WO2020095499A1 - Liquid crystal composition and liquid crystal display element - Google Patents

Liquid crystal composition and liquid crystal display element Download PDF

Info

Publication number
WO2020095499A1
WO2020095499A1 PCT/JP2019/030968 JP2019030968W WO2020095499A1 WO 2020095499 A1 WO2020095499 A1 WO 2020095499A1 JP 2019030968 W JP2019030968 W JP 2019030968W WO 2020095499 A1 WO2020095499 A1 WO 2020095499A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbons
liquid crystal
diyl
compound
fluorine
Prior art date
Application number
PCT/JP2019/030968
Other languages
French (fr)
Japanese (ja)
Inventor
真依子 松隈
Original Assignee
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jnc石油化学株式会社 filed Critical Jnc株式会社
Priority to JP2020556602A priority Critical patent/JP7342880B2/en
Publication of WO2020095499A1 publication Critical patent/WO2020095499A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • C09K19/16Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon double bonds, e.g. stilbenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to a liquid crystal composition, a liquid crystal display device containing this composition, and the like.
  • the present invention relates to a liquid crystal composition having a positive dielectric anisotropy, and an AM (active matrix) device containing this composition and having a mode of TN, ECB, OCB, IPS, FFS, or FPA.
  • classification based on the operation mode of liquid crystal molecules is performed by PC (phase change), TN (twisted nematic), STN (super twisted nematic), ECB (electrically controlled birefringence), OCB (optically compensated bend), and IPS.
  • the modes include (in-plane switching), VA (vertical alignment), FFS (fringe field switching), and FPA (field-induced photo-reactive alignment).
  • the classification based on the driving method of the element is PM (passive matrix) and AM (active matrix). PM is classified into static, multiplex, etc., and AM is classified into TFT (thin film transistor), MIM (metal insulator metal), and the like.
  • the TFTs are classified into amorphous silicon and polycrystal silicon. The latter is classified into a high temperature type and a low temperature type according to the manufacturing process.
  • the light source-based classification is a reflective type that uses natural light, a transmissive type that uses a backlight, and a semi-transmissive type that uses both natural light and a backlight.
  • the liquid crystal display element contains a liquid crystal composition having a nematic phase.
  • This composition has suitable properties. By improving the properties of this composition, an AM device having good properties can be obtained.
  • the relationships in these properties are summarized in Table 1 below. The characteristics of the composition will be further described based on a commercially available AM device.
  • the temperature range of the nematic phase is related to the temperature range in which the device can be used.
  • a preferable upper limit temperature of the nematic phase is about 70 ° C. or higher, and a preferable lower limit temperature of the nematic phase is about ⁇ 10 ° C. or lower.
  • the viscosity of the composition is related to the response time of the device. A short response time is preferable for displaying a moving image on the device.
  • the elastic constant of the composition is related to the contrast of the device. In order to increase the contrast in the device, a large elastic constant in the composition is more preferable.
  • the optical anisotropy of the composition is related to the contrast ratio of the device. Depending on the mode of the device, a large optical anisotropy or a small optical anisotropy, that is, a suitable optical anisotropy is required.
  • the product ( ⁇ n ⁇ d) of the optical anisotropy ( ⁇ n) of the composition and the cell gap (d) of the device is designed to maximize the contrast ratio.
  • the appropriate value of the product depends on the type of operating mode. For a TN-like mode device, a suitable value is about 0.45 ⁇ m. In this case, a composition having a large optical anisotropy is preferable for a device having a small cell gap.
  • a large dielectric anisotropy in the composition contributes to a low threshold voltage, a small power consumption and a large contrast ratio in the device. Therefore, large dielectric anisotropy is preferable.
  • the large specific resistance in the composition contributes to a large voltage holding ratio and a large contrast ratio in the device. Therefore, in the initial stage, a composition having a large specific resistance at room temperature as well as at a temperature close to the maximum temperature of the nematic phase is preferable.
  • a composition having a large specific resistance not only at room temperature but also at a temperature close to the maximum temperature of the nematic phase after being used for a long time is preferable.
  • the stability of the composition against ultraviolet rays and heat is related to the life of the liquid crystal display device. When their stability is high, the lifetime of this device is long. Such characteristics are preferable for AM devices used for liquid crystal monitors, liquid crystal televisions, and the like.
  • a composition having a positive dielectric anisotropy is used in an AM device having a TN mode.
  • a composition having a negative dielectric anisotropy is used in an AM device having a VA mode.
  • a composition having a positive or negative dielectric anisotropy is used in an AM device having an IPS mode or an FFS mode.
  • a composition having a positive or negative dielectric anisotropy is used in a polymer-sustained alignment (PSA) type AM device.
  • PSA polymer-sustained alignment
  • the arrangement of some liquid crystal molecules is not parallel to the panel substrate due to the oblique electric field. Therefore, in order to suppress the tilt-up of these liquid crystal molecules, the dielectric constant ( ⁇ It is preferable that ⁇ ) is large. By suppressing the tilt-up of the liquid crystal molecules, the transmittance of the FFS mode element can be increased, which contributes to a large contrast ratio (for example, see Non-Patent Document 1).
  • An object of the present invention is to provide a liquid crystal composition having a large dielectric constant ( ⁇ ) in the short axis direction of liquid crystal molecules.
  • Other issues are high nematic phase upper temperature limit, nematic phase lower temperature limit, small viscosity, suitable optical anisotropy, large dielectric anisotropy, large resistivity, high heat stability, high UV stability.
  • a liquid crystal composition satisfying at least one of properties such as a large elastic constant is Another object is to provide a liquid crystal composition having a suitable balance between at least two of these properties.
  • Another object is to provide a liquid crystal display device containing such a composition.
  • Another object is to provide a liquid crystal display device having a high transmittance and a large contrast ratio.
  • Another object is to provide an AM device having characteristics such as short response time, large voltage holding ratio, low threshold voltage and long life.
  • the present invention contains at least one compound selected from the compounds represented by formula (1) as the first component, and at least one compound selected from the compounds represented by formula (2) as the second component
  • the liquid crystal composition has a positive dielectric anisotropy.
  • R 1 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons
  • R 2 and R 3 are hydrogen.
  • ring A and ring B are 1,4-cyclohexylene.
  • ring C and ring E are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene , 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2 , 6-diyl, or chroman-2,6-diyl in which at least one hydrogen has been replaced by fluorine or chlorine, but at least one of ring C and ring E has at least one hydrogen replaced by flu
  • the advantage of the present invention is a liquid crystal composition having a large dielectric constant ( ⁇ ) in the short axis direction of liquid crystal molecules.
  • Other advantages are high upper temperature of nematic phase, low lower temperature of nematic phase, small viscosity, proper optical anisotropy, large dielectric anisotropy, large specific resistance, high heat stability, high UV stability.
  • a liquid crystal composition satisfying at least one of properties such as a large elastic constant is a liquid crystal composition that has a suitable balance between at least two of these properties.
  • Another advantage is a liquid crystal display device containing such a composition.
  • Another advantage is a liquid crystal display device having a high transmittance and a large contrast ratio.
  • Another advantage is an AM device having characteristics such as short response time, large voltage holding ratio, low threshold voltage, and long life.
  • liquid crystal composition and “liquid crystal display device” may be abbreviated as “composition” and “device”, respectively.
  • “Liquid crystal display element” is a general term for liquid crystal display panels and liquid crystal display modules.
  • the “liquid crystalline compound” is a compound having a liquid crystal phase such as a nematic phase or a smectic phase, and does not have a liquid crystal phase, but for the purpose of adjusting properties such as temperature range, viscosity and dielectric anisotropy of the nematic phase. It is a general term for the compounds mixed in the composition.
  • This compound has a 6-membered ring such as 1,4-cyclohexylene and 1,4-phenylene, and its molecule (liquid crystal molecule) is rod-like.
  • the “polymerizable compound” is a compound added for the purpose of forming a polymer in the composition. Liquid crystal compounds having alkenyl are not classified as polymerizable compounds in that sense.
  • the liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds. Additives such as an optically active compound and a polymerizable compound are added to the liquid crystal composition as needed.
  • the proportion of the liquid crystal compound is represented by a mass percentage (mass%) based on the mass of the liquid crystal composition containing no additive even when the additive is added.
  • the ratio of the additive is represented by a mass percentage (mass%) based on the mass of the liquid crystal composition containing no additive. That is, the ratio of the liquid crystal compound or the additive is calculated based on the total mass of the liquid crystal compound.
  • the ratio of the polymerization initiator and the polymerization inhibitor is exceptionally expressed based on the mass of the polymerizable compound.
  • the maximum temperature of the nematic phase may be abbreviated as “maximum temperature”.
  • the “minimum temperature of the nematic phase” may be abbreviated as “minimum temperature”.
  • the expression “increasing the dielectric anisotropy” means that, in the case of a composition having a positive dielectric anisotropy, that value increases positively, and a composition having a negative dielectric anisotropy. When it is a thing, it means that its value increases negatively.
  • “High voltage retention” means that the device has a large voltage retention not only at room temperature but also at a temperature close to the upper limit temperature at the initial stage, and after a long time use, it has a large voltage not only at room temperature but also at a temperature close to the upper limit temperature. Means to have a retention rate.
  • the properties of the compositions and devices may be examined by aging tests.
  • symbols ⁇ and ⁇ surrounded by hexagons correspond to the ring ⁇ and the ring ⁇ , respectively, and represent rings such as a 6-membered ring and a condensed ring.
  • the subscript'x 'is 2 there are two rings ⁇ .
  • the two groups represented by the two rings ⁇ may be the same or different.
  • This rule applies to any two rings ⁇ when the subscript'x 'is greater than 2.
  • This rule also applies to other symbols, such as the linking group Z.
  • a diagonal line crossing one side of the ring ⁇ represents that any hydrogen on the ring ⁇ may be replaced with a substituent (—Sp—P).
  • the subscript'y ' indicates the number of substituents replaced. When the subscript'y 'is 0, there is no such replacement. When the subscript'y 'is 2 or more, there are plural substituents (-Sp-P) on the ring ⁇ . Also in this case, the rule of "may be the same or different" may be applied. This rule also applies when the Ra symbol is used for a plurality of compounds.
  • Ra and Rb are alkyl, alkoxy, or alkenyl
  • Ra and Rb are independently selected from the group of alkyl, alkoxy, and alkenyl.
  • the group represented by Ra and the group represented by Rb may be the same or different.
  • At least one compound selected from the compounds represented by formula (1z) may be abbreviated as “compound (1z)”.
  • “Compound (1z)” means one compound represented by formula (1z), a mixture of two compounds, or a mixture of three or more compounds. The same applies to compounds represented by other formulas.
  • the expression "at least one compound selected from the compounds represented by formula (1z) and formula (2z)” means at least one compound selected from the group consisting of compound (1z) and compound (2z). ..
  • the expression "at least one'A '” means that the number of'A's is arbitrary.
  • the expression “at least one'A 'may be replaced by'B'” means that when the number of'A 'is one, the position of'A' is arbitrary and the number of'A 'is two. If there are more than one, those positions can be selected without restriction.
  • the phrase “at least one —CH 2 — may be replaced with —O—” is sometimes used. In this case, —CH 2 —CH 2 —CH 2 — may be converted to —O—CH 2 —O— by replacing non-adjacent —CH 2 — with —O—. However, adjacent --CH 2 --is not replaced with --O--. This is because this replacement produces —O—O—CH 2 — (peroxide).
  • alkyl is linear or branched and does not include cyclic alkyl.
  • Straight-chain alkyl is preferred over branched alkyl.
  • terminal groups such as alkoxy and alkenyl.
  • trans is preferable to cis for increasing the maximum temperature.
  • 2-fluoro-1,4-phenylene is asymmetrical to the left and right, there are leftward (L) and rightward (R) directions.
  • divalent groups such as tetrahydropyran-2,5-diyl.
  • a linking group such as carbonyloxy (-COO- or -OCO-).
  • the present invention includes the following items.
  • Item 1 Positive dielectric containing at least one compound selected from compounds represented by formula (1) as a first component and at least one compound selected from compounds represented by formula (2) as a second component A liquid crystal composition having refractive index anisotropy.
  • R 1 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons
  • R 2 and R 3 are hydrogen.
  • ring A and ring B are 1,4-cyclohexylene.
  • ring C and ring E are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene , 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2 , 6-diyl, or chroman-2,6-diyl in which at least one hydrogen has been replaced by fluorine or chlorine, but at least one of ring C and ring E has at least one hydrogen replaced by flu
  • Item 2. The liquid crystal composition according to item 1, containing at least one compound selected from compounds represented by formulas (1-1) to (1-14) as a first component.
  • R 1 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 14 carbons
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 , X 10 , X 11 , X 12 , X 13 , and X 14 are hydrogen or fluorine
  • Y 1 is Fluorine, chlorine, an alkyl having 1 to 12 carbons in which at least one hydrogen is replaced with fluorine or chlorine, an alkoxy having 1 to 12 carbons in which at least one hydrogen is replaced with fluorine or chlorine, or at least one hydrogen
  • It is an alkenyloxy having 2 to 12 carbons, which is replaced by fluorine or chlorine.
  • Item 3. The liquid crystal composition according to item 1 or 2, containing at least one compound selected from the compounds represented by formulas (2-1) to (2-38) as the second component.
  • R 2 and R 3 are each alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or 2 carbons. To 12 alkenyloxy.
  • Item 4. The liquid crystal according to any one of items 1 to 3, wherein the ratio of the first component is in the range of 5% by mass to 50% by mass, and the ratio of the second component is in the range of 2% by mass to 50% by mass. Composition.
  • Item 5. The liquid crystal composition according to any one of items 1 to 4, containing at least one compound selected from the compounds represented by formula (3) as the third component.
  • R 4 and R 5 are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one hydrogen is replaced by fluorine or chlorine.
  • C2-C12 alkenyl; ring F and ring G are 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 2,5-difluoro-1,4 -Phenylene;
  • Z 5 is a single bond, ethylene, vinylene, methyleneoxy, or carbonyloxy; e is 1, 2, or 3.
  • Item 6. The liquid crystal composition according to any one of items 1 to 5, containing at least one compound selected from compounds represented by formulas (3-1) to (3-13) as a third component.
  • R 4 and R 5 are each an alkyl having 1 to 12 carbons, an alkoxy having 1 to 12 carbons, an alkenyl having 2 to 12 carbons, or at least one of It is alkenyl having 2 to 12 carbons in which hydrogen is replaced by fluorine or chlorine.
  • Item 7. The liquid crystal composition according to item 5 or 6, wherein the ratio of the third component is in the range of 10% by mass to 90% by mass.
  • Item 8. The liquid crystal composition according to any one of items 1 to 7, containing at least one compound selected from the compounds represented by formula (4) as the fourth component.
  • R 6 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons or alkenyl having 2 to 12 carbons;
  • ring J is 1,4-cyclohexylene, 1,4 -Phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, pyrimidine-2,5-diyl, 1,3-dioxane -2,5-diyl, or tetrahydropyran-2,5-diyl;
  • Z 6 is a single bond, ethylene, or carbonyloxy;
  • X 15 and X 16 are hydrogen or fluorine;
  • Y 2 is , Fluorine, chlorine, alkyl having 1 to 12 carbons in which at least one
  • Item 9 The liquid crystal composition according to any one of items 1 to 8, which contains, as a fourth component, at least one compound selected from compounds represented by formulas (4-1) to (4-16).
  • R 6 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons.
  • Item 10 The liquid crystal composition according to item 8 or 9, wherein the ratio of the fourth component is in the range of 5% by mass to 40% by mass.
  • Item 11 The liquid crystal composition according to any one of items 1 to 10, containing at least one compound selected from the compounds represented by formula (5) as the fifth component.
  • R 7 and R 8 are hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyloxy having 2 to 12 carbons.
  • Ring K and ring M are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, naphthalene-2,6-diyl, at least one hydrogen Is naphthalene-2,6-diyl substituted with fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl substituted with at least one hydrogen with fluorine or chlorine;
  • ring L is , 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1, -Phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl, 7,8-difluorochroman-2,6-diyl, 3,4,5,6-tetrafluorofluorene-2,7-d
  • Item 12. The liquid crystal composition according to any one of items 1 to 11, containing at least one compound selected from compounds represented by formulas (5-1) to (5-31) as a fifth component.
  • R 7 and R 8 are hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbon It is an alkenyloxy of the numbers 2 to 12.
  • Item 13 The liquid crystal composition according to item 11 or 12, wherein the ratio of the fifth component is in the range of 2% by mass to 50% by mass.
  • the maximum temperature of the nematic phase is 70 ° C. or higher, the optical anisotropy at a wavelength of 589 nm (measured at 25 ° C.) is 0.07 or higher, and the dielectric anisotropy at a frequency of 1 kHz (measured at 25 ° C.) is 2 14.
  • the liquid crystal composition according to any one of items 1 to 13, which is the above.
  • Item 15 A liquid crystal display device containing the liquid crystal composition according to any one of items 1 to 13.
  • Item 16 The liquid crystal display element according to item 15, wherein the operation mode of the liquid crystal display element is the FFS mode and the driving method of the liquid crystal display element is the active matrix method.
  • Item 17 The liquid crystal display element according to item 15, wherein the operation mode of the liquid crystal display element is a TN mode, an ECB mode, an OCB mode, an IPS mode, or an FPA mode, and the driving method of the liquid crystal display element is an active matrix method.
  • Item 18 Use of the liquid crystal composition according to any one of items 1 to 14 in a liquid crystal display device.
  • the present invention also includes the following items.
  • A One compound selected from additives such as an optically active compound, an antioxidant, an ultraviolet absorber, a quencher, a dye, a defoaming agent, a polymerizable compound, a polymerization initiator and a polymerization inhibitor, and two compounds.
  • B An AM device containing the above composition.
  • C The above composition further containing a polymerizable compound, and a polymer-supported alignment (PSA) type AM device containing this composition.
  • D A polymer-supported alignment (PSA) type AM device containing the composition described above and in which the polymerizable compound in the composition is polymerized.
  • (E) A device containing the above composition and having a mode of PC, TN, STN, ECB, OCB, IPS, VA, FFS, or FPA.
  • (F) A transmissive element containing the above composition.
  • (G) Use of the above composition as a composition having a nematic phase.
  • (H) Use of an optically active composition obtained by adding an optically active compound to the above composition.
  • composition of the present invention will be described in the following order. First, the constitution of the component compounds in the composition will be explained. Second, the main characteristics of the component compounds and the main effects of the compounds on the composition will be explained. Thirdly, the combination of components in the composition, the preferable ratio of the components and the basis thereof will be described. Fourthly, a preferred form of the component compound will be described. Fifth, preferable component compounds are shown. Sixth, the additives that may be added to the composition will be described. Seventh, a method of synthesizing the component compounds will be described. Finally, the use of the composition will be explained.
  • This composition contains a plurality of liquid crystal compounds.
  • the composition may contain additives. Additives are optically active compounds, antioxidants, ultraviolet absorbers, quenchers, dyes, defoamers, polymerizable compounds, polymerization initiators, polymerization inhibitors, polar compounds and the like.
  • This composition is classified into composition A and composition B from the viewpoint of the liquid crystal compound.
  • the composition A is a liquid crystal compound selected from the compound (1), the compound (2), the compound (3), the compound (4), and the compound (5), as well as other liquid crystal compounds and additives. May be further contained.
  • the "other liquid crystal compound” is a liquid crystal compound different from the compound (1), the compound (2), the compound (3), the compound (4), and the compound (5). Such compounds are mixed into the composition for the purpose of further adjusting the properties.
  • Composition B consists essentially of liquid crystalline compounds selected from compound (1), compound (2), compound (3), compound (4) and compound (5). “Substantially” means that the composition B may contain an additive, but contains no other liquid crystal compound. Composition B has fewer components than composition A. From the viewpoint of cost reduction, the composition B is preferable to the composition A. The composition A is preferable to the composition B from the viewpoint that the characteristics can be further adjusted by mixing the other liquid crystal compounds.
  • the main effects of the component compounds are as follows.
  • the compound (1) increases the dielectric anisotropy and lowers the minimum temperature.
  • the compound (2) increases the dielectric constant of the liquid crystal in the short axis direction and lowers the minimum temperature.
  • the compound (3) lowers the viscosity or raises the maximum temperature.
  • the compound (4) increases the dielectric anisotropy and lowers the minimum temperature.
  • the compound (5) increases the dielectric constant in the minor axis direction and lowers the minimum temperature.
  • Preferred combinations of the component compounds in the composition are compound (1) + compound (2), compound (1) + compound (2) + compound (3), compound (1) + compound (2) + compound (4), Compound (1) + Compound (2) + Compound (5), Compound (1) + Compound (2) + Compound (3) + Compound (4), Compound (1) + Compound (2) + Compound (3) + The compound (5) or the compound (1) + the compound (2) + the compound (3) + the compound (4) + the compound (5).
  • More preferred combinations are compound (1) + compound (2), compound (1) + compound (2) + compound (3), compound (1) + compound (2) + compound (3) + compound (4), Compound (1) + Compound (2) + Compound (3) + Compound (5), or Compound (1) + Compound (2) + Compound (3) + Compound (4) + Compound (5).
  • the preferable ratio of the compound (1) is about 5% by mass or more for increasing the dielectric anisotropy, and about 50% by mass or less for decreasing the minimum temperature.
  • a more desirable ratio is in the range of approximately 10% by mass to approximately 45% by mass.
  • a particularly desirable ratio is in the range of approximately 10% by mass to approximately 40% by mass.
  • the preferable ratio of the compound (2) is about 2% by mass or more for increasing the dielectric constant in the short axis direction of liquid crystal molecules, and about 50% by mass or less for decreasing the minimum temperature.
  • a more desirable ratio is in the range of approximately 2% by mass to approximately 30% by mass.
  • a particularly desirable ratio is in the range of approximately 2% by mass to approximately 20% by mass.
  • the preferable ratio of the compound (3) is about 10% by mass or more for decreasing the viscosity or increasing the maximum temperature, and about 90% by mass or less for increasing the dielectric anisotropy.
  • a more desirable ratio is in the range of approximately 15% by mass to approximately 80% by mass.
  • a particularly desirable ratio is in the range of approximately 20% by mass to approximately 70% by mass.
  • the preferable ratio of the compound (4) is about 5% by mass or more for increasing the dielectric anisotropy, and about 40% by mass or less for decreasing the minimum temperature.
  • a more desirable ratio is in the range of approximately 5% by mass to approximately 35% by mass.
  • a particularly desirable ratio is in the range of approximately 10% by mass to approximately 30% by mass.
  • a preferable ratio of the compound (5) is about 2% by mass or more for increasing the dielectric constant in the minor axis direction and about 50% by mass or less for decreasing the minimum temperature.
  • a more desirable ratio is in the range of approximately 4% by mass to approximately 40% by mass.
  • a particularly desirable ratio is in the range of approximately 4% by mass to approximately 30% by mass.
  • R 1 and R 6 are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, Alternatively, it is alkenyl having 2 to 12 carbons.
  • Preferred R 1 and R 6 are alkyl having 1 to 12 carbons for the purpose of increasing stability to light or heat.
  • R 2 , R 3 , R 7 , and R 8 are each hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyloxy having 2 to 12 carbons. Is.
  • Desirable R 2 , R 3 , R 7 , and R 8 are alkyl having 1 to 12 carbons for increasing the stability to light or heat, and for increasing the maximum temperature and increasing the refractive index anisotropy.
  • R 4 and R 5 are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine. It is alkenyl.
  • Desirable R 4 and R 5 are alkenyl having 2 to 12 carbons for decreasing the viscosity and alkyl having 1 to 12 carbons for increasing the stability to light or heat.
  • Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. More desirable alkyl is methyl, ethyl, propyl, butyl, or pentyl for decreasing the viscosity.
  • Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, or heptyloxy. More desirable alkoxy is methoxy or ethoxy for decreasing the viscosity.
  • Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, It is 3-hexenyl, 4-hexenyl, or 5-hexenyl. More desirable alkenyl is vinyl, 1-propenyl, 3-butenyl, or 3-pentenyl for decreasing the viscosity.
  • Trans is preferable in the alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl for decreasing the viscosity.
  • Cis is preferable in the alkenyl such as 2-butenyl, 2-pentenyl and 2-hexenyl.
  • Preferred alkenyloxy is vinyloxy, allyloxy, 3-butenyloxy, 3-pentenyloxy, or 4-pentenyloxy. More desirable alkenyloxy is allyloxy or 3-butenyloxy for decreasing the viscosity.
  • alkyl in which at least one hydrogen is replaced by fluorine or chlorine are fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl, 7-fluoroheptyl. , Or 8-fluorooctyl.
  • a more preferable example is 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, or 5-fluoropentyl for increasing the dielectric anisotropy.
  • alkenyl in which at least one hydrogen has been replaced by fluorine or chlorine include 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro. -4-pentenyl or 6,6-difluoro-5-hexenyl.
  • a more preferred example is 2,2-difluorovinyl or 4,4-difluoro-3-butenyl for decreasing the viscosity.
  • Ring A and ring B are 1,4-cyclohexylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine, pyrimidine-2,5-diyl, 1,3-dioxane- It is 2,5-diyl or tetrahydropyran-2,5-diyl.
  • Preferred ring A and ring B are 1,4-phenylene or 2-fluoro-1,4-phenylene for increasing the optical anisotropy.
  • Ring J is 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,6-difluoro-1,4- It is phenylene, pyrimidine-2,5-diyl, 1,3-dioxane-2,5-diyl, or tetrahydropyran-2,5-diyl.
  • Preferred ring J is 1,4-phenylene or 2-fluoro-1,4-phenylene for increasing the optical anisotropy. Tetrahydropyran-2,5-diyl is Or And preferably Is.
  • Ring C and Ring E are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 1 in which at least one hydrogen is replaced by fluorine or chlorine.
  • Preferred examples of “1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine” include 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene or 2-chloro- It is 3-fluoro-1,4-phenylene.
  • Preferred ring C and ring E are 1,4-cyclohexylene for decreasing the viscosity, tetrahydropyran-2,5-diyl for increasing the dielectric anisotropy, and for increasing the optical anisotropy. It is 1,4-phenylene.
  • Ring K and ring M are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, naphthalene-2,6-diyl and at least one hydrogen.
  • Preferred examples of “1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine” include 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene or 2-chloro- It is 3-fluoro-1,4-phenylene.
  • Preferred ring K and ring M are 1,4-cyclohexylene for decreasing the viscosity, tetrahydropyran-2,5-diyl for increasing the dielectric anisotropy, and for increasing the optical anisotropy. It is 1,4-phenylene.
  • Ring D and ring L are 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3 , 4,5-Trifluoronaphthalene-2,6-diyl, 7,8-difluorochroman-2,6-diyl, 3,4,5,6-tetrafluorofluorene-2,7-diyl (FLF4), 4 , 6-difluorodibenzofuran-3,7-diyl (DBFF2), 4,6-difluorodibenzothiophene-3,7-diyl (DBTF2), or 1,1,6,7-tetrafluoroindane-2,5-diyl (InF4).
  • DBFF2 6-difluorodibenzofuran-3,7-diyl
  • DBTF2 4,6-difluorodibenzo
  • Preferred ring D and ring L are 2,3-difluoro-1,4-phenylene for decreasing the viscosity, and 2-chloro-3-fluoro-1,4-phenylene for decreasing the optical anisotropy. 7,8-difluorochroman-2,6-diyl for increasing the dielectric anisotropy.
  • Ring F and ring G are 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 2,5-difluoro-1,4-phenylene.
  • Preferred ring F or ring G is 1,4-cyclohexylene for decreasing the viscosity, or 1,4-phenylene for increasing the optical anisotropy.
  • Z 1 and Z 2 are single bonds, ethylene, vinylene, methyleneoxy, carbonyloxy, or difluoromethyleneoxy.
  • Preferred Z 2 is a single bond for decreasing the viscosity.
  • Z 3 , Z 4 , Z 7 , and Z 8 are single bonds, ethylene, vinylene, methyleneoxy, or carbonyloxy.
  • Preferred Z 3 , Z 4 , Z 7 , and Z 8 are single bonds for decreasing the viscosity, ethylene for decreasing the minimum temperature, and methyleneoxy for increasing the dielectric anisotropy.
  • Z 5 is a single bond, ethylene, vinylene, methyleneoxy, or carbonyloxy.
  • Preferred Z 5 is a single bond for decreasing the viscosity.
  • X 1 and X 2 are hydrogen or fluorine. Preferred X 1 or X 2 is fluorine for increasing the dielectric anisotropy.
  • Y 1 and Y 2 are fluorine, chlorine, an alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, and an alkoxy having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine. Or alkenyloxy having 2 to 12 carbons in which at least one hydrogen has been replaced by fluorine or chlorine.
  • Preferred Y 1 and Y 2 are fluorine for decreasing the minimum temperature.
  • a preferred example of alkyl in which at least one hydrogen is replaced by fluorine or chlorine is trifluoromethyl.
  • a preferred example of alkoxy in which at least one hydrogen has been replaced by fluorine or chlorine is trifluoromethoxy.
  • a preferred example of alkenyloxy in which at least one hydrogen has been replaced with fluorine or chlorine is trifluorovinyloxy.
  • A is 1, 2, 3, or 4, b is 0, 1, 2, or 3, and the sum of a and b is 4 or less.
  • Preferred a is 2 for lowering the minimum temperature and 3 for increasing the dielectric anisotropy.
  • Preferred b is 0 for increasing the maximum temperature and 1 for increasing the dielectric anisotropy.
  • c and g are 0, 1, 2, or 3, d and h are 0 or 1, the sum of c and d is 1, 2, or 3, and the sum of g and h is 3 It is below.
  • Preferred c or g is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature.
  • Preferred d or h is 0 for decreasing the viscosity and 1 for decreasing the minimum temperature.
  • e is 1, 2, or 3.
  • Preferred e is 1 for decreasing the viscosity and 2 or 3 for increasing the maximum temperature.
  • f is 1, 2, 3, or 4.
  • Preferred f is 2 for decreasing the minimum temperature and 3 for increasing the dielectric
  • Preferred compound (1) includes compounds (1-1) to (1-14) described in item 2.
  • at least one of the first components is compound (1-2), compound (1-3), compound (1-4), compound (1-7), compound (1-8), compound ( 1-9), compound (1-10), or compound (1-12) are preferred.
  • Preferred compounds (2) are compounds (2-1) to (2-38) described in item 3.
  • at least one of the second components is compound (2-1), compound (2-2), compound (2-3), compound (2-4), compound (2-7), compound ( 2-8), compound (2-14), compound (2-15), compound (2-16), compound (2-17), compound (2-22), compound (2-32), compound (2 It is preferably -34), compound (2-35), compound (2-37), or compound (2-38).
  • At least two of the second components are preferably a combination of compound (2-1) and compound (2-3).
  • Preferred compounds (3) are the compounds (3-1) to (3-13) described in item 6.
  • at least one of the third components is compound (3-1), compound (3-2), compound (3-3), compound (3-5), compound (3-6), compound ( It is preferably 3-7), compound (3-8), compound (3-11), or compound (3-13).
  • At least two of the third components are compound (3-1) and compound (3-5), compound (3-1) and compound (3-6), compound (3-1) and compound (3-7), Compound (3-1) and compound (3-8), compound (3-1) and compound (3-13), compound (3-3) and compound (3-5), compound (3-3) and compound (3-6), compound (3-3) and compound (3-7), compound (3-3) and compound (3-8), or combination of compound (3-3) and compound (3-13) Is preferred.
  • Preferred compounds (4) are the compounds (4-1) to (4-16) described in item 9.
  • at least one of the fourth components is compound (4-4), compound (4-7), compound (4-8), compound (4-11), compound (4-12), compound ( It is preferably 4-13), the compound (4-14), or the compound (4-16).
  • At least two of the fourth components are compound (4-11) and compound (4-12), compound (4-11) and compound (4-13), compound (4-11) and compound (4-16), Alternatively, a combination of compound (4-12) and compound (4-13) is preferable.
  • Preferred compounds (5) are the compounds (5-1) to (5-31) described in item 12.
  • at least one of the fifth components is compound (5-1), compound (5-2), compound (5-3), compound (5-6), compound (5-7), compound ( 5-8), compound (5-9), compound (5-13), compound (5-15), or compound 5-17) is preferred.
  • At least two of the fifth components are compound (5-1) and compound (5-4), compound (5-1) and compound (5-6), compound (5-1) and compound (5-7), Compound (5-1) and compound (5-9), compound (5-1) and compound (5-13), compound (5-1) and compound (5-15), compound (5-1) and compound (5-16), compound (5-7) and compound (5-8), compound (5-7) and compound (5-9), compound (5-7) and compound (5-13), compound ( 5-7) and compound (5-15), or a combination of compound (5-13) and compound (5-15) is preferable.
  • Such additives are optically active compounds, antioxidants, ultraviolet absorbers, quenchers, dyes, defoamers, polymerizable compounds, polymerization initiators, polymerization inhibitors, polar compounds and the like.
  • An optically active compound is added to the composition for the purpose of inducing a helical structure of liquid crystal molecules to give a twist angle. Examples of such compounds are compound (6-1) to compound (6-5).
  • a desirable ratio of the optically active compound is about 5% by mass or less. A more desirable ratio is in the range of approximately 0.01% by mass to approximately 2% by mass.
  • an antioxidant is used. Added to the composition.
  • An example of the antioxidant is a compound represented by the formula (7).
  • R 9 is alkyl having 1 to 12 carbons.
  • Preferred R 9 is methyl, propyl, pentyl, or heptyl.
  • Ring Q is 1,4-cyclohexylene, 1,4-phenylene, or 1,3-dioxane-2,5-diyl.
  • a preferred ring Q is 1,4-cyclohexylene.
  • j is 0, 1, or 2.
  • Preferred j is 0 or 1.
  • Preferred compound (7) includes compound (7-1) to compound (7-3).
  • Preferred examples of the ultraviolet absorber are benzophenone derivatives, benzoate derivatives, triazole derivatives and the like.
  • Light stabilizers such as sterically hindered amines are also preferred.
  • Preferred examples of the light stabilizer include compound (8-1) to compound (8-16).
  • the preferred ratio of these absorbents and stabilizers is about 50 ppm or more for obtaining the effect, and about 10,000 ppm or less for not lowering the upper limit temperature or for not raising the lower limit temperature. A more desirable ratio is in the range of approximately 100 ppm to approximately 10,000 ppm.
  • the quencher is a compound that receives the light energy absorbed by the liquid crystal compound and converts it into heat energy, thereby preventing decomposition of the liquid crystal compound.
  • the quencher include compounds (9-1) to (9-7).
  • a desirable ratio of these quenchers is about 50 ppm or more for obtaining the effect, and about 20,000 ppm or less for not raising the minimum temperature.
  • a more desirable ratio is in the range of approximately 100 ppm to approximately 10,000 ppm.
  • Dichroic dyes such as azo dyes and anthraquinone dyes are added to the composition in order to adapt to GH (guest host) mode devices.
  • the preferred proportion of dye is in the range of about 0.01% to about 10% by weight.
  • An antifoaming agent such as dimethyl silicone oil or methylphenyl silicone oil is added to the composition to prevent foaming.
  • the preferable ratio of the defoaming agent is about 1 ppm or more to obtain the effect, and about 1000 ppm or less to prevent display defects. A more desirable ratio is in the range of approximately 1 ppm to approximately 500 ppm.
  • a polymerizable compound is used to adapt to a polymer-supported orientation (PSA) type device.
  • Preferred examples of such a polymerizable compound are compounds such as acrylate, methacrylate, vinyl compound, vinyloxy compound, propenyl ether, epoxy compound (oxirane, oxetane), vinyl ketone and the like. Further preferred examples are acrylate or methacrylate derivatives.
  • a preferred ratio is 10% by mass or more based on the total mass of the polymerizable compound. A more desirable ratio is 50% by mass or more. A particularly desirable ratio is 80% by mass or more. The most preferable ratio is 100% by mass.
  • a polymerization inhibitor When storing a polymerizable compound, a polymerization inhibitor may be added to prevent polymerization.
  • the polymerizable compound is usually added to the composition without removing the polymerization inhibitor.
  • the polymerization inhibitor are hydroquinone, hydroquinone derivatives such as methylhydroquinone, 4-tert-butylcatechol, 4-methoxyphenol, phenothiazine and the like.
  • the polar compound is an organic compound having polarity.
  • a compound having an ionic bond is not included. Atoms such as oxygen, sulfur, and nitrogen are more electronegative and tend to have a partial negative charge. Carbon and hydrogen tend to be neutral or have a partial positive charge. Polarity arises from the uneven distribution of partial charges among different atoms in the compound.
  • the polar compound has at least one of the partial structures such as —OH, —COOH, —SH, —NH 2 ,>NH,> N—.
  • the compound (1-1) is obtained from Aldrich (Sigma-Aldrich Corporation) or is synthesized by the method described in US Pat. No. 3,660,505.
  • the compound (2-3 is synthesized by the method described in International Publication No. 1999/021816.
  • the compound (3-1) is synthesized by the method described in JP-A-59-176221.
  • -1) is synthesized by the method described in JP 2000-053602A.
  • composition is prepared from the compounds thus obtained by known methods. For example, the component compounds are mixed and dissolved by heating.
  • the composition mainly has a minimum temperature of about ⁇ 10 ° C. or lower, a maximum temperature of about 70 ° C. or higher, and an optical anisotropy in the range of about 0.07 to about 0.20.
  • a composition having an optical anisotropy in the range of about 0.08 to about 0.25 may be prepared by controlling the ratio of component compounds or by mixing with other liquid crystal compounds.
  • Compositions having optical anisotropy in the range of about 0.10 to about 0.30 may be prepared by trial and error.
  • a device containing this composition has a large voltage holding ratio.
  • This composition is suitable for an AM device.
  • This composition is particularly suitable for a transmissive AM device.
  • This composition can be used as a composition having a nematic phase, or as an optically active composition by adding an optically active compound.
  • This composition can be used for AM devices. Further, it can be used for a PM element.
  • This composition can be used for AM and PM devices having modes such as PC, TN, STN, ECB, OCB, IPS, FFS, VA and FPA.
  • the use in AM devices having TN, OCB, IPS mode or FFS mode is particularly preferable.
  • the liquid crystal molecules may be aligned in parallel with or perpendicular to the glass substrate.
  • These elements may be reflective, transmissive or transflective. Use in a transmissive element is preferred. It can also be used for an amorphous silicon-TFT device or a polycrystalline silicon-TFT device. It can also be used for an NCAP (nematic curvilinear aligned phase) type device produced by microencapsulating this composition and a PD (polymer dispersed) type device in which a three-dimensional network polymer is formed in the composition.
  • NCAP non-curvilinear aligned phase
  • the present invention will be described in more detail by way of examples. The invention is not limited by these examples.
  • the present invention comprises a mixture of the composition of Example 1 and the composition of Example 2.
  • the present invention also includes a mixture of at least two of the example compositions.
  • the synthesized compound was identified by a method such as NMR analysis. The properties of the compounds, compositions, and devices were measured by the methods described below.
  • NMR analysis DRX-500 manufactured by Bruker BioSpin was used for the measurement.
  • the sample was dissolved in a deuterated solvent such as CDCl 3 and the measurement was performed at room temperature under the conditions of 500 MHz and 16 times of integration.
  • Tetramethylsilane was used as an internal standard.
  • CFCl 3 was used as an internal standard, and the number of times of integration was 24.
  • s means a singlet, d a doublet, t a triplet, q a quartet, quin a quintet, sex a sextet, m a multiplet, and br a broad.
  • a Shimadzu GC-14B gas chromatograph was used for the measurement.
  • the carrier gas is helium (2 mL / min).
  • the sample vaporization chamber was set at 280 ° C and the detector (FID) was set at 300 ° C.
  • a capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m; fixed liquid phase dimethylpolysiloxane; non-polar) made by Agilent Technologies Inc. was used for separation of component compounds.
  • the column was held at 200 ° C. for 2 minutes and then heated to 280 ° C. at a rate of 5 ° C./minute.
  • the sample was prepared in an acetone solution (0.1% by mass), and 1 ⁇ L thereof was injected into the sample vaporization chamber.
  • the recorder is a C-R5A type Chromatopac manufactured by Shimadzu Corporation or its equivalent.
  • the obtained gas chromatogram showed the retention times of peaks and the areas of peaks corresponding to the component compounds.
  • capillary column As the solvent for diluting the sample, chloroform, hexane, etc. may be used.
  • the following capillary column may be used to separate the component compounds.
  • HP-1 made by Agilent Technologies Inc. (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m), Rtx-1 made by Restek Corporation (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m), BP-1 manufactured by SGE International Pty. Ltd (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m).
  • a capillary column CBP1-M50-025 (length 50 m, inner diameter 0.25 mm, film thickness 0.25 ⁇ m) manufactured by Shimadzu Corporation may be used for the purpose of preventing overlapping of compound peaks.
  • the ratio of the liquid crystal compound contained in the composition may be calculated by the following method.
  • the mixture of liquid crystal compounds is analyzed by gas chromatography (FID).
  • the area ratio of the peaks in the gas chromatogram corresponds to the ratio of liquid crystal compounds.
  • the correction coefficient of each liquid crystal compound may be regarded as 1. Therefore, the ratio (mass%) of the liquid crystal compound can be calculated from the peak area ratio.
  • the following mother liquid crystals were used.
  • the ratio of the component compounds is shown by mass%.
  • Measurement method The characteristics were measured by the following methods. Most of these are the methods described in the JEITA standard (JEITA / ED-2521B), which is deliberated and established by the Japan Electronics and Information Technology Industries Association (JEITA), or methods modified from this. Met. No thin film transistor (TFT) was attached to the TN device used for the measurement.
  • JEITA Japan Electronics and Information Technology Industries Association
  • T C Minimum temperature of nematic phase
  • a sample having a nematic phase is put in a glass bottle and placed in a freezer at 0 ° C, -10 ° C, -20 ° C, -30 ° C, and -40 ° C for 10 days. After storage, the liquid crystal phase was observed.
  • T C was described as ⁇ 20 ° C. when the sample remained in the nematic phase at ⁇ 20 ° C. and changed to a crystalline or smectic phase at ⁇ 30 ° C.
  • the lower limit temperature of the nematic phase may be abbreviated as “lower limit temperature”.
  • Viscosity Bulk viscosity; ⁇ ; measured at 20 ° C .; mPa ⁇ s: An E-type rotational viscometer manufactured by Tokyo Keiki Co., Ltd. was used for measurement.
  • Viscosity (rotational viscosity; ⁇ 1; measured at 25 ° C; mPa ⁇ s): The measurement is performed according to the method described in M.Imaietetal., Molecular Crystals and Liquid Crystals, Vol.259, 37, (1995). I obeyed. The sample was put in a TN device having a twist angle of 0 ° and a distance (cell gap) between two glass substrates of 5 ⁇ m. A voltage of 16V to 19.5V was applied to the device in steps of 0.5V. After 0.2 seconds of non-application, application was repeated under the conditions of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds).
  • the peak current (peak current) and the peak time (peak time) of the transient current generated by this application were measured.
  • the rotational viscosity value was obtained from these measured values and the calculation formula (10) described on page 40 of the paper by M. Imai et al.
  • the value of the dielectric anisotropy required for this calculation was determined by the method described below using the device whose rotational viscosity was measured.
  • Threshold voltage (Vth; measured at 25 ° C .; V): LCD5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for measurement.
  • the light source was a halogen lamp.
  • the sample was put in a normally white mode TN device in which the distance (cell gap) between two glass substrates was 0.45 / ⁇ n ( ⁇ m) and the twist angle was 80 degrees.
  • the voltage (32 Hz, rectangular wave) applied to this element was increased stepwise from 0 V to 10 V by 0.02 V.
  • the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured.
  • a voltage-transmittance curve in which the transmittance is 100% when the amount of light is maximum and the transmittance is 0% when the amount of light is minimum was created.
  • the threshold voltage is represented by the voltage when the transmittance reaches 90%.
  • VHR-9 Voltage holding ratio
  • the TN device used for measurement had a polyimide alignment film, and the distance (cell gap) between two glass substrates was 5 ⁇ m. .. This device was sealed with an adhesive which was cured by ultraviolet rays after the sample was put in.
  • a pulse voltage 60 microseconds at 1 V was applied to the TN device to charge it.
  • the decaying voltage was measured with a high-speed voltmeter for 166.7 milliseconds, and the area A between the voltage curve and the horizontal axis in a unit cycle was obtained.
  • Area B was the area when it was not attenuated.
  • the voltage holding ratio was expressed as a percentage of the area A with respect to the area B.
  • VHR-10 Voltage holding ratio (VHR-10; measured at 60 ° C .;%): The voltage holding ratio was measured by the same procedure as above except that it was measured at 60 ° C. instead of 25 ° C. The obtained value was represented by VHR-10.
  • VHR-11 Voltage holding ratio
  • the TN device used for the measurement had a polyimide alignment film, and the cell gap was 5 ⁇ m. A sample was injected into this device and was irradiated with 5 mW / cm 2 ultraviolet rays for 167 minutes.
  • the light source was a black light manufactured by Eye Graphics Co., Ltd., F40T10 / BL (peak wavelength 369 nm), and the distance between the element and the light source was 5 mm.
  • the VHR-11 measurement measured the decaying voltage for 166.7 milliseconds. Compositions with large VHR-11 have great stability to UV light.
  • VHR-12 Voltage holding ratio
  • the rise time ( ⁇ r: rise time; millisecond) is the time required for the transmittance to change from 90% to 10%.
  • the fall time ( ⁇ f: fall time; millisecond) is the time required to change the transmittance from 10% to 90%.
  • the response time was represented by the sum of the rise time and fall time thus obtained.
  • Elastic constant (K; measured at 25 ° C .; pN): An HP4284A type LCR meter manufactured by Yokogawa / Hewlett Packard Co. was used for the measurement. The sample was placed in a horizontal alignment device in which the distance (cell gap) between two glass substrates was 20 ⁇ m. A charge of 0 V to 20 V was applied to this device, and the electrostatic capacity and the applied voltage were measured. Fitting the measured capacitance (C) and applied voltage (V) values using the formula (2.98) and formula (2.101) on page 75 of "Liquid Crystal Device Handbook" (Nikkan Kogyo Shimbun). Then, the values of K11 and K33 were obtained from the formula (2.99). Next, K22 was calculated by using the values of K11 and K33 obtained earlier in the equation (3.18) on page 171. The elastic constant was represented by the average value of K11, K22, and K33 thus obtained.
  • Dielectric constant in short axis direction ( ⁇ ; measured at 25 ° C.): A sample was put in a TN device in which a distance (cell gap) between two glass substrates was 9 ⁇ m and a twist angle was 80 degrees. .. A sine wave (0.5 V, 1 kHz) was applied to this device, and after 2 seconds, the dielectric constant ( ⁇ ) in the short axis direction of the liquid crystal molecule was measured.
  • Line Image Sticking Parameter (LISP;%): A line afterimage was generated by applying an electrical stress to the liquid crystal display device. The luminance of the area with the line afterimage and the luminance of the remaining area were measured. The ratio of the decrease in luminance due to the line afterimage was calculated, and the size of the line afterimage was expressed by this ratio. 17a) Luminance measurement: An image of the device was taken using an imaging color luminance meter (PM-1433F-0 manufactured by Radiant Zemax). The brightness of each region of the device was calculated by analyzing the image using software (Prometric 9.1, manufactured by Radiant Imaging).
  • a sample is put into an FFS element (16 cells of 4 cells in length ⁇ 4 cells in width) having a cell gap of 3.5 ⁇ m and having a matrix structure, and an adhesive agent that cures this element with ultraviolet rays is used. And sealed. Polarizing plates were arranged on the upper surface and the lower surface of the device so that the polarization axes were orthogonal to each other.
  • the device was irradiated with light and a voltage (rectangular wave, 60 Hz) was applied.
  • the voltage was increased stepwise in the range of 0V to 7.5V in steps of 0.1V, and the brightness of the transmitted light at each voltage was measured.
  • the voltage when the brightness becomes maximum is abbreviated as V255.
  • the voltage when the brightness becomes 21.6% of V255 (that is, 127 gradations) is abbreviated as V127.
  • V255 rectangular wave, 30 Hz
  • 0.5 V rectangular wave, 30 Hz
  • V127 rectangular wave, 0.25 Hz
  • Example of composition is shown below.
  • the component compounds are represented by symbols based on the definitions in Table 3 below.
  • Table 3 the configuration for 1,4-cyclohexylene is trans.
  • the number in parentheses after the symbol corresponds to the compound number.
  • the symbol ( ⁇ ) means other liquid crystal compound.
  • the ratio (percentage) of the liquid crystal compound is a mass percentage (mass%) based on the mass of the liquid crystal composition.
  • Example 1 Comparing Example 1 and Comparative Example 1, the value of ⁇ in Example 1 is larger and the dielectric constant in the minor axis direction of the liquid crystal molecules is larger. Further, comparing Example 2 and Comparative Example 2, the value of ⁇ in Example 2 is larger, and the dielectric constant in the minor axis direction of the liquid crystal molecules is larger. Therefore, it is concluded that the composition of the present invention has excellent properties.
  • the liquid crystal composition of the present invention can be used for liquid crystal monitors, liquid crystal televisions, and the like.

Abstract

The present invention provides: a liquid crystal composition which has a large dielectric constant (ε⊥) in the minor axis direction of liquid crystal molecules; and a liquid crystal display element which contains this composition and has a high transmittance and a large contrast ratio. A liquid crystal composition which contains, as a first component, at least one compound that is selected from among compounds represented by formula (1), while containing as a second component, at least one compound that is selected from among compounds represented by formula (2), and which has positive dielectric anisotropy; and a liquid crystal display element which contains this liquid crystal composition.

Description

液晶組成物および液晶表示素子Liquid crystal composition and liquid crystal display device
 本発明は、液晶組成物、この組成物を含有する液晶表示素子などに関する。特に、誘電率異方性が正の液晶組成物、およびこの組成物を含有し、TN、ECB、OCB、IPS、FFS、またはFPAのモードを有するAM(active matrix)素子に関する。 The present invention relates to a liquid crystal composition, a liquid crystal display device containing this composition, and the like. In particular, the present invention relates to a liquid crystal composition having a positive dielectric anisotropy, and an AM (active matrix) device containing this composition and having a mode of TN, ECB, OCB, IPS, FFS, or FPA.
 液晶表示素子において、液晶分子の動作モードに基づいた分類は、PC(phase change)、TN(twisted nematic)、STN(super twisted nematic)、ECB(electrically controlled birefringence)、OCB(optically compensated bend)、IPS(in-plane switching)、VA(vertical alignment)、FFS(fringe field switching)、FPA(field-induced photo-reactive alignment)などのモードである。素子の駆動方式に基づいた分類は、PM(passive matrix)とAM(active matrix)である。PMは、スタティック(static)、マルチプレックス(multiplex)などに分類され、AMは、TFT(thin film transistor)、MIM(metal insulator metal)などに分類される。TFTの分類は非晶質シリコン(amorphous silicon)および多結晶シリコン(polycrystal silicon)である。後者は製造工程によって高温型と低温型とに分類される。光源に基づいた分類は、自然光を利用する反射型、バックライトを利用する透過型、そして自然光とバックライトの両方を利用する半透過型である。 In a liquid crystal display device, classification based on the operation mode of liquid crystal molecules is performed by PC (phase change), TN (twisted nematic), STN (super twisted nematic), ECB (electrically controlled birefringence), OCB (optically compensated bend), and IPS. The modes include (in-plane switching), VA (vertical alignment), FFS (fringe field switching), and FPA (field-induced photo-reactive alignment). The classification based on the driving method of the element is PM (passive matrix) and AM (active matrix). PM is classified into static, multiplex, etc., and AM is classified into TFT (thin film transistor), MIM (metal insulator metal), and the like. The TFTs are classified into amorphous silicon and polycrystal silicon. The latter is classified into a high temperature type and a low temperature type according to the manufacturing process. The light source-based classification is a reflective type that uses natural light, a transmissive type that uses a backlight, and a semi-transmissive type that uses both natural light and a backlight.
 液晶表示素子はネマチック相を有する液晶組成物を含有する。この組成物は適切な特性を有する。この組成物の特性を向上させることによって、良好な特性を有するAM素子を得ることができる。これらの特性における関連を下記の表1にまとめる。組成物の特性を市販されているAM素子に基づいてさらに説明する。ネマチック相の温度範囲は、素子の使用できる温度範囲に関連する。ネマチック相の好ましい上限温度は約70℃以上であり、そしてネマチック相の好ましい下限温度は約-10℃以下である。組成物の粘度は素子の応答時間に関連する。素子で動画を表示するためには短い応答時間が好ましい。1ミリ秒でもより短い応答時間が望ましい。したがって、組成物における小さな粘度が好ましい。低い温度における小さな粘度はさらに好ましい。組成物の弾性定数は素子のコントラストに関連する。素子においてコントラストを上げるためには、組成物における大きな弾性定数がより好ましい。 The liquid crystal display element contains a liquid crystal composition having a nematic phase. This composition has suitable properties. By improving the properties of this composition, an AM device having good properties can be obtained. The relationships in these properties are summarized in Table 1 below. The characteristics of the composition will be further described based on a commercially available AM device. The temperature range of the nematic phase is related to the temperature range in which the device can be used. A preferable upper limit temperature of the nematic phase is about 70 ° C. or higher, and a preferable lower limit temperature of the nematic phase is about −10 ° C. or lower. The viscosity of the composition is related to the response time of the device. A short response time is preferable for displaying a moving image on the device. Response times as short as 1 millisecond are desirable. Therefore, a low viscosity in the composition is preferred. Small viscosities at low temperatures are even more preferred. The elastic constant of the composition is related to the contrast of the device. In order to increase the contrast in the device, a large elastic constant in the composition is more preferable.
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000020
 組成物の光学異方性は、素子のコントラスト比に関連する。素子のモードに応じて、大きな光学異方性または小さな光学異方性、すなわち適切な光学異方性が必要である。組成物の光学異方性(Δn)と素子のセルギャップ(d)との積(Δn×d)は、コントラスト比を最大にするように設計される。積の適切な値は動作モードの種類に依存する。TNのようなモードの素子では、適切な値は約0.45μmである。この場合、小さなセルギャップの素子には大きな光学異方性を有する組成物が好ましい。組成物における大きな誘電率異方性は、素子における低いしきい値電圧、小さな消費電力と大きなコントラスト比に寄与する。したがって、大きな誘電率異方性が好ましい。組成物における大きな比抵抗は、素子における大きな電圧保持率と大きなコントラスト比に寄与する。したがって、初期段階において室温だけでなくネマチック相の上限温度に近い温度でも大きな比抵抗を有する組成物が好ましい。長時間使用したあと、室温だけでなくネマチック相の上限温度に近い温度でも大きな比抵抗を有する組成物が好ましい。紫外線および熱に対する組成物の安定性は、液晶表示素子の寿命に関連する。これらの安定性が高いとき、この素子の寿命は長い。このような特性は、液晶モニター、液晶テレビなどに用いるAM素子に好ましい。 The optical anisotropy of the composition is related to the contrast ratio of the device. Depending on the mode of the device, a large optical anisotropy or a small optical anisotropy, that is, a suitable optical anisotropy is required. The product (Δn × d) of the optical anisotropy (Δn) of the composition and the cell gap (d) of the device is designed to maximize the contrast ratio. The appropriate value of the product depends on the type of operating mode. For a TN-like mode device, a suitable value is about 0.45 μm. In this case, a composition having a large optical anisotropy is preferable for a device having a small cell gap. A large dielectric anisotropy in the composition contributes to a low threshold voltage, a small power consumption and a large contrast ratio in the device. Therefore, large dielectric anisotropy is preferable. The large specific resistance in the composition contributes to a large voltage holding ratio and a large contrast ratio in the device. Therefore, in the initial stage, a composition having a large specific resistance at room temperature as well as at a temperature close to the maximum temperature of the nematic phase is preferable. A composition having a large specific resistance not only at room temperature but also at a temperature close to the maximum temperature of the nematic phase after being used for a long time is preferable. The stability of the composition against ultraviolet rays and heat is related to the life of the liquid crystal display device. When their stability is high, the lifetime of this device is long. Such characteristics are preferable for AM devices used for liquid crystal monitors, liquid crystal televisions, and the like.
 TNモードを有するAM素子においては正の誘電率異方性を有する組成物が用いられる。VAモードを有するAM素子においては負の誘電率異方性を有する組成物が用いられる。IPSモードまたはFFSモードを有するAM素子においては正または負の誘電率異方性を有する組成物が用いられる。高分子支持配向(PSA;polymer sustained alignment)型のAM素子においては正または負の誘電率異方性を有する組成物が用いられる。 A composition having a positive dielectric anisotropy is used in an AM device having a TN mode. A composition having a negative dielectric anisotropy is used in an AM device having a VA mode. A composition having a positive or negative dielectric anisotropy is used in an AM device having an IPS mode or an FFS mode. A composition having a positive or negative dielectric anisotropy is used in a polymer-sustained alignment (PSA) type AM device.
 特にFFSモードにおいては、斜め電界により、一部の液晶分子の配列がパネル基板に対して平行にならないため、これらの液晶分子のチルトアップを抑えるために液晶分子の短軸方向における誘電率(ε⊥)が大きい方が好ましい。液晶分子のチルトアップを抑えることにより、FFSモードの素子の透過率を上げることができるので、大きなコントラスト比に寄与する(例えば、非特許文献1参照)。 Particularly in the FFS mode, the arrangement of some liquid crystal molecules is not parallel to the panel substrate due to the oblique electric field. Therefore, in order to suppress the tilt-up of these liquid crystal molecules, the dielectric constant (ε It is preferable that ⊥) is large. By suppressing the tilt-up of the liquid crystal molecules, the transmittance of the FFS mode element can be increased, which contributes to a large contrast ratio (for example, see Non-Patent Document 1).
国際公報第2014/045905号International Publication No. 2014/045905 国際公報第1999/021816号International Publication No. 1999/021816
 本発明の課題は、液晶分子の短軸方向における誘電率(ε⊥)が大きい液晶組成物を提供することである。別の課題は、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、大きな誘電率異方性、大きな比抵抗、熱に対する高い安定性、紫外線に対する高い安定性、大きな弾性定数のような特性の少なくとも1つを充足する液晶組成物を提供することである。別の課題は、これらの特性の少なくとも2つのあいだで適切なバランスを有する液晶組成物を提供することである。別の課題は、このような組成物を含有する液晶表示素子を提供することである。別の課題は、透過率が高く、大きなコントラスト比を有する液晶表示素子を提供することである。別の課題は、短い応答時間、大きな電圧保持率、低いしきい値電圧、長い寿命のような特性を有するAM素子を提供することである。 An object of the present invention is to provide a liquid crystal composition having a large dielectric constant (ε⊥) in the short axis direction of liquid crystal molecules. Other issues are high nematic phase upper temperature limit, nematic phase lower temperature limit, small viscosity, suitable optical anisotropy, large dielectric anisotropy, large resistivity, high heat stability, high UV stability. And a liquid crystal composition satisfying at least one of properties such as a large elastic constant. Another object is to provide a liquid crystal composition having a suitable balance between at least two of these properties. Another object is to provide a liquid crystal display device containing such a composition. Another object is to provide a liquid crystal display device having a high transmittance and a large contrast ratio. Another object is to provide an AM device having characteristics such as short response time, large voltage holding ratio, low threshold voltage and long life.
 本発明は、第一成分として式(1)で表される化合物から選択された少なくとも1つの化合物、および第二成分として式(2)で表される化合物から選択された少なくとも1つの化合物を含有し、正の誘電率異方性を有する液晶組成物である。
Figure JPOXMLDOC01-appb-I000021

式(1)および式(2)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルであり;RおよびRは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシであり;環Aおよび環Bは、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がフッ素で置き換えられた1,4-フェニレン、ピリミジン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルであり;環Cおよび環Eは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、ナフタレン-2,6-ジイル、少なくとも1つの水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、クロマン-2,6-ジイル、または少なくとも1つの水素がフッ素または塩素で置き換えられたクロマン-2,6-ジイルであるが、環Cおよび環Eのうち少なくとも1つは、少なくとも1つの水素がフッ素で置き換えられた1,4-フェニレンであり;環Dは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、7,8-ジフルオロクロマン-2,6-ジイル、3,4,5,6-テトラフルオロフルオレン-2,7-ジイル、4,6-ジフルオロジベンゾフラン-3,7-ジイル、4,6-ジフルオロジベンゾチオフェン-3,7-ジイル、または1,1,6,7-テトラフルオロインダン-2,5-ジイルであり;ZおよびZは、単結合、エチレン、ビニレン、メチレンオキシ、カルボニルオキシ、またはジフルオロメチレンオキシであり;ZおよびZは、単結合、エチレン、ビニレン、メチレンオキシ、またはカルボニルオキシであり;XおよびXは、水素またはフッ素であり;Yは、フッ素、塩素、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルオキシであり;aは、1、2、3、または4であり;bおよびcは、0、1、2、または3であり;dは、0または1であり;そしてaとbとの和は4以下であり;cとdの和は、1、2、または3である。
The present invention contains at least one compound selected from the compounds represented by formula (1) as the first component, and at least one compound selected from the compounds represented by formula (2) as the second component However, the liquid crystal composition has a positive dielectric anisotropy.
Figure JPOXMLDOC01-appb-I000021

In formulas (1) and (2), R 1 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons; R 2 and R 3 are hydrogen. Are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyloxy having 2 to 12 carbons; ring A and ring B are 1,4-cyclohexylene. , 1,4-phenylene, 1,4-phenylene having at least one hydrogen replaced by fluorine, pyrimidine-2,5-diyl, 1,3-dioxane-2,5-diyl, or tetrahydropyran-2,5 -Diyl; ring C and ring E are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene , 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2 , 6-diyl, or chroman-2,6-diyl in which at least one hydrogen has been replaced by fluorine or chlorine, but at least one of ring C and ring E has at least one hydrogen replaced by fluorine. 1,4-phenylene; ring D is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1 , 4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl, 7,8-difluorochroman-2,6-diyl, 3,4 , 6-Tetrafluorofluorene-2,7-diyl, 4,6-difluorodibenzofuran-3,7-diyl, 4,6-difluorodibenzothiophene-3,7-diyl, or 1,1,6,7-tetra Fluoroindan-2,5-diyl; Z 1 and Z 2 are single bonds, ethylene, vinylene, methyleneoxy, carbonyloxy, or difluoromethyleneoxy; Z 3 and Z 4 are single bonds, ethylene, Is vinylene, methyleneoxy, or carbonyloxy; X 1 and X 2 are hydrogen or fluorine; Y 1 is fluorine, chlorine, or a carbon number of 1 to 12 in which at least one hydrogen is replaced by fluorine or chlorine. Alkyl, alkoxy having 1 to 12 carbons in which at least one hydrogen is replaced with fluorine or chlorine, Or alkenyloxy having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; a is 1, 2, 3, or 4; b and c are 0, 1, 2, Or 3; d is 0 or 1; and the sum of a and b is 4 or less; the sum of c and d is 1, 2, or 3.
 本発明の長所は、液晶分子の短軸方向における誘電率(ε⊥)が大きい液晶組成物である。別の長所は、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、大きな誘電率異方性、大きな比抵抗、熱に対する高い安定性、紫外線に対する高い安定性、大きな弾性定数のような特性の少なくとも1つを充足する液晶組成物である。別の長所は、これらの特性の少なくとも2つのあいだで適切なバランスを有する液晶組成物である。別の長所は、このような組成物を含有する液晶表示素子である。別の長所は、透過率が高く、大きなコントラスト比を有する液晶表示素子である。別の長所は、短い応答時間、大きな電圧保持率、低いしきい値電圧、長い寿命のような特性を有するAM素子である。 The advantage of the present invention is a liquid crystal composition having a large dielectric constant (ε⊥) in the short axis direction of liquid crystal molecules. Other advantages are high upper temperature of nematic phase, low lower temperature of nematic phase, small viscosity, proper optical anisotropy, large dielectric anisotropy, large specific resistance, high heat stability, high UV stability. And a liquid crystal composition satisfying at least one of properties such as a large elastic constant. Another advantage is a liquid crystal composition that has a suitable balance between at least two of these properties. Another advantage is a liquid crystal display device containing such a composition. Another advantage is a liquid crystal display device having a high transmittance and a large contrast ratio. Another advantage is an AM device having characteristics such as short response time, large voltage holding ratio, low threshold voltage, and long life.
 この明細書における用語の使い方は次のとおりである。「液晶組成物」および「液晶表示素子」の用語をそれぞれ「組成物」および「素子」と略すことがある。「液晶表示素子」は液晶表示パネルおよび液晶表示モジュールの総称である。「液晶性化合物」は、ネマチック相、スメクチック相のような液晶相を有する化合物および液晶相を有しないが、ネマチック相の温度範囲、粘度、誘電率異方性のような特性を調節する目的で組成物に混合される化合物の総称である。この化合物は、例えば1,4-シクロヘキシレンや1,4-フェニレンのような六員環を有し、その分子(液晶分子)は棒状(rod like)である。「重合性化合物」は、組成物中に重合体を生成させる目的で添加する化合物である。アルケニルを有する液晶性化合物は、その意味では重合性化合物に分類されない。 The usage of terms in this specification is as follows. The terms "liquid crystal composition" and "liquid crystal display device" may be abbreviated as "composition" and "device", respectively. “Liquid crystal display element” is a general term for liquid crystal display panels and liquid crystal display modules. The “liquid crystalline compound” is a compound having a liquid crystal phase such as a nematic phase or a smectic phase, and does not have a liquid crystal phase, but for the purpose of adjusting properties such as temperature range, viscosity and dielectric anisotropy of the nematic phase. It is a general term for the compounds mixed in the composition. This compound has a 6-membered ring such as 1,4-cyclohexylene and 1,4-phenylene, and its molecule (liquid crystal molecule) is rod-like. The “polymerizable compound” is a compound added for the purpose of forming a polymer in the composition. Liquid crystal compounds having alkenyl are not classified as polymerizable compounds in that sense.
 液晶組成物は、複数の液晶性化合物を混合することによって調製される。この液晶組成物に、光学活性化合物や重合性化合物のような添加物が必要に応じて添加される。液晶性化合物の割合は、添加物を添加した場合であっても、添加物を含まない液晶組成物の質量に基づいた質量百分率(質量%)で表される。添加物の割合は、添加物を含まない液晶組成物の質量に基づいた質量百分率(質量%)で表される。すなわち、液晶性化合物や添加物の割合は、液晶性化合物の全質量に基づいて算出される。重合開始剤および重合禁止剤の割合は、例外的に重合性化合物の質量に基づいて表される。 The liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds. Additives such as an optically active compound and a polymerizable compound are added to the liquid crystal composition as needed. The proportion of the liquid crystal compound is represented by a mass percentage (mass%) based on the mass of the liquid crystal composition containing no additive even when the additive is added. The ratio of the additive is represented by a mass percentage (mass%) based on the mass of the liquid crystal composition containing no additive. That is, the ratio of the liquid crystal compound or the additive is calculated based on the total mass of the liquid crystal compound. The ratio of the polymerization initiator and the polymerization inhibitor is exceptionally expressed based on the mass of the polymerizable compound.
 「ネマチック相の上限温度」を「上限温度」と略すことがある。「ネマチック相の下限温度」を「下限温度」と略すことがある。「誘電率異方性を上げる」の表現は、誘電率異方性が正である組成物のときは、その値が正に増加することを意味し、誘電率異方性が負である組成物のときは、その値が負に増加することを意味する。「電圧保持率が大きい」は、素子が初期段階において室温だけでなく上限温度に近い温度でも大きな電圧保持率を有し、そして長時間使用したあと室温だけでなく上限温度に近い温度でも大きな電圧保持率を有することを意味する。組成物や素子の特性が経時変化試験によって検討されることがある。 “The maximum temperature of the nematic phase” may be abbreviated as “maximum temperature”. The "minimum temperature of the nematic phase" may be abbreviated as "minimum temperature". The expression “increasing the dielectric anisotropy” means that, in the case of a composition having a positive dielectric anisotropy, that value increases positively, and a composition having a negative dielectric anisotropy. When it is a thing, it means that its value increases negatively. “High voltage retention” means that the device has a large voltage retention not only at room temperature but also at a temperature close to the upper limit temperature at the initial stage, and after a long time use, it has a large voltage not only at room temperature but also at a temperature close to the upper limit temperature. Means to have a retention rate. The properties of the compositions and devices may be examined by aging tests.
Figure JPOXMLDOC01-appb-I000022

 上記の化合物(1z)を例にして説明する。式(1z)において、六角形で囲んだαおよびβの記号はそれぞれ環αおよび環βに対応し、六員環、縮合環のような環を表す。添え字‘x’が2のとき、2つの環αが存在する。2つの環αが表す2つの基は、同一であってもよく、または異なってもよい。このルールは、添え字‘x’が2より大きいとき、任意の2つの環αに適用される。このルールは、結合基Zのような、他の記号にも適用される。環βの一辺を横切る斜線は、環β上の任意の水素が置換基(-Sp-P)で置き換えられてもよいことを表す。添え字‘y’は置き換えられた置換基の数を示す。添え字‘y’が0のとき、そのような置き換えはない。添え字‘y’が2以上のとき、環β上には複数の置換基(-Sp-P)が存在する。この場合にも、「同一であってもよく、または異なってもよい」のルールが適用される。なお、このルールは、Raの記号を複数の化合物に用いた場合にも適用される。
Figure JPOXMLDOC01-appb-I000022

The above compound (1z) will be described as an example. In the formula (1z), symbols α and β surrounded by hexagons correspond to the ring α and the ring β, respectively, and represent rings such as a 6-membered ring and a condensed ring. When the subscript'x 'is 2, there are two rings α. The two groups represented by the two rings α may be the same or different. This rule applies to any two rings α when the subscript'x 'is greater than 2. This rule also applies to other symbols, such as the linking group Z. A diagonal line crossing one side of the ring β represents that any hydrogen on the ring β may be replaced with a substituent (—Sp—P). The subscript'y 'indicates the number of substituents replaced. When the subscript'y 'is 0, there is no such replacement. When the subscript'y 'is 2 or more, there are plural substituents (-Sp-P) on the ring β. Also in this case, the rule of "may be the same or different" may be applied. This rule also applies when the Ra symbol is used for a plurality of compounds.
 式(1z)において、例えば、「RaおよびRbは、アルキル、アルコキシ、またはアルケニルである」の表現は、RaおよびRbが独立して、アルキル、アルコキシ、およびアルケニルの群から選択されることを意味する。すなわち、Raによって表される基とRbによって表される基が同一であってもよく、または異なってもよい。 In formula (1z), for example, the expression "Ra and Rb are alkyl, alkoxy, or alkenyl" means that Ra and Rb are independently selected from the group of alkyl, alkoxy, and alkenyl. To do. That is, the group represented by Ra and the group represented by Rb may be the same or different.
 式(1z)で表される化合物から選択された少なくとも1つの化合物を「化合物(1z)」と略すことがある。「化合物(1z)」は、式(1z)で表される1つの化合物、2つの化合物の混合物、または3つ以上の化合物の混合物を意味する。他の式で表される化合物についても同様である。「式(1z)および式(2z)で表される化合物から選択された少なくとも1つの化合物」の表現は、化合物(1z)および化合物(2z)の群から選択された少なくとも1つの化合物を意味する。 At least one compound selected from the compounds represented by formula (1z) may be abbreviated as “compound (1z)”. “Compound (1z)” means one compound represented by formula (1z), a mixture of two compounds, or a mixture of three or more compounds. The same applies to compounds represented by other formulas. The expression "at least one compound selected from the compounds represented by formula (1z) and formula (2z)" means at least one compound selected from the group consisting of compound (1z) and compound (2z). ..
 「少なくとも1つの‘A’」の表現は、‘A’の数は任意であることを意味する。「少なくとも1つの‘A’は、‘B’で置き換えられてもよい」の表現は、‘A’の数が1つのとき、‘A’の位置は任意であり、‘A’の数が2つ以上のときも、それらの位置は制限なく選択できる。「少なくとも1つの-CH-は-O-で置き換えられてもよい」の表現が使われることがある。この場合、-CH-CH-CH-は、隣接しない-CH-が-O-で置き換えられることによって-O-CH-O-に変換されてもよい。しかしながら、隣接した-CH-が-O-で置き換えられることはない。この置き換えでは-O-O-CH-(ペルオキシド)が生成するからである。 The expression "at least one'A '" means that the number of'A's is arbitrary. The expression "at least one'A 'may be replaced by'B'" means that when the number of'A 'is one, the position of'A' is arbitrary and the number of'A 'is two. If there are more than one, those positions can be selected without restriction. The phrase “at least one —CH 2 — may be replaced with —O—” is sometimes used. In this case, —CH 2 —CH 2 —CH 2 — may be converted to —O—CH 2 —O— by replacing non-adjacent —CH 2 — with —O—. However, adjacent --CH 2 --is not replaced with --O--. This is because this replacement produces —O—O—CH 2 — (peroxide).
 例えば、式(1z)のRaおよびRbにおいて、アルキルは、直鎖状または分岐状であり、環状アルキルを含まない。直鎖状アルキルは、分岐状アルキルよりも好ましい。これらのことは、アルコキシ、アルケニルのような末端基についても同様である。 For example, in Ra and Rb of formula (1z), alkyl is linear or branched and does not include cyclic alkyl. Straight-chain alkyl is preferred over branched alkyl. The same applies to terminal groups such as alkoxy and alkenyl.
 1,4-シクロヘキシレンに関する立体配置は、上限温度を上げるためにシスよりもトランスが好ましい。2-フルオロ-1,4-フェニレンは左右非対称であるから、左向き(L)および右向き(R)が存在する。
Figure JPOXMLDOC01-appb-I000023

テトラヒドロピラン-2,5-ジイルのような二価基においても同様である。カルボニルオキシのような結合基(-COO-または-OCO-)も同様である。
As for the configuration of 1,4-cyclohexylene, trans is preferable to cis for increasing the maximum temperature. Since 2-fluoro-1,4-phenylene is asymmetrical to the left and right, there are leftward (L) and rightward (R) directions.
Figure JPOXMLDOC01-appb-I000023

The same applies to divalent groups such as tetrahydropyran-2,5-diyl. The same applies to a linking group such as carbonyloxy (-COO- or -OCO-).
 本発明は、下記の項などである。 The present invention includes the following items.
項1. 第一成分として式(1)で表される化合物から選択された少なくとも1つの化合物、および第二成分として式(2)で表される化合物から選択された少なくとも1つの化合物を含有する正の誘電率異方性を有する液晶組成物。
Figure JPOXMLDOC01-appb-I000024

式(1)および式(2)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルであり;RおよびRは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシであり;環Aおよび環Bは、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がフッ素で置き換えられた1,4-フェニレン、ピリミジン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルであり;環Cおよび環Eは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、ナフタレン-2,6-ジイル、少なくとも1つの水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、クロマン-2,6-ジイル、または少なくとも1つの水素がフッ素または塩素で置き換えられたクロマン-2,6-ジイルであるが、環Cおよび環Eのうち少なくとも1つは、少なくとも1つの水素がフッ素で置き換えられた1,4-フェニレンであり;環Dは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、7,8-ジフルオロクロマン-2,6-ジイル、3,4,5,6-テトラフルオロフルオレン-2,7-ジイル、4,6-ジフルオロジベンゾフラン-3,7-ジイル、4,6-ジフルオロジベンゾチオフェン-3,7-ジイル、または1,1,6,7-テトラフルオロインダン-2,5-ジイルであり;ZおよびZは、単結合、エチレン、ビニレン、メチレンオキシ、カルボニルオキシ、またはジフルオロメチレンオキシであり;ZおよびZは、単結合、エチレン、ビニレン、メチレンオキシ、またはカルボニルオキシであり;XおよびXは、水素またはフッ素であり;Yは、フッ素、塩素、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルオキシであり;aは、1、2、3、または4であり;bおよびcは、0、1、2、または3であり;dは、0または1であり;そしてaとbとの和は4以下であり;cとdの和は、1、2、または3である。
Item 1. Positive dielectric containing at least one compound selected from compounds represented by formula (1) as a first component and at least one compound selected from compounds represented by formula (2) as a second component A liquid crystal composition having refractive index anisotropy.
Figure JPOXMLDOC01-appb-I000024

In formulas (1) and (2), R 1 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons; R 2 and R 3 are hydrogen. Are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyloxy having 2 to 12 carbons; ring A and ring B are 1,4-cyclohexylene. , 1,4-phenylene, 1,4-phenylene having at least one hydrogen replaced by fluorine, pyrimidine-2,5-diyl, 1,3-dioxane-2,5-diyl, or tetrahydropyran-2,5 -Diyl; ring C and ring E are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene , 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2 , 6-diyl, or chroman-2,6-diyl in which at least one hydrogen has been replaced by fluorine or chlorine, but at least one of ring C and ring E has at least one hydrogen replaced by fluorine. 1,4-phenylene; ring D is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1 , 4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl, 7,8-difluorochroman-2,6-diyl, 3,4 , 6-Tetrafluorofluorene-2,7-diyl, 4,6-difluorodibenzofuran-3,7-diyl, 4,6-difluorodibenzothiophene-3,7-diyl, or 1,1,6,7-tetra Fluoroindan-2,5-diyl; Z 1 and Z 2 are single bonds, ethylene, vinylene, methyleneoxy, carbonyloxy, or difluoromethyleneoxy; Z 3 and Z 4 are single bonds, ethylene, Is vinylene, methyleneoxy, or carbonyloxy; X 1 and X 2 are hydrogen or fluorine; Y 1 is fluorine, chlorine, or a carbon number of 1 to 12 in which at least one hydrogen is replaced by fluorine or chlorine. Alkyl, alkoxy having 1 to 12 carbons in which at least one hydrogen is replaced with fluorine or chlorine, Or alkenyloxy having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; a is 1, 2, 3, or 4; b and c are 0, 1, 2, Or 3; d is 0 or 1; and the sum of a and b is 4 or less; the sum of c and d is 1, 2, or 3.
項2. 第一成分として式(1-1)から式(1-14)で表される化合物から選択された少なくとも1つの化合物を含有する、項1に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000025

Figure JPOXMLDOC01-appb-I000026

式(1-1)から式(1-14)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から14のアルケニルであり;X、X、X、X、X、X、X、X、X、X10、X11、X12、X13、およびX14は、水素またはフッ素であり;Yは、フッ素、塩素、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルオキシである。
Item 2. Item 2. The liquid crystal composition according to item 1, containing at least one compound selected from compounds represented by formulas (1-1) to (1-14) as a first component.
Figure JPOXMLDOC01-appb-I000025

Figure JPOXMLDOC01-appb-I000026

In the formulas (1-1) to (1-14), R 1 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 14 carbons; X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 , X 10 , X 11 , X 12 , X 13 , and X 14 are hydrogen or fluorine; Y 1 is Fluorine, chlorine, an alkyl having 1 to 12 carbons in which at least one hydrogen is replaced with fluorine or chlorine, an alkoxy having 1 to 12 carbons in which at least one hydrogen is replaced with fluorine or chlorine, or at least one hydrogen; It is an alkenyloxy having 2 to 12 carbons, which is replaced by fluorine or chlorine.
項3. 第二成分として式(2-1)から式(2-38)で表される化合物から選択された少なくとも1つの化合物を含有する、項1または2に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000027

Figure JPOXMLDOC01-appb-I000028

Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030

Figure JPOXMLDOC01-appb-I000031

式(2-1)から式(2-38)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシである。
Item 3. Item 3. The liquid crystal composition according to item 1 or 2, containing at least one compound selected from the compounds represented by formulas (2-1) to (2-38) as the second component.
Figure JPOXMLDOC01-appb-I000027

Figure JPOXMLDOC01-appb-I000028

Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030

Figure JPOXMLDOC01-appb-I000031

In formulas (2-1) to (2-38), R 2 and R 3 are each alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or 2 carbons. To 12 alkenyloxy.
項4. 第一成分の割合が、5質量%から50質量%の範囲であり、第二成分の割合が2質量%から50質量%の範囲である、項1から3のいずれか1項に記載の液晶組成物。 Item 4. Item 4. The liquid crystal according to any one of items 1 to 3, wherein the ratio of the first component is in the range of 5% by mass to 50% by mass, and the ratio of the second component is in the range of 2% by mass to 50% by mass. Composition.
項5. 第三成分として式(3)で表される化合物から選択された少なくとも1つの化合物を含有する、項1から4のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000032

式(3)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルであり;環Fおよび環Gは、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンであり;Zは、単結合、エチレン、ビニレン、メチレンオキシ、またはカルボニルオキシであり;eは、1、2、または3である。
Item 5. Item 5. The liquid crystal composition according to any one of items 1 to 4, containing at least one compound selected from the compounds represented by formula (3) as the third component.
Figure JPOXMLDOC01-appb-I000032

In the formula (3), R 4 and R 5 are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one hydrogen is replaced by fluorine or chlorine. C2-C12 alkenyl; ring F and ring G are 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 2,5-difluoro-1,4 -Phenylene; Z 5 is a single bond, ethylene, vinylene, methyleneoxy, or carbonyloxy; e is 1, 2, or 3.
項6. 第三成分として式(3-1)から式(3-13)で表される化合物から選択された少なくとも1つの化合物を含有する、項1から5のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000033

Figure JPOXMLDOC01-appb-I000034
式(3-1)から式(3-13)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。
Item 6. Item 6. The liquid crystal composition according to any one of items 1 to 5, containing at least one compound selected from compounds represented by formulas (3-1) to (3-13) as a third component.
Figure JPOXMLDOC01-appb-I000033

Figure JPOXMLDOC01-appb-I000034
In formulas (3-1) to (3-13), R 4 and R 5 are each an alkyl having 1 to 12 carbons, an alkoxy having 1 to 12 carbons, an alkenyl having 2 to 12 carbons, or at least one of It is alkenyl having 2 to 12 carbons in which hydrogen is replaced by fluorine or chlorine.
項7. 第三成分の割合が、10質量%から90質量%の範囲である、項5または6に記載の液晶組成物。 Item 7. Item 7. The liquid crystal composition according to item 5 or 6, wherein the ratio of the third component is in the range of 10% by mass to 90% by mass.
項8. 第四成分として式(4)で表される化合物から選択された少なくとも1つの化合物を含有する、項1から7のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000035

式(4)において、Rは炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルであり;環Jは、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、ピリミジン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルであり;Zは、単結合、エチレン、またはカルボニルオキシであり;X15およびX16は、水素またはフッ素であり;Yは、フッ素、塩素、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルオキシであり;fは、1、2、3、または4である。
Item 8. Item 8. The liquid crystal composition according to any one of items 1 to 7, containing at least one compound selected from the compounds represented by formula (4) as the fourth component.
Figure JPOXMLDOC01-appb-I000035

In the formula (4), R 6 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons or alkenyl having 2 to 12 carbons; ring J is 1,4-cyclohexylene, 1,4 -Phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, pyrimidine-2,5-diyl, 1,3-dioxane -2,5-diyl, or tetrahydropyran-2,5-diyl; Z 6 is a single bond, ethylene, or carbonyloxy; X 15 and X 16 are hydrogen or fluorine; Y 2 is , Fluorine, chlorine, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, at least one hydrogen is replaced by fluorine or chlorine Alkoxy having 1 to 12 carbons, or at least one hydrogen is alkenyloxy having 2 to 12 carbons are replaced by fluorine or chlorine; f 1, 2, 3, or 4.
項9. 第四成分として式(4-1)から式(4-16)で表される化合物から選択された少なくとも1つの化合物を含有する、項1から8のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000036

Figure JPOXMLDOC01-appb-I000037

式(4-1)から式(4-16)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルである。
Item 9. Item 9. The liquid crystal composition according to any one of items 1 to 8, which contains, as a fourth component, at least one compound selected from compounds represented by formulas (4-1) to (4-16).
Figure JPOXMLDOC01-appb-I000036

Figure JPOXMLDOC01-appb-I000037

In formulas (4-1) to (4-16), R 6 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons.
項10. 第四成分の割合が、5質量%から40質量%の範囲である、項8または9に記載の液晶組成物。 Item 10. Item 10. The liquid crystal composition according to item 8 or 9, wherein the ratio of the fourth component is in the range of 5% by mass to 40% by mass.
項11. 第五成分として式(5)で表される化合物から選択された少なくとも1つの化合物を含有する、項1から10のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000038

式(5)において、RおよびRは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシであり;環Kおよび環Mは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、ナフタレン-2,6-ジイル、少なくとも1つの水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、クロマン-2,6-ジイル、または少なくとも1つの水素がフッ素または塩素で置き換えられたクロマン-2,6-ジイルであり;環Lは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、7,8-ジフルオロクロマン-2,6-ジイル、3,4,5,6-テトラフルオロフルオレン-2,7-ジイル、4,6-ジフルオロジベンゾフラン-3,7-ジイル、4,6-ジフルオロジベンゾチオフェン-3,7-ジイル、または1,1,6,7-テトラフルオロインダン-2,5-ジイルであり;ZおよびZは、単結合、エチレン、ビニレン、メチレンオキシ、またはカルボニルオキシであり;gは、0、1、2、または3であり;hは、0または1であり;そしてgとhとの和は3以下である。
Item 11. Item 11. The liquid crystal composition according to any one of items 1 to 10, containing at least one compound selected from the compounds represented by formula (5) as the fifth component.
Figure JPOXMLDOC01-appb-I000038

In the formula (5), R 7 and R 8 are hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyloxy having 2 to 12 carbons. Ring K and ring M are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, naphthalene-2,6-diyl, at least one hydrogen Is naphthalene-2,6-diyl substituted with fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl substituted with at least one hydrogen with fluorine or chlorine; ring L is , 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1, -Phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl, 7,8-difluorochroman-2,6-diyl, 3,4,5,6-tetrafluorofluorene-2,7-diyl, 4,6-difluorodibenzofuran-3,7-diyl, 4,6-difluorodibenzothiophene-3,7-diyl, or 1,1,6,7-tetrafluoroindane-2,5-diyl; Z 7 And Z 8 is a single bond, ethylene, vinylene, methyleneoxy, or carbonyloxy; g is 0, 1, 2, or 3; h is 0 or 1; and between g and h The sum is 3 or less.
項12. 第五成分として式(5-1)から式(5-31)で表される化合物から選択された少なくとも1つの化合物を含有する、項1から11のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000039

Figure JPOXMLDOC01-appb-I000040

Figure JPOXMLDOC01-appb-I000041

Figure JPOXMLDOC01-appb-I000042

式(5-1)から式(5-31)において、RおよびRは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシである。
Item 12. Item 12. The liquid crystal composition according to any one of items 1 to 11, containing at least one compound selected from compounds represented by formulas (5-1) to (5-31) as a fifth component.
Figure JPOXMLDOC01-appb-I000039

Figure JPOXMLDOC01-appb-I000040

Figure JPOXMLDOC01-appb-I000041

Figure JPOXMLDOC01-appb-I000042

In formulas (5-1) to (5-31), R 7 and R 8 are hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbon It is an alkenyloxy of the numbers 2 to 12.
項13. 第五成分の割合が、2質量%から50質量%の範囲である、項11または12に記載の液晶組成物。 Item 13. Item 13. The liquid crystal composition according to item 11 or 12, wherein the ratio of the fifth component is in the range of 2% by mass to 50% by mass.
項14. ネマチック相の上限温度が70℃以上であり、波長589nmにおける光学異方性(25℃で測定)が0.07以上であり、そして周波数1kHzにおける誘電率異方性(25℃で測定)が2以上である、項1から13のいずれか1項に記載の液晶組成物。 Item 14. The maximum temperature of the nematic phase is 70 ° C. or higher, the optical anisotropy at a wavelength of 589 nm (measured at 25 ° C.) is 0.07 or higher, and the dielectric anisotropy at a frequency of 1 kHz (measured at 25 ° C.) is 2 14. The liquid crystal composition according to any one of items 1 to 13, which is the above.
項15. 項1から13のいずれか1項に記載の液晶組成物を含有する液晶表示素子。 Item 15. A liquid crystal display device containing the liquid crystal composition according to any one of items 1 to 13.
項16. 液晶表示素子の動作モードが、FFSモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である、項15に記載の液晶表示素子。 Item 16. The liquid crystal display element according to item 15, wherein the operation mode of the liquid crystal display element is the FFS mode and the driving method of the liquid crystal display element is the active matrix method.
項17. 液晶表示素子の動作モードが、TNモード、ECBモード、OCBモード、IPSモード、またはFPAモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である、項15に記載の液晶表示素子。 Item 17. The liquid crystal display element according to item 15, wherein the operation mode of the liquid crystal display element is a TN mode, an ECB mode, an OCB mode, an IPS mode, or an FPA mode, and the driving method of the liquid crystal display element is an active matrix method.
項18. 項1から14のいずれか1項に記載の液晶組成物の、液晶表示素子における使用。 Item 18. Use of the liquid crystal composition according to any one of items 1 to 14 in a liquid crystal display device.
 本発明は、次の項も含む。(a)光学活性化合物、酸化防止剤、紫外線吸収剤、消光剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤のような添加物から選択された1つの化合物、2つの化合物、または3つ以上の化合物を含有する上記の組成物。(b)上記の組成物を含有するAM素子。(c)重合性化合物をさらに含有する上記の組成物、およびこの組成物を含有する高分子支持配向(PSA)型のAM素子。(d)上記の組成物を含有し、この組成物中の重合性化合物が重合している、高分子支持配向(PSA)型のAM素子。(e)上記の組成物を含有し、そしてPC、TN、STN、ECB、OCB、IPS、VA、FFS、またはFPAのモードを有する素子。(f)上記の組成物を含有する透過型の素子。(g)ネマチック相を有する組成物として、上記組成物の使用。(h)上記の組成物に光学活性化合物を添加することによって得られる光学活性な組成物の使用。 The present invention also includes the following items. (A) One compound selected from additives such as an optically active compound, an antioxidant, an ultraviolet absorber, a quencher, a dye, a defoaming agent, a polymerizable compound, a polymerization initiator and a polymerization inhibitor, and two compounds. A compound, or a composition as described above containing three or more compounds. (B) An AM device containing the above composition. (C) The above composition further containing a polymerizable compound, and a polymer-supported alignment (PSA) type AM device containing this composition. (D) A polymer-supported alignment (PSA) type AM device containing the composition described above and in which the polymerizable compound in the composition is polymerized. (E) A device containing the above composition and having a mode of PC, TN, STN, ECB, OCB, IPS, VA, FFS, or FPA. (F) A transmissive element containing the above composition. (G) Use of the above composition as a composition having a nematic phase. (H) Use of an optically active composition obtained by adding an optically active compound to the above composition.
 本発明の組成物を次の順で説明する。第一に、組成物における成分化合物の構成を説明する。第二に、成分化合物の主要な特性、およびこの化合物が組成物に及ぼす主要な効果を説明する。第三に、組成物における成分の組合せ、成分の好ましい割合およびその根拠を説明する。第四に、成分化合物の好ましい形態を説明する。第五に、好ましい成分化合物を示す。第六に、組成物に添加してもよい添加物を説明する。第七に、成分化合物の合成法を説明する。最後に、組成物の用途を説明する。 The composition of the present invention will be described in the following order. First, the constitution of the component compounds in the composition will be explained. Second, the main characteristics of the component compounds and the main effects of the compounds on the composition will be explained. Thirdly, the combination of components in the composition, the preferable ratio of the components and the basis thereof will be described. Fourthly, a preferred form of the component compound will be described. Fifth, preferable component compounds are shown. Sixth, the additives that may be added to the composition will be described. Seventh, a method of synthesizing the component compounds will be described. Finally, the use of the composition will be explained.
 第一に、組成物の構成を説明する。この組成物は、複数の液晶性化合物を含有する。この組成物は、添加物を含有してもよい。添加物は、光学活性化合物、酸化防止剤、紫外線吸収剤、消光剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤、極性化合物などである。この組成物は、液晶性化合物の観点から組成物Aと組成物Bに分類される。組成物Aは、化合物(1)、化合物(2)、化合物(3)、化合物(4)、および化合物(5)から選択された液晶性化合物の他に、その他の液晶性化合物、添加物などをさらに含有してもよい。「その他の液晶性化合物」は、化合物(1)、化合物(2)、化合物(3)、化合物(4)、および化合物(5)とは異なる液晶性化合物である。このような化合物は、特性をさらに調整する目的で組成物に混合される。 First, the composition of the composition will be explained. This composition contains a plurality of liquid crystal compounds. The composition may contain additives. Additives are optically active compounds, antioxidants, ultraviolet absorbers, quenchers, dyes, defoamers, polymerizable compounds, polymerization initiators, polymerization inhibitors, polar compounds and the like. This composition is classified into composition A and composition B from the viewpoint of the liquid crystal compound. The composition A is a liquid crystal compound selected from the compound (1), the compound (2), the compound (3), the compound (4), and the compound (5), as well as other liquid crystal compounds and additives. May be further contained. The "other liquid crystal compound" is a liquid crystal compound different from the compound (1), the compound (2), the compound (3), the compound (4), and the compound (5). Such compounds are mixed into the composition for the purpose of further adjusting the properties.
 組成物Bは、実質的に化合物(1)、化合物(2)、化合物(3)、化合物(4)、および化合物(5)から選択された液晶性化合物のみからなる。「実質的に」は、組成物Bが添加物を含有してもよいが、その他の液晶性化合物を含有しないことを意味する。組成物Bは組成物Aに比較して成分の数が少ない。コストを下げるという観点から、組成物Bは組成物Aよりも好ましい。その他の液晶性化合物を混合することによって特性をさらに調整できるという観点から、組成物Aは組成物Bよりも好ましい。 Composition B consists essentially of liquid crystalline compounds selected from compound (1), compound (2), compound (3), compound (4) and compound (5). “Substantially” means that the composition B may contain an additive, but contains no other liquid crystal compound. Composition B has fewer components than composition A. From the viewpoint of cost reduction, the composition B is preferable to the composition A. The composition A is preferable to the composition B from the viewpoint that the characteristics can be further adjusted by mixing the other liquid crystal compounds.
 第二に、成分化合物の主要な特性、およびこの化合物が組成物や素子に及ぼす主要な効果を説明する。成分化合物の主要な特性を本発明の効果に基づいて表2にまとめる。表2の記号において、Lは大きいまたは高い、Mは中程度の、Sは小さいまたは低い、を意味する。記号L、M、Sは、成分化合物のあいだの定性的な比較に基づいた分類であり、0(ゼロ)は、Sよりも小さいことを意味する。 Second, the main characteristics of the component compounds and the main effects of this compound on the composition and device will be explained. The main characteristics of the component compounds are summarized in Table 2 based on the effects of the present invention. In the symbols in Table 2, L means large or high, M means medium, and S means small or low. The symbols L, M, and S are classifications based on qualitative comparison among component compounds, and 0 (zero) means smaller than S.
Figure JPOXMLDOC01-appb-I000043
Figure JPOXMLDOC01-appb-I000043
 成分化合物の主要な効果は次のとおりである。化合物(1)は、誘電率異方性を上げ、そして下限温度を下げる。化合物(2)は液晶の短軸方向における誘電率を上げ、そして下限温度を下げる。化合物(3)は、粘度を下げる、または上限温度を上げる。化合物(4)は誘電率異方性を上げ、そして下限温度を下げる。化合物(5)は、短軸方向における誘電率を上げ、そして下限温度を下げる。 The main effects of the component compounds are as follows. The compound (1) increases the dielectric anisotropy and lowers the minimum temperature. The compound (2) increases the dielectric constant of the liquid crystal in the short axis direction and lowers the minimum temperature. The compound (3) lowers the viscosity or raises the maximum temperature. The compound (4) increases the dielectric anisotropy and lowers the minimum temperature. The compound (5) increases the dielectric constant in the minor axis direction and lowers the minimum temperature.
 第三に、組成物における成分化合物の組合せ、好ましい割合、およびその根拠を説明する。組成物における成分化合物の好ましい組合せは、化合物(1)+化合物(2)、化合物(1)+化合物(2)+化合物(3)、化合物(1)+化合物(2)+化合物(4)、化合物(1)+化合物(2)+化合物(5)、化合物(1)+化合物(2)+化合物(3)+化合物(4)、化合物(1)+化合物(2)+化合物(3)+化合物(5)、または化合物(1)+化合物(2)+化合物(3)+化合物(4)+化合物(5)である。さらに好ましい組合せは、化合物(1)+化合物(2)、化合物(1)+化合物(2)+化合物(3)、化合物(1)+化合物(2)+化合物(3)+化合物(4)、化合物(1)+化合物(2)+化合物(3)+化合物(5)、または化合物(1)+化合物(2)+化合物(3)+化合物(4)+化合物(5)である。 Third, the combination of the component compounds in the composition, the preferred ratio, and the basis thereof will be explained. Preferred combinations of the component compounds in the composition are compound (1) + compound (2), compound (1) + compound (2) + compound (3), compound (1) + compound (2) + compound (4), Compound (1) + Compound (2) + Compound (5), Compound (1) + Compound (2) + Compound (3) + Compound (4), Compound (1) + Compound (2) + Compound (3) + The compound (5) or the compound (1) + the compound (2) + the compound (3) + the compound (4) + the compound (5). More preferred combinations are compound (1) + compound (2), compound (1) + compound (2) + compound (3), compound (1) + compound (2) + compound (3) + compound (4), Compound (1) + Compound (2) + Compound (3) + Compound (5), or Compound (1) + Compound (2) + Compound (3) + Compound (4) + Compound (5).
 化合物(1)の好ましい割合は、誘電率異方性を上げるために約5質量%以上であり、下限温度を下げるために約50質量%以下である。さらに好ましい割合は約10質量%から約45質量%の範囲である。特に好ましい割合は約10質量%から約40質量%の範囲である。 The preferable ratio of the compound (1) is about 5% by mass or more for increasing the dielectric anisotropy, and about 50% by mass or less for decreasing the minimum temperature. A more desirable ratio is in the range of approximately 10% by mass to approximately 45% by mass. A particularly desirable ratio is in the range of approximately 10% by mass to approximately 40% by mass.
 化合物(2)の好ましい割合は、液晶分子の短軸方向における誘電率を上げるために約2質量%以上であり、下限温度を下げるために約50質量%以下である。さらに好ましい割合は約2質量%から約30質量%の範囲である。特に好ましい割合は約2質量%から約20質量%の範囲である。 The preferable ratio of the compound (2) is about 2% by mass or more for increasing the dielectric constant in the short axis direction of liquid crystal molecules, and about 50% by mass or less for decreasing the minimum temperature. A more desirable ratio is in the range of approximately 2% by mass to approximately 30% by mass. A particularly desirable ratio is in the range of approximately 2% by mass to approximately 20% by mass.
 化合物(3)の好ましい割合は、粘度を下げるまたは上限温度を上げるために約10質量%以上であり、誘電率異方性を上げるために約90質量%以下である。さらに好ましい割合は約15質量%から約80質量%の範囲である。特に好ましい割合は約20質量%から約70質量%の範囲である。 The preferable ratio of the compound (3) is about 10% by mass or more for decreasing the viscosity or increasing the maximum temperature, and about 90% by mass or less for increasing the dielectric anisotropy. A more desirable ratio is in the range of approximately 15% by mass to approximately 80% by mass. A particularly desirable ratio is in the range of approximately 20% by mass to approximately 70% by mass.
 化合物(4)の好ましい割合は、誘電率異方性を上げるために約5質量%以上であり、下限温度を下げるために約40質量%以下である。さらに好ましい割合は約5質量%から約35質量%の範囲である。特に好ましい割合は約10質量%から約30質量%の範囲である。 The preferable ratio of the compound (4) is about 5% by mass or more for increasing the dielectric anisotropy, and about 40% by mass or less for decreasing the minimum temperature. A more desirable ratio is in the range of approximately 5% by mass to approximately 35% by mass. A particularly desirable ratio is in the range of approximately 10% by mass to approximately 30% by mass.
 化合物(5)の好ましい割合は、短軸方向における誘電率を上げるために約2質量%以上であり、下限温度を下げるために約50質量%以下である。さらに好ましい割合は約4質量%から約40質量%の範囲である。特に好ましい割合は約4質量%から約30質量%の範囲である。 A preferable ratio of the compound (5) is about 2% by mass or more for increasing the dielectric constant in the minor axis direction and about 50% by mass or less for decreasing the minimum temperature. A more desirable ratio is in the range of approximately 4% by mass to approximately 40% by mass. A particularly desirable ratio is in the range of approximately 4% by mass to approximately 30% by mass.
 第四に、成分化合物の好ましい形態を説明する。式(1)、式(2)、式(3)、式(4)、および式(5)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルである。好ましいRおよびRは、光または熱に対する安定性を上げるために炭素数1から12のアルキルである。R、R、R、およびRは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシである。好ましいR、R、R、およびRは、光または熱に対する安定性を上げるために、炭素数1から12のアルキルであり、上限温度を上げ、屈折率異方性を上げるために炭素数2から12のアルケニルであり、誘電率異方性を上げるために炭素数1から12のアルコキシである。RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。好ましいRおよびRは、粘度を下げるために炭素数2から12のアルケニルであり、光または熱に対する安定性を上げるために炭素数1から12のアルキルである。 Fourthly, the preferred forms of the component compounds will be described. In formula (1), formula (2), formula (3), formula (4), and formula (5), R 1 and R 6 are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, Alternatively, it is alkenyl having 2 to 12 carbons. Preferred R 1 and R 6 are alkyl having 1 to 12 carbons for the purpose of increasing stability to light or heat. R 2 , R 3 , R 7 , and R 8 are each hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyloxy having 2 to 12 carbons. Is. Desirable R 2 , R 3 , R 7 , and R 8 are alkyl having 1 to 12 carbons for increasing the stability to light or heat, and for increasing the maximum temperature and increasing the refractive index anisotropy. Alkenyl having 2 to 12 carbon atoms and alkoxy having 1 to 12 carbon atoms for increasing the dielectric anisotropy. R 4 and R 5 are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine. It is alkenyl. Desirable R 4 and R 5 are alkenyl having 2 to 12 carbons for decreasing the viscosity and alkyl having 1 to 12 carbons for increasing the stability to light or heat.
 好ましいアルキルは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、またはオクチルである。さらに好ましいアルキルは、粘度を下げるためにメチル、エチル、プロピル、ブチル、またはペンチルである。 Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. More desirable alkyl is methyl, ethyl, propyl, butyl, or pentyl for decreasing the viscosity.
 好ましいアルコキシは、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、またはヘプチルオキシである。粘度を下げるために、さらに好ましいアルコキシは、メトキシまたはエトキシである。 Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, or heptyloxy. More desirable alkoxy is methoxy or ethoxy for decreasing the viscosity.
 好ましいアルケニルは、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、または5-ヘキセニルである。さらに好ましいアルケニルは、粘度を下げるためにビニル、1-プロペニル、3-ブテニル、または3-ペンテニルである。これらのアルケニルにおける-CH=CH-の好ましい立体配置は、二重結合の位置に依存する。粘度を下げるためなどから1-プロペニル、1-ブテニル、1-ペンテニル、1-ヘキセニル、3-ペンテニル、3-ヘキセニルのようなアルケニルにおいてはトランスが好ましい。2-ブテニル、2-ペンテニル、2-ヘキセニルのようなアルケニルにおいてはシスが好ましい。 Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, It is 3-hexenyl, 4-hexenyl, or 5-hexenyl. More desirable alkenyl is vinyl, 1-propenyl, 3-butenyl, or 3-pentenyl for decreasing the viscosity. The preferred configuration of -CH = CH- in these alkenyls depends on the position of the double bond. Trans is preferable in the alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl for decreasing the viscosity. Cis is preferable in the alkenyl such as 2-butenyl, 2-pentenyl and 2-hexenyl.
 好ましいアルケニルオキシは、ビニルオキシ、アリルオキシ、3-ブテニルオキシ、3-ペンテニルオキシ、または4-ペンテニルオキシである。粘度を下げるために、さらに好ましいアルケニルオキシは、アリルオキシまたは3-ブテニルオキシである。 Preferred alkenyloxy is vinyloxy, allyloxy, 3-butenyloxy, 3-pentenyloxy, or 4-pentenyloxy. More desirable alkenyloxy is allyloxy or 3-butenyloxy for decreasing the viscosity.
 少なくとも1つの水素がフッ素または塩素で置き換えられたアルキルの好ましい例は、フルオロメチル、2-フルオロエチル、3-フルオロプロピル、4-フルオロブチル、5-フルオロペンチル、6-フルオロヘキシル、7-フルオロヘプチル、または8-フルオロオクチルである。さらに好ましい例は、誘電率異方性を上げるために2-フルオロエチル、3-フルオロプロピル、4-フルオロブチル、または5-フルオロペンチルである。 Preferred examples of alkyl in which at least one hydrogen is replaced by fluorine or chlorine are fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl, 7-fluoroheptyl. , Or 8-fluorooctyl. A more preferable example is 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, or 5-fluoropentyl for increasing the dielectric anisotropy.
 少なくとも1つの水素がフッ素または塩素で置き換えられたアルケニルの好ましい例は、2,2-ジフルオロビニル、3,3-ジフルオロ-2-プロペニル、4,4-ジフルオロ-3-ブテニル、5,5-ジフルオロ-4-ペンテニル、または6,6-ジフルオロ-5-ヘキセニルである。さらに好ましい例は、粘度を下げるために2,2-ジフルオロビニルまたは4,4-ジフルオロ-3-ブテニルである。 Preferred examples of alkenyl in which at least one hydrogen has been replaced by fluorine or chlorine include 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro. -4-pentenyl or 6,6-difluoro-5-hexenyl. A more preferred example is 2,2-difluorovinyl or 4,4-difluoro-3-butenyl for decreasing the viscosity.
 環Aおよび環Bは、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がフッ素で置き換えられた1,4-フェニレン、ピリミジン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルである。好ましい環Aおよび環Bは、光学異方性を上げるために1,4-フェニレンまたは2-フルオロ-1,4-フェニレンである。環Jは、1,4-シクロへキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、ピリミジン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルである。好ましい環Jは、光学異方性を上げるために1,4-フェニレンまたは2-フルオロ-1,4-フェニレンである。テトラヒドロピラン-2,5-ジイルは、
Figure JPOXMLDOC01-appb-I000044

または
Figure JPOXMLDOC01-appb-I000045

であり、好ましくは
Figure JPOXMLDOC01-appb-I000046

である。
Ring A and ring B are 1,4-cyclohexylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine, pyrimidine-2,5-diyl, 1,3-dioxane- It is 2,5-diyl or tetrahydropyran-2,5-diyl. Preferred ring A and ring B are 1,4-phenylene or 2-fluoro-1,4-phenylene for increasing the optical anisotropy. Ring J is 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,6-difluoro-1,4- It is phenylene, pyrimidine-2,5-diyl, 1,3-dioxane-2,5-diyl, or tetrahydropyran-2,5-diyl. Preferred ring J is 1,4-phenylene or 2-fluoro-1,4-phenylene for increasing the optical anisotropy. Tetrahydropyran-2,5-diyl is
Figure JPOXMLDOC01-appb-I000044

Or
Figure JPOXMLDOC01-appb-I000045

And preferably
Figure JPOXMLDOC01-appb-I000046

Is.
 環Cおよび環Eは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、ナフタレン-2,6-ジイル、少なくとも1つの水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、クロマン-2,6-ジイル、または少なくとも1つの水素がフッ素または塩素で置き換えられたクロマン-2,6-ジイルであるが、環Cおよび環Eのうち少なくとも1つは、少なくとも1つの水素がフッ素で置き換えられた1,4-フェニレンである。「少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン」の好ましい例は、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレンまたは2-クロロ-3-フルオロ-1,4-フェニレンである。好ましい環Cおよび環Eは、粘度を下げるために1,4-シクロヘキシレンであり、誘電率異方性を上げるためにテトラヒドロピラン-2,5-ジイルであり、光学異方性を上げるために1,4-フェニレンである。 Ring C and Ring E are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, 1 in which at least one hydrogen is replaced by fluorine or chlorine. , 4-phenylene, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2,6-diyl, or at least one hydrogen is fluorine or chlorine Chroman-2,6-diyl substituted with, but at least one of ring C and ring E is 1,4-phenylene with at least one hydrogen replaced by fluorine. Preferred examples of “1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine” include 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene or 2-chloro- It is 3-fluoro-1,4-phenylene. Preferred ring C and ring E are 1,4-cyclohexylene for decreasing the viscosity, tetrahydropyran-2,5-diyl for increasing the dielectric anisotropy, and for increasing the optical anisotropy. It is 1,4-phenylene.
環Kおよび環Mは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、ナフタレン-2,6-ジイル、少なくとも1つの水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、クロマン-2,6-ジイル、または少なくとも1つの水素がフッ素または塩素で置き換えられたクロマン-2,6-ジイルである。「少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン」の好ましい例は、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレンまたは2-クロロ-3-フルオロ-1,4-フェニレンである。好ましい環Kおよび環Mは、粘度を下げるために1,4-シクロヘキシレンであり、誘電率異方性を上げるためにテトラヒドロピラン-2,5-ジイルであり、光学異方性を上げるために1,4-フェニレンである。 Ring K and ring M are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, naphthalene-2,6-diyl and at least one hydrogen. Naphthalene-2,6-diyl substituted by fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl substituted by at least one hydrogen with fluorine or chlorine. Preferred examples of “1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine” include 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene or 2-chloro- It is 3-fluoro-1,4-phenylene. Preferred ring K and ring M are 1,4-cyclohexylene for decreasing the viscosity, tetrahydropyran-2,5-diyl for increasing the dielectric anisotropy, and for increasing the optical anisotropy. It is 1,4-phenylene.
 環Dおよび環Lは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、7,8-ジフルオロクロマン-2,6-ジイル、3,4,5,6-テトラフルオロフルオレン-2,7-ジイル(FLF4)、4,6-ジフルオロジベンゾフラン-3,7-ジイル(DBFF2)、4,6-ジフルオロジベンゾチオフェン-3,7-ジイル(DBTF2)、または1,1,6,7-テトラフルオロインダン-2,5-ジイル(InF4)である。
Figure JPOXMLDOC01-appb-I000047

好ましい環Dおよび環Lは、粘度を下げるために2,3-ジフルオロ-1,4-フェニレンであり、光学異方性を下げるために2-クロロ-3-フルオロ-1,4-フェニレンであり、誘電率異方性を上げるために7,8-ジフルオロクロマン-2,6-ジイルである。
Ring D and ring L are 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3 , 4,5-Trifluoronaphthalene-2,6-diyl, 7,8-difluorochroman-2,6-diyl, 3,4,5,6-tetrafluorofluorene-2,7-diyl (FLF4), 4 , 6-difluorodibenzofuran-3,7-diyl (DBFF2), 4,6-difluorodibenzothiophene-3,7-diyl (DBTF2), or 1,1,6,7-tetrafluoroindane-2,5-diyl (InF4).
Figure JPOXMLDOC01-appb-I000047

Preferred ring D and ring L are 2,3-difluoro-1,4-phenylene for decreasing the viscosity, and 2-chloro-3-fluoro-1,4-phenylene for decreasing the optical anisotropy. 7,8-difluorochroman-2,6-diyl for increasing the dielectric anisotropy.
 環Fおよび環Gは、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンである。好ましい環Fまたは環Gは、粘度を下げるために1,4-シクロヘキシレンであり、または光学異方性を上げるために1,4-フェニレンである。 Ring F and ring G are 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 2,5-difluoro-1,4-phenylene. Preferred ring F or ring G is 1,4-cyclohexylene for decreasing the viscosity, or 1,4-phenylene for increasing the optical anisotropy.
 ZおよびZは、単結合、エチレン、ビニレン、メチレンオキシ、カルボニルオキシ、またはジフルオロメチレンオキシである。好ましいZは、粘度を下げるために単結合である。Z、Z、Z、およびZは、単結合、エチレン、ビニレン、メチレンオキシ、またはカルボニルオキシである。好ましいZ、Z、Z、およびZは、粘度を下げるために単結合であり、下限温度を下げるためにエチレンであり、誘電率異方性を上げるためにメチレンオキシである。Zは、単結合、エチレン、ビニレン、メチレンオキシ、またはカルボニルオキシである。好ましいZは、粘度を下げるために単結合である。 Z 1 and Z 2 are single bonds, ethylene, vinylene, methyleneoxy, carbonyloxy, or difluoromethyleneoxy. Preferred Z 2 is a single bond for decreasing the viscosity. Z 3 , Z 4 , Z 7 , and Z 8 are single bonds, ethylene, vinylene, methyleneoxy, or carbonyloxy. Preferred Z 3 , Z 4 , Z 7 , and Z 8 are single bonds for decreasing the viscosity, ethylene for decreasing the minimum temperature, and methyleneoxy for increasing the dielectric anisotropy. Z 5 is a single bond, ethylene, vinylene, methyleneoxy, or carbonyloxy. Preferred Z 5 is a single bond for decreasing the viscosity.
 メチレンオキシにおいて、-CHO-は-OCH-よりも好ましい。カルボニルオキシにおいて、-COO-は-OCO-よりも好ましい。 In methyleneoxy, —CH 2 O— is preferred over —OCH 2 —. In carbonyloxy, —COO— is preferred over —OCO—.
 XおよびXは、水素またはフッ素である。好ましいXまたはXは、誘電率異方性を上げるためにフッ素である。 X 1 and X 2 are hydrogen or fluorine. Preferred X 1 or X 2 is fluorine for increasing the dielectric anisotropy.
 YおよびYは、フッ素、塩素、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルオキシである。好ましいYおよびYは、下限温度を下げるためにフッ素である。 Y 1 and Y 2 are fluorine, chlorine, an alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, and an alkoxy having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine. Or alkenyloxy having 2 to 12 carbons in which at least one hydrogen has been replaced by fluorine or chlorine. Preferred Y 1 and Y 2 are fluorine for decreasing the minimum temperature.
 少なくとも1つの水素がフッ素または塩素で置き換えられたアルキルの好ましい例は、トリフルオロメチルである。少なくとも1つの水素がフッ素または塩素で置き換えられたアルコキシの好ましい例は、トリフルオロメトキシである。少なくとも1つの水素がフッ素または塩素で置き換えられたアルケニルオキシの好ましい例は、トリフルオロビニルオキシである。 A preferred example of alkyl in which at least one hydrogen is replaced by fluorine or chlorine is trifluoromethyl. A preferred example of alkoxy in which at least one hydrogen has been replaced by fluorine or chlorine is trifluoromethoxy. A preferred example of alkenyloxy in which at least one hydrogen has been replaced with fluorine or chlorine is trifluorovinyloxy.
 aは、1、2、3、または4であり、bは0、1、2、または3であり、aとbの和は4以下である。好ましいaは下限温度を下げるために2であり、誘電率異方性を上げるために3である。好ましいbは上限温度を上げるために0であり、誘電率異方性を上げるために1である。cおよびgは、0、1、2、または3であり、dおよびhは、0または1であり、cとdの和は、1、2、または3であり、gとhの和は3以下である。好ましいcまたはgは粘度を下げるために1であり、上限温度を上げるために2または3である。好ましいdまたはhは粘度を下げるために0であり、下限温度を下げるために1である。eは、1、2、または3である。好ましいeは、粘度を下げるために1であり、上限温度を上げるために2または3である。fは、1、2、3、または4である。好ましいfは、下限温度を下げるために2であり、誘電率異方性を上げるために3である。 A is 1, 2, 3, or 4, b is 0, 1, 2, or 3, and the sum of a and b is 4 or less. Preferred a is 2 for lowering the minimum temperature and 3 for increasing the dielectric anisotropy. Preferred b is 0 for increasing the maximum temperature and 1 for increasing the dielectric anisotropy. c and g are 0, 1, 2, or 3, d and h are 0 or 1, the sum of c and d is 1, 2, or 3, and the sum of g and h is 3 It is below. Preferred c or g is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature. Preferred d or h is 0 for decreasing the viscosity and 1 for decreasing the minimum temperature. e is 1, 2, or 3. Preferred e is 1 for decreasing the viscosity and 2 or 3 for increasing the maximum temperature. f is 1, 2, 3, or 4. Preferred f is 2 for decreasing the minimum temperature and 3 for increasing the dielectric anisotropy.
 第五に、好ましい成分化合物を示す。好ましい化合物(1)は、項2に記載の化合物(1-1)から化合物(1-14)である。これらの化合物において、第一成分の少なくとも1つが、化合物(1-2)、化合物(1-3)、化合物(1-4)、化合物(1-7)、化合物(1-8)、化合物(1-9)、化合物(1-10)、または化合物(1-12)が好ましい。 Fifth, the preferred component compounds are shown. Preferred compound (1) includes compounds (1-1) to (1-14) described in item 2. In these compounds, at least one of the first components is compound (1-2), compound (1-3), compound (1-4), compound (1-7), compound (1-8), compound ( 1-9), compound (1-10), or compound (1-12) are preferred.
 好ましい化合物(2)は、項3に記載の化合物(2-1)から化合物(2-38)である。これらの化合物において、第二成分の少なくとも1つが、化合物(2-1)、化合物(2-2)、化合物(2-3)、化合物(2-4)、化合物(2-7)、化合物(2-8)、化合物(2-14)、化合物(2-15)、化合物(2-16)、化合物(2-17)、化合物(2-22)、化合物(2-32)、化合物(2-34)、化合物(2-35)、化合物(2-37)、または化合物(2-38)であることが好ましい。第二成分の少なくとも2つが、化合物(2-1)および化合物(2-3)の組合せであることが好ましい。 Preferred compounds (2) are compounds (2-1) to (2-38) described in item 3. In these compounds, at least one of the second components is compound (2-1), compound (2-2), compound (2-3), compound (2-4), compound (2-7), compound ( 2-8), compound (2-14), compound (2-15), compound (2-16), compound (2-17), compound (2-22), compound (2-32), compound (2 It is preferably -34), compound (2-35), compound (2-37), or compound (2-38). At least two of the second components are preferably a combination of compound (2-1) and compound (2-3).
 好ましい化合物(3)は、項6に記載の化合物(3-1)から化合物(3-13)である。これらの化合物において、第三成分の少なくとも1つが、化合物(3-1)、化合物(3-2)、化合物(3-3)、化合物(3-5)、化合物(3-6)、化合物(3-7)、化合物(3-8)、化合物(3-11)、または化合物(3-13)であることが好ましい。第三成分の少なくとも2つが、化合物(3-1)および化合物(3-5)、化合物(3-1)および化合物(3-6)、化合物(3-1)および化合物(3-7)、化合物(3-1)と化合物(3-8)、化合物(3-1)および化合物(3-13)、化合物(3-3)および化合物(3-5)、化合物(3-3)および化合物(3-6)、化合物(3-3)および化合物(3-7)、化合物(3-3)および化合物(3-8)、または化合物(3-3)および化合物(3-13)の組合せであることが好ましい。 Preferred compounds (3) are the compounds (3-1) to (3-13) described in item 6. In these compounds, at least one of the third components is compound (3-1), compound (3-2), compound (3-3), compound (3-5), compound (3-6), compound ( It is preferably 3-7), compound (3-8), compound (3-11), or compound (3-13). At least two of the third components are compound (3-1) and compound (3-5), compound (3-1) and compound (3-6), compound (3-1) and compound (3-7), Compound (3-1) and compound (3-8), compound (3-1) and compound (3-13), compound (3-3) and compound (3-5), compound (3-3) and compound (3-6), compound (3-3) and compound (3-7), compound (3-3) and compound (3-8), or combination of compound (3-3) and compound (3-13) Is preferred.
 好ましい化合物(4)は、項9に記載の化合物(4-1)から化合物(4-16)である。これらの化合物において、第四成分の少なくとも1つが、化合物(4-4)、化合物(4-7)、化合物(4-8)、化合物(4-11)、化合物(4-12)、化合物(4-13)、化合物(4-14)、または化合物(4-16)であることが好ましい。第四成分の少なくとも2つが、化合物(4-11)および化合物(4-12)、化合物(4-11)および化合物(4-13)、化合物(4-11)および化合物(4-16)、または化合物(4-12)および化合物(4-13)の組合せであることが好ましい。 Preferred compounds (4) are the compounds (4-1) to (4-16) described in item 9. In these compounds, at least one of the fourth components is compound (4-4), compound (4-7), compound (4-8), compound (4-11), compound (4-12), compound ( It is preferably 4-13), the compound (4-14), or the compound (4-16). At least two of the fourth components are compound (4-11) and compound (4-12), compound (4-11) and compound (4-13), compound (4-11) and compound (4-16), Alternatively, a combination of compound (4-12) and compound (4-13) is preferable.
 好ましい化合物(5)は、項12に記載の化合物(5-1)から化合物(5-31)である。これらの化合物において、第五成分の少なくとも1つが、化合物(5-1)、化合物(5-2)、化合物(5-3)、化合物(5-6)、化合物(5-7)、化合物(5-8)、化合物(5-9)、化合物(5-13)、化合物(5-15)、または化合物5-17)であることが好ましい。第五成分の少なくとも2つが、化合物(5-1)および化合物(5-4)、化合物(5-1)および化合物(5-6)、化合物(5-1)および化合物(5-7)、化合物(5-1)および化合物(5-9)、化合物(5-1)および化合物(5-13)、化合物(5-1)および化合物(5-15)、化合物(5-1)および化合物(5-16)、化合物(5-7)および化合物(5-8)、化合物(5-7)および化合物(5-9)、化合物(5-7)および化合物(5-13)、化合物(5-7)および化合物(5-15)、または化合物(5-13)および化合物(5-15)の組合せであることが好ましい。 Preferred compounds (5) are the compounds (5-1) to (5-31) described in item 12. In these compounds, at least one of the fifth components is compound (5-1), compound (5-2), compound (5-3), compound (5-6), compound (5-7), compound ( 5-8), compound (5-9), compound (5-13), compound (5-15), or compound 5-17) is preferred. At least two of the fifth components are compound (5-1) and compound (5-4), compound (5-1) and compound (5-6), compound (5-1) and compound (5-7), Compound (5-1) and compound (5-9), compound (5-1) and compound (5-13), compound (5-1) and compound (5-15), compound (5-1) and compound (5-16), compound (5-7) and compound (5-8), compound (5-7) and compound (5-9), compound (5-7) and compound (5-13), compound ( 5-7) and compound (5-15), or a combination of compound (5-13) and compound (5-15) is preferable.
 第六に、組成物に添加してもよい添加物を説明する。このような添加物は、光学活性化合物、酸化防止剤、紫外線吸収剤、消光剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤、極性化合物などである。液晶分子のらせん構造を誘起してねじれ角を与える目的で光学活性化合物が組成物に添加される。このような化合物の例は、化合物(6-1)から化合物(6-5)である。光学活性化合物の好ましい割合は約5質量%以下である。さらに好ましい割合は約0.01質量%から約2質量%の範囲である。 Sixth, explain the additives that may be added to the composition. Such additives are optically active compounds, antioxidants, ultraviolet absorbers, quenchers, dyes, defoamers, polymerizable compounds, polymerization initiators, polymerization inhibitors, polar compounds and the like. An optically active compound is added to the composition for the purpose of inducing a helical structure of liquid crystal molecules to give a twist angle. Examples of such compounds are compound (6-1) to compound (6-5). A desirable ratio of the optically active compound is about 5% by mass or less. A more desirable ratio is in the range of approximately 0.01% by mass to approximately 2% by mass.

Figure JPOXMLDOC01-appb-I000048

Figure JPOXMLDOC01-appb-I000048
 大気中での加熱による比抵抗の低下を防止するために、または素子を長時間使用したあと、室温だけではなく、上限温度に近い温度でも大きな電圧保持率を維持するために、酸化防止剤が組成物に添加される。酸化防止剤の例は式(7)で表される化合物である。
Figure JPOXMLDOC01-appb-I000049

式(7)において、Rは炭素数1から12のアルキルである。好ましいRはメチル、プロピル、ペンチル、またはヘプチルである。環Qは1,4-シクロヘキシレン、1,4-フェニレン、または1,3-ジオキサン-2,5-ジイルである。好ましい環Qは1,4-シクロへキシレンである。jは、0、1、または2である。好ましいjは0または1である。
In order to prevent a decrease in the specific resistance due to heating in the air, or to maintain a large voltage holding ratio not only at room temperature but also at a temperature close to the maximum temperature after using the device for a long time, an antioxidant is used. Added to the composition. An example of the antioxidant is a compound represented by the formula (7).
Figure JPOXMLDOC01-appb-I000049

In the formula (7), R 9 is alkyl having 1 to 12 carbons. Preferred R 9 is methyl, propyl, pentyl, or heptyl. Ring Q is 1,4-cyclohexylene, 1,4-phenylene, or 1,3-dioxane-2,5-diyl. A preferred ring Q is 1,4-cyclohexylene. j is 0, 1, or 2. Preferred j is 0 or 1.
 好ましい化合物(7)は化合物(7-1)から化合物(7-3)である。
Figure JPOXMLDOC01-appb-I000050
Preferred compound (7) includes compound (7-1) to compound (7-3).
Figure JPOXMLDOC01-appb-I000050
 紫外線吸収剤の好ましい例は、ベンゾフェノン誘導体、ベンゾエート誘導体、トリアゾール誘導体などである。立体障害のあるアミンのような光安定剤もまた好ましい。光安定剤の好ましい例は、化合物(8-1)から化合物(8-16)などである。これらの吸収剤や安定剤における好ましい割合は、その効果を得るために約50ppm以上であり、上限温度を下げないように、または下限温度を上げないために約10000ppm以下である。さらに好ましい割合は約100ppmから約10000ppmの範囲である。

Figure JPOXMLDOC01-appb-I000051

Figure JPOXMLDOC01-appb-I000052

Figure JPOXMLDOC01-appb-I000053
Preferred examples of the ultraviolet absorber are benzophenone derivatives, benzoate derivatives, triazole derivatives and the like. Light stabilizers such as sterically hindered amines are also preferred. Preferred examples of the light stabilizer include compound (8-1) to compound (8-16). The preferred ratio of these absorbents and stabilizers is about 50 ppm or more for obtaining the effect, and about 10,000 ppm or less for not lowering the upper limit temperature or for not raising the lower limit temperature. A more desirable ratio is in the range of approximately 100 ppm to approximately 10,000 ppm.

Figure JPOXMLDOC01-appb-I000051

Figure JPOXMLDOC01-appb-I000052

Figure JPOXMLDOC01-appb-I000053
 消光剤は、液晶化合物が吸収した光エネルギーを受容し、熱エネルギーに変換することにより、液晶化合物の分解を防止する化合物である。消光剤の好ましい例は、化合物(9-1)から化合物(9-7)などである。これらの消光剤における好ましい割合は、その効果を得るために約50ppm以上であり、下限温度を上げないために約20000ppm以下である。さらに好ましい割合は約100ppmから約10000ppmの範囲である。
Figure JPOXMLDOC01-appb-I000054
The quencher is a compound that receives the light energy absorbed by the liquid crystal compound and converts it into heat energy, thereby preventing decomposition of the liquid crystal compound. Preferable examples of the quencher include compounds (9-1) to (9-7). A desirable ratio of these quenchers is about 50 ppm or more for obtaining the effect, and about 20,000 ppm or less for not raising the minimum temperature. A more desirable ratio is in the range of approximately 100 ppm to approximately 10,000 ppm.
Figure JPOXMLDOC01-appb-I000054
 GH(guest host)モードの素子に適合させるために、アゾ系色素、アントラキノン系色素などのような二色性色素(dichroic dye)が組成物に添加される。色素の好ましい割合は、約0.01質量%から約10質量%の範囲である。泡立ちを防ぐために、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどの消泡剤が組成物に添加される。消泡剤の好ましい割合は、その効果を得るために約1ppm以上であり、表示不良を防ぐために約1000ppm以下である。さらに好ましい割合は、約1ppmから約500ppmの範囲である。 Dichroic dyes such as azo dyes and anthraquinone dyes are added to the composition in order to adapt to GH (guest host) mode devices. The preferred proportion of dye is in the range of about 0.01% to about 10% by weight. An antifoaming agent such as dimethyl silicone oil or methylphenyl silicone oil is added to the composition to prevent foaming. The preferable ratio of the defoaming agent is about 1 ppm or more to obtain the effect, and about 1000 ppm or less to prevent display defects. A more desirable ratio is in the range of approximately 1 ppm to approximately 500 ppm.
 高分子支持配向(PSA)型の素子に適合させるために重合性化合物が用いられる。このような重合性化合物の好ましい例は、アクリレート、メタクリレート、ビニル化合物、ビニルオキシ化合物、プロペニルエーテル、エポキシ化合物(オキシラン、オキセタン)、ビニルケトンなどの化合物である。さらに好ましい例は、アクリレートまたはメタクリレートの誘導体である。好ましい割合は、重合性化合物の全質量に基づいて10質量%以上である。さらに好ましい割合は、50質量%以上である。特に好ましい割合は、80質量%以上である。最も好ましい割合は、100質量%である。 A polymerizable compound is used to adapt to a polymer-supported orientation (PSA) type device. Preferred examples of such a polymerizable compound are compounds such as acrylate, methacrylate, vinyl compound, vinyloxy compound, propenyl ether, epoxy compound (oxirane, oxetane), vinyl ketone and the like. Further preferred examples are acrylate or methacrylate derivatives. A preferred ratio is 10% by mass or more based on the total mass of the polymerizable compound. A more desirable ratio is 50% by mass or more. A particularly desirable ratio is 80% by mass or more. The most preferable ratio is 100% by mass.
 重合性化合物を保管するとき、重合を防止するために重合禁止剤を添加してもよい。重合性化合物は、通常は重合禁止剤を除去しないまま組成物に添加される。重合禁止剤の例は、ヒドロキノン、メチルヒドロキノンのようなヒドロキノン誘導体、4-tert-ブチルカテコール、4-メトキシフェノール、フェノチアジンなどである。 When storing a polymerizable compound, a polymerization inhibitor may be added to prevent polymerization. The polymerizable compound is usually added to the composition without removing the polymerization inhibitor. Examples of the polymerization inhibitor are hydroquinone, hydroquinone derivatives such as methylhydroquinone, 4-tert-butylcatechol, 4-methoxyphenol, phenothiazine and the like.
 極性化合物は、極性をもつ有機化合物である。ここでは、イオン結合を有する化合物は含まれない。酸素、硫黄、および窒素のような原子は、より電気的に陰性であり、部分的な負電荷をもつ傾向にある。炭素および水素は中性であるか、または部分的な正電荷をもつ傾向がある。極性は、化合物中の別種の原子間で部分電荷が均等に分布しないことから生じる。例えば、極性化合物は、-OH、-COOH、-SH、-NH、>NH、>N-のような部分構造の少なくとも1つを有する。 The polar compound is an organic compound having polarity. Here, a compound having an ionic bond is not included. Atoms such as oxygen, sulfur, and nitrogen are more electronegative and tend to have a partial negative charge. Carbon and hydrogen tend to be neutral or have a partial positive charge. Polarity arises from the uneven distribution of partial charges among different atoms in the compound. For example, the polar compound has at least one of the partial structures such as —OH, —COOH, —SH, —NH 2 ,>NH,> N—.
 第七に、成分化合物の合成法を説明する。これらの化合物は既知の方法によって合成できる。合成法を例示する。化合物(1-1)は、アルドリッチ(Sigma-Aldrich Corporation)から入手、もしくは米国特許第3660505号明細書に記載された方法によって合成する。化合物(2-3は、国際公報第1999/021816に記載された方法で合成する。化合物(3-1)は、特開昭59-176221号公報に記載された方法で合成する。化合物(4-1)は、特開2000-053602号公報に記載された方法で合成する。 Seventh, explain the method of synthesizing the component compounds. These compounds can be synthesized by known methods. A synthetic method is illustrated. The compound (1-1) is obtained from Aldrich (Sigma-Aldrich Corporation) or is synthesized by the method described in US Pat. No. 3,660,505. The compound (2-3 is synthesized by the method described in International Publication No. 1999/021816. The compound (3-1) is synthesized by the method described in JP-A-59-176221. -1) is synthesized by the method described in JP 2000-053602A.
 合成法を記載しなかった化合物は、オーガニック・シンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などの成書に記載された方法によって合成できる。組成物は、このようにして得た化合物から公知の方法によって調製される。例えば、成分化合物を混合し、そして加熱によって互いに溶解させる。 Compounds for which no synthetic method was described are Organic Synthesis, John Wiley && Sons, Inc, Organic Reactions, John Wiley & Sons, Inc, Comprehensive Organic Synthesis. Synthesis, Pergamon Press), New Experimental Chemistry Course (Maruzen), etc. The composition is prepared from the compounds thus obtained by known methods. For example, the component compounds are mixed and dissolved by heating.
 最後に、組成物の用途を説明する。この組成物は主として、約-10℃以下の下限温度、約70℃以上の上限温度、そして約0.07から約0.20の範囲の光学異方性を有する。成分化合物の割合を制御することによって、またはその他の液晶性化合物を混合することによって、約0.08から約0.25の範囲の光学異方性を有する組成物を調製してもよい。試行錯誤によって、約0.10から約0.30の範囲の光学異方性を有する組成物を調製してもよい。この組成物を含有する素子は大きな電圧保持率を有する。この組成物はAM素子に適する。この組成物は透過型のAM素子に特に適する。この組成物は、ネマチック相を有する組成物としての使用、光学活性化合物を添加することによって光学活性な組成物としての使用が可能である。 Finally, explain the use of the composition. The composition mainly has a minimum temperature of about −10 ° C. or lower, a maximum temperature of about 70 ° C. or higher, and an optical anisotropy in the range of about 0.07 to about 0.20. A composition having an optical anisotropy in the range of about 0.08 to about 0.25 may be prepared by controlling the ratio of component compounds or by mixing with other liquid crystal compounds. Compositions having optical anisotropy in the range of about 0.10 to about 0.30 may be prepared by trial and error. A device containing this composition has a large voltage holding ratio. This composition is suitable for an AM device. This composition is particularly suitable for a transmissive AM device. This composition can be used as a composition having a nematic phase, or as an optically active composition by adding an optically active compound.
 この組成物はAM素子への使用が可能である。さらにPM素子への使用も可能である。この組成物は、PC、TN、STN、ECB、OCB、IPS、FFS、VA、FPAなどのモードを有するAM素子およびPM素子への使用が可能である。TN、OCB、IPSモードまたはFFSモードを有するAM素子への使用は特に好ましい。IPSモードまたはFFSモードを有するAM素子において、電圧が無印加のとき、液晶分子の配列がガラス基板に対して並行であってもよく、または垂直であってもよい。これらの素子が反射型、透過型または半透過型であってもよい。透過型の素子への使用は好ましい。非結晶シリコン-TFT素子または多結晶シリコン-TFT素子への使用も可能である。この組成物をマイクロカプセル化して作製したNCAP(nematic curvilinear aligned phase)型の素子や、組成物中に三次元の網目状高分子を形成させたPD(polymer dispersed)型の素子にも使用できる。 This composition can be used for AM devices. Further, it can be used for a PM element. This composition can be used for AM and PM devices having modes such as PC, TN, STN, ECB, OCB, IPS, FFS, VA and FPA. The use in AM devices having TN, OCB, IPS mode or FFS mode is particularly preferable. In the AM device having the IPS mode or the FFS mode, when no voltage is applied, the liquid crystal molecules may be aligned in parallel with or perpendicular to the glass substrate. These elements may be reflective, transmissive or transflective. Use in a transmissive element is preferred. It can also be used for an amorphous silicon-TFT device or a polycrystalline silicon-TFT device. It can also be used for an NCAP (nematic curvilinear aligned phase) type device produced by microencapsulating this composition and a PD (polymer dispersed) type device in which a three-dimensional network polymer is formed in the composition.
 実施例により本発明をさらに詳しく説明する。本発明はこれらの実施例によっては制限されない。本発明は、実施例1の組成物と実施例2の組成物との混合物を含む。本発明は、実施例の組成物の少なくとも2つを混合した混合物をも含む。合成した化合物は、NMR分析などの方法により同定した。化合物、組成物、および素子の特性は、下記に記載した方法により測定した。 The present invention will be described in more detail by way of examples. The invention is not limited by these examples. The present invention comprises a mixture of the composition of Example 1 and the composition of Example 2. The present invention also includes a mixture of at least two of the example compositions. The synthesized compound was identified by a method such as NMR analysis. The properties of the compounds, compositions, and devices were measured by the methods described below.
 NMR分析:測定には、ブルカーバイオスピン社製のDRX-500を用いた。H-NMRの測定では、試料をCDClなどの重水素化溶媒に溶解させ、測定は、室温で、500MHz、積算回数16回の条件で行った。テトラメチルシランを内部標準として用いた。19F-NMRの測定では、CFClを内部標準として用い、積算回数24回で行った。核磁気共鳴スペクトルの説明において、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、quinはクインテット、sexはセクステット、mはマルチプレット、brはブロードであることを意味する。 NMR analysis: DRX-500 manufactured by Bruker BioSpin was used for the measurement. In the 1 H-NMR measurement, the sample was dissolved in a deuterated solvent such as CDCl 3 and the measurement was performed at room temperature under the conditions of 500 MHz and 16 times of integration. Tetramethylsilane was used as an internal standard. In 19 F-NMR measurement, CFCl 3 was used as an internal standard, and the number of times of integration was 24. In the description of the nuclear magnetic resonance spectrum, s means a singlet, d a doublet, t a triplet, q a quartet, quin a quintet, sex a sextet, m a multiplet, and br a broad.
 ガスクロマト分析:測定には島津製作所製のGC-14B型ガスクロマトグラフを用いた。キャリアーガスはヘリウム(2mL/分)である。試料気化室を280℃に、検出器(FID)を300℃に設定した。成分化合物の分離には、Agilent Technologies Inc.製のキャピラリカラムDB-1(長さ30m、内径0.32mm、膜厚0.25μm;固定液相はジメチルポリシロキサン;無極性)を用いた。このカラムは、200℃で2分間保持したあと、5℃/分の割合で280℃まで昇温した。試料はアセトン溶液(0.1質量%)に調製したあと、その1μLを試料気化室に注入した。記録計は島津製作所製のC-R5A型Chromatopac、またはその同等品である。得られたガスクロマトグラムは、成分化合物に対応するピークの保持時間およびピークの面積を示した。 Gas chromatographic analysis: A Shimadzu GC-14B gas chromatograph was used for the measurement. The carrier gas is helium (2 mL / min). The sample vaporization chamber was set at 280 ° C and the detector (FID) was set at 300 ° C. A capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm; fixed liquid phase dimethylpolysiloxane; non-polar) made by Agilent Technologies Inc. was used for separation of component compounds. The column was held at 200 ° C. for 2 minutes and then heated to 280 ° C. at a rate of 5 ° C./minute. The sample was prepared in an acetone solution (0.1% by mass), and 1 μL thereof was injected into the sample vaporization chamber. The recorder is a C-R5A type Chromatopac manufactured by Shimadzu Corporation or its equivalent. The obtained gas chromatogram showed the retention times of peaks and the areas of peaks corresponding to the component compounds.
 試料を希釈するための溶媒は、クロロホルム、ヘキサンなどを用いてもよい。成分化合物を分離するために、次のキャピラリカラムを用いてもよい。Agilent Technologies Inc.製のHP-1(長さ30m、内径0.32mm、膜厚0.25μm)、Restek Corporation製のRtx-1(長さ30m、内径0.32mm、膜厚0.25μm)、SGE International Pty. Ltd製のBP-1(長さ30m、内径0.32mm、膜厚0.25μm)。化合物ピークの重なりを防ぐ目的で島津製作所製のキャピラリカラムCBP1-M50-025(長さ50m、内径0.25mm、膜厚0.25μm)を用いてもよい。 As the solvent for diluting the sample, chloroform, hexane, etc. may be used. The following capillary column may be used to separate the component compounds. HP-1 made by Agilent Technologies Inc. (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm), Rtx-1 made by Restek Corporation (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm), BP-1 manufactured by SGE International Pty. Ltd (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm). A capillary column CBP1-M50-025 (length 50 m, inner diameter 0.25 mm, film thickness 0.25 μm) manufactured by Shimadzu Corporation may be used for the purpose of preventing overlapping of compound peaks.
 組成物に含有される液晶性化合物の割合は、次のような方法で算出してよい。液晶性化合物の混合物をガスクロマトグラフィー(FID)で分析する。ガスクロマトグラムにおけるピークの面積比は液晶性化合物の割合に相当する。上に記載したキャピラリカラムを用いたときは、各々の液晶性化合物の補正係数を1とみなしてよい。したがって、液晶性化合物の割合(質量%)は、ピークの面積比から算出することができる。 The ratio of the liquid crystal compound contained in the composition may be calculated by the following method. The mixture of liquid crystal compounds is analyzed by gas chromatography (FID). The area ratio of the peaks in the gas chromatogram corresponds to the ratio of liquid crystal compounds. When the capillary column described above is used, the correction coefficient of each liquid crystal compound may be regarded as 1. Therefore, the ratio (mass%) of the liquid crystal compound can be calculated from the peak area ratio.
 測定試料:組成物または素子の特性を測定するときは、組成物をそのまま試料として用いた。化合物の特性を測定するときは、この化合物(15質量%)を母液晶(85質量%)に混合することによって測定用の試料を調製した。測定によって得られた値から外挿法によって化合物の特性値を算出した。(外挿値)={(試料の測定値)-0.85×(母液晶の測定値)}/0.15。この割合でスメクチック相(または結晶)が25℃で析出するときは、化合物と母液晶の割合を10質量%:90質量%、5質量%:95質量%、1質量%:99質量%の順に変更した。この外挿法によって化合物に関する上限温度、光学異方性、粘度、および誘電率異方性の値を求めた。 Measurement sample: When measuring the characteristics of the composition or device, the composition was directly used as a sample. When measuring the characteristics of the compound, a sample for measurement was prepared by mixing this compound (15% by mass) with the mother liquid crystal (85% by mass). The characteristic value of the compound was calculated from the value obtained by the measurement by extrapolation. (Extrapolated value) = {(measured value of sample) −0.85 × (measured value of mother liquid crystal)} / 0.15. When the smectic phase (or crystal) is precipitated at 25 ° C. in this proportion, the proportions of the compound and the mother liquid crystal are 10% by mass: 90% by mass, 5% by mass: 95% by mass, 1% by mass: 99% by mass in this order. changed. Values of the maximum temperature, optical anisotropy, viscosity, and dielectric anisotropy of the compound were obtained by this extrapolation method.
 下記の母液晶を用いた。成分化合物の割合は質量%で示した。
Figure JPOXMLDOC01-appb-I000055
The following mother liquid crystals were used. The ratio of the component compounds is shown by mass%.
Figure JPOXMLDOC01-appb-I000055
 測定方法:特性の測定は下記の方法で行った。これらの多くは、社団法人電子情報技術産業協会(Japan Electronics and Information Technology Industries Association;JEITAという)で審議制定されるJEITA規格(JEITA・ED-2521B)に記載された方法、またはこれを修飾した方法であった。測定に用いたTN素子には、薄膜トランジスター(TFT)を取り付けなかった。 Measurement method: The characteristics were measured by the following methods. Most of these are the methods described in the JEITA standard (JEITA / ED-2521B), which is deliberated and established by the Japan Electronics and Information Technology Industries Association (JEITA), or methods modified from this. Met. No thin film transistor (TFT) was attached to the TN device used for the measurement.
(1)ネマチック相の上限温度(NI;℃):偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃/分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。ネマチック相の上限温度を「上限温度」と略すことがある。 (1) Maximum temperature of the nematic phase (NI; ° C): The sample was placed on a hot plate of a melting point measuring device equipped with a polarization microscope and heated at a rate of 1 ° C / min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid. The maximum temperature of the nematic phase may be abbreviated as “maximum temperature”.
(2)ネマチック相の下限温度(T;℃):ネマチック相を有する試料をガラス瓶に入れ、0℃、-10℃、-20℃、-30℃、および-40℃のフリーザー中に10日間保管したあと、液晶相を観察した。例えば、試料が-20℃ではネマチック相のままであり、-30℃では結晶またはスメクチック相に変化したとき、Tを<-20℃と記載した。ネマチック相の下限温度を「下限温度」と略すことがある。 (2) Minimum temperature of nematic phase (T C ; ° C): A sample having a nematic phase is put in a glass bottle and placed in a freezer at 0 ° C, -10 ° C, -20 ° C, -30 ° C, and -40 ° C for 10 days. After storage, the liquid crystal phase was observed. For example, T C was described as <−20 ° C. when the sample remained in the nematic phase at −20 ° C. and changed to a crystalline or smectic phase at −30 ° C. The lower limit temperature of the nematic phase may be abbreviated as “lower limit temperature”.
(3)粘度(バルク粘度;η;20℃で測定;mPa・s):測定には東京計器株式会社製のE型回転粘度計を用いた。 (3) Viscosity (bulk viscosity; η; measured at 20 ° C .; mPa · s): An E-type rotational viscometer manufactured by Tokyo Keiki Co., Ltd. was used for measurement.
(4)粘度(回転粘度;γ1;25℃で測定;mPa・s):測定は、M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995)に記載された方法に従った。ツイスト角が0°であり、そして2枚のガラス基板の間隔(セルギャップ)が5μmであるTN素子に試料を入れた。この素子に16Vから19.5Vの範囲で0.5V毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件で印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)を測定した。これらの測定値とM. Imaiらの論文中の40頁記載の計算式(10)とから回転粘度の値を得た。この計算で必要な誘電率異方性の値は、この回転粘度を測定した素子を用い、下に記載した方法で求めた。 (4) Viscosity (rotational viscosity; γ1; measured at 25 ° C; mPa · s): The measurement is performed according to the method described in M.Imaietetal., Molecular Crystals and Liquid Crystals, Vol.259, 37, (1995). I obeyed. The sample was put in a TN device having a twist angle of 0 ° and a distance (cell gap) between two glass substrates of 5 μm. A voltage of 16V to 19.5V was applied to the device in steps of 0.5V. After 0.2 seconds of non-application, application was repeated under the conditions of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds). The peak current (peak current) and the peak time (peak time) of the transient current generated by this application were measured. The rotational viscosity value was obtained from these measured values and the calculation formula (10) described on page 40 of the paper by M. Imai et al. The value of the dielectric anisotropy required for this calculation was determined by the method described below using the device whose rotational viscosity was measured.
(5)光学異方性(屈折率異方性;Δn;25℃で測定):測定は、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビングしたあと、試料を主プリズムに滴下した。屈折率n∥は偏光の方向がラビングの方向と平行であるときに測定した。屈折率n⊥は偏光の方向がラビングの方向と垂直であるときに測定した。光学異方性の値は、Δn=n∥-n⊥、の式から計算した。 (5) Optical anisotropy (refractive index anisotropy; Δn; measured at 25 ° C.): The measurement was carried out using an Abbe refractometer with a polarizing plate attached to the eyepiece, using light having a wavelength of 589 nm. After rubbing the surface of the main prism in one direction, the sample was dropped on the main prism. The refractive index n∥ was measured when the polarization direction was parallel to the rubbing direction. The refractive index n⊥ was measured when the direction of polarized light was perpendicular to the direction of rubbing. The value of optical anisotropy was calculated from the formula of Δn = n∥−n⊥.
(6)誘電率異方性(Δε;25℃で測定):2枚のガラス基板の間隔(セルギャップ)が9μmであり、そしてツイスト角が80度であるTN素子に試料を入れた。この素子にサイン波(10V、1kHz)を印加し、2秒後に液晶分子の長軸方向における誘電率(ε∥)を測定した。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の短軸方向における誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε∥-ε⊥、の式から計算した。 (6) Dielectric anisotropy (Δε; measured at 25 ° C.): A sample was put in a TN device in which a distance (cell gap) between two glass substrates was 9 μm and a twist angle was 80 degrees. A sine wave (10 V, 1 kHz) was applied to this device, and after 2 seconds, the dielectric constant (ε∥) in the major axis direction of liquid crystal molecules was measured. A sine wave (0.5 V, 1 kHz) was applied to this device, and after 2 seconds, the dielectric constant (ε⊥) in the short axis direction of the liquid crystal molecule was measured. The value of the dielectric anisotropy was calculated from the equation: Δε = ε∥−ε⊥.
(7)しきい値電圧(Vth;25℃で測定;V):測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプであった。2枚のガラス基板の間隔(セルギャップ)が0.45/Δn(μm)であり、ツイスト角が80度であるノーマリーホワイトモード(normally white mode)のTN素子に試料を入れた。この素子に印加する電圧(32Hz、矩形波)は0Vから10Vまで0.02Vずつ段階的に増加させた。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%である電圧-透過率曲線を作成した。しきい値電圧は透過率が90%になったときの電圧で表した。 (7) Threshold voltage (Vth; measured at 25 ° C .; V): LCD5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for measurement. The light source was a halogen lamp. The sample was put in a normally white mode TN device in which the distance (cell gap) between two glass substrates was 0.45 / Δn (μm) and the twist angle was 80 degrees. The voltage (32 Hz, rectangular wave) applied to this element was increased stepwise from 0 V to 10 V by 0.02 V. At this time, the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured. A voltage-transmittance curve in which the transmittance is 100% when the amount of light is maximum and the transmittance is 0% when the amount of light is minimum was created. The threshold voltage is represented by the voltage when the transmittance reaches 90%.
(8)電圧保持率(VHR-9;25℃で測定;%):測定に用いたTN素子はポリイミド配向膜を有し、そして2枚のガラス基板の間隔(セルギャップ)は5μmであった。この素子は試料を入れたあと紫外線で硬化する接着剤で密閉した。このTN素子にパルス電圧(1Vで60マイクロ秒)を印加して充電した。減衰する電圧を高速電圧計で166.7ミリ秒のあいだ測定し、単位周期における電圧曲線と横軸との間の面積Aを求めた。面積Bは減衰しなかったときの面積であった。電圧保持率は面積Bに対する面積Aの百分率で表した。 (8) Voltage holding ratio (VHR-9; measured at 25 ° C .;%): The TN device used for measurement had a polyimide alignment film, and the distance (cell gap) between two glass substrates was 5 μm. .. This device was sealed with an adhesive which was cured by ultraviolet rays after the sample was put in. A pulse voltage (60 microseconds at 1 V) was applied to the TN device to charge it. The decaying voltage was measured with a high-speed voltmeter for 166.7 milliseconds, and the area A between the voltage curve and the horizontal axis in a unit cycle was obtained. Area B was the area when it was not attenuated. The voltage holding ratio was expressed as a percentage of the area A with respect to the area B.
(9)電圧保持率(VHR-10;60℃で測定;%):25℃の代わりに、60℃で測定した以外は、上記と同じ手順で電圧保持率を測定した。得られた値をVHR-10で表した。 (9) Voltage holding ratio (VHR-10; measured at 60 ° C .;%): The voltage holding ratio was measured by the same procedure as above except that it was measured at 60 ° C. instead of 25 ° C. The obtained value was represented by VHR-10.
(10)電圧保持率(VHR-11;60℃で測定;%):紫外線を照射したあと、電圧保持率を測定し、紫外線に対する安定性を評価した。測定に用いたTN素子はポリイミド配向膜を有し、そしてセルギャップは5μmであった。この素子に試料を注入し、5mW/cmの紫外線を167分間照射した。光源はアイグラフィックス株式会社製ブラックライト、F40T10/BL(ピーク波長369nm)であり、素子と光源の間隔は5mmであった。VHR-11の測定では、166.7ミリ秒のあいだ、減衰する電圧を測定した。大きなVHR-11を有する組成物は紫外線に対して大きな安定性を有する。 (10) Voltage holding ratio (VHR-11; measured at 60 ° C .;%): After irradiation with ultraviolet rays, the voltage holding ratio was measured to evaluate stability against ultraviolet rays. The TN device used for the measurement had a polyimide alignment film, and the cell gap was 5 μm. A sample was injected into this device and was irradiated with 5 mW / cm 2 ultraviolet rays for 167 minutes. The light source was a black light manufactured by Eye Graphics Co., Ltd., F40T10 / BL (peak wavelength 369 nm), and the distance between the element and the light source was 5 mm. The VHR-11 measurement measured the decaying voltage for 166.7 milliseconds. Compositions with large VHR-11 have great stability to UV light.
(11)電圧保持率(VHR-12;60℃で測定;%):試料を注入したTN素子を120℃の恒温槽内で20時間加熱したあと、電圧保持率を測定し、熱に対する安定性を評価した。VHR-12の測定では、166.7ミリ秒のあいだ減衰する電圧を測定した。大きなVHR-12を有する組成物は熱に対して大きな安定性を有する。 (11) Voltage holding ratio (VHR-12; measured at 60 ° C .;%): The TN device into which the sample was injected was heated in a constant temperature bath at 120 ° C. for 20 hours, and then the voltage holding ratio was measured to show stability against heat. Was evaluated. The VHR-12 measurement measured the voltage which decayed for 166.7 milliseconds. Compositions with large VHR-12 have great stability to heat.
(12)応答時間(τ;25℃で測定;ms):測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプであった。ローパス・フィルター(Low-pass filter)は5kHzに設定した。2枚のガラス基板の間隔(セルギャップ)が5.0μmであり、ツイスト角が80度であるノーマリーホワイトモード(normally white mode)のTN素子に試料を入れた。この素子に矩形波(60Hz、5V、0.5秒)を印加した。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%であるとみなした。立ち上がり時間(τr:rise time;ミリ秒)は、透過率が90%から10%に変化するのに要した時間である。立ち下がり時間(τf:fall time;ミリ秒)は透過率10%から90%に変化するのに要した時間である。応答時間は、このようにして求めた立ち上がり時間と立ち下がり時間との和で表した。 (12) Response time (τ; measured at 25 ° C .; ms): Measurement was carried out with LCD Evaluation System Model LCD-5100 made by Otsuka Electronics Co., Ltd. The light source was a halogen lamp. The low-pass filter was set to 5 kHz. The sample was put in a TN device in a normally white mode in which the distance (cell gap) between two glass substrates was 5.0 μm and the twist angle was 80 degrees. A rectangular wave (60 Hz, 5 V, 0.5 seconds) was applied to this device. At this time, the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured. It was considered that the transmittance was 100% when the amount of light was maximum, and the transmittance was 0% when the amount of light was minimum. The rise time (τr: rise time; millisecond) is the time required for the transmittance to change from 90% to 10%. The fall time (τf: fall time; millisecond) is the time required to change the transmittance from 10% to 90%. The response time was represented by the sum of the rise time and fall time thus obtained.
(13)弾性定数(K;25℃で測定;pN):測定には横河・ヒューレットパッカード株式会社製のHP4284A型LCRメータを用いた。2枚のガラス基板の間隔(セルギャップ)が20μmである水平配向素子に試料を入れた。この素子に0ボルトから20ボルト電荷を印加し、静電容量および印加電圧を測定した。測定した静電容量(C)と印加電圧(V)の値を「液晶デバイスハンドブック」(日刊工業新聞社)、75頁にある式(2.98)、式(2.101)を用いてフィッティングし、式(2.99)からK11およびK33の値を得た。次に同171頁にある式(3.18)に、先ほど求めたK11およびK33の値を用いてK22を算出した。弾性定数は、このようにして求めたK11、K22、およびK33の平均値で表した。 (13) Elastic constant (K; measured at 25 ° C .; pN): An HP4284A type LCR meter manufactured by Yokogawa / Hewlett Packard Co. was used for the measurement. The sample was placed in a horizontal alignment device in which the distance (cell gap) between two glass substrates was 20 μm. A charge of 0 V to 20 V was applied to this device, and the electrostatic capacity and the applied voltage were measured. Fitting the measured capacitance (C) and applied voltage (V) values using the formula (2.98) and formula (2.101) on page 75 of "Liquid Crystal Device Handbook" (Nikkan Kogyo Shimbun). Then, the values of K11 and K33 were obtained from the formula (2.99). Next, K22 was calculated by using the values of K11 and K33 obtained earlier in the equation (3.18) on page 171. The elastic constant was represented by the average value of K11, K22, and K33 thus obtained.
(14)比抵抗(ρ;25℃で測定;Ωcm):電極を備えた容器に試料1.0mLを注入した。この容器に直流電圧(10V)を印加し、10秒後の直流電流を測定した。比抵抗は次の式から算出した。(比抵抗)={(電圧)×(容器の電気容量)}/{(直流電流)×(真空の誘電率)}。 (14) Specific resistance (ρ; measured at 25 ° C .; Ωcm): 1.0 mL of a sample was injected into a container equipped with an electrode. A direct current voltage (10 V) was applied to this container, and the direct current after 10 seconds was measured. The specific resistance was calculated from the following formula. (Specific resistance) = {(voltage) × (electric capacity of container)} / {(direct current) × (dielectric constant of vacuum)}.
(15)らせんピッチ(P;室温で測定;μm):らせんピッチはくさび法にて測定した。「液晶便覧」、196頁(2000年発行、丸善)を参照。試料をくさび形セルに注入し、室温で2時間静置した後、ディスクリネーションラインの間隔(d2-d1)を偏光顕微鏡(ニコン(株)、商品名MM40/60シリーズ)によって観察した。らせんピッチ(P)は、くさびセルの角度をθと表した次の式から算出した。P=2×(d2-d1)×tanθ。 (15) Helical pitch (P; measured at room temperature; μm): The helical pitch was measured by the wedge method. See "Liquid Crystal Handbook", page 196 (issued in 2000, Maruzen). The sample was poured into a wedge-shaped cell and allowed to stand at room temperature for 2 hours, and then the distance (d2-d1) between the disclination lines was observed with a polarizing microscope (Nikon Corporation, trade name MM40 / 60 series). The spiral pitch (P) was calculated from the following equation in which the angle of the wedge cell was represented by θ. P = 2 × (d2-d1) × tan θ.
(16)短軸方向における誘電率(ε⊥;25℃で測定):2枚のガラス基板の間隔(セルギャップ)が9μmであり、そしてツイスト角が80度であるTN素子に試料を入れた。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の短軸方向における誘電率(ε⊥)を測定した。 (16) Dielectric constant in short axis direction (ε⊥; measured at 25 ° C.): A sample was put in a TN device in which a distance (cell gap) between two glass substrates was 9 μm and a twist angle was 80 degrees. .. A sine wave (0.5 V, 1 kHz) was applied to this device, and after 2 seconds, the dielectric constant (ε⊥) in the short axis direction of the liquid crystal molecule was measured.
(17)線残像(Line Image Sticking Parameter;LISP;%):液晶表示素子に電気的なストレスを与えることによって線残像を発生させた。線残像のある領域の輝度と残りの領域の輝度を測定した。線残像によって輝度が低下した割合を算出し、この割合によって線残像の大きさを表した。
17a)輝度の測定:イメージング色彩輝度計(Radiant Zemax社製、PM-1433F-0)を用いて素子の画像を撮影した。この画像をソフトウエア(Prometric 9.1、Radiant Imaging社製)を用いて解析することによって素子の各領域の輝度を算出した。
(17) Line Image Sticking Parameter (LISP;%): A line afterimage was generated by applying an electrical stress to the liquid crystal display device. The luminance of the area with the line afterimage and the luminance of the remaining area were measured. The ratio of the decrease in luminance due to the line afterimage was calculated, and the size of the line afterimage was expressed by this ratio.
17a) Luminance measurement: An image of the device was taken using an imaging color luminance meter (PM-1433F-0 manufactured by Radiant Zemax). The brightness of each region of the device was calculated by analyzing the image using software (Prometric 9.1, manufactured by Radiant Imaging).
17b)ストレス電圧の設定:セルギャップが3.5μmであり、マトリクス構造を有するFFS素子(縦4セル×横4セルの16セル)に試料を入れ、この素子を紫外線で硬化する接着剤を用いて密閉した。偏光軸が直交するように、この素子の上面と下面にそれぞれ偏光板を配置した。この素子に光を照射し、電圧(矩形波、60Hz)を印加した。電圧は、0Vから7.5Vの範囲で0.1V毎に段階的に増加させ、各電圧での透過光の輝度を測定した。輝度が極大になったときの電圧をV255と略した。輝度がV255の21.6%になったとき(すなわち、127階調)の電圧をV127と略した。 17b) Setting of stress voltage: A sample is put into an FFS element (16 cells of 4 cells in length × 4 cells in width) having a cell gap of 3.5 μm and having a matrix structure, and an adhesive agent that cures this element with ultraviolet rays is used. And sealed. Polarizing plates were arranged on the upper surface and the lower surface of the device so that the polarization axes were orthogonal to each other. The device was irradiated with light and a voltage (rectangular wave, 60 Hz) was applied. The voltage was increased stepwise in the range of 0V to 7.5V in steps of 0.1V, and the brightness of the transmitted light at each voltage was measured. The voltage when the brightness becomes maximum is abbreviated as V255. The voltage when the brightness becomes 21.6% of V255 (that is, 127 gradations) is abbreviated as V127.
17c)ストレスの条件:素子に、60℃、23時間の条件でV255(矩形波、30Hz)と0.5V(矩形波、30Hz)を印加し、チェッカーパターンを表示させた。次に、V127(矩形波、0.25Hz)を印加し、露光時間4000ミリ秒の条件で輝度を測定した。 17c) Stress condition: V255 (rectangular wave, 30 Hz) and 0.5 V (rectangular wave, 30 Hz) were applied to the device at 60 ° C. for 23 hours to display a checkered pattern. Next, V127 (rectangular wave, 0.25 Hz) was applied, and the brightness was measured under the condition that the exposure time was 4000 milliseconds.
17d)線残像の算出:16セルのうち、中央部の4セル(縦2セル×横2セル)を算出に用いた。この4セルを25領域(縦5セル×横5セル)に分割した。四隅にある4領域(縦2セル×横2セル)の平均輝度を輝度Aと略した。25領域から四隅の領域を除いた領域は、十字形であった。この十字形の領域から中央の交差領域を除いた4領域において、輝度の最小値を輝度Bと略した。線残像は次の式から算出した。(線残像)=(輝度A-輝度B)/輝度A×100. 17d) Calculation of line afterimage: Out of 16 cells, 4 cells in the central part (2 cells in vertical direction × 2 cells in horizontal direction) were used for calculation. The 4 cells were divided into 25 regions (5 cells in the vertical direction × 5 cells in the horizontal direction). The average brightness of the four regions (two vertical cells × two horizontal cells) at the four corners is abbreviated as the brightness A. The area excluding the four corner areas from the 25 area was a cross shape. The minimum value of the luminance is abbreviated as the luminance B in the four areas excluding the central intersection area from the cross-shaped area. The line afterimage was calculated from the following formula. (Line afterimage) = (luminance A−luminance B) / luminance A × 100.
(18)拡がり性:添加物の拡がり性は、素子に電圧を印加し、輝度を測定することによって定性的に評価した。輝度の測定は、上記の項14aと同様に行った。電圧(V127)の設定は、上記の項14bと同様に行った。ただし、FFS素子の代わりにVA素子を用いた。輝度は次のように測定した。まず、素子に直流電圧(2V)を2分間印加した。次に、V127(矩形波、0.05Hz)を印加し、露光時間4000ミリ秒の条件で輝度を測定した。この結果から拡がり性を評価した。 (18) Spreadability: The spreadability of the additive was qualitatively evaluated by applying a voltage to the device and measuring the luminance. The luminance was measured in the same manner as in the above item 14a. The voltage (V127) was set in the same manner as in the above item 14b. However, a VA element was used instead of the FFS element. The brightness was measured as follows. First, a direct current voltage (2 V) was applied to the device for 2 minutes. Next, V127 (rectangular wave, 0.05 Hz) was applied, and the brightness was measured under the condition that the exposure time was 4000 milliseconds. From this result, spreadability was evaluated.
 組成物の実施例を以下に示す。成分化合物は、下記の表3の定義に基づいて記号によって表した。表3において、1,4-シクロヘキシレンに関する立体配置はトランスである。記号の後にあるかっこ内の番号は、化合物の番号に対応する。(-)の記号はその他の液晶性化合物を意味する。液晶性化合物の割合(百分率)は、液晶組成物の質量に基づいた質量百分率(質量%)である。最後に、組成物の特性値をまとめた。 Example of composition is shown below. The component compounds are represented by symbols based on the definitions in Table 3 below. In Table 3, the configuration for 1,4-cyclohexylene is trans. The number in parentheses after the symbol corresponds to the compound number. The symbol (−) means other liquid crystal compound. The ratio (percentage) of the liquid crystal compound is a mass percentage (mass%) based on the mass of the liquid crystal composition. Finally, the characteristic values of the composition are summarized.
Figure JPOXMLDOC01-appb-I000056
Figure JPOXMLDOC01-appb-I000056
[実施例1]
3-GB(F,F)XB(F,F)-F    (1-3)     3%
4-GB(F)B(F,F)XB(F,F)-F(1-9)     3%
5-GB(F)B(F,F)XB(F,F)-F(1-9)     2%
3-BB(F)B(F,F)XB(F,F)-F(1-10)    3%
4-BB(F)B(F,F)XB(F,F)-F(1-10)    6%
3-HB(2F)B(2F,3F)-O2   (2-3)    13%
3-HH-V                (3-1)    37%
V-HH-V1               (3-1)     4%
V-HHB-1               (3-5)   6.5%
1-BB(F)B-2V           (3-8)   3.5%
3-GB(F)B(F)-F         (4)       9%
3-GB(F)B(F)B(F)-F     (4)       4%
3-GB(F)B(F,F)-F       (4-11)    5%
4-GBB(F)B(F,F)-F      (4-16)    1%
 NI=80.2℃;Tc<-20℃;Δn=0.113;Δε=8.0;Vth=1.50V;γ1=102.5mPa・s;ε⊥=4.90.
[Example 1]
3-GB (F, F) XB (F, F) -F (1-3) 3%
4-GB (F) B (F, F) XB (F, F) -F (1-9) 3%
5-GB (F) B (F, F) XB (F, F) -F (1-9) 2%
3-BB (F) B (F, F) XB (F, F) -F (1-10) 3%
4-BB (F) B (F, F) XB (F, F) -F (1-10) 6%
3-HB (2F) B (2F, 3F) -O2 (2-3) 13%
3-HH-V (3-1) 37%
V-HH-V1 (3-1) 4%
V-HHB-1 (3-5) 6.5%
1-BB (F) B-2V (3-8) 3.5%
3-GB (F) B (F) -F (4) 9%
3-GB (F) B (F) B (F) -F (4) 4%
3-GB (F) B (F, F) -F (4-11) 5%
4-GBB (F) B (F, F) -F (4-16) 1%
NI = 80.2 ° C .; Tc <−20 ° C .; Δn = 0.113; Δε = 8.0; Vth = 1.50V; γ1 = 102.5 mPa · s; ε⊥ = 4.90.
[比較例1]
3-GB(F,F)XB(F,F)-F    (1-3)     3%
4-GB(F)B(F,F)XB(F,F)-F(1-9)     3%
5-GB(F)B(F,F)XB(F,F)-F(1-9)     2%
3-BB(F)B(F,F)XB(F,F)-F(1-10)    3%
4-BB(F)B(F,F)XB(F,F)-F(1-10)    6%
3-HH-V                (3-1)    37%
V-HH-V1               (3-1)     4%
V-HHB-1               (3-5)   6.5%
3-HBB-2               (3-6)    13%
1-BB(F)B-2V           (3-8)   3.5%
3-GB(F)B(F)-F         (4)       9%
3-GB(F)B(F)B(F)-F     (4)       4%
3-GB(F)B(F,F)-F       (4-11)    5%
4-GBB(F)B(F,F)-F      (4-16)    1%
 NI=83.7℃;Tc<-20℃;η=14.9mPa・s;Δn=0.115;Δε=8.6;Vth=1.52V;γ1=80.6mPa・s;ε⊥=3.82.
[Comparative Example 1]
3-GB (F, F) XB (F, F) -F (1-3) 3%
4-GB (F) B (F, F) XB (F, F) -F (1-9) 3%
5-GB (F) B (F, F) XB (F, F) -F (1-9) 2%
3-BB (F) B (F, F) XB (F, F) -F (1-10) 3%
4-BB (F) B (F, F) XB (F, F) -F (1-10) 6%
3-HH-V (3-1) 37%
V-HH-V1 (3-1) 4%
V-HHB-1 (3-5) 6.5%
3-HBB-2 (3-6) 13%
1-BB (F) B-2V (3-8) 3.5%
3-GB (F) B (F) -F (4) 9%
3-GB (F) B (F) B (F) -F (4) 4%
3-GB (F) B (F, F) -F (4-11) 5%
4-GBB (F) B (F, F) -F (4-16) 1%
NI = 83.7 ° C .; Tc <−20 ° C .; η = 14.9 mPa · s; Δn = 0.115; Δε = 8.6; Vth = 1.52 V; γ1 = 80.6 mPa · s; ε⊥ = 3.82.
[実施例2]
3-HBB(F,F)XB(F,F)-F   (1-7)     7%
4-GB(F)B(F,F)XB(F,F)-F(1-9)     3%
3-BB(F)B(F,F)XB(F,F)-F(1-10)    3%
4-BB(F)B(F,F)XB(F,F)-F(1-10)    7%
3-HB(2F)B(2F,3F)-O2   (2-3)    12%
3-HH-V                (3-1)    30%
3-HH-V1               (3-1)     6%
3-HB-O2               (3-2)     5%
1-BB-3                (3-3)     6%
5-B(F)BB-2            (3-7)     4%
1-BB(F)B-2V           (3-8)     5%
3-BB(F)B(F,F)-F       (4-12)    6%
3-BB(F)B(F,F)-CF3     (4-13)    6%
 NI=73.3℃;Tc<-20℃;η=17.8mPa・s;Δn=0.134;Δε=6.6;Vth=1.79V;γ1=88.7mPa・s;ε⊥=4.11.
[Example 2]
3-HBB (F, F) XB (F, F) -F (1-7) 7%
4-GB (F) B (F, F) XB (F, F) -F (1-9) 3%
3-BB (F) B (F, F) XB (F, F) -F (1-10) 3%
4-BB (F) B (F, F) XB (F, F) -F (1-10) 7%
3-HB (2F) B (2F, 3F) -O2 (2-3) 12%
3-HH-V (3-1) 30%
3-HH-V1 (3-1) 6%
3-HB-O2 (3-2) 5%
1-BB-3 (3-3) 6%
5-B (F) BB-2 (3-7) 4%
1-BB (F) B-2V (3-8) 5%
3-BB (F) B (F, F) -F (4-12) 6%
3-BB (F) B (F, F) -CF3 (4-13) 6%
NI = 73.3 ° C .; Tc <−20 ° C .; η = 17.8 mPa · s; Δn = 0.134; Δε = 6.6; Vth = 1.79 V; γ1 = 88.7 mPa · s; ε⊥ = 4.11.
[比較例2]
3-HBB(F,F)XB(F,F)-F   (1-7)     7%
4-GB(F)B(F,F)XB(F,F)-F(1-9)     3%
3-BB(F)B(F,F)XB(F,F)-F(1-10)    3%
4-BB(F)B(F,F)XB(F,F)-F(1-10)    7%
3-HH-V                (3-1)    30%
3-HH-V1               (3-1)     6%
3-HB-O2               (3-2)     5%
1-BB-3                (3-3)     6%
5-B(F)BB-2            (3-7)     4%
1-BB(F)B-2V           (3-8)     5%
3-BB(F)B(F,F)-F       (4-12)    6%
3-BB(F)B(F,F)-CF3     (4-13)    6%
3-HHB(2F,3F)-O2       (5-7)     6%
5-HHB(2F,3F)-O2       (5-7)     6%
 NI=77.9℃;Tc<-20℃;η=15.2mPa・s;Δn=0.126;Δε=6.9;Vth=1.79V;ε⊥=3.80.
[Comparative example 2]
3-HBB (F, F) XB (F, F) -F (1-7) 7%
4-GB (F) B (F, F) XB (F, F) -F (1-9) 3%
3-BB (F) B (F, F) XB (F, F) -F (1-10) 3%
4-BB (F) B (F, F) XB (F, F) -F (1-10) 7%
3-HH-V (3-1) 30%
3-HH-V1 (3-1) 6%
3-HB-O2 (3-2) 5%
1-BB-3 (3-3) 6%
5-B (F) BB-2 (3-7) 4%
1-BB (F) B-2V (3-8) 5%
3-BB (F) B (F, F) -F (4-12) 6%
3-BB (F) B (F, F) -CF3 (4-13) 6%
3-HHB (2F, 3F) -O2 (5-7) 6%
5-HHB (2F, 3F) -O2 (5-7) 6%
NI = 77.9 ° C .; Tc <−20 ° C .; η = 15.2 mPa · s; Δn = 0.126; Δε = 6.9; Vth = 1.79V; ε⊥ = 3.80.
[実施例3]
3-GB(F,F)XB(F,F)-F    (1-3)     8%
4-GB(F)B(F,F)XB(F,F)-F(1-9)     2%
4-BB(F)B(F,F)XB(F,F)-F(1-10)    3%
3-HB(2F)B(2F,3F)-O2   (2-3)     4%
3-HH-V                (3-1)    35%
3-HH-V1               (3-1)     2%
V-HHB-1               (3-5)    11%
1-BB(F)B-2V           (3-8)     3%
2-BB(F)B-2V           (3-8)     3%
3-BB(F)B-2V           (3-8)     1%
3-GB(F)B(F)-F         (4)      12%
3-GB(F)B(F)B(F)-F     (4)       4%
3-GB(F)B(F,F)-F       (4-11)    5%
4-GBB(F)B(F,F)-F      (4-16)    3%
3-dhBB(2F,3F)-O2      (5-15)    4%
 NI=80.7℃;Tc<-20℃;Δn=0.113;Δε=8.0;Vth=1.50V;γ1=93.1mPa・s;ε⊥=4.63.
[Example 3]
3-GB (F, F) XB (F, F) -F (1-3) 8%
4-GB (F) B (F, F) XB (F, F) -F (1-9) 2%
4-BB (F) B (F, F) XB (F, F) -F (1-10) 3%
3-HB (2F) B (2F, 3F) -O2 (2-3) 4%
3-HH-V (3-1) 35%
3-HH-V1 (3-1) 2%
V-HHB-1 (3-5) 11%
1-BB (F) B-2V (3-8) 3%
2-BB (F) B-2V (3-8) 3%
3-BB (F) B-2V (3-8) 1%
3-GB (F) B (F) -F (4) 12%
3-GB (F) B (F) B (F) -F (4) 4%
3-GB (F) B (F, F) -F (4-11) 5%
4-GBB (F) B (F, F) -F (4-16) 3%
3-dhBB (2F, 3F) -O2 (5-15) 4%
NI = 80.7 ° C .; Tc <−20 ° C .; Δn = 0.113; Δε = 8.0; Vth = 1.50V; γ1 = 93.1 mPa · s; ε⊥ = 4.63.
[実施例4]
3-BB(F,F)XB(F,F)-F    (1-4)    16%
3-BB(F)B(F,F)XB(F,F)-F(1-10)    4%
4-BB(F)B(F,F)XB(F,F)-F(1-10)    5%
3-HB(2F)B(2F,3F)-O2   (2-3)    10%
3-HH-V                (3-1)    33%
3-HH-V1               (3-1)     6%
1-BB-3                (3-3)     2%
V-HHB-1               (3-5)     2%
1-BB(F)B-2V           (3-8)     5%
2-BB(F)B-2V           (3-8)     7%
3-dhBB(2F,3F)-O2      (5-15)   10%
 NI=75.3℃;Tc<-20℃;η=15.6mPa・s;Δn=0.130;Δε=4.5;Vth=1.95V;γ1=64.0mPa・s;ε⊥=4.45.
[Example 4]
3-BB (F, F) XB (F, F) -F (1-4) 16%
3-BB (F) B (F, F) XB (F, F) -F (1-10) 4%
4-BB (F) B (F, F) XB (F, F) -F (1-10) 5%
3-HB (2F) B (2F, 3F) -O2 (2-3) 10%
3-HH-V (3-1) 33%
3-HH-V1 (3-1) 6%
1-BB-3 (3-3) 2%
V-HHB-1 (3-5) 2%
1-BB (F) B-2V (3-8) 5%
2-BB (F) B-2V (3-8) 7%
3-dhBB (2F, 3F) -O2 (5-15) 10%
NI = 75.3 ° C .; Tc <−20 ° C .; η = 15.6 mPa · s; Δn = 0.130; Δε = 4.5; Vth = 1.95 V; γ1 = 64.0 mPa · s; ε⊥ = 4.45.
[実施例5]
3-GB(F,F)XB(F,F)-F    (1-3)     7%
4-GB(F)B(F,F)XB(F,F)-F(1-9)     2%
3-HB(2F)B(2F,3F)-O2   (2-3)     6%
3-HH-V                (3-1)    36%
V-HHB-1               (3-5)    11%
V2-HHB-1              (3-5)     8%
3-HHB-O1              (3-5)     2%
1-BB(F)B-2V           (3-8)     3%
2-BB(F)B-2V           (3-8)     2%
3-GB(F)B(F)-F         (4)      11%
3-GB(F)B(F,F)-F       (4-11)    8%
3-GBB(F)B(F,F)-F      (4-16)    2%
4-GBB(F)B(F,F)-F      (4-16)    2%
 NI=78.7℃;Tc<-20℃;η=15.7mPa・s;Δn=0.103;Δε=7.0;Vth=1.48V;γ1=89.4mPa・s;ε⊥=4.37.
[Example 5]
3-GB (F, F) XB (F, F) -F (1-3) 7%
4-GB (F) B (F, F) XB (F, F) -F (1-9) 2%
3-HB (2F) B (2F, 3F) -O2 (2-3) 6%
3-HH-V (3-1) 36%
V-HHB-1 (3-5) 11%
V2-HHB-1 (3-5) 8%
3-HHB-O1 (3-5) 2%
1-BB (F) B-2V (3-8) 3%
2-BB (F) B-2V (3-8) 2%
3-GB (F) B (F) -F (4) 11%
3-GB (F) B (F, F) -F (4-11) 8%
3-GBB (F) B (F, F) -F (4-16) 2%
4-GBB (F) B (F, F) -F (4-16) 2%
NI = 78.7 ° C .; Tc <−20 ° C .; η = 15.7 mPa · s; Δn = 0.103; Δε = 7.0; Vth = 1.48 V; γ1 = 89.4 mPa · s; ε⊥ = 4.37.
[実施例6]
3-GB(F,F)XB(F,F)-F    (1-3)     7%
3-BB(2F,3F)XB(F,F)-F  (1-4)    12%
3-GB(F)B(F,F)XB(F,F)-F(1-9)     4%
3-HB(2F)B(2F,3F)-O2   (2-3)     2%
3-HH-V                (3-1)    28%
V-HHB-1               (3-5)    12%
V2-HHB-1              (3-5)     9%
3-HHB-1               (3-5)     4%
3-HHB-O1              (3-5)     2%
V-HBB-2               (3-6)     2%
2-BB(F)B-3            (3-8)     3%
3-GB(F)B(F)-F         (4)      11%
3-GB(F)B(F,F)-F       (4-11)    4%
 NI=83.8℃;Tc<-20℃;η=14.8mPa・s;Δn=0.104;Δε=7.6;Vth=1.58V;γ1=91.0mPa・s;ε⊥=4.37.
[Example 6]
3-GB (F, F) XB (F, F) -F (1-3) 7%
3-BB (2F, 3F) XB (F, F) -F (1-4) 12%
3-GB (F) B (F, F) XB (F, F) -F (1-9) 4%
3-HB (2F) B (2F, 3F) -O2 (2-3) 2%
3-HH-V (3-1) 28%
V-HHB-1 (3-5) 12%
V2-HHB-1 (3-5) 9%
3-HHB-1 (3-5) 4%
3-HHB-O1 (3-5) 2%
V-HBB-2 (3-6) 2%
2-BB (F) B-3 (3-8) 3%
3-GB (F) B (F) -F (4) 11%
3-GB (F) B (F, F) -F (4-11) 4%
NI = 83.8 ° C .; Tc <−20 ° C .; η = 14.8 mPa · s; Δn = 0.104; Δε = 7.6; Vth = 1.58 V; γ1 = 91.0 mPa · s; ε⊥ = 4.37.
[実施例7]
3-BB(F,F)XB(F,F)-F    (1-4)    16%
3-HBBXB(F,F)-F        (1-7)     6%
3-HBB(F,F)XB(F,F)-F   (1-7)     5%
3-GB(F)B(F,F)XB(F,F)-F(1-9)     2%
4-GB(F)B(F,F)XB(F,F)-F(1-9)     3%
3-H1OB(2F)B(2F,3F)-O2 (2-22)    5%
3-HH-V                (3-1)  38.5%
V-HHB-1               (3-5)   3.5%
3-HBB-2               (3-6)     6%
3-HHB(2F,3F)-O2       (5-7)     5%
5-HHB(2F,3F)-O2       (5-7)     5%
3-HBB(2F,3F)-O2       (5-13)    5%
 NI=84.4℃;Tc<-20℃;η=14.1mPa・s;Δn=0.106;Δε=5.8;Vth=1.72V;γ1=100.6mPa・s;ε⊥=4.52.
[Example 7]
3-BB (F, F) XB (F, F) -F (1-4) 16%
3-HBBBX (F, F) -F (1-7) 6%
3-HBB (F, F) XB (F, F) -F (1-7) 5%
3-GB (F) B (F, F) XB (F, F) -F (1-9) 2%
4-GB (F) B (F, F) XB (F, F) -F (1-9) 3%
3-H1OB (2F) B (2F, 3F) -O2 (2-22) 5%
3-HH-V (3-1) 38.5%
V-HHB-1 (3-5) 3.5%
3-HBB-2 (3-6) 6%
3-HHB (2F, 3F) -O2 (5-7) 5%
5-HHB (2F, 3F) -O2 (5-7) 5%
3-HBB (2F, 3F) -O2 (5-13) 5%
NI = 84.4 ° C .; Tc <−20 ° C .; η = 14.1 mPa · s; Δn = 0.106; Δε = 5.8; Vth = 1.72 V; γ1 = 100.6 mPa · s; ε⊥ = 4.52.
[実施例8]
4-GB(F)B(F,F)XB(F,F)-F(1-9)     4%
3-BB(F)B(F,F)XB(F,F)-F(1-10)    3%
4-BB(F)B(F,F)XB(F,F)-F(1-10)    8%
3-HB(2F)B(2F,3F)-O2   (2-3)     5%
3-HH-V                (3-1)    46%
1-BB(F)B-2V           (3-8)     6%
2-BB(F)B-2V           (3-8)     4%
3-BB(F)B(F,F)-F       (4-12)    9%
3-HB(2F,3F)-O2        (5-1)     4%
3-HHB(2F,3F)-O2       (5-7)     4%
3-HBB(2F,3F)-O2       (5-13)    4%
3-dhBB(2F,3F)-O2      (5-15)    3%
 NI=77.0℃;Tc<-20℃;η=13.5mPa・s;Δn=0.121;Δε=4.4;Vth=1.96V;γ1=80.5mPa・s;ε⊥=4.55.
[Example 8]
4-GB (F) B (F, F) XB (F, F) -F (1-9) 4%
3-BB (F) B (F, F) XB (F, F) -F (1-10) 3%
4-BB (F) B (F, F) XB (F, F) -F (1-10) 8%
3-HB (2F) B (2F, 3F) -O2 (2-3) 5%
3-HH-V (3-1) 46%
1-BB (F) B-2V (3-8) 6%
2-BB (F) B-2V (3-8) 4%
3-BB (F) B (F, F) -F (4-12) 9%
3-HB (2F, 3F) -O2 (5-1) 4%
3-HHB (2F, 3F) -O2 (5-7) 4%
3-HBB (2F, 3F) -O2 (5-13) 4%
3-dhBB (2F, 3F) -O2 (5-15) 3%
NI = 77.0 ° C .; Tc <−20 ° C .; η = 13.5 mPa · s; Δn = 0.121; Δε = 4.4; Vth = 1.96V; γ1 = 80.5 mPa · s; ε⊥ = 4.55.
[実施例9]
3-HHXB(F,F)-F         (1-2)     1%
3-GB(F,F)XB(F,F)-F    (1-3)     5%
V-HB(2F)B(2F,3F)-O2   (2-3)     3%
3-HH-V                (3-1)    36%
3-HH-V1               (3-1)     8%
V-HHB-1               (3-5)     7%
1-BB(F)B-2V           (3-8)     6%
2-BB(F)B-2V           (3-8)     7%
3-GB(F)B(F)-F         (4)       7%
3-GB(F)B(F,F)-F       (4-11)    8%
3-BB(F)B(F,F)-CF3     (4-13)    5%
2-HBB(2F,3F)-O2       (5-13)    2%
3-HBB(2F,3F)-O2       (5-13)    5%
 NI=74.6℃;Tc<-20℃;η=13.1mPa・s;Δn=0.113;Δε=4.9;Vth=1.81V;γ1=72.6mPa・s;ε⊥=4.23.
[Example 9]
3-HHXB (F, F) -F (1-2) 1%
3-GB (F, F) XB (F, F) -F (1-3) 5%
V-HB (2F) B (2F, 3F) -O2 (2-3) 3%
3-HH-V (3-1) 36%
3-HH-V1 (3-1) 8%
V-HHB-1 (3-5) 7%
1-BB (F) B-2V (3-8) 6%
2-BB (F) B-2V (3-8) 7%
3-GB (F) B (F) -F (4) 7%
3-GB (F) B (F, F) -F (4-11) 8%
3-BB (F) B (F, F) -CF3 (4-13) 5%
2-HBB (2F, 3F) -O2 (5-13) 2%
3-HBB (2F, 3F) -O2 (5-13) 5%
NI = 74.6 ° C .; Tc <−20 ° C .; η = 13.1 mPa · s; Δn = 0.113; Δε = 4.9; Vth = 1.81 V; γ1 = 72.6 mPa · s; ε⊥ = 4.23.
[実施例10]
3-HHXB(F,F)-F         (1-2)     1%
3-GB(F,F)XB(F,F)-F    (1-3)     3%
3-BB(F,F)XB(F)B(F,F)-F(1-12)    4%
3-HB(2F)B(2F,3F)-O2   (2-3)     4%
3-HH-V                (3-1)    34%
3-HH-V1               (3-1)   3.5%
3-HB-O2               (3-2)     2%
V-HHB-1               (3-5)     7%
5-HBB(F)B-3           (3-13)    5%
3-GB(F)B(F)-F         (4)       2%
3-GB(F)B(F)B(F)-F     (4)       2%
3-GB(F)B(F,F)-F       (4-11)  4.5%
3-BB(F)B(F,F)-CF3     (4-13)    3%
3-GBB(F)B(F,F)-F      (4-16)    2%
4-GBB(F)B(F,F)-F      (4-16)    2%
3-HHB(2F,3F)-O2       (5-7)     5%
V-HHB(2F,3F)-O2       (5-7)     6%
2-HBB(2F,3F)-O2       (5-13)    2%
3-HBB(2F,3F)-O2       (5-13)    5%
5-HBB(2F,3F)-O2       (5-13)    3%
 NI=99.8℃;Tc<-20℃;η=17.9mPa・s;Δn=0.113;Δε=4.0;Vth=2.20V;γ1=161.7mPa・s;ε⊥=4.91.
[Example 10]
3-HHXB (F, F) -F (1-2) 1%
3-GB (F, F) XB (F, F) -F (1-3) 3%
3-BB (F, F) XB (F) B (F, F) -F (1-12) 4%
3-HB (2F) B (2F, 3F) -O2 (2-3) 4%
3-HH-V (3-1) 34%
3-HH-V1 (3-1) 3.5%
3-HB-O2 (3-2) 2%
V-HHB-1 (3-5) 7%
5-HBB (F) B-3 (3-13) 5%
3-GB (F) B (F) -F (4) 2%
3-GB (F) B (F) B (F) -F (4) 2%
3-GB (F) B (F, F) -F (4-11) 4.5%
3-BB (F) B (F, F) -CF3 (4-13) 3%
3-GBB (F) B (F, F) -F (4-16) 2%
4-GBB (F) B (F, F) -F (4-16) 2%
3-HHB (2F, 3F) -O2 (5-7) 5%
V-HHB (2F, 3F) -O2 (5-7) 6%
2-HBB (2F, 3F) -O2 (5-13) 2%
3-HBB (2F, 3F) -O2 (5-13) 5%
5-HBB (2F, 3F) -O2 (5-13) 3%
NI = 99.8 ° C .; Tc <−20 ° C .; η = 17.9 mPa · s; Δn = 0.113; Δε = 4.0; Vth = 2.20 V; γ1 = 161.7 mPa · s; ε⊥ = 4.91.
[実施例11]
1-HHXB(F,F)-F         (1-2)     5%
3-GB(F,F)XB(F,F)-F    (1-3)     6%
4-GB(F)B(F,F)XB(F,F)-F(1-9)     3%
2O-B(2F)B(2F,3F)-O4   (2-1)     3%
3-HH2B(2F)B(2F,3F)-O2 (2-34)    3%
3-HH-V                (3-1)    18%
1V2-HH-3              (3-1)     7%
2-HH-3                (3-1)    10%
3-HH-VFF              (3-1)     6%
1-BB-5                (3-3)     6%
V2-HHB-1              (3-5)     8%
3-HHB-O1              (3-5)     2%
2-BB(F)B-5            (3-8)     3%
3-BB(F)B-5            (3-8)     2%
3-GB(F)B(F)B(F)-F     (4)       6%
3-GB(F)B(F,F)-F       (4-11)    7%
3-GBB(F)B(F,F)-F      (4-16)    3%
4-GBB(F)B(F,F)-F      (4-16)    2%
 NI=76.7℃;Tc<-20℃;Δn=0.104;Δε=6.7;Vth=1.64V;γ1=82.0mPa・s;ε⊥=4.04.
[Example 11]
1-HHXB (F, F) -F (1-2) 5%
3-GB (F, F) XB (F, F) -F (1-3) 6%
4-GB (F) B (F, F) XB (F, F) -F (1-9) 3%
2O-B (2F) B (2F, 3F) -O4 (2-1) 3%
3-HH2B (2F) B (2F, 3F) -O2 (2-34) 3%
3-HH-V (3-1) 18%
1V2-HH-3 (3-1) 7%
2-HH-3 (3-1) 10%
3-HH-VFF (3-1) 6%
1-BB-5 (3-3) 6%
V2-HHB-1 (3-5) 8%
3-HHB-O1 (3-5) 2%
2-BB (F) B-5 (3-8) 3%
3-BB (F) B-5 (3-8) 2%
3-GB (F) B (F) B (F) -F (4) 6%
3-GB (F) B (F, F) -F (4-11) 7%
3-GBB (F) B (F, F) -F (4-16) 3%
4-GBB (F) B (F, F) -F (4-16) 2%
NI = 76.7 ° C .; Tc <−20 ° C .; Δn = 0.104; Δε = 6.7; Vth = 1.64V; γ1 = 82.0 mPa · s; ε⊥ = 4.04.
[実施例12]
3-GB(F,F)XB(F,F)-F    (1-3)     5%
3-BB(F,F)XB(F,F)-F    (1-4)     5%
3-BB(2F,3F)XB(F,F)-F  (1-4)     5%
3-GB(F)B(F,F)XB(F,F)-F(1-9)     7%
5-BB(F)B(F,F)XB(F,F)-F(1-10)    5%
2O-B(2F)B(2F,3F)-O4   (2-1)     2%
3-HH-V                (3-1)    30%
1-BB-5                (3-3)     6%
3-HHEH-3              (3-4)     6%
V-HHB-1               (3-5)     6%
V2-HHB-1              (3-5)     9%
3-HHB-1               (3-5)     3%
V-HBB-2               (3-6)     2%
2-BB(F)B-3            (3-8)     3%
2-HGB(F,F)-F          (4-6)     3%
3-HGB(F,F)-F          (4-6)     3%
 NI=74.7℃;Tc<-20℃;Δn=0.101;Δε=6.9;Vth=1.56V;γ1=73.5mPa・s;ε⊥=3.90.
[Example 12]
3-GB (F, F) XB (F, F) -F (1-3) 5%
3-BB (F, F) XB (F, F) -F (1-4) 5%
3-BB (2F, 3F) XB (F, F) -F (1-4) 5%
3-GB (F) B (F, F) XB (F, F) -F (1-9) 7%
5-BB (F) B (F, F) XB (F, F) -F (1-10) 5%
2O-B (2F) B (2F, 3F) -O4 (2-1) 2%
3-HH-V (3-1) 30%
1-BB-5 (3-3) 6%
3-HHEH-3 (3-4) 6%
V-HHB-1 (3-5) 6%
V2-HHB-1 (3-5) 9%
3-HHB-1 (3-5) 3%
V-HBB-2 (3-6) 2%
2-BB (F) B-3 (3-8) 3%
2-HGB (F, F) -F (4-6) 3%
3-HGB (F, F) -F (4-6) 3%
NI = 74.7 ° C .; Tc <−20 ° C .; Δn = 0.101; Δε = 6.9; Vth = 1.56V; γ1 = 73.5 mPa · s; ε⊥ = 3.90.
[実施例13]
3-GB(F,F)XB(F,F)-F    (1-3)     7%
5-GB(F)B(F,F)XB(F,F)-F(1-9)     3%
3-BB(F)B(F,F)XB(F,F)-F(1-10)    3%
2O-B(2F)B(2F,3F)-O4   (2-1)     6%
3-HH-V                (3-1)    33%
V-HHB-1               (3-5)    11%
V2-HHB-1              (3-5)     8%
3-HHB-O1              (3-5)     2%
1-BB(F)B-2V           (3-8)     3%
2-BB(F)B-2V           (3-8)     2%
3-BB(F)B-2V           (3-8)     3%
3-HHB-OCF3            (4-3)     4%
3-GHB(F,F)-F          (4-7)     5%
4-GHB(F,F)-F          (4-7)     5%
5-GHB(F,F)-F          (4-7)     5%
 NI=79.0℃;Tc<-20℃;Δn=0.098;Δε=5.8;Vth=1.65V;γ1=72.0mPa・s;ε⊥=4.08.
[Example 13]
3-GB (F, F) XB (F, F) -F (1-3) 7%
5-GB (F) B (F, F) XB (F, F) -F (1-9) 3%
3-BB (F) B (F, F) XB (F, F) -F (1-10) 3%
2O-B (2F) B (2F, 3F) -O4 (2-1) 6%
3-HH-V (3-1) 33%
V-HHB-1 (3-5) 11%
V2-HHB-1 (3-5) 8%
3-HHB-O1 (3-5) 2%
1-BB (F) B-2V (3-8) 3%
2-BB (F) B-2V (3-8) 2%
3-BB (F) B-2V (3-8) 3%
3-HHB-OCF3 (4-3) 4%
3-GHB (F, F) -F (4-7) 5%
4-GHB (F, F) -F (4-7) 5%
5-GHB (F, F) -F (4-7) 5%
NI = 79.0 ° C .; Tc <−20 ° C .; Δn = 0.098; Δε = 5.8; Vth = 1.65V; γ1 = 72.0 mPa · s; ε⊥ = 4.08.
[実施例14]
3-GB(F,F)XB(F,F)-F    (1-3)     7%
3-BB(2F,3F)XB(F,F)-F  (1-4)    12%
3-GB(F)B(F,F)XB(F,F)-F(1-9)     4%
2O-B(2F)B(2F,3F)-O4   (2-1)     2%
3-HH-V                (3-1)    10%
3-HH-V1               (3-1)     5%
3-HH-VFF              (3-1)     8%
4-HH-V                (3-1)     5%
5-HH-V                (3-1)     5%
V2-HHB-1              (3-5)     4%
3-HHB-1               (3-5)     4%
3-HHB-3               (3-5)     3%
2-HHB-1               (3-5)     3%
1V2-HHB-1             (3-5)     3%
V-HBB-2               (3-6)     2%
2-BB(F)B-3            (3-8)     3%
5-HBB(F)B-2           (3-13)    5%
1-HHB(F,F)-F          (4-4)     3%
2-HHB(F,F)-F          (4-4)     3%
2-HBEB(F,F)-F         (4-10)    4%
3-GB(F)B(F,F)-F       (4-11)    3%
3-BB(F)B(F,F)-F       (4-12)    2%
 NI=76.5℃;Tc<-20℃;Δn=0.103;Δε=7.3;Vth=1.50V;γ1=84.5mPa・s;ε⊥=4.17.
[Example 14]
3-GB (F, F) XB (F, F) -F (1-3) 7%
3-BB (2F, 3F) XB (F, F) -F (1-4) 12%
3-GB (F) B (F, F) XB (F, F) -F (1-9) 4%
2O-B (2F) B (2F, 3F) -O4 (2-1) 2%
3-HH-V (3-1) 10%
3-HH-V1 (3-1) 5%
3-HH-VFF (3-1) 8%
4-HH-V (3-1) 5%
5-HH-V (3-1) 5%
V2-HHB-1 (3-5) 4%
3-HHB-1 (3-5) 4%
3-HHB-3 (3-5) 3%
2-HHB-1 (3-5) 3%
1V2-HHB-1 (3-5) 3%
V-HBB-2 (3-6) 2%
2-BB (F) B-3 (3-8) 3%
5-HBB (F) B-2 (3-13) 5%
1-HHB (F, F) -F (4-4) 3%
2-HHB (F, F) -F (4-4) 3%
2-HBEB (F, F) -F (4-10) 4%
3-GB (F) B (F, F) -F (4-11) 3%
3-BB (F) B (F, F) -F (4-12) 2%
NI = 76.5 ° C .; Tc <−20 ° C .; Δn = 0.103; Δε = 7.3; Vth = 1.50V; γ1 = 84.5 mPa · s; ε⊥ = 4.17.
[実施例15]
3-GB(F)B(F,F)XB(F,F)-F(1-9)     7%
4-GB(F)B(F,F)XB(F,F)-F(1-9)     2%
2O-B(2F)B(2F,3F)-O4   (2-1)     6%
3-HH-V                (3-1)    30%
7-HB-1                (3-2)     5%
5-HB-O2               (3-2)     5%
V2-BB-1               (3-3)     7%
V2-HHB-1              (3-5)     8%
3-HHB-O1              (3-5)     2%
1-BB(F)B-2V           (3-8)     3%
2-BB(F)B-2V           (3-8)     2%
2-HHEB(F,F)-F         (4-5)     4%
3-HHEB(F,F)-F         (4-5)     5%
4-HHEB(F,F)-F         (4-5)     3%
3-GB(F)B(F,F)-F       (4-11)    5%
3-GBB(F)B(F,F)-F      (4-16)    3%
4-GBB(F)B(F,F)-F      (4-16)    3%
 NI=71.2℃;Tc<-20℃;Δn=0.105;Δε=6.2;Vth=1.60V;γ1=68.4mPa・s;ε⊥=4.12.
[Example 15]
3-GB (F) B (F, F) XB (F, F) -F (1-9) 7%
4-GB (F) B (F, F) XB (F, F) -F (1-9) 2%
2O-B (2F) B (2F, 3F) -O4 (2-1) 6%
3-HH-V (3-1) 30%
7-HB-1 (3-2) 5%
5-HB-O2 (3-2) 5%
V2-BB-1 (3-3) 7%
V2-HHB-1 (3-5) 8%
3-HHB-O1 (3-5) 2%
1-BB (F) B-2V (3-8) 3%
2-BB (F) B-2V (3-8) 2%
2-HHEB (F, F) -F (4-5) 4%
3-HHEB (F, F) -F (4-5) 5%
4-HHEB (F, F) -F (4-5) 3%
3-GB (F) B (F, F) -F (4-11) 5%
3-GBB (F) B (F, F) -F (4-16) 3%
4-GBB (F) B (F, F) -F (4-16) 3%
NI = 71.2 ° C .; Tc <−20 ° C .; Δn = 0.105; Δε = 6.2; Vth = 1.60V; γ1 = 68.4 mPa · s; ε⊥ = 4.12.
[実施例16]
3-GB(F,F)XB(F,F)-F    (1-3)     6%
3-BB(2F,3F)XB(F,F)-F  (1-4)     5%
3-GB(F)B(F,F)XB(F,F)-F(1-9)     6%
4-GB(F)B(F,F)XB(F,F)-F(1-9)     6%
2O-B(2F)B(2F,3F)-O4   (2-1)     2%
3-HH-V                (3-1)    28%
V-HHB-1               (3-5)    12%
V2-HHB-1              (3-5)     9%
V-HBB-2               (3-6)     3%
2-BB(F)B-3            (3-8)     3%
3-HHEBH-3             (3-11)    2%
3-HHB-F               (4)       3%
3-HB-CL               (4-1)     5%
5-HB-CL               (4-1)     3%
7-HB-CL               (4-1)     3%
3-BB(F)B(F,F)-F       (4-12)    4%
 NI=75.7℃;Tc<-20℃;Δn=0.101;Δε=6.8;Vth=1.52V;γ1=70.9mPa・s;ε⊥=3.86.
[Example 16]
3-GB (F, F) XB (F, F) -F (1-3) 6%
3-BB (2F, 3F) XB (F, F) -F (1-4) 5%
3-GB (F) B (F, F) XB (F, F) -F (1-9) 6%
4-GB (F) B (F, F) XB (F, F) -F (1-9) 6%
2O-B (2F) B (2F, 3F) -O4 (2-1) 2%
3-HH-V (3-1) 28%
V-HHB-1 (3-5) 12%
V2-HHB-1 (3-5) 9%
V-HBB-2 (3-6) 3%
2-BB (F) B-3 (3-8) 3%
3-HHEBH-3 (3-11) 2%
3-HHB-F (4) 3%
3-HB-CL (4-1) 5%
5-HB-CL (4-1) 3%
7-HB-CL (4-1) 3%
3-BB (F) B (F, F) -F (4-12) 4%
NI = 75.7 ° C .; Tc <−20 ° C .; Δn = 0.101; Δε = 6.8; Vth = 1.52V; γ1 = 70.9 mPa · s; ε⊥ = 3.86.
[実施例17]
3-GB(F,F)XB(F,F)-F    (1-3)     7%
3-HBBXB(F,F)-F        (1-7)     2%
2O-B(2F)B(2F,3F)-O4   (2-1)     6%
3-HH-V                (3-1)    30%
3-HH-V1               (3-1)     6%
V-HHB-1               (3-5)     6%
V2-HHB-1              (3-5)     4%
3-HHB-O1              (3-5)     2%
V-HBB-2               (3-6)     5%
3-HHEBH-5             (3-11)    4%
2-HBB-F               (4)       4%
3-HHB(F,F)-F          (4-4)     4%
5-HHEB(F,F)-F         (4-5)     4%
3-GB(F)B(F,F)-F       (4-11)    6%
3-BB(F)B(F,F)-CF3     (4-13)   10%
 NI=80.2℃;Tc<-20℃;Δn=0.101;Δε=6.1;Vth=1.66V;γ1=73.1mPa・s;ε⊥=4.04.
[Example 17]
3-GB (F, F) XB (F, F) -F (1-3) 7%
3-HBBBX (F, F) -F (1-7) 2%
2O-B (2F) B (2F, 3F) -O4 (2-1) 6%
3-HH-V (3-1) 30%
3-HH-V1 (3-1) 6%
V-HHB-1 (3-5) 6%
V2-HHB-1 (3-5) 4%
3-HHB-O1 (3-5) 2%
V-HBB-2 (3-6) 5%
3-HHEBH-5 (3-11) 4%
2-HBB-F (4) 4%
3-HHB (F, F) -F (4-4) 4%
5-HHEB (F, F) -F (4-5) 4%
3-GB (F) B (F, F) -F (4-11) 6%
3-BB (F) B (F, F) -CF3 (4-13) 10%
NI = 80.2 ° C .; Tc <−20 ° C .; Δn = 0.101; Δε = 6.1; Vth = 1.66V; γ1 = 73.1 mPa · s; ε⊥ = 4.04.
[実施例18]
3-GB(F,F)XB(F,F)-F    (1-3)     7%
3-BB(2F,3F)XB(F,F)-F  (1-4)     6%
3-GB(F)B(F,F)XB(F,F)-F(1-9)     5%
4-GB(F)B(F,F)XB(F,F)-F(1-9)     5%
2O-B(2F)B(2F,3F)-O4   (2-1)     2%
3-HH-V                (3-1)    30%
3-HH-V1               (3-1)     6%
V-HHB-1               (3-5)     5%
V2-HHB-1              (3-5)     6%
3-HHB-1               (3-5)     3%
V-HBB-2               (3-6)     4%
2-BB(F)B-3            (3-8)     5%
2-HBB(F,F)-F          (4-8)     3%
3-HBB(F,F)-F          (4-8)     3%
5-HBB(F,F)-F          (4-8)     3%
3-GB(F)B(F,F)-F       (4-11)    4%
1O1-HBBH-5            (-)       3%
 NI=78.0℃;Tc<-20℃;Δn=0.104;Δε=7.6;Vth=1.51V;γ1=73.7mPa・s;ε⊥=3.95.
[Example 18]
3-GB (F, F) XB (F, F) -F (1-3) 7%
3-BB (2F, 3F) XB (F, F) -F (1-4) 6%
3-GB (F) B (F, F) XB (F, F) -F (1-9) 5%
4-GB (F) B (F, F) XB (F, F) -F (1-9) 5%
2O-B (2F) B (2F, 3F) -O4 (2-1) 2%
3-HH-V (3-1) 30%
3-HH-V1 (3-1) 6%
V-HHB-1 (3-5) 5%
V2-HHB-1 (3-5) 6%
3-HHB-1 (3-5) 3%
V-HBB-2 (3-6) 4%
2-BB (F) B-3 (3-8) 5%
2-HBB (F, F) -F (4-8) 3%
3-HBB (F, F) -F (4-8) 3%
5-HBB (F, F) -F (4-8) 3%
3-GB (F) B (F, F) -F (4-11) 4%
1O1-HBBH-5 (-) 3%
NI = 78.0 ° C .; Tc <−20 ° C .; Δn = 0.104; Δε = 7.6; Vth = 1.51V; γ1 = 73.7 mPa · s; ε⊥ = 3.95.
[実施例19]
3-GB(F,F)XB(F,F)-F    (1-3)     6%
3-BB(F,F)XB(F,F)-F    (1-4)     3%
2O-B(2F)B(2F,3F)-O4   (2-1)     6%
3-HH-V                (3-1)    36%
3-HH-VFF              (3-1)     7%
V-HHB-1               (3-5)    11%
V2-HHB-1              (3-5)     8%
3-GB(F)B(F)B(F)-F     (4)       5%
3-BB(F)B(F,F)-CF3     (4-13)   12%
4-HHBB(F,F)-F         (4-14)    6%
 NI=77.2℃;Tc<-20℃;Δn=0.101;Δε=5.9;Vth=1.67V;γ1=67.0mPa・s;ε⊥=3.91.
[Example 19]
3-GB (F, F) XB (F, F) -F (1-3) 6%
3-BB (F, F) XB (F, F) -F (1-4) 3%
2O-B (2F) B (2F, 3F) -O4 (2-1) 6%
3-HH-V (3-1) 36%
3-HH-VFF (3-1) 7%
V-HHB-1 (3-5) 11%
V2-HHB-1 (3-5) 8%
3-GB (F) B (F) B (F) -F (4) 5%
3-BB (F) B (F, F) -CF3 (4-13) 12%
4-HHBB (F, F) -F (4-14) 6%
NI = 77.2 ° C .; Tc <−20 ° C .; Δn = 0.101; Δε = 5.9; Vth = 1.67V; γ1 = 67.0 mPa · s; ε⊥ = 3.91.
[実施例20]
3-GB(F,F)XB(F,F)-F    (1-3)     7%
3-BB(2F,3F)XB(F,F)-F  (1-4)     8%
3-GB(F)B(F,F)XB(F,F)-F(1-9)     8%
2O-B(2F)B(2F,3F)-O4   (2-1)     2%
3-HH-V                (3-1)    34%
3-HH-V1               (3-1)     6%
V-HHB-1               (3-5)    10%
V2-HHB-1              (3-5)     6%
3-HHB-3               (3-5)     5%
2-BB(F)B-3            (3-8)     3%
3-BB(F)B(F,F)-CF3     (4-13)    7%
5-HHBB(F,F)-F         (4-14)    4%
 NI=77.3℃;Tc<-20℃;Δn=0.100;Δε=7.2;Vth=1.53V;γ1=72.3mPa・s;ε⊥=3.85.
[Example 20]
3-GB (F, F) XB (F, F) -F (1-3) 7%
3-BB (2F, 3F) XB (F, F) -F (1-4) 8%
3-GB (F) B (F, F) XB (F, F) -F (1-9) 8%
2O-B (2F) B (2F, 3F) -O4 (2-1) 2%
3-HH-V (3-1) 34%
3-HH-V1 (3-1) 6%
V-HHB-1 (3-5) 10%
V2-HHB-1 (3-5) 6%
3-HHB-3 (3-5) 5%
2-BB (F) B-3 (3-8) 3%
3-BB (F) B (F, F) -CF3 (4-13) 7%
5-HHBB (F, F) -F (4-14) 4%
NI = 77.3 ° C .; Tc <−20 ° C .; Δn = 0.100; Δε = 7.2; Vth = 1.53V; γ1 = 72.3 mPa · s; ε⊥ = 3.85.
[実施例21]
3-dhBB(F,F)XB(F,F)-F  (1-8)     5%
5-GB(F)B(F,F)XB(F,F)-F(1-9)     3%
3-BB(F)B(F,F)XB(F)-F  (1-10)    3%
3-BB(F)B(F,F)XB(F,F)-F(1-10)    3%
3-HB(2F)B(2F,3F)-O2   (2-3)     6%
3-DhB(F)B(2F,3F)-O2   (2-17)    4%
3-HH-V                (3-1)    25%
2-HH-3                (3-1)    10%
V-HHB-1               (3-5)    10%
3-HBB-2               (3-6)     8%
1-BB(F)B-2V           (3-8)     3%
2-BB(F)B-2V           (3-8)     2%
3-HBB-F               (4)       3%
5-HBB-F               (4)       3%
7-HB(F,F)-F           (4-2)     3%
3-GHB(F,F)-F          (4-7)     3%
4-GHB(F,F)-F          (4-7)     3%
5-GHB(F,F)-F          (4-7)     3%
 NI=85.9℃;Tc<-20℃;η=17.1mPa・s;Δn=0.109;Δε=4.7;Vth=1.98V;γ1=86.9mPa・s;Δ⊥=3.85.
[Example 21]
3-dhBB (F, F) XB (F, F) -F (1-8) 5%
5-GB (F) B (F, F) XB (F, F) -F (1-9) 3%
3-BB (F) B (F, F) XB (F) -F (1-10) 3%
3-BB (F) B (F, F) XB (F, F) -F (1-10) 3%
3-HB (2F) B (2F, 3F) -O2 (2-3) 6%
3-DhB (F) B (2F, 3F) -O2 (2-17) 4%
3-HH-V (3-1) 25%
2-HH-3 (3-1) 10%
V-HHB-1 (3-5) 10%
3-HBB-2 (3-6) 8%
1-BB (F) B-2V (3-8) 3%
2-BB (F) B-2V (3-8) 2%
3-HBB-F (4) 3%
5-HBB-F (4) 3%
7-HB (F, F) -F (4-2) 3%
3-GHB (F, F) -F (4-7) 3%
4-GHB (F, F) -F (4-7) 3%
5-GHB (F, F) -F (4-7) 3%
NI = 85.9 ° C .; Tc <−20 ° C .; η = 17.1 mPa · s; Δn = 0.109; Δε = 4.7; Vth = 1.98V; γ1 = 86.9 mPa · s; Δ⊥ = 3.85.
[実施例22]
3-GB(F,F)XB(F,F)-F    (1-3)     7%
3-HBBXB(F,F)-F        (1-7)     2%
2O-B(2F)B(2F,3F)-O4   (2-1)     6%
3-HH-V                (3-1)    20%
3-HH-V1               (3-1)     6%
1V2-HH-1              (3-1)     5%
3-HH-O1               (3-1)     5%
V-HHB-1               (3-5)     6%
V2-HHB-1              (3-5)     4%
3-HHB-O1              (3-5)     2%
V-HBB-2               (3-6)     5%
3-HHEBH-4             (3-11)    3%
2-HBB-F               (4)       4%
4-HHB(F,F)-F          (4-4)     4%
4-HGB(F,F)-F          (4-6)     3%
5-HGB(F,F)-F          (4-6)     3%
3-GB(F)B(F,F)-F       (4-11)    6%
3-BB(F)B(F,F)-CF3     (4-13)    9%
 NI=73.2℃;Tc<-20℃;Δn=0.098;Δε=6.3;Vth=1.58V;γ1=71.6mPa・s;ε⊥=4.25.
[Example 22]
3-GB (F, F) XB (F, F) -F (1-3) 7%
3-HBBBX (F, F) -F (1-7) 2%
2O-B (2F) B (2F, 3F) -O4 (2-1) 6%
3-HH-V (3-1) 20%
3-HH-V1 (3-1) 6%
1V2-HH-1 (3-1) 5%
3-HH-O1 (3-1) 5%
V-HHB-1 (3-5) 6%
V2-HHB-1 (3-5) 4%
3-HHB-O1 (3-5) 2%
V-HBB-2 (3-6) 5%
3-HHEBH-4 (3-11) 3%
2-HBB-F (4) 4%
4-HHB (F, F) -F (4-4) 4%
4-HGB (F, F) -F (4-6) 3%
5-HGB (F, F) -F (4-6) 3%
3-GB (F) B (F, F) -F (4-11) 6%
3-BB (F) B (F, F) -CF3 (4-13) 9%
NI = 73.2 ° C .; Tc <−20 ° C .; Δn = 0.098; Δε = 6.3; Vth = 1.58V; γ1 = 71.6 mPa · s; ε⊥ = 4.25.
[実施例23]
3-GB(F)B(F,F)XB(F,F)-F(1-9)     7%
4-GB(F)B(F,F)XB(F,F)-F(1-9)     2%
2O-B(2F)B(2F,3F)-O4   (2-1)     6%
3-HH-V                (3-1)    30%
7-HB-1                (3-2)     5%
5-HB-O2               (3-2)     5%
V2-BB-1               (3-3)     7%
V2-HHB-1              (3-5)     8%
3-HHB-O1              (3-5)     2%
1-BB(F)B-2V           (3-8)     3%
2-BB(F)B-2V           (3-8)     2%
2-HHEB(F,F)-F         (4-5)     4%
3-HHEB(F,F)-F         (4-5)     4%
4-HHEB(F,F)-F         (4-5)     3%
3-HBEB(F,F)-F         (4-10)    3%
5-HBEB(F,F)-F         (4-10)    3%
2-HHBB(F,F)-F         (4-14)    3%
3-HHBB(F,F)-F         (4-14)    3%
 NI=76.5℃;Tc<-20℃;Δn=0.103;Δε=5.2;Vth=1.81V;γ1=66.6mPa・s;ε⊥=3.86.
[Example 23]
3-GB (F) B (F, F) XB (F, F) -F (1-9) 7%
4-GB (F) B (F, F) XB (F, F) -F (1-9) 2%
2O-B (2F) B (2F, 3F) -O4 (2-1) 6%
3-HH-V (3-1) 30%
7-HB-1 (3-2) 5%
5-HB-O2 (3-2) 5%
V2-BB-1 (3-3) 7%
V2-HHB-1 (3-5) 8%
3-HHB-O1 (3-5) 2%
1-BB (F) B-2V (3-8) 3%
2-BB (F) B-2V (3-8) 2%
2-HHEB (F, F) -F (4-5) 4%
3-HHEB (F, F) -F (4-5) 4%
4-HHEB (F, F) -F (4-5) 3%
3-HBEB (F, F) -F (4-10) 3%
5-HBEB (F, F) -F (4-10) 3%
2-HHBB (F, F) -F (4-14) 3%
3-HHBB (F, F) -F (4-14) 3%
NI = 76.5 ° C .; Tc <−20 ° C .; Δn = 0.103; Δε = 5.2; Vth = 1.81 V; γ1 = 66.6 mPa · s; ε⊥ = 3.86.
[実施例24]
3-HHXB(F,F)-CF3       (1-2)     5%
3-BB(F,F)XB(F,F)-F    (1-4)    12%
4-GBB(F,F)XB(F,F)-F   (1-9)     2%
5-GBB(F,F)XB(F,F)-F   (1-9)     3%
3-BB(F)B(F,F)XB(F)-F  (1-10)    4%
3-HB(2F)B(2F,3F)-O2   (2-3)     5%
V-HBB(F)-O2           (3)       3%
3-HH-V                (3-1)    33%
V-HHB-1               (3-5)     3%
2-HHB-CL              (4)       3%
3-HHB-CL              (4)       3%
2-HHB(F)-F            (4)       3%
3-HHB(F)-F            (4)       3%
V-H2HBB(2F,3F)-O2     (5)       3%
5-HB(2F,3F)-O2        (5-1)     3%
V-HB(2F,3F)-O4        (5-1)     3%
3-H2B(2F,3F)-O2       (5-2)     3%
2-HH1OB(2F,3F)-O2     (5-9)     3%
3-HB(2F,3F)B-2        (5-16)    3%
 NI=75.6℃;Tc<-20℃;Δn=0.099;Δε=4.8;Vth=1.80V;γ1=97.1mPa・s;ε⊥=4.92.
[Example 24]
3-HHXB (F, F) -CF3 (1-2) 5%
3-BB (F, F) XB (F, F) -F (1-4) 12%
4-GBB (F, F) XB (F, F) -F (1-9) 2%
5-GBB (F, F) XB (F, F) -F (1-9) 3%
3-BB (F) B (F, F) XB (F) -F (1-10) 4%
3-HB (2F) B (2F, 3F) -O2 (2-3) 5%
V-HBB (F) -O2 (3) 3%
3-HH-V (3-1) 33%
V-HHB-1 (3-5) 3%
2-HHB-CL (4) 3%
3-HHB-CL (4) 3%
2-HHB (F) -F (4) 3%
3-HHB (F) -F (4) 3%
V-H2HBB (2F, 3F) -O2 (5) 3%
5-HB (2F, 3F) -O2 (5-1) 3%
V-HB (2F, 3F) -O4 (5-1) 3%
3-H2B (2F, 3F) -O2 (5-2) 3%
2-HH1OB (2F, 3F) -O2 (5-9) 3%
3-HB (2F, 3F) B-2 (5-16) 3%
NI = 75.6 ° C .; Tc <−20 ° C .; Δn = 0.099; Δε = 4.8; Vth = 1.80 V; γ1 = 97.1 mPa · s; ε⊥ = 4.92.
[実施例25]
3-HHXB(F,F)-F         (1-2)     3%
3-GB(F,F)XB(F,F)-F    (1-3)     3%
3-BB(F)B(F,F)XB(F,F)-F(1-10)    3%
4-BB(F)B(F,F)XB(F,F)-F(1-10)    4%
2O-B(2F)B(2F,3F)-O2   (2-1)     3%
3-HB(2F)B(2F,3F)-O2   (2-3)     3%
3-BB(F)B(2F,3F)-O2    (2-8)     3%
3-HH-V                (3-1)    40%
1V2-HH-3              (3-1)     2%
V-HHB-1               (3-5)     4%
5-B(F)BB-3            (3-7)     3%
3-HBB(F)-F            (4)       3%
5-HBB(F)-F            (4)       3%
3-GB(F)B(F,F)-F       (4-11)    3%
3-BB(F)B(F,F)-F       (4-12)    4%
3-BB(F)B(F,F)-CF3     (4-13)    4%
4-HBB(2F,3F)-O2       (5-13)    3%
V-HBB(2F,3F)-O2       (5-13)    3%
2-BB(2F,3F)B-4        (5-17)    3%
V-HH2BB(2F,3F)-O2     (5-20)    3%
 NI=77.9℃;Tc<-20℃;Δn=0.123;Δε=4.4;Vth=2.05V;γ1=85.0mPa・s;ε⊥=4.63.
[Example 25]
3-HHXB (F, F) -F (1-2) 3%
3-GB (F, F) XB (F, F) -F (1-3) 3%
3-BB (F) B (F, F) XB (F, F) -F (1-10) 3%
4-BB (F) B (F, F) XB (F, F) -F (1-10) 4%
2O-B (2F) B (2F, 3F) -O2 (2-1) 3%
3-HB (2F) B (2F, 3F) -O2 (2-3) 3%
3-BB (F) B (2F, 3F) -O2 (2-8) 3%
3-HH-V (3-1) 40%
1V2-HH-3 (3-1) 2%
V-HHB-1 (3-5) 4%
5-B (F) BB-3 (3-7) 3%
3-HBB (F) -F (4) 3%
5-HBB (F) -F (4) 3%
3-GB (F) B (F, F) -F (4-11) 3%
3-BB (F) B (F, F) -F (4-12) 4%
3-BB (F) B (F, F) -CF3 (4-13) 4%
4-HBB (2F, 3F) -O2 (5-13) 3%
V-HBB (2F, 3F) -O2 (5-13) 3%
2-BB (2F, 3F) B-4 (5-17) 3%
V-HH2BB (2F, 3F) -O2 (5-20) 3%
NI = 77.9 ° C .; Tc <−20 ° C .; Δn = 0.123; Δε = 4.4; Vth = 2.05V; γ1 = 85.0 mPa · s; ε⊥ = 4.63.
[実施例26]
3-GB(F,F)XB(F,F)-F    (1-3)     7%
3-GB(F)B(F,F)XB(F,F)-F(1-9)     3%
5-GB(F)B(F,F)XB(F,F)-F(1-9)     3%
5-BB(F)B(F,F)XB(F,F)-F(1-10)    4%
3-HB(2F)B(2F,3F)-O2   (2-3)     5%
5-HB(2F)B(2F,3F)-O2   (2-3)     3%
3-HH-V                (3-1)    29%
3-HH-V1               (3-1)     5%
3-HHEBH-3             (3-11)    3%
5-HHB-CL              (4)       3%
5-HHB(F)-F            (4)       3%
3-GB(F)B(F)B(F)-F     (4)       5%
3-BB(F)B(F,F)-F       (4-12)    3%
5-H2B(2F,3F)-O2       (5-2)     3%
3-H1OB(2F,3F)-O2      (5-3)     3%
5-BB(2F,3F)-O2        (5-6)     3%
V-HHB(2F,3F)-O4       (5-7)     3%
V2-HHB(2F,3F)-O2      (5-7)     3%
3-HDhB(2F,3F)-O2      (5-12)    3%
2-BB(2F,3F)B-3        (5-17)    3%
V-H2BBB(2F,3F)-O2     (5-21)    3%
 NI=90.7℃;Tc<-20℃;Δn=0.111;Δε=5.1;Vth=1.99V;γ1=169.8mPa・s;ε⊥=5.96.
[Example 26]
3-GB (F, F) XB (F, F) -F (1-3) 7%
3-GB (F) B (F, F) XB (F, F) -F (1-9) 3%
5-GB (F) B (F, F) XB (F, F) -F (1-9) 3%
5-BB (F) B (F, F) XB (F, F) -F (1-10) 4%
3-HB (2F) B (2F, 3F) -O2 (2-3) 5%
5-HB (2F) B (2F, 3F) -O2 (2-3) 3%
3-HH-V (3-1) 29%
3-HH-V1 (3-1) 5%
3-HHEBH-3 (3-11) 3%
5-HHB-CL (4) 3%
5-HHB (F) -F (4) 3%
3-GB (F) B (F) B (F) -F (4) 5%
3-BB (F) B (F, F) -F (4-12) 3%
5-H2B (2F, 3F) -O2 (5-2) 3%
3-H1OB (2F, 3F) -O2 (5-3) 3%
5-BB (2F, 3F) -O2 (5-6) 3%
V-HHB (2F, 3F) -O4 (5-7) 3%
V2-HHB (2F, 3F) -O2 (5-7) 3%
3-HDhB (2F, 3F) -O2 (5-12) 3%
2-BB (2F, 3F) B-3 (5-17) 3%
V-H2BBB (2F, 3F) -O2 (5-21) 3%
NI = 90.7 ° C .; Tc <−20 ° C .; Δn = 0.111; Δε = 5.1; Vth = 1.99V; γ1 = 169.8 mPa · s; ε⊥ = 5.96.
[実施例27]
3-GB(F)B(F,F)XB(F,F)-F(1-9)     4%
5-GB(F)B(F,F)XB(F,F)-F(1-9)     3%
3-BB(F)B(F,F)XB(F,F)-F(1-10)    4%
3-HB(2F)B(2F,3F)-O2   (2-3)     4%
3-HH-V                (3-1)    34%
3-HH-V1               (3-1)     4%
3-HB-O2               (3-2)     2%
V-HHB-1               (3-5)     7%
5-HBB(F)B-3           (3-13)    5%
3-GB(F)B(F,F)-F       (4-11)    4%
3-BB(F)B(F,F)-CF3     (4-13)    3%
3-GBB(F)B(F,F)-F      (4-16)    2%
4-GBB(F)B(F,F)-F      (4-16)    2%
2-H1OB(2F,3F)-O2      (5-3)     3%
3-DhB(2F,3F)-O2       (5-4)     3%
2-BB(2F,3F)-O2        (5-6)     3%
V2-BB(2F,3F)-O2       (5-6)     3%
V-HHB(2F,3F)-O1       (5-7)     4%
3-HH2B(2F,3F)-O2      (5-8)     3%
3-HH1OB(2F,3F)-O2     (5-9)     3%
 NI=79.4℃;Tc<-20℃;Δn=0.107;Δε=4.3;Vth=1.98V;γ1=116.3mPa・s;ε⊥=5.59.
[Example 27]
3-GB (F) B (F, F) XB (F, F) -F (1-9) 4%
5-GB (F) B (F, F) XB (F, F) -F (1-9) 3%
3-BB (F) B (F, F) XB (F, F) -F (1-10) 4%
3-HB (2F) B (2F, 3F) -O2 (2-3) 4%
3-HH-V (3-1) 34%
3-HH-V1 (3-1) 4%
3-HB-O2 (3-2) 2%
V-HHB-1 (3-5) 7%
5-HBB (F) B-3 (3-13) 5%
3-GB (F) B (F, F) -F (4-11) 4%
3-BB (F) B (F, F) -CF3 (4-13) 3%
3-GBB (F) B (F, F) -F (4-16) 2%
4-GBB (F) B (F, F) -F (4-16) 2%
2-H1OB (2F, 3F) -O2 (5-3) 3%
3-DhB (2F, 3F) -O2 (5-4) 3%
2-BB (2F, 3F) -O2 (5-6) 3%
V2-BB (2F, 3F) -O2 (5-6) 3%
V-HHB (2F, 3F) -O1 (5-7) 4%
3-HH2B (2F, 3F) -O2 (5-8) 3%
3-HH1OB (2F, 3F) -O2 (5-9) 3%
NI = 79.4 ° C .; Tc <−20 ° C .; Δn = 0.107; Δε = 4.3; Vth = 1.98V; γ1 = 116.3 mPa · s; ε⊥ = 5.59.
[実施例28]
3-GB(F)B(F,F)XB(F,F)-F(1-9)     4%
5-GB(F)B(F,F)XB(F,F)-F(1-9)     3%
3-BB(F)B(F,F)XB(F,F)-F(1-10)    4%
3-HB(2F)B(2F,3F)-O2   (2-3)     4%
3-HH-V                (3-1)    34%
3-HH-V1               (3-1)     4%
3-HB-O2               (3-2)     2%
V-HHB-1               (3-5)     7%
5-HBB(F)B-3           (3-13)    5%
3-GB(F)B(F,F)-F       (4-11)    4%
3-BB(F)B(F,F)-CF3     (4-13)    3%
3-GBB(F)B(F,F)-F      (4-16)    2%
4-GBB(F)B(F,F)-F      (4-16)    2%
V-HB(2F,3F)-O2        (5-1)     3%
3-DhB(2F,3F)-O2       (5-4)     3%
3-BB(2F,3F)-O2        (5-6)     3%
V2-BB(2F,3F)-O2       (5-6)     3%
3-HH1OB(2F,3F)-O2     (5-9)     3%
V-HBB(2F,3F)-O4       (5-13)    4%
5-HFLF4-3             (5-24)    3%
 NI=77.8℃;Tc<-20℃;Δn=0.110;Δε=4.2;Vth=2.01V;γ1=118.5mPa・s;ε⊥=5.69.
[Example 28]
3-GB (F) B (F, F) XB (F, F) -F (1-9) 4%
5-GB (F) B (F, F) XB (F, F) -F (1-9) 3%
3-BB (F) B (F, F) XB (F, F) -F (1-10) 4%
3-HB (2F) B (2F, 3F) -O2 (2-3) 4%
3-HH-V (3-1) 34%
3-HH-V1 (3-1) 4%
3-HB-O2 (3-2) 2%
V-HHB-1 (3-5) 7%
5-HBB (F) B-3 (3-13) 5%
3-GB (F) B (F, F) -F (4-11) 4%
3-BB (F) B (F, F) -CF3 (4-13) 3%
3-GBB (F) B (F, F) -F (4-16) 2%
4-GBB (F) B (F, F) -F (4-16) 2%
V-HB (2F, 3F) -O2 (5-1) 3%
3-DhB (2F, 3F) -O2 (5-4) 3%
3-BB (2F, 3F) -O2 (5-6) 3%
V2-BB (2F, 3F) -O2 (5-6) 3%
3-HH1OB (2F, 3F) -O2 (5-9) 3%
V-HBB (2F, 3F) -O4 (5-13) 4%
5-HFLF4-3 (5-24) 3%
NI = 77.8 ° C .; Tc <−20 ° C .; Δn = 0.110; Δε = 4.2; Vth = 2.01V; γ1 = 118.5 mPa · s; ε⊥ = 5.69.
 実施例1と比較例1を比べると、実施例1のε⊥の値の方が大きく、液晶分子の短軸方向における大きな誘電率を有する。また、実施例2と比較例2を比べると、実施例2のε⊥の値の方が大きく、液晶分子の短軸方向における大きな誘電率を有する。よって、本発明の組成物は優れた特性を有すると結論される。 Comparing Example 1 and Comparative Example 1, the value of ε⊥ in Example 1 is larger and the dielectric constant in the minor axis direction of the liquid crystal molecules is larger. Further, comparing Example 2 and Comparative Example 2, the value of ε⊥ in Example 2 is larger, and the dielectric constant in the minor axis direction of the liquid crystal molecules is larger. Therefore, it is concluded that the composition of the present invention has excellent properties.
 本発明の液晶組成物は、液晶モニター、液晶テレビなどに用いることができる。 The liquid crystal composition of the present invention can be used for liquid crystal monitors, liquid crystal televisions, and the like.

Claims (18)

  1.  第一成分として式(1)で表される化合物から選択された少なくとも1つの化合物、および第二成分として式(2)で表される化合物から選択された少なくとも1つの化合物を含有し、正の誘電率異方性を有する液晶組成物。
    Figure JPOXMLDOC01-appb-I000001

    式(1)および式(2)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルであり;RおよびRは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシであり;環Aおよび環Bは、1,4-シクロヘキシレン、1,4-フェニレン、少なくとも1つの水素がフッ素で置き換えられた1,4-フェニレン、ピリミジン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルであり;環Cおよび環Eは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、ナフタレン-2,6-ジイル、少なくとも1つの水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、クロマン-2,6-ジイル、または少なくとも1つの水素がフッ素または塩素で置き換えられたクロマン-2,6-ジイルであるが、環Cおよび環Eのうち少なくとも1つは、少なくとも1つの水素がフッ素で置き換えられた1,4-フェニレンであり;環Dは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、7,8-ジフルオロクロマン-2,6-ジイル、3,4,5,6-テトラフルオロフルオレン-2,7-ジイル、4,6-ジフルオロジベンゾフラン-3,7-ジイル、4,6-ジフルオロジベンゾチオフェン-3,7-ジイル、または1,1,6,7-テトラフルオロインダン-2,5-ジイルであり;ZおよびZは、単結合、エチレン、ビニレン、メチレンオキシ、カルボニルオキシ、またはジフルオロメチレンオキシであり;ZおよびZは、単結合、エチレン、ビニレン、メチレンオキシ、またはカルボニルオキシであり;XおよびXは、水素またはフッ素であり;Yは、フッ素、塩素、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルオキシであり;aは、1、2、3、または4であり;bおよびcは、0、1、2、または3であり;dは、0または1であり;そしてaとbとの和は4以下であり;cとdの和は、1、2、または3である。
    A positive component containing at least one compound selected from the compounds represented by formula (1) as the first component and at least one compound selected from the compounds represented by formula (2) as the second component, A liquid crystal composition having dielectric anisotropy.
    Figure JPOXMLDOC01-appb-I000001

    In formulas (1) and (2), R 1 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons; R 2 and R 3 are hydrogen. Are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyloxy having 2 to 12 carbons; ring A and ring B are 1,4-cyclohexylene. , 1,4-phenylene, 1,4-phenylene having at least one hydrogen replaced by fluorine, pyrimidine-2,5-diyl, 1,3-dioxane-2,5-diyl, or tetrahydropyran-2,5 -Diyl; ring C and ring E are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene , 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, naphthalene-2,6-diyl, naphthalene-2,6-diyl in which at least one hydrogen is replaced by fluorine or chlorine, chroman-2 , 6-diyl, or chroman-2,6-diyl in which at least one hydrogen has been replaced by fluorine or chlorine, but at least one of ring C and ring E has at least one hydrogen replaced by fluorine. 1,4-phenylene; ring D is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1 , 4-phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl, 7,8-difluorochroman-2,6-diyl, 3,4 , 6-Tetrafluorofluorene-2,7-diyl, 4,6-difluorodibenzofuran-3,7-diyl, 4,6-difluorodibenzothiophene-3,7-diyl, or 1,1,6,7-tetra Fluoroindan-2,5-diyl; Z 1 and Z 2 are single bonds, ethylene, vinylene, methyleneoxy, carbonyloxy, or difluoromethyleneoxy; Z 3 and Z 4 are single bonds, ethylene, Is vinylene, methyleneoxy, or carbonyloxy; X 1 and X 2 are hydrogen or fluorine; Y 1 is fluorine, chlorine, or a carbon number of 1 to 12 in which at least one hydrogen is replaced by fluorine or chlorine. Alkyl, alkoxy having 1 to 12 carbons in which at least one hydrogen is replaced with fluorine or chlorine, Or alkenyloxy having 2 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine; a is 1, 2, 3, or 4; b and c are 0, 1, 2, Or 3; d is 0 or 1; and the sum of a and b is 4 or less; the sum of c and d is 1, 2, or 3.
  2.  第一成分として式(1-1)から式(1-14)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000002

    Figure JPOXMLDOC01-appb-I000003

    式(1-1)から式(1-14)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から14のアルケニルであり;X、X、X、X、X、X、X、X、X、X10、X11、X12、X13、およびX14は、水素またはフッ素であり;Yは、フッ素、塩素、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルオキシである。
    The liquid crystal composition according to claim 1, containing at least one compound selected from compounds represented by formulas (1-1) to (1-14) as a first component.
    Figure JPOXMLDOC01-appb-I000002

    Figure JPOXMLDOC01-appb-I000003

    In the formulas (1-1) to (1-14), R 1 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 14 carbons; X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 , X 10 , X 11 , X 12 , X 13 , and X 14 are hydrogen or fluorine; Y 1 is Fluorine, chlorine, an alkyl having 1 to 12 carbons in which at least one hydrogen is replaced with fluorine or chlorine, an alkoxy having 1 to 12 carbons in which at least one hydrogen is replaced with fluorine or chlorine, or at least one hydrogen; It is an alkenyloxy having 2 to 12 carbons, which is replaced by fluorine or chlorine.
  3.  第二成分として式(2-1)から式(2-38)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1または2に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000004

    Figure JPOXMLDOC01-appb-I000005

    Figure JPOXMLDOC01-appb-I000006

    Figure JPOXMLDOC01-appb-I000007


    Figure JPOXMLDOC01-appb-I000008

    式(2-1)から式(2-38)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシである。
    The liquid crystal composition according to claim 1 or 2, containing at least one compound selected from the compounds represented by formulas (2-1) to (2-38) as the second component.
    Figure JPOXMLDOC01-appb-I000004

    Figure JPOXMLDOC01-appb-I000005

    Figure JPOXMLDOC01-appb-I000006

    Figure JPOXMLDOC01-appb-I000007


    Figure JPOXMLDOC01-appb-I000008

    In formulas (2-1) to (2-38), R 2 and R 3 are each alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or 2 carbons. To 12 alkenyloxy.
  4.  第一成分の割合が、5質量%から50質量%の範囲であり、第二成分の割合が、2質量%から50質量%の範囲である、請求項1から3のいずれか1項に記載の液晶組成物。 The ratio of the first component is in the range of 5% by mass to 50% by mass, and the ratio of the second component is in the range of 2% by mass to 50% by mass. Liquid crystal composition.
  5.  第三成分として式(3)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1から4のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000009

    式(3)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルであり;環Fおよび環Gは、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンであり;Zは、単結合、エチレン、ビニレン、メチレンオキシ、またはカルボニルオキシであり;eは、1、2、または3である。
    The liquid crystal composition according to claim 1, containing at least one compound selected from the compounds represented by formula (3) as the third component.
    Figure JPOXMLDOC01-appb-I000009

    In the formula (3), R 4 and R 5 are alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one hydrogen is replaced by fluorine or chlorine. C2-C12 alkenyl; ring F and ring G are 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 2,5-difluoro-1,4 -Phenylene; Z 5 is a single bond, ethylene, vinylene, methyleneoxy, or carbonyloxy; e is 1, 2, or 3.
  6.  第三成分として式(3-1)から式(3-13)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1から5のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000010


    Figure JPOXMLDOC01-appb-I000011

    式(3-1)から式(3-13)において、RおよびRは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。
    6. The liquid crystal composition according to claim 1, containing at least one compound selected from compounds represented by formulas (3-1) to (3-13) as a third component. .
    Figure JPOXMLDOC01-appb-I000010


    Figure JPOXMLDOC01-appb-I000011

    In formulas (3-1) to (3-13), R 4 and R 5 are each an alkyl having 1 to 12 carbons, an alkoxy having 1 to 12 carbons, an alkenyl having 2 to 12 carbons, or at least one of It is alkenyl having 2 to 12 carbons in which hydrogen is replaced by fluorine or chlorine.
  7.  第三成分の割合が、10質量%から90質量%の範囲である、請求項5または6に記載の液晶組成物。 The liquid crystal composition according to claim 5 or 6, wherein the ratio of the third component is in the range of 10% by mass to 90% by mass.
  8.  第四成分として式(4)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1から7のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000012

    式(4)において、Rは炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルであり;環Jは、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、ピリミジン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルであり;Zは、単結合、エチレン、またはカルボニルオキシであり;X15およびX16は、水素またはフッ素であり;Yは、フッ素、塩素、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルオキシであり;fは、1、2、3、または4である。
    The liquid crystal composition according to any one of claims 1 to 7, containing at least one compound selected from the compounds represented by formula (4) as the fourth component.
    Figure JPOXMLDOC01-appb-I000012

    In the formula (4), R 6 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons or alkenyl having 2 to 12 carbons; ring J is 1,4-cyclohexylene, 1,4 -Phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, pyrimidine-2,5-diyl, 1,3-dioxane -2,5-diyl, or tetrahydropyran-2,5-diyl; Z 6 is a single bond, ethylene, or carbonyloxy; X 15 and X 16 are hydrogen or fluorine; Y 2 is , Fluorine, chlorine, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced by fluorine or chlorine, at least one hydrogen is replaced by fluorine or chlorine Alkoxy having 1 to 12 carbons, or at least one hydrogen is alkenyloxy having 2 to 12 carbons are replaced by fluorine or chlorine; f 1, 2, 3, or 4.
  9.  第四成分として式(4-1)から式(4-16)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1から6のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000013

    Figure JPOXMLDOC01-appb-I000014

    式(4-1)から式(4-16)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルである。
    7. The liquid crystal composition according to claim 1, containing at least one compound selected from compounds represented by formulas (4-1) to (4-16) as a fourth component. .
    Figure JPOXMLDOC01-appb-I000013

    Figure JPOXMLDOC01-appb-I000014

    In formulas (4-1) to (4-16), R 6 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons.
  10.  第四成分の割合が、5質量%から40質量%の範囲である、請求項8または9に記載の液晶組成物。 The liquid crystal composition according to claim 8 or 9, wherein the ratio of the fourth component is in the range of 5% by mass to 40% by mass.
  11.  第五成分として式(5)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1から10のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000015

    式(5)において、RおよびRは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシであり;環Kおよび環Mは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、テトラヒドロピラン-2,5-ジイル、1,4-フェニレン、ナフタレン-2,6-ジイル、少なくとも1つの水素がフッ素または塩素で置き換えられたナフタレン-2,6-ジイル、クロマン-2,6-ジイル、または少なくとも1つの水素がフッ素または塩素で置き換えられたクロマン-2,6-ジイルであり;環Lは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、7,8-ジフルオロクロマン-2,6-ジイル、3,4,5,6-テトラフルオロフルオレン-2,7-ジイル、4,6-ジフルオロジベンゾフラン-3,7-ジイル、4,6-ジフルオロジベンゾチオフェン-3,7-ジイル、または1,1,6,7-テトラフルオロインダン-2,5-ジイルであり;ZおよびZは、単結合、エチレン、ビニレン、メチレンオキシ、またはカルボニルオキシであり;gは、0、1、2、または3であり;hは、0または1であり;そしてgとhとの和は3以下である。
    The liquid crystal composition according to any one of claims 1 to 10, containing at least one compound selected from the compounds represented by formula (5) as the fifth component.
    Figure JPOXMLDOC01-appb-I000015

    In the formula (5), R 7 and R 8 are hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyloxy having 2 to 12 carbons. Ring K and ring M are 1,4-cyclohexylene, 1,4-cyclohexenylene, tetrahydropyran-2,5-diyl, 1,4-phenylene, naphthalene-2,6-diyl, at least one hydrogen Is naphthalene-2,6-diyl substituted with fluorine or chlorine, chroman-2,6-diyl, or chroman-2,6-diyl substituted with at least one hydrogen with fluorine or chlorine; ring L is , 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1, -Phenylene, 3,4,5-trifluoronaphthalene-2,6-diyl, 7,8-difluorochroman-2,6-diyl, 3,4,5,6-tetrafluorofluorene-2,7-diyl, 4,6-difluorodibenzofuran-3,7-diyl, 4,6-difluorodibenzothiophene-3,7-diyl, or 1,1,6,7-tetrafluoroindane-2,5-diyl; Z 7 And Z 8 is a single bond, ethylene, vinylene, methyleneoxy, or carbonyloxy; g is 0, 1, 2, or 3; h is 0 or 1; and between g and h The sum is 3 or less.
  12.  第五成分として式(5-1)から式(5-31)で表される化合物から選択された少なくとも1つの化合物を含有する、請求項1から11のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000016

    Figure JPOXMLDOC01-appb-I000017

    Figure JPOXMLDOC01-appb-I000018

    Figure JPOXMLDOC01-appb-I000019

    式(5-1)から式(5-31)において、RおよびRは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシである。
    12. The liquid crystal composition according to claim 1, containing at least one compound selected from compounds represented by formulas (5-1) to (5-31) as a fifth component. .
    Figure JPOXMLDOC01-appb-I000016

    Figure JPOXMLDOC01-appb-I000017

    Figure JPOXMLDOC01-appb-I000018

    Figure JPOXMLDOC01-appb-I000019

    In formulas (5-1) to (5-31), R 7 and R 8 are hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbon It is an alkenyloxy of the numbers 2 to 12.
  13.  第五成分の割合が、2質量%から50質量%の範囲である、請求項11または12に記載の液晶組成物。 The liquid crystal composition according to claim 11 or 12, wherein the ratio of the fifth component is in the range of 2% by mass to 50% by mass.
  14.  ネマチック相の上限温度が70℃以上であり、波長589nmにおける25℃で測定の光学異方性が0.07以上であり、そして周波数1kHzにおける25℃で測定の誘電率異方性が2以上である、請求項1から13のいずれか1項に記載の液晶組成物。 The maximum temperature of the nematic phase is 70 ° C. or higher, the optical anisotropy measured at 25 ° C. at a wavelength of 589 nm is 0.07 or higher, and the dielectric anisotropy measured at 25 ° C. at a frequency of 1 kHz is 2 or higher. The liquid crystal composition according to any one of claims 1 to 13.
  15.  請求項1から14のいずれか1項に記載の液晶組成物を含有する液晶表示素子。 A liquid crystal display device containing the liquid crystal composition according to any one of claims 1 to 14.
  16.  液晶表示素子の動作モードが、FFSモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である、請求項15に記載の液晶表示素子。 The liquid crystal display element according to claim 15, wherein the operation mode of the liquid crystal display element is an FFS mode, and the driving method of the liquid crystal display element is an active matrix method.
  17.  液晶表示素子の動作モードが、TNモード、ECBモード、OCBモード、IPSモード、またはFPAモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である、請求項15に記載の液晶表示素子。 The liquid crystal display element according to claim 15, wherein an operation mode of the liquid crystal display element is a TN mode, an ECB mode, an OCB mode, an IPS mode, or an FPA mode, and a driving method of the liquid crystal display element is an active matrix method.
  18.  請求項1から14のいずれか1項に記載の液晶組成物の、液晶表示素子における使用。 Use of the liquid crystal composition according to any one of claims 1 to 14 in a liquid crystal display device.
PCT/JP2019/030968 2018-11-05 2019-08-06 Liquid crystal composition and liquid crystal display element WO2020095499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020556602A JP7342880B2 (en) 2018-11-05 2019-08-06 Liquid crystal composition and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-208059 2018-11-05
JP2018208059 2018-11-05

Publications (1)

Publication Number Publication Date
WO2020095499A1 true WO2020095499A1 (en) 2020-05-14

Family

ID=70611762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030968 WO2020095499A1 (en) 2018-11-05 2019-08-06 Liquid crystal composition and liquid crystal display element

Country Status (3)

Country Link
JP (1) JP7342880B2 (en)
TW (1) TWI814884B (en)
WO (1) WO2020095499A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196420A (en) * 2020-09-17 2022-03-18 江苏和成显示科技有限公司 Liquid crystal composition and liquid crystal display device thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503130A (en) * 2002-10-15 2006-01-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Light-stable liquid crystal medium
JP2010215609A (en) * 2009-02-17 2010-09-30 Chisso Corp Liquid crystalline compound having negative dielectric anisotropy and liquid crystal composition and liquid crystal display element each comprising the same
WO2014045905A1 (en) * 2012-09-24 2014-03-27 Jnc株式会社 Liquid crystal display element
CN103805211A (en) * 2014-01-08 2014-05-21 北京八亿时空液晶科技股份有限公司 Liquid crystal composition for multiple modes and application thereof
CN105647543A (en) * 2016-01-13 2016-06-08 石家庄诚志永华显示材料有限公司 Liquid crystal composition
JP2017075095A (en) * 2015-10-13 2017-04-20 Jnc株式会社 Compound having tetrahydropyran ring, liquid crystal composition and liquid crystal display element
JP2017088852A (en) * 2015-08-05 2017-05-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid crystal medium
CN107384439A (en) * 2017-07-27 2017-11-24 默克专利股份有限公司 Liquid crystal media and the liquid crystal display for including it
JP2018065986A (en) * 2016-09-23 2018-04-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid-crystalline medium and liquid crystal display comprising the same
CN108559527A (en) * 2018-06-05 2018-09-21 晶美晟光电材料(南京)有限公司 A kind of liquid-crystal composition and its application with high-penetration rate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503130A (en) * 2002-10-15 2006-01-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Light-stable liquid crystal medium
JP2010215609A (en) * 2009-02-17 2010-09-30 Chisso Corp Liquid crystalline compound having negative dielectric anisotropy and liquid crystal composition and liquid crystal display element each comprising the same
WO2014045905A1 (en) * 2012-09-24 2014-03-27 Jnc株式会社 Liquid crystal display element
CN103805211A (en) * 2014-01-08 2014-05-21 北京八亿时空液晶科技股份有限公司 Liquid crystal composition for multiple modes and application thereof
JP2017088852A (en) * 2015-08-05 2017-05-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid crystal medium
JP2017075095A (en) * 2015-10-13 2017-04-20 Jnc株式会社 Compound having tetrahydropyran ring, liquid crystal composition and liquid crystal display element
CN105647543A (en) * 2016-01-13 2016-06-08 石家庄诚志永华显示材料有限公司 Liquid crystal composition
JP2018065986A (en) * 2016-09-23 2018-04-26 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid-crystalline medium and liquid crystal display comprising the same
CN107384439A (en) * 2017-07-27 2017-11-24 默克专利股份有限公司 Liquid crystal media and the liquid crystal display for including it
CN108559527A (en) * 2018-06-05 2018-09-21 晶美晟光电材料(南京)有限公司 A kind of liquid-crystal composition and its application with high-penetration rate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196420A (en) * 2020-09-17 2022-03-18 江苏和成显示科技有限公司 Liquid crystal composition and liquid crystal display device thereof

Also Published As

Publication number Publication date
JPWO2020095499A1 (en) 2021-10-07
TW202028433A (en) 2020-08-01
TWI814884B (en) 2023-09-11
JP7342880B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
JP6657951B2 (en) Liquid crystal composition and liquid crystal display device
JP7268312B2 (en) Liquid crystal composition and liquid crystal display element
WO2018123184A1 (en) Liquid crystal composition and liquid crystal display element
JP6319315B2 (en) Liquid crystal composition and liquid crystal display element
JP6988829B2 (en) Liquid crystal composition and liquid crystal display element
JP6690647B2 (en) Piperidine derivative, liquid crystal composition, and liquid crystal display device
JP2020176256A (en) Liquid crystal composition and liquid crystal display element
JP6866625B2 (en) Liquid crystal composition and liquid crystal display element
WO2015151607A1 (en) Liquid crystal display element and liquid crystal composition
WO2016047249A1 (en) Liquid crystal composition and liquid crystal display element
JPWO2019004021A1 (en) Liquid crystal display device, liquid crystal composition and compound
WO2017163663A1 (en) Liquid-crystal composition and liquid-crystal display element
JP6610260B2 (en) Liquid crystal composition and liquid crystal display element
JP6696405B2 (en) Liquid crystal composition and liquid crystal display device
JP6753285B2 (en) Liquid crystal composition and liquid crystal display element
JP7342880B2 (en) Liquid crystal composition and liquid crystal display element
JP6816597B2 (en) Liquid crystal composition and liquid crystal display element
JP2020084021A (en) Liquid crystal composition and liquid crystal display element
JP7172069B2 (en) Liquid crystal composition and liquid crystal display element
JP7131048B2 (en) Liquid crystal composition and liquid crystal display element
JP6564495B1 (en) Liquid crystal composition and liquid crystal display element
JP2019156904A (en) Liquid crystal composition and liquid crystal display element
JP2020063385A (en) Liquid crystal composition and liquid crystal display element
JP2021014553A (en) Liquid crystal composition and liquid crystal display element
WO2019188920A1 (en) Liquid-crystal composition and liquid-crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881238

Country of ref document: EP

Kind code of ref document: A1