal thin wire layer) 120 Planar feeding part (feeding area, metal thin wire layer)
  • Electronic device 210 Housing 220, 220A Display panel (OLED display panel) 230, 230A, 230B, 230C, 230D, 230E, 230F, 230G
  • Touch electrode metal thin wire layer for on-cell touch panel, on-cell metal fine wire layer
  • 240 Transparent cover (cover) Glass) 250
  • Wiring board 260A, 260B, 260C, 260D Electronic parts 270

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Electromagnetism (AREA)
  • Position Input By Displaying (AREA)

Abstract

A display module that includes an antenna capable of transmitting and receiving in a 5G band, wherein the loss of magnetic waves at a frequency used by the antenna is suppressed. A display module 1 comprises a transparent antenna 100 provided with a transparent substrate 101 and a mesh-shaped metal thin line layer 110, which has a porosity of at least 80%, on the upper side of the transparent substrate 101, and a display panel 220, wherein: the display module 1 has at least one good reflector 230 between the transparent antenna 100 and the display panel 220, or on the surface of the display panel 220; and, at a frequency used by the transparent antenna between 2 GHz < f < 50 GHz, the good reflector 230 has a magnetic wave reflection amplitude that is greater than the transmission amplitude, and a reflection coefficient S11 of at least -1dB.

Description

ディスプレイモジュールDisplay module
本発明は、透明アンテナ及びディスプレイパネルを備えるディスプレイモジュールに関する。 The present invention relates to a display module including a transparent antenna and a display panel.
近年、スマートフォン、タブレット、携帯電話、ノートパソコン等の移動式通信機器における通信技術として、第5世代移動通信システム(5G)、又は、第6世代移動通信システム(6G)等が開発されている。  In recent years, a 5th generation mobile communication system (5G), a 6th generation mobile communication system (6G), and the like have been developed as communication technologies in mobile communication devices such as smartphones, tablets, mobile phones, and laptop computers. Twice
ここで、第5世代移動通信システム(5G)とよばれるミリ波は指向性が強く、到達距離も比較的短く、金属等で遮蔽されやすいため、5G用のアンテナとして、ディスプレイ(OLED、LCD、LED)や、タッチパネル(ディスプレイ一体型金属細線パネルも含む)の上に透明アンテナを配置する技術が提案されている(例えば、特許文献1、特許文献2)。 Here, millimeter waves called the 5th generation mobile communication system (5G) have strong directivity, a relatively short reach, and are easily shielded by metal or the like. Therefore, as an antenna for 5G, a display (OLED, LCD, A technique for arranging a transparent antenna on a touch panel (including a metal wire panel with an integrated display) or a touch panel (for example, Patent Document 1 and Patent Document 2) has been proposed.
日本国特開2013-5013号公報Japanese Patent Application Laid-Open No. 2013-5013 米国2019/0058264号公報United States 2019/0058264 Gazette
しかし、アンテナをディスプレイやタッチパネルの上に配置した場合、ディスプレイやタッチパネルの抵抗が大きいと、電波を反射せずに吸収してしまい、アンテナの送受信において損失が大きくなってしまう。  However, when the antenna is arranged on the display or the touch panel, if the resistance of the display or the touch panel is large, the radio waves are absorbed without being reflected, and the loss in transmitting and receiving the antenna becomes large. Twice
そこで、本発明は、上記事情に鑑み、5G帯で送受信可能なアンテナを含み、アンテナが使用する周波数での電磁波の損失を抑制することができるディスプレイモジュールの提供を目的とする。 Therefore, in view of the above circumstances, an object of the present invention is to provide a display module including an antenna capable of transmitting and receiving in the 5G band and capable of suppressing loss of electromagnetic waves at a frequency used by the antenna.
上記課題を解決するため、本発明の一態様における、 透明基材、及び、該透明基材の上側の、開口率が80%以上であるメッシュ状の金属細線層を備えた透明アンテナと、 ディスプレイパネルと、を備えるディスプレイモジュールでは、 前記透明アンテナと前記ディスプレイパネルの間、または前記ディスプレイパネルの表面に、少なくとも一つの良反射板を有し、 前記良反射板は、2GHz<f<50GHzの間で前記透明アンテナを使用する周波数fにおいて、 電磁波の反射振幅>透過振幅となり、反射係数S11が-1dB以上である。 In order to solve the above problems, in one aspect of the present invention, a transparent base material, a transparent antenna provided with a mesh-like fine metal wire layer having an opening ratio of 80% or more on the upper side of the transparent base material, and a display. A display module comprising a panel has at least one good reflector between the transparent antenna and the display panel, or on the surface of the display panel, the good reflector between 2 GHz <f <50 GHz. At the frequency f in which the transparent antenna is used, the reflection amplitude of the electromagnetic wave> the transmission amplitude, and the reflection coefficient S11 is -1 dB or more.
一態様によれば、5G帯で送受信可能なアンテナを含むディスプレイモジュールにおいて、アンテナが使用する周波数での電磁波の損失を抑制することができる。 According to one aspect, in a display module including an antenna capable of transmitting and receiving in the 5G band, loss of electromagnetic waves at a frequency used by the antenna can be suppressed.
ディスプレイ搭載の電子機器の全体図と透明アンテナの位置を示す図。The whole view of the electronic device mounted on a display and the figure which shows the position of a transparent antenna. 図1の電子機器のAA面断面図。FIG. 1 is a cross-sectional view taken along the line AA of the electronic device of FIG. 本発明のディスプレイモジュールの概略構成(その1)。Schematic configuration of the display module of the present invention (No. 1). 投影型静電容量方式のセンサパターンの概略図。The schematic diagram of the sensor pattern of the projection type capacitance system. 一般的なタッチパネルのセンサパターンの詳細構造を示す図。The figure which shows the detailed structure of the sensor pattern of a general touch panel. センサパターンの浮遊導体の説明図。Explanatory drawing of the floating conductor of a sensor pattern. 図5の電極の角部、延伸部及びジャンパーの部分拡大図。FIG. 5 is a partially enlarged view of a corner portion, a stretched portion, and a jumper of the electrode of FIG. 一般的な投影型容量方式のタッチパネルの断面説明図。A cross-sectional explanatory view of a general projection type capacitive touch panel. 透明アンテナを含む、測定用の疑似ディスプレイモジュールの一例を示す図。The figure which shows an example of the pseudo display module for measurement including a transparent antenna. 測定に使用した疑似ディスプレイモジュールに含まれる一般的なタッチパネルを示す図。The figure which shows the general touch panel included in the pseudo display module used for measurement. 図10の一般的なタッチパネルを含んだ疑似ディスプレイモジュールにした際の、水平偏波と垂直偏波のS11、S12パラメータの周波数特性を示す図。FIG. 5 is a diagram showing frequency characteristics of S11 and S12 parameters of horizontally polarized waves and vertically polarized waves when a pseudo display module including a general touch panel of FIG. 10 is used. 5Gで使用する周波数帯の例を示す図。The figure which shows the example of the frequency band used in 5G. 本発明の第1構成例に係るタッチパネルのセンサパターンの部分拡大図。FIG. 3 is a partially enlarged view of a sensor pattern of a touch panel according to a first configuration example of the present invention. 図13のタッチパネル構成を含んで疑似ディスプレイモジュールにした際の、S11、S21パラメータの周波数特性を示す図。FIG. 6 is a diagram showing frequency characteristics of S11 and S21 parameters when a pseudo display module is formed by including the touch panel configuration of FIG. 13. 本発明の第2構成例に係るタッチパネルのセンサパターンの部分拡大図。A partially enlarged view of the sensor pattern of the touch panel according to the second configuration example of the present invention. 図15のタッチパネル構成を含んで疑似ディスプレイモジュールにした際の、S11パラメータの周波数特性を示す図。FIG. 5 is a diagram showing frequency characteristics of S11 parameters when a pseudo display module including the touch panel configuration of FIG. 15 is used. 本発明の第3構成例に係るタッチパネルのセンサパターンの部分拡大図。A partially enlarged view of a sensor pattern of a touch panel according to a third configuration example of the present invention. 図17のタッチパネル構成を含んで疑似ディスプレイモジュールにした際の、S11パラメータの周波数特性を示す図。FIG. 6 is a diagram showing frequency characteristics of S11 parameters when a pseudo display module including the touch panel configuration of FIG. 17 is used. 本発明の第4構成例に係るタッチパネルのセンサパターンの部分拡大図。FIG. 3 is a partially enlarged view of a sensor pattern of a touch panel according to a fourth configuration example of the present invention. 図19のタッチパネル構成を含んで疑似ディスプレイモジュールにした際の、S11パラメータの周波数特性を示す図。FIG. 5 is a diagram showing frequency characteristics of S11 parameters when a pseudo display module including the touch panel configuration of FIG. 19 is used. 本発明の第5構成例に係るタッチパネルのセンサパターンの部分拡大図。FIG. 5 is a partially enlarged view of a sensor pattern of a touch panel according to a fifth configuration example of the present invention. 図21のタッチパネル構成を含んで疑似ディスプレイモジュールにした際の、水平偏波と垂直偏波のS11、S21パラメータの周波数特性を示す図。It is a figure which shows the frequency characteristic of the S11, S21 parameter of the horizontally polarized wave and the vertically polarized wave when the pseudo display module is made including the touch panel configuration of FIG. 21. 本発明の第6構成例に係るタッチパネルの断面説明図。FIG. 5 is a cross-sectional explanatory view of a touch panel according to a sixth configuration example of the present invention. 図23のタッチパネル構成を含んで疑似ディスプレイモジュールにした際の、S11、S21パラメータの周波数特性を示す図。FIG. 6 is a diagram showing frequency characteristics of S11 and S21 parameters when a pseudo display module is formed by including the touch panel configuration of FIG. 23. 本発明の第7構成例に係るタッチパネルの断面説明図。FIG. 5 is a cross-sectional explanatory view of a touch panel according to a seventh configuration example of the present invention. 本発明のディスプレイモジュールの概略構成図(その2)。FIG. 2 is a schematic configuration diagram of the display module of the present invention. 本発明のディスプレイモジュールの概略構成図(その3)。FIG. 3 is a schematic configuration diagram of the display module of the present invention. 一般的なOLEDディスプレイパネルの模式図。Schematic diagram of a typical OLED display panel. 本発明のOLEDディスプレイパネルの模式図。The schematic diagram of the OLED display panel of this invention. 図29のパターン電極のマスク例を示す図。The figure which shows the mask example of the pattern electrode of FIG. 図30のマスクを用いたパターン電極のマスクパターン方法を示す図。The figure which shows the mask pattern method of the pattern electrode using the mask of FIG. レジストパターンを用いた図29のマスクパターン方法を示す図。The figure which shows the mask pattern method of FIG. 29 using a resist pattern. 本発明のディスプレイモジュールの概略構成図(その4)。FIG. 4 is a schematic configuration diagram of the display module of the present invention. 透明アンテナの上側のタッチパネルの電極の構成例。Configuration example of the electrode of the touch panel on the upper side of the transparent antenna. 透明アンテナの上側のタッチパネルの電極の構成例。Configuration example of the electrode of the touch panel on the upper side of the transparent antenna.
以下、図面を参照して本発明を実施するための形態について説明する。下記、各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。以下、本発明の透明アンテナを適用した実施の形態について説明する。  Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In each of the drawings below, the same components may be designated by the same reference numerals and duplicate description may be omitted. Hereinafter, embodiments to which the transparent antenna of the present invention is applied will be described. Twice
本発明の透明アンテナ100は、一例として、第5世代移動通信システム(5G)、又は、第6世代移動通信システム(6G)等に適用可能である。  As an example, the transparent antenna 100 of the present invention can be applied to a 5th generation mobile communication system (5G), a 6th generation mobile communication system (6G), or the like. Twice
なお、本発明に係るにディスプレイモジュールについて、下記に示す順序で説明する。1.電子機器、2.本発明のディスプレイモジュール1の概略構成(その1)、2-1.投影型静電容量方式のタッチパネルの一般的なセンサパターンと特性、3-1.本発明の第1構成例に係るタッチパネルのセンサパターンと特性、3-2.本発明の第2構成例に係るタッチパネルのセンサパターンと特性、3-3.本発明の第3構成例に係るタッチパネルのセンサパターンと特性、3-4.本発明の第4構成例に係るタッチパネルのセンサパターンと特性、3-5.本発明の第5構成例に係るタッチパネルのセンサパターンと特性、3-6.本発明のタッチパネルのセンサパターンの他の変形例、3-7.本発明の第6構成例に係るタッチパネルの断面説明図と特性、3-8.本発明の第7構成例に係るタッチパネルの断面説明図、4.本発明のディスプレイモジュール2の概略構成(その2)、5.本発明のディスプレイモジュール3の概略構成(その3)、5-1.一般的なOLEDディスプレイパネルの断面模式図、5-2.本発明の構成例に係るパターン電極を含むOLEDディスプレイパネルの断面模式図、5-3.本発明のOLEDディスプレイパネルのパターン電極のマスク成膜例、5-4.パターン電極材料をはじく材料を用いたOLEDパネル上のパターン電極成形例、6.本発明のディスプレイモジュール4の概略構成(その4)、6-1.良透過板となるタッチパネルの電極の構成例。  The display modules according to the present invention will be described in the order shown below. 1. 1. Electronic equipment, 2. Schematic configuration of the display module 1 of the present invention (No. 1), 2-1. General sensor patterns and characteristics of projected capacitive touch panels 3-1. Sensor pattern and characteristics of the touch panel according to the first configuration example of the present invention 3-2. Sensor pattern and characteristics of the touch panel according to the second configuration example of the present invention 3-3. Sensor pattern and characteristics of the touch panel according to the third configuration example of the present invention 3-4. Sensor pattern and characteristics of the touch panel according to the fourth configuration example of the present invention, 3-5. Sensor pattern and characteristics of the touch panel according to the fifth configuration example of the present invention, 3-6. Another modification of the touch panel sensor pattern of the present invention, 3-7. Sectional explanatory view and characteristics of the touch panel according to the sixth configuration example of the present invention, 3-8. 4. Cross-sectional explanatory view of the touch panel according to the seventh configuration example of the present invention. 2. The schematic configuration of the display module 2 of the present invention (No. 2), 5. Schematic configuration of the display module 3 of the present invention (No. 3), 5-1. Schematic cross-sectional view of a general OLED display panel 5-2. Schematic cross-sectional view of an OLED display panel including a pattern electrode according to a configuration example of the present invention, 5-3. Example of mask film formation of the pattern electrode of the OLED display panel of the present invention, 5-4. 6. Example of pattern electrode molding on an OLED panel using a material that repels the pattern electrode material. Schematic configuration of the display module 4 of the present invention (No. 4), 6-1. An example of the configuration of the electrodes of a touch panel that serves as a good transmissive plate. Twice
(1.ディスプレイモジュールが搭載される電子機器) 図1及び図2を用いて本発明の透明アンテナ100を含むディスプレイモジュールDが搭載される通信装置の一例である電子機器200の構成について説明する。図1は、本発明のディスプレイモジュールD搭載の電子機器200の全体図と透明アンテナ100の位置を示す図である。図2は、図1の電子機器200のA面断面図である。  (1. Electronic device on which the display module is mounted) The configuration of the electronic device 200, which is an example of the communication device on which the display module D including the transparent antenna 100 of the present invention is mounted, will be described with reference to FIGS. 1 and 2. FIG. 1 is an overall view of the electronic device 200 mounted on the display module D of the present invention and a diagram showing the position of the transparent antenna 100. FIG. 2 is a cross-sectional view taken along the A side of the electronic device 200 of FIG. Twice
図1、図2では、X方向は電子機器200の横方向、Y方向は電子機器200の縦方向、Z方向は電子機器200の高さ方向を指している。以下では、XYZ座標系を定義して説明する。また、以下では、説明の便宜上、平面視とはXY面視をいい、+Z方向側を上側、-Z方向側を下側とする上下方向と、上下方向に対する横方向(側方)とを用いて説明するが、普遍的な上下方向と横方向を表すものではない。  In FIGS. 1 and 2, the X direction is the horizontal direction of the electronic device 200, the Y direction is the vertical direction of the electronic device 200, and the Z direction is the height direction of the electronic device 200. In the following, the XYZ coordinate system will be defined and described. Further, in the following, for convenience of explanation, the plan view refers to the XY plane view, and the vertical direction in which the + Z direction side is the upper side and the −Z direction side is the lower side, and the lateral direction (side) with respect to the vertical direction are used. However, it does not represent the universal vertical and horizontal directions. Twice
また、平行、直角、直交、水平、垂直、上下、左右等の方向には、実施の形態における開示の効果を損なわない程度のずれが許容される。また、X方向、Y方向、Z方向は、それぞれ、X軸に平行な方向、Y軸に平行な方向、Z軸に平行な方向を表す。X方向とY方向とZ方向は、互いに直交する。XY平面、YZ平面、ZX平面は、それぞれ、X方向及びY方向に平行な仮想平面、Y方向及びZ方向に平行な仮想平面、Z方向及びX方向に平行な仮想平面を表す。  Further, in the directions of parallel, right angle, orthogonal, horizontal, vertical, up and down, left and right, etc., deviations to the extent that the effect of disclosure in the embodiment is not impaired are allowed. Further, the X direction, the Y direction, and the Z direction represent a direction parallel to the X axis, a direction parallel to the Y axis, and a direction parallel to the Z axis, respectively. The X, Y, and Z directions are orthogonal to each other. The XY plane, the YZ plane, and the ZX plane represent a virtual plane parallel to the X direction and the Y direction, a virtual plane parallel to the Y direction and the Z direction, and a virtual plane parallel to the Z direction and the X direction, respectively. Twice
電子機器200は、例えば、スマートフォン、タブレットコンピュータ、ノートブック型PC(Personal Computer)等の情報処理端末機である。また、電子機器200は、これらに限られず、例えば、柱や壁等の構造物、デジタルサイネージ、電車内のディスプレイパネルを含む電子機器、又は、車両の中の様々なディスプレイパネルを含む電子機器等であってもよい。  The electronic device 200 is, for example, an information processing terminal such as a smartphone, a tablet computer, or a notebook type PC (Personal Computer). Further, the electronic device 200 is not limited to these, for example, a structure such as a pillar or a wall, a digital signage, an electronic device including a display panel in a train, an electronic device including various display panels in a vehicle, and the like. It may be. Twice
図1及び図2に示すように、電子機器200の上面全体、または上面の少なくとも一部は表示機能を実行可能なディスプレイモジュールDが配置されている。そして、本発明の透明アンテナ100は、ディスプレイパネル220上のタッチパネル230の上側に配置されている。本発明の透明アンテナ100は、透明カバー240を介して電子機器200の外から見えており、透明アンテナ100を介して外側からディスプレイパネル220を視認可能なように、透明である。  As shown in FIGS. 1 and 2, a display module D capable of executing a display function is arranged on the entire upper surface of the electronic device 200, or at least a part of the upper surface. The transparent antenna 100 of the present invention is arranged above the touch panel 230 on the display panel 220. The transparent antenna 100 of the present invention is visible from the outside of the electronic device 200 through the transparent cover 240, and is transparent so that the display panel 220 can be visually recognized from the outside through the transparent antenna 100. Twice
図2を参照して、電子機器200において、ディスプレイパネル220、タッチパネル230、透明アンテナ100、及び透明カバー240を、合わせてディスプレイモジュール1(表示モジュールともいう)とする。  With reference to FIG. 2, in the electronic device 200, the display panel 220, the touch panel 230, the transparent antenna 100, and the transparent cover 240 are collectively referred to as a display module 1 (also referred to as a display module). Twice
電子機器200は、ディスプレイモジュール1の他に、筐体210、配線基板250、電子部品260A、260B、260C、260D及びバッテリー270等を含む。  In addition to the display module 1, the electronic device 200 includes a housing 210, a wiring board 250, electronic components 260A, 260B, 260C, 260D, a battery 270, and the like. Twice
図1、図2では、透明アンテナ100が搭載される電子機器200は、スマートフォンである例を示しているが、本発明の透明アンテナが搭載される電子機器は、筐体210、透明カバー240、及びディスプレイパネル220を含む電子機器であれば、他の構成であってもよい。また、電子機器200はタッチパネル230を設けない機器であってもよい。  1 and 2 show an example in which the electronic device 200 on which the transparent antenna 100 is mounted is a smartphone, but the electronic device on which the transparent antenna of the present invention is mounted includes a housing 210, a transparent cover 240, and the like. Other configurations may be used as long as the electronic device includes the display panel 220 and the display panel 220. Further, the electronic device 200 may be a device that does not have the touch panel 230. Twice
筐体210は、例えば金属製及び/又は樹脂製のケースであり、電子機器200の下面側及び側面側を覆っている。筐体210は、周壁の上端となる開口端211を有し、開口端211には、透明カバー240が取り付けられている。筐体210は、開口端211に連通する内部空間である収納部212を有し、収納部212には、配線基板250、電子部品260A~260D及びバッテリー270等が収納されている。  The housing 210 is, for example, a metal and / or resin case, and covers the lower surface side and the side surface side of the electronic device 200. The housing 210 has an opening end 211 that is the upper end of the peripheral wall, and a transparent cover 240 is attached to the opening end 211. The housing 210 has a storage portion 212 which is an internal space communicating with the opening end 211, and the storage portion 212 houses a wiring board 250, electronic components 260A to 260D, a battery 270, and the like. Twice
カバーガラスの一例である透明カバー240は、最上面に設けられる透明なガラス板であり、平面視で筐体210の開口端211に合わせられたサイズを有する。透明カバー240は、本例では、大半が平面で、横方向(+-X方向)の両端部が緩やかに下側に湾曲した形状のガラス板である例を示すが、横方向において平板状のガラス板であってもよい。あるいは、透明カバー240は、電子機器200の縦方向(Y方向)においても両端部が緩やかに下側に湾曲した形状であってもよい。ここでは、透明カバー240がガラス製である形態について説明するが、透明カバー240は、樹脂製であってもよい。  The transparent cover 240, which is an example of the cover glass, is a transparent glass plate provided on the uppermost surface, and has a size matched to the opening end 211 of the housing 210 in a plan view. In this example, the transparent cover 240 is a glass plate having a shape in which most of the transparent cover 240 is flat and both ends in the lateral direction (+ -X direction) are gently curved downward, but the transparent cover 240 is flat in the lateral direction. It may be a glass plate. Alternatively, the transparent cover 240 may have a shape in which both ends are gently curved downward even in the vertical direction (Y direction) of the electronic device 200. Here, the form in which the transparent cover 240 is made of glass will be described, but the transparent cover 240 may be made of resin. Twice
透明カバー240が筐体210の開口
端211に取り付けられることにより、筐体210の収納部212は封止される。 
By attaching the transparent cover 240 to the open end 211 of the housing 210, the storage portion 212 of the housing 210 is sealed.
透明カバー240の上面は、透明カバー240の外表面の一例であり、透明カバー240の下面は、透明カバー240の内表面の一例である。透明カバー240の内表面側には、透明アンテナ100及びタッチパネル230が設けられる。透明カバー240は透明であるため、電子機器200の外部からは、透明カバー240を介して内部に設けられるタッチパネル230及びディスプレイパネル220が見える。  The upper surface of the transparent cover 240 is an example of the outer surface of the transparent cover 240, and the lower surface of the transparent cover 240 is an example of the inner surface of the transparent cover 240. A transparent antenna 100 and a touch panel 230 are provided on the inner surface side of the transparent cover 240. Since the transparent cover 240 is transparent, the touch panel 230 and the display panel 220 provided inside can be seen from the outside of the electronic device 200 via the transparent cover 240. Twice
配線基板250には、電子部品260A~260Cが実装される。配線基板250には、透明アンテナの給電領域120(図5参照)から伸びる給電線路等が接続される。配線基板250と、透明アンテナ100の給電領域120とは、コネクタやACF(Anisotropic Conductive Film)等を用いて接続されていてもよく、その他の構成要素を用いて接続されていてもよい。  Electronic components 260A to 260C are mounted on the wiring board 250. A feeding line or the like extending from the feeding region 120 (see FIG. 5) of the transparent antenna is connected to the wiring board 250. The wiring board 250 and the feeding region 120 of the transparent antenna 100 may be connected by using a connector, an ACF (Anisotropic Conductive Film), or the like, or may be connected by using other components. Twice
電子部品260Aは、一例として、配線基板250の配線を介して透明アンテナ100の給電部120に接続されており、透明アンテナ100を介して送信又は受信する信号の処理を行う通信モジュールである。また、中央の電子部品260Bは、例えば、カメラである。  As an example, the electronic component 260A is a communication module that is connected to the power feeding unit 120 of the transparent antenna 100 via the wiring of the wiring board 250 and processes a signal transmitted or received via the transparent antenna 100. The central electronic component 260B is, for example, a camera. Twice
電子部品260C、260Dは、一例として、電子機器200の動作に関連する情報処理等を行う部品であり、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、入出力インターフェース、及び内部バス等を含むコンピュータによって実現される。  The electronic parts 260C and 260D are, for example, parts that perform information processing and the like related to the operation of the electronic device 200, and are, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and so on. It is realized by a computer including HDD (Hard Disk Drive), input / output interface, internal bus, etc. Twice
バッテリー270は、充電可能な二次電池であり、ディスプレイモジュール1、及び電子部品260A~260D等の動作に必要な電力を供給する。  The battery 270 is a rechargeable secondary battery and supplies electric power necessary for the operation of the display module 1, the electronic components 260A to 260D, and the like. Twice
(2.ディスプレイモジュールの概略構成(その1)) 次に、第1実施形態に係るディスプレイモジュール1の構成について説明する。図3は、ディスプレイモジュール1の断面分解図である。  (2. Schematic Configuration of Display Module (Part 1)) Next, the configuration of the display module 1 according to the first embodiment will be described. FIG. 3 is an exploded cross-sectional view of the display module 1. Twice
図2では記載を省略しているが、図3に示すようにディスプレイモジュール1は、タッチパネル230と透明カバー240との間に、内側接着層281、偏光板282、及び外側接着層283を有している。内側接着層281及び外側接着層283は、透明光学粘着剤OCA(Optical Clear Adhesive)で構成されている。  Although not described in FIG. 2, as shown in FIG. 3, the display module 1 has an inner adhesive layer 281, a polarizing plate 282, and an outer adhesive layer 283 between the touch panel 230 and the transparent cover 240. ing. The inner adhesive layer 281 and the outer adhesive layer 283 are composed of a transparent optical adhesive OCA (Optical Clear Adhesive). Twice
そして、本実施形態の透明アンテナ100は、内側接着層281と偏光板282の間に設けられている、なお、透明アンテナは、図3の構成に変えて、図3の点線矢印で示すように、タッチパネル230と内側接着層281の間、又は偏光板282と外側接着層283の間に、設けられていてもよい。  The transparent antenna 100 of the present embodiment is provided between the inner adhesive layer 281 and the polarizing plate 282. The transparent antenna is changed to the configuration shown in FIG. 3, as shown by the dotted line arrow in FIG. , It may be provided between the touch panel 230 and the inner adhesive layer 281 or between the polarizing plate 282 and the outer adhesive layer 283. Twice
また、タッチパネル230は「オンセルタッチパネル用金属細線層」である。ここで「オンセル」とは、ディスプレイパネル220と独立した基板上に形成したタッチパネルを貼り付けるのではなく、ディスプレイパネル220の表面上に電極層を直接形成した構造を指す。あるいは、独立した基板上に形成したタッチパネル230を、ディスプレイパネル220に接着した、オンセルではないタッチパネル用金属細線(配線層)でもよい。  Further, the touch panel 230 is a "metal thin wire layer for an on-cell touch panel". Here, "on-cell" refers to a structure in which an electrode layer is directly formed on the surface of the display panel 220, instead of attaching a touch panel formed on a substrate independent of the display panel 220. Alternatively, the touch panel 230 formed on an independent substrate may be bonded to the display panel 220, and may be a non-on-cell touch panel fine metal wire (wiring layer). Twice
ディスプレイパネル220は、例えば、液晶ディスプレイパネル、有機EL(Electro-luminescence)、又は、OLED(Organic Light Emitting Diode)ディスプレイパネルであり、いずれの構成でも、ディスプレイモジュール1の最も下側に配置される。  The display panel 220 is, for example, a liquid crystal display panel, an organic EL (Electro-luminescence), or an OLED (Organic Light Emitting Diode) display panel, and is arranged at the lowermost side of the display module 1 in any configuration. Twice
なお、ディスプレイモジュール1において、透明アンテナ100は部分的に設けられるため、透明アンテナ100が設けられる領域については、他の部分よりも、タッチパネル230、内側接着層281、偏光板282、又は/及び外側接着層283を薄くしたり、あるいは、内側接着層281、偏光板282、又は/及び外側接着層283を設けない構造にしたりしてもよい。これにより、ディスプレイモジュール1において、透明アンテナ100の部分だけ盛り上がることを防止することができる。  Since the transparent antenna 100 is partially provided in the display module 1, the area where the transparent antenna 100 is provided is the touch panel 230, the inner adhesive layer 281, the polarizing plate 282, and / and the outer side, as compared with the other parts. The adhesive layer 283 may be thinned, or the structure may be such that the inner adhesive layer 281, the polarizing plate 282, and / and the outer adhesive layer 283 are not provided. As a result, in the display module 1, it is possible to prevent only the portion of the transparent antenna 100 from rising. Twice
しかし、透明アンテナ100が厚すぎると、透明アンテナのエッジ部が視認できたり、接着層281、283との境界に空気が混入しやすくなる、という課題が生じることが分かった。透明アンテナ100の厚さは200μm以下が好ましく、150μm以下がさらに好ましく、100μm以下が特に好ましい。また、ハンドリングの容易性の観点から、透明アンテナ100の厚さは10μm以上が好ましく、50μm以上がさらに好ましい。  However, it has been found that if the transparent antenna 100 is too thick, the edge portion of the transparent antenna can be visually recognized, and air tends to be mixed in the boundary with the adhesive layers 281 and 283. The thickness of the transparent antenna 100 is preferably 200 μm or less, more preferably 150 μm or less, and particularly preferably 100 μm or less. Further, from the viewpoint of ease of handling, the thickness of the transparent antenna 100 is preferably 10 μm or more, more preferably 50 μm or more. Twice
また、図1、図2では、ディスプレイモジュール1は、+-Y方向の両端部が、緩やかに曲面の形状である例を示したが、ディスプレイモジュールDは、端部が曲がらない、平面形状であってもよい。その場合は、透明アンテナ100も、平面形状であってもよい。なお、透明アンテナ100が部分的に曲面になる場合は、後述する給電領域が曲面形状になる。  Further, in FIGS. 1 and 2, the display module 1 shows an example in which both ends in the + -Y direction have a gently curved shape, but the display module D has a flat shape in which the ends do not bend. There may be. In that case, the transparent antenna 100 may also have a planar shape. When the transparent antenna 100 has a partially curved surface, the feeding region described later has a curved surface shape. Twice
ここで、透明アンテナ100の下に設けられるタッチパネル230において、電磁波の吸収が大きい、即ち反射振幅が小さく、抵抗値が高いと、アンテナの損失性が高くなる。そこで、下記では、アンテナの損失を抑制できるタッチパネル230やディスプレイパネル220について説明する。なお、接着層281,283や、偏光板282は、電磁波が透過する層である。  Here, in the touch panel 230 provided under the transparent antenna 100, if the absorption of electromagnetic waves is large, that is, the reflection amplitude is small and the resistance value is high, the loss property of the antenna is high. Therefore, the touch panel 230 and the display panel 220 that can suppress the loss of the antenna will be described below. The adhesive layers 281,283 and the polarizing plate 282 are layers through which electromagnetic waves are transmitted. Twice
(2-1.投影型静電容量方式のタッチパネルの一般的なセンサパターンと特性) まず、投影型静電容量方式のタッチパネル(タッチセンサともいう)におけるセンサパターンの構成について図4~図7を用いて説明する。図4は、一般的な投影型静電容量方式のタッチパネル230のセンサパターンの模式図である。  (2-1. General sensor patterns and characteristics of the projected capacitance type touch panel) First, FIGS. 4 to 7 show the configuration of the sensor pattern in the projected capacitive touch panel (also referred to as a touch sensor). It will be described using. FIG. 4 is a schematic diagram of a sensor pattern of a general projection type capacitance type touch panel 230. Twice
図4を参照して、タッチパネル230は、基板上に複数の第1電極31、及び複数の第2電極32が設けられ、複数の第1電極31と接続する複数の第1配線38、及び複数の第2電極32と接続する複数の第2配線39を備えている。  With reference to FIG. 4, the touch panel 230 is provided with a plurality of first electrodes 31 and a plurality of second electrodes 32 on a substrate, and a plurality of first wirings 38 and a plurality of first electrodes 38 connected to the plurality of first electrodes 31. A plurality of second wirings 39 for connecting to the second electrode 32 of the above are provided. Twice
図4に示すように、投影型静電容量方式のタッチパネル230のセンサパターンでは、複数の電極31,32は、マトリクス状に配置されており、隣接する電極同士は容量結合している。指などの導電性物質が電極に近づくと、指と電極間との間に容量結合が発生し、電極間同士の容量結合値が、変化した部分を、接触位置として検出する。このような投影型静電容量方式では、タッチパネル230上の複数の位置を同時に検出できる。  As shown in FIG. 4, in the sensor pattern of the projection type capacitance type touch panel 230, a plurality of electrodes 31 and 32 are arranged in a matrix, and adjacent electrodes are capacitively coupled to each other. When a conductive substance such as a finger approaches an electrode, a capacitive coupling occurs between the finger and the electrode, and a portion where the capacitive coupling value between the electrodes changes is detected as a contact position. In such a projection type capacitance method, a plurality of positions on the touch panel 230 can be detected at the same time. Twice
なお、タッチパネル230において、第1電極31と第2電極32は、異なる面又は異なる層に設けられている場合と同一面に設けられている場合がある。具体例を下記に示す。例えば、(1)1つのガラス基板に対して一方の面に第1電極31、他方の面に第2電極32が設けられている。(2)ガラス(プリント基板)を2層に重ねた構造において上層のガラス基板に第1電極31、下層のガラス基板に第2電極32が設けられている。(3)1つのフィルムに対して一方の面に第1電極31、他方の面に第2電極32が設けられている。(4)フィルムを2層に重ねた構造において上層のフィルムに第1電極31、下層のフィルムに第2電極32が設けられている。(5)第2電極32と同一面内に第1電極31の菱形電極部が設けられ、菱形電極間が異なる層に設けられたブリッジ電極によって接続されている。(1)~(4)は異なる面又は異なる層に設けられている場合であり、(5)は同一層に設けられている場合である。  In the touch panel 230, the first electrode 31 and the second electrode 32 may be provided on different surfaces or on the same surface as when they are provided on different layers. Specific examples are shown below. For example, (1) a first electrode 31 is provided on one surface and a second electrode 32 is provided on the other surface with respect to one glass substrate. (2) In a structure in which glass (printed circuit board) is stacked in two layers, a first electrode 31 is provided on the upper glass substrate and a second electrode 32 is provided on the lower glass substrate. (3) A first electrode 31 is provided on one surface and a second electrode 32 is provided on the other surface of one film. (4) In a structure in which films are stacked in two layers, a first electrode 31 is provided on the upper film and a second electrode 32 is provided on the lower film. (5) The rhombic electrode portion of the first electrode 31 is provided in the same plane as the second electrode 32, and the rhombic electrodes are connected by bridge electrodes provided in different layers. (1) to (4) are cases where they are provided on different surfaces or different layers, and (5) are cases where they are provided on the same layer. Twice
図4に示すように、第1電極31は、横方向(X方向)に串状につながっており、第2電極32は、縦方向(Y方向)に串状につながっている。そして、第1電極31及び第2電極32の輪郭は、共通の第1の直線L1と、第1の直線と直交する第2の直線によって形成されたひし形、又は正方形形状である。  As shown in FIG. 4, the first electrode 31 is connected in a skewer shape in the horizontal direction (X direction), and the second electrode 32 is connected in a skewer shape in the vertical direction (Y direction). The contours of the first electrode 31 and the second electrode 32 are a rhombus or a square shape formed by a common first straight line L1 and a second straight line orthogonal to the first straight line. Twice
そして、複数の平行な直線L1と、複数の平行な直線L2を使用して四辺が構成された第1電極31と第2電極32において、隣接する辺は、距離d離れている。  Then, in the first electrode 31 and the second electrode 32 whose four sides are formed by using the plurality of parallel straight lines L1 and the plurality of parallel straight lines L2, the adjacent sides are separated by a distance d. Twice
距離dは、小さいほど電極間の隙間が視認できなくなる点では好ましいが、距離dの部分が広すぎると、電極31や電極32が存在しない領域が視認されてしまうこともありうる。しかし、距離dを小さくするほど、異なる層間での位置調整が難しく、製造工程が複雑になる。間隔dの大きさとしては、例えば0より大きく10mm以下、好ましくは1μm以上5mm以下、より好ましくは3μm以上1mm以下、より好ましくは5μm以上500μm以下などとすればよい。  The smaller the distance d, the less visible the gap between the electrodes is. However, if the distance d is too wide, the region where the electrodes 31 and 32 do not exist may be visible. However, the smaller the distance d, the more difficult it is to adjust the position between different layers, and the more complicated the manufacturing process becomes. The size of the interval d may be, for example, larger than 0 and 10 mm or less, preferably 1 μm or more and 5 mm or less, more preferably 3 μm or more and 1 mm or less, and more preferably 5 μm or more and 500 μm or less. Twice
図5は、一般的なタッチパネル230Xのセンサパターンの詳細構成を示す図である。図5では、2種類の電極31,32が周期的に配置されており、図5は、複数の周期構造が並んだ図である。  FIG. 5 is a diagram showing a detailed configuration of a sensor pattern of a general touch panel 230X. In FIG. 5, two types of electrodes 31 and 32 are periodically arranged, and FIG. 5 is a diagram in which a plurality of periodic structures are arranged side by side. Twice
図6は、電極を構成する金属細線の格子の拡大図である。図7は、図5のタッチパネル230Xのセンサパターンの電極の角部、延伸部及びジャンパーの部分拡大図である。図7は図5の実線αで囲まれた部分の拡大図であって、周期構造の、交差部分を拡大したものである。  FIG. 6 is an enlarged view of a grid of thin metal wires constituting the electrodes. FIG. 7 is a partially enlarged view of a corner portion, an extension portion, and a jumper of the electrode of the sensor pattern of the touch panel 230X of FIG. FIG. 7 is an enlarged view of the portion surrounded by the solid line α in FIG. 5, which is an enlarged view of the intersecting portion of the periodic structure. Twice
図5~図7で示すように、電極31及び電極32は、格子状(メッシュ状)の金属ワイヤーで形成されている。詳しくは、電極31は、直線L1と平行な輪郭辺311と、直線L2と平行な輪郭辺312を有し、直線L1方向と平行な複数の区切り線313、直線L2方向と平行な複数の区切り線314を有する。電極32は、直線L1と平行な輪郭辺321と、直線L2と平行な輪郭辺322を有し、直線L1方向と平行な複数の区切り線323、直線L2方向と平行な複数の区切り線324を有する。  As shown in FIGS. 5 to 7, the electrode 31 and the electrode 32 are formed of a lattice-shaped (mesh-shaped) metal wire. Specifically, the electrode 31 has a contour side 311 parallel to the straight line L1 and a contour side 312 parallel to the straight line L2, a plurality of dividing lines 313 parallel to the straight line L1 direction, and a plurality of dividing lines parallel to the straight line L2 direction. It has line 314. The electrode 32 has a contour side 321 parallel to the straight line L1 and a contour side 322 parallel to the straight line L2, and has a plurality of dividing lines 323 parallel to the straight line L1 direction and a plurality of dividing lines 324 parallel to the straight line L2 direction. Have. Twice
図6は、図5の四角γで囲まれた部分の拡大図であって、電極を構成する金属細線の格子の拡大図である。図6に示すように、電極のメッシュを構成する金属ワイヤー線(格子を構成する線)である区切り線313,314は、さらに細い複数の金属細線Wによって構成されている。ここで例えば金属細線W間のピッチは大凡34μm、金属細線の厚みは大凡300nm、金属細線の幅は大凡3μmである。これらの金属細線は、使用者から視認されない程度に細く加工されることで、格子状に加工しても、タッチパネル230Xにおける高い導電性を得ることができる。  FIG. 6 is an enlarged view of the portion surrounded by the square γ of FIG. 5, and is an enlarged view of a grid of thin metal wires constituting the electrodes. As shown in FIG. 6, the dividing lines 313 and 314, which are the metal wire wires (lines forming the lattice) constituting the mesh of the electrodes, are composed of a plurality of finer metal wire Ws. Here, for example, the pitch between the thin metal wires W is about 34 μm, the thickness of the thin metal wires is about 300 nm, and the width of the thin metal wires is about 3 μm. By processing these thin metal wires so that they are not visible to the user, high conductivity in the touch panel 230X can be obtained even if they are processed in a grid pattern. Twice
図6の太線で示す、斜線で示す区切り線313,314の内部は、梯子状の金属細線Wでつながっているが、区切り線313,314の領域から飛び出ている金属細線は途中で途切れている。区切り線313,314によって区画された空間(Fで示す濃い部分)内にある金属細線は、区切り線313,314とは、導通していない。内側に囲まれた略正方形の部分は周囲と導通しておらず、いわゆる浮遊導体(フロート)Fを構成している。この構成では、金属細線Wが途切れた、区切り線313、314側の金属細線の端部と、浮遊導体F側の金属細線の端部との間には、略一律の間隔Gが空いている。  The insides of the dividing lines 313 and 314 indicated by the thick lines in FIG. 6 are connected by a ladder-shaped thin metal line W, but the thin metal lines protruding from the region of the dividing lines 313 and 314 are interrupted in the middle. .. The thin metal wire in the space (dark portion indicated by F) partitioned by the dividing lines 313 and 314 is not conductive with the dividing lines 313 and 314. The substantially square portion surrounded by the inside does not conduct with the surroundings and constitutes a so-called floating conductor (float) F. In this configuration, there is a substantially uniform gap G between the end of the metal thin wire on the dividing line 313 and 314 side and the end of the metal thin wire on the floating conductor F side where the metal thin wire W is interrupted. .. Twice
そして、浮遊導体F内の格子状の金属細線で区画される空間、及び区切り線313、314の梯子状の線間の空間において、下層のディスプレイパネル220の発光層(発光素子)25R,25G,25B(図28参照)が露出することで、発光を妨害しないように設けられる。これにより、タッチパネル230がオンセルで設けられても、ディスプレイパネル220の高い視認性を損なわないことができる。  Then, in the space partitioned by the grid-like thin metal wires in the floating conductor F and the space between the ladder-shaped lines of the dividing lines 313 and 314, the light emitting layers (light emitting elements) 25R and 25G of the lower display panel 220 are used. By exposing 25B (see FIG. 28), it is provided so as not to interfere with light emission. As a result, even if the touch panel 230 is provided on-cell, the high visibility of the display panel 220 can be maintained. Twice
なお、図6では、電極31の区切り線313と、314の拡大図を示しているが、電極32の区切り線323と324でも同様の構成を有している。また、電極31の角部である、輪郭辺311と、輪郭辺312を含んで、区切り線313,314に囲まれる空間においても、同様に、区画された空間の内部は浮遊導体Fとなっている。電極32でも同様である。  Although FIG. 6 shows an enlarged view of the dividing lines 313 and 314 of the electrode 31, the dividing lines 323 and 324 of the electrode 32 have the same configuration. Further, also in the space including the contour side 311 and the contour side 312, which are the corners of the electrode 31, and surrounded by the dividing lines 313 and 314, the inside of the partitioned space also becomes a floating conductor F. There is. The same applies to the electrode 32. Twice
このように、金属細線の一部を切断、あるいはブリッジさせることにより、任意のパターン形状を作成することが可能であり、この細線の接続、切断を、位置検出に適した配線にすることで、金属細線層をタッチパネルとして動作させることが可能であ
る。 
In this way, it is possible to create an arbitrary pattern shape by cutting or bridging a part of the thin metal wire, and by connecting and cutting the thin metal wire, the wiring is suitable for position detection. It is possible to operate the thin metal wire layer as a touch panel.
電極31及び電極32の金属細線Wの最も細い部分の幅を、30nm以上100μm以下、好ましくは50nm以上50μm以下、より好ましくは50nm以上20μm以下とすることが好ましい。特に、10μm以下のパターン幅を有する導電膜は、使用者が視認することが極めて困難となるため好ましい。また電極31及び電極32に、導電性のナノワイヤを用いてもよい。隣接するナノワイヤ同士が接触するように、適当な密度で分散することにより、2次元的なネットワークが形成され、極めて透光性の高い導電膜として機能させることができる。例えば直径の平均値が1nm以上100nm以下、好ましくは5nm以上50nm以下、より好ましくは5nm以上25nm以下のナノワイヤを用いることができる。ナノワイヤとしては、Agナノワイヤや、Cuナノワイヤ、Alナノワイヤ等の金属ナノワイヤ、または、カーボンナノチューブなどを用いることができる。  The width of the narrowest portion of the thin metal wire W of the electrode 31 and the electrode 32 is preferably 30 nm or more and 100 μm or less, preferably 50 nm or more and 50 μm or less, and more preferably 50 nm or more and 20 μm or less. In particular, a conductive film having a pattern width of 10 μm or less is preferable because it is extremely difficult for the user to visually recognize it. Further, conductive nanowires may be used for the electrode 31 and the electrode 32. By dispersing the adjacent nanowires at an appropriate density so that they come into contact with each other, a two-dimensional network is formed, and the film can function as a conductive film having extremely high translucency. For example, nanowires having an average diameter of 1 nm or more and 100 nm or less, preferably 5 nm or more and 50 nm or less, and more preferably 5 nm or more and 25 nm or less can be used. As the nanowires, Ag nanowires, metal nanowires such as Cu nanowires and Al nanowires, carbon nanotubes, and the like can be used. Twice
また、図7は、注目する周波数帯の電磁波として妥当な範囲で簡略化した模擬図である。電極31,32を構成するひし形の一辺は4mm程度である。図中、濃い色の部分と、薄い色の部分とは、導通しておらず、濃い色(32)同士、薄い色(31)同士は導通するように、ブリッジ電極等で短絡させている。即ち、図5、図7に示す、電極31を構成する線311、312、313、314と延伸部331、332、333、334は、導通している。電極32を構成する線321、322、323、324と延伸部341、342、343、344は導通している。  Further, FIG. 7 is a simulated diagram simplified within a reasonable range as an electromagnetic wave in the frequency band of interest. One side of the rhombus constituting the electrodes 31 and 32 is about 4 mm. In the figure, the dark-colored portion and the light-colored portion are not electrically connected, and the dark-colored portions (32) and the light-colored portions (31) are short-circuited by a bridge electrode or the like so as to be electrically connected to each other. That is, the lines 311, 312, 313, 314 and the extending portions 331, 332, 333, 334 which form the electrode 31 shown in FIGS. 5 and 7 are conducting with each other. The wires 321, 322, 323, 324 and the extending portions 341, 342, 343, and 344 that form the electrode 32 are conductive. Twice
そして、図7にて線状の空白で示す、電極31と電極32の境界の部分は、スリットS1、S2となっている。例えば、電極31,32の輪郭線間の距離dは30umである。なお、図7では、例えば電極31,32のひし形内では、図6の浮遊導体Fはないものとして置き換えている。このようにしても5Gの周波数帯であるGHz帯では、妥当であることを確認している。  The boundary portion between the electrode 31 and the electrode 32, which is shown by a linear blank in FIG. 7, is slits S1 and S2. For example, the distance d between the contour lines of the electrodes 31 and 32 is 30 um. In FIG. 7, for example, in the diamonds of the electrodes 31 and 32, the floating conductor F in FIG. 6 is replaced as if it were not present. Even in this way, it has been confirmed that it is appropriate in the GHz band, which is the frequency band of 5G. Twice
また、図5、図7に示すように、電極31、32の間の間隔dにおいて対向する電極31,32の辺から延伸部(331、332、333、334)、(341、342、343、344)が伸び出している。  Further, as shown in FIGS. 5 and 7, extending portions (331, 332, 333, 334), (341, 342, 343,) from the sides of the electrodes 31, 32 facing each other at the interval d between the electrodes 31 and 32. 344) is growing. Twice
この構成により、電極31,32のひし形の輪郭の位置を変えずに、電極31,32間の距離を近づけることができる。また、このような構成とすることで、電極31や電極32が存在しない距離dの領域が視認されてしまうことを抑制できる。  With this configuration, the distance between the electrodes 31 and 32 can be shortened without changing the position of the diamond-shaped contours of the electrodes 31 and 32. Further, with such a configuration, it is possible to prevent the region of the distance d where the electrodes 31 and 32 do not exist from being visually recognized. Twice
ここで、直線L1と平行な辺311、321に対して直交して伸び出す第1電極31の延伸部331と、第2電極32の延伸部341との境界部分が、スリットS1となる。また、直線L2と平行な辺312、322に対して直交して伸び出す第1電極31の延伸部332と、第2電極32の延伸部342の境界部分が、スリットS2となる。  Here, the boundary portion between the stretched portion 331 of the first electrode 31 extending perpendicular to the sides 311 and 321 parallel to the straight line L1 and the stretched portion 341 of the second electrode 32 becomes the slit S1. Further, the boundary portion between the stretched portion 332 of the first electrode 31 and the stretched portion 342 of the second electrode 32 extending orthogonally to the sides 312 and 322 parallel to the straight line L2 becomes the slit S2. Twice
図5、図7に示すように、交差部において、第1電極31は、X方向で隣り合う導電延伸部である角部延伸部334同士が接触することで隣同士接触しているが、第2電極32は、延伸部343同士は接触していない。そのため、第2電極32の角部延伸部343をY方向で連結すべく、ジャンパー35の配線が形成されている。なお、ジャンパー35は、Y軸とX軸の交点となる部分に設けられている。一方、軸同士の交点とならない延伸部333、344(図5参照)の交差部では、角部延伸部333が互いに接続することで第1電極31がX軸方向に連続的に形成されているが、ジャンパーが設けられていないため電極32はY軸方向には接続されていない。  As shown in FIGS. 5 and 7, at the intersection, the first electrode 31 is in contact with each other due to the contact between the corner extension portions 334 which are the conductive stretched portions adjacent to each other in the X direction. The two electrodes 32 are not in contact with each other in the stretched portions 343. Therefore, the wiring of the jumper 35 is formed so as to connect the corner extension portion 343 of the second electrode 32 in the Y direction. The jumper 35 is provided at a portion serving as an intersection of the Y-axis and the X-axis. On the other hand, at the intersection of the extension portions 333 and 344 (see FIG. 5) which do not intersect the axes, the first electrode 31 is continuously formed in the X-axis direction by connecting the corner extension portions 333 to each other. However, since the jumper is not provided, the electrode 32 is not connected in the Y-axis direction. Twice
図8は、タッチパネル230Xの断面図の一例である。図8では、上述の(5)第2電極32と同一面内に第1電極31の菱形電極部が設けられ、菱形電極間が異なる層に設けられたブリッジ電極によって接続されている場合の構成例を示している。  FIG. 8 is an example of a cross-sectional view of the touch panel 230X. In FIG. 8, the rhombic electrode portion of the first electrode 31 is provided in the same plane as the above-mentioned (5) second electrode 32, and the rhombic electrodes are connected by bridge electrodes provided in different layers. An example is shown. Twice
図8の例では、タッチパネル230Xは、電極層301、絶縁層302、ブリッジ層303、絶縁保護層304を有している。電極層301は、絶縁ホール306によって区画されて、電極31と電極32を構成している。本例では、電極31と電極32を分ける絶縁ホール306が、スリットS1、S2に相当する。絶縁ホール306と、絶縁保護層304は一体的に形成されている。  In the example of FIG. 8, the touch panel 230X has an electrode layer 301, an insulating layer 302, a bridge layer 303, and an insulating protective layer 304. The electrode layer 301 is partitioned by an insulating hole 306 to form an electrode 31 and an electrode 32. In this example, the insulating hole 306 that separates the electrode 31 and the electrode 32 corresponds to the slits S1 and S2. The insulating hole 306 and the insulating protective layer 304 are integrally formed. Twice
絶縁層302には上下に貫通するスルーホール305が形成され、スルーホール305を介して、電極層301と、ブリッジ層303とが導電している。ブリッジ層303及びスルーホール305が、ジャンパー35として機能する。  Through holes 305 that penetrate vertically are formed in the insulating layer 302, and the electrode layer 301 and the bridge layer 303 are conductive through the through holes 305. The bridge layer 303 and the through hole 305 function as jumpers 35. Twice
電極層301、ブリッジ層303、及びスルーホール305は、例えば、Ti、Al等の金属を含んで構成されている。絶縁層302は、例えば、SiNxで構成されている。絶縁保護層304及び絶縁ホール306は、導体を有しておらず、例えばアクリルで構成されている。  The electrode layer 301, the bridge layer 303, and the through hole 305 are configured to contain, for example, a metal such as Ti or Al. The insulating layer 302 is made of, for example, SiNx. The insulating protective layer 304 and the insulating hole 306 do not have a conductor and are made of, for example, acrylic. Twice
ここで、本願の発明者らは、図5、図6に示すタッチパネル230Xと、透明アンテナ100を含む疑似ディスプレイモジュールSDについて、特性を測定した。  Here, the inventors of the present application measured the characteristics of the touch panel 230X shown in FIGS. 5 and 6 and the pseudo display module SD including the transparent antenna 100. Twice
図9は、透明アンテナを含む疑似ディスプレイモジュールSDの一例を示す図である。本発明では、透明アンテナ100の一例として、モノポールアンテナを用いた。  FIG. 9 is a diagram showing an example of a pseudo display module SD including a transparent antenna. In the present invention, a monopole antenna is used as an example of the transparent antenna 100. Twice
透明アンテナ100は、透明基材101を備え、透明基材101の上面上に、アンテナパターン110と、配線領域である面状給電部120が設けられている。本発明の透明アンテナ100におけるアンテナパターンは、モノポールアンテナに限られず、アンテナパターンは、下面側にバックグラウンドを有さない種類のアンテナであるとアンテナ厚みを薄くすることができる点で、好適である。  The transparent antenna 100 includes a transparent base material 101, and an antenna pattern 110 and a planar feeding portion 120 which is a wiring region are provided on the upper surface of the transparent base material 101. The antenna pattern in the transparent antenna 100 of the present invention is not limited to a monopole antenna, and the antenna pattern is suitable in that the antenna thickness can be reduced if it is a type of antenna having no background on the lower surface side. be. Twice
アンテナパターン110及び面状給電部120は、例えば、メッシュ状の透明導体である金属細線層によって形成されている。透明導体がメッシュ状に形成される場合、透明導体の厚さは、1~40μmであってよい。透明導体がメッシュ状に形成されることにより、透明導体30が厚くても、可視光透過率を高くできる。透明導体の厚さは、5μm以上がより好ましく、8μm以上がさらに好ましい。また、透明導体の厚さは、30μm以下がより好ましく、20μm以下がさらに好ましく、15μm以下が特に好ましい。  The antenna pattern 110 and the planar feeding portion 120 are formed of, for example, a thin metal wire layer which is a mesh-like transparent conductor. When the transparent conductor is formed in a mesh shape, the thickness of the transparent conductor may be 1 to 40 μm. By forming the transparent conductor in a mesh shape, the visible light transmittance can be increased even if the transparent conductor 30 is thick. The thickness of the transparent conductor is more preferably 5 μm or more, further preferably 8 μm or more. The thickness of the transparent conductor is more preferably 30 μm or less, further preferably 20 μm or less, and particularly preferably 15 μm or less. Twice
なお、測定に用いた疑似ディスプレイモジュールSDでは、ディスプレイパネル220は設けず、タッチパネル230Xを模した層を最下層とした。  In the pseudo display module SD used for the measurement, the display panel 220 was not provided, and the layer imitating the touch panel 230X was used as the bottom layer. Twice
図10は、図9の測定用の疑似ディスプレイモジュール内の、タッチパネルのセンサパターン例を示す図である。図10は、図5の点線βで囲む部分であって、疑似ディスプレイモジュールSD内の、タッチパネル230Xは、部分的に切り出された電極31、電極32が、1つずつ(2分割された2つ)含まれており、ジャンパー35を有する角部を中心としている。  FIG. 10 is a diagram showing an example of a touch panel sensor pattern in the pseudo display module for measurement of FIG. FIG. 10 is a portion surrounded by the dotted line β in FIG. 5, and in the touch panel 230X in the pseudo display module SD, the partially cut out electrodes 31 and 32 are one by one (two divided into two). ) Included, centered around the corner with the jumper 35. Twice
本測定において、図9に示す透明アンテナ100を含む疑似ディスプレイモジュールSDの、透明アンテナ100の各部の寸法が、単位をmmとすると、 L110:1.4 L120:6 X101:8 Y101:8 アンテナの幅:0.2 コプレーナウェーブガイドの信号線幅:0.2 コプレーナウェーブガイドのグランド幅:0.24 である。  In this measurement, assuming that the dimensions of each part of the transparent antenna 100 of the pseudo display module SD including the transparent antenna 100 shown in FIG. 9 are mm, the L110: 1.4 L120: 6 X101: 8 Y101: 8 antenna Width: 0.2 Coplanar waveguide signal line width: 0.2 Coplanar waveguide ground width: 0.24. Twice
また、図9に示す層の各部の厚みは、単位をμmとすると、 透明カバー240の厚み:500 外側接着層283の厚み:150 偏光板282の厚み:150 金属細線層110、120の厚み:1 透明基材101の厚み:75 内側接着層281の厚み:150 スリットS1,S2の太さ:10 である。  Assuming that the unit of the thickness of each part of the layer shown in FIG. 9 is μm, the thickness of the transparent cover 240: 500, the thickness of the outer adhesive layer 283: 150, the thickness of the polarizing plate 282: 150, the thickness of the thin metal wire layers 110, 120: 1 Thickness of transparent base material 101: 75 Thickness of inner adhesive layer 281: 150 Thickness of slits S1 and S2: 10. Twice
図11は、図9の疑似ディスプレイモジュールSDについて、電磁波のシミュレーションにより得られた、水平偏波及び垂直偏波のS11、S21パラメータの周波数特性を示す図である。図11において、横軸は周波数(GHz)、縦軸は、パラメータの値(dB)を示す。この値は、例えばフリースペース法などの公知の電磁波測定方法にて、実測できる量である。  FIG. 11 is a diagram showing the frequency characteristics of the S11 and S21 parameters of horizontally polarized waves and vertically polarized waves obtained by simulating electromagnetic waves for the pseudo display module SD of FIG. In FIG. 11, the horizontal axis represents the frequency (GHz) and the vertical axis represents the parameter value (dB). This value is an amount that can be actually measured by a known electromagnetic wave measuring method such as the free space method. Twice
図11に示すように、28GHzでは、反射増幅を示す反射係数S11が、-3.45dBと低い。即ち、図9の疑似ディスプレイモジュールSDにおいて、28GHz帯では、アンテナからの電磁波の損失率が大きい。そのため、図8の構成のタッチパネル230Xを電子機器200において、28GHz帯に使用すると、ディスプレイモジュール1における透明アンテナ100の電波損失が大きくなってしまう。  As shown in FIG. 11, at 28 GHz, the reflectance coefficient S11 indicating reflection amplification is as low as -3.45 dB. That is, in the pseudo display module SD of FIG. 9, the loss rate of electromagnetic waves from the antenna is large in the 28 GHz band. Therefore, when the touch panel 230X having the configuration shown in FIG. 8 is used in the 28 GHz band in the electronic device 200, the radio wave loss of the transparent antenna 100 in the display module 1 becomes large. Twice
反射係数S11は、-1dB以上が好ましく、-0.8dB以上がより好ましく、-0.6dB以上がさらに好ましく、-0.4dB以上が特に好ましい。  The reflectance coefficient S11 is preferably -1 dB or more, more preferably -0.8 dB or more, further preferably -0.6 dB or more, and particularly preferably -0.4 dB or more. Twice
また、一般的に、導体板の面抵抗[Ω/sq]と反射係数に対しては、いわゆるシェルクノフの式を用いたり、板厚内の干渉が無視できない場合は転送行列法を用いたりすることによって、相関があることを示すことができる。このように計算された、良反射板(本例ではタッチパネル230)の面抵抗[Ω/sq]は、5Ω/sq以下であることが好ましく、3Ω/sq以下であることがより好ましく、1Ω/sqであることが特に好ましい。  In general, for the surface resistance [Ω / sq] and reflectance coefficient of the conductor plate, the so-called Shelknov's equation should be used, or if the interference within the plate thickness cannot be ignored, the transfer matrix method should be used. Can be shown to be correlated. The surface resistance [Ω / sq] of the good reflector (touch panel 230 in this example) calculated in this way is preferably 5Ω / sq or less, more preferably 3Ω / sq or less, and 1Ω / sq or less. It is particularly preferable that it is sq. Twice
また、図11に示すように、S11とS21において、水平偏波と垂直偏波は、ほぼ同じ周波数特性であり、特性に差がない。  Further, as shown in FIG. 11, in S11 and S21, the horizontally polarized waves and the vertically polarized waves have substantially the same frequency characteristics, and there is no difference in the characteristics. Twice
そこで、注目する周波数帯域で、S11をあげるように調整する手法について、下記、説明する。  Therefore, a method of adjusting so as to raise S11 in the frequency band of interest will be described below. Twice
<5Gの周波数帯域と本発明の透明アンテナの動作帯域例> 図12は、各国の第5世代移動通信システム(5G)に割り当てられた周波数帯を示す図である。  <Example of 5G frequency band and operating band of the transparent antenna of the present invention> FIG. 12 is a diagram showing a frequency band assigned to the 5th generation mobile communication system (5G) of each country. Twice
図12に示すように、5G帯において、1つの周波数帯は、24.2~29.5GHzであり、2つ目の周波数帯は、37.3~40GHzであり、3つ目の周波数帯は、1.0~5.0GHzである。そのため、本発明の透明アンテナ100は、5G帯において、上記の3つの周波数帯域のうちの1つで共振するように設定される。  As shown in FIG. 12, in the 5G band, one frequency band is 24.2 to 29.5 GHz, the second frequency band is 37.3 to 40 GHz, and the third frequency band is 1.0 to 5.0 GHz. Is. Therefore, the transparent antenna 100 of the present invention is set to resonate in one of the above three frequency bands in the 5G band. Twice
また、図12に示すように、特に、24.2~29.5GHz(例えば、中心周波数を28GHzとする)は、多くの国で使用される帯域であるため、この周波数帯で共振できると、より好適である。  Further, as shown in FIG. 12, in particular, 24.2 to 29.5 GHz (for example, the center frequency is 28 GHz) is a band used in many countries, so it is more preferable to be able to resonate in this frequency band. be. Twice
例えば、図9の構成の疑似ディスプレイモジュールSDでは、図11に示すように37.3~40GHz、及び1.0~5.0GHzでは、反射係数が-1dB以上であるため、使用に適するが、24.2~29.5GHzは、反射係数が、-3.45dBであるため、反射が少なく電磁波を吸収してしまうため、使用に適しないと考えられる。  For example, in the pseudo display module SD having the configuration shown in FIG. 9, as shown in FIG. 11, the reflection coefficient is -1 dB or more at 37.3 to 40 GHz and 1.0 to 5.0 GHz, so that it is suitable for use, but 24.2 to 29.5 GHz is suitable. Since the reflection coefficient is -3.45 dB, there is little reflection and it absorbs electromagnetic waves, so it is considered unsuitable for use. Twice
(3-1.本発明の第1構成例に係るタッチパネルのセンサパターンと特性) 図13は、本発明の第1構成例に係るタッチパネル230のセンサパターンの拡大図である。図13に示す構成では、図6に示す構成と比較して、第1電極31の辺311から伸び出す延伸部331,333と、第2電極32の辺321から伸び出す延伸部341,343との境界部分であるスリットSAが、スリットS1よりも細い。同様に、第1電極31の辺312から伸び出す延伸部332と、第2電極32の辺322から伸び出す延伸部342との境界部分であるスリットSBが、スリットS2よりも細い。  (3-1. Sensor pattern and characteristics of the touch panel according to the first configuration example of the present invention) FIG. 13 is an enlarged view of the sensor pattern of the touch panel 230 according to the first configuration example of the present invention. In the configuration shown in FIG. 13, as compared with the configuration shown in FIG. 6, the stretched portions 331 and 333 extending from the side 311 of the first electrode 31 and the stretched portions 341 and 343 extending from the side 321 of the second electrode 32 The slit SA, which is the boundary portion of the above, is thinner than the slit S1. Similarly, the slit SB, which is the boundary portion between the extending portion 332 extending from the side 312 of the first electrode 31 and the extending portion 342 extending from the side 322 of the second electrode 32, is thinner than the slit S2. Twice
このようにスリットSA、SBを細くすることで、横電極である第1電極31と、縦電極である第2電極32との、実質的な間隔が狭くなり、並列の容量性を上げることでピーク特性を変化させることが期待できる。  By thinning the slits SA and SB in this way, the substantial distance between the first electrode 31 which is the horizontal electrode and the second electrode 32 which is the vertical electrode is narrowed, and the capacitance in parallel is increased. It can be expected to change the peak characteristics. Twice
図14は、図13のタッチパネル230の構成を最下層に含んだ、疑似ディスプレイモジュールにした際の、S11、S21パラメータの周波数特性を示す図である。本測定では、タッチパネル230のスリットSA、SBの太さは2μmに設定し、他の寸法は、上述の疑似ディスプレイモジュールSDの寸法と同様である。  FIG. 14 is a diagram showing the frequency characteristics of the S11 and S21 parameters when the pseudo display module includes the configuration of the touch panel 230 of FIG. 13 in the lowermost layer. In this measurement, the thicknesses of the slits SA and SB of the touch panel 230 are set to 2 μm, and the other dimensions are the same as the dimensions of the pseudo display module SD described above. Twice
図14のグラフと、図11のグラフとを比較するとピークの位置が低域側にシフトして、かつS11のピーク値が大きくなっている。そのため、図14のタッチパネル230の構成を有する疑似ディスプレイモジュールの特性において、24.2~29.5GHz、37.3~40GHz、1.0~5.0GHzのいずれの周波数に
おいても、反射係数S11は-1dBであって、全ての帯域であって、反射係数S11>透過係数S21の関係となっている。 
Comparing the graph of FIG. 14 with the graph of FIG. 11, the peak position is shifted to the low frequency side, and the peak value of S11 is large. Therefore, in the characteristics of the pseudo display module having the configuration of the touch panel 230 of FIG. 14, the reflectance coefficient S11 is -1 dB at any frequency of 24.2 to 29.5 GHz, 37.3 to 40 GHz, and 1.0 to 5.0 GHz, and all of them. It is a band, and the relationship is that the reflection coefficient S11> the transmission coefficient S21.
このため、疑似ディスプレイモジュールにおける、最下層の本構成のタッチパネル230は、電磁波の反射振幅>透過振幅となり、透明アンテナ100に対して良反射板となる。  Therefore, the touch panel 230 having the present configuration on the lowermost layer in the pseudo display module has the reflection amplitude> the transmission amplitude of the electromagnetic wave, and is a good reflection plate with respect to the transparent antenna 100. Twice
このように、タッチパネルのセンサパターンにおけるスリットの太さを変更することで、ピークの位置をずらし、タッチパネルにおいて、使用するアンテナの周波数の電波を妨害しないように、最適化することができる。  In this way, by changing the thickness of the slit in the sensor pattern of the touch panel, the position of the peak can be shifted and the touch panel can be optimized so as not to interfere with the radio wave of the frequency of the antenna to be used. Twice
なお、図1、図2に示したように、透明アンテナ10は、ディスプレイモジュール1の一部に設けられている。そのため、タッチパネル230において、少なくともアンテナの下層に設けられる領域については、図14に示すように、アンテナを使用する周波数において、「良反射板」となる構成であると好適である。  As shown in FIGS. 1 and 2, the transparent antenna 10 is provided in a part of the display module 1. Therefore, in the touch panel 230, at least the region provided in the lower layer of the antenna is preferably configured to be a “good reflector” at the frequency at which the antenna is used, as shown in FIG. Twice
(3-2.本発明の第2構成例に係るタッチパネルのセンサパターンと特性) 図15は、本発明の第2構成例に係るタッチパネル230Aのセンサパターンの拡大図である。図15に示す構成では、図6に示す構成と比較して、第1電極31の辺311から伸び出す延伸部331,333と、第2電極32の辺321から伸び出す延伸部341,343との境界部分であるスリットSCが、スリットS1よりも太い。同様に、第1電極31の辺312から伸び出す延伸部332,334と、第2電極32の辺322から伸び出す延伸部342,344との境界部分であるスリットSDが、スリットS2よりも太い。  (3-2. Sensor pattern and characteristics of the touch panel according to the second configuration example of the present invention) FIG. 15 is an enlarged view of the sensor pattern of the touch panel 230A according to the second configuration example of the present invention. In the configuration shown in FIG. 15, as compared with the configuration shown in FIG. 6, the stretched portions 331 and 333 extending from the side 311 of the first electrode 31 and the stretched portions 341 and 343 extending from the side 321 of the second electrode 32 The slit SC, which is the boundary portion of the above, is thicker than the slit S1. Similarly, the slit SD, which is the boundary between the stretched portions 332 and 334 extending from the side 312 of the first electrode 31 and the stretched portions 342 and 344 extending from the side 322 of the second electrode 32, is thicker than the slit S2. .. Twice
このようにスリットSC,SDを太くすることで、横電極である第1電極31と、縦電極である第2電極32との、実質的な間隔が広くなって、並列の容量性を下げ、ピーク特性が変化することが期待できる。  By making the slits SC and SD thicker in this way, the substantial distance between the first electrode 31 which is the horizontal electrode and the second electrode 32 which is the vertical electrode becomes wider, and the capacitance in parallel is lowered. It can be expected that the peak characteristics will change. Twice
図16は、図15のタッチパネル230Aの構成を含んで疑似ディスプレイモジュールにした際の、S11パラメータの周波数特性を示す図である。本測定では、タッチパネル230AのスリットSC、SDの太さは、20μmに設定し、他の寸法は、上述の疑似ディスプレイモジュールSDの寸法と同様である。  FIG. 16 is a diagram showing the frequency characteristics of the S11 parameter when the pseudo display module includes the configuration of the touch panel 230A of FIG. In this measurement, the thicknesses of the slits SC and SD of the touch panel 230A are set to 20 μm, and the other dimensions are the same as the dimensions of the pseudo display module SD described above. Twice
図16に示す波形では、図11のグラフと比較して、ピークの位置が高域側にシフトしていることがわかる。  In the waveform shown in FIG. 16, it can be seen that the peak position is shifted to the high frequency side as compared with the graph of FIG. Twice
ここで、実際のオンセル金属細線層でのスリット間隔を調整する方法としては、図6に示す切断間隔Gを変化させることで達成される。例えば、浮遊導体を構成する外周における切断間隔と、スリットS1領域における切断間隔とが異なっていることが好ましい。  Here, as a method of adjusting the slit interval in the actual on-cell metal thin wire layer, it is achieved by changing the cutting interval G shown in FIG. For example, it is preferable that the cutting interval on the outer periphery constituting the floating conductor and the cutting interval in the slit S1 region are different. Twice
(3-3.本発明の第3構成例に係るタッチパネルのセンサパターンと特性)図17は、本発明の第3構成例に係るタッチパネル230Bのセンサパターンの拡大図である。本構成例では、電極31B,32Bの輪郭の一辺当たりの長さが、図11よりも短い。また図中のスケールとの大きさを比較すると、格子1つあたりの大きさは変わらず、図10は、見えない部分も含めて1辺あたり9つの格子で構成されるのに対し、図17では、1辺あたり、7つの格子で構成される。このように、電極の辺の長さが短く、周期サイズが小さく、幾何学模様の外形長を短くすることで、ピークの位置をずらす。  (3-3. Sensor pattern and characteristics of the touch panel according to the third configuration example of the present invention) FIG. 17 is an enlarged view of the sensor pattern of the touch panel 230B according to the third configuration example of the present invention. In this configuration example, the length per side of the contours of the electrodes 31B and 32B is shorter than that in FIG. Comparing the size with the scale in the figure, the size per grid does not change, and while FIG. 10 is composed of nine grids per side including the invisible part, FIG. 17 Then, each side is composed of seven grids. In this way, the length of the side of the electrode is short, the periodic size is small, and the outer length of the geometric pattern is shortened, so that the position of the peak is shifted. Twice
図18は、図17のタッチパネル230Bの構成を含んで疑似ディスプレイモジュールにした際の、S11パラメータの周波数特性を示す図である。図18に示す波形では、図10のグラフと比較して、ピークの位置が高い周波数側にシフトしていることがわかる。  FIG. 18 is a diagram showing the frequency characteristics of the S11 parameter when the pseudo display module includes the configuration of the touch panel 230B of FIG. In the waveform shown in FIG. 18, it can be seen that the peak position is shifted to the higher frequency side as compared with the graph of FIG. Twice
(3-4.本発明の第4構成例に係るタッチパネルのセンサパターンと特性) 図19は、本発明の第4構成例に係るタッチパネル230Cのセンサパターンの拡大図である。本構成例では、電極31C,32Cの輪郭の一辺当たりの長さが、図17よりもさらに短い。  (3-4. Sensor pattern and characteristics of the touch panel according to the fourth configuration example of the present invention) FIG. 19 is an enlarged view of the sensor pattern of the touch panel 230C according to the fourth configuration example of the present invention. In this configuration example, the length per side of the contours of the electrodes 31C and 32C is even shorter than that in FIG. Twice
図中のスケールとの大きさを比較すると、格子1つあたりの大きさは変わらず、図17は、見えない部分も含めて1辺あたり7つの格子で構成されるのに対し、図19では、1辺あたり5つの格子で構成される。このように、電極31,32の辺の長さをさらに短く、周期サイズを小さく、ひし形の外形長を短くすることで、ピークをさらに高域へずらす。  Comparing the size with the scale in the figure, the size per grid does not change, and while FIG. 17 is composed of seven grids per side including the invisible part, FIG. 19 shows. It is composed of 5 grids per side. In this way, the peaks are further shifted to higher frequencies by further shortening the side lengths of the electrodes 31 and 32, reducing the periodic size, and shortening the outer length of the rhombus. Twice
図20は、図19のタッチパネル230Cの構成を含んで疑似ディスプレイモジュールにした際の、S11パラメータの周波数特性を示す図である。図20に示す波形では、図11及び図18のグラフと比較して、ピークの位置が高い周波数側にシフトしていることがわかる。  FIG. 20 is a diagram showing the frequency characteristics of the S11 parameter when the pseudo display module includes the configuration of the touch panel 230C of FIG. In the waveform shown in FIG. 20, it can be seen that the peak position is shifted to the higher frequency side as compared with the graphs of FIGS. 11 and 18. Twice
(3-5.本発明の第5構成例に係るタッチパネルのセンサパターンと特性) 図21は、本発明の第5構成例に係るタッチパネル230Dのセンサパターンの拡大図である。図21に示す構成では、図6に示す構成と比較してジャンパー35が設けられていない点が異なる。これにより、ジャンパー35が設けられていない部分は、縦方向の串形状が接続せず、第2電極32の連結が浮き状態になる。  (3-5. Sensor pattern and characteristics of the touch panel according to the fifth configuration example of the present invention) FIG. 21 is an enlarged view of the sensor pattern of the touch panel 230D according to the fifth configuration example of the present invention. The configuration shown in FIG. 21 is different from the configuration shown in FIG. 6 in that the jumper 35 is not provided. As a result, the skewer shape in the vertical direction is not connected to the portion where the jumper 35 is not provided, and the connection of the second electrode 32 is in a floating state. Twice
図22は、図21のタッチパネル230Dの構成を含んで疑似ディスプレイモジュールにした際の、垂直偏波及び水平偏波のS11、S21のパラメータの周波数特性を示す図である。図22に示す波形では、図11の波形と比較して、水平偏波のピークの位置はほとんど変わらないが、垂直偏波の特性が変わる。  FIG. 22 is a diagram showing the frequency characteristics of the parameters of S11 and S21 of vertically polarized waves and horizontally polarized waves when the pseudo display module includes the configuration of the touch panel 230D of FIG. 21. In the waveform shown in FIG. 22, the position of the peak of horizontally polarized waves is almost the same as that of the waveform of FIG. 11, but the characteristics of vertically polarized waves are changed. Twice
詳しくは、ジャンパー35を取り除くことで、抵抗が上がり、Y軸でジャンパー35を介して接続していた串型の同種の電極32同士の電気的な接触において、導電接触ではなく、容量性の寄与が大きくなり、共振周波数を下げることになる。このようにすることで、ジャンパー35を調整した方の偏波に対するピークを調整できる。  Specifically, by removing the jumper 35, the resistance increases, and in the electrical contact between the skewer-shaped electrodes 32 of the same type that were connected via the jumper 35 on the Y axis, the contribution of capacitance rather than conductive contact Will increase and the resonance frequency will be lowered. By doing so, the peak for the polarization of the person who adjusted the jumper 35 can be adjusted. Twice
なお、図21では、縦電極である第2電極32を連結する交差部においてジャンパー35を取り除くことで特性を変化させる例を説明したが、ジャンパー35をなるべく太く(幅を広く、導体を厚く、本数を多く等)、接続することで、偏波の特性を変化させてもよい。  In FIG. 21, an example in which the characteristics are changed by removing the jumper 35 at the intersection connecting the second electrode 32, which is a vertical electrode, has been described, but the jumper 35 is made as thick as possible (wide, thick conductor). The polarization characteristics may be changed by connecting a large number of conductors, etc.). Twice
(3-6.タッチパネルのセンサパターンの他の変形例) 図では示していないが、他の変形例として、電極31,32のメッシュの格子線を構成する金属細線W(図6参照)の導体幅を、ディスプレイパネル(OLED)220の発光画素にかからないようにギリギリまで広げるような構成であってもよい。これにより、遮断域における電波の透過性を下げて、反射特性の向上を見込むことができる。  (3-6. Other modified examples of the sensor pattern of the touch panel) Although not shown in the figure, as another modified example, the conductor of the thin metal wire W (see FIG. 6) constituting the mesh grid of the electrodes 31 and 32. The width may be widened to the limit so as not to cover the light emitting pixels of the display panel (OLED) 220. As a result, it is possible to reduce the transparency of radio waves in the cutoff region and improve the reflection characteristics. Twice
さらに他の構成において、電極31,32の格子を構成する金属ワイヤー(格子)の間隔を狭くする構成であってもよい。即ち、電極31,32の輪郭の大きさは等しく、同じ線幅の金属ワイヤーをより密にする。この構成により、並列の容量性を上げることで、ピーク特性が変化することが期待できる。なお、この構成の場合は、下に位置するディスプレイパネル220における、格子の開口部を発光層25R、25G、25Bの位置と合わせて、発光を妨害しないように、金属ワイヤーの位置を設けると好適である。  In still another configuration, the spacing between the metal wires (lattices) constituting the lattices of the electrodes 31 and 32 may be narrowed. That is, the contour sizes of the electrodes 31 and 32 are the same, and the metal wires having the same line width are made denser. With this configuration, it can be expected that the peak characteristics will change by increasing the capacitance in parallel. In the case of this configuration, it is preferable to align the openings of the grids in the display panel 220 located below with the positions of the light emitting layers 25R, 25G, and 25B, and to provide the positions of the metal wires so as not to interfere with the light emission. Is. Twice
そのほか、センサパターンの配置として、電極の離隔の格子内の浮遊導体Fを、外側の輪郭辺に接続することで、反射のピークの位置を変更することも可能である。  In addition, as a sensor pattern arrangement, it is also possible to change the position of the reflection peak by connecting the floating conductor F in the lattice of the electrode separation to the outer contour side. Twice
図13~図22に示すように、タッチパネルのセンサパターンにおける構成を微調整することで、反射のピークの位置をずらし、使用するアンテナの周波数の電波を妨害しないように、タッチパネルの特性を最適化することができる。  As shown in FIGS. 13 to 22, by fine-tuning the configuration of the sensor pattern of the touch panel, the position of the reflection peak is shifted and the characteristics of the touch panel are optimized so as not to interfere with the radio wave of the frequency of the antenna to be used. can do. Twice
(3-7.本発明の第6構成例に係るタッチパネルの断面説明図と特性) 図23は、本発明の第6構成例に係るタッチパネル230Eの断面説明図である。本構成では、図8に示すタッチパネル230の断面図と比較して、電極層301の上の絶縁保護層304E及び絶縁ホール306Eを構成する絶縁材の素材が異なる。  (3-7. Cross-sectional explanatory view and characteristics of the touch panel according to the sixth configuration example of the present invention) FIG. 23 is a cross-sectional explanatory view of the touch panel 230E according to the sixth configuration example of the present invention. In this configuration, the materials of the insulating materials constituting the insulating protective layer 304E and the insulating hole 306E on the electrode layer 301 are different from the cross-sectional view of the touch panel 230 shown in FIG. Twice
一般的には、絶縁材として、ガラス、フィルム、アクリル等が用いられているが、本構成では、アクリルとは異なる誘電率を持った樹脂材料、例えば、ポリカーボネート樹脂やフッ素樹脂を含んだ材料で構成される。これにより、遮断域における電波の透過性を下げることができる。  Generally, glass, film, acrylic, etc. are used as the insulating material, but in this configuration, a resin material having a dielectric constant different from that of acrylic, for example, a material containing a polycarbonate resin or a fluororesin is used. It is composed. As a result, the transparency of radio waves in the cutoff area can be reduced. Twice
図24は、図23のタッチパネル230Eの構成を含んで疑似ディスプレイモジュールにした際の、S11、S21パラメータの周波数特性を示す図である。  FIG. 24 is a diagram showing the frequency characteristics of the S11 and S21 parameters when the pseudo display module includes the configuration of the touch panel 230E of FIG. 23. Twice
図24のグラフと、図11のグラフとを比較するとピークの位置が低域側にシフトし、かつS11のピーク値が大きくなっている。そのため、図23のタッチパネル構成を有する疑似ディスプレイモジュールにおいて、24.2~29.5GHz、37.3~40GHz、1.0~5.0GHzのいずれの周波数においても、反射係数は-1dBである。  Comparing the graph of FIG. 24 with the graph of FIG. 11, the peak position is shifted to the low frequency side, and the peak value of S11 is large. Therefore, in the pseudo display module having the touch panel configuration shown in FIG. 23, the reflectance coefficient is -1 dB at any frequency of 24.2 to 29.5 GHz, 37.3 to 40 GHz, and 1.0 to 5.0 GHz. Twice
そして、疑似ディスプレイモジュールにおける最下層のタッチパネル230Eは、電磁波の反射振幅>透過振幅となり、すべての5Gの帯域で、良反射板となる。  Then, the touch panel 230E of the lowermost layer in the pseudo display module has the reflection amplitude> the transmission amplitude of the electromagnetic wave, and becomes a good reflection plate in all the 5G bands. Twice
このように、タッチパネルの基板の素材を変更することで、ピークの位置をずらし、使用するアンテナの周波数の電波を妨害しないように、タッチパネルを最適化することができる。  By changing the material of the substrate of the touch panel in this way, the touch panel can be optimized so as not to shift the position of the peak and interfere with the radio wave of the frequency of the antenna to be used. Twice
(3-8.本発明の第7構成例に係るタッチパネルの断面説明図と特性) 図25は、本発明の第7構成例に係るタッチパネル230Fの断面説明図である。本構成では、図8に示すタッチパネル230の断面図と比較して、電極層301Fの厚みが大きい。このように導体を厚くすることで、遮断域における電波の透過性を下げることが見込める。  (3-8. Cross-sectional explanatory view and characteristics of the touch panel according to the seventh configuration example of the present invention) FIG. 25 is a cross-sectional explanatory view of the touch panel 230F according to the seventh configuration example of the present invention. In this configuration, the thickness of the electrode layer 301F is larger than that of the cross-sectional view of the touch panel 230 shown in FIG. By making the conductor thick in this way, it is expected that the transmission of radio waves in the cutoff area will be reduced. Twice
(4.本発明のディスプレイモジュールの概略構成(その2)) 図26は、本発明の第2実施形態に係るディスプレイモジュール2の概略構成図である。本実施形態のディスプレイモジュール2では、図3とは異なり、タッチパネル230ではない、オンセル金属細線層300が設けられている。この金属細線層300では、図6のような金属細線Wの一部を切断、あるいはブリッジさせることにより、任意のパターン形状を作成することで、特定の用途に使用される。  (4. Schematic configuration of the display module of the present invention (No. 2)) FIG. 26 is a schematic configuration diagram of the display module 2 according to the second embodiment of the present invention. Unlike FIG. 3, the display module 2 of the present embodiment is provided with an on-cell metal thin wire layer 300, which is not a touch panel 230. The thin metal wire layer 300 is used for a specific purpose by creating an arbitrary pattern shape by cutting or bridging a part of the thin metal wire W as shown in FIG. Twice
オンセル金属細線層300は、例えば、超音波技術や、センサ技術等によって、画面に触れずにタッチパネルを操作する非接触タッチパネル(タッチレスタッチパネル)のための細線層である。あるいは、オンセル金属細線層300はタッチパネル以外の、他の用途のための配線であってもよい。  The on-cell metal thin wire layer 300 is a thin wire layer for a non-contact touch panel (touchless touch panel) that operates a touch panel without touching the screen by, for example, ultrasonic technology, sensor technology, or the like. Alternatively, the on-cell thin metal wire layer 300 may be wiring for other uses other than the touch panel. Twice
なお、透明アンテナ100が設けられる位置は図26に示すオンセル金属細線層300のすぐ上に限られず、図26の点線矢印で示す位置に設けてもよい。  The position where the transparent antenna 100 is provided is not limited to immediately above the on-cell thin metal wire layer 300 shown in FIG. 26, and may be provided at the position indicated by the dotted arrow in FIG. 26. Twice
このような構成では、透明アンテナ100の下側に設けられる、オンセル金属細線層300が、透明アンテナ100が通信する5G帯のいずれかの周波数fにおいて、電磁波の反射振幅>透過振幅となり、反射係数S11が-1dB以上である、良反射板として機能すると好適である。  In such a configuration, the on-cell thin metal wire layer 300 provided under the transparent antenna 100 has a reflection coefficient of electromagnetic waves> transmission amplitude at any frequency f in the 5G band with which the transparent antenna 100 communicates. It is preferable that S11 functions as a good reflecting plate having -1 dB or more. Twice
(5.本発明のディスプレイモジュールの概略構成(その3)) 図27は、本発明の第3実施形態に係るディスプレイモジュール3の概略構成図である。本実施形態では、図3、図26に示したような、透明アンテナ100の下にはタッチパネルや他の細線層がなく、ディスプレイパネル220Aの上に透明アンテナ100が設けられている。  (5. Schematic configuration of the display module of the present invention (No. 3)) FIG. 27 is a schematic configuration diagram of the display module 3 according to the third embodiment of the present invention. In the present embodiment, as shown in FIGS. 3 and 26, there is no touch panel or other thin line layer under the transparent antenna 100, and the transparent antenna 100 is provided on the display panel 220A. Twice
そのため、このような構成のディスプレイモジュール3では、ディスプレイパネル220の最上層(表面)である陰極の部分を低抵抗にして、透明アンテナ100に対して、良反射板として機能させると好適である。  Therefore, in the display module 3 having such a configuration, it is preferable that the cathode portion, which is the uppermost layer (surface) of the display panel 220, has a low resistance so that the transparent antenna 100 functions as a good reflector. Twice
(5-1.一般的なOLEDディスプレイパネルの構成) 図28は、一般的なディスプレイパネルの一例であるOLEDディスプレイパネル220の模式図である。図28において、(a)は断面図であり、(b)は平面図(上面図)である。  (5-1. Configuration of a general OLED display panel) FIG. 28 is a schematic view of an OLED display panel 220 which is an example of a general display panel. In FIG. 28, (a) is a cross-sectional view, and (b) is a plan view (top view). Twice
図28(a)に示すようにOLEDディスプレイパネル220は、基板21、バックプレーン22、下側反射電極23、開口絶縁膜24、発光層25R,25G,25B、及び透明電極26を備えている。基板21は、例えばガ
ラスであって、バックプレーン22は、TFT(Thin Film Transistor)である。 
As shown in FIG. 28A, the OLED display panel 220 includes a substrate 21, a backplane 22, a lower reflective electrode 23, an aperture insulating film 24, light emitting layers 25R, 25G, 25B, and a transparent electrode 26. The substrate 21 is, for example, glass, and the backplane 22 is a TFT (Thin Film Transistor).
発光層25R,25G,25Bは、積層薄膜で構成されており、下側反射電極23、開口絶縁膜24、発光層(積層薄膜)25R,25G,25B、及び透明電極26が、各色のOLED素子(organic light-emitting diode)27R,27G,27Bとなる。  The light emitting layers 25R, 25G, 25B are composed of a laminated thin film, and the lower reflective electrode 23, the aperture insulating film 24, the light emitting layer (laminated thin film) 25R, 25G, 25B, and the transparent electrode 26 are OLED elements of each color. (Organic light-emitting diode) 27R, 27G, 27B. Twice
最も上側の透明電極26は、Al或いはMgとAgの合金などの金属を光が透過する程度まで薄く構成したり、ITOなどの金属酸化物で構成されている。その為、抵抗が高く、図27のように透明アンテナ100を上部に接した時に、透明アンテナ100に投入された電力を、透明電極26で消費してしまう。この場合透明電極のシート抵抗は2~100Ω/□となる。  The uppermost transparent electrode 26 is made of a metal such as an alloy of Al or Mg and Ag thin enough to allow light to pass through, or is made of a metal oxide such as ITO. Therefore, the resistance is high, and when the transparent antenna 100 is brought into contact with the upper portion as shown in FIG. 27, the power input to the transparent antenna 100 is consumed by the transparent electrode 26. In this case, the sheet resistance of the transparent electrode is 2 to 100 Ω / □. Twice
一方で透明電極26の金属を厚くすれば、低抵抗化できるが、今度はOLEDディスプレイパネル220のOLED素子27R,27G,27Bからの光が透過しなくなってしまい、ディスプレイとして機能しなくなる。そこで、本発明では、透明電極26の上側にパターン電極28を設ける。  On the other hand, if the metal of the transparent electrode 26 is made thicker, the resistance can be reduced, but this time, the light from the OLED elements 27R, 27G, 27B of the OLED display panel 220 will not be transmitted, and the display will not function. Therefore, in the present invention, the pattern electrode 28 is provided above the transparent electrode 26. Twice
(5-2.本発明の構成例に係るOLEDディスプレイパネル) 図29は、本発明のOLEDディスプレイパネル220Aの模式図である。図29において、(a)は断面図であり、(b)は平面図である。  (5-2. OLED display panel according to the configuration example of the present invention) FIG. 29 is a schematic view of the OLED display panel 220A of the present invention. In FIG. 29, (a) is a cross-sectional view and (b) is a plan view. Twice
本発明のOLEDディスプレイパネル220Aの構成では、積層薄膜で構成される発光層25R,25G,25Bの上部以外の部分に、低抵抗化のためにパターン電極28を配置する。パターン電極28は、抵抗が低くなるような材料・膜厚を選べば、どのような素材で構成されてもよく、具体的にはAl、Ag、AgとMgの合金、Cr、Ti、Cu、Au、ITO、SnO、ZnOなどの金属膜や酸化金属膜であっても良い。  In the configuration of the OLED display panel 220A of the present invention, the pattern electrode 28 is arranged in a portion other than the upper portion of the light emitting layers 25R, 25G, and 25B composed of the laminated thin film in order to reduce the resistance. The pattern electrode 28 may be made of any material as long as the material and film thickness are selected so as to reduce the resistance. Specifically, Al, Ag, an alloy of Ag and Mg, Cr, Ti, Cu, It may be a metal film such as Au, ITO, SnO, ZnO, or a metal oxide film. Twice
なお、図29(b)では、パターン電極28を、後述する図30、図31のマスクパターン法によって成膜した場合の平面図を示している。  Note that FIG. 29B shows a plan view of the pattern electrode 28 when the pattern electrode 28 is formed by the mask pattern method of FIGS. 30 and 31 described later. Twice
パターン電極28は、透明電極26より比抵抗の小さい材料を用いて、透明電極26の上であって、発光層25R,25B,25Gの上部以外の部分にマスクパターン法又は他の成膜方法で成膜する方法の他に、透明電極26の、発光層25R,25G,25Bの上部以外の部分を、厚膜にすることで形成してもよい。  The pattern electrode 28 is made of a material having a resistivity smaller than that of the transparent electrode 26, and is placed on the transparent electrode 26 by a mask pattern method or another film forming method on a portion other than the upper part of the light emitting layers 25R, 25B, 25G. In addition to the method of forming a film, the transparent electrode 26 may be formed by forming a thick film on a portion other than the upper portion of the light emitting layers 25R, 25G, and 25B. Twice
(5-3.本発明のOLEDパネルのパターン電極のマスク成膜例) 図30は、図29のパターン電極のマスク例を示す図である。図30(a)は、第1のマスクM1、図30(b)は、第2のマスクM2を示す。図31は、図30のマスクを用いた、図29のパターン電極のマスクパターン方法を示す図である。  (5-3. Mask film formation example of the pattern electrode of the OLED panel of the present invention) FIG. 30 is a diagram showing a mask example of the pattern electrode of FIG. 29. FIG. 30A shows the first mask M1, and FIG. 30B shows the second mask M2. FIG. 31 is a diagram showing a mask pattern method of the pattern electrode of FIG. 29 using the mask of FIG. 30. Twice
この方法では、2つの異なる種類のマスクを組み合わせてパターン電極28を形成する。例えば図30(a)のような縦横に結線した第1のマスクM1と、図30(b)に示すような、斜めがけに結線した第2のマスクM2の2つのマスクを用いる。  In this method, two different types of masks are combined to form the pattern electrode 28. For example, two masks, a first mask M1 connected vertically and horizontally as shown in FIG. 30 (a) and a second mask M2 connected diagonally as shown in FIG. 30 (b), are used. Twice
マスクを用いる方法では、1つのマスクだけでは、図29(b)のように、発光層25R,25G,25Bの部分を点状に孤立させて残すパターンはマスク成膜できないので、2枚のマスクが必要となる。このように、形成するパターン電極28の素材で形成された2枚のマスクを用いることで、一般的なOLEDディスプレイパネル220の透明電極26上にパターン電極28を構成できる。これにより、他の素材を使用せずに、孔が空いたマスク状のパターン電極28を形成することができる。  In the method using a mask, as shown in FIG. 29B, a pattern in which the light emitting layers 25R, 25G, and 25B are left isolated in dots cannot be formed with only one mask, so that two masks cannot be formed. Is required. By using the two masks formed of the material of the pattern electrode 28 to be formed in this way, the pattern electrode 28 can be formed on the transparent electrode 26 of the general OLED display panel 220. As a result, the mask-shaped pattern electrode 28 with holes can be formed without using any other material. Twice
(5-4.パターン電極材料をはじく材料を用いたOLEDディスプレイパネル上のパターン電極成形例) 図32は、レジストを用いた場合の、図29のパターン電極の形成方法を示す図である。図32において、(a)は一般的なOLEDディスプレイパネル220の断面形状を示し、(b)はレジストマスクRを(a)の上に塗布した状態を示し、(c)は、パターン電極28を成膜した形状を示す。  (5-4. Example of pattern electrode molding on an OLED display panel using a material that repels a pattern electrode material) FIG. 32 is a diagram showing a method of forming a pattern electrode of FIG. 29 when a resist is used. In FIG. 32, (a) shows a cross-sectional shape of a general OLED display panel 220, (b) shows a state in which a resist mask R is applied on (a), and (c) shows a pattern electrode 28. The shape of the film is shown. Twice
図32(b)では、図32(a)に示した発光層25R,25G,25Bの上だけに、パターン電極材料をはじく材料パターンRを成膜し、その後、図32(c)に示すパターン電極材料成膜時に、パターン電極材料をはじく材料パターンR以外の部分に、パターン電極28を形成する。  In FIG. 32 (b), a material pattern R that repels the pattern electrode material is formed only on the light emitting layers 25R, 25G, and 25B shown in FIG. 32 (a), and then the pattern shown in FIG. 32 (c) is formed. At the time of film formation of the electrode material, the pattern electrode 28 is formed in a portion other than the material pattern R that repels the pattern electrode material. Twice
材料パターンRとなるパターン電極をはじく材料として、例えば、米国特許10,270,033 B2(日本国出願公報2018-533183号公報)に記載されているnucleation inhibiting coating(核形成阻害コーティング)を構成する材料でもよい。あるいは、非特許文献「Material Horizon,2020,7,P143-148」に記載されているフッ素材料を用いてもよい。  As a material that repels the pattern electrode that becomes the material pattern R, for example, it constitutes a nucleation inhibiting coating described in US Pat. No. 10,270,033 B2 (Japanese Patent Publication No. 2018-533183). It may be a material. Alternatively, the fluorine material described in the non-patent document "Material Horizon, 2020, 7, P143-148" may be used. Twice
また、フッ素材料として、以下の含フッ素重合体(1)又は含フッ素重合体(2)を用いてもよい。  Further, as the fluorine material, the following fluorine-containing polymer (1) or fluorine-containing polymer (2) may be used. Twice
含フッ素重合体(1):主鎖に脂肪族環を有さず、フルオロオレフィンに由来する繰り返し単位を有する含フッ素重合体。  Fluorine-containing polymer (1): A fluorine-containing polymer having no aliphatic ring in the main chain and having a repeating unit derived from a fluoroolefin. Twice
含フッ素重合体(2):主鎖に脂肪族環を有する含フッ素重合体。  Fluorine-containing polymer (2): A fluorine-containing polymer having an aliphatic ring in the main chain. Twice
含フッ素重合体(1)としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)/ヘキサフルオロプロピレン共重合体(EPA)、エチレン/テトラフルオロエチレン共重合体(ETFE)、ポリビニリデンフルオリド(PVDF)、ポリビニルフルオリド(PVF)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)等が挙げられる。  Examples of the fluorine-containing polymer (1) include polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), and tetrafluoro. Ethylene / perfluoro (alkyl vinyl ether) / hexafluoropropylene copolymer (EPA), ethylene / tetrafluoroethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE) and the like. Twice
含フッ素重合体(2)としては、ペルフルオロ(3-ブテニルビニルエーテル)の環化重合体(AGC社製:サイトップ(登録商標))、テトラフルオロエチレン/ペルフルオロ(4-メトキシ-1,3-ジオキソール)共重合体(ソルベイ社製:アルゴフロン(登録商標)AD)、テトラフルオロエチレン/ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)共重合体(ケマーズ社製:テフロン(登録商標)AF)、ペルフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)重合体等が挙げられる。  Examples of the fluorine-containing polymer (2) include a cyclized polymer of perfluoro (3-butenyl vinyl ether) (manufactured by AGC: Cytop®) and tetrafluoroethylene / perfluoro (4-methoxy-1,3-). Dioxol) copolymer (Solvey: Argoflon (registered trademark) AD), tetrafluoroethylene / perfluoro (2,2-dimethyl-1,3-dioxol) copolymer (Kemers: Teflon (registered trademark)) AF), perfluoro (4-methyl-2-methylene-1,3-dioxolane) polymer and the like can be mentioned. Twice
図32の方法で形成された、フッ素材料又は核形成阻害コーティングによって構成されるパターン電極をはじく材料パターンRは、パターン電極28を形成した後も、発光層25R,25G,25Bの上に残る。これらのフッ素材料又は核形成阻害コーティングは、光を透過するため、下側のOLEDディスプレイパネル220の表示機能には、影響を与えない。  The material pattern R, which is formed by the method of FIG. 32 and repels the pattern electrode formed of the fluorine material or the nucleation-inhibiting coating, remains on the light emitting layers 25R, 25G, and 25B even after the pattern electrode 28 is formed. Since these fluorine materials or nucleation-inhibiting coatings transmit light, they do not affect the display function of the lower OLED display panel 220. Twice
この手法だと、フッ素材料又は核形成阻害コーティングによって発光層25R,25G,25Bをカバーしながら、カバーされていない部分にパターン電極28を成膜するため、パターン電極28のアライメント精度が上がる。またパターン電極28の厚さはどこでも同じになる。  In this method, the pattern electrode 28 is formed on the uncovered portion while the light emitting layers 25R, 25G, and 25B are covered by the fluorine material or the nucleation-inhibiting coating, so that the alignment accuracy of the pattern electrode 28 is improved. Further, the thickness of the pattern electrode 28 is the same everywhere. Twice
いずれの方法を用いても、本構成でディスプレイパネル上に形成されるパターン電極28は、低抵抗の膜(例えば金属膜)であって、この低抵抗膜を含む、OLEDディスプレイパネル220Aのディスプレイ表面は、良反射板となる。  Regardless of which method is used, the pattern electrode 28 formed on the display panel in this configuration is a low resistance film (for example, a metal film), and the display surface of the OLED display panel 220A including the low resistance film. Is a good reflector. Twice
具体的には、パターン電極を含む上部電極のシート抵抗は、2Ω/□より小さくなる。良反射板としては、1Ω/□以下が望ましく、0.5Ω/□が更に望ましい。そのため、パターン電極を含むディスプレイパネル220Aは、上の透明アンテナ100を含むディスプレイモジュール3の状態では、電磁波の反射振幅>透過振幅となり、反射係数S11が-1dB以上になる。  Specifically, the sheet resistance of the upper electrode including the pattern electrode is smaller than 2Ω / □. As a good reflector, 1Ω / □ or less is desirable, and 0.5Ω / □ is even more desirable. Therefore, in the display panel 220A including the pattern electrode, in the state of the display module 3 including the transparent antenna 100 above, the reflection amplitude of the electromagnetic wave> the transmission amplitude, and the reflection coefficient S11 is -1 dB or more. Twice
(6.本発明のディスプレイモジュールの概略構成(その4)) 図33は、本発明の第4実施形態のディスプレイモジュール4の概略構成図である。上記の図3の例では、タッチパネル230は、オンセル金属細線層であってディスプレイパネル220のすぐ上に設けられる例を説明したが、本発明のディスプレイモジュール4では、タッチパネル400は、透明アンテナ100の上に設けられてもよい。  (6. Schematic configuration of the display module of the present invention (No. 4)) FIG. 33 is a schematic configuration diagram of the display module 4 of the fourth embodiment of the present invention. In the above example of FIG. 3, the touch panel 230 is an on-cell metal thin wire layer and is provided immediately above the display panel 220. However, in the display module 4 of the present invention, the touch panel 400 is a transparent antenna 100. It may be provided on top. Twice
この場合のタッチパネル400は、ディスプレイパネル220とは別体のパネルであり、ここではアウトセルタッチパネルと呼ぶ。  The touch panel 400 in this case is a panel separate from the display panel 220, and is referred to as an out-cell touch panel here. Twice
(6-1.良透過板となるタッチパネルの構成例) 図34は、透明アンテナ100の上側に設けられるタッチパネル400の電極の構成例である。図34(a)に示すように、タッチパネル400は、図4同様に、複数の第1電極41及び複数の第2電極42がマトリクス状に配置されたセンサパターンが形成されている。なお、本例においても、投影型静電容量型のタッチパネルである。  (6-1. Configuration example of a touch panel serving as a good transmissive plate) FIG. 34 is a configuration example of the electrodes of the touch panel 400 provided on the upper side of the transparent antenna 100. As shown in FIG. 34A, the touch panel 400 has a sensor pattern in which a plurality of first electrodes 41 and a plurality of second electrodes 42 are arranged in a matrix, as in FIG. In this example as well, the touch panel is a projection type capacitance type. Twice
タッチパネル400では、図34(a)に示す基本構成は、図4に示す下側に設けられるタッチパネルの基本構成と同様であるが、各電極41,42の構造が、電波の透過に適した構成になっている。  In the touch panel 400, the basic configuration shown in FIG. 34 (a) is the same as the basic configuration of the touch panel provided on the lower side shown in FIG. 4, but the structures of the electrodes 41 and 42 are suitable for transmitting radio waves. It has become. Twice
例えば、図34(b)に示す電極41では、格子が外側のみ形成され、中央部には格子が設けられていない。図34(c)に示す電極41Aでは、輪郭内の格子において、交点以外の部分が切断され、不連続となっている。なお、(b)、(c)以外にも様々な組み合わせが考えられる。例えば(b)の中央部に(c)のような不連続な配線を設けてもよく、(b)の一部を切断してもよい。但し、上端と下端が電気的に接続されている必要がある。また電極42の場合には、右端と左端が電気的に接続されている必要がある。  For example, in the electrode 41 shown in FIG. 34 (b), a grid is formed only on the outside, and no grid is provided at the center. In the electrode 41A shown in FIG. 34 (c), a portion other than the intersection is cut off in the grid in the contour, resulting in discontinuity. In addition to (b) and (c), various combinations can be considered. For example, a discontinuous wiring as in (c) may be provided in the central portion of (b), or a part of (b) may be cut off. However, the upper end and the lower end must be electrically connected. Further, in the case of the electrode 42, the right end and the left end need to be electrically connected. Twice
図35は、透明アンテナの上側に設けられるタッチパネルの電極の他の構成例である。電極41は、格子をベースとしない形状であってもよいが、上端と下端が電気的に接続されている必要がある。また電極42の場合は、右端と左端が電気的に接続されている必要がある。  FIG. 35 is another configuration example of the electrodes of the touch panel provided on the upper side of the transparent antenna. The electrode 41 may have a shape that is not based on a grid, but the upper end and the lower end need to be electrically connected. Further, in the case of the electrode 42, the right end and the left end need to be electrically connected. Twice
図35(a)に示す電極41Bでは、同一電極との接続方向に対して折れ曲がるような線を三重に設けた三重枠構造となっている。図35(b)に示す電極41Cでは、ひし形の中に、長方形のスリットを設ける構造となっている。  The electrode 41B shown in FIG. 35 (a) has a triple frame structure in which lines that bend with respect to the connection direction with the same electrode are provided in triplicate. The electrode 41C shown in FIG. 35B has a structure in which a rectangular slit is provided in the rhombus. Twice
図35(c)に示す電極41Dでは、枠部の一部を欠いた、略Cの字の外形となるような枠線によって構成されている。図35(d)に示す電極41Eでは、線が曲線状に一筆書きに蛇行する形状であって、外形が略四角形になるように構成されている。図35(e)に示す電極41Fでは、線がジグザグ状に一筆書きに蛇行する形状であって、外形が略四角形になるように構成されている。  The electrode 41D shown in FIG. 35 (c) is configured by a frame line having a substantially C-shaped outer shape, lacking a part of the frame portion. The electrode 41E shown in FIG. 35 (d) has a curved line that meanders in a single stroke, and is configured to have a substantially quadrangular outer shape. The electrode 41F shown in FIG. 35 (e) has a zigzag shape in which the lines meander in a single stroke, and is configured to have a substantially quadrangular outer shape. Twice
その他、電極を構成する四角形を小さくしてもよい。なお、いずれの電極41~41Fの構成においても、電極41の枠や線を構成する金属ワイヤーが、下層のディスプレイパネル220からの発光を妨害しないように、発光層25R,25G,25Bの真上を避けて、金属ワイヤーを設ける。  In addition, the quadrangle constituting the electrode may be made smaller. In any of the configurations of the electrodes 41 to 41F, directly above the light emitting layers 25R, 25G, and 25B so that the metal wires constituting the frames and wires of the electrodes 41 do not interfere with the light emission from the lower display panel 220. Provide a metal wire to avoid. Twice
図34、図35のように構成された、タッチパネルは、格子状の金属細線で四角形状に全面に電極が形成される図5の構成よりも、金属細線の部分が少なく、疎な構成となる。例えば、電極における金属細線が占める割合は10%未満である。  The touch panel configured as shown in FIGS. 34 and 35 has a sparser structure with fewer metal thin lines than the configuration of FIG. 5 in which electrodes are formed on the entire surface in a quadrangular shape with grid-shaped metal fine lines. .. For example, the proportion of thin metal wires in the electrodes is less than 10%. Twice
このような電極を含んで構成されるタッチパネル400は、アンテナの使用周波数で、電磁波の反射振幅<透過振幅である「良透過板」として機能する。  The touch panel 400 including such electrodes functions as a "good transmission plate" in which the reflection amplitude of the electromagnetic wave is less than the transmission amplitude at the frequency used by the antenna. Twice
なお、図34、図35の電極41~41Fでは電極の外観の概略図を示しているが、これらの線状又は枠状、又は塗りつぶし形状の電極の導体部分は、図6に示すように梯子状の金属細線Wによって形成されていてもよい。その場合、図6のように、金属細線の一部を切断することで、電極41~41Fのような導通構造を作成することができる。この場合、電極41~41Fの構造の周囲に、図6でFと図示した浮遊導体が残る場合があるが、これは現在着目している電波の透過性には影響しない。したがって、浮遊導体はあっても無くてもよい。  Although the electrodes 41 to 41F of FIGS. 34 and 35 show a schematic view of the appearance of the electrodes, the conductor portion of these linear, frame-shaped, or filled-shaped electrodes is a ladder as shown in FIG. It may be formed by a thin metal wire W. In that case, as shown in FIG. 6, a conductive structure such as the electrodes 41 to 41F can be created by cutting a part of the thin metal wire. In this case, the floating conductor shown as F in FIG. 6 may remain around the structure of the electrodes 41 to 41F, but this does not affect the transparency of the radio wave currently being focused on. Therefore, the floating conductor may or may not be present. Twice
なお、図32では、良透過板となるタッチパネル400は、透明アンテナ100の上側に設けられる例を説明したが、タッチパネル400は、
透明アンテナと同一面上に設けられてもよい。 
In FIG. 32, an example in which the touch panel 400 serving as a good transmissive plate is provided on the upper side of the transparent antenna 100 has been described, but the touch panel 400 is
It may be provided on the same surface as the transparent antenna.
あるいは、良透過板となるタッチパネル400は、図26に示すような、良反射板となるディスプレイパネル220Aの上側であって、透明アンテナ100の下側に設けられてもよい。疎の構成のタッチパネル400は、ディスプレイパネル220Aによって反射した電波が透過して邪魔をしないためである。  Alternatively, the touch panel 400 serving as a good transmissive plate may be provided above the display panel 220A serving as a good reflecting plate and below the transparent antenna 100 as shown in FIG. 26. This is because the touch panel 400 having a sparse configuration allows radio waves reflected by the display panel 220A to be transmitted and does not interfere with the touch panel 400. Twice
また、本発明の透明アンテナは、1つでも送受信可能であるが、より特性を高めるために、複数の透明アンテナを集めたアレイ状態(アンテナアレイ)で配置されてもよい。  Further, although one transparent antenna of the present invention can transmit and receive, in order to further enhance the characteristics, it may be arranged in an array state (antenna array) in which a plurality of transparent antennas are collected. Twice
以上、本発明の例示的な実施の形態の透明アンテナについて説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。 Although the transparent antenna of the exemplary embodiment of the present invention has been described above, the present invention is not limited to the specifically disclosed embodiment and does not deviate from the scope of claims. Various modifications and changes are possible.
 なお、本国際出願は、2020年4月27日に出願した日本国特許出願2020-078661号と、2020年7月30日に出願した日本国特許出願2020-129321号とに基づく優先権を主張するものであり、その全内容は本国際出願にここでの参照により援用されるものとする。 This international application claims priority based on Japanese Patent Application No. 2020-078661 filed on April 27, 2020 and Japanese Patent Application No. 2020-129321 filed on July 30, 2020. The entire contents of which shall be incorporated into this international application by reference herein.
1 ディスプレイモジュール2 ディスプレイモジュール3 ディスプレイモジュール4 ディスプレイモジュール25R,25G,25B 発光層(発光部)26 透明電極(陰極)28 パターン電極(金属膜)31 第1電極32 第2電極331,332,341,342 延伸部35 ジャンパー38 第1配線39 第2配線41 第1電極42 第2電極100 透明アンテナ101 透明基材110 アンテナパターン  (金属細線層)120 面状給電部(給電領域、金属細線層)200 電子機器210 筐体220,220A ディスプレイパネル(OLEDディスプレイパネル)230,230A,230B,230C,230D,230E,230F,230G タッチパネル(オンセルタッチパネル用金属細線層、オンセル金属細線層)240 透明カバー(カバーガラス)250 配線基板260A,260B,260C,260D 電子部品270 バッテリー300 オンセル金属細線層301 電極層302 絶縁層303 ブリッジ層(ジャンパー)304 絶縁保護層305 スルーホール(ジャンパー)306 絶縁ホールS1、S2 スリットSD 疑似ディスプレイモジュール 1 Display module 2 Display module 3 Display module 4 Display module 25R, 25G, 25B Light emitting layer (light emitting part) 26 Transparent electrode (cathode) 28 Pattern electrode (metal film) 31 First electrode 32 Second electrode 331, 332, 341 342 Stretched part 35 Jumper 38 1st wiring 39 2nd wiring 41 1st electrode 42 2nd electrode 100 Transparent antenna 101 Transparent base material 110 Antenna pattern (metal thin wire layer) 120 Planar feeding part (feeding area, metal thin wire layer) 200 Electronic device 210 Housing 220, 220A Display panel (OLED display panel) 230, 230A, 230B, 230C, 230D, 230E, 230F, 230G Touch electrode (metal thin wire layer for on-cell touch panel, on-cell metal fine wire layer) 240 Transparent cover (cover) Glass) 250 Wiring board 260A, 260B, 260C, 260D Electronic parts 270 Battery 300 On-cell metal wire layer 301 Electrode layer 302 Insulation layer 303 Bridge layer (jumper) 304 Insulation protection layer 305 Through hole (jumper) 306 Insulation hole S1, S2 Slit SD pseudo display module

Claims (15)

  1. 透明基材、及び、該透明基材の上側の、開口率が80%以上であるメッシュ状の金属細線層を備えた透明アンテナと、 ディスプレイパネルと、を備えるディスプレイモジュールであって、 前記透明アンテナと前記ディスプレイパネルの間、または前記ディスプレイパネルの表面に、少なくとも一つの良反射板を有し、 前記良反射板は、2GHz<f<50GHzの間で前記透明アンテナを使用する周波数fにおいて、 電磁波の反射振幅>透過振幅となり、反射係数S11が-1dB以上である ディスプレイモジュール。 A display module including a transparent base material, a transparent antenna provided with a mesh-like fine metal wire layer having an opening ratio of 80% or more on the upper side of the transparent base material, and a display panel, wherein the transparent antenna is provided. And the display panel, or on the surface of the display panel, the good reflecting plate has at least one good reflecting plate, and the good reflecting plate is an electromagnetic wave at a frequency f in which the transparent antenna is used between 2 GHz <f <50 GHz. Reflection amplitude> transmission amplitude, and the reflection coefficient S11 is -1 dB or more.
  2. 前記良反射板の面抵抗が5Ω/sq以下である、 請求項1に記載のディスプレイモジュール。 The display module according to claim 1, wherein the surface resistance of the good reflector is 5 Ω / sq or less.
  3. 前記良反射板が、前記ディスプレイパネルの上に設けられる、オンセル金属細線層である 請求項1又は2に記載のディスプレイモジュール。 The display module according to claim 1 or 2, wherein the good reflector is an on-cell metal fine wire layer provided on the display panel.
  4. 前記オンセル金属細線層は、2方向に串状に並んだ、複数の第1電極及び複数の第2電極がマトリクス状に配置されたセンサパターンが形成される、投影型静電容量方式のオンセルタッチパネル用金属細線層であって、 前記第1電極の辺から、隣接して対向する前記第2電極の辺に対して近づくように、複数の延伸部が設けられており、 前記第2電極の辺から、隣接して対向する前記第1電極の辺に対して近づくように、複数の延伸部が設けられており、 前記第1電極の辺から延伸する複数の延伸部と前記第2電極の辺から延伸する複数の延伸部との境界がスリットとなっており、 前記スリットの太さを調整することで、反射係数S11のピークの位置をずらして、 前記透明アンテナを使用する周波数fにおいて、反射係数S11を-1dB以上とする 請求項3に記載のディスプレイモジュール。 The on-cell metal wire layer is a projected capacitance type on-cell in which a sensor pattern in which a plurality of first electrodes and a plurality of second electrodes are arranged in a matrix in a skew shape in two directions is formed. A thin metal wire layer for a touch panel, wherein a plurality of stretched portions are provided so as to approach the side of the second electrode adjacent to each other from the side of the first electrode, and the second electrode of the second electrode. A plurality of stretched portions are provided so as to approach the side of the first electrode adjacent to each other from the side, and the plurality of stretched portions extending from the side of the first electrode and the second electrode The boundary between the plurality of extending portions extending from the side is a slit, and by adjusting the thickness of the slit, the position of the peak of the reflection coefficient S11 is shifted, and at the frequency f in which the transparent antenna is used, The display module according to claim 3, wherein the reflection coefficient S11 is -1 dB or more.
  5. 前記オンセル金属細線層は、2方向に串状に並んだ、複数の第1電極及び複数の第2電極がマトリクス状に配置されたセンサパターンが形成される、投影型静電容量方式のオンセルタッチパネル用金属細線層であって、 前記第1電極及び前記第2電極の辺の長さを調整することで、反射係数S11のピークの位置をずらして、 前記透明アンテナを使用する周波数fにおいて、反射係数S11を-1dB以上とする 請求項3に記載のディスプレイモジュール。 The on-cell metal wire layer is a projection-type capacitive on-cell layer in which a sensor pattern is formed in which a plurality of first electrodes and a plurality of second electrodes are arranged in a matrix in a skew shape in two directions. In the metal thin wire layer for a touch panel, by adjusting the lengths of the sides of the first electrode and the second electrode, the position of the peak of the reflectance coefficient S11 is shifted, and at the frequency f at which the transparent antenna is used, The display module according to claim 3, wherein the reflection coefficient S11 is -1 dB or more.
  6. 前記オンセル金属細線層は、2方向に串状に並んだ、複数の第1電極及び複数の第2電極がマトリクス状に配置されたセンサパターンが形成される、投影型静電容量方式のオンセルタッチパネル用金属細線層であって、 前記オンセルタッチパネル用金属細線層の絶縁材の素材をポリカーボネート樹脂又はフッ素樹脂を含んだ材料で構成する 請求項3に記載のディスプレイモジュール。 The on-cell metal wire layer is a projected capacitance type on-cell in which a sensor pattern is formed in which a plurality of first electrodes and a plurality of second electrodes are arranged in a matrix in a skew shape in two directions. The display module according to claim 3, which is a thin metal wire layer for a touch panel, wherein the material of the insulating material of the fine metal wire layer for an on-cell touch panel is made of a material containing a polycarbonate resin or a fluororesin.
  7. 前記オンセル金属細線層は、2方向に串状に並んだ、複数の第1電極及び複数の第2電極がマトリクス状に配置されたセンサパターンが形成される、投影型静電容量方式のオンセルタッチパネル用金属細線層であって、 前記第1電極の辺から、隣接して対向する前記第2電極の辺に対して近づくように、複数の延伸部が設けられており、前記第1電極の角部の延伸部は、他の第1電極の角部の延伸部と連結しており、 前記第2電極の辺から、隣接して対向する前記第1電極の辺に対して近づくように、複数の延伸部が設けられており、前記第2電極の角部の延伸部は、他の第2電極の角部の延伸部と離間しており、 前記複数の第2電極において、隣接する第2電極は、角部の延伸部同士を連結するジャンパーによって接続可能であり、 前記ジャンパーを調整することで、使用する周波数の水平偏波又は垂直偏波において、反射係数S11を-1dB以上にする 請求項3に記載のディスプレイモジュール。 The on-cell metal wire layer is a projected capacitance type on-cell in which a sensor pattern in which a plurality of first electrodes and a plurality of second electrodes are arranged in a matrix in a skew shape in two directions is formed. A thin metal wire layer for a touch panel, wherein a plurality of stretched portions are provided so as to approach the side of the second electrode adjacent to each other from the side of the first electrode. The stretched portion of the corner portion is connected to the stretched portion of the corner portion of the other first electrode, so that the side of the second electrode approaches the side of the first electrode adjacent to the other electrode. A plurality of stretched portions are provided, and the stretched portion of the corner portion of the second electrode is separated from the stretched portion of the corner portion of the other second electrode, and the plurality of second electrodes are adjacent to each other. The two electrodes can be connected by a jumper that connects the extended portions of the corners, and by adjusting the jumper, the reflection coefficient S11 is set to -1 dB or more in the horizontal or vertical polarization of the frequency to be used. The display module according to claim 3.
  8. 前記良反射板が、前記ディスプレイパネルの上に設けられる、タッチパネル以外の、オンセル金属細線層である 請求項3に記載のディスプレイモジュール。 The display module according to claim 3, wherein the good reflector is an on-cell metal thin wire layer other than a touch panel provided on the display panel.
  9. 前記ディスプレイパネルは、OLEDディスプレイパネルであり、 前記OLEDディスプレイパネルの表面の陰極の上に低抵抗膜を形成し、 前記良反射板は、前記低抵抗膜を含む、前記OLEDディスプレイパネルの表面である 請求項1又は2に記載のディスプレイモジュール。 The display panel is an OLED display panel, a low resistance film is formed on a cathode on the surface of the OLED display panel, and the good reflector is a surface of the OLED display panel including the low resistance film. The display module according to claim 1 or 2.
  10. 前記OLEDディスプレイパネルの表面の陰極において、発光部以外の部分に金属膜を形成することで、前記低抵抗膜を形成する 請求項9に記載のディスプレイモジュール。 The display module according to claim 9, wherein the low resistance film is formed by forming a metal film on a portion other than the light emitting portion at the cathode on the surface of the OLED display panel.
  11. 前記OLEDディスプレイパネルの表面の陰極において、発光部にフッ素を含む材料が形成されている 請求項10に記載のディスプレイモジュール。 The display module according to claim 10, wherein a material containing fluorine is formed in a light emitting portion at a cathode on the surface of the OLED display panel.
  12. 当該ディスプレイモジュールはさらに、少なくとも一つのタッチパネルを備え、 前記タッチパネルは、透明アンテナの使用周波数で、電磁波の反射振幅<透過振幅である「良透過板」であり、 前記タッチパネルは、前記透明アンテナの上部、下部、または同一平面上の隣に配置される 請求項1乃至3、9、10、11のいずれか一項に記載のディスプレイモジュール。 The display module further includes at least one touch panel, which is a "good transmission plate" in which the frequency used by the transparent antenna is the reflection amplitude of electromagnetic waves <transmission amplitude, and the touch panel is the upper part of the transparent antenna. The display module according to any one of claims 1 to 3, 9, 10 and 11, which is arranged at the bottom or next to each other on the same plane.
  13. 前記良透過板は、線状又は帯状の金属ワイヤーを含んでおり、 前記良透過板は、前記金属ワイヤーが占める割合は10%未満である 請求項12記載のディスプレイモジュール。 The display module according to claim 12, wherein the good transmission plate contains a linear or strip-shaped metal wire, and the ratio of the metal wire to the good transmission plate is less than 10%.
  14. 前記透明アンテナを使用する周波数fは、24.2~29.5GHz、37.3~40GHz、又は1.0~5.0GHzのいずれかである、 請求項1乃至13のいずれか一項に記載のディスプレイモジュール。 The display module according to any one of claims 1 to 13, wherein the frequency f using the transparent antenna is any one of 24.2 to 29.5 GHz, 37.3 to 40 GHz, or 1.0 to 5.0 GHz.
  15. 前記透明アンテナは、アンテナパターンと配線領域とを有し、 アンテナパターンは、下面側にバックグラウンドを有さない種類のアンテナである 請求項1乃至14のいずれか一項に記載のディスプレイモジュール。 The display module according to any one of claims 1 to 14, wherein the transparent antenna has an antenna pattern and a wiring area, and the antenna pattern is a type of antenna having no background on the lower surface side.
PCT/JP2021/015641 2020-04-27 2021-04-15 Display module WO2021220836A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022517630A JPWO2021220836A1 (en) 2020-04-27 2021-04-15

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020078661 2020-04-27
JP2020-078661 2020-04-27
JP2020-129321 2020-07-30
JP2020129321 2020-07-30

Publications (1)

Publication Number Publication Date
WO2021220836A1 true WO2021220836A1 (en) 2021-11-04

Family

ID=78332382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015641 WO2021220836A1 (en) 2020-04-27 2021-04-15 Display module

Country Status (3)

Country Link
JP (1) JPWO2021220836A1 (en)
TW (1) TW202205736A (en)
WO (1) WO2021220836A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014241354A (en) * 2013-06-12 2014-12-25 パナソニック株式会社 Band selection polarization shield, manufacturing method of band selection polarization shield, display device and display apparatus
US20160093939A1 (en) * 2014-09-25 2016-03-31 Samsung Electronics Co., Ltd. Antenna Device
US20180090825A1 (en) * 2016-09-23 2018-03-29 Apple Inc. Radio frequency transparent patterns for conductive coating
WO2020066817A1 (en) * 2018-09-28 2020-04-02 大日本印刷株式会社 Wiring board and method for manufacturing wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014241354A (en) * 2013-06-12 2014-12-25 パナソニック株式会社 Band selection polarization shield, manufacturing method of band selection polarization shield, display device and display apparatus
US20160093939A1 (en) * 2014-09-25 2016-03-31 Samsung Electronics Co., Ltd. Antenna Device
US20180090825A1 (en) * 2016-09-23 2018-03-29 Apple Inc. Radio frequency transparent patterns for conductive coating
WO2020066817A1 (en) * 2018-09-28 2020-04-02 大日本印刷株式会社 Wiring board and method for manufacturing wiring board

Also Published As

Publication number Publication date
TW202205736A (en) 2022-02-01
JPWO2021220836A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
TWI602091B (en) Touch module with transparent antenna and touch display apparatus using same
CN108646952B (en) Touch display panel and touch display device
US10254904B2 (en) Conductive sheet, capacitive touch panel, and display device
CN205050119U (en) A touch input device for detecting electrode slice of pressure reaches including this electrode slice
US10073573B2 (en) Conductive sheet, capacitive touch panel, display device
JP3192251U (en) Touch panel and touch display device
US20130154979A1 (en) Touch panel having electrostatic protection structure
EP3229112A1 (en) Metal grid, touch screen, display apparatus and touch screen manufacturing method
US20170083153A1 (en) Touch panel with antenna structure
CN105718114A (en) Smartphone
WO2021251169A1 (en) Display module
US20190163306A1 (en) Touch panel and touch display device and method for fabricating the same, touch display device (as amended)
KR101633923B1 (en) Smartphone
KR20160016734A (en) Smartphone
TW202205740A (en) Transparent antenna, antenna array, and display module
JP2014096149A (en) Touch panel and manufacturing method of the same
US20210064185A1 (en) Touch substrate, method for manufacturing same, and touch device
JP2014149608A (en) Flexible electrode member for touch panel, touch panel and image display device
CN112713383B (en) Touch screen and electronic equipment
TW202215709A (en) Transparent Antenna and Display Module
WO2021027534A1 (en) Touch screen and electronic device
WO2021220836A1 (en) Display module
KR20160016733A (en) Touch input device
JP6440049B2 (en) Flexible electrode member for touch panel, touch panel, and image display device
KR101960708B1 (en) Touch input device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21795874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21795874

Country of ref document: EP

Kind code of ref document: A1