WO2018123184A1 - Liquid crystal composition and liquid crystal display element - Google Patents

Liquid crystal composition and liquid crystal display element Download PDF

Info

Publication number
WO2018123184A1
WO2018123184A1 PCT/JP2017/035938 JP2017035938W WO2018123184A1 WO 2018123184 A1 WO2018123184 A1 WO 2018123184A1 JP 2017035938 W JP2017035938 W JP 2017035938W WO 2018123184 A1 WO2018123184 A1 WO 2018123184A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
carbons
compound
diyl
formula
Prior art date
Application number
PCT/JP2017/035938
Other languages
French (fr)
Japanese (ja)
Inventor
井上 大輔
将之 齋藤
Original Assignee
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社, Jnc石油化学株式会社 filed Critical Jnc株式会社
Priority to JP2018500953A priority Critical patent/JP6460279B2/en
Priority to KR1020197002138A priority patent/KR102165665B1/en
Publication of WO2018123184A1 publication Critical patent/WO2018123184A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3028Cyclohexane rings in which at least two rings are linked by a carbon chain containing carbon to carbon single bonds
    • C09K2019/3036Cy-C2H4-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • C09K2019/3077Cy-Cy-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K2019/3422Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a six-membered ring

Definitions

  • the present invention relates to a liquid crystal composition, a liquid crystal display element containing the composition, and the like.
  • the present invention relates to a liquid crystal composition having a positive dielectric anisotropy, and an AM (active matrix) device containing this composition and having a TN, OCB, IPS, FFS, or FPA mode.
  • the classification based on the operation mode of the liquid crystal molecules is as follows: PC (phase change), TN (twisted nematic), STN (super twisted nematic), ECB (electrically controlled birefringence), OCB (optically compensated bend), IPS. (In-plane switching), VA (vertical alignment), FFS (fringe field switching), FPA (field-induced photo-reactive alignment) mode.
  • the classification based on the element drive system is PM (passive matrix) and AM (active matrix). PM is classified into static, multiplex, etc., and AM is classified into TFT (thin film insulator), MIM (metal film insulator), and the like. TFTs are classified into amorphous silicon and polycrystalline silicon. The latter is classified into a high temperature type and a low temperature type according to the manufacturing process.
  • the classification based on the light source includes a reflection type using natural light, a transmission type using backlight, and a semi-transmission type using both natural light and backlight.
  • the liquid crystal display element contains a liquid crystal composition having a nematic phase.
  • This composition has suitable properties. By improving the characteristics of the composition, an AM device having good characteristics can be obtained. The relationships in these properties are summarized in Table 1 below. The characteristics of the composition will be further described based on a commercially available AM device.
  • the temperature range of the nematic phase is related to the temperature range in which the device can be used.
  • a preferred upper limit temperature of the nematic phase is about 70 ° C. or more, and a preferred lower limit temperature of the nematic phase is about ⁇ 10 ° C. or less.
  • the viscosity of the composition is related to the response time of the device. A short response time is preferred for displaying moving images on the device. A shorter response time is desirable even at 1 millisecond. Therefore, a small viscosity in the composition is preferred. A small viscosity at low temperatures is even more preferred.
  • the optical anisotropy of the composition is related to the contrast ratio of the device. Depending on the mode of the device, a large optical anisotropy or a small optical anisotropy, ie an appropriate optical anisotropy is required.
  • the product ( ⁇ n ⁇ d) of the optical anisotropy ( ⁇ n) of the composition and the cell gap (d) of the device is designed to maximize the contrast ratio.
  • the appropriate product value depends on the type of operation mode. For a device with a mode such as TN, a suitable value is about 0.45 ⁇ m. In this case, a composition having a large optical anisotropy is preferable for a device having a small cell gap.
  • a large dielectric anisotropy in the composition contributes to a low threshold voltage, a small power consumption and a large contrast ratio in the device. Therefore, a large dielectric anisotropy is preferable.
  • the dielectric constant ( ⁇ The larger i) is preferred. By suppressing the tilt-up of the liquid crystal molecules, the transmittance of the element having the FFS mode can be increased, which contributes to a large contrast ratio.
  • a large specific resistance in the composition contributes to a large voltage holding ratio and a large contrast ratio in the device.
  • compositions having a large specific resistance not only at room temperature but also at a temperature close to the upper limit temperature of the nematic phase in the initial stage are preferable.
  • a composition having a large specific resistance not only at room temperature but also at a temperature close to the upper limit temperature of the nematic phase after being used for a long time is preferable.
  • the stability of the composition against ultraviolet rays and heat is related to the lifetime of the liquid crystal display device. When their stability is high, the lifetime of the device is long. Such characteristics are preferable for an AM device used in a liquid crystal projector, a liquid crystal television, and the like.
  • a composition having a positive dielectric anisotropy is used for an AM device having a TN mode.
  • a composition having a negative dielectric anisotropy is used in an AM device having a VA mode.
  • a composition having a positive or negative dielectric anisotropy is used in an AM device having an IPS mode or an FFS mode.
  • a composition having a positive or negative dielectric anisotropy is used in an AM device having an IPS mode or an FFS mode.
  • a composition having a positive or negative dielectric anisotropy is used in a polymer-supported alignment (PSA) type AM device.
  • the following compound (A-1) is one of hindered amine light stabilizers (HALS). This compound has a polar group> N—CH 3 . In this compound, the two polar groups are the same.
  • One object of the present invention is to provide a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large dielectric anisotropy, a large specific resistance, a high stability against ultraviolet rays, a high heat It is an object to provide a liquid crystal composition satisfying at least one of the characteristics such as high stability against the above and suppression of display failure such as afterimage. Another object is to provide a liquid crystal composition having an appropriate balance between at least two of these properties. Another object is to provide a liquid crystal display device containing such a composition. Another object is to provide an AM device having characteristics such as a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, and a long lifetime.
  • the present invention has at least two monovalent groups represented by the formula (S) as an additive, and in these monovalent groups, a group represented by R 1 is a group represented by another R 1 .
  • the present invention relates to a liquid crystal composition containing a compound different from the above and having a positive dielectric anisotropy, and a liquid crystal display device containing this composition.
  • R 1 is hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical; R is alkyl having 1 to 12 carbons.
  • One advantage of the present invention is that a high upper limit temperature of the nematic phase, a lower lower limit temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large dielectric anisotropy, a large specific resistance, a high stability against ultraviolet rays, a high heat It is an object to provide a liquid crystal composition satisfying at least one of the characteristics such as high stability against the above and suppression of display failure such as afterimage. Another advantage is to provide a liquid crystal composition having an appropriate balance between at least two of these properties. Another advantage is to provide a liquid crystal display device containing such a composition. Another advantage is to provide an AM device having characteristics such as a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, and a long lifetime.
  • liquid crystal composition and “liquid crystal display element” may be abbreviated as “composition” and “element”, respectively.
  • “Liquid crystal display element” is a general term for liquid crystal display panels and liquid crystal display modules.
  • “Liquid crystal compound” is a compound having a liquid crystal phase such as a nematic phase and a smectic phase, and a liquid crystal phase, but has a composition for the purpose of adjusting characteristics such as temperature range, viscosity, and dielectric anisotropy of the nematic phase. It is a general term for compounds mixed with products.
  • This compound has a six-membered ring such as 1,4-cyclohexylene and 1,4-phenylene, and its molecular structure is rod-like.
  • the “polymerizable compound” is a compound added for the purpose of forming a polymer in the composition.
  • a liquid crystalline compound having alkenyl is not polymerizable in that sense.
  • the liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds. Additives such as optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerizable compounds, polymerization initiators, polymerization inhibitors, and polar compounds are added to this liquid crystal composition as necessary.
  • the ratio of the liquid crystal compound is represented by a mass percentage (% by mass) based on the mass of the liquid crystal composition not containing the additive even when the additive is added.
  • the ratio of the additive is expressed as a mass percentage (% by mass) based on the mass of the liquid crystal composition not containing the additive. That is, the ratio of the liquid crystal compound and the additive is calculated based on the total mass of the liquid crystal compound. Mass parts per million (ppm) may be used.
  • the ratio of the polymerization initiator and the polymerization inhibitor is exceptionally expressed based on the mass of the polymerizable compound.
  • the upper limit temperature of the nematic phase may be abbreviated as “the upper limit temperature”.
  • “Lower limit temperature of nematic phase” may be abbreviated as “lower limit temperature”.
  • High specific resistance means that the composition has a large specific resistance in the initial stage and a large specific resistance after long-term use.
  • “High voltage holding ratio” means that the device has a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature in the initial stage, and a large voltage not only at room temperature but also at a temperature close to the upper limit temperature after long use. It means having a retention rate.
  • the characteristics of the composition and the device may be examined by a aging test.
  • increasing dielectric anisotropy means that when the composition has a positive dielectric anisotropy, the value increases positively, and the composition having a negative dielectric anisotropy When it is a thing, it means that the value increases negatively.
  • Expressions such as “at least one —CH 2 — may be replaced by —O—” are used herein.
  • —CH 2 —CH 2 —CH 2 — may be converted to —O—CH 2 —O— by replacing non-adjacent —CH 2 — with —O—.
  • adjacent —CH 2 — is not replaced by —O—.
  • —O—O—CH 2 — (peroxide) is formed by this replacement. That is, this expression includes both “one —CH 2 — may be replaced with —O—” and “at least two non-adjacent —CH 2 — may be replaced with —O—”. means. This rule applies not only to replacement with —O— but also to replacement with a divalent group such as —CH ⁇ CH— or —COO—.
  • the symbol of the terminal group R 3 is used for a plurality of compounds.
  • two groups represented by any two R 3 may be the same or different.
  • R 3 of the compound (2-1) is ethyl
  • R 3 is ethyl compound (2-2).
  • R 3 of compound (2-1) is ethyl
  • R 3 of compound (2-2) is propyl.
  • This rule also applies to other symbols.
  • the formula (2) when the subscript 'b' is 2, there are two rings B. In this compound, the two rings represented by the two rings B may be the same or different.
  • This rule also applies to any two rings B when the subscript 'b' is greater than 2.
  • This rule also applies to other symbols.
  • This rule also applies when a compound has a substituent represented by the same symbol.
  • Symbols such as A, B, C, and D surrounded by hexagons correspond to rings such as ring A, ring B, ring C, and ring D, respectively, and represent rings such as a six-membered ring and a condensed ring.
  • rings A and ring B are independently X, Y, or Z”, since there are plural subjects, “independently” is used. When the subject is “ring A”, since the subject is singular, “independently” is not used.
  • 2-Fluoro-1,4-phenylene means the following two divalent groups.
  • fluorine may be leftward (L) or rightward (R).
  • This rule also applies to bilaterally asymmetric groups produced by removing two hydrogens from the ring, such as tetrahydropyran-2,5-diyl.
  • This rule also applies to divalent linking groups such as carbonyloxy (—COO— or —OCO—).
  • the alkyl of the liquid crystal compound is linear or branched and does not include cyclic alkyl. Linear alkyl is preferred over branched alkyl. The same applies to terminal groups such as alkoxy and alkenyl. As the configuration of 1,4-cyclohexylene, trans is preferable to cis for increasing the maximum temperature.
  • the present invention includes the following items.
  • Item 1 As an additive, has at least two monovalent radical of the formula (S), in these monovalent group, compound different from the group that the group represented by R 1 is represented by the other of R 1 And a liquid crystal composition having positive dielectric anisotropy.
  • R 1 is hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical; R is alkyl having 1 to 12 carbons.
  • Item 2 The liquid crystal composition according to item 1, wherein R is methyl in the monovalent group represented by formula (S) according to item 1.
  • Item 3. The liquid crystal composition according to item 1 or 2, containing at least one compound selected from the group of compounds represented by formula (1) as an additive.
  • R 1 is hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or an oxy radical, where R 1 is represented by R 1
  • the group represented is different from the group represented by R 1 ;
  • ring A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, Naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene- 2,3-diyl, na
  • At least one —CH 2 — may be replaced by —O—, —COO—, —OCO—, or —OCOO—, in which at least one hydrogen is , Fluorine or chlorine; a is 0, 1, 2, or 3;
  • Item 4. The liquid crystal composition according to any one of items 1 to 3, comprising at least one compound selected from the group of compounds represented by formulas (1-1) to (1-9) as an additive: object.
  • R 2 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical
  • Z 4 is carbon 1
  • Z 5 and Z 6 are independently alkylene having 1 to 5 carbons
  • Z 7 and Z 8 are independently a single bond or alkylene having 1 to 20 carbons;
  • at least one —CH 2 — may be replaced by —O—, —COO—, —OCO—, or —OCOO—, in which at least one hydrogen is fluorine or chlorine X 1 is hydrogen or fluorine.
  • Item 5 The liquid crystal composition according to any one of items 1 to 4, wherein a ratio of the additive is in a range of 0.005% by mass to 1% by mass.
  • Item 6. The liquid crystal composition according to any one of items 1 to 5, containing at least one compound selected from the group of compounds represented by formula (2) as a first component.
  • R 3 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons or alkenyl having 2 to 12 carbons;
  • ring B is 1,4-cyclohexylene, 1, 4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, pyrimidine-2,5-diyl, 1,3- Dioxane-2,5-diyl, or tetrahydropyran-2,5-diyl;
  • Z 9 is a single bond, ethylene, carbonyloxy, or difluoromethyleneoxy;
  • X 2 and X 3 are independently hydrogen or is fluorine;
  • Y 1 is fluorine, chlorine, at least one hydrogen alkyl having 1 carbon
  • Item 7. The liquid crystal composition according to any one of items 1 to 6, comprising at least one compound selected from the group of compounds represented by formulas (2-1) to (2-35) as a first component: object.
  • R 3 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons.
  • Item 8 The liquid crystal composition according to item 6 or 7, wherein the ratio of the first component is in the range of 5% by mass to 90% by mass.
  • Item 9 The liquid crystal composition according to any one of items 1 to 8, comprising at least one compound selected from the group of compounds represented by formula (3) as the second component.
  • R 4 and R 5 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one hydrogen is fluorine or chlorine.
  • Substituted alkenyl having 2 to 12 carbon atoms; ring C and ring D are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 2,5 -Difluoro-1,4-phenylene;
  • Z 10 is a single bond, ethylene, or carbonyloxy;
  • c is 1, 2, or 3.
  • Item 10 The liquid crystal composition according to any one of items 1 to 9, comprising at least one compound selected from the group of compounds represented by formulas (3-1) to (3-13) as a second component: object.
  • R 4 and R 5 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or C2-C12 alkenyl in which at least one hydrogen is replaced by fluorine or chlorine.
  • Item 11 The liquid crystal composition according to item 9 or 10, wherein the ratio of the second component is in the range of 5% by mass to 90% by mass.
  • Item 12. The liquid crystal composition according to any one of items 1 to 11, comprising at least one compound selected from the group of compounds represented by formula (4) as a third component.
  • R 6 and R 7 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyloxy having 2 to 12 carbons.
  • Ring E and Ring G are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine Or tetrahydropyran-2,5-diyl;
  • ring F is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5 - methyl-1,4-phenylene, it is a 3,4,5-trifluoro-2,6-diyl or 7,8-difluoro-chroman-2,6-diyl,;
  • Z 11 Contact Fine Z 12 are independently a single bond, ethylene, carbonyloxy or methyleneoxy,; d is 1, 2, or 3,, e is 0 or 1; the sum of d and e 3 or less.
  • Item 13 The liquid crystal composition according to any one of items 1 to 12, comprising at least one compound selected from the group of compounds represented by formulas (4-1) to (4-22) as a third component: object.
  • R 6 and R 7 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or It is alkenyloxy having 2 to 12 carbon atoms.
  • Item 14 The liquid crystal composition according to item 12 or 13, wherein the ratio of the third component is in the range of 3% by mass to 25% by mass.
  • Item 15 The upper limit temperature of the nematic phase is 70 ° C. or higher, the optical anisotropy at a wavelength of 589 nm (measured at 25 ° C.) is 0.07 or higher, and the dielectric anisotropy at a frequency of 1 kHz (measured at 25 ° C.) is 2.
  • the liquid crystal composition according to any one of items 1 to 14, which is the above.
  • Item 16 A liquid crystal display device comprising the liquid crystal composition according to any one of items 1 to 15.
  • Item 17. The liquid crystal display element according to item 16, wherein the operation mode of the liquid crystal display element is a TN mode, an ECB mode, an OCB mode, an IPS mode, an FFS mode, or an FPA mode, and the driving method of the liquid crystal display element is an active matrix method .
  • Item 18 Use of the liquid crystal composition according to any one of items 1 to 15 in a liquid crystal display device.
  • the present invention includes the following items.
  • (E) A device containing the above composition and having a mode of PC, TN, STN, ECB, OCB, IPS, VA, FFS, or FPA.
  • (F) A transmissive device containing the above composition.
  • (G) Use of the above composition as a composition having a nematic phase.
  • (H) Use as an optically active composition by adding an optically active compound to the above composition.
  • the liquid crystal composition of the present invention contains a compound having at least two monovalent groups represented by the formula (S).
  • R 1 is hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical.
  • the four groups R are independently alkyl having 1 to 12 carbons.
  • the compound of the present invention has at least two monovalent groups represented by the formula (S).
  • the group represented by R 1 is different from the groups represented by the other R 1.
  • this compound has two groups represented by the formula (S)
  • the two groups represented by R 1 are different from each other.
  • this compound has three groups represented by the formula (S)
  • the two groups represented by R 1 are different from each other.
  • An example is when the three groups R 1 are hydrogen, hydrogen, methyl.
  • Another example is a combination of hydrogen, methyl and ethyl. That is, not all groups represented by R 1 are the same.
  • the brightness may decrease partially.
  • An example is a line afterimage, which is a phenomenon in which the luminance between the electrodes decreases in a streak-like manner when different voltages are repeatedly applied to two adjacent electrodes. This phenomenon is caused by accumulation of ionic impurities contained in the liquid crystal composition on the alignment film near the electrode. Therefore, in order to suppress the line afterimage, it is effective to prevent the ionic impurities from being localized on the alignment film.
  • the surface of the alignment film is coated with an additive such as a polar compound, and ionic impurities are adsorbed on the additive. It is important that such an additive has high solubility in the liquid crystal composition in order to obtain the desired effect.
  • the liquid crystal composition is injected from the injection port into the device under reduced pressure.
  • the device is filled with the composition without changing the proportion of its components.
  • additives such as polar compounds may be adsorbed on the alignment film. When the adsorption speed is high, the additive may not reach the back of the device. The additive is left behind because the rate of adsorption is greater than the rate of injection. In order to prevent this phenomenon, an additive having an appropriate adsorptivity to the alignment film is preferable. Therefore, it is also important to select an additive having an appropriate polarity.
  • the compound described in item 1, particularly compound (1) is suitable for this purpose.
  • Compound (1) has at least two groups R 1 .
  • Compound (1) is asymmetric because the groups represented by at least two groups R 1 are different from each other. This asymmetry may contribute to the proper polarity. See comparative example.
  • the composition of the present invention contains compound (1) as a first additive.
  • composition of the present invention will be described in the following order. First, the composition of the composition will be described. Second, the main characteristics of the component compounds and the main effects of the compounds on the composition will be explained. Third, the combination of components in the composition, the preferred ratio of the components, and the basis thereof will be described. Fourth, a preferred form of the component compound will be described. Fifth, preferred component compounds are shown. Sixth, additives that may be added to the composition will be described. Seventh, a method for synthesizing the component compounds will be described. Finally, the use of the composition will be described.
  • This composition contains a plurality of liquid crystal compounds.
  • the composition may contain additives. Additives include optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerizable compounds, polymerization initiators, polymerization inhibitors, polar compounds and the like.
  • This composition is classified into a composition A and a composition B from the viewpoint of a liquid crystal compound.
  • the composition A may further contain other liquid crystal compounds, additives and the like in addition to the liquid crystal compounds selected from the compound (2), the compound (3), and the compound (4).
  • the “other liquid crystal compound” is a liquid crystal compound different from the compound (2), the compound (3), and the compound (4). Such compounds are mixed into the composition for the purpose of further adjusting the properties.
  • Composition B consists essentially of a liquid crystalline compound selected from compound (2), compound (3), and compound (4). “Substantially” means that the composition may contain an additive but no other liquid crystal compound. Composition B has fewer components than composition A. From the viewpoint of reducing the cost, the composition B is preferable to the composition A. The composition A is preferable to the composition B from the viewpoint that the characteristics can be further adjusted by mixing other liquid crystal compounds.
  • the main characteristics of the component compounds and the main effects of the compounds on the composition will be explained.
  • the main characteristics of the component compounds are summarized in Table 2 based on the effects of the present invention.
  • L means large or high
  • M means moderate
  • S means small or low.
  • L, M, and S are classifications based on a qualitative comparison among the component compounds, and 0 (zero) means extremely small.
  • Compound (1) contributes to suppression of display defects.
  • Compound (2) increases the dielectric anisotropy.
  • Compound (3) increases the maximum temperature or decreases the viscosity.
  • Compound (4) increases the dielectric constant in the minor axis direction and decreases the minimum temperature.
  • a desirable ratio of compound (1) is approximately 0.005% by mass or more for suppressing poor display, and approximately 1% by mass or less for decreasing the minimum temperature.
  • a more desirable ratio is in the range of approximately 0.02% by mass to approximately 0.5% by mass.
  • a particularly desirable ratio is in the range of approximately 0.1% by mass to approximately 0.3% by mass.
  • a desirable ratio of the compound (2) is approximately 5% by mass or more for increasing the dielectric anisotropy, and approximately 90% by mass or less for decreasing the minimum temperature.
  • a more desirable ratio is in the range of approximately 20% by mass to approximately 65% by mass.
  • a particularly desirable ratio is in the range of approximately 25% by mass to approximately 60% by mass.
  • a desirable ratio of compound (3) is approximately 5% by mass or more for increasing the maximum temperature or decreasing the viscosity, and approximately 90% by mass or less for increasing the dielectric anisotropy.
  • a more desirable ratio is in the range of approximately 15% by mass to approximately 65% by mass.
  • a particularly desirable ratio is in the range of approximately 20% by mass to approximately 60% by mass.
  • a desirable ratio of compound (4) is approximately 3% by mass or more for increasing the dielectric constant in the minor axis direction of liquid crystal molecules, and approximately 25% by mass or less for decreasing the minimum temperature.
  • a more desirable ratio is in the range of approximately 5% by mass to approximately 20% by mass.
  • a particularly desirable ratio is in the range of approximately 5% by mass to approximately 15% by mass.
  • R 1 is hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical, wherein the group represented by R 1 is another R Different from the group represented by 1 .
  • R is alkyl having 1 to 12 carbons.
  • Z 1 and Z 2 are each independently a single bond or alkylene having 1 to 20 carbon atoms, and in this alkylene, at least one —CH 2 — is — O—, —COO—, —OCO—, or —OCOO— may be substituted, and in these groups, at least one hydrogen is fluorine, chlorine, or a group represented by the formula (S-1) It may be replaced.
  • Preferred Z 1 or Z 2 is a single bond or alkylene having 1 to 20 carbon atoms in which at least one —CH 2 — is replaced by —COO— or —OCO—.
  • Z 3 is a single bond or alkylene having 1 to 20 carbon atoms, in which at least one —CH 2 — is replaced by —O—, —COO—, —OCO—, or —OCOO—. In these groups, at least one hydrogen may be replaced by fluorine or chlorine.
  • Preferred Z 3 is a single bond or alkylene having 1 to 20 carbon atoms in which at least one —CH 2 — is replaced by —COO— or —OCO—.
  • Ring A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene -1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2 , 7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl, At least one hydrogen is fluorine, chlorine,
  • Preferred ring A is 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl. Naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, or naphthalene-2,7-diyl.
  • A is 0, 1, 2, or 3.
  • Preferred a is 0 or 1. Further preferred a is 0.
  • R 2 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical.
  • Preferred R 2 is alkyl having 1 to 12 carbons.
  • Z 4 is alkylene having 1 to 15 carbons.
  • Preferred Z 4 is alkylene having 2 to 8 carbon atoms.
  • Z 5 and Z 6 are independently alkylene having 1 to 5 carbon atoms.
  • Z 7 and Z 8 are each independently a single bond or alkylene having 1 to 20 carbon atoms, in which at least one —CH 2 — is —O—, —COO—, —OCO—, or — OCOO— may be replaced, and in these groups at least one hydrogen may be replaced by fluorine or chlorine.
  • Preferred Z 7 or Z 8 is a single bond.
  • X 1 is hydrogen or fluorine. Preferred X 1 is hydrogen.
  • R 3 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons.
  • Preferred R 3 is, in order to increase the stability to ultraviolet light or heat, is alkyl of 1 to 12 carbons.
  • R 4 and R 5 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbon 2 having at least one hydrogen replaced with fluorine or chlorine.
  • Desirable R 4 or R 5 is alkenyl having 2 to 12 carbons for decreasing the viscosity, and alkyl having 1 to 12 carbons for increasing the stability to ultraviolet light or heat.
  • R 6 and R 7 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyloxy having 2 to 12 carbons. Desirable R 6 or R 7 is alkyl having 1 to 12 carbons for increasing the stability to ultraviolet light or heat, and alkoxy having 1 to 12 carbons for increasing the dielectric anisotropy.
  • Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. More desirable alkyl is methyl, ethyl, propyl, butyl or pentyl for decreasing the viscosity.
  • Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, or heptyloxy. More desirable alkoxy is methoxy or ethoxy for decreasing the viscosity.
  • Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl. More desirable alkenyl is vinyl, 1-propenyl, 3-butenyl, or 3-pentenyl for decreasing the viscosity.
  • the preferred configuration of —CH ⁇ CH— in these alkenyls depends on the position of the double bond.
  • Trans is preferable in alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl for decreasing the viscosity.
  • Cis is preferred for alkenyl such as 2-butenyl, 2-pentenyl, and 2-hexenyl.
  • Preferred alkenyloxy is vinyloxy, allyloxy, 3-butenyloxy, 3-pentenyloxy, or 4-pentenyloxy. More preferable alkenyloxy is allyloxy or 3-butenyloxy for decreasing the viscosity.
  • alkyl in which at least one hydrogen is replaced by fluorine or chlorine are fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl, 7-fluoroheptyl. Or 8-fluorooctyl. Further preferred examples are 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl or 5-fluoropentyl for increasing the dielectric anisotropy.
  • alkenyl in which at least one hydrogen is replaced by fluorine are 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro-4 -Pentenyl, or 6,6-difluoro-5-hexenyl. Further preferred examples are 2,2-difluorovinyl or 4,4-difluoro-3-butenyl for decreasing the viscosity.
  • Ring B is 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene Pyrimidine-2,5-diyl, 1,3-dioxane-2,5-diyl, or tetrahydropyran-2,5-diyl.
  • Preferred ring B is 1,4-cyclohexylene for increasing the maximum temperature, 1,4-phenylene for increasing the optical anisotropy, and 2,6-difluoro for increasing the dielectric anisotropy.
  • Tetrahydropyran-2,5-diyl is Or And preferably It is.
  • Ring C and Ring D are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 2,5-difluoro-1,4-phenylene.
  • Preferred ring C or ring D is 1,4-cyclohexylene for decreasing the viscosity or increasing the maximum temperature, and 1,4-phenylene for decreasing the minimum temperature.
  • Ring E and Ring G are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, or Tetrahydropyran-2,5-diyl.
  • Preferred ring E or ring G is 1,4-cyclohexylene for decreasing the viscosity, tetrahydropyran-2,5-diyl for increasing the dielectric anisotropy, and for increasing the optical anisotropy. 1,4-phenylene.
  • Ring F is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4, 5-trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl.
  • Preferred ring F is 2,3-difluoro-1,4-phenylene for decreasing the viscosity, and 2-chloro-3-fluoro-1,4-phenylene for decreasing the optical anisotropy, and the dielectric constant In order to increase the anisotropy, 7,8-difluorochroman-2,6-diyl.
  • Z 9 is a single bond, ethylene, carbonyloxy, or difluoromethyleneoxy. Desirable Z 9 is a single bond for decreasing the viscosity, and difluoromethyleneoxy for increasing the dielectric anisotropy.
  • Z 10 is a single bond, ethylene or carbonyloxy. Desirable Z 10 is a single bond for decreasing the viscosity.
  • Z 11 and Z 12 are independently a single bond, ethylene, carbonyloxy, or methyleneoxy. Desirable Z 11 or Z 12 is a single bond for decreasing the viscosity, ethylene for decreasing the minimum temperature, and methyleneoxy for increasing the dielectric anisotropy.
  • X 2 and X 3 are independently hydrogen or fluorine. Desirable X 2 or X 3 is fluorine for increasing the dielectric anisotropy.
  • Y 1 is fluorine, chlorine, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced with fluorine or chlorine, alkoxy having 1 to 12 carbons in which at least one hydrogen is replaced with fluorine or chlorine, or at least C2-C12 alkenyloxy in which one hydrogen is replaced by fluorine or chlorine.
  • Desirable Y 1 is fluorine for decreasing the minimum temperature.
  • a preferred example of alkyl in which at least one hydrogen is replaced by fluorine or chlorine is trifluoromethyl.
  • alkoxy in which at least one hydrogen is replaced by fluorine or chlorine is trifluoromethoxy.
  • alkenyloxy in which at least one hydrogen has been replaced by fluorine or chlorine is trifluorovinyloxy.
  • B is 1, 2, 3, or 4.
  • Preferred b is 2 or 3 for increasing the dielectric anisotropy.
  • c is 1, 2 or 3.
  • Preferred c is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature.
  • d is 1, 2, or 3, e is 0 or 1, and the sum of d and e is 3 or less.
  • Preferred d is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature.
  • Preferred e is 0 for decreasing the viscosity, and 1 for decreasing the minimum temperature.
  • Desirable compounds (1) are the compounds (1-1) to (1-9) according to Item 4. More desirable compounds (1) are the compounds (1-1) to (1-3). Particularly preferred compound (1) is compound (1-1).
  • Desirable compound (2) is the compound (2-1) to the compound (2-35) according to item 7.
  • at least one of the first components is compound (2-4), compound (2-12), compound (2-14), compound (2-15), compound (2-17), compound ( 2-18), compound (2-23), compound (2-24), compound (2-27), compound (2-29), or compound (2-30) is preferred.
  • At least two of the first components are the compounds (2-12) and (2-15), the compounds (2-14) and (2-27), the compounds (2-18) and (2-24), The compound (2-18) and the compound (2-29), the compound (2-24) and the compound (2-29), or a combination of the compound (2-29) and the compound (2-30) is preferable.
  • Desirable compound (3) is the compound (3-1) to the compound (3-13) according to item 10.
  • at least one of the third components is the compound (3-1), the compound (3-3), the compound (3-5), the compound (3-6), or the compound (3-7). It is preferable.
  • At least two of the third components are compound (3-1) and compound (3-5), compound (3-1) and compound (3-6), compound (3-1) and compound (3-7), compound A combination of (3-3) and compound (3-5), compound (3-3) and compound (3-6), compound (3-3) and compound (3-7) is preferred.
  • Desirable compound (4) is the compound (4-1) to the compound (4-22) according to item 13.
  • at least one of the fourth components is the compound (4-1), the compound (4-3), the compound (4-4), the compound (4-6), the compound (4-8), or the compound (4-10) is preferred.
  • At least two of the fourth components are the compound (4-1) and the compound (4-6), the compound (4-3) and the compound (4-6), the compound (4-3) and the compound (4-10), A compound (4-4) and a compound (4-6), a compound (4-4) and a compound (4-8), or a combination of a compound (4-6) and a compound (4-10) is preferable.
  • additives that may be added to the composition will be described.
  • Such additives are optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerizable compounds, polymerization initiators, polymerization inhibitors, polar compounds and the like.
  • An optically active compound is added to the composition for the purpose of inducing a helical structure of liquid crystal to give a twist angle.
  • Examples of such compounds are compound (5-1) to compound (5-5).
  • a desirable ratio of the optically active compound is approximately 5% by mass or less.
  • a more desirable ratio is in the range of approximately 0.01% by mass to approximately 2% by mass.
  • an antioxidant is composed. Added to the product.
  • a preferred example of the antioxidant is a compound (6) in which t is an integer of 1 to 9.
  • preferred t is 1, 3, 5, 7, or 9. Further preferred t is 7. Since the compound (6) in which t is 7 has low volatility, it is effective for maintaining a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature after using the device for a long time.
  • a desirable ratio of the antioxidant is approximately 50 ppm or more for achieving its effect, and is approximately 600 ppm or less for avoiding a decrease in the maximum temperature or avoiding an increase in the minimum temperature.
  • a more desirable ratio is in the range of approximately 100 ppm to approximately 300 ppm.
  • the ultraviolet absorber examples include benzophenone derivatives, benzoate derivatives, triazole derivatives and the like. Also preferred are light stabilizers such as sterically hindered amines.
  • a desirable ratio of these absorbers and stabilizers is approximately 50 ppm or more for achieving the effect thereof, and approximately 10,000 ppm or less for avoiding a decrease in the maximum temperature or avoiding an increase in the minimum temperature. A more desirable ratio is in the range of approximately 100 ppm to approximately 10,000 ppm.
  • a dichroic dye such as an azo dye or an anthraquinone dye is added to the composition in order to adapt it to a GH (guest host) mode element.
  • a preferred ratio of the dye is in the range of approximately 0.01% by mass to approximately 10% by mass.
  • an antifoaming agent such as dimethyl silicone oil or methylphenyl silicone oil is added to the composition.
  • a desirable ratio of the antifoaming agent is approximately 1 ppm or more for obtaining the effect thereof, and approximately 1000 ppm or less for preventing a display defect.
  • a more desirable ratio is in the range of approximately 1 ppm to approximately 500 ppm.
  • a polymerizable compound is added to the composition in order to adapt it to a polymer support alignment (PSA) type device.
  • the polymerizable compound are compounds having a polymerizable group such as acrylate, methacrylate, vinyl compound, vinyloxy compound, propenyl ether, epoxy compound (oxirane, oxetane), vinyl ketone and the like. Further preferred examples are acrylate or methacrylate derivatives.
  • a desirable ratio of the polymerizable compound is approximately 0.05% by mass or more for achieving the effect thereof, and approximately 10% by mass or less for preventing display defects. A more desirable ratio is in the range of approximately 0.1% by mass to approximately 2% by mass.
  • the polymerizable compound is polymerized by irradiation with ultraviolet rays.
  • the polymerization may be performed in the presence of an initiator such as a photopolymerization initiator.
  • an initiator such as a photopolymerization initiator.
  • Appropriate conditions for polymerization, the appropriate type of initiator, and the appropriate amount are known to those skilled in the art and are described in the literature.
  • Irgacure 651 registered trademark; BASF
  • Irgacure 184 registered trademark; BASF
  • Darocur 1173 registered trademark; BASF
  • a desirable ratio of the photopolymerization initiator is in the range of approximately 0.1% by mass to approximately 5% by mass based on the mass of the polymerizable compound.
  • a more desirable ratio is in the range of approximately 1% by mass to approximately 3% by mass.
  • a polymerization inhibitor When storing the polymerizable compound, a polymerization inhibitor may be added to prevent polymerization.
  • the polymerizable compound is usually added to the composition without removing the polymerization inhibitor.
  • the polymerization inhibitor include hydroquinone derivatives such as hydroquinone and methylhydroquinone, 4-tert-butylcatechol, 4-methoxyphenol, phenothiazine and the like.
  • the polar compound is an organic compound having polarity.
  • a compound having an ionic bond is not included.
  • Atoms such as oxygen, sulfur, and nitrogen are more electronegative and tend to have partial negative charges.
  • Carbon and hydrogen tend to be neutral or have a partial positive charge.
  • Polarity arises from the fact that partial charges are not evenly distributed among different types of atoms in a compound.
  • the polar compound has at least one of partial structures such as —OH, —COOH, —SH, —NH 2 ,>NH,> N—.
  • compositions have a minimum temperature of about ⁇ 10 ° C. or lower, a maximum temperature of about 70 ° C. or higher, and an optical anisotropy in the range of about 0.07 to about 0.20.
  • a composition having an optical anisotropy in the range of about 0.08 to about 0.25 may be prepared by controlling the ratio of the component compounds or by mixing other liquid crystal compounds.
  • a composition having optical anisotropy in the range of about 0.10 to about 0.30 may be prepared by trial and error.
  • a device containing this composition has a large voltage holding ratio.
  • This composition is suitable for an AM device.
  • This composition is particularly suitable for a transmissive AM device.
  • This composition can be used as a composition having a nematic phase or can be used as an optically active composition by adding an optically active compound.
  • This composition can be used for an AM device. Further, it can be used for PM elements.
  • This composition can be used for an AM device and a PM device having modes such as PC, TN, STN, ECB, OCB, IPS, FFS, VA, and FPA.
  • Use for an AM device having a VA, OCB, IPS mode or FFS mode is particularly preferable.
  • the alignment of liquid crystal molecules may be parallel to or perpendicular to the glass substrate.
  • These elements may be reflective, transmissive, or transflective. Use in a transmissive element is preferred. It can also be used for an amorphous silicon-TFT device or a polycrystalline silicon-TFT device.
  • NCAP non-curvilinear-aligned-phase
  • PD polymer-dispersed
  • the present invention will be described in more detail with reference to examples. The invention is not limited by these examples.
  • the present invention includes a mixture of the composition of Example 1 and the composition of Example 2.
  • the present invention also includes a mixture in which at least two of the compositions of the composition examples are mixed.
  • the synthesized compound was identified by a method such as NMR analysis. The characteristics of the compound, composition and device were measured by the methods described below.
  • NMR analysis DRX-500 manufactured by Bruker BioSpin Corporation was used for measurement.
  • the sample was dissolved in a deuterated solvent such as CDCl 3, and the measurement was performed at room temperature, 500 MHz, and 16 times of integration.
  • Tetramethylsilane was used as an internal standard.
  • CFCl 3 was used as an internal standard and the number of integrations was 24.
  • s is a singlet
  • d is a doublet
  • t is a triplet
  • q is a quartet
  • quint is a quintet
  • sex is a sextet
  • m is a multiplet
  • br is broad.
  • GC-14B gas chromatograph manufactured by Shimadzu Corporation was used for measurement.
  • the carrier gas is helium (2 mL / min).
  • the sample vaporization chamber was set at 280 ° C, and the detector (FID) was set at 300 ° C.
  • capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m; stationary liquid phase is dimethylpolysiloxane; nonpolar) manufactured by Agilent Technologies Inc. was used.
  • the column was held at 200 ° C. for 2 minutes and then heated to 280 ° C. at a rate of 5 ° C./min.
  • a sample was prepared in an acetone solution (0.1% by mass), and 1 ⁇ L thereof was injected into the sample vaporization chamber.
  • the recorder is a C-R5A Chromatopac manufactured by Shimadzu Corporation, or an equivalent product.
  • the obtained gas chromatogram showed the peak retention time and peak area corresponding to the component compounds.
  • capillary column As a solvent for diluting the sample, chloroform, hexane or the like may be used.
  • the following capillary column may be used.
  • HP-1 from Agilent Technologies Inc. (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m), Rtx-1 from Restek Corporation (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m), BP-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 ⁇ m) manufactured by SGE International Pty.
  • a capillary column CBP1-M50-025 length 50 m, inner diameter 0.25 mm, film thickness 0.25 ⁇ m
  • Shimadzu Corporation may be used.
  • the ratio of the liquid crystal compound contained in the composition may be calculated by the following method.
  • the mixture of liquid crystalline compounds is analyzed by gas chromatography (FID).
  • the area ratio of peaks in the gas chromatogram corresponds to the ratio (mass ratio) of liquid crystal compounds.
  • the correction coefficient of each liquid crystal compound may be regarded as 1. Therefore, the ratio (% by mass) of the liquid crystal compound can be calculated from the peak area ratio.
  • Measurement sample When measuring the characteristics of the composition or the device, the composition was used as it was as a sample.
  • a sample for measurement was prepared by mixing this compound (15% by mass) with the mother liquid crystal (85% by mass). The characteristic value of the compound was calculated from the value obtained by the measurement by extrapolation.
  • (Extrapolated value) ⁇ (Measured value of sample) ⁇ 0.85 ⁇ (Measured value of mother liquid crystal) ⁇ / 0.15.
  • the ratio of the compound and the mother liquid crystal is 10% by mass: 90% by mass, 5% by mass: 95% by mass, and 1% by mass: 99% by mass in this order. changed.
  • the maximum temperature, optical anisotropy, viscosity, and dielectric anisotropy values for the compound were determined.
  • the following mother liquid crystals were used.
  • the ratio of the component compound is indicated by mass%.
  • Measurement method The characteristics were measured by the following method. Many of these are the methods described in the JEITA standard (JEITA ED-2521B) deliberated and established by the Japan Electronics and Information Industry Association (JEITA), or a modified method thereof. Met. No thin film transistor (TFT) was attached to the TN device used for the measurement.
  • JEITA Japan Electronics and Information Industry Association
  • nematic phase (NI; ° C.): A sample was placed on a hot plate of a melting point measuring apparatus equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid.
  • the upper limit temperature of the nematic phase may be abbreviated as “upper limit temperature”.
  • T C Minimum temperature of nematic phase
  • a sample having a nematic phase is placed in a glass bottle and placed in a freezer at 0 ° C., ⁇ 10 ° C., ⁇ 20 ° C., ⁇ 30 ° C. and ⁇ 40 ° C. for 10 days. After storage, the liquid crystal phase was observed. For example, when the sample remained in a nematic phase at ⁇ 20 ° C. and changed to a crystalline or smectic phase at ⁇ 30 ° C., the TC was described as ⁇ 20 ° C.
  • the lower limit temperature of the nematic phase may be abbreviated as “lower limit temperature”.
  • Viscosity Bulk viscosity; ⁇ ; measured at 20 ° C .; mPa ⁇ s: An E-type viscometer manufactured by Tokyo Keiki Co., Ltd. was used for the measurement.
  • Viscosity (Rotational Viscosity; ⁇ 1; Measured at 25 ° C .; mPa ⁇ s): The measurement was performed according to the method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). I followed. A sample was put in a TN device having a twist angle of 0 ° and a distance (cell gap) between two glass substrates of 5 ⁇ m. A voltage was applied to this device in steps of 0.5 V in the range of 16 V to 19.5 V. After no application for 0.2 seconds, the application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds).
  • the peak current (peak current) and peak time (peak time) of the transient current (transient current) generated by this application were measured.
  • the value of rotational viscosity was obtained from these measured values and the calculation formula (8) described on page 40 in the paper by M. Imai et al.
  • the value of dielectric anisotropy necessary for this calculation was determined by the method described below using the element whose rotational viscosity was measured.
  • Threshold voltage (Vth; measured at 25 ° C .; V): An LCD5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for the measurement.
  • the light source was a halogen lamp.
  • a sample was put in a normally white mode TN device in which the distance between two glass substrates (cell gap) was 0.45 / ⁇ n ( ⁇ m) and the twist angle was 80 degrees.
  • the voltage (32 Hz, rectangular wave) applied to this element was increased stepwise from 0V to 10V by 0.02V.
  • the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured.
  • a voltage-transmittance curve was created in which the transmittance was 100% when the light amount reached the maximum and the transmittance was 0% when the light amount was the minimum.
  • the threshold voltage was expressed as a voltage when the transmittance reached 90%.
  • VHR-1 Voltage holding ratio
  • the TN device used for the measurement had a polyimide alignment film, and the distance between two glass substrates (cell gap) was 5 ⁇ m. . This element was sealed with an adhesive that was cured with ultraviolet rays after the sample was placed.
  • the TN device was charged by applying a pulse voltage (60 microseconds at 5 V).
  • the decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined.
  • Area B was the area when it was not attenuated.
  • the voltage holding ratio was expressed as a percentage of area A with respect to area B.
  • VHR-2 Voltage holding ratio (VHR-2; measured at 80 ° C .;%): The voltage holding ratio was measured in the same procedure as above except that it was measured at 80 ° C. instead of 25 ° C. The obtained value was expressed as VHR-2.
  • VHR-3 Voltage holding ratio
  • the TN device used for the measurement had a polyimide alignment film, and the cell gap was 5 ⁇ m.
  • a sample was injected into this element and irradiated with light for 20 minutes.
  • the light source was an ultra high pressure mercury lamp USH-500D (manufactured by USHIO), and the distance between the element and the light source was 20 cm.
  • a decaying voltage was measured for 16.7 milliseconds.
  • a composition having a large VHR-3 has a large stability to ultraviolet light.
  • VHR-3 is preferably 90% or more, and more preferably 95% or more.
  • VHR-4 Voltage holding ratio
  • the TN device injected with the sample was heated in a constant temperature bath at 80 ° C. for 500 hours, and then the voltage holding ratio was measured to determine the stability against heat. Evaluated. In the measurement of VHR-4, a voltage decaying for 16.7 milliseconds was measured. A composition having a large VHR-4 has a large stability to heat.
  • the rise time ( ⁇ r: rise time; millisecond) is the time required for the transmittance to change from 90% to 10%.
  • the fall time ( ⁇ f: fall time; millisecond) is the time required to change the transmittance from 10% to 90%.
  • the response time was expressed as the sum of the rise time and the fall time thus obtained.
  • Dielectric constant in the minor axis direction ( ⁇ ; measured at 25 ° C.): A sample was put in a TN device in which the distance between two glass substrates (cell gap) was 9 ⁇ m and the twist angle was 80 degrees. . Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, the dielectric constant ( ⁇ ) in the minor axis direction of the liquid crystal molecules was measured.
  • Line afterimage (Line Image Sticking Parameter; LISP;%): A line afterimage was generated by applying electrical stress to the liquid crystal display element. The brightness of the area with the line afterimage and the brightness of the remaining area were measured. The rate at which the luminance decreased due to the line afterimage was calculated, and the size of the line afterimage was represented by this rate.
  • a cell gap is 3.5 ⁇ m
  • a sample is put in an FFS element (16 cells of 4 vertical cells ⁇ 4 horizontal cells) having a matrix structure, and an adhesive that cures the element with ultraviolet rays is used. And sealed.
  • Polarizers were arranged on the upper and lower surfaces of the element so that the polarization axes were orthogonal.
  • the device was irradiated with light and a voltage (rectangular wave, 60 Hz) was applied.
  • the voltage was increased stepwise by 0.1V in the range of 0V to 7.5V, and the brightness of transmitted light at each voltage was measured.
  • the voltage when the luminance reached the maximum was abbreviated as V255.
  • the voltage when the luminance was 21.6% of V255 (that is, 127 gradations) was abbreviated as V127.
  • V255 rectangular wave, 30 Hz
  • 0.5 V rectangular wave, 30 Hz
  • V127 rectangular wave, 0.25 Hz
  • FIG. 1 to 3 are photographs of the element, showing the state of brightness.
  • the brightness is different from each other, but the brightness is uniform as a whole. These indicate that the spreadability is good.
  • FIG. 3 a convex curve is observed at the upper corner, and the luminance is not uniform. This is because the liquid crystal composition was injected into the entire device from the injection port (not shown) on the lower side of the photograph, but the additive contained in the composition did not reach the entire device. It shows that the spreadability is poor.
  • Synthesis example 1 Compound (1-1-1) was synthesized by the following route.
  • Second step Under a nitrogen atmosphere, compound (T-1) (60.00 g, 204.8 mmol), 4-hydroxy-1,2,2,6,6-pentamethylpiperidine (36.83 g, 215.1 mmol), and dichloromethane ( 600 ml) was placed in a reactor and cooled to 0 ° C.
  • DMAP 4-dimethylaminopyridine
  • DCC N, N′-dicyclohexylcarbodiimide
  • Synthesis example 2 Compound (1-1-2) was synthesized by the following route.
  • reaction mixture was extracted with heptane, and the extract was washed with 10% ascorbic acid aqueous solution, 10% sodium hydrogensulfite aqueous solution, 1N sodium hydroxide aqueous solution, water and saturated brine in that order, and dried over anhydrous magnesium sulfate.
  • Second step In a nitrogen atmosphere, the compound (T-4) (2.56 g, 8.98 mmol), the compound (T-1) obtained in Synthesis Example 1 (2.63 g, 8.98 mmol), and dichloromethane (250 ml) were reacted. Placed in a vessel and cooled to 0 ° C. DMAP (0.33 g, 2.69 mmol) was added thereto, and then DCC (2.04 g, 9.88 mmol) was added. The mixture was warmed to room temperature and stirred for 22 hours. The precipitated colorless solid was removed, and the filtrate was washed with a saturated aqueous sodium hydrogen carbonate solution and water in that order, and dried over anhydrous magnesium sulfate.
  • DMAP 0.33 g, 2.69 mmol
  • DCC 2.04 g, 9.88 mmol
  • reaction mixture was washed with a saturated aqueous sodium hydrogen carbonate solution and water in that order, and dried over anhydrous magnesium sulfate.
  • the solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (acetone) to obtain compound (T-7) (12.88 g, yield 87.1%).
  • Second step Compound (T-9) (4.00 g, 15.5 mmol), 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (3.01 g, 17.5 mmol) under nitrogen atmosphere , DMAP.TFA (1.10 g, 4.66 mmol), and dichloromethane (40 ml) were charged to the reactor and cooled to 0 ° C. EDC ⁇ HCl (3.87 g, 20.21 mmol) was added thereto. The mixture was warmed to room temperature and stirred for 17 hours. The reaction mixture was washed with a saturated aqueous sodium hydrogen carbonate solution and water in that order, and dried over anhydrous magnesium sulfate.
  • compositions examples are shown below.
  • the component compounds were represented by symbols based on the definitions in Table 3 below.
  • Table 3 the configuration regarding 1,4-cyclohexylene is trans.
  • the number in parentheses after the symbolized compound represents the chemical formula to which the compound belongs.
  • the symbol ( ⁇ ) means other liquid crystal compounds.
  • the ratio (percentage) of the liquid crystal compound is a mass percentage (% by mass) based on the mass of the liquid crystal composition containing no additive.
  • the compound (1-1-1) was added at a ratio of 0.15% by mass.
  • a line afterimage (LISP) was measured according to the method described in Measurement (16), it was 2.3%.
  • Comparative Example 1 The comparative compound (A-1) was added to the composition (1) described in Example 1 at a ratio of 0.15% by mass.
  • the line afterimage (LISP) by the method described in measurement (16) was 3.0%.
  • the results are shown in Table 4 together with the results of Example 1. From Table 4, it can be seen that the effect of suppressing the line afterimage is higher in the compound (1-1-1) than in the comparative compound (A-1) because the value of the line afterimage is lower.
  • the characteristic that the effect of suppressing the line afterimage is high is a characteristic required for using the element for a long time. Therefore, it can be seen that the composition of the present invention is superior.
  • Example 2 Compound (1-1-2) was added to the composition (1) described in Example 1 at a ratio of 0.15% by mass.
  • the lower limit temperature (Tc) was ⁇ 20 ° C. This result was the same as in Example 1.
  • Comparative Example 2 The following comparative compound (A-2) was added to the composition (1) described in Example 1 at a ratio of 0.15% by mass.
  • the lower limit temperature (Tc) was ⁇ 0 ° C.
  • Table 5 The results are summarized in Table 5 together with the results of Examples 1 and 2. If the solubility of the additive in the composition is good, it is easy to maintain the nematic phase. When the solubility is inferior, it tends to transition to a crystal (or a smectic phase). By this method, solubility at low temperatures can be compared. From Table 5, it can be seen that the compound (1) is superior in solubility compared to the comparative compound.
  • Example 20 Finally, the spreadability was evaluated.
  • the compound (1-1-1) was added to the composition (1) described in Example 1 in a proportion of 0.005% by mass.
  • the luminance was measured by the method described in Measurement (17), and the expansibility of this compound was qualitatively evaluated from FIG. 1 which is the measurement result (Table 6).
  • Example 21 Compound (1-1-2) was added to the composition (1) described in Example 1 at a ratio of 0.005% by mass. The luminance was measured by the method described in Measurement (17), and the expansibility of this compound was qualitatively evaluated from FIG. 2 which is the measurement result (Table 6).
  • Comparative Example 3 The comparative compound (A-2) was added to the composition (1) described in Example 1 in a proportion of 0.005% by mass. The luminance was measured by the method described in Measurement (17), and the expansibility of this compound was qualitatively evaluated from FIG. 3 which is the measurement result. The results are shown in Table 6 together with the results of Examples 18 and 19.
  • FIG. 1 to 3 are photographs of the element.
  • the inlet was located on the lower side of the photograph (not shown), from which the composition containing the additive was injected.
  • FIG. 1 and FIG. 2 although the magnitudes of the brightness are different from each other, the brightness is uniform throughout. These indicate that the spreadability is good.
  • FIG. 3 a convex curve was observed at the upper corner, and the luminance was not uniform. This indicates that the device was filled with the liquid crystal composition, but the additive contained in the composition did not reach the entire device. From these results, it was found that in Examples 18 and 19, the expansibility was good, and in Comparative Example 3, the expansibility was poor.
  • the liquid crystal composition of the present invention can be used for a liquid crystal monitor, a liquid crystal television and the like.

Abstract

Provided is a liquid crystal composition which satisfies at least one of characteristics such as a high upper limit temperature, a low lower limit temperature, a low viscosity, an appropriate optical anisotropy, a high negative dielectric anisotropy, a high specific resistance, high stability against ultraviolet light, high stability against heat, and inhibition of display defects such as afterimages, or which has an appropriate balance between at least two of these characteristics. Provided is an AM element which has characteristics such as a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, and a long life. This liquid crystal composition has a compound having high solubility in the liquid crystal composition, contains, as a first additive, a compound having the effect of inhibiting display defects of a liquid crystal display element, and has a positive dielectric anisotropy. The composition may contain a specific compound having a high positive dielectric anisotropy as a first component, a specific compound having a high upper limit of temperature or a low viscosity as a second component, and a specific compound having a negative dielectric anisotropy as a third component.

Description

液晶組成物および液晶表示素子Liquid crystal composition and liquid crystal display element
 本発明は、液晶組成物、この組成物を含有する液晶表示素子などに関する。特に、誘電率異方性が正の液晶組成物、およびこの組成物を含有し、TN、OCB、IPS、FFS、またはFPAのモードを有するAM(active matrix)素子に関する。 The present invention relates to a liquid crystal composition, a liquid crystal display element containing the composition, and the like. In particular, the present invention relates to a liquid crystal composition having a positive dielectric anisotropy, and an AM (active matrix) device containing this composition and having a TN, OCB, IPS, FFS, or FPA mode.
 液晶表示素子において、液晶分子の動作モードに基づいた分類は、PC(phase change)、TN(twisted nematic)、STN(super twisted nematic)、ECB(electrically controlled birefringence)、OCB(optically compensated bend)、IPS(in-plane switching)、VA(vertical alignment)、FFS(fringe field switching)、FPA(field-induced photo-reactive alignment)などのモードである。素子の駆動方式に基づいた分類は、PM(passive matrix)とAM(active matrix)である。PMは、スタティック(static)、マルチプレックス(multiplex)などに分類され、AMは、TFT(thin film transistor)、MIM(metal insulator metal)などに分類される。TFTの分類は非晶質シリコン(amorphous silicon)および多結晶シリコン(polycrystal silicon)である。後者は製造工程によって高温型と低温型とに分類される。光源に基づいた分類は、自然光を利用する反射型、バックライトを利用する透過型、そして自然光とバックライトの両方を利用する半透過型である。 In the liquid crystal display element, the classification based on the operation mode of the liquid crystal molecules is as follows: PC (phase change), TN (twisted nematic), STN (super twisted nematic), ECB (electrically controlled birefringence), OCB (optically compensated bend), IPS. (In-plane switching), VA (vertical alignment), FFS (fringe field switching), FPA (field-induced photo-reactive alignment) mode. The classification based on the element drive system is PM (passive matrix) and AM (active matrix). PM is classified into static, multiplex, etc., and AM is classified into TFT (thin film insulator), MIM (metal film insulator), and the like. TFTs are classified into amorphous silicon and polycrystalline silicon. The latter is classified into a high temperature type and a low temperature type according to the manufacturing process. The classification based on the light source includes a reflection type using natural light, a transmission type using backlight, and a semi-transmission type using both natural light and backlight.
 液晶表示素子はネマチック相を有する液晶組成物を含有する。この組成物は適切な特性を有する。この組成物の特性を向上させることによって、良好な特性を有するAM素子を得ることができる。これらの特性における関連を下記の表1にまとめる。組成物の特性を市販されているAM素子に基づいてさらに説明する。ネマチック相の温度範囲は、素子の使用できる温度範囲に関連する。ネマチック相の好ましい上限温度は約70℃以上であり、そしてネマチック相の好ましい下限温度は約-10℃以下である。組成物の粘度は素子の応答時間に関連する。素子で動画を表示するためには短い応答時間が好ましい。1ミリ秒でもより短い応答時間が望ましい。したがって、組成物における小さな粘度が好ましい。低い温度における小さな粘度はさらに好ましい。 The liquid crystal display element contains a liquid crystal composition having a nematic phase. This composition has suitable properties. By improving the characteristics of the composition, an AM device having good characteristics can be obtained. The relationships in these properties are summarized in Table 1 below. The characteristics of the composition will be further described based on a commercially available AM device. The temperature range of the nematic phase is related to the temperature range in which the device can be used. A preferred upper limit temperature of the nematic phase is about 70 ° C. or more, and a preferred lower limit temperature of the nematic phase is about −10 ° C. or less. The viscosity of the composition is related to the response time of the device. A short response time is preferred for displaying moving images on the device. A shorter response time is desirable even at 1 millisecond. Therefore, a small viscosity in the composition is preferred. A small viscosity at low temperatures is even more preferred.
Figure JPOXMLDOC01-appb-I000015
 
Figure JPOXMLDOC01-appb-I000015
 
 組成物の光学異方性は、素子のコントラスト比に関連する。素子のモードに応じて、大きな光学異方性または小さな光学異方性、すなわち適切な光学異方性が必要である。組成物の光学異方性(Δn)と素子のセルギャップ(d)との積(Δn×d)は、コントラスト比を最大にするように設計される。適切な積の値は動作モードの種類に依存する。TNのようなモードの素子では、適切な値は約0.45μmである。この場合、小さなセルギャップの素子には大きな光学異方性を有する組成物が好ましい。組成物における大きな誘電率異方性は素子における低いしきい値電圧、小さな消費電力と大きなコントラスト比に寄与する。したがって、大きな誘電率異方性が好ましい。特にFFSモードにおいては、斜め電界により、一部の液晶分子の配列がパネル基板に対して並行にならないため、これらの液晶分子のチルトアップを抑えるために液晶分子の短軸方向における誘電率(ε⊥)が大きい方が好ましい。液晶分子のチルトアップを抑えることにより、FFSモードを有する素子の透過率を上げることができるので、大きなコントラスト比に寄与する。組成物における大きな比抵抗は、素子における大きな電圧保持率と大きなコントラスト比に寄与する。したがって、初期段階において室温だけでなくネマチック相の上限温度に近い温度でも大きな比抵抗を有する組成物が好ましい。長時間使用したあと、室温だけでなくネマチック相の上限温度に近い温度でも大きな比抵抗を有する組成物が好ましい。紫外線および熱に対する組成物の安定性は、液晶表示素子の寿命に関連する。これらの安定性が高いとき、この素子の寿命は長い。このような特性は、液晶プロジェクター、液晶テレビなどに用いるAM素子に好ましい。 The optical anisotropy of the composition is related to the contrast ratio of the device. Depending on the mode of the device, a large optical anisotropy or a small optical anisotropy, ie an appropriate optical anisotropy is required. The product (Δn × d) of the optical anisotropy (Δn) of the composition and the cell gap (d) of the device is designed to maximize the contrast ratio. The appropriate product value depends on the type of operation mode. For a device with a mode such as TN, a suitable value is about 0.45 μm. In this case, a composition having a large optical anisotropy is preferable for a device having a small cell gap. A large dielectric anisotropy in the composition contributes to a low threshold voltage, a small power consumption and a large contrast ratio in the device. Therefore, a large dielectric anisotropy is preferable. In particular, in the FFS mode, an alignment of some liquid crystal molecules is not parallel to the panel substrate due to an oblique electric field. Therefore, in order to suppress the tilt-up of these liquid crystal molecules, the dielectric constant (ε The larger i) is preferred. By suppressing the tilt-up of the liquid crystal molecules, the transmittance of the element having the FFS mode can be increased, which contributes to a large contrast ratio. A large specific resistance in the composition contributes to a large voltage holding ratio and a large contrast ratio in the device. Therefore, a composition having a large specific resistance not only at room temperature but also at a temperature close to the upper limit temperature of the nematic phase in the initial stage is preferable. A composition having a large specific resistance not only at room temperature but also at a temperature close to the upper limit temperature of the nematic phase after being used for a long time is preferable. The stability of the composition against ultraviolet rays and heat is related to the lifetime of the liquid crystal display device. When their stability is high, the lifetime of the device is long. Such characteristics are preferable for an AM device used in a liquid crystal projector, a liquid crystal television, and the like.
 TNモードを有するAM素子においては正の誘電率異方性を有する組成物が用いられる。VAモードを有するAM素子においては負の誘電率異方性を有する組成物が用いられる。IPSモードまたはFFSモードを有するAM素子においては正または負の誘電率異方性を有する組成物が用いられる。高分子支持配向(PSA;polymer sustained alignment)型のAM素子においては正または負の誘電率異方性を有する組成物が用いられる。 A composition having a positive dielectric anisotropy is used for an AM device having a TN mode. A composition having a negative dielectric anisotropy is used in an AM device having a VA mode. In an AM device having an IPS mode or an FFS mode, a composition having a positive or negative dielectric anisotropy is used. In a polymer-supported alignment (PSA) type AM device, a composition having a positive or negative dielectric anisotropy is used.
 下記の化合物(A-1)は、ヒンダードアミン系光安定剤(HALS)の一つである。この化合物は、極性基>N-CHを有する。この化合物では、2つの極性基は、同一である。
Figure JPOXMLDOC01-appb-I000016
 
The following compound (A-1) is one of hindered amine light stabilizers (HALS). This compound has a polar group> N—CH 3 . In this compound, the two polar groups are the same.
Figure JPOXMLDOC01-appb-I000016
国際公開第2015/001916号公報International Publication No. 2015/001916
 本発明の1つの目的は、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、大きな誘電率異方性、大きな比抵抗、紫外線に対する高い安定性、熱に対する高い安定性、残像等の表示不良の抑制のような特性の少なくとも1つを充足する液晶組成物を提供することである。別の目的は、これらの特性の少なくとも2つのあいだで適切なバランスを有する液晶組成物を提供することである。別の目的は、このような組成物を含有する液晶表示素子を提供することである。別の目的は、短い応答時間、大きな電圧保持率、低いしきい値電圧、大きなコントラスト比、長い寿命のような特性を有するAM素子を提供することである。 One object of the present invention is to provide a high maximum temperature of the nematic phase, a low minimum temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large dielectric anisotropy, a large specific resistance, a high stability against ultraviolet rays, a high heat It is an object to provide a liquid crystal composition satisfying at least one of the characteristics such as high stability against the above and suppression of display failure such as afterimage. Another object is to provide a liquid crystal composition having an appropriate balance between at least two of these properties. Another object is to provide a liquid crystal display device containing such a composition. Another object is to provide an AM device having characteristics such as a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, and a long lifetime.
 本発明は、添加物として、式(S)で表される一価基を少なくとも2つ有し、これらの一価基において、Rによって表される基が他のRによって表される基とは異なる化合物を含有し、正の誘電率異方性を有する液晶組成物、およびこの組成物を含有する液晶表示素子に関する。
Figure JPOXMLDOC01-appb-I000017
 
式(S)において、Rは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、ヒドロキシ、またはオキシラジカルであり;Rは、炭素数1から12のアルキルである。
The present invention has at least two monovalent groups represented by the formula (S) as an additive, and in these monovalent groups, a group represented by R 1 is a group represented by another R 1 . The present invention relates to a liquid crystal composition containing a compound different from the above and having a positive dielectric anisotropy, and a liquid crystal display device containing this composition.
Figure JPOXMLDOC01-appb-I000017

In the formula (S), R 1 is hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical; R is alkyl having 1 to 12 carbons.
 本発明の1つの長所は、ネマチック相の高い上限温度、ネマチック相の低い下限温度、小さな粘度、適切な光学異方性、大きな誘電率異方性、大きな比抵抗、紫外線に対する高い安定性、熱に対する高い安定性、残像等の表示不良の抑制のような特性の少なくとも1つを充足する液晶組成物を提供することである。別の長所は、これらの特性の少なくとも2つのあいだで適切なバランスを有する液晶組成物を提供することである。別の長所は、このような組成物を含有する液晶表示素子を提供することである。別の長所は、短い応答時間、大きな電圧保持率、低いしきい値電圧、大きなコントラスト比、長い寿命のような特性を有するAM素子を提供することである。 One advantage of the present invention is that a high upper limit temperature of the nematic phase, a lower lower limit temperature of the nematic phase, a small viscosity, a suitable optical anisotropy, a large dielectric anisotropy, a large specific resistance, a high stability against ultraviolet rays, a high heat It is an object to provide a liquid crystal composition satisfying at least one of the characteristics such as high stability against the above and suppression of display failure such as afterimage. Another advantage is to provide a liquid crystal composition having an appropriate balance between at least two of these properties. Another advantage is to provide a liquid crystal display device containing such a composition. Another advantage is to provide an AM device having characteristics such as a short response time, a large voltage holding ratio, a low threshold voltage, a large contrast ratio, and a long lifetime.
拡がり性が良好であることを示す素子の写真である。It is a photograph of the element which shows that expansibility is favorable. 拡がり性が良好であることを示す素子の写真である。It is a photograph of the element which shows that expansibility is favorable. 拡がり性が不良であることを示す素子の写真である。It is a photograph of the element which shows that the expansibility is poor.
 この明細書における用語の使い方は次のとおりである。「液晶組成物」および「液晶表示素子」の用語をそれぞれ「組成物」および「素子」と略すことがある。「液晶表示素子」は液晶表示パネルおよび液晶表示モジュールの総称である。「液晶性化合物」は、ネマチック相、スメクチック相などの液晶相を有する化合物および液晶相を有しないが、ネマチック相の温度範囲、粘度、誘電率異方性のような特性を調節する目的で組成物に混合される化合物の総称である。この化合物は、例えば1,4-シクロヘキシレンや1,4-フェニレンのような六員環を有し、その分子構造は棒状(rod like)である。「重合性化合物」は、組成物中に重合体を生成させる目的で添加する化合物である。アルケニルを有する液晶性化合物は、その意味では重合性ではない。 用語 Terms used in this specification are as follows. The terms “liquid crystal composition” and “liquid crystal display element” may be abbreviated as “composition” and “element”, respectively. “Liquid crystal display element” is a general term for liquid crystal display panels and liquid crystal display modules. “Liquid crystal compound” is a compound having a liquid crystal phase such as a nematic phase and a smectic phase, and a liquid crystal phase, but has a composition for the purpose of adjusting characteristics such as temperature range, viscosity, and dielectric anisotropy of the nematic phase. It is a general term for compounds mixed with products. This compound has a six-membered ring such as 1,4-cyclohexylene and 1,4-phenylene, and its molecular structure is rod-like. The “polymerizable compound” is a compound added for the purpose of forming a polymer in the composition. A liquid crystalline compound having alkenyl is not polymerizable in that sense.
 液晶組成物は、複数の液晶性化合物を混合することによって調製される。この液晶組成物に、光学活性化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤、極性化合物のような添加物が必要に応じて添加される。液晶性化合物の割合は、添加物を添加した場合であっても、添加物を含まない液晶組成物の質量に基づいた質量百分率(質量%)で表される。添加物の割合は、添加物を含まない液晶組成物の質量に基づいた質量百分率(質量%)で表される。すなわち、液晶性化合物や添加物の割合は、液晶性化合物の全質量に基づいて算出される。質量百万分率(ppm)が用いられることがある。重合開始剤および重合禁止剤の割合は、例外的に重合性化合物の質量に基づいて表される。 The liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds. Additives such as optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerizable compounds, polymerization initiators, polymerization inhibitors, and polar compounds are added to this liquid crystal composition as necessary. The The ratio of the liquid crystal compound is represented by a mass percentage (% by mass) based on the mass of the liquid crystal composition not containing the additive even when the additive is added. The ratio of the additive is expressed as a mass percentage (% by mass) based on the mass of the liquid crystal composition not containing the additive. That is, the ratio of the liquid crystal compound and the additive is calculated based on the total mass of the liquid crystal compound. Mass parts per million (ppm) may be used. The ratio of the polymerization initiator and the polymerization inhibitor is exceptionally expressed based on the mass of the polymerizable compound.
 「ネマチック相の上限温度」を「上限温度」と略すことがある。「ネマチック相の下限温度」を「下限温度」と略すことがある。「比抵抗が大きい」は、組成物が初期段階において大きな比抵抗を有し、そして長時間使用したあと、大きな比抵抗を有することを意味する。「電圧保持率が大きい」は、素子が初期段階において室温だけでなく上限温度に近い温度でも大きな電圧保持率を有し、そして長時間使用したあと室温だけでなく上限温度に近い温度でも大きな電圧保持率を有することを意味する。組成物や素子の特性が経時変化試験によって検討されることがある。「誘電率異方性を上げる」の表現は、誘電率異方性が正である組成物のときは、その値が正に増加することを意味し、誘電率異方性が負である組成物のときは、その値が負に増加することを意味する。 “The upper limit temperature of the nematic phase” may be abbreviated as “the upper limit temperature”. “Lower limit temperature of nematic phase” may be abbreviated as “lower limit temperature”. “High specific resistance” means that the composition has a large specific resistance in the initial stage and a large specific resistance after long-term use. "High voltage holding ratio" means that the device has a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature in the initial stage, and a large voltage not only at room temperature but also at a temperature close to the upper limit temperature after long use. It means having a retention rate. The characteristics of the composition and the device may be examined by a aging test. The expression “increasing dielectric anisotropy” means that when the composition has a positive dielectric anisotropy, the value increases positively, and the composition having a negative dielectric anisotropy When it is a thing, it means that the value increases negatively.
 「少なくとも1つの-CH-は-O-で置き換えられてもよい」のような表現がこの明細書で使われる。この場合、-CH-CH-CH-は、隣接しない-CH-が-O-で置き換えられることによって-O-CH-O-に変換されてもよい。しかしながら、隣接した-CH-が-O-で置き換えられることはない。この置き換えでは-O-O-CH-(ペルオキシド)が生成するからである。すなわち、この表現は、「1つの-CH-は-O-で置き換えられてもよい」と「少なくとも2つの隣接しない-CH-は-O-で置き換えられてもよい」の両方とを意味する。このルールは、-O-への置き換えだけでなく、-CH=CH-や-COO-のような二価基への置き換えにも適用される。 Expressions such as “at least one —CH 2 — may be replaced by —O—” are used herein. In this case, —CH 2 —CH 2 —CH 2 — may be converted to —O—CH 2 —O— by replacing non-adjacent —CH 2 — with —O—. However, adjacent —CH 2 — is not replaced by —O—. This is because —O—O—CH 2 — (peroxide) is formed by this replacement. That is, this expression includes both “one —CH 2 — may be replaced with —O—” and “at least two non-adjacent —CH 2 — may be replaced with —O—”. means. This rule applies not only to replacement with —O— but also to replacement with a divalent group such as —CH═CH— or —COO—.
 成分化合物の化学式において、末端基Rの記号を複数の化合物に用いた。これらの化合物において、任意の2つのRが表す2つの基は同一であってもよく、または異なってもよい。例えば、化合物(2-1)のRがエチルであり、化合物(2-2)のRがエチルであるケースがある。化合物(2-1)のRがエチルであり、化合物(2-2)のRがプロピルであるケースもある。このルールは、他の記号にも適用される。式(2)において、添え字‘b’が2のとき、2つの環Bが存在する。この化合物において、2つの環Bが表す2つの環は、同一であってもよく、または異なってもよい。このルールは、添え字‘b’が2より大きいとき、任意の2つの環Bにも適用される。このルールは、他の記号にも適用される。このルールは、化合物が同一の記号で表される置換基を有する場合にも適用される。 In the chemical formulas of the component compounds, the symbol of the terminal group R 3 is used for a plurality of compounds. In these compounds, two groups represented by any two R 3 may be the same or different. For example, R 3 of the compound (2-1) is ethyl, there are cases R 3 is ethyl compound (2-2). In some cases, R 3 of compound (2-1) is ethyl and R 3 of compound (2-2) is propyl. This rule also applies to other symbols. In the formula (2), when the subscript 'b' is 2, there are two rings B. In this compound, the two rings represented by the two rings B may be the same or different. This rule also applies to any two rings B when the subscript 'b' is greater than 2. This rule also applies to other symbols. This rule also applies when a compound has a substituent represented by the same symbol.
 六角形で囲んだA、B、C、Dなどの記号はそれぞれ環A、環B、環C、環Dなどの環に対応し、六員環、縮合環などの環を表す。「環Aおよび環Bは独立して、X、Y、またはZである」の表現では、主語が複数であるから、「独立して」を用いる。主語が「環A」であるときは、主語が単数であるから「独立して」を用いない。 Symbols such as A, B, C, and D surrounded by hexagons correspond to rings such as ring A, ring B, ring C, and ring D, respectively, and represent rings such as a six-membered ring and a condensed ring. In the expression “ring A and ring B are independently X, Y, or Z”, since there are plural subjects, “independently” is used. When the subject is “ring A”, since the subject is singular, “independently” is not used.
 2-フルオロ-1,4-フェニレンは、下記の2つの二価基を意味する。化学式において、フッ素は左向き(L)であってもよいし、右向き(R)であってもよい。このルールは、テトラヒドロピラン-2,5-ジイルのような、環から2つの水素を除くことによって生成した、左右非対称な二価基にも適用される。このルールは、カルボニルオキシ(-COO-または-OCO-)のような二価の結合基にも適用される。
 
Figure JPOXMLDOC01-appb-I000018
 
2-Fluoro-1,4-phenylene means the following two divalent groups. In the chemical formula, fluorine may be leftward (L) or rightward (R). This rule also applies to bilaterally asymmetric groups produced by removing two hydrogens from the ring, such as tetrahydropyran-2,5-diyl. This rule also applies to divalent linking groups such as carbonyloxy (—COO— or —OCO—).

Figure JPOXMLDOC01-appb-I000018
 液晶性化合物のアルキルは、直鎖状または分岐状であり、環状アルキルを含まない。直鎖状アルキルは、分岐状アルキルよりも好ましい。これらのことは、アルコキシ、アルケニルなどの末端基についても同様である。1,4-シクロヘキシレンに関する立体配置は、上限温度を上げるためにシスよりもトランスが好ましい。 The alkyl of the liquid crystal compound is linear or branched and does not include cyclic alkyl. Linear alkyl is preferred over branched alkyl. The same applies to terminal groups such as alkoxy and alkenyl. As the configuration of 1,4-cyclohexylene, trans is preferable to cis for increasing the maximum temperature.
 本発明は、下記の項などである。 The present invention includes the following items.
項1. 添加物として、式(S)で表される一価基を少なくとも2つ有し、これらの一価基において、Rによって表される基が他のRによって表される基とは異なる化合物を含有し、正の誘電率異方性を有する液晶組成物。
Figure JPOXMLDOC01-appb-I000019
 
式(S)において、Rは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、ヒドロキシ、またはオキシラジカルであり;Rは、炭素数1から12のアルキルである。
Item 1. As an additive, has at least two monovalent radical of the formula (S), in these monovalent group, compound different from the group that the group represented by R 1 is represented by the other of R 1 And a liquid crystal composition having positive dielectric anisotropy.
Figure JPOXMLDOC01-appb-I000019

In the formula (S), R 1 is hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical; R is alkyl having 1 to 12 carbons.
項2. 項1に記載の式(S)で表される一価基において、Rがメチルである、項1に記載の液晶組成物。 Item 2. Item 2. The liquid crystal composition according to item 1, wherein R is methyl in the monovalent group represented by formula (S) according to item 1.
項3. 添加物として、式(1)で表される化合物の群から選択された少なくとも1つの化合物を含有する、項1または2に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000020
 
式(1)および式(S-1)において、Rは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、ヒドロキシ、またはオキシラジカルであり、ここで、Rによって表される基は他のRによって表される基とは異なり;環Aは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-1,2-ジイル、ナフタレン-1,3-ジイル、ナフタレン-1,4-ジイル、ナフタレン-1,5-ジイル、ナフタレン-1,6-ジイル、ナフタレン-1,7-ジイル、ナフタレン-1,8-ジイル、ナフタレン-2,3-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または式(S-1)で表される基で置き換えられてもよく;ZおよびZは独立して、単結合または炭素数1から20のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素、塩素、または式(S-1)で表される基で置き換えられてもよく;Zは、単結合または炭素数1から20のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;aは、0、1、2、または3である。
Item 3. Item 3. The liquid crystal composition according to item 1 or 2, containing at least one compound selected from the group of compounds represented by formula (1) as an additive.
Figure JPOXMLDOC01-appb-I000020

In the formula (1) and the formula (S-1), R 1 is hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or an oxy radical, where R 1 is represented by R 1 The group represented is different from the group represented by R 1 ; ring A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, Naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene- 2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine- , 5-diyl, or pyridine-2,5-diyl, and in these rings, at least one hydrogen is fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, at least one Hydrogen may be replaced by alkyl having 1 to 12 carbons replaced by fluorine or chlorine, or a group represented by formula (S-1); Z 1 and Z 2 are independently a single bond or carbon An alkylene having the number 1 to 20, in which at least one —CH 2 — may be replaced by —O—, —COO—, —OCO—, or —OCOO—, At least one hydrogen may be replaced with fluorine, chlorine, or a group represented by the formula (S-1); Z 3 represents a single bond or an alkyl group having 1 to 20 carbon atoms. In the alkylene, at least one —CH 2 — may be replaced by —O—, —COO—, —OCO—, or —OCOO—, in which at least one hydrogen is , Fluorine or chlorine; a is 0, 1, 2, or 3;
項4. 添加物として、式(1-1)から式(1-9)で表される化合物の群から選択された少なくとも1つの化合物を含有する、項1から3のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000021
 
Figure JPOXMLDOC01-appb-I000022
 
式(1-1)から式(1-9)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、ヒドロキシ、またはオキシラジカルであり;Zは、炭素数1から15のアルキレンであり;ZおよびZは独立して、炭素数1から5のアルキレンであり;ZおよびZは独立して、単結合または炭素数1から20のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;Xは、水素またはフッ素である。
Item 4. Item 4. The liquid crystal composition according to any one of items 1 to 3, comprising at least one compound selected from the group of compounds represented by formulas (1-1) to (1-9) as an additive: object.
Figure JPOXMLDOC01-appb-I000021

Figure JPOXMLDOC01-appb-I000022

In formulas (1-1) to (1-9), R 2 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical; Z 4 is carbon 1 Z 5 and Z 6 are independently alkylene having 1 to 5 carbons; Z 7 and Z 8 are independently a single bond or alkylene having 1 to 20 carbons; In this alkylene, at least one —CH 2 — may be replaced by —O—, —COO—, —OCO—, or —OCOO—, in which at least one hydrogen is fluorine or chlorine X 1 is hydrogen or fluorine.
項5. 添加物の割合が0.005質量%から1質量%の範囲である、項1から4のいずれか1項に記載の液晶組成物。 Item 5. Item 5. The liquid crystal composition according to any one of items 1 to 4, wherein a ratio of the additive is in a range of 0.005% by mass to 1% by mass.
項6. 第一成分として、式(2)で表される化合物の群から選択された少なくとも1つの化合物を含有する、項1から5のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000023
 
式(2)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルであり;環Bは、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、ピリミジン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルであり;Zは、単結合、エチレン、カルボニルオキシ、またはジフルオロメチレンオキシであり;XおよびXは独立して、水素またはフッ素であり;Yは、フッ素、塩素、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルオキシであり;bは、1、2、3、または4である。
Item 6. Item 6. The liquid crystal composition according to any one of items 1 to 5, containing at least one compound selected from the group of compounds represented by formula (2) as a first component.
Figure JPOXMLDOC01-appb-I000023

In the formula (2), R 3 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons or alkenyl having 2 to 12 carbons; ring B is 1,4-cyclohexylene, 1, 4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, pyrimidine-2,5-diyl, 1,3- Dioxane-2,5-diyl, or tetrahydropyran-2,5-diyl; Z 9 is a single bond, ethylene, carbonyloxy, or difluoromethyleneoxy; X 2 and X 3 are independently hydrogen or is fluorine; Y 1 is fluorine, chlorine, at least one hydrogen alkyl having 1 carbon is replaced by fluorine or chlorine 12, at least one hydrogen 1 to 12 carbon alkoxy substituted with fluorine or chlorine, or alkenyloxy having 2 to 12 carbon atoms with at least one hydrogen replaced with fluorine or chlorine; b is 1, 2, 3, or 4 It is.
項7.第一成分として式(2-1)から式(2-35)で表される化合物の群から選択された少なくとも1つの化合物を含有する、項1から6のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000024
 
Figure JPOXMLDOC01-appb-I000025
 
Figure JPOXMLDOC01-appb-I000026
 
Figure JPOXMLDOC01-appb-I000027
 
式(2-1)から式(2-35)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルである。
Item 7. Item 7. The liquid crystal composition according to any one of items 1 to 6, comprising at least one compound selected from the group of compounds represented by formulas (2-1) to (2-35) as a first component: object.
Figure JPOXMLDOC01-appb-I000024

Figure JPOXMLDOC01-appb-I000025

Figure JPOXMLDOC01-appb-I000026

Figure JPOXMLDOC01-appb-I000027

In the formulas (2-1) to (2-35), R 3 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons.
項8. 第一成分の割合が5質量%から90質量%の範囲である、項6または7に記載の液晶組成物。 Item 8. Item 8. The liquid crystal composition according to item 6 or 7, wherein the ratio of the first component is in the range of 5% by mass to 90% by mass.
項9.第二成分として式(3)で表される化合物の群から選択された少なくとも1つの化合物を含有する、項1から8のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000028
 
式(3)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルであり;環Cおよび環Dは独立して、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンであり;Z10は、単結合、エチレン、またはカルボニルオキシであり;cは、1、2、または3である。
Item 9. Item 9. The liquid crystal composition according to any one of items 1 to 8, comprising at least one compound selected from the group of compounds represented by formula (3) as the second component.
Figure JPOXMLDOC01-appb-I000028

In Formula (3), R 4 and R 5 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one hydrogen is fluorine or chlorine. Substituted alkenyl having 2 to 12 carbon atoms; ring C and ring D are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 2,5 -Difluoro-1,4-phenylene; Z 10 is a single bond, ethylene, or carbonyloxy; c is 1, 2, or 3.
項10. 第二成分として式(3-1)から式(3-13)で表される化合物の群から選択された少なくとも1つの化合物を含有する、項1から9のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000029
 
式(3-1)から式(3-13)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。
Item 10. Item 10. The liquid crystal composition according to any one of items 1 to 9, comprising at least one compound selected from the group of compounds represented by formulas (3-1) to (3-13) as a second component: object.
Figure JPOXMLDOC01-appb-I000029

In the formulas (3-1) to (3-13), R 4 and R 5 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or C2-C12 alkenyl in which at least one hydrogen is replaced by fluorine or chlorine.
項11. 第二成分の割合が5質量%から90質量%の範囲である、項9または10に記載の液晶組成物。 Item 11. Item 11. The liquid crystal composition according to item 9 or 10, wherein the ratio of the second component is in the range of 5% by mass to 90% by mass.
項12. 第三成分として、式(4)で表される化合物の群から選択された少なくとも1つの化合物を含有する、項1から11のいずれか1項に記載の液晶組成物。
Figure JPOXMLDOC01-appb-I000030
 
式(4)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシであり;環Eおよび環Gは独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、またはテトラヒドロピラン-2,5-ジイルであり;環Fは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、または7,8-ジフルオロクロマン-2,6-ジイルであり;Z11およびZ12は独立して、単結合、エチレン、カルボニルオキシ、またはメチレンオキシであり;dは、1、2、または3であり、eは、0または1であり;dとeとの和は3以下である。
Item 12. Item 12. The liquid crystal composition according to any one of items 1 to 11, comprising at least one compound selected from the group of compounds represented by formula (4) as a third component.
Figure JPOXMLDOC01-appb-I000030

In Formula (4), R 6 and R 7 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyloxy having 2 to 12 carbons. Yes; Ring E and Ring G are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine Or tetrahydropyran-2,5-diyl; ring F is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5 - methyl-1,4-phenylene, it is a 3,4,5-trifluoro-2,6-diyl or 7,8-difluoro-chroman-2,6-diyl,; Z 11 Contact Fine Z 12 are independently a single bond, ethylene, carbonyloxy or methyleneoxy,; d is 1, 2, or 3,, e is 0 or 1; the sum of d and e 3 or less.
項13. 第三成分として式(4-1)から式(4-22)で表される化合物の群から選択された少なくとも1つの化合物を含有する、項1から12のいずれか1項に記載の液晶組成物。
 
Figure JPOXMLDOC01-appb-I000031
 
Figure JPOXMLDOC01-appb-I000032
 
式(4-1)から式(4-22)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシである。
Item 13. Item 13. The liquid crystal composition according to any one of items 1 to 12, comprising at least one compound selected from the group of compounds represented by formulas (4-1) to (4-22) as a third component: object.

Figure JPOXMLDOC01-appb-I000031

Figure JPOXMLDOC01-appb-I000032

In the formulas (4-1) to (4-22), R 6 and R 7 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or It is alkenyloxy having 2 to 12 carbon atoms.
項14. 第三成分の割合が3質量%から25質量%の範囲である、項12または13に記載の液晶組成物。 Item 14. Item 14. The liquid crystal composition according to item 12 or 13, wherein the ratio of the third component is in the range of 3% by mass to 25% by mass.
項15. ネマチック相の上限温度が70℃以上であり、波長589nmにおける光学異方性(25℃で測定)が0.07以上であり、そして周波数1kHzにおける誘電率異方性(25℃で測定)が2以上である、項1から14のいずれか1項に記載の液晶組成物。 Item 15. The upper limit temperature of the nematic phase is 70 ° C. or higher, the optical anisotropy at a wavelength of 589 nm (measured at 25 ° C.) is 0.07 or higher, and the dielectric anisotropy at a frequency of 1 kHz (measured at 25 ° C.) is 2. Item 15. The liquid crystal composition according to any one of items 1 to 14, which is the above.
項16. 項1から15のいずれか1項に記載の液晶組成物を含有する液晶表示素子。 Item 16. Item 16. A liquid crystal display device comprising the liquid crystal composition according to any one of items 1 to 15.
項17. 液晶表示素子の動作モードが、TNモード、ECBモード、OCBモード、IPSモード、FFSモード、またはFPAモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である、項16に記載の液晶表示素子。 Item 17. Item 17. The liquid crystal display element according to item 16, wherein the operation mode of the liquid crystal display element is a TN mode, an ECB mode, an OCB mode, an IPS mode, an FFS mode, or an FPA mode, and the driving method of the liquid crystal display element is an active matrix method .
項18. 項1から15のいずれか1項に記載の液晶組成物の、液晶表示素子における使用。 Item 18. Use of the liquid crystal composition according to any one of items 1 to 15 in a liquid crystal display device.
 本発明は、次の項も含む。(a)光学活性化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤、極性化合物などの添加物の少なくとも1つをさらに含有する上記の組成物。(b)上記の組成物を含有するAM素子。(c)重合性化合物をさらに含有する上記の組成物、およびこの組成物を含有する高分子支持配向(PSA)型のAM素子。(d)上記の組成物を含有し、この組成物中の重合性化合物が重合されている、高分子支持配向(PSA)型のAM素子。(e)上記の組成物を含有し、そしてPC、TN、STN、ECB、OCB、IPS、VA、FFS、またはFPAのモードを有する素子。(f)上記の組成物を含有する透過型の素子。(g)上記の組成物を、ネマチック相を有する組成物としての使用。(h)上記の組成物に光学活性化合物を添加することによって光学活性な組成物としての使用。 The present invention includes the following items. (A) The above composition further containing at least one additive such as an optically active compound, an antioxidant, an ultraviolet absorber, a dye, an antifoaming agent, a polymerizable compound, a polymerization initiator, a polymerization inhibitor, and a polar compound. object. (B) An AM device containing the above composition. (C) The above-mentioned composition further containing a polymerizable compound, and a polymer-supported orientation (PSA) type AM device containing this composition. (D) A polymer-supported orientation (PSA) type AM device comprising the above-described composition, wherein the polymerizable compound in the composition is polymerized. (E) A device containing the above composition and having a mode of PC, TN, STN, ECB, OCB, IPS, VA, FFS, or FPA. (F) A transmissive device containing the above composition. (G) Use of the above composition as a composition having a nematic phase. (H) Use as an optically active composition by adding an optically active compound to the above composition.
 本発明の液晶組成物は、式(S)で表される一価基を少なくとも2つ有する化合物を含有する。
 
Figure JPOXMLDOC01-appb-I000033
 
式(S)において、Rは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、ヒドロキシ、またはオキシラジカルである。4つの基Rは独立して、炭素数1から12のアルキルである。
The liquid crystal composition of the present invention contains a compound having at least two monovalent groups represented by the formula (S).

Figure JPOXMLDOC01-appb-I000033

In the formula (S), R 1 is hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical. The four groups R are independently alkyl having 1 to 12 carbons.
 本発明の化合物は、式(S)で表される一価基を少なくとも2つ有する。これらの一価基において、Rによって表される基は、他のRによって表される基とは異なる。この化合物が式(S)で表される基を2つ有するとき、Rで表される2つの基は互いに異なる。この化合物が式(S)で表される基を3つ有する場合であっても、Rで表される2つの基が互いに異なる。一例は、3つの基Rが、水素、水素、メチルである場合である。別の例は、水素、メチル、エチルの組合せである。すなわち、Rで表される総ての基は、同一ではない。 The compound of the present invention has at least two monovalent groups represented by the formula (S). In these monovalent group, the group represented by R 1 is different from the groups represented by the other R 1. When this compound has two groups represented by the formula (S), the two groups represented by R 1 are different from each other. Even when this compound has three groups represented by the formula (S), the two groups represented by R 1 are different from each other. An example is when the three groups R 1 are hydrogen, hydrogen, methyl. Another example is a combination of hydrogen, methyl and ethyl. That is, not all groups represented by R 1 are the same.
 この化合物は、比較例1,2,3で示すように素子の表示不良を抑制するのに有効であることが分かった。しかし、表示不良の原因は複雑であり、充分には解明されていない。さらに、この化合物が表示不良に及ぼす効果についても現段階では明確ではない。このような状況であるが、次の段落に記載したような説明が可能であろう。 This compound was found to be effective in suppressing display defects of the device as shown in Comparative Examples 1, 2, and 3. However, the causes of display defects are complex and have not been fully elucidated. Furthermore, the effect of this compound on display defects is not clear at this stage. Under such circumstances, explanations such as those described in the next paragraph may be possible.
 素子を長時間使用した場合、輝度が部分的に低下することがある。一例は、線残像であり、隣り合った2つの電極に異なった電圧が繰り返し印加されることによって電極の間の輝度がすじ状に低下する現象である。この現象は、液晶組成物に含まれたイオン性不純物が電極付近の配向膜上に蓄積することに起因する。したがって、線残像を抑制するためには、イオン性不純物が配向膜上に局在化することを防ぐのが効果的である。この目的で、配向膜の表面を極性化合物のような添加物で被覆し、この添加物にイオン性不純物を吸着させる。このような添加物は、所期の効果を得るために液晶組成物に対する高い溶解性を有することが重要である。 If the device is used for a long time, the brightness may decrease partially. An example is a line afterimage, which is a phenomenon in which the luminance between the electrodes decreases in a streak-like manner when different voltages are repeatedly applied to two adjacent electrodes. This phenomenon is caused by accumulation of ionic impurities contained in the liquid crystal composition on the alignment film near the electrode. Therefore, in order to suppress the line afterimage, it is effective to prevent the ionic impurities from being localized on the alignment film. For this purpose, the surface of the alignment film is coated with an additive such as a polar compound, and ionic impurities are adsorbed on the additive. It is important that such an additive has high solubility in the liquid crystal composition in order to obtain the desired effect.
 液晶組成物は、減圧下で素子に注入口から注入される。通常は、組成物がその成分の割合を変化させることなく素子に充填される。しかし、極性化合物のような添加物は、配向膜に吸着されることがある。吸着の速度が大きいとき、添加物が素子の奥まで届かないことがある。添加物が取り残されるのは、注入の速度よりも吸着の速度の方が大きいからである。この現象を防ぐには、配向膜に対して適切な吸着性を有する添加物が好ましい。したがって、適切な極性を有する添加物を選択することも重要である。項1に記載した化合物、特に化合物(1)は、この目的に適している。化合物(1)は、少なくとも2つの基Rを有する。少なくとも2つの基Rによって表される基が互いに異なるので、化合物(1)は非対称である。この非対称が適切な極性に寄与しているのかもしれない。比較例を参照のこと。本発明の組成物は、化合物(1)を第一添加物として含有する。 The liquid crystal composition is injected from the injection port into the device under reduced pressure. Usually, the device is filled with the composition without changing the proportion of its components. However, additives such as polar compounds may be adsorbed on the alignment film. When the adsorption speed is high, the additive may not reach the back of the device. The additive is left behind because the rate of adsorption is greater than the rate of injection. In order to prevent this phenomenon, an additive having an appropriate adsorptivity to the alignment film is preferable. Therefore, it is also important to select an additive having an appropriate polarity. The compound described in item 1, particularly compound (1), is suitable for this purpose. Compound (1) has at least two groups R 1 . Compound (1) is asymmetric because the groups represented by at least two groups R 1 are different from each other. This asymmetry may contribute to the proper polarity. See comparative example. The composition of the present invention contains compound (1) as a first additive.
 本発明の組成物を次の順で説明する。第一に、組成物の構成を説明する。第二に、成分化合物の主要な特性、およびこの化合物が組成物に及ぼす主要な効果を説明する。第三に、組成物における成分の組み合わせ、成分の好ましい割合およびその根拠を説明する。第四に、成分化合物の好ましい形態を説明する。第五に、好ましい成分化合物を示す。第六に、組成物に添加してもよい添加物を説明する。第七に、成分化合物の合成法を説明する。最後に、組成物の用途を説明する。 The composition of the present invention will be described in the following order. First, the composition of the composition will be described. Second, the main characteristics of the component compounds and the main effects of the compounds on the composition will be explained. Third, the combination of components in the composition, the preferred ratio of the components, and the basis thereof will be described. Fourth, a preferred form of the component compound will be described. Fifth, preferred component compounds are shown. Sixth, additives that may be added to the composition will be described. Seventh, a method for synthesizing the component compounds will be described. Finally, the use of the composition will be described.
 第一に、組成物の構成を説明する。この組成物は、複数の液晶性化合物を含有する。この組成物は、添加物を含有してもよい。添加物は、光学活性化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤、極性化合物などである。この組成物は、液晶性化合物の観点から組成物Aと組成物Bに分類される。組成物Aは、化合物(2)、化合物(3)、および化合物(4)から選択された液晶性化合物の他に、その他の液晶性化合物、添加物などをさらに含有してもよい。「その他の液晶性化合物」は、化合物(2)、化合物(3)、および化合物(4)とは異なる液晶性化合物である。このような化合物は、特性をさらに調整する目的で組成物に混合される。 First, the composition of the composition will be explained. This composition contains a plurality of liquid crystal compounds. The composition may contain additives. Additives include optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerizable compounds, polymerization initiators, polymerization inhibitors, polar compounds and the like. This composition is classified into a composition A and a composition B from the viewpoint of a liquid crystal compound. The composition A may further contain other liquid crystal compounds, additives and the like in addition to the liquid crystal compounds selected from the compound (2), the compound (3), and the compound (4). The “other liquid crystal compound” is a liquid crystal compound different from the compound (2), the compound (3), and the compound (4). Such compounds are mixed into the composition for the purpose of further adjusting the properties.
 組成物Bは、実質的に、化合物(2)、化合物(3)、および化合物(4)から選択された液晶性化合物のみからなる。「実質的に」は、組成物が添加物を含有してもよいが、その他の液晶性化合物を含有しないことを意味する。組成物Bは組成物Aに比較して成分の数が少ない。コストを下げるという観点から、組成物Bは組成物Aよりも好ましい。その他の液晶性化合物を混合することによって特性をさらに調整できるという観点から、組成物Aは組成物Bよりも好ましい。 Composition B consists essentially of a liquid crystalline compound selected from compound (2), compound (3), and compound (4). “Substantially” means that the composition may contain an additive but no other liquid crystal compound. Composition B has fewer components than composition A. From the viewpoint of reducing the cost, the composition B is preferable to the composition A. The composition A is preferable to the composition B from the viewpoint that the characteristics can be further adjusted by mixing other liquid crystal compounds.
 第二に、成分化合物の主要な特性、およびこの化合物が組成物に及ぼす主要な効果を説明する。成分化合物の主要な特性を本発明の効果に基づいて表2にまとめる。表2の記号において、Lは大きいまたは高い、Mは中程度の、Sは小さいまたは低い、を意味する。記号L、M、Sは、成分化合物のあいだの定性的な比較に基づいた分類であり、0(ゼロ)は、極めて小さいことを意味する。 Second, the main characteristics of the component compounds and the main effects of the compounds on the composition will be explained. The main characteristics of the component compounds are summarized in Table 2 based on the effects of the present invention. In the symbols in Table 2, L means large or high, M means moderate, and S means small or low. The symbols L, M, and S are classifications based on a qualitative comparison among the component compounds, and 0 (zero) means extremely small.
Figure JPOXMLDOC01-appb-I000034
 
Figure JPOXMLDOC01-appb-I000034
 
 成分化合物の主要な効果は次のとおりである。化合物(1)は、表示不良の抑制に寄与する。化合物(2)は、誘電率異方性を上げる。化合物(3)は、上限温度を上げる、または粘度を下げる。化合物(4)は、短軸方向における誘電率を上げ、そして下限温度を下げる。 The main effects of the component compounds are as follows. Compound (1) contributes to suppression of display defects. Compound (2) increases the dielectric anisotropy. Compound (3) increases the maximum temperature or decreases the viscosity. Compound (4) increases the dielectric constant in the minor axis direction and decreases the minimum temperature.
 第三に、組成物における成分の組み合わせ、成分化合物の好ましい割合およびその根拠を説明する。組成物における成分の好ましい組み合わせは、化合物(1)+化合物(2)、化合物(1)+化合物(2)+化合物(3)、または化合物(1)+化合物(2)+化合物(3)+化合物(4)である。特に好ましい組み合わせは、化合物(1)+化合物(2)+化合物(3)である。 Third, the combination of components in the composition, the preferred ratio of the component compounds, and the basis thereof will be described. Preferred combinations of the components in the composition are compound (1) + compound (2), compound (1) + compound (2) + compound (3), or compound (1) + compound (2) + compound (3) + Compound (4). A particularly preferred combination is compound (1) + compound (2) + compound (3).
 化合物(1)の好ましい割合は、表示不良を抑制するために約0.005質量%以上であり、下限温度を下げるために約1質量%以下である。さらに好ましい割合は約0.02質量%から約0.5質量%の範囲である。特に好ましい割合は約0.1質量%から約0.3質量%の範囲である。 A desirable ratio of compound (1) is approximately 0.005% by mass or more for suppressing poor display, and approximately 1% by mass or less for decreasing the minimum temperature. A more desirable ratio is in the range of approximately 0.02% by mass to approximately 0.5% by mass. A particularly desirable ratio is in the range of approximately 0.1% by mass to approximately 0.3% by mass.
 化合物(2)の好ましい割合は、誘電率異方性を上げるために約5質量%以上であり、下限温度を下げるために約90質量%以下である。さらに好ましい割合は約20質量%から約65質量%の範囲である。特に好ましい割合は約25質量%から約60質量%の範囲である。 A desirable ratio of the compound (2) is approximately 5% by mass or more for increasing the dielectric anisotropy, and approximately 90% by mass or less for decreasing the minimum temperature. A more desirable ratio is in the range of approximately 20% by mass to approximately 65% by mass. A particularly desirable ratio is in the range of approximately 25% by mass to approximately 60% by mass.
 化合物(3)の好ましい割合は、上限温度を上げるために、または粘度を下げるために約5質量%以上であり、誘電率異方性を上げるために約90質量%以下である。さらに好ましい割合は約15質量%から約65質量%の範囲である。特に好ましい割合は約20質量%から約60質量%の範囲である。 A desirable ratio of compound (3) is approximately 5% by mass or more for increasing the maximum temperature or decreasing the viscosity, and approximately 90% by mass or less for increasing the dielectric anisotropy. A more desirable ratio is in the range of approximately 15% by mass to approximately 65% by mass. A particularly desirable ratio is in the range of approximately 20% by mass to approximately 60% by mass.
 化合物(4)の好ましい割合は、液晶分子の短軸方向における誘電率を上げるために約3質量%以上であり、下限温度を下げるために約25質量%以下である。さらに好ましい割合は約5質量%から約20質量%の範囲である。特に好ましい割合は約5質量%から約15質量%の範囲である。 A desirable ratio of compound (4) is approximately 3% by mass or more for increasing the dielectric constant in the minor axis direction of liquid crystal molecules, and approximately 25% by mass or less for decreasing the minimum temperature. A more desirable ratio is in the range of approximately 5% by mass to approximately 20% by mass. A particularly desirable ratio is in the range of approximately 5% by mass to approximately 15% by mass.
 第四に、成分化合物の好ましい形態を説明する。式(S)において、Rは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、ヒドロキシ、またはオキシラジカルであり、ここで、Rによって表される基は他のRによって表される基とは異なる。Rは、炭素数1から12のアルキルである。 Fourth, a preferred form of the component compound will be described. In the formula (S), R 1 is hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical, wherein the group represented by R 1 is another R Different from the group represented by 1 . R is alkyl having 1 to 12 carbons.
 式(1)および式(S-1)において、ZおよびZは独立して、単結合または炭素数1から20のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素、塩素、または式(S-1)で表される基で置き換えられてもよい。好ましいZまたはZは、単結合または少なくとも1つの-CH-が-COO-または-OCO-で置き換えられた炭素数1から20のアルキレンである。Zは、単結合または炭素数1から20のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよい。好ましいZは、単結合または少なくとも1つの-CH-が-COO-または-OCO-で置き換えられた炭素数1から20のアルキレンである。 In formula (1) and formula (S-1), Z 1 and Z 2 are each independently a single bond or alkylene having 1 to 20 carbon atoms, and in this alkylene, at least one —CH 2 — is — O—, —COO—, —OCO—, or —OCOO— may be substituted, and in these groups, at least one hydrogen is fluorine, chlorine, or a group represented by the formula (S-1) It may be replaced. Preferred Z 1 or Z 2 is a single bond or alkylene having 1 to 20 carbon atoms in which at least one —CH 2 — is replaced by —COO— or —OCO—. Z 3 is a single bond or alkylene having 1 to 20 carbon atoms, in which at least one —CH 2 — is replaced by —O—, —COO—, —OCO—, or —OCOO—. In these groups, at least one hydrogen may be replaced by fluorine or chlorine. Preferred Z 3 is a single bond or alkylene having 1 to 20 carbon atoms in which at least one —CH 2 — is replaced by —COO— or —OCO—.
 環Aは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-1,2-ジイル、ナフタレン-1,3-ジイル、ナフタレン-1,4-ジイル、ナフタレン-1,5-ジイル、ナフタレン-1,6-ジイル、ナフタレン-1,7-ジイル、ナフタレン-1,8-ジイル、ナフタレン-2,3-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または式(S-1)で表される基で置き換えられてもよい。好ましい環Aは、1,4-フェニレン、ナフタレン-1,2-ジイル、ナフタレン-1,3-ジイル、ナフタレン-1,4-ジイル、ナフタレン-1,5-ジイル、ナフタレン-1,6-ジイル、ナフタレン-1,7-ジイル、ナフタレン-1,8-ジイル、ナフタレン-2,3-ジイル、ナフタレン-2,6-ジイル、またはナフタレン-2,7-ジイルである。 Ring A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene -1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2 , 7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl, or pyridine-2,5-diyl, At least one hydrogen is fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, at least one hydrogen is replaced by fluorine or chlorine Alkyl having 1 to 12 carbon atoms or may be substituted with a group represented by the formula (S-1),. Preferred ring A is 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl. Naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, or naphthalene-2,7-diyl.
 aは、0、1、2、または3である。好ましいaは、0または1である。さらに好ましいaは、0である。 A is 0, 1, 2, or 3. Preferred a is 0 or 1. Further preferred a is 0.
 式(1-1)から式(1-9)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、ヒドロキシ、またはオキシラジカルである。好ましいRは、炭素数1から12のアルキルである。 In the formula (1-1) to the formula (1-9), R 2 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical. Preferred R 2 is alkyl having 1 to 12 carbons.
 Zは、炭素数1から15のアルキレンである。好ましいZは、炭素数2から8のアルキレンである。ZおよびZは独立して、炭素数1から5のアルキレンである。ZおよびZは独立して、単結合または炭素数1から20のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよい。好ましいZまたはZは、単結合である。 Z 4 is alkylene having 1 to 15 carbons. Preferred Z 4 is alkylene having 2 to 8 carbon atoms. Z 5 and Z 6 are independently alkylene having 1 to 5 carbon atoms. Z 7 and Z 8 are each independently a single bond or alkylene having 1 to 20 carbon atoms, in which at least one —CH 2 — is —O—, —COO—, —OCO—, or — OCOO— may be replaced, and in these groups at least one hydrogen may be replaced by fluorine or chlorine. Preferred Z 7 or Z 8 is a single bond.
 Xは、水素またはフッ素である。好ましいXは、水素である。 X 1 is hydrogen or fluorine. Preferred X 1 is hydrogen.
 式(2)、式(3)、および式(4)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルである。好ましいRは、紫外線または熱に対する安定性を上げるために、炭素数1から12のアルキルである。RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。好ましいRまたはRは、粘度を下げるために、炭素数2から12のアルケニルであり、紫外線や熱に対する安定性を上げるために炭素数1から12のアルキルである。RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシである。好ましいRまたはRは、紫外線や熱に対する安定性を上げるために炭素数1から12のアルキルであり、誘電率異方性を上げるために炭素数1から12のアルコキシである。 In Formula (2), Formula (3), and Formula (4), R 3 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons. Preferred R 3 is, in order to increase the stability to ultraviolet light or heat, is alkyl of 1 to 12 carbons. R 4 and R 5 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or carbon 2 having at least one hydrogen replaced with fluorine or chlorine. To 12 alkenyl. Desirable R 4 or R 5 is alkenyl having 2 to 12 carbons for decreasing the viscosity, and alkyl having 1 to 12 carbons for increasing the stability to ultraviolet light or heat. R 6 and R 7 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyloxy having 2 to 12 carbons. Desirable R 6 or R 7 is alkyl having 1 to 12 carbons for increasing the stability to ultraviolet light or heat, and alkoxy having 1 to 12 carbons for increasing the dielectric anisotropy.
 好ましいアルキルは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、またはオクチルである。さらに好ましいアルキルは、粘度を下げるためにメチル、エチル、プロピル、ブチル、またはペンチルである。 Preferred alkyl is methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. More desirable alkyl is methyl, ethyl, propyl, butyl or pentyl for decreasing the viscosity.
 好ましいアルコキシは、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、またはヘプチルオキシである。粘度を下げるために、さらに好ましいアルコキシは、メトキシまたはエトキシである。 Preferred alkoxy is methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, or heptyloxy. More desirable alkoxy is methoxy or ethoxy for decreasing the viscosity.
 好ましいアルケニルは、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、または5-ヘキセニルである。さらに好ましいアルケニルは、粘度を下げるためにビニル、1-プロペニル、3-ブテニル、または3-ペンテニルである。これらのアルケニルにおける-CH=CH-の好ましい立体配置は、二重結合の位置に依存する。粘度を下げるためなどから1-プロペニル、1-ブテニル、1-ペンテニル、1-ヘキセニル、3-ペンテニル、3-ヘキセニルのようなアルケニルにおいてはトランスが好ましい。2-ブテニル、2-ペンテニル、2-ヘキセニルのようなアルケニルにおいてはシスが好ましい。 Preferred alkenyl is vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl. More desirable alkenyl is vinyl, 1-propenyl, 3-butenyl, or 3-pentenyl for decreasing the viscosity. The preferred configuration of —CH═CH— in these alkenyls depends on the position of the double bond. Trans is preferable in alkenyl such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl and 3-hexenyl for decreasing the viscosity. Cis is preferred for alkenyl such as 2-butenyl, 2-pentenyl, and 2-hexenyl.
 好ましいアルケニルオキシは、ビニルオキシ、アリルオキシ、3-ブテニルオキシ、3-ペンテニルオキシ、または4-ペンテニルオキシである。粘度を下げるために、さらに好ましいアルケニルオキシは、アリルオキシまたは3-ブテニルオキシである。 Preferred alkenyloxy is vinyloxy, allyloxy, 3-butenyloxy, 3-pentenyloxy, or 4-pentenyloxy. More preferable alkenyloxy is allyloxy or 3-butenyloxy for decreasing the viscosity.
 少なくとも1つの水素がフッ素または塩素で置き換えられたアルキルの好ましい例は、フルオロメチル、2-フルオロエチル、3-フルオロプロピル、4-フルオロブチル、5-フルオロペンチル、6-フルオロヘキシル、7-フルオロヘプチル、または8-フルオロオクチルである。さらに好ましい例は、誘電率異方性を上げるために2-フルオロエチル、3-フルオロプロピル、4-フルオロブチル、または5-フルオロペンチルである。 Preferred examples of alkyl in which at least one hydrogen is replaced by fluorine or chlorine are fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl, 7-fluoroheptyl. Or 8-fluorooctyl. Further preferred examples are 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl or 5-fluoropentyl for increasing the dielectric anisotropy.
 少なくとも1つの水素がフッ素で置き換えられたアルケニルの好ましい例は、2,2-ジフルオロビニル、3,3-ジフルオロ-2-プロペニル、4,4-ジフルオロ-3-ブテニル、5,5-ジフルオロ-4-ペンテニル、または6,6-ジフルオロ-5-ヘキセニルである。さらに好ましい例は、粘度を下げるために2,2-ジフルオロビニルまたは4,4-ジフルオロ-3-ブテニルである。 Preferred examples of alkenyl in which at least one hydrogen is replaced by fluorine are 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-difluoro-4 -Pentenyl, or 6,6-difluoro-5-hexenyl. Further preferred examples are 2,2-difluorovinyl or 4,4-difluoro-3-butenyl for decreasing the viscosity.
 環Bは、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、ピリミジン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルである。好ましい環Bは、上限温度を上げるために1,4-シクロヘキシレンであり、光学異方性を上げるために1,4-フェニレンであり、誘電率異方性を上げるために2,6-ジフルオロ-1,4-フェニレンである。テトラヒドロピラン-2,5-ジイルは、
Figure JPOXMLDOC01-appb-I000035
 
または
 
Figure JPOXMLDOC01-appb-I000036
 
であり、好ましくは
 
Figure JPOXMLDOC01-appb-I000037
 
である。
Ring B is 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene Pyrimidine-2,5-diyl, 1,3-dioxane-2,5-diyl, or tetrahydropyran-2,5-diyl. Preferred ring B is 1,4-cyclohexylene for increasing the maximum temperature, 1,4-phenylene for increasing the optical anisotropy, and 2,6-difluoro for increasing the dielectric anisotropy. -1,4-phenylene. Tetrahydropyran-2,5-diyl is
Figure JPOXMLDOC01-appb-I000035

Or
Figure JPOXMLDOC01-appb-I000036

And preferably
Figure JPOXMLDOC01-appb-I000037

It is.
 環Cおよび環Dは独立して、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンである。好ましい環Cまたは環Dは、粘度を下げるために、または上限温度を上げるために、1,4-シクロヘキシレンであり、下限温度を下げるために1,4-フェニレンである。 Ring C and Ring D are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 2,5-difluoro-1,4-phenylene. Preferred ring C or ring D is 1,4-cyclohexylene for decreasing the viscosity or increasing the maximum temperature, and 1,4-phenylene for decreasing the minimum temperature.
 環Eおよび環Gは独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、またはテトラヒドロピラン-2,5-ジイルである。好ましい環Eまたは環Gは、粘度を下げるために1,4-シクロヘキシレンであり、誘電率異方性を上げるためにテトラヒドロピラン-2,5-ジイルであり、光学異方性を上げるために1,4-フェニレンである。環Fは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、または7,8-ジフルオロクロマン-2,6-ジイルである。好ましい環Fは、粘度を下げるために2,3-ジフルオロ-1,4-フェニレンであり、光学異方性を下げるために2-クロロ-3-フルオロ-1,4-フェニレンであり、誘電率異方性を上げるために7,8-ジフルオロクロマン-2,6-ジイルである。 Ring E and Ring G are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine, or Tetrahydropyran-2,5-diyl. Preferred ring E or ring G is 1,4-cyclohexylene for decreasing the viscosity, tetrahydropyran-2,5-diyl for increasing the dielectric anisotropy, and for increasing the optical anisotropy. 1,4-phenylene. Ring F is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4, 5-trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl. Preferred ring F is 2,3-difluoro-1,4-phenylene for decreasing the viscosity, and 2-chloro-3-fluoro-1,4-phenylene for decreasing the optical anisotropy, and the dielectric constant In order to increase the anisotropy, 7,8-difluorochroman-2,6-diyl.
 Zは、単結合、エチレン、カルボニルオキシ、またはジフルオロメチレンオキシである。好ましいZは、粘度を下げるために単結合であり、誘電率異方性を上げるために、ジフルオロメチレンオキシである。Z10は、単結合、エチレンまたはカルボニルオキシである。好ましいZ10は、粘度を下げるために単結合である。Z11およびZ12は独立して、単結合、エチレン、カルボニルオキシ、またはメチレンオキシである。好ましいZ11またはZ12は、粘度を下げるために単結合であり、下限温度を下げるためにエチレンであり、誘電率異方性を上げるためにメチレンオキシである。 Z 9 is a single bond, ethylene, carbonyloxy, or difluoromethyleneoxy. Desirable Z 9 is a single bond for decreasing the viscosity, and difluoromethyleneoxy for increasing the dielectric anisotropy. Z 10 is a single bond, ethylene or carbonyloxy. Desirable Z 10 is a single bond for decreasing the viscosity. Z 11 and Z 12 are independently a single bond, ethylene, carbonyloxy, or methyleneoxy. Desirable Z 11 or Z 12 is a single bond for decreasing the viscosity, ethylene for decreasing the minimum temperature, and methyleneoxy for increasing the dielectric anisotropy.
 XおよびXは独立して、水素またはフッ素である。好ましいXまたはXは、誘電率異方性を上げるためにフッ素である。 X 2 and X 3 are independently hydrogen or fluorine. Desirable X 2 or X 3 is fluorine for increasing the dielectric anisotropy.
 Yは、フッ素、塩素、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルオキシである。好ましいYは、下限温度を下げるためにフッ素である。少なくとも1つの水素がフッ素または塩素で置き換えられたアルキルの好ましい例は、トリフルオロメチルである。少なくとも1つの水素がフッ素または塩素で置き換えられたアルコキシの好ましい例は、トリフルオロメトキシである。少なくとも1つの水素がフッ素または塩素で置き換えられたアルケニルオキシの好ましい例は、トリフルオロビニルオキシである。 Y 1 is fluorine, chlorine, alkyl having 1 to 12 carbons in which at least one hydrogen is replaced with fluorine or chlorine, alkoxy having 1 to 12 carbons in which at least one hydrogen is replaced with fluorine or chlorine, or at least C2-C12 alkenyloxy in which one hydrogen is replaced by fluorine or chlorine. Desirable Y 1 is fluorine for decreasing the minimum temperature. A preferred example of alkyl in which at least one hydrogen is replaced by fluorine or chlorine is trifluoromethyl. A preferred example of alkoxy in which at least one hydrogen is replaced by fluorine or chlorine is trifluoromethoxy. A preferred example of alkenyloxy in which at least one hydrogen has been replaced by fluorine or chlorine is trifluorovinyloxy.
 bは、1、2、3、または4である。好ましいbは、誘電率異方性を上げるために2または3である。cは、1、2、または3である。好ましいcは、粘度を下げるために1であり、上限温度を上げるために2または3である。dは、1、2、または3であり、eは、0または1であり、dとeとの和は3以下である。好ましいdは粘度を下げるために1であり、上限温度を上げるために2または3である。好ましいeは粘度を下げるために0であり、下限温度を下げるために1である。 B is 1, 2, 3, or 4. Preferred b is 2 or 3 for increasing the dielectric anisotropy. c is 1, 2 or 3. Preferred c is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature. d is 1, 2, or 3, e is 0 or 1, and the sum of d and e is 3 or less. Preferred d is 1 for decreasing the viscosity, and 2 or 3 for increasing the maximum temperature. Preferred e is 0 for decreasing the viscosity, and 1 for decreasing the minimum temperature.
 第五に、好ましい成分化合物を示す。好ましい化合物(1)は、項4に記載の化合物(1-1)から化合物(1-9)である。さらに好ましい化合物(1)は、化合物(1-1)から化合物(1-3)である。特に好ましい化合物(1)は、化合物(1-1)である。 Fifth, preferred component compounds are shown. Desirable compounds (1) are the compounds (1-1) to (1-9) according to Item 4. More desirable compounds (1) are the compounds (1-1) to (1-3). Particularly preferred compound (1) is compound (1-1).
 好ましい化合物(2)は、項7に記載の化合物(2-1)から化合物(2-35)である。これらの化合物において、第一成分の少なくとも1つが、化合物(2-4)、化合物(2-12)、化合物(2-14)、化合物(2-15)、化合物(2-17)、化合物(2-18)、化合物(2-23)、化合物(2-24)、化合物(2-27)、化合物(2-29)、または化合物(2-30)であることが好ましい。第一成分の少なくとも2つが、化合物(2-12)および化合物(2-15)、化合物(2-14)および化合物(2-27)、化合物(2-18)および化合物(2-24)、化合物(2-18)および化合物(2-29)、化合物(2-24)および化合物(2-29)、または化合物(2-29)および化合物(2-30)の組み合わせであることが好ましい。 Desirable compound (2) is the compound (2-1) to the compound (2-35) according to item 7. In these compounds, at least one of the first components is compound (2-4), compound (2-12), compound (2-14), compound (2-15), compound (2-17), compound ( 2-18), compound (2-23), compound (2-24), compound (2-27), compound (2-29), or compound (2-30) is preferred. At least two of the first components are the compounds (2-12) and (2-15), the compounds (2-14) and (2-27), the compounds (2-18) and (2-24), The compound (2-18) and the compound (2-29), the compound (2-24) and the compound (2-29), or a combination of the compound (2-29) and the compound (2-30) is preferable.
 好ましい化合物(3)は、項10に記載の化合物(3-1)から化合物(3-13)である。これらの化合物において、第三成分の少なくとも1つが、化合物(3-1)、化合物(3-3)、化合物(3-5)、化合物(3-6)、または化合物(3-7)であることが好ましい。第三成分の少なくとも2つが化合物(3-1)および化合物(3-5)、化合物(3-1)および化合物(3-6)、化合物(3-1)および化合物(3-7)、化合物(3-3)および化合物(3-5)、化合物(3-3)および化合物(3-6)、化合物(3-3)および化合物(3-7)の組み合わせであることが好ましい。 Desirable compound (3) is the compound (3-1) to the compound (3-13) according to item 10. In these compounds, at least one of the third components is the compound (3-1), the compound (3-3), the compound (3-5), the compound (3-6), or the compound (3-7). It is preferable. At least two of the third components are compound (3-1) and compound (3-5), compound (3-1) and compound (3-6), compound (3-1) and compound (3-7), compound A combination of (3-3) and compound (3-5), compound (3-3) and compound (3-6), compound (3-3) and compound (3-7) is preferred.
 好ましい化合物(4)は、項13に記載の化合物(4-1)から化合物(4-22)である。これらの化合物において、第四成分の少なくとも1つが、化合物(4-1)、化合物(4-3)、化合物(4-4)、化合物(4-6)、化合物(4-8)、または化合物(4-10)であることが好ましい。第四成分の少なくとも2つが、化合物(4-1)および化合物(4-6)、化合物(4-3)および化合物(4-6)、化合物(4-3)および化合物(4-10)、化合物(4-4)および化合物(4-6)、化合物(4-4)および化合物(4-8)、または化合物(4-6)および化合物(4-10)の組み合わせであることが好ましい。 Desirable compound (4) is the compound (4-1) to the compound (4-22) according to item 13. In these compounds, at least one of the fourth components is the compound (4-1), the compound (4-3), the compound (4-4), the compound (4-6), the compound (4-8), or the compound (4-10) is preferred. At least two of the fourth components are the compound (4-1) and the compound (4-6), the compound (4-3) and the compound (4-6), the compound (4-3) and the compound (4-10), A compound (4-4) and a compound (4-6), a compound (4-4) and a compound (4-8), or a combination of a compound (4-6) and a compound (4-10) is preferable.
 第六に、組成物に添加してもよい添加物を説明する。このような添加物は、光学活性化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合性化合物、重合開始剤、重合禁止剤、極性化合物などである。液晶のらせん構造を誘起してねじれ角を与える目的で光学活性化合物が組成物に添加される。このような化合物の例は、化合物(5-1)から化合物(5-5)である。光学活性化合物の好ましい割合は約5質量%以下である。さらに好ましい割合は約0.01質量%から約2質量%の範囲である。 Sixth, additives that may be added to the composition will be described. Such additives are optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerizable compounds, polymerization initiators, polymerization inhibitors, polar compounds and the like. An optically active compound is added to the composition for the purpose of inducing a helical structure of liquid crystal to give a twist angle. Examples of such compounds are compound (5-1) to compound (5-5). A desirable ratio of the optically active compound is approximately 5% by mass or less. A more desirable ratio is in the range of approximately 0.01% by mass to approximately 2% by mass.
Figure JPOXMLDOC01-appb-I000038
 
Figure JPOXMLDOC01-appb-I000038
 
 大気中での加熱による比抵抗の低下を防止するために、または素子を長時間使用したあと、室温だけではなく上限温度に近い温度でも大きな電圧保持率を維持するために、酸化防止剤が組成物に添加される。酸化防止剤の好ましい例は、tが1から9の整数である化合物(6)などである。
Figure JPOXMLDOC01-appb-I000039
 
In order to prevent a decrease in specific resistance due to heating in the atmosphere or to maintain a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature after using the device for a long time, an antioxidant is composed. Added to the product. A preferred example of the antioxidant is a compound (6) in which t is an integer of 1 to 9.
Figure JPOXMLDOC01-appb-I000039
 化合物(6)において、好ましいtは、1、3、5、7、または9である。さらに好ましいtは7である。tが7である化合物(6)は、揮発性が小さいので、素子を長時間使用したあと、室温だけではなく上限温度に近い温度でも大きな電圧保持率を維持するのに有効である。酸化防止剤の好ましい割合は、その効果を得るために約50ppm以上であり、上限温度を下げないように、または下限温度を上げないように約600ppm以下である。さらに好ましい割合は、約100ppmから約300ppmの範囲である。 In the compound (6), preferred t is 1, 3, 5, 7, or 9. Further preferred t is 7. Since the compound (6) in which t is 7 has low volatility, it is effective for maintaining a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature after using the device for a long time. A desirable ratio of the antioxidant is approximately 50 ppm or more for achieving its effect, and is approximately 600 ppm or less for avoiding a decrease in the maximum temperature or avoiding an increase in the minimum temperature. A more desirable ratio is in the range of approximately 100 ppm to approximately 300 ppm.
 紫外線吸収剤の好ましい例は、ベンゾフェノン誘導体、ベンゾエート誘導体、トリアゾール誘導体などである。立体障害のあるアミンのような光安定剤もまた好ましい。これらの吸収剤や安定剤における好ましい割合は、その効果を得るために約50ppm以上であり、上限温度を下げないように、または下限温度を上げないために約10000ppm以下である。さらに好ましい割合は約100ppmから約10000ppmの範囲である。 Preferred examples of the ultraviolet absorber include benzophenone derivatives, benzoate derivatives, triazole derivatives and the like. Also preferred are light stabilizers such as sterically hindered amines. A desirable ratio of these absorbers and stabilizers is approximately 50 ppm or more for achieving the effect thereof, and approximately 10,000 ppm or less for avoiding a decrease in the maximum temperature or avoiding an increase in the minimum temperature. A more desirable ratio is in the range of approximately 100 ppm to approximately 10,000 ppm.
 GH(guest host)モードの素子に適合させるために、アゾ系色素、アントラキノン系色素などのような二色性色素(dichroic dye)が組成物に添加される。色素の好ましい割合は、約0.01質量%から約10質量%の範囲である。泡立ちを防ぐために、ジメチルシリコーンオイル、メチルフェニルシリコーンオイルなどの消泡剤が組成物に添加される。消泡剤の好ましい割合は、その効果を得るために約1ppm以上であり、表示不良を防ぐために約1000ppm以下である。さらに好ましい割合は、約1ppmから約500ppmの範囲である。 A dichroic dye such as an azo dye or an anthraquinone dye is added to the composition in order to adapt it to a GH (guest host) mode element. A preferred ratio of the dye is in the range of approximately 0.01% by mass to approximately 10% by mass. In order to prevent foaming, an antifoaming agent such as dimethyl silicone oil or methylphenyl silicone oil is added to the composition. A desirable ratio of the antifoaming agent is approximately 1 ppm or more for obtaining the effect thereof, and approximately 1000 ppm or less for preventing a display defect. A more desirable ratio is in the range of approximately 1 ppm to approximately 500 ppm.
 高分子支持配向(PSA)型の素子に適合させるために重合性化合物が組成物に添加される。重合性化合物の好ましい例は、アクリレート、メタクリレート、ビニル化合物、ビニルオキシ化合物、プロペニルエーテル、エポキシ化合物(オキシラン、オキセタン)、ビニルケトンなどの重合可能な基を有する化合物である。さらに好ましい例は、アクリレートまたはメタクリレートの誘導体である。重合性化合物の好ましい割合は、その効果を得るために、約0.05質量%以上であり、表示不良を防ぐために約10質量%以下である。さらに好ましい割合は、約0.1質量%から約2質量%の範囲である。重合性化合物は紫外線照射により重合する。光重合開始剤などの開始剤の存在下で重合させてもよい。重合のための適切な条件、開始剤の適切なタイプ、および適切な量は、当業者には既知であり、文献に記載されている。例えば光開始剤であるIrgacure651(登録商標;BASF)、Irgacure184(登録商標;BASF)、またはDarocur1173(登録商標;BASF)がラジカル重合に対して適切である。光重合開始剤の好ましい割合は、重合性化合物の質量に基づいて約0.1質量%から約5質量%の範囲である。さらに好ましい割合は、約1質量%から約3質量%の範囲である。 A polymerizable compound is added to the composition in order to adapt it to a polymer support alignment (PSA) type device. Preferable examples of the polymerizable compound are compounds having a polymerizable group such as acrylate, methacrylate, vinyl compound, vinyloxy compound, propenyl ether, epoxy compound (oxirane, oxetane), vinyl ketone and the like. Further preferred examples are acrylate or methacrylate derivatives. A desirable ratio of the polymerizable compound is approximately 0.05% by mass or more for achieving the effect thereof, and approximately 10% by mass or less for preventing display defects. A more desirable ratio is in the range of approximately 0.1% by mass to approximately 2% by mass. The polymerizable compound is polymerized by irradiation with ultraviolet rays. The polymerization may be performed in the presence of an initiator such as a photopolymerization initiator. Appropriate conditions for polymerization, the appropriate type of initiator, and the appropriate amount are known to those skilled in the art and are described in the literature. For example, Irgacure 651 (registered trademark; BASF), Irgacure 184 (registered trademark; BASF), or Darocur 1173 (registered trademark; BASF), which are photoinitiators, are suitable for radical polymerization. A desirable ratio of the photopolymerization initiator is in the range of approximately 0.1% by mass to approximately 5% by mass based on the mass of the polymerizable compound. A more desirable ratio is in the range of approximately 1% by mass to approximately 3% by mass.
 重合性化合物を保管するとき、重合を防止するために重合禁止剤を添加してもよい。重合性化合物は、通常は重合禁止剤を除去しないまま組成物に添加される。重合禁止剤の例は、ヒドロキノン、メチルヒドロキノンのようなヒドロキノン誘導体、4-tert-ブチルカテコール、4-メトキシフェノール、フェノチアジンなどである。 When storing the polymerizable compound, a polymerization inhibitor may be added to prevent polymerization. The polymerizable compound is usually added to the composition without removing the polymerization inhibitor. Examples of the polymerization inhibitor include hydroquinone derivatives such as hydroquinone and methylhydroquinone, 4-tert-butylcatechol, 4-methoxyphenol, phenothiazine and the like.
 極性化合物は、極性をもつ有機化合物である。ここでは、イオン結合を有する化合物は含まれない。酸素、硫黄、および窒素のような原子は、より電気的に陰性であり、部分的な負電荷をもつ傾向にある。炭素および水素は中性であるか、または部分的な正電荷をもつ傾向がある。極性は、化合物中の別種の原子間で部分電荷が均等に分布しないことから生じる。例えば、極性化合物は、-OH、-COOH、-SH、-NH、>NH、>N-のような部分構造の少なくとも1つを有する。 The polar compound is an organic compound having polarity. Here, a compound having an ionic bond is not included. Atoms such as oxygen, sulfur, and nitrogen are more electronegative and tend to have partial negative charges. Carbon and hydrogen tend to be neutral or have a partial positive charge. Polarity arises from the fact that partial charges are not evenly distributed among different types of atoms in a compound. For example, the polar compound has at least one of partial structures such as —OH, —COOH, —SH, —NH 2 ,>NH,> N—.
 第七に、成分化合物の合成法を説明する。これらの化合物は既知の方法によって合成できる。合成法を例示する。化合物(1-1-1)、化合物(1-1-2)、化合物(1-1-7)、および化合物(1-1-8)の合成法は、実施例の項に記載する。特開2016-037605号公報に記載された合成法を参照してもよい。化合物(2-4)は、特開平10-204016に記載された方法で合成する。化合物(3-1)は、特開昭59-176221号公報に記載された方法で合成する。化合物(4-1)は、特表平2-503441号公報に掲載された方法で合成する。酸化防止剤は市販されている。式(6)のtが1である化合物は、アルドリッチ(Sigma-Aldrich Corporation)から入手できる。tが7である化合物(6)などは、米国特許3660505号明細書に記載された方法によって合成する。 Seventh, a method for synthesizing component compounds will be described. These compounds can be synthesized by known methods. The synthesis method is illustrated. Synthesis methods of Compound (1-1-1), Compound (1-1-2), Compound (1-1-7), and Compound (1-1-8) are described in the Examples section. Reference may be made to the synthesis method described in JP-A-2016-037605. Compound (2-4) is synthesized by the method described in JP-A-10-204016. Compound (3-1) is synthesized by the method described in JP-A-59-176221. Compound (4-1) is synthesized by the method described in JP-T-2-503441. Antioxidants are commercially available. A compound of formula (6) where t is 1 is available from Sigma-Aldrich® Corporation. Compound (6) etc. in which t is 7 are synthesized by the method described in US Pat. No. 3,660,505.
 合成法を記載しなかった化合物は、オーガニック・シンセシス(Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などの成書に記載された方法によって合成できる。組成物は、このようにして得た化合物から公知の方法によって調製される。例えば、成分化合物を混合し、そして加熱によって互いに溶解させる。 Compounds that have not been described as synthetic methods are Organic Synthesis (Organic Syntheses, John Wiley & Sons, Inc), Organic Reactions (Organic Reactions, John Wiley & Sons, Inc), Comprehensive Organic Synthesis (Comprehensive Organic) Synthesis, (Pergamon Press) and new experimental chemistry course (Maruzen). The composition is prepared from the compound thus obtained by known methods. For example, the component compounds are mixed and dissolved in each other by heating.
 最後に、組成物の用途を説明する。大部分の組成物は、約-10℃以下の下限温度、約70℃以上の上限温度、そして約0.07から約0.20の範囲の光学異方性を有する。成分化合物の割合を制御することによって、またはその他の液晶性化合物を混合することによって、約0.08から約0.25の範囲の光学異方性を有する組成物を調製してもよい。さらには、試行錯誤によって約0.10から約0.30の範囲の光学異方性を有する組成物を調製してもよい。この組成物を含有する素子は大きな電圧保持率を有する。この組成物はAM素子に適する。この組成物は透過型のAM素子に特に適する。この組成物は、ネマチック相を有する組成物としての使用や、光学活性化合物を添加することによって光学活性な組成物としての使用が可能である。 Finally, the use of the composition will be explained. Most compositions have a minimum temperature of about −10 ° C. or lower, a maximum temperature of about 70 ° C. or higher, and an optical anisotropy in the range of about 0.07 to about 0.20. A composition having an optical anisotropy in the range of about 0.08 to about 0.25 may be prepared by controlling the ratio of the component compounds or by mixing other liquid crystal compounds. Furthermore, a composition having optical anisotropy in the range of about 0.10 to about 0.30 may be prepared by trial and error. A device containing this composition has a large voltage holding ratio. This composition is suitable for an AM device. This composition is particularly suitable for a transmissive AM device. This composition can be used as a composition having a nematic phase or can be used as an optically active composition by adding an optically active compound.
 この組成物はAM素子への使用が可能である。さらにPM素子への使用も可能である。この組成物は、PC、TN、STN、ECB、OCB、IPS、FFS、VA、FPAなどのモードを有するAM素子およびPM素子への使用が可能である。VA、OCB、IPSモードまたはFFSモードを有するAM素子への使用は特に好ましい。IPSモードまたはFFSモードを有するAM素子において、電圧が無印加のとき、液晶分子の配列がガラス基板に対して並行であってもよく、または垂直であってもよい。これらの素子が反射型、透過型または半透過型であってもよい。透過型の素子への使用は好ましい。非結晶シリコン-TFT素子または多結晶シリコン-TFT素子への使用も可能である。この組成物をマイクロカプセル化して作製したNCAP(nematic curvilinear aligned phase)型の素子や、組成物中に三次元の網目状高分子を形成させたPD(polymer dispersed)型の素子にも使用できる。 This composition can be used for an AM device. Further, it can be used for PM elements. This composition can be used for an AM device and a PM device having modes such as PC, TN, STN, ECB, OCB, IPS, FFS, VA, and FPA. Use for an AM device having a VA, OCB, IPS mode or FFS mode is particularly preferable. In an AM device having an IPS mode or an FFS mode, when no voltage is applied, the alignment of liquid crystal molecules may be parallel to or perpendicular to the glass substrate. These elements may be reflective, transmissive, or transflective. Use in a transmissive element is preferred. It can also be used for an amorphous silicon-TFT device or a polycrystalline silicon-TFT device. It can also be used for an NCAP (nematic-curvilinear-aligned-phase) type device produced by microencapsulating this composition, or a PD (polymer-dispersed) type device in which a three-dimensional network polymer is formed in the composition.
 実施例によって本発明をさらに詳しく説明する。本発明はこれらの実施例によっては制限されない。本発明は、実施例1の組成物と実施例2の組成物との混合物を含む。本発明は、組成例の組成物の少なくとも2つを混合した混合物をも含む。合成した化合物は、NMR分析などの方法により同定した。化合物、組成物および素子の特性は、下記に記載した方法により測定した。 The present invention will be described in more detail with reference to examples. The invention is not limited by these examples. The present invention includes a mixture of the composition of Example 1 and the composition of Example 2. The present invention also includes a mixture in which at least two of the compositions of the composition examples are mixed. The synthesized compound was identified by a method such as NMR analysis. The characteristics of the compound, composition and device were measured by the methods described below.
 NMR分析:測定には、ブルカーバイオスピン社製のDRX-500を用いた。H-NMRの測定では、試料をCDClなどの重水素化溶媒に溶解させ、測定は、室温で、500MHz、積算回数16回の条件で行った。テトラメチルシランを内部標準として用いた。19F-NMRの測定では、CFClを内部標準として用い、積算回数24回で行った。核磁気共鳴スペクトルの説明において、sはシングレット、dはダブレット、tはトリプレット、qはカルテット、quinはクインテット、sexはセクステット、mはマルチプレット、brはブロードであることを意味する。 NMR analysis: DRX-500 manufactured by Bruker BioSpin Corporation was used for measurement. In the 1 H-NMR measurement, the sample was dissolved in a deuterated solvent such as CDCl 3, and the measurement was performed at room temperature, 500 MHz, and 16 times of integration. Tetramethylsilane was used as an internal standard. For 19 F-NMR measurement, CFCl 3 was used as an internal standard and the number of integrations was 24. In the description of the nuclear magnetic resonance spectrum, s is a singlet, d is a doublet, t is a triplet, q is a quartet, quint is a quintet, sex is a sextet, m is a multiplet, and br is broad.
 ガスクロマト分析:測定には島津製作所製のGC-14B型ガスクロマトグラフを用いた。キャリアーガスはヘリウム(2mL/分)である。試料気化室を280℃に、検出器(FID)を300℃に設定した。成分化合物の分離には、Agilent Technologies Inc.製のキャピラリカラムDB-1(長さ30m、内径0.32mm、膜厚0.25μm;固定液相はジメチルポリシロキサン;無極性)を用いた。このカラムは、200℃で2分間保持したあと、5℃/分の割合で280℃まで昇温した。試料はアセトン溶液(0.1質量%)に調製したあと、その1μLを試料気化室に注入した。記録計は島津製作所製のC-R5A型Chromatopac、またはその同等品である。得られたガスクロマトグラムは、成分化合物に対応するピークの保持時間およびピークの面積を示した。 Gas chromatographic analysis: GC-14B gas chromatograph manufactured by Shimadzu Corporation was used for measurement. The carrier gas is helium (2 mL / min). The sample vaporization chamber was set at 280 ° C, and the detector (FID) was set at 300 ° C. For separation of the component compounds, capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm; stationary liquid phase is dimethylpolysiloxane; nonpolar) manufactured by Agilent Technologies Inc. was used. The column was held at 200 ° C. for 2 minutes and then heated to 280 ° C. at a rate of 5 ° C./min. A sample was prepared in an acetone solution (0.1% by mass), and 1 μL thereof was injected into the sample vaporization chamber. The recorder is a C-R5A Chromatopac manufactured by Shimadzu Corporation, or an equivalent product. The obtained gas chromatogram showed the peak retention time and peak area corresponding to the component compounds.
 試料を希釈するための溶媒は、クロロホルム、ヘキサンなどを用いてもよい。成分化合物を分離するために、次のキャピラリカラムを用いてもよい。Agilent Technologies Inc.製のHP-1(長さ30m、内径0.32mm、膜厚0.25μm)、Restek Corporation製のRtx-1(長さ30m、内径0.32mm、膜厚0.25μm)、SGE International Pty. Ltd製のBP-1(長さ30m、内径0.32mm、膜厚0.25μm)。化合物ピークの重なりを防ぐ目的で島津製作所製のキャピラリカラムCBP1-M50-025(長さ50m、内径0.25mm、膜厚0.25μm)を用いてもよい。 As a solvent for diluting the sample, chloroform, hexane or the like may be used. In order to separate the component compounds, the following capillary column may be used. HP-1 from Agilent Technologies Inc. (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm), Rtx-1 from Restek Corporation (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm), BP-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm) manufactured by SGE International Pty. In order to prevent compound peaks from overlapping, a capillary column CBP1-M50-025 (length 50 m, inner diameter 0.25 mm, film thickness 0.25 μm) manufactured by Shimadzu Corporation may be used.
 組成物に含有される液晶性化合物の割合は、次のような方法で算出してよい。液晶性化合物の混合物をガスクロマトグラフィー(FID)で分析する。ガスクロマトグラムにおけるピークの面積比は液晶性化合物の割合(質量比)に相当する。上に記載したキャピラリカラムを用いたときは、各々の液晶性化合物の補正係数を1とみなしてよい。したがって、液晶性化合物の割合(質量%)は、ピークの面積比から算出することができる。 The ratio of the liquid crystal compound contained in the composition may be calculated by the following method. The mixture of liquid crystalline compounds is analyzed by gas chromatography (FID). The area ratio of peaks in the gas chromatogram corresponds to the ratio (mass ratio) of liquid crystal compounds. When the capillary column described above is used, the correction coefficient of each liquid crystal compound may be regarded as 1. Therefore, the ratio (% by mass) of the liquid crystal compound can be calculated from the peak area ratio.
 測定試料:組成物または素子の特性を測定するときは、組成物をそのまま試料として用いた。化合物の特性を測定するときは、この化合物(15質量%)を母液晶(85質量%)に混合することによって測定用の試料を調製した。測定によって得られた値から外挿法によって化合物の特性値を算出した。(外挿値)={(試料の測定値)-0.85×(母液晶の測定値)}/0.15。この割合でスメクチック相(または結晶)が25℃で析出するときは、化合物と母液晶の割合を10質量%:90質量%、5質量%:95質量%、1質量%:99質量%の順に変更した。この外挿法によって化合物に関する上限温度、光学異方性、粘度、および誘電率異方性の値を求めた。 Measurement sample: When measuring the characteristics of the composition or the device, the composition was used as it was as a sample. When measuring the characteristics of the compound, a sample for measurement was prepared by mixing this compound (15% by mass) with the mother liquid crystal (85% by mass). The characteristic value of the compound was calculated from the value obtained by the measurement by extrapolation. (Extrapolated value) = {(Measured value of sample) −0.85 × (Measured value of mother liquid crystal)} / 0.15. When the smectic phase (or crystal) precipitates at 25 ° C. at this ratio, the ratio of the compound and the mother liquid crystal is 10% by mass: 90% by mass, 5% by mass: 95% by mass, and 1% by mass: 99% by mass in this order. changed. By this extrapolation method, the maximum temperature, optical anisotropy, viscosity, and dielectric anisotropy values for the compound were determined.
 下記の母液晶を用いた。成分化合物の割合は質量%で示した。
Figure JPOXMLDOC01-appb-I000040
 
The following mother liquid crystals were used. The ratio of the component compound is indicated by mass%.
Figure JPOXMLDOC01-appb-I000040
 測定方法:特性の測定は下記の方法で行った。これらの多くは、社団法人電子情報技術産業協会(Japan Electronics and Information Technology Industries Association;JEITAという)で審議制定されるJEITA規格(JEITA・ED-2521B)に記載された方法、またはこれを修飾した方法であった。測定に用いたTN素子には、薄膜トランジスター(TFT)を取り付けなかった。 Measurement method: The characteristics were measured by the following method. Many of these are the methods described in the JEITA standard (JEITA ED-2521B) deliberated and established by the Japan Electronics and Information Industry Association (JEITA), or a modified method thereof. Met. No thin film transistor (TFT) was attached to the TN device used for the measurement.
(1)ネマチック相の上限温度(NI;℃):偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃/分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。ネマチック相の上限温度を「上限温度」と略すことがある。 (1) Maximum temperature of nematic phase (NI; ° C.): A sample was placed on a hot plate of a melting point measuring apparatus equipped with a polarizing microscope and heated at a rate of 1 ° C./min. The temperature was measured when a part of the sample changed from a nematic phase to an isotropic liquid. The upper limit temperature of the nematic phase may be abbreviated as “upper limit temperature”.
(2)ネマチック相の下限温度(T;℃):ネマチック相を有する試料をガラス瓶に入れ、0℃、-10℃、-20℃、-30℃、および-40℃のフリーザー中に10日間保管したあと、液晶相を観察した。例えば、試料が-20℃ではネマチック相のままであり、-30℃では結晶またはスメクチック相に変化したとき、Tを<-20℃と記載した。ネマチック相の下限温度を「下限温度」と略すことがある。 (2) Minimum temperature of nematic phase (T C ; ° C.): A sample having a nematic phase is placed in a glass bottle and placed in a freezer at 0 ° C., −10 ° C., −20 ° C., −30 ° C. and −40 ° C. for 10 days. After storage, the liquid crystal phase was observed. For example, when the sample remained in a nematic phase at −20 ° C. and changed to a crystalline or smectic phase at −30 ° C., the TC was described as <−20 ° C. The lower limit temperature of the nematic phase may be abbreviated as “lower limit temperature”.
(3)粘度(バルク粘度;η;20℃で測定;mPa・s):測定には東京計器株式会社製のE型回転粘度計を用いた。 (3) Viscosity (bulk viscosity; η; measured at 20 ° C .; mPa · s): An E-type viscometer manufactured by Tokyo Keiki Co., Ltd. was used for the measurement.
(4)粘度(回転粘度;γ1;25℃で測定;mPa・s):測定は、M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995)に記載された方法に従った。ツイスト角が0°であり、そして2枚のガラス基板の間隔(セルギャップ)が5μmであるTN素子に試料を入れた。この素子に16Vから19.5Vの範囲で0.5V毎に段階的に印加した。0.2秒の無印加のあと、ただ1つの矩形波(矩形パルス;0.2秒)と無印加(2秒)の条件で印加を繰り返した。この印加によって発生した過渡電流(transient current)のピーク電流(peak current)とピーク時間(peak time)を測定した。これらの測定値とM. Imaiらの論文中の40頁記載の計算式(8)とから回転粘度の値を得た。この計算で必要な誘電率異方性の値は、この回転粘度を測定した素子を用い、下に記載した方法で求めた。 (4) Viscosity (Rotational Viscosity; γ1; Measured at 25 ° C .; mPa · s): The measurement was performed according to the method described in M. Imai et al., Molecular Crystals and Liquid Crystals, Vol. 259, 37 (1995). I followed. A sample was put in a TN device having a twist angle of 0 ° and a distance (cell gap) between two glass substrates of 5 μm. A voltage was applied to this device in steps of 0.5 V in the range of 16 V to 19.5 V. After no application for 0.2 seconds, the application was repeated under the condition of only one rectangular wave (rectangular pulse; 0.2 seconds) and no application (2 seconds). The peak current (peak current) and peak time (peak time) of the transient current (transient current) generated by this application were measured. The value of rotational viscosity was obtained from these measured values and the calculation formula (8) described on page 40 in the paper by M. Imai et al. The value of dielectric anisotropy necessary for this calculation was determined by the method described below using the element whose rotational viscosity was measured.
(5)光学異方性(屈折率異方性;Δn;25℃で測定):測定は、波長589nmの光を用い、接眼鏡に偏光板を取り付けたアッベ屈折計により行なった。主プリズムの表面を一方向にラビングしたあと、試料を主プリズムに滴下した。屈折率n∥は偏光の方向がラビングの方向と平行であるときに測定した。屈折率n⊥は偏光の方向がラビングの方向と垂直であるときに測定した。光学異方性の値は、Δn=n∥-n⊥、の式から計算した。 (5) Optical anisotropy (refractive index anisotropy; Δn; measured at 25 ° C.): Measurement was performed with an Abbe refractometer using a light having a wavelength of 589 nm and a polarizing plate attached to an eyepiece. After rubbing the surface of the main prism in one direction, the sample was dropped on the main prism. The refractive index n∥ was measured when the direction of polarized light was parallel to the direction of rubbing. The refractive index n⊥ was measured when the polarization direction was perpendicular to the rubbing direction. The value of optical anisotropy was calculated from the equation: Δn = n∥−n⊥.
(6)誘電率異方性(Δε;25℃で測定):2枚のガラス基板の間隔(セルギャップ)が9μmであり、そしてツイスト角が80度であるTN素子に試料を入れた。この素子にサイン波(10V、1kHz)を印加し、2秒後に液晶分子の長軸方向における誘電率(ε∥)を測定した。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の短軸方向における誘電率(ε⊥)を測定した。誘電率異方性の値は、Δε=ε∥-ε⊥、の式から計算した。 (6) Dielectric anisotropy (Δε; measured at 25 ° C.): A sample was put in a TN device in which the distance between two glass substrates (cell gap) was 9 μm and the twist angle was 80 degrees. Sine waves (10 V, 1 kHz) were applied to the device, and after 2 seconds, the dielectric constant (ε∥) in the major axis direction of the liquid crystal molecules was measured. Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, the dielectric constant (ε⊥) in the minor axis direction of the liquid crystal molecules was measured. The value of dielectric anisotropy was calculated from the equation: Δε = ε∥−ε⊥.
(7)しきい値電圧(Vth;25℃で測定;V):測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプであった。2枚のガラス基板の間隔(セルギャップ)が0.45/Δn(μm)であり、ツイスト角が80度であるノーマリーホワイトモード(normally white mode)のTN素子に試料を入れた。この素子に印加する電圧(32Hz、矩形波)は0Vから10Vまで0.02Vずつ段階的に増加させた。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%である電圧-透過率曲線を作成した。しきい値電圧は透過率が90%になったときの電圧で表した。 (7) Threshold voltage (Vth; measured at 25 ° C .; V): An LCD5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for the measurement. The light source was a halogen lamp. A sample was put in a normally white mode TN device in which the distance between two glass substrates (cell gap) was 0.45 / Δn (μm) and the twist angle was 80 degrees. The voltage (32 Hz, rectangular wave) applied to this element was increased stepwise from 0V to 10V by 0.02V. At this time, the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured. A voltage-transmittance curve was created in which the transmittance was 100% when the light amount reached the maximum and the transmittance was 0% when the light amount was the minimum. The threshold voltage was expressed as a voltage when the transmittance reached 90%.
(8)電圧保持率(VHR-1;25℃で測定;%):測定に用いたTN素子はポリイミド配向膜を有し、そして2枚のガラス基板の間隔(セルギャップ)は5μmであった。この素子は試料を入れたあと紫外線で硬化する接着剤で密閉した。このTN素子にパルス電圧(5Vで60マイクロ秒)を印加して充電した。減衰する電圧を高速電圧計で16.7ミリ秒のあいだ測定し、単位周期における電圧曲線と横軸との間の面積Aを求めた。面積Bは減衰しなかったときの面積であった。電圧保持率は面積Bに対する面積Aの百分率で表した。 (8) Voltage holding ratio (VHR-1; measured at 25 ° C .;%): The TN device used for the measurement had a polyimide alignment film, and the distance between two glass substrates (cell gap) was 5 μm. . This element was sealed with an adhesive that was cured with ultraviolet rays after the sample was placed. The TN device was charged by applying a pulse voltage (60 microseconds at 5 V). The decaying voltage was measured for 16.7 milliseconds with a high-speed voltmeter, and the area A between the voltage curve and the horizontal axis in a unit cycle was determined. Area B was the area when it was not attenuated. The voltage holding ratio was expressed as a percentage of area A with respect to area B.
(9)電圧保持率(VHR-2;80℃で測定;%):25℃の代わりに、80℃で測定した以外は、上記と同じ手順で電圧保持率を測定した。得られた値をVHR-2で表した。 (9) Voltage holding ratio (VHR-2; measured at 80 ° C .;%): The voltage holding ratio was measured in the same procedure as above except that it was measured at 80 ° C. instead of 25 ° C. The obtained value was expressed as VHR-2.
(10)電圧保持率(VHR-3;25℃で測定;%):紫外線を照射したあと、電圧保持率を測定し、紫外線に対する安定性を評価した。測定に用いたTN素子はポリイミド配向膜を有し、そしてセルギャップは5μmであった。この素子に試料を注入し、光を20分間照射した。光源は超高圧水銀ランプUSH-500D(ウシオ電機製)であり、素子と光源の間隔は20cmであった。VHR-3の測定では、16.7ミリ秒のあいだ減衰する電圧を測定した。大きなVHR-3を有する組成物は紫外線に対して大きな安定性を有する。VHR-3は90%以上が好ましく、95%以上がより好ましい。 (10) Voltage holding ratio (VHR-3; measured at 25 ° C .;%): After irradiation with ultraviolet rays, the voltage holding ratio was measured to evaluate the stability against ultraviolet rays. The TN device used for the measurement had a polyimide alignment film, and the cell gap was 5 μm. A sample was injected into this element and irradiated with light for 20 minutes. The light source was an ultra high pressure mercury lamp USH-500D (manufactured by USHIO), and the distance between the element and the light source was 20 cm. In the measurement of VHR-3, a decaying voltage was measured for 16.7 milliseconds. A composition having a large VHR-3 has a large stability to ultraviolet light. VHR-3 is preferably 90% or more, and more preferably 95% or more.
(11)電圧保持率(VHR-4;25℃で測定;%):試料を注入したTN素子を80℃の恒温槽内で500時間加熱したあと、電圧保持率を測定し、熱に対する安定性を評価した。VHR-4の測定では、16.7ミリ秒のあいだ減衰する電圧を測定した。大きなVHR-4を有する組成物は熱に対して大きな安定性を有する。 (11) Voltage holding ratio (VHR-4; measured at 25 ° C .;%): The TN device injected with the sample was heated in a constant temperature bath at 80 ° C. for 500 hours, and then the voltage holding ratio was measured to determine the stability against heat. Evaluated. In the measurement of VHR-4, a voltage decaying for 16.7 milliseconds was measured. A composition having a large VHR-4 has a large stability to heat.
(12)応答時間(τ;25℃で測定;ms):測定には大塚電子株式会社製のLCD5100型輝度計を用いた。光源はハロゲンランプであった。ローパス・フィルター(Low-pass filter)は5kHzに設定した。2枚のガラス基板の間隔(セルギャップ)が5.0μmであり、ツイスト角が80度であるノーマリーホワイトモード(normally white mode)のTN素子に試料を入れた。この素子に矩形波(60Hz、5V、0.5秒)を印加した。この際に、素子に垂直方向から光を照射し、素子を透過した光量を測定した。この光量が最大になったときが透過率100%であり、この光量が最小であったときが透過率0%であるとみなした。立ち上がり時間(τr:rise time;ミリ秒)は、透過率が90%から10%に変化するのに要した時間である。立ち下がり時間(τf:fall time;ミリ秒)は透過率10%から90%に変化するのに要した時間である。応答時間は、このようにして求めた立ち上がり時間と立ち下がり時間との和で表した。 (12) Response time (τ; measured at 25 ° C .; ms): An LCD5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for measurement. The light source was a halogen lamp. The low-pass filter was set to 5 kHz. A sample was placed in a normally white mode TN device in which the distance between two glass substrates (cell gap) was 5.0 μm and the twist angle was 80 degrees. A rectangular wave (60 Hz, 5 V, 0.5 seconds) was applied to this element. At this time, the device was irradiated with light from the vertical direction, and the amount of light transmitted through the device was measured. It was considered that the transmittance was 100% when the light amount was the maximum, and the transmittance was 0% when the light amount was the minimum. The rise time (τr: rise time; millisecond) is the time required for the transmittance to change from 90% to 10%. The fall time (τf: fall time; millisecond) is the time required to change the transmittance from 10% to 90%. The response time was expressed as the sum of the rise time and the fall time thus obtained.
(13)弾性定数(K;25℃で測定;pN):測定には横河・ヒューレットパッカード株式会社製のHP4284A型LCRメータを用いた。2枚のガラス基板の間隔(セルギャップ)が20μmである水平配向素子に試料を入れた。この素子に0ボルトから20ボルト電荷を印加し、静電容量および印加電圧を測定した。測定した静電容量(C)と印加電圧(V)の値を「液晶デバイスハンドブック」(日刊工業新聞社)、75頁にある式(2.98)、式(2.101)を用いてフィッティングし、式(2.99)からK11およびK33の値を得た。次に同171頁にある式(3.18)に、先ほど求めたK11およびK33の値を用いてK22を算出した。弾性定数は、このようにして求めたK11、K22、およびK33の平均値で表した。 (13) Elastic constant (K; measured at 25 ° C .; pN): An HP4284A LCR meter manufactured by Yokogawa-Hewlett-Packard Co., Ltd. was used for the measurement. A sample was put in a horizontal alignment element in which the distance between two glass substrates (cell gap) was 20 μm. A charge of 0 to 20 volts was applied to the device, and the capacitance and applied voltage were measured. Fitting the measured values of capacitance (C) and applied voltage (V) using “Liquid Crystal Device Handbook” (Nikkan Kogyo Shimbun), page 75, formula (2.98), formula (2.101) Thus, the values of K11 and K33 were obtained from the formula (2.99). Next, K22 was calculated from the equation (3.18) on page 171 using the values of K11 and K33 obtained earlier. The elastic constant was expressed as an average value of K11, K22, and K33 thus determined.
(14)比抵抗(ρ;25℃で測定;Ωcm):電極を備えた容器に試料1.0mLを注入した。この容器に直流電圧(10V)を印加し、10秒後の直流電流を測定した。比抵抗は次の式から算出した。(比抵抗)={(電圧)×(容器の電気容量)}/{(直流電流)×(真空の誘電率)}。 (14) Specific resistance (ρ; measured at 25 ° C .; Ωcm): A sample (1.0 mL) was poured into a container equipped with electrodes. A DC voltage (10 V) was applied to the container, and the DC current after 10 seconds was measured. The specific resistance was calculated from the following equation. (Resistivity) = {(Voltage) × (Capacity of container)} / {(DC current) × (Dielectric constant of vacuum)}.
(15)短軸方向における誘電率(ε⊥;25℃で測定):2枚のガラス基板の間隔(セルギャップ)が9μmであり、そしてツイスト角が80度であるTN素子に試料を入れた。この素子にサイン波(0.5V、1kHz)を印加し、2秒後に液晶分子の短軸方向における誘電率(ε⊥)を測定した。 (15) Dielectric constant in the minor axis direction (ε⊥; measured at 25 ° C.): A sample was put in a TN device in which the distance between two glass substrates (cell gap) was 9 μm and the twist angle was 80 degrees. . Sine waves (0.5 V, 1 kHz) were applied to the device, and after 2 seconds, the dielectric constant (ε⊥) in the minor axis direction of the liquid crystal molecules was measured.
(16)線残像(Line Image Sticking Parameter;LISP;%):液晶表示素子に電気的なストレスを与えることによって線残像を発生させた。線残像のある領域の輝度と残りの領域の輝度を測定した。線残像によって輝度が低下した割合を算出し、この割合によって線残像の大きさを表した。 (16) Line afterimage (Line Image Sticking Parameter; LISP;%): A line afterimage was generated by applying electrical stress to the liquid crystal display element. The brightness of the area with the line afterimage and the brightness of the remaining area were measured. The rate at which the luminance decreased due to the line afterimage was calculated, and the size of the line afterimage was represented by this rate.
(16a)輝度の測定:イメージング色彩輝度計(Radiant Zemax社製、PM-1433F-0)を用いて素子の画像を撮影した。この画像をソフトウエア(Prometric 9.1、Radiant Imaging社製)を用いて解析することによって素子の各領域の輝度を算出した。 (16a) Measurement of luminance: An image of the element was taken using an imaging color luminance meter (manufactured by RadiantianZemax, PM-1433F-0). The luminance of each region of the element was calculated by analyzing this image using software (Prometric 9.1, manufactured by Radiant Imaging).
(16b)ストレス電圧の設定:セルギャップが3.5μmであり、マトリクス構造を有するFFS素子(縦4セル×横4セルの16セル)に試料を入れ、この素子を紫外線で硬化する接着剤を用いて密閉した。偏光軸が直交するように、この素子の上面と下面にそれぞれ偏光板を配置した。この素子に光を照射し、電圧(矩形波、60Hz)を印加した。電圧は、0Vから7.5Vの範囲で0.1V毎に段階的に増加させ、各電圧での透過光の輝度を測定した。輝度が極大になったときの電圧をV255と略した。輝度がV255の21.6%になったとき(すなわち、127階調)の電圧をV127と略した。 (16b) Setting of stress voltage: A cell gap is 3.5 μm, a sample is put in an FFS element (16 cells of 4 vertical cells × 4 horizontal cells) having a matrix structure, and an adhesive that cures the element with ultraviolet rays is used. And sealed. Polarizers were arranged on the upper and lower surfaces of the element so that the polarization axes were orthogonal. The device was irradiated with light and a voltage (rectangular wave, 60 Hz) was applied. The voltage was increased stepwise by 0.1V in the range of 0V to 7.5V, and the brightness of transmitted light at each voltage was measured. The voltage when the luminance reached the maximum was abbreviated as V255. The voltage when the luminance was 21.6% of V255 (that is, 127 gradations) was abbreviated as V127.
(16c)ストレスの条件:素子に、60℃、23時間の条件でV255(矩形波、30Hz)と0.5V(矩形波、30Hz)を印加し、チェッカーパターンを表示させた。次に、V127(矩形波、0.25Hz)を印加し、露光時間4000ミリ秒の条件で輝度を測定した。 (16c) Stress conditions: V255 (rectangular wave, 30 Hz) and 0.5 V (rectangular wave, 30 Hz) were applied to the element under the conditions of 60 ° C. and 23 hours to display a checker pattern. Next, V127 (rectangular wave, 0.25 Hz) was applied, and the luminance was measured under an exposure time of 4000 milliseconds.
(16d)線残像の算出:16セルのうち、中央部の4セル(縦2セル×横2セル)を算出に用いた。この4セルを25領域(縦5セル×横5セル)に分割した。四隅にある4領域(縦2セル×横2セル)の平均輝度を輝度Aと略した。25領域から四隅の領域を除いた領域は、十字形であった。この十字形の領域から中央の交差領域を除いた4領域において、輝度の最小値を輝度Bと略した。線残像は次の式から算出した。(線残像)=(輝度A-輝度B)/輝度A×100. (16d) Calculation of line afterimage: Among 16 cells, 4 cells in the center (2 vertical cells × 2 horizontal cells) were used for the calculation. These 4 cells were divided into 25 regions (5 vertical cells × 5 horizontal cells). The average luminance of four regions at the four corners (vertical 2 cells × horizontal 2 cells) was abbreviated as luminance A. The area excluding the four corner areas from the 25 area was a cross. In the four areas excluding the central intersection area from the cross-shaped area, the minimum luminance value is abbreviated as luminance B. The line afterimage was calculated from the following equation. (Line afterimage) = (luminance A−luminance B) / luminance A × 100.
(17)拡がり性:添加物の拡がり性は、素子に電圧を印加し、輝度を測定することによって定性的に評価した。輝度の測定は、上記の(16a)と同様に行った。電圧(V127)の設定は、上記の(16b)と同様に行った。ただし、FFS素子の代わりにVA素子を用いた。輝度は次のように測定した。まず、素子に直流電圧(2V)を2分間印加した。次に、V127(矩形波、0.05Hz)を印加し、露光時間4000ミリ秒の条件で輝度を測定した。この結果から拡がり性を評価した。 (17) Spreadability: The spreadability of the additive was qualitatively evaluated by applying a voltage to the device and measuring the luminance. The measurement of luminance was performed in the same manner as (16a) above. The voltage (V127) was set in the same manner as (16b) above. However, a VA element was used instead of the FFS element. The luminance was measured as follows. First, a DC voltage (2 V) was applied to the device for 2 minutes. Next, V127 (rectangular wave, 0.05 Hz) was applied, and the luminance was measured under the condition of an exposure time of 4000 milliseconds. The spreadability was evaluated from this result.
 図1から3は、素子の写真であり、輝度の状態を示す。図1と図2では、輝度の大きさは互いに異なるが、輝度は全体的に均一である。これらは、拡がり性が良好であることを示す。図3では、上部の角に凸の曲線が観察され輝度が均一でない。これは、液晶組成物が、写真の下側にある注入口(図示しない)から素子の全体に注入されたが、組成物に含まれている添加物は、素子の全体に届かなかったことを示しており、拡がり性が不良であることを示す。 1 to 3 are photographs of the element, showing the state of brightness. In FIG. 1 and FIG. 2, the brightness is different from each other, but the brightness is uniform as a whole. These indicate that the spreadability is good. In FIG. 3, a convex curve is observed at the upper corner, and the luminance is not uniform. This is because the liquid crystal composition was injected into the entire device from the injection port (not shown) on the lower side of the photograph, but the additive contained in the composition did not reach the entire device. It shows that the spreadability is poor.
合成例1
 化合物(1-1-1)は、下記の経路で合成した。
Figure JPOXMLDOC01-appb-I000041
Synthesis example 1
Compound (1-1-1) was synthesized by the following route.
Figure JPOXMLDOC01-appb-I000041
第1工程:
 窒素雰囲気下、セバコイルクロリド(532.0g、2.225mol)、およびジエチルエーテル(1500ml)を反応器に入れて、-70℃に冷却した。そこへベンジルアルコール(158.8g、1.468mol)を1.5時間かけて滴下し、次いでトリエチルアミン(225.1g、2.225mol)を1時間かけて滴下した。室温まで昇温し、18時間撹拌した。反応混合物を0℃に冷却し、1N塩酸(500ml)を滴下した。有機層を分離し、水層をジエチルエーテルで抽出した。合わせた有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製した。展開溶媒には、まずトルエンを、次にトルエン/酢酸エチル=9/1(体積比)の混合溶媒を使った。ヘプタン/トルエン=1/1(体積比)の混合溶媒から再結晶して、化合物(T-1)(206.5g、収率31.7%)を得た。
First step:
Under a nitrogen atmosphere, sebacoyl chloride (532.0 g, 2.225 mol) and diethyl ether (1500 ml) were placed in a reactor and cooled to -70 ° C. Benzyl alcohol (158.8 g, 1.468 mol) was added dropwise thereto over 1.5 hours, and then triethylamine (225.1 g, 2.225 mol) was added dropwise over 1 hour. The mixture was warmed to room temperature and stirred for 18 hours. The reaction mixture was cooled to 0 ° C. and 1N hydrochloric acid (500 ml) was added dropwise. The organic layer was separated and the aqueous layer was extracted with diethyl ether. The combined organic layers were washed with saturated brine and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography. As the developing solvent, first, toluene was used, and then a mixed solvent of toluene / ethyl acetate = 9/1 (volume ratio) was used. Recrystallization from a mixed solvent of heptane / toluene = 1/1 (volume ratio) gave Compound (T-1) (206.5 g, yield 31.7%).
第2工程:
 窒素雰囲気下、化合物(T-1)(60.00g、204.8mmol)、4-ヒドロキシ-1,2,2,6,6-ペンタメチルピペリジン(36.83g、215.1mmol)、およびジクロロメタン(600ml)を反応器に入れて、0℃に冷却した。そこへDMAP(4-ジメチルアミノピリジン)(7.51g、61.44mmol)を加え、次いでDCC(N,N’-ジシクロヘキシルカルボジイミド)(46.48g、225.3mmol)を加えた。室温まで昇温し、24時間撹拌した。析出した無色固体を除去し、ろ液を飽和炭酸水素ナトリウム水溶液、水の順で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=8/2から0/10(体積比))で精製して、化合物(T-2)(69.44g、収率75.9%)を得た。
Second step:
Under a nitrogen atmosphere, compound (T-1) (60.00 g, 204.8 mmol), 4-hydroxy-1,2,2,6,6-pentamethylpiperidine (36.83 g, 215.1 mmol), and dichloromethane ( 600 ml) was placed in a reactor and cooled to 0 ° C. DMAP (4-dimethylaminopyridine) (7.51 g, 61.44 mmol) was added thereto, and then DCC (N, N′-dicyclohexylcarbodiimide) (46.48 g, 225.3 mmol) was added. The mixture was warmed to room temperature and stirred for 24 hours. The precipitated colorless solid was removed, and the filtrate was washed with a saturated aqueous sodium hydrogen carbonate solution and water in that order, and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (toluene / ethyl acetate = 8/2 to 0/10 (volume ratio)) to obtain compound (T-2) (69.44 g, yield). Rate 75.9%).
第3工程:
 化合物(T-2)(69.44g、155.5mmol)、20%水酸化パラジウム炭素(3.47g)、IPA(2-プロパノール)(700ml)を反応器に入れて、水素雰囲気下室温で18時間撹拌した。20%水酸化パラジウム炭素を除去し、ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(アセトン)で精製して、化合物(T-3)(55.01g、収率99.5%)を得た。
Third step:
Compound (T-2) (69.44 g, 155.5 mmol), 20% palladium hydroxide on carbon (3.47 g), IPA (2-propanol) (700 ml) was placed in a reactor, and the reaction was carried out at room temperature under a hydrogen atmosphere at room temperature. Stir for hours. 20% Palladium hydroxide carbon was removed, the filtrate was concentrated, and the residue was purified by silica gel column chromatography (acetone) to obtain compound (T-3) (55.01 g, yield 99.5%). It was.
第4工程:
 窒素雰囲気下、化合物(T-3)(56.43g、158.7mmol)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン(26.21g、166.7mmol)、およびジクロロメタン(600ml)を反応器に入れて、0℃に冷却した。そこへDMAP(5.82g、47.62mmol)を加え、次いでDCC(36.03g、174.6mmol)を加えた。室温まで昇温し、16時間撹拌した。析出した無色固体を除去し、ろ液を飽和炭酸水素ナトリウム水溶液、水の順で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルカラムクロマトグラフィー(アセトン)で精製した。ヘプタンから再結晶して、化合物(1-1-1)(25.51g、収率32.4%)を得た。
Fourth step:
Under nitrogen atmosphere, compound (T-3) (56.43 g, 158.7 mmol), 4-hydroxy-2,2,6,6-tetramethylpiperidine (26.21 g, 166.7 mmol), and dichloromethane (600 ml) Was placed in a reactor and cooled to 0 ° C. DMAP (5.82 g, 47.62 mmol) was added thereto, and then DCC (36.03 g, 174.6 mmol) was added. The mixture was warmed to room temperature and stirred for 16 hours. The precipitated colorless solid was removed, and the filtrate was washed with a saturated aqueous sodium hydrogen carbonate solution and water in that order, and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (acetone). Recrystallization from heptane gave compound (1-1-1) (25.51 g, yield 32.4%).
 H-NMR(ppm;CDCl3):δ5.19(tt,J=11.5Hz,J=4.2Hz,1H)、5.09(tt,J=11.7Hz,J=4.2Hz,1H)、2.27(t,J=7.5Hz,2H)、2.26(t,J=7.4Hz,2H)、2.24(s,3H)、1.91(ddd,J=10.9Hz,J=4.2Hz,J=1.4Hz,2H)、1.83(ddd,J=11.0Hz,J=4.2Hz,J=1.4Hz,2H)、1.59(quin,J=6.9Hz,4H)、1.47(dd,J=11.6Hz,J=11.6Hz,2H)、1.36-1.28(m,8H)、1.24(s,6H)、1.16(s,6H)、1.15(s,6H)、1.13(dd,J=11.7Hz,J=11.7Hz,2H)、1.07(s,6H)、0.88-0.50(br,1H). 1 H-NMR (ppm; CDCl 3 ): δ 5.19 (tt, J = 11.5 Hz, J = 4.2 Hz, 1H), 5.09 (tt, J = 11.7 Hz, J = 4.2 Hz, 1H), 2.27 (t, J = 7.5 Hz, 2H), 2.26 (t, J = 7.4 Hz, 2H), 2.24 (s, 3H), 1.91 (ddd, J = 10.9 Hz, J = 4.2 Hz, J = 1.4 Hz, 2H), 1.83 (ddd, J = 11.0 Hz, J = 4.2 Hz, J = 1.4 Hz, 2H), 1.59 ( quin, J = 6.9 Hz, 4H), 1.47 (dd, J = 11.6 Hz, J = 11.6 Hz, 2H), 1.36-1.28 (m, 8H), 1.24 (s , 6H), 1.16 (s, 6H), 1.15 (s, 6H), 1.13 (dd, J = 11.7 Hz, J = 11.7 Hz, 2H), .07 (s, 6H), 0.88-0.50 (br, 1H).
合成例2
 化合物(1-1-2)は、下記の経路で合成した。
Figure JPOXMLDOC01-appb-I000042
Synthesis example 2
Compound (1-1-2) was synthesized by the following route.
Figure JPOXMLDOC01-appb-I000042
第1工程:
 4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル・フリーラジカル(25.00g、145.1mmol)、およびt-ブチルアルコール(50ml)/水(25ml)を反応器に入れて、そこへノナナール(72.26g、508.0mmol)、および塩化銅(I)(0.36g、3.63mmol)を加えた。さらに、過酸化水素(30%水溶液;49.37g、435.4mmol)を1.5時間かけて滴下した後、室温で18時間撹拌した。反応混合物をヘプタンで抽出し、抽出液を10%アスコルビン酸水溶液、10%亜硫酸水素ナトリウム水溶液、1N水酸化ナトリウム水溶液、水、飽和食塩水の順で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘプタン/アセトン=8/1(体積比))で精製して、化合物(T-4)(25.00g、収率60.3%)を得た。
First step:
4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (25.00 g, 145.1 mmol) and t-butyl alcohol (50 ml) / water (25 ml) were placed in the reactor. To the solution, nonanal (72.26 g, 508.0 mmol) and copper (I) chloride (0.36 g, 3.63 mmol) were added. Further, hydrogen peroxide (30% aqueous solution; 49.37 g, 435.4 mmol) was added dropwise over 1.5 hours, and the mixture was stirred at room temperature for 18 hours. The reaction mixture was extracted with heptane, and the extract was washed with 10% ascorbic acid aqueous solution, 10% sodium hydrogensulfite aqueous solution, 1N sodium hydroxide aqueous solution, water and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / acetone = 8/1 (volume ratio)) to obtain compound (T-4) (25.00 g, yield 60.3%). )
第2工程:
 窒素雰囲気下、化合物(T-4)(2.56g、8.98mmol)、合成例1で得られた化合物(T-1)(2.63g、8.98mmol)、およびジクロロメタン(250ml)を反応器に入れて、0℃に冷却した。そこへDMAP(0.33g、2.69mmol)を加え、次いでDCC(2.04g、9.88mmol)を加えた。室温まで昇温し、22時間撹拌した。析出した無色固体を除去し、ろ液を飽和炭酸水素ナトリウム水溶液、水の順で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル=4/1(体積比))で精製して、化合物(T-5)(3.64g、収率72.4%)を得た。
Second step:
In a nitrogen atmosphere, the compound (T-4) (2.56 g, 8.98 mmol), the compound (T-1) obtained in Synthesis Example 1 (2.63 g, 8.98 mmol), and dichloromethane (250 ml) were reacted. Placed in a vessel and cooled to 0 ° C. DMAP (0.33 g, 2.69 mmol) was added thereto, and then DCC (2.04 g, 9.88 mmol) was added. The mixture was warmed to room temperature and stirred for 22 hours. The precipitated colorless solid was removed, and the filtrate was washed with a saturated aqueous sodium hydrogen carbonate solution and water in that order, and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / ethyl acetate = 4/1 (volume ratio)) to obtain compound (T-5) (3.64 g, yield 72.4). %).
第3工程:
 化合物(T-5)(3.64g、6.50mmol)、20%水酸化パラジウム炭素(0.18g)、およびトルエン(35ml)/IPA(35ml)を反応器に入れて、水素雰囲気下室温で18時間撹拌した。20%水酸化パラジウム炭素を除去し、ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル=4/1(体積比))で精製して、化合物(T-6)(2.40g、収率78.6%)を得た。
Third step:
Compound (T-5) (3.64 g, 6.50 mmol), 20% palladium hydroxide on carbon (0.18 g), and toluene (35 ml) / IPA (35 ml) were placed in a reactor and at room temperature under a hydrogen atmosphere. Stir for 18 hours. 20% Palladium hydroxide carbon was removed, the filtrate was concentrated, the residue was purified by silica gel column chromatography (heptane / ethyl acetate = 4/1 (volume ratio)), and compound (T-6) (2. 40 g, yield 78.6%).
第4工程:
 窒素雰囲気下、化合物(T-6)(2.83g、6.03mmol)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン(0.99g、6.33mmol)、およびジクロロメタン(50ml)を反応器に入れて、0℃に冷却した。そこへDMAP(0.22g、1.81mmol)を加え、次いでDCC(1.37g、6.63mmol)を加えた。室温まで昇温し、24時間撹拌した。析出した無色固体を除去し、ろ液を飽和炭酸水素ナトリウム水溶液、水の順で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製して、化合物(1-1-2)(1.62g、収率44.2%)を得た。
Fourth step:
Under nitrogen atmosphere, compound (T-6) (2.83 g, 6.03 mmol), 4-hydroxy-2,2,6,6-tetramethylpiperidine (0.99 g, 6.33 mmol), and dichloromethane (50 ml) Was placed in a reactor and cooled to 0 ° C. DMAP (0.22 g, 1.81 mmol) was added thereto, and then DCC (1.37 g, 6.63 mmol) was added. The mixture was warmed to room temperature and stirred for 24 hours. The precipitated colorless solid was removed, and the filtrate was washed with a saturated aqueous sodium hydrogen carbonate solution and water in that order, and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate) to obtain compound (1-1-2) (1.62 g, yield 44.2%).
 H-NMR(ppm;CDCl3):δ5.19(tt,J=11.4Hz,J=4.2Hz,1H)、5.01(tt,J=11.5Hz,J=4.4Hz,1H)、3.72(t,J=6.7Hz,2H)、2.27(t,J=7.5Hz,2H)、2.25(t,J=7.7Hz,2H)、1.91(dd,J=12.5Hz,J=4.2Hz,2H)、1.80(dd,J=11.1Hz,J=3.7Hz,2H)、1.61(quin,J=7.2Hz,4H)、1.56-1.48(m,4H)、1.37-1.28(m,18H)、1.24(s,6H)、1.18(s,12H)、1.15(s,6H)、1.14(dd,J=11.9Hz,J=11.9Hz,2H)、0.88(t,J=6.9Hz,3H)、0.85-0.65(br,1H). 1 H-NMR (ppm; CDCl 3 ): δ 5.19 (tt, J = 11.4 Hz, J = 4.2 Hz, 1H), 5.01 (tt, J = 11.5 Hz, J = 4.4 Hz, 1H), 3.72 (t, J = 6.7 Hz, 2H), 2.27 (t, J = 7.5 Hz, 2H), 2.25 (t, J = 7.7 Hz, 2H), 91 (dd, J = 12.5 Hz, J = 4.2 Hz, 2H), 1.80 (dd, J = 11.1 Hz, J = 3.7 Hz, 2H), 1.61 (quin, J = 7. 2Hz, 4H), 1.56-1.48 (m, 4H), 1.37-1.28 (m, 18H), 1.24 (s, 6H), 1.18 (s, 12H), 1 .15 (s, 6H), 1.14 (dd, J = 11.9 Hz, J = 11.9 Hz, 2H), 0.88 (t, J = 6.9 Hz, 3H), 0.8 -0.65 (br, 1H).
合成例3
 化合物(1-1-7)は、下記の経路で合成した。
Figure JPOXMLDOC01-appb-I000043
 
Synthesis example 3
Compound (1-1-7) was synthesized by the following route.
Figure JPOXMLDOC01-appb-I000043
第1工程:
 窒素雰囲気下、化合物(T-1)(10.00g、34.20mmol)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン(6.03g、38.8mmol)、DMAP・TFA(4-ジメチルアミノピリジントリフルオロ酢酸塩)(2.42g、10.2mmol)、およびジクロロメタン(100ml)を反応器に入れて、0℃に冷却した。そこへEDC・HCl(1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩)(8.51g、44.4mmol)を加えた。室温まで昇温し、24時間撹拌した。反応混合物を飽和炭酸水素ナトリウム水溶液、水の順で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルカラムクロマトグラフィー(アセトン)で精製して、化合物(T-7)(12.88g、収率87.1%)を得た。
First step:
In a nitrogen atmosphere, compound (T-1) (10.00 g, 34.20 mmol), 4-hydroxy-2,2,6,6-tetramethylpiperidine (6.03 g, 38.8 mmol), DMAP · TFA (4 -Dimethylaminopyridine trifluoroacetate salt (2.42 g, 10.2 mmol) and dichloromethane (100 ml) were charged to the reactor and cooled to 0 ° C. EDC.HCl (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride) (8.51 g, 44.4 mmol) was added thereto. The mixture was warmed to room temperature and stirred for 24 hours. The reaction mixture was washed with a saturated aqueous sodium hydrogen carbonate solution and water in that order, and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (acetone) to obtain compound (T-7) (12.88 g, yield 87.1%).
第2工程:
 化合物(T-7)(12.38g、28.68mmol)、20%水酸化パラジウム炭素(0.62g)、IPA(120ml)を反応器に入れて、水素雰囲気下室温で24時間撹拌した。20%水酸化パラジウム炭素を除去し、ろ液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(アセトン)で精製して、化合物(T-8)(8.58g、収率87.4%)を得た。
Second step:
Compound (T-7) (12.38 g, 28.68 mmol), 20% palladium hydroxide on carbon (0.62 g) and IPA (120 ml) were placed in a reactor and stirred at room temperature for 24 hours under a hydrogen atmosphere. 20% Palladium hydroxide carbon was removed, the filtrate was concentrated, and the residue was purified by silica gel column chromatography (acetone) to obtain compound (T-8) (8.58 g, yield 87.4%). It was.
第3工程:
 窒素雰囲気下、化合物(T-8)(4.30g、12.6mmol)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル・フリーラジカル(2.43g、14.1mmol)、DMAP・TFA(0.89g、3.8mmol)、およびジクロロメタン(40ml)を反応器に入れて、0℃に冷却した。そこへEDC・HCl(3.14g、16.4mmol)を加えた。室温まで昇温し、21時間撹拌した。反応混合物を飽和炭酸水素ナトリウム水溶液、水の順で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチルからアセトン)で精製した。ヘプタン/酢酸エチル=4/1(体積比)の混合溶媒から再結晶して、化合物(1-1-7)(5.46g、収率87.5%)を得た。
Third step:
Compound (T-8) (4.30 g, 12.6 mmol), 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (2.43 g, 14.1 mmol) under nitrogen atmosphere , DMAP · TFA (0.89 g, 3.8 mmol), and dichloromethane (40 ml) were charged to the reactor and cooled to 0 ° C. EDC.HCl (3.14 g, 16.4 mmol) was added thereto. The mixture was warmed to room temperature and stirred for 21 hours. The reaction mixture was washed with a saturated aqueous sodium hydrogen carbonate solution and water in that order, and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate to acetone). Recrystallization from a mixed solvent of heptane / ethyl acetate = 4/1 (volume ratio) gave compound (1-1-7) (5.46 g, yield 87.5%).
 融点:74.0℃. Melting point: 74.0 ° C.
合成例4
 化合物(1-1-8)は、下記の経路で合成した。
Figure JPOXMLDOC01-appb-I000044
Synthesis example 4
Compound (1-1-8) was synthesized by the following route.
Figure JPOXMLDOC01-appb-I000044
第1工程:
 窒素雰囲気下、無水コハク酸(20.05g、200.4mmol)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン(30.00g、190.8mmol)、DMAP(2.33g、19.1mmol)、およびトルエン(500ml)を反応器に入れて、還流下で5時間撹拌した。室温まで冷却した後、析出物をろ取し、テトラヒドロフランで析出物を十分に洗浄して、化合物(T-9)(47.26g、収率96.3%)を得た。
First step:
Under a nitrogen atmosphere, succinic anhydride (20.05 g, 200.4 mmol), 4-hydroxy-2,2,6,6-tetramethylpiperidine (30.00 g, 190.8 mmol), DMAP (2.33 g, 19. 1 mmol) and toluene (500 ml) were added to the reactor and stirred at reflux for 5 hours. After cooling to room temperature, the precipitate was collected by filtration and washed thoroughly with tetrahydrofuran to obtain Compound (T-9) (47.26 g, yield 96.3%).
第2工程:
 窒素雰囲気下、化合物(T-9)(4.00g、15.5mmol)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル・フリーラジカル(3.01g、17.5mmol)、DMAP・TFA(1.10g、4.66mmol)、およびジクロロメタン(40ml)を反応器に入れて、0℃に冷却した。そこへEDC・HCl(3.87g、20.21mmol)を加えた。室温まで昇温し、17時間撹拌した。反応混合物を飽和炭酸水素ナトリウム水溶液、水の順で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液を減圧下で濃縮し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチルからアセトン)で精製した。ヘプタン/酢酸エチル=2/1(体積比)の混合溶媒から再結晶して、化合物(1-1-8)(3.46g、収率54.1%)を得た。
Second step:
Compound (T-9) (4.00 g, 15.5 mmol), 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (3.01 g, 17.5 mmol) under nitrogen atmosphere , DMAP.TFA (1.10 g, 4.66 mmol), and dichloromethane (40 ml) were charged to the reactor and cooled to 0 ° C. EDC · HCl (3.87 g, 20.21 mmol) was added thereto. The mixture was warmed to room temperature and stirred for 17 hours. The reaction mixture was washed with a saturated aqueous sodium hydrogen carbonate solution and water in that order, and dried over anhydrous magnesium sulfate. The solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate to acetone). Recrystallization from a mixed solvent of heptane / ethyl acetate = 2/1 (volume ratio) gave Compound (1-1-8) (3.46 g, yield 54.1%).
 融点:105.2℃. Melting point: 105.2 ° C.
 組成物の実施例を以下に示す。成分化合物は、下記の表3の定義に基づいて記号によって表した。表3において、1,4-シクロヘキシレンに関する立体配置はトランスである。記号化された化合物の後にあるかっこ内の番号は、化合物が属する化学式を表す。(-)の記号はその他の液晶性化合物を意味する。液晶性化合物の割合(百分率)は、添加物を含まない液晶組成物の質量に基づいた質量百分率(質量%)である。最後に、組成物の特性値をまとめた。 Examples of the composition are shown below. The component compounds were represented by symbols based on the definitions in Table 3 below. In Table 3, the configuration regarding 1,4-cyclohexylene is trans. The number in parentheses after the symbolized compound represents the chemical formula to which the compound belongs. The symbol (−) means other liquid crystal compounds. The ratio (percentage) of the liquid crystal compound is a mass percentage (% by mass) based on the mass of the liquid crystal composition containing no additive. Finally, the characteristic values of the composition are summarized.
Figure JPOXMLDOC01-appb-I000045
 
Figure JPOXMLDOC01-appb-I000045
 
[実施例1]
3-HHXB(F,F)-CF3       (2-5)    12%
3-GB(F,F)XB(F,F)-F    (2-14)    8%
3-GBB(F)B(F,F)-F      (2-22)    3%
4-GBB(F)B(F,F)-F      (2-22)    2%
3-HBBXB(F,F)-F        (2-23)    3%
4-GB(F)B(F,F)XB(F,F)-F
                      (2-27)    5%
5-GB(F)B(F,F)XB(F,F)-F
                      (2-27)    5%
5-BB(F)B(F,F)XB(F,F)-F
                      (2-29)   12%
3-HH-V                (3-1)    23%
3-HH-V1               (3-1)    10%
1V2-HH-3              (3-1)     9%
V2-HHB-1              (3-5)     8%
 上記の組成物(1)を調製した。この組成物(1)に化合物(1-1-1)を0.15質量%の割合で添加した。測定(16)に記載した方法にしたがって線残像(LISP)を測定したところ、2.3%であった。
Figure JPOXMLDOC01-appb-I000046
 
NI=88.8℃;Tc<-20℃;Δn=0.101;Δε=13.4;Vth=1.34V;η=20.6mPa・s;γ1=123.7mPa・s.
[Example 1]
3-HHXB (F, F) -CF3 (2-5) 12%
3-GB (F, F) XB (F, F) -F (2-14) 8%
3-GBB (F) B (F, F) -F (2-22) 3%
4-GBB (F) B (F, F) -F (2-22) 2%
3-HBBBXB (F, F) -F (2-23) 3%
4-GB (F) B (F, F) XB (F, F) -F
(2-27) 5%
5-GB (F) B (F, F) XB (F, F) -F
(2-27) 5%
5-BB (F) B (F, F) XB (F, F) -F
(2-29) 12%
3-HH-V (3-1) 23%
3-HH-V1 (3-1) 10%
1V2-HH-3 (3-1) 9%
V2-HHB-1 (3-5) 8%
The above composition (1) was prepared. To the composition (1), the compound (1-1-1) was added at a ratio of 0.15% by mass. When a line afterimage (LISP) was measured according to the method described in Measurement (16), it was 2.3%.
Figure JPOXMLDOC01-appb-I000046

NI = 88.8 ° C .; Tc <−20 ° C .; Δn = 0.101; Δε = 13.4; Vth = 1.34 V; η = 20.6 mPa · s;
[比較例1]
 実施例1に記載した組成物(1)に比較化合物(A-1)を0.15質量%の割合で添加した。測定(16)に記載した方法による線残像(LISP)は、3.0%であった。実施例1の結果と共に、表4にまとめた。表4から、比較化合物(A-1)よりも化合物(1-1-1)の方が線残像の値が低いことから、線残像を抑制する効果が高いことが分かる。線残像を抑制する効果が高いという特性は、長時間の素子の使用に求められる特性である。したがって、本発明の組成物のほうが優れていることが分かる。
Figure JPOXMLDOC01-appb-I000047
 
[Comparative Example 1]
The comparative compound (A-1) was added to the composition (1) described in Example 1 at a ratio of 0.15% by mass. The line afterimage (LISP) by the method described in measurement (16) was 3.0%. The results are shown in Table 4 together with the results of Example 1. From Table 4, it can be seen that the effect of suppressing the line afterimage is higher in the compound (1-1-1) than in the comparative compound (A-1) because the value of the line afterimage is lower. The characteristic that the effect of suppressing the line afterimage is high is a characteristic required for using the element for a long time. Therefore, it can be seen that the composition of the present invention is superior.
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-I000048
 
Figure JPOXMLDOC01-appb-I000048
 
[実施例2]
 実施例1に記載した組成物(1)に化合物(1-1-2)を0.15質量%の割合で添加した。下限温度(Tc)は、<-20℃であった。この結果は、実施例1の場合と同一であった。
Figure JPOXMLDOC01-appb-I000049
 
[Example 2]
Compound (1-1-2) was added to the composition (1) described in Example 1 at a ratio of 0.15% by mass. The lower limit temperature (Tc) was <−20 ° C. This result was the same as in Example 1.
Figure JPOXMLDOC01-appb-I000049
[比較例2]
 実施例1に記載した組成物(1)に、下記の比較化合物(A-2)を0.15質量%の割合で添加した。下限温度(Tc)は、<0℃であった。実施例1、2の結果と共に、表5にまとめた。組成物に対する添加物の溶解性が良い場合には、ネマチック相を維持しやすい。溶解性が劣る場合には、結晶(またはスメクチック相)に転移しやすい。この方法によって、低温における溶解性を比較することができる。表5から、比較化合物に比べて化合物(1)の方が溶解性の点で優れていることが分かる。
Figure JPOXMLDOC01-appb-I000050
 
[Comparative Example 2]
The following comparative compound (A-2) was added to the composition (1) described in Example 1 at a ratio of 0.15% by mass. The lower limit temperature (Tc) was <0 ° C. The results are summarized in Table 5 together with the results of Examples 1 and 2. If the solubility of the additive in the composition is good, it is easy to maintain the nematic phase. When the solubility is inferior, it tends to transition to a crystal (or a smectic phase). By this method, solubility at low temperatures can be compared. From Table 5, it can be seen that the compound (1) is superior in solubility compared to the comparative compound.
Figure JPOXMLDOC01-appb-I000050
Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-I000051
[実施例3]
3-HHXB(F,F)-CF3       (2-5)    12%
3-GB(F,F)XB(F,F)-F    (2-14)    8%
3-GBB(F)B(F,F)-F      (2-22)    3%
4-GBB(F)B(F,F)-F      (2-22)    2%
3-HBBXB(F,F)-F        (2-23)    3%
4-GB(F)B(F,F)XB(F,F)-F
                      (2-27)    5%
5-GB(F)B(F,F)XB(F,F)-F
                      (2-27)    5%
5-BB(F)B(F,F)XB(F,F)-F
                      (2-29)   12%
3-HH-V                (3-1)    23%
3-HH-V1               (3-1)    10%
1V2-HH-3              (3-1)     9%
V2-HHB-1              (3-5)     8%
 この組成物に化合物(1-1-3)を0.15質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000052
 
NI=88.8℃;Tc<-20℃;Δn=0.101;Δε=13.4;Vth=1.34V;η=20.6mPa・s;γ1=123.7mPa・s;LISP=2.4%.
[Example 3]
3-HHXB (F, F) -CF3 (2-5) 12%
3-GB (F, F) XB (F, F) -F (2-14) 8%
3-GBB (F) B (F, F) -F (2-22) 3%
4-GBB (F) B (F, F) -F (2-22) 2%
3-HBBBXB (F, F) -F (2-23) 3%
4-GB (F) B (F, F) XB (F, F) -F
(2-27) 5%
5-GB (F) B (F, F) XB (F, F) -F
(2-27) 5%
5-BB (F) B (F, F) XB (F, F) -F
(2-29) 12%
3-HH-V (3-1) 23%
3-HH-V1 (3-1) 10%
1V2-HH-3 (3-1) 9%
V2-HHB-1 (3-5) 8%
To this composition, the compound (1-1-3) was added at a ratio of 0.15% by mass.
Figure JPOXMLDOC01-appb-I000052

NI = 88.8 ° C .; Tc <−20 ° C .; Δn = 0.101; Δε = 13.4; Vth = 1.34 V; η = 20.6 mPa · s; γ1 = 1123.7 mPa · s; LISP = 2 4%.
[実施例4]
3-HHB(F,F)-F          (2-2)    10%
3-HHXB(F,F)-F         (2-4)     2%
3-GHB(F,F)-F          (2-7)     4%
3-BB(F)B(F,F)-F       (2-15)    7%
3-BB(F,F)XB(F,F)-F    (2-18)   14%
4-BB(F)B(F,F)XB(F,F)-F
                      (2-29)   10%
5-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    6%
3-HH-V                (3-1)    18%
3-HH-4                (3-1)    11%
5-HB-O2               (3-2)     2%
3-HHB-1               (3-5)     5%
3-HHB-3               (3-5)     5%
3-HHB-O1              (3-5)     6%
 この組成物に化合物(1-1-1)を0.10質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000053
 
NI=78.2℃;Tc<-20℃;Δn=0.108;Δε=10.4;Vth=1.35V;η=17.8mPa・s;γ1=79.9mPa・s;LISP=2.4%.
[Example 4]
3-HHB (F, F) -F (2-2) 10%
3-HHXB (F, F) -F (2-4) 2%
3-GHB (F, F) -F (2-7) 4%
3-BB (F) B (F, F) -F (2-15) 7%
3-BB (F, F) XB (F, F) -F (2-18) 14%
4-BB (F) B (F, F) XB (F, F) -F
(2-29) 10%
5-BB (F) B (F, F) XB (F, F) -F
(2-29) 6%
3-HH-V (3-1) 18%
3-HH-4 (3-1) 11%
5-HB-O2 (3-2) 2%
3-HHB-1 (3-5) 5%
3-HHB-3 (3-5) 5%
3-HHB-O1 (3-5) 6%
To this composition, the compound (1-1-1) was added at a ratio of 0.10% by mass.
Figure JPOXMLDOC01-appb-I000053

NI = 78.2 ° C .; Tc <−20 ° C .; Δn = 0.108; Δε = 10.4; Vth = 1.35V; η = 17.8 mPa · s; γ1 = 79.9 mPa · s; LISP = 2 4%.
[実施例5]
3-HHB(F,F)-F          (2-2)    10%
3-HHXB(F,F)-F         (2-4)     2%
3-GHB(F,F)-F          (2-7)     4%
3-BB(F)B(F,F)-F       (2-15)    7%
3-BB(F,F)XB(F,F)-F    (2-18)   14%
4-BB(F)B(F,F)XB(F,F)-F
                      (2-29)   10%
5-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    6%
3-HH-V                (3-1)    18%
3-HH-4                (3-1)    11%
5-HB-O2               (3-2)     2%
3-HHB-1               (3-5)     5%
3-HHB-3               (3-5)     5%
3-HHB-O1              (3-5)     6%
 この組成物に化合物(1-1-3)を0.10質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000054
 
NI=78.1℃;Tc<-20℃;Δn=0.108;Δε=10.4;Vth=1.35V;η=17.8mPa・s;γ1=79.9mPa・s;LISP=2.5%.
[Example 5]
3-HHB (F, F) -F (2-2) 10%
3-HHXB (F, F) -F (2-4) 2%
3-GHB (F, F) -F (2-7) 4%
3-BB (F) B (F, F) -F (2-15) 7%
3-BB (F, F) XB (F, F) -F (2-18) 14%
4-BB (F) B (F, F) XB (F, F) -F
(2-29) 10%
5-BB (F) B (F, F) XB (F, F) -F
(2-29) 6%
3-HH-V (3-1) 18%
3-HH-4 (3-1) 11%
5-HB-O2 (3-2) 2%
3-HHB-1 (3-5) 5%
3-HHB-3 (3-5) 5%
3-HHB-O1 (3-5) 6%
The compound (1-1-3) was added to this composition at a ratio of 0.10% by mass.
Figure JPOXMLDOC01-appb-I000054

NI = 78.1 ° C .; Tc <−20 ° C .; Δn = 0.108; Δε = 10.4; Vth = 1.35V; η = 17.8 mPa · s; γ1 = 79.9 mPa · s; LISP = 2 .5%.
[実施例6]
3-HHXB(F,F)-F         (2-4)     6%
3-BB(F,F)XB(F,F)-F    (2-18)   13%
3-HHBB(F,F)-F         (2-19)    4%
4-HHBB(F,F)-F         (2-19)    5%
3-HBBXB(F,F)-F        (2-23)    3%
3-BB(F)B(F,F)XB(F)-F  (2-28)    2%
4-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    8%
5-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    7%
3-HH-V                (3-1)    44%
V-HHB-1               (3-5)     6%
2-BB(F)B-3            (3-8)     2%
 この組成物に化合物(1-1-1)を0.10質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000055
 
NI=79.6℃;Tc<-20℃;Δn=0.106;Δε=8.5;Vth=1.45V;η=11.6mPa・s;γ1=60.0mPa・s;LISP=2.3%.
[Example 6]
3-HHXB (F, F) -F (2-4) 6%
3-BB (F, F) XB (F, F) -F (2-18) 13%
3-HHBB (F, F) -F (2-19) 4%
4-HHBB (F, F) -F (2-19) 5%
3-HBBBXB (F, F) -F (2-23) 3%
3-BB (F) B (F, F) XB (F) -F (2-28) 2%
4-BB (F) B (F, F) XB (F, F) -F
(2-29) 8%
5-BB (F) B (F, F) XB (F, F) -F
(2-29) 7%
3-HH-V (3-1) 44%
V-HHB-1 (3-5) 6%
2-BB (F) B-3 (3-8) 2%
To this composition, the compound (1-1-1) was added at a ratio of 0.10% by mass.
Figure JPOXMLDOC01-appb-I000055

NI = 79.6 ° C .; Tc <−20 ° C .; Δn = 0.106; Δε = 8.5; Vth = 1.45 V; η = 11.6 mPa · s; γ1 = 60.0 mPa · s; LISP = 2 .3%
[実施例7]
5-HXB(F,F)-F          (2-1)     3%
3-HHXB(F,F)-F         (2-4)     3%
3-HHXB(F,F)-CF3       (2-5)     3%
3-HGB(F,F)-F          (2-6)     3%
3-HB(F)B(F,F)-F       (2-9)     5%
3-BB(F,F)XB(F,F)-F    (2-18)    6%
3-HHBB(F,F)-F         (2-19)    6%
5-BB(F)B(F,F)XB(F)B(F,F)-F
                      (2-31)    2%
3-BB(2F,3F)XB(F,F)-F  (2-32)    4%
3-B(2F,3F)BXB(F,F)-F  (2-33)    5%
3-HHB(F,F)XB(F,F)-F   (2)       4%
3-HB-CL               (2)       3%
3-HHB-OCF3            (2)       3%
3-HH-V                (3-1)    22%
3-HH-V1               (3-1)    10%
5-HB-O2               (3-2)     5%
3-HHEH-3              (3-4)     3%
3-HBB-2               (3-6)     7%
5-B(F)BB-3            (3-7)     3%
この組成物に化合物(1-1-1)を0.10質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000056
 
NI=71.2℃;Tc<-20℃;Δn=0.099;Δε=6.1;Vth=1.74V;η=13.2mPa・s;γ1=59.3mPa・s;LISP=2.5%.
[Example 7]
5-HXB (F, F) -F (2-1) 3%
3-HHXB (F, F) -F (2-4) 3%
3-HHXB (F, F) -CF3 (2-5) 3%
3-HGB (F, F) -F (2-6) 3%
3-HB (F) B (F, F) -F (2-9) 5%
3-BB (F, F) XB (F, F) -F (2-18) 6%
3-HHBB (F, F) -F (2-19) 6%
5-BB (F) B (F, F) XB (F) B (F, F) -F
(2-31) 2%
3-BB (2F, 3F) XB (F, F) -F (2-32) 4%
3-B (2F, 3F) BXB (F, F) -F (2-33) 5%
3-HHB (F, F) XB (F, F) -F (2) 4%
3-HB-CL (2) 3%
3-HHB-OCF3 (2) 3%
3-HH-V (3-1) 22%
3-HH-V1 (3-1) 10%
5-HB-O2 (3-2) 5%
3-HHEH-3 (3-4) 3%
3-HBB-2 (3-6) 7%
5-B (F) BB-3 (3-7) 3%
To this composition, the compound (1-1-1) was added at a ratio of 0.10% by mass.
Figure JPOXMLDOC01-appb-I000056

NI = 71.2 ° C .; Tc <−20 ° C .; Δn = 0.099; Δε = 6.1; Vth = 1.74 V; η = 13.2 mPa · s; γ1 = 59.3 mPa · s; LISP = 2 .5%.
[実施例8]
5-HXB(F,F)-F          (2-1)     6%
3-HHXB(F,F)-F         (2-4)     6%
V-HB(F)B(F,F)-F       (2-9)     5%
3-HHB(F)B(F,F)-F      (2-20)    7%
2-BB(F)B(F,F)XB(F)-F  (2-29)    3%
3-BB(F)B(F,F)XB(F)-F  (2-29)    3%
4-BB(F)B(F,F)XB(F)-F  (2-29)    4%
5-HB-CL               (2)       5%
2-HH-5                (3-1)     8%
3-HH-V                (3-1)    10%
3-HH-V1               (3-1)     7%
4-HH-V                (3-1)    10%
4-HH-V1               (3-1)     8%
5-HB-O2               (3-2)     7%
4-HHEH-3              (3-4)     3%
1-BB(F)B-2V           (3-8)     3%
1O1-HBBH-3            (-)       5%
この組成物に化合物(1-1-4)を0.10質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000057
 
NI=78.5℃;Tc<-20℃;Δn=0.095;Δε=3.4;Vth=1.50V;η=8.4mPa・s;γ1=54.2mPa・s;LISP=2.5%.
[Example 8]
5-HXB (F, F) -F (2-1) 6%
3-HHXB (F, F) -F (2-4) 6%
V-HB (F) B (F, F) -F (2-9) 5%
3-HHB (F) B (F, F) -F (2-20) 7%
2-BB (F) B (F, F) XB (F) -F (2-29) 3%
3-BB (F) B (F, F) XB (F) -F (2-29) 3%
4-BB (F) B (F, F) XB (F) -F (2-29) 4%
5-HB-CL (2) 5%
2-HH-5 (3-1) 8%
3-HH-V (3-1) 10%
3-HH-V1 (3-1) 7%
4-HH-V (3-1) 10%
4-HH-V1 (3-1) 8%
5-HB-O2 (3-2) 7%
4-HHEH-3 (3-4) 3%
1-BB (F) B-2V (3-8) 3%
1O1-HBBH-3 (-) 5%
Compound (1-1-4) was added to this composition at a ratio of 0.10% by mass.
Figure JPOXMLDOC01-appb-I000057

NI = 78.5 ° C .; Tc <−20 ° C .; Δn = 0.095; Δε = 3.4; Vth = 1.50 V; η = 8.4 mPa · s; γ1 = 54.2 mPa · s; LISP = 2 .5%.
[実施例9]
3-HHXB(F,F)-F         (2-4)     3%
3-BBXB(F,F)-F         (2-17)    3%
3-BB(F,F)XB(F,F)-F    (2-18)    8%
3-HHBB(F,F)-F         (2-19)    5%
4-HHBB(F,F)-F         (2-19)    4%
3-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    3%
4-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    6%
5-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    5%
3-HH-V                (3-1)    30%
3-HH-V1               (3-1)     5%
3-HHB-O1              (3-5)     2%
V-HHB-1               (3-5)     5%
2-BB(F)B-3            (3-8)     6%
F3-HH-V               (-)      15%
この組成物に化合物(1-1-1)を0.10質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000058
 
NI=80.2℃;Tc<-20℃;Δn=0.106;Δε=5.8;Vth=1.40V;η=11.6mPa・s;γ1=61.0mPa・s;LISP=2.3%.
[Example 9]
3-HHXB (F, F) -F (2-4) 3%
3-BBXB (F, F) -F (2-17) 3%
3-BB (F, F) XB (F, F) -F (2-18) 8%
3-HHBB (F, F) -F (2-19) 5%
4-HHBB (F, F) -F (2-19) 4%
3-BB (F) B (F, F) XB (F, F) -F
(2-29) 3%
4-BB (F) B (F, F) XB (F, F) -F
(2-29) 6%
5-BB (F) B (F, F) XB (F, F) -F
(2-29) 5%
3-HH-V (3-1) 30%
3-HH-V1 (3-1) 5%
3-HHB-O1 (3-5) 2%
V-HHB-1 (3-5) 5%
2-BB (F) B-3 (3-8) 6%
F3-HH-V (-) 15%
To this composition, the compound (1-1-1) was added at a ratio of 0.10% by mass.
Figure JPOXMLDOC01-appb-I000058

NI = 80.2 ° C .; Tc <−20 ° C .; Δn = 0.106; Δε = 5.8; Vth = 1.40 V; η = 11.6 mPa · s; γ1 = 61.0 mPa · s; LISP = 2 .3%
[実施例10]
3-HGB(F,F)-F          (2-6)     3%
5-GHB(F,F)-F          (2-7)     4%
3-GB(F,F)XB(F,F)-F    (2-14)    5%
3-BB(F)B(F,F)-CF3     (2-16)    2%
3-HHBB(F,F)-F         (2-19)    4%
3-GBB(F)B(F,F)-F      (2-22)    2%
2-dhBB(F,F)XB(F,F)-F  (2-25)    4%
3-GB(F)B(F,F)XB(F,F)-F
                      (2-27)    3%
3-HGB(F,F)XB(F,F)-F   (2)       5%
7-HB(F,F)-F           (2)       3%
2-HH-3                (3-1)    14%
2-HH-5                (3-1)     4%
3-HH-V                (3-1)    26%
1V2-HH-3              (3-1)     5%
1V2-BB-1              (3-3)     3%
2-BB(F)B-3            (3-8)     3%
3-HB(F)HH-2           (3-10)    4%
5-HBB(F)B-2           (3-13)    6%
この組成物に化合物(1-1-1)を0.12質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000059
 
NI=78.2℃;Tc<-20℃;Δn=0.094;Δε=5.6;Vth=1.45V;η=11.5mPa・s;γ1=61.7mPa・s;LISP=2.3%.
[Example 10]
3-HGB (F, F) -F (2-6) 3%
5-GHB (F, F) -F (2-7) 4%
3-GB (F, F) XB (F, F) -F (2-14) 5%
3-BB (F) B (F, F) -CF3 (2-16) 2%
3-HHBB (F, F) -F (2-19) 4%
3-GBB (F) B (F, F) -F (2-22) 2%
2-dhBB (F, F) XB (F, F) -F (2-25) 4%
3-GB (F) B (F, F) XB (F, F) -F
(2-27) 3%
3-HGB (F, F) XB (F, F) -F (2) 5%
7-HB (F, F) -F (2) 3%
2-HH-3 (3-1) 14%
2-HH-5 (3-1) 4%
3-HH-V (3-1) 26%
1V2-HH-3 (3-1) 5%
1V2-BB-1 (3-3) 3%
2-BB (F) B-3 (3-8) 3%
3-HB (F) HH-2 (3-10) 4%
5-HBB (F) B-2 (3-13) 6%
Compound (1-1-1) was added to the composition at a ratio of 0.12% by mass.
Figure JPOXMLDOC01-appb-I000059

NI = 78.2 ° C .; Tc <−20 ° C .; Δn = 0.094; Δε = 5.6; Vth = 1.45 V; η = 11.5 mPa · s; γ1 = 61.7 mPa · s; LISP = 2 .3%
[実施例11]
3-HBB(F,F)-F          (2-8)     5%
5-HBB(F,F)-F          (2-8)     4%
3-BB(F)B(F,F)-F       (2-15)    3%
3-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    3%
4-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    5%
3-BB(F,F)XB(F)B(F,F)-F
                      (2-30)    3%
5-BB(F)B(F,F)XB(F)B(F,F)-F
                      (2-31)    4%
3-HH2BB(F,F)-F        (2)       3%
4-HH2BB(F,F)-F        (2)       3%
2-HH-5                (3-1)     8%
3-HH-V                (3-1)    25%
3-HH-V1               (3-1)     7%
4-HH-V1               (3-1)     6%
5-HB-O2               (3-2)     5%
7-HB-1                (3-2)     5%
VFF-HHB-O1            (3-5)     8%
VFF-HHB-1             (3-5)     3%
この組成物に化合物(1-1-1)を0.15質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000060
 
NI=79.8℃;Tc<-20℃;Δn=0.101;Δε=4.6;Vth=1.71V;η=11.0mPa・s;γ1=47.2mPa・s;LISP=2.3%.
[Example 11]
3-HBB (F, F) -F (2-8) 5%
5-HBB (F, F) -F (2-8) 4%
3-BB (F) B (F, F) -F (2-15) 3%
3-BB (F) B (F, F) XB (F, F) -F
(2-29) 3%
4-BB (F) B (F, F) XB (F, F) -F
(2-29) 5%
3-BB (F, F) XB (F) B (F, F) -F
(2-30) 3%
5-BB (F) B (F, F) XB (F) B (F, F) -F
(2-31) 4%
3-HH2BB (F, F) -F (2) 3%
4-HH2BB (F, F) -F (2) 3%
2-HH-5 (3-1) 8%
3-HH-V (3-1) 25%
3-HH-V1 (3-1) 7%
4-HH-V1 (3-1) 6%
5-HB-O2 (3-2) 5%
7-HB-1 (3-2) 5%
VFF-HHB-O1 (3-5) 8%
VFF-HHB-1 (3-5) 3%
Compound (1-1-1) was added to the composition at a ratio of 0.15% by mass.
Figure JPOXMLDOC01-appb-I000060

NI = 79.8 ° C .; Tc <−20 ° C .; Δn = 0.101; Δε = 4.6; Vth = 1.71 V; η = 11.0 mPa · s; γ1 = 47.2 mPa · s; LISP = 2 .3%
[実施例12]
3-HHB(F,F)-F          (2-2)     8%
3-GB(F)B(F)-F         (2-11)    2%
3-GB(F)B(F,F)-F       (2-12)    3%
3-BB(F,F)XB(F,F)-F    (2-18)    8%
3-GB(F)B(F,F)XB(F,F)-F
                      (2-27)    6%
5-GB(F)B(F,F)XB(F,F)-F
                      (2-27)    5%
3-HH-V                (3-1)    30%
3-HH-V1               (3-1)    10%
1V2-HH-3              (3-1)     8%
3-HH-VFF              (3-1)     8%
V2-BB-1               (3-3)     2%
5-HB(F)BH-3           (3-12)    5%
5-HBBH-3              (3)       5%
この組成物に化合物(1-1-1)を0.10質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000061
 
NI=78.4℃;Tc<-20℃;Δn=0.088;Δε=5.6;Vth=1.85V;η=13.9mPa・s;γ1=66.9mPa・s;LISP=2.3%.
[Example 12]
3-HHB (F, F) -F (2-2) 8%
3-GB (F) B (F) -F (2-11) 2%
3-GB (F) B (F, F) -F (2-12) 3%
3-BB (F, F) XB (F, F) -F (2-18) 8%
3-GB (F) B (F, F) XB (F, F) -F
(2-27) 6%
5-GB (F) B (F, F) XB (F, F) -F
(2-27) 5%
3-HH-V (3-1) 30%
3-HH-V1 (3-1) 10%
1V2-HH-3 (3-1) 8%
3-HH-VFF (3-1) 8%
V2-BB-1 (3-3) 2%
5-HB (F) BH-3 (3-12) 5%
5-HBBH-3 (3) 5%
To this composition, the compound (1-1-1) was added at a ratio of 0.10% by mass.
Figure JPOXMLDOC01-appb-I000061

NI = 78.4 ° C .; Tc <−20 ° C .; Δn = 0.088; Δε = 5.6; Vth = 1.85 V; η = 13.9 mPa · s; γ1 = 66.9 mPa · s; LISP = 2 .3%
[実施例13]
3-HHEB(F,F)-F         (2-3)     4%
5-HHEB(F,F)-F         (2-3)     3%
3-HBEB(F,F)-F         (2-10)    3%
5-HBEB(F,F)-F         (2-10)    3%
3-BB(F)B(F,F)-F       (2-15)    3%
3-GB(F)B(F,F)XB(F,F)-F
                      (2-27)    5%
4-GB(F)B(F,F)XB(F,F)-F
                      (2-27)    5%
5-HB-CL               (2)       5%
3-HHB-OCF3            (2)       4%
3-HHB(F,F)XB(F,F)-F   (2)       5%
5-HHB(F,F)XB(F,F)-F   (2)       3%
3-HGB(F,F)XB(F,F)-F   (2)       5%
2-HH-5                (3-1)     3%
3-HH-5                (3-1)     5%
3-HH-V                (3-1)    24%
4-HH-V                (3-1)     5%
1V2-HH-3              (3-1)     5%
3-HHEH-3              (3-4)     5%
5-B(F)BB-2            (3-7)     3%
5-B(F)BB-3            (3-7)     2%
この組成物に化合物(1-1-1)を0.10質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000062
 
NI=82.7℃;Tc<-20℃;Δn=0.093;Δε=6.9;Vth=1.50V;η=16.3mPa・s;γ1=65.2mPa・s;LISP=2.3%.
[Example 13]
3-HHEB (F, F) -F (2-3) 4%
5-HHEB (F, F) -F (2-3) 3%
3-HBEB (F, F) -F (2-10) 3%
5-HBEB (F, F) -F (2-10) 3%
3-BB (F) B (F, F) -F (2-15) 3%
3-GB (F) B (F, F) XB (F, F) -F
(2-27) 5%
4-GB (F) B (F, F) XB (F, F) -F
(2-27) 5%
5-HB-CL (2) 5%
3-HHB-OCF3 (2) 4%
3-HHB (F, F) XB (F, F) -F (2) 5%
5-HHB (F, F) XB (F, F) -F (2) 3%
3-HGB (F, F) XB (F, F) -F (2) 5%
2-HH-5 (3-1) 3%
3-HH-5 (3-1) 5%
3-HH-V (3-1) 24%
4-HH-V (3-1) 5%
1V2-HH-3 (3-1) 5%
3-HHEH-3 (3-4) 5%
5-B (F) BB-2 (3-7) 3%
5-B (F) BB-3 (3-7) 2%
To this composition, the compound (1-1-1) was added at a ratio of 0.10% by mass.
Figure JPOXMLDOC01-appb-I000062

NI = 82.7 ° C .; Tc <−20 ° C .; Δn = 0.093; Δε = 6.9; Vth = 1.50 V; η = 16.3 mPa · s; γ1 = 65.2 mPa · s; LISP = 2 .3%
[実施例14]
3-HHXB(F,F)-F         (2-4)     9%
3-HBB(F,F)-F          (2-8)     3%
3-BB(F)B(F,F)-F       (2-15)    4%
3-BB(F)B(F,F)-CF3     (2-16)    4%
3-BB(F,F)XB(F,F)-F    (2-18)    5%
3-GBB(F)B(F,F)-F      (2-22)    3%
4-GBB(F)B(F,F)-F      (2-22)    4%
3-HH-V                (3-1)    25%
3-HH-V1               (3-1)    10%
5-HB-O2               (3-2)    10%
7-HB-1                (3-2)     5%
V2-BB-1               (3-3)     3%
3-HHB-1               (3-5)     4%
1V-HBB-2              (3-6)     5%
5-HBB(F)B-2           (3-13)    6%
この組成物に化合物(1-1-5)を0.10質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000063
 
NI=79.4℃;Tc<-20℃;Δn=0.111;Δε=4.7;Vth=1.86V;η=9.7mPa・s;γ1=49.9mPa・s;LISP=2.6%.
[Example 14]
3-HHXB (F, F) -F (2-4) 9%
3-HBB (F, F) -F (2-8) 3%
3-BB (F) B (F, F) -F (2-15) 4%
3-BB (F) B (F, F) -CF3 (2-16) 4%
3-BB (F, F) XB (F, F) -F (2-18) 5%
3-GBB (F) B (F, F) -F (2-22) 3%
4-GBB (F) B (F, F) -F (2-22) 4%
3-HH-V (3-1) 25%
3-HH-V1 (3-1) 10%
5-HB-O2 (3-2) 10%
7-HB-1 (3-2) 5%
V2-BB-1 (3-3) 3%
3-HHB-1 (3-5) 4%
1V-HBB-2 (3-6) 5%
5-HBB (F) B-2 (3-13) 6%
To this composition, the compound (1-1-5) was added at a ratio of 0.10% by mass.
Figure JPOXMLDOC01-appb-I000063

NI = 79.4 ° C .; Tc <−20 ° C .; Δn = 0.111; Δε = 4.7; Vth = 1.86 V; η = 9.7 mPa · s; γ1 = 49.9 mPa · s; LISP = 2 .6%.
[実施例15]
3-BB(F,F)XB(F,F)-F    (2-18)   14%
5-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    7%
7-HB(F,F)-F           (2)       6%
2-HH-5                (3-1)     5%
3-HH-V                (3-1)    30%
3-HH-V1               (3-1)     3%
3-HH-VFF              (3-1)    10%
3-HHB-1               (3-5)     4%
3-HHB-3               (3-5)     5%
3-HHB-O1              (3-5)     3%
1-BB(F)B-2V           (3-8)     3%
3-HHEBH-3             (3-11)    3%
3-HHEBH-4             (3-11)    4%
3-HHEBH-5             (3-11)    3%
この組成物に化合物(1-1-1)を0.15質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000064
 
NI=82.8℃;Tc<-20℃;Δn=0.086;Δε=3.8;Vth=1.94V;η=7.5mPa・s;γ1=51.5mPa・s;LISP=2.4%.
[Example 15]
3-BB (F, F) XB (F, F) -F (2-18) 14%
5-BB (F) B (F, F) XB (F, F) -F
(2-29) 7%
7-HB (F, F) -F (2) 6%
2-HH-5 (3-1) 5%
3-HH-V (3-1) 30%
3-HH-V1 (3-1) 3%
3-HH-VFF (3-1) 10%
3-HHB-1 (3-5) 4%
3-HHB-3 (3-5) 5%
3-HHB-O1 (3-5) 3%
1-BB (F) B-2V (3-8) 3%
3-HHEBH-3 (3-11) 3%
3-HHEBH-4 (3-11) 4%
3-HHEBH-5 (3-11) 3%
Compound (1-1-1) was added to the composition at a ratio of 0.15% by mass.
Figure JPOXMLDOC01-appb-I000064

NI = 82.8 ° C .; Tc <−20 ° C .; Δn = 0.086; Δε = 3.8; Vth = 1.94 V; η = 7.5 mPa · s; γ1 = 51.5 mPa · s; LISP = 2 4%.
[実施例16]
3-HBB(F,F)-F          (2-8)     5%
5-HBB(F,F)-F          (2-8)     4%
3-BB(F)B(F,F)-F       (2-15)    3%
3-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    3%
4-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    5%
3-BB(F,F)XB(F)B(F,F)-F
                      (2-30)    3%
5-BB(F)B(F,F)XB(F)B(F,F)-F
                      (2-31)    4%
3-HH2BB(F,F)-F        (2)       3%
4-HH2BB(F,F)-F        (2)       3%
2-HH-5                (3-1)     8%
3-HH-V                (3-1)    28%
4-HH-V1               (3-1)     7%
5-HB-O2               (3-2)     2%
7-HB-1                (3-2)     5%
VFF-HHB-O1            (3-5)     8%
VFF-HHB-1             (3-5)     3%
2-BB(2F,3F)B-3        (4-9)     4%
3-HBB(2F,3F)-O2       (4-10)    2%
この組成物に化合物(1-1-3)を0.10質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000065
 
 NI=81.7℃;Tc<-20℃;Δn=0.109;Δε=4.8;Vth=1.75V;η=13.3mPa・s;γ1=57.4mPa・s;LISP=2.4%.
[Example 16]
3-HBB (F, F) -F (2-8) 5%
5-HBB (F, F) -F (2-8) 4%
3-BB (F) B (F, F) -F (2-15) 3%
3-BB (F) B (F, F) XB (F, F) -F
(2-29) 3%
4-BB (F) B (F, F) XB (F, F) -F
(2-29) 5%
3-BB (F, F) XB (F) B (F, F) -F
(2-30) 3%
5-BB (F) B (F, F) XB (F) B (F, F) -F
(2-31) 4%
3-HH2BB (F, F) -F (2) 3%
4-HH2BB (F, F) -F (2) 3%
2-HH-5 (3-1) 8%
3-HH-V (3-1) 28%
4-HH-V1 (3-1) 7%
5-HB-O2 (3-2) 2%
7-HB-1 (3-2) 5%
VFF-HHB-O1 (3-5) 8%
VFF-HHB-1 (3-5) 3%
2-BB (2F, 3F) B-3 (4-9) 4%
3-HBB (2F, 3F) -O2 (4-10) 2%
The compound (1-1-3) was added to this composition at a ratio of 0.10% by mass.
Figure JPOXMLDOC01-appb-I000065

NI = 81.7 ° C .; Tc <−20 ° C .; Δn = 0.109; Δε = 4.8; Vth = 1.75 V; η = 13.3 mPa · s; γ1 = 57.4 mPa · s; LISP = 2 4%.
[実施例17]
3-HHEB(F,F)-F         (2-3)     4%
3-HBEB(F,F)-F         (2-10)    3%
5-HBEB(F,F)-F         (2-10)    3%
3-BB(F)B(F,F)-F       (2-15)    3%
3-HBBXB(F,F)-F        (2-23)    6%
4-GBB(F,F)XB(F,F)-F   (2-26)    2%
5-GBB(F,F)XB(F,F)-F   (2-26)    2%
3-GB(F)B(F,F)XB(F,F)-F
                      (2-27)    5%
4-GB(F)B(F,F)XB(F,F)-F
                      (2-27)    5%
5-HHB(F,F)XB(F,F)-F   (2)       3%
5-HEB(F,F)-F          (2)       3%
5-HB-CL               (2)       2%
3-HHB-OCF3            (2)       4%
3-HH-5                (3-1)     4%
3-HH-V                (3-1)    21%
3-HH-V1               (3-1)     3%
4-HH-V                (3-1)     4%
1V2-HH-3              (3-1)     6%
5-B(F)BB-2            (3-7)     3%
5-B(F)BB-3            (3-7)     2%
3-HB(2F,3F)-O2        (4-1)     3%
3-BB(2F,3F)-O2        (4-4)     2%
3-HHB(2F,3F)-O2       (4-6)     4%
F3-HH-V               (-)       3%
この組成物に化合物(1-1-1)を0.15質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000066
 
NI=78.0℃;Tc<-20℃;Δn=0.101;Δε=6.7;Vth=1.45V;η=17.8mPa・s;γ1=67.8mPa・s;LISP=2.3%.
[Example 17]
3-HHEB (F, F) -F (2-3) 4%
3-HBEB (F, F) -F (2-10) 3%
5-HBEB (F, F) -F (2-10) 3%
3-BB (F) B (F, F) -F (2-15) 3%
3-HBBBXB (F, F) -F (2-23) 6%
4-GBB (F, F) XB (F, F) -F (2-26) 2%
5-GBB (F, F) XB (F, F) -F (2-26) 2%
3-GB (F) B (F, F) XB (F, F) -F
(2-27) 5%
4-GB (F) B (F, F) XB (F, F) -F
(2-27) 5%
5-HHB (F, F) XB (F, F) -F (2) 3%
5-HEB (F, F) -F (2) 3%
5-HB-CL (2) 2%
3-HHB-OCF3 (2) 4%
3-HH-5 (3-1) 4%
3-HH-V (3-1) 21%
3-HH-V1 (3-1) 3%
4-HH-V (3-1) 4%
1V2-HH-3 (3-1) 6%
5-B (F) BB-2 (3-7) 3%
5-B (F) BB-3 (3-7) 2%
3-HB (2F, 3F) -O2 (4-1) 3%
3-BB (2F, 3F) -O2 (4-4) 2%
3-HHB (2F, 3F) -O2 (4-6) 4%
F3-HH-V (-) 3%
Compound (1-1-1) was added to the composition at a ratio of 0.15% by mass.
Figure JPOXMLDOC01-appb-I000066

NI = 78.0 ° C .; Tc <−20 ° C .; Δn = 0.101; Δε = 6.7; Vth = 1.45 V; η = 17.8 mPa · s; γ1 = 67.8 mPa · s; LISP = 2 .3%
[実施例18]
3-HHB(F,F)-F          (2-2)    10%
3-HHXB(F,F)-F         (2-4)     2%
3-GHB(F,F)-F          (2-7)     4%
3-BB(F)B(F,F)-F       (2-15)    7%
3-BB(F,F)XB(F,F)-F    (2-18)   14%
4-BB(F)B(F,F)XB(F,F)-F
                      (2-29)   10%
5-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    6%
3-HH-V                (3-1)    18%
3-HH-4                (3-1)    11%
5-HB-O2               (3-2)     2%
3-HHB-1               (3-5)     5%
3-HHB-3               (3-5)     5%
3-HHB-O1              (3-5)     6%
 この組成物に化合物(1-1-7)を0.10質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000067
 
NI=77.8℃;Tc<-20℃;Δn=0.108;Δε=10.4;Vth=1.35V;η=17.8mPa・s;γ1=79.9mPa・s;LISP=1.9%.
[Example 18]
3-HHB (F, F) -F (2-2) 10%
3-HHXB (F, F) -F (2-4) 2%
3-GHB (F, F) -F (2-7) 4%
3-BB (F) B (F, F) -F (2-15) 7%
3-BB (F, F) XB (F, F) -F (2-18) 14%
4-BB (F) B (F, F) XB (F, F) -F
(2-29) 10%
5-BB (F) B (F, F) XB (F, F) -F
(2-29) 6%
3-HH-V (3-1) 18%
3-HH-4 (3-1) 11%
5-HB-O2 (3-2) 2%
3-HHB-1 (3-5) 5%
3-HHB-3 (3-5) 5%
3-HHB-O1 (3-5) 6%
To this composition, the compound (1-1-7) was added at a ratio of 0.10% by mass.
Figure JPOXMLDOC01-appb-I000067

NI = 77.8 ° C .; Tc <−20 ° C .; Δn = 0.108; Δε = 10.4; Vth = 1.35 V; η = 17.8 mPa · s; γ1 = 79.9 mPa · s; LISP = 1 9%.
[実施例19]
3-HHB(F,F)-F          (2-2)    10%
3-HHXB(F,F)-F         (2-4)     2%
3-GHB(F,F)-F          (2-7)     4%
3-BB(F)B(F,F)-F       (2-15)    7%
3-BB(F,F)XB(F,F)-F    (2-18)   14%
4-BB(F)B(F,F)XB(F,F)-F
                      (2-29)   10%
5-BB(F)B(F,F)XB(F,F)-F
                      (2-29)    6%
3-HH-V                (3-1)    18%
3-HH-4                (3-1)    11%
5-HB-O2               (3-2)     2%
3-HHB-1               (3-5)     5%
3-HHB-3               (3-5)     5%
3-HHB-O1              (3-5)     6%
 この組成物に化合物(1-1-8)を0.10質量%の割合で添加した。
Figure JPOXMLDOC01-appb-I000068
 
NI=77.8℃;Tc<-20℃;Δn=0.108;Δε=10.4;Vth=1.35V;η=17.8mPa・s;γ1=79.9mPa・s;LISP=2.2%.
[Example 19]
3-HHB (F, F) -F (2-2) 10%
3-HHXB (F, F) -F (2-4) 2%
3-GHB (F, F) -F (2-7) 4%
3-BB (F) B (F, F) -F (2-15) 7%
3-BB (F, F) XB (F, F) -F (2-18) 14%
4-BB (F) B (F, F) XB (F, F) -F
(2-29) 10%
5-BB (F) B (F, F) XB (F, F) -F
(2-29) 6%
3-HH-V (3-1) 18%
3-HH-4 (3-1) 11%
5-HB-O2 (3-2) 2%
3-HHB-1 (3-5) 5%
3-HHB-3 (3-5) 5%
3-HHB-O1 (3-5) 6%
To this composition, the compound (1-1-8) was added at a ratio of 0.10% by mass.
Figure JPOXMLDOC01-appb-I000068

NI = 77.8 ° C .; Tc <−20 ° C .; Δn = 0.108; Δε = 10.4; Vth = 1.35 V; η = 17.8 mPa · s; γ1 = 79.9 mPa · s; LISP = 2 .2%.
[実施例20]
 最後に、拡がり性を評価した。実施例1に記載した組成物(1)に化合物(1-1-1)を0.005質量%の割合で添加した。測定(17)に記載した方法で輝度を測定し、測定結果である図1からこの化合物の拡がり性を定性的に評価した(表6)。
Figure JPOXMLDOC01-appb-I000069
 
[Example 20]
Finally, the spreadability was evaluated. The compound (1-1-1) was added to the composition (1) described in Example 1 in a proportion of 0.005% by mass. The luminance was measured by the method described in Measurement (17), and the expansibility of this compound was qualitatively evaluated from FIG. 1 which is the measurement result (Table 6).
Figure JPOXMLDOC01-appb-I000069
[実施例21]
 実施例1に記載した組成物(1)に化合物(1-1-2)を0.005質量%の割合で添加した。測定(17)に記載した方法で輝度を測定し、測定結果である図2からこの化合物の拡がり性を定性的に評価した(表6)。
Figure JPOXMLDOC01-appb-I000070
 
[Example 21]
Compound (1-1-2) was added to the composition (1) described in Example 1 at a ratio of 0.005% by mass. The luminance was measured by the method described in Measurement (17), and the expansibility of this compound was qualitatively evaluated from FIG. 2 which is the measurement result (Table 6).
Figure JPOXMLDOC01-appb-I000070
[比較例3]
 実施例1に記載した組成物(1)に比較化合物(A-2)を0.005質量%の割合で添加した。測定(17)に記載した方法で輝度を測定し、測定結果である図3からこの化合物の拡がり性を定性的に評価した。この結果を、実施例18、19の結果と共に、表6にまとめた。
Figure JPOXMLDOC01-appb-I000071
 
[Comparative Example 3]
The comparative compound (A-2) was added to the composition (1) described in Example 1 in a proportion of 0.005% by mass. The luminance was measured by the method described in Measurement (17), and the expansibility of this compound was qualitatively evaluated from FIG. 3 which is the measurement result. The results are shown in Table 6 together with the results of Examples 18 and 19.
Figure JPOXMLDOC01-appb-I000071
Figure JPOXMLDOC01-appb-I000072
Figure JPOXMLDOC01-appb-I000072
 図1から3は、素子の写真である。注入口は、写真の下側(図示しない)に位置し、ここから添加物を含有する組成物が注入された。図1と図2では、輝度の大きさは互いに異なるが、輝度は全体的に均一であった。これらは、拡がり性が良好であることを示す。図3では、上部の角に凸の曲線が観察され、輝度が均一でなかった。これは、素子が液晶組成物で満たされたが、組成物に含まれている添加物は、素子の全体に届かなかったことを示している。これらの結果から、実施例18および19では、拡がり性は良好であり、比較例3では、拡がり性は不良であることが分かった。 1 to 3 are photographs of the element. The inlet was located on the lower side of the photograph (not shown), from which the composition containing the additive was injected. In FIG. 1 and FIG. 2, although the magnitudes of the brightness are different from each other, the brightness is uniform throughout. These indicate that the spreadability is good. In FIG. 3, a convex curve was observed at the upper corner, and the luminance was not uniform. This indicates that the device was filled with the liquid crystal composition, but the additive contained in the composition did not reach the entire device. From these results, it was found that in Examples 18 and 19, the expansibility was good, and in Comparative Example 3, the expansibility was poor.
 線残像、下限温度(低温における溶解性)、拡がり性の比較実験を行い、結果を表4、5、6にまとめた。いずれのケースにおいても、化合物(1)は比較化合物に比べて優れた結果を与えた。したがって、本発明の組成物は優れた特性を有すると結論される。 Comparative experiments of line afterimage, lower limit temperature (solubility at low temperature), and spreadability were conducted, and the results are summarized in Tables 4, 5, and 6. In any case, compound (1) gave superior results compared to the comparative compound. Therefore, it is concluded that the composition of the present invention has excellent properties.
 本発明の液晶組成物は、液晶モニター、液晶テレビなどに用いることができる。 The liquid crystal composition of the present invention can be used for a liquid crystal monitor, a liquid crystal television and the like.

Claims (18)

  1.  添加物として、式(S)で表される一価基を少なくとも2つ有し、これらの一価基において、Rによって表される基が他のRによって表される基とは異なる化合物を含有し、正の誘電率異方性を有する液晶組成物。
    Figure JPOXMLDOC01-appb-I000001
     
    式(S)において、Rは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、ヒドロキシ、またはオキシラジカルであり;Rは、炭素数1から12のアルキルである。
    As an additive, has at least two monovalent radical of the formula (S), in these monovalent group, compound different from the group that the group represented by R 1 is represented by the other of R 1 And a liquid crystal composition having positive dielectric anisotropy.
    Figure JPOXMLDOC01-appb-I000001

    In the formula (S), R 1 is hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical; R is alkyl having 1 to 12 carbons.
  2.  請求項1に記載の式(S)で表される一価基において、Rがメチルである、請求項1に記載の液晶組成物。 The liquid crystal composition according to claim 1, wherein R is methyl in the monovalent group represented by the formula (S) according to claim 1.
  3.  添加物として、式(1)で表される化合物の群から選択された少なくとも1つの化合物を含有する、請求項1または2に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000002
     
    式(1)および式(S-1)において、Rは、水素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、ヒドロキシ、またはオキシラジカルであり、ここで、Rによって表される基は他のRによって表される基とは異なり;環Aは、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、ナフタレン-1,2-ジイル、ナフタレン-1,3-ジイル、ナフタレン-1,4-ジイル、ナフタレン-1,5-ジイル、ナフタレン-1,6-ジイル、ナフタレン-1,7-ジイル、ナフタレン-1,8-ジイル、ナフタレン-2,3-ジイル、ナフタレン-2,6-ジイル、ナフタレン-2,7-ジイル、テトラヒドロピラン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、ピリミジン-2,5-ジイル、またはピリジン-2,5-ジイルであり、これらの環において、少なくとも1つの水素は、フッ素、塩素、炭素数1から12のアルキル、炭素数1から12のアルコキシ、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、または式(S-1)で表される基で置き換えられてもよく;ZおよびZは独立して、単結合または炭素数1から20のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素、塩素、または式(S-1)で表される基で置き換えられてもよく;Zは、単結合または炭素数1から20のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;aは、0、1、2、または3である。
    The liquid crystal composition according to claim 1 or 2, comprising at least one compound selected from the group of compounds represented by formula (1) as an additive.
    Figure JPOXMLDOC01-appb-I000002

    In the formula (1) and the formula (S-1), R 1 is hydrogen, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or an oxy radical, where R 1 is represented by R 1 The group represented is different from the group represented by R 1 ; ring A is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, Naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene- 2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine- , 5-diyl, or pyridine-2,5-diyl, and in these rings, at least one hydrogen is fluorine, chlorine, alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, at least one Hydrogen may be replaced by alkyl having 1 to 12 carbons replaced by fluorine or chlorine, or a group represented by formula (S-1); Z 1 and Z 2 are independently a single bond or carbon An alkylene having the number 1 to 20, in which at least one —CH 2 — may be replaced by —O—, —COO—, —OCO—, or —OCOO—, At least one hydrogen may be replaced with fluorine, chlorine, or a group represented by the formula (S-1); Z 3 represents a single bond or an alkyl group having 1 to 20 carbon atoms. In the alkylene, at least one —CH 2 — may be replaced by —O—, —COO—, —OCO—, or —OCOO—, in which at least one hydrogen is , Fluorine or chlorine; a is 0, 1, 2, or 3;
  4.  添加物として、式(1-1)から式(1-9)で表される化合物の群から選択された少なくとも1つの化合物を含有する、請求項1から3のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000003
     
    Figure JPOXMLDOC01-appb-I000004
     
    式(1-1)から式(1-9)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、ヒドロキシ、またはオキシラジカルであり;Zは、炭素数1から15のアルキレンであり;ZおよびZは独立して、炭素数1から5のアルキレンであり;ZおよびZは独立して、単結合または炭素数1から20のアルキレンであり、このアルキレンにおいて、少なくとも1つの-CH-は、-O-、-COO-、-OCO-、または-OCOO-で置き換えられてもよく、これらの基において、少なくとも1つの水素は、フッ素または塩素で置き換えられてもよく;Xは、水素またはフッ素である。
    4. The liquid crystal according to claim 1, comprising at least one compound selected from the group of compounds represented by formula (1-1) to formula (1-9) as an additive. 5. Composition.
    Figure JPOXMLDOC01-appb-I000003

    Figure JPOXMLDOC01-appb-I000004

    In formulas (1-1) to (1-9), R 2 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, hydroxy, or oxy radical; Z 4 is carbon 1 Z 5 and Z 6 are independently alkylene having 1 to 5 carbons; Z 7 and Z 8 are independently a single bond or alkylene having 1 to 20 carbons; In this alkylene, at least one —CH 2 — may be replaced by —O—, —COO—, —OCO—, or —OCOO—, in which at least one hydrogen is fluorine or chlorine X 1 is hydrogen or fluorine.
  5.  添加物の割合が0.005質量%から1質量%の範囲である、請求項1から4のいずれか1項に記載の液晶組成物。 The liquid crystal composition according to any one of claims 1 to 4, wherein a ratio of the additive is in a range of 0.005% by mass to 1% by mass.
  6.  第一成分として式(2)で表される化合物の群から選択された少なくとも1つの化合物を含有する、請求項1から5のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000005
     
    式(2)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルであり;環Bは、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジフルオロ-1,4-フェニレン、2,6-ジフルオロ-1,4-フェニレン、ピリミジン-2,5-ジイル、1,3-ジオキサン-2,5-ジイル、またはテトラヒドロピラン-2,5-ジイルであり;Zは、単結合、エチレン、カルボニルオキシ、またはジフルオロメチレンオキシであり;XおよびXは独立して、水素またはフッ素であり;Yは、フッ素、塩素、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルキル、少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数1から12のアルコキシ、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルオキシであり;bは、1、2、3、または4である。
    The liquid crystal composition according to any one of claims 1 to 5, comprising at least one compound selected from the group of compounds represented by formula (2) as a first component.
    Figure JPOXMLDOC01-appb-I000005

    In the formula (2), R 3 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons or alkenyl having 2 to 12 carbons; ring B is 1,4-cyclohexylene, 1, 4-phenylene, 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-phenylene, 2,6-difluoro-1,4-phenylene, pyrimidine-2,5-diyl, 1,3- Dioxane-2,5-diyl, or tetrahydropyran-2,5-diyl; Z 9 is a single bond, ethylene, carbonyloxy, or difluoromethyleneoxy; X 2 and X 3 are independently hydrogen or is fluorine; Y 1 is fluorine, chlorine, at least one hydrogen alkyl having 1 carbon is replaced by fluorine or chlorine 12, at least one hydrogen 1 to 12 carbon alkoxy substituted with fluorine or chlorine, or alkenyloxy having 2 to 12 carbon atoms with at least one hydrogen replaced with fluorine or chlorine; b is 1, 2, 3, or 4 It is.
  7.  第一成分として式(2-1)から式(2-35)で表される化合物の群から選択された少なくとも1つの化合物を含有する、請求項1から6のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000006
     
    Figure JPOXMLDOC01-appb-I000007
     
    Figure JPOXMLDOC01-appb-I000008
     
    Figure JPOXMLDOC01-appb-I000009
     
    式(2-1)から式(2-35)において、Rは、炭素数1から12のアルキル、炭素数1から12のアルコキシ、または炭素数2から12のアルケニルである。
    The liquid crystal according to any one of claims 1 to 6, comprising at least one compound selected from the group of compounds represented by formula (2-1) to formula (2-35) as a first component. Composition.
    Figure JPOXMLDOC01-appb-I000006

    Figure JPOXMLDOC01-appb-I000007

    Figure JPOXMLDOC01-appb-I000008

    Figure JPOXMLDOC01-appb-I000009

    In the formulas (2-1) to (2-35), R 3 is alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, or alkenyl having 2 to 12 carbons.
  8.  第一成分の割合が5質量%から90質量%の範囲である、請求項6または7に記載の液晶組成物。 The liquid crystal composition according to claim 6 or 7, wherein the ratio of the first component is in the range of 5% by mass to 90% by mass.
  9.  第二成分として式(3)で表される化合物の群から選択された少なくとも1つの化合物を含有する、請求項1から8のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000010
     
    式(3)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルであり;環Cおよび環Dは独立して、1,4-シクロヘキシレン、1,4-フェニレン、2-フルオロ-1,4-フェニレン、または2,5-ジフルオロ-1,4-フェニレンであり;Z10は、単結合、エチレン、またはカルボニルオキシであり;cは、1、2、または3である。
    The liquid crystal composition according to any one of claims 1 to 8, comprising at least one compound selected from the group of compounds represented by formula (3) as the second component.
    Figure JPOXMLDOC01-appb-I000010

    In Formula (3), R 4 and R 5 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or at least one hydrogen is fluorine or chlorine. Substituted alkenyl having 2 to 12 carbon atoms; ring C and ring D are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene, or 2,5 -Difluoro-1,4-phenylene; Z 10 is a single bond, ethylene, or carbonyloxy; c is 1, 2, or 3.
  10.  第二成分として式(3-1)から式(3-13)で表される化合物の群から選択された少なくとも1つの化合物を含有する、請求項1から9のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000011
     
    式(3-1)から式(3-13)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または少なくとも1つの水素がフッ素または塩素で置き換えられた炭素数2から12のアルケニルである。
    The liquid crystal according to any one of claims 1 to 9, comprising at least one compound selected from the group of compounds represented by formulas (3-1) to (3-13) as a second component: Composition.
    Figure JPOXMLDOC01-appb-I000011

    In the formulas (3-1) to (3-13), R 4 and R 5 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or C2-C12 alkenyl in which at least one hydrogen is replaced by fluorine or chlorine.
  11.  第二成分の割合が5質量%から90質量%の範囲である、請求項9または10に記載の液晶組成物。 The liquid crystal composition according to claim 9 or 10, wherein the ratio of the second component is in the range of 5% by mass to 90% by mass.
  12.  第三成分として式(4)で表される化合物の群から選択された少なくとも1つの化合物を含有する、請求項1から11のいずれか1項に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-I000012
     
    式(4)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシであり;環Eおよび環Gは独立して、1,4-シクロヘキシレン、1,4-シクロヘキセニレン、1,4-フェニレン、少なくとも1つの水素がフッ素または塩素で置き換えられた1,4-フェニレン、またはテトラヒドロピラン-2,5-ジイルであり;環Fは、2,3-ジフルオロ-1,4-フェニレン、2-クロロ-3-フルオロ-1,4-フェニレン、2,3-ジフルオロ-5-メチル-1,4-フェニレン、3,4,5-トリフルオロナフタレン-2,6-ジイル、または7,8-ジフルオロクロマン-2,6-ジイルであり;Z11およびZ12は独立して、単結合、エチレン、カルボニルオキシ、またはメチレンオキシであり;dは、1、2、または3であり、eは、0または1であり;dとeとの和は3以下である。
    The liquid crystal composition according to any one of claims 1 to 11, comprising at least one compound selected from the group of compounds represented by formula (4) as a third component.
    Figure JPOXMLDOC01-appb-I000012

    In Formula (4), R 6 and R 7 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or alkenyloxy having 2 to 12 carbons. Yes; Ring E and Ring G are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, 1,4-phenylene in which at least one hydrogen is replaced by fluorine or chlorine Or tetrahydropyran-2,5-diyl; ring F is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5 - methyl-1,4-phenylene, it is a 3,4,5-trifluoro-2,6-diyl or 7,8-difluoro-chroman-2,6-diyl,; Z 11 Contact Fine Z 12 are independently a single bond, ethylene, carbonyloxy or methyleneoxy,; d is 1, 2, or 3,, e is 0 or 1; the sum of d and e 3 or less.
  13.  第三成分として式(4-1)から式(4-22)で表される化合物の群から選択された少なくとも1つの化合物を含有する、請求項1から12のいずれか1項に記載の液晶組成物。
     
    Figure JPOXMLDOC01-appb-I000013
     
    Figure JPOXMLDOC01-appb-I000014
     
    式(4-1)から式(4-22)において、RおよびRは独立して、炭素数1から12のアルキル、炭素数1から12のアルコキシ、炭素数2から12のアルケニル、または炭素数2から12のアルケニルオキシである。
    The liquid crystal according to any one of claims 1 to 12, comprising at least one compound selected from the group of compounds represented by formulas (4-1) to (4-22) as a third component: Composition.

    Figure JPOXMLDOC01-appb-I000013

    Figure JPOXMLDOC01-appb-I000014

    In the formulas (4-1) to (4-22), R 6 and R 7 are independently alkyl having 1 to 12 carbons, alkoxy having 1 to 12 carbons, alkenyl having 2 to 12 carbons, or It is alkenyloxy having 2 to 12 carbon atoms.
  14.  第三成分の割合が3質量%から25質量%の範囲である、請求項12または13に記載の液晶組成物。 The liquid crystal composition according to claim 12 or 13, wherein the ratio of the third component is in the range of 3% by mass to 25% by mass.
  15.  ネマチック相の上限温度が70℃以上であり、波長589nmにおける光学異方性(25℃で測定)が0.07以上であり、そして周波数1kHzにおける誘電率異方性(25℃で測定)が2以上である、請求項1から14のいずれか1項に記載の液晶組成物。 The upper limit temperature of the nematic phase is 70 ° C. or higher, the optical anisotropy at a wavelength of 589 nm (measured at 25 ° C.) is 0.07 or higher, and the dielectric anisotropy at a frequency of 1 kHz (measured at 25 ° C.) is 2. The liquid crystal composition according to claim 1, which is as described above.
  16.  請求項1から15のいずれか1項に記載の液晶組成物を含有する液晶表示素子。 A liquid crystal display element comprising the liquid crystal composition according to claim 1.
  17.  液晶表示素子の動作モードが、TNモード、ECBモード、OCBモード、IPSモード、FFSモード、またはFPAモードであり、液晶表示素子の駆動方式がアクティブマトリックス方式である、請求項16に記載の液晶表示素子。 The liquid crystal display according to claim 16, wherein an operation mode of the liquid crystal display element is a TN mode, an ECB mode, an OCB mode, an IPS mode, an FFS mode, or an FPA mode, and the driving method of the liquid crystal display element is an active matrix method. element.
  18.  請求項1から15のいずれか1項に記載の液晶組成物の、液晶表示素子における使用。 Use of the liquid crystal composition according to any one of claims 1 to 15 in a liquid crystal display device.
PCT/JP2017/035938 2016-12-27 2017-10-03 Liquid crystal composition and liquid crystal display element WO2018123184A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018500953A JP6460279B2 (en) 2016-12-27 2017-10-03 Liquid crystal composition and liquid crystal display element
KR1020197002138A KR102165665B1 (en) 2016-12-27 2017-10-03 Liquid crystal composition and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-254343 2016-12-27
JP2016254343 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123184A1 true WO2018123184A1 (en) 2018-07-05

Family

ID=62710577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035938 WO2018123184A1 (en) 2016-12-27 2017-10-03 Liquid crystal composition and liquid crystal display element

Country Status (4)

Country Link
JP (1) JP6460279B2 (en)
KR (1) KR102165665B1 (en)
TW (1) TW201823434A (en)
WO (1) WO2018123184A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489397B1 (en) * 2017-06-23 2019-03-27 Dic株式会社 Liquid crystal composition and liquid crystal display device using the same
CN110878214A (en) * 2018-09-06 2020-03-13 捷恩智株式会社 Liquid crystal composition, use thereof, and liquid crystal display element
CN111334312A (en) * 2020-04-28 2020-06-26 石家庄诚志永华显示材料有限公司 Liquid crystal composition, liquid crystal display element and liquid crystal display
CN111363560A (en) * 2020-04-28 2020-07-03 石家庄诚志永华显示材料有限公司 Liquid crystal composition, liquid crystal display element and liquid crystal display
CN111394106A (en) * 2020-04-28 2020-07-10 石家庄诚志永华显示材料有限公司 Liquid crystal composition, liquid crystal display element and liquid crystal display
CN111394107A (en) * 2020-04-28 2020-07-10 石家庄诚志永华显示材料有限公司 Liquid crystal composition, liquid crystal display element and liquid crystal display
WO2020213720A1 (en) * 2019-04-19 2020-10-22 株式会社Adeka Hindered amine compound, resin composition, molded article, paint, and sealing material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112300811B (en) * 2019-08-01 2022-07-15 江苏和成显示科技有限公司 Liquid crystal composition and liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001916A1 (en) * 2013-07-03 2015-01-08 Jnc株式会社 Liquid crystal composition, and liquid crystal display element
JP2015525267A (en) * 2012-06-05 2015-09-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid crystal medium and liquid crystal display
WO2016035667A1 (en) * 2014-09-05 2016-03-10 Dic株式会社 Liquid crystal composition and liquid crystal display element using same
JP2016037605A (en) * 2014-08-05 2016-03-22 Jnc株式会社 Piperidine derivative, liquid crystal composition and liquid crystal display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101052451B1 (en) * 2004-06-29 2011-07-28 아사히 가라스 가부시키가이샤 Liquid Crystal Light Modulation Element and Optical Head Device
JP6402907B2 (en) * 2014-09-24 2018-10-10 Jnc株式会社 Piperidine derivatives, liquid crystal compositions, and liquid crystal display devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525267A (en) * 2012-06-05 2015-09-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid crystal medium and liquid crystal display
WO2015001916A1 (en) * 2013-07-03 2015-01-08 Jnc株式会社 Liquid crystal composition, and liquid crystal display element
JP2016037605A (en) * 2014-08-05 2016-03-22 Jnc株式会社 Piperidine derivative, liquid crystal composition and liquid crystal display device
WO2016035667A1 (en) * 2014-09-05 2016-03-10 Dic株式会社 Liquid crystal composition and liquid crystal display element using same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489397B1 (en) * 2017-06-23 2019-03-27 Dic株式会社 Liquid crystal composition and liquid crystal display device using the same
CN110878214A (en) * 2018-09-06 2020-03-13 捷恩智株式会社 Liquid crystal composition, use thereof, and liquid crystal display element
JP2020041014A (en) * 2018-09-06 2020-03-19 Jnc株式会社 Liquid crystal composition and liquid crystal display element
JP7268312B2 (en) 2018-09-06 2023-05-08 Jnc株式会社 Liquid crystal composition and liquid crystal display element
CN110878214B (en) * 2018-09-06 2023-11-07 捷恩智株式会社 Liquid crystal composition, use thereof, and liquid crystal display element
WO2020213720A1 (en) * 2019-04-19 2020-10-22 株式会社Adeka Hindered amine compound, resin composition, molded article, paint, and sealing material
CN111334312A (en) * 2020-04-28 2020-06-26 石家庄诚志永华显示材料有限公司 Liquid crystal composition, liquid crystal display element and liquid crystal display
CN111363560A (en) * 2020-04-28 2020-07-03 石家庄诚志永华显示材料有限公司 Liquid crystal composition, liquid crystal display element and liquid crystal display
CN111394106A (en) * 2020-04-28 2020-07-10 石家庄诚志永华显示材料有限公司 Liquid crystal composition, liquid crystal display element and liquid crystal display
CN111394107A (en) * 2020-04-28 2020-07-10 石家庄诚志永华显示材料有限公司 Liquid crystal composition, liquid crystal display element and liquid crystal display

Also Published As

Publication number Publication date
TW201823434A (en) 2018-07-01
JP6460279B2 (en) 2019-01-30
KR20190100904A (en) 2019-08-29
JPWO2018123184A1 (en) 2018-12-27
KR102165665B1 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6460279B2 (en) Liquid crystal composition and liquid crystal display element
JP5621952B1 (en) Liquid crystal composition and liquid crystal display element
JP5725321B1 (en) Liquid crystal composition and liquid crystal display element
JP6435874B2 (en) Liquid crystal composition and liquid crystal display element
JP6476693B2 (en) Liquid crystal composition and liquid crystal display element
JP7268312B2 (en) Liquid crystal composition and liquid crystal display element
JP6319315B2 (en) Liquid crystal composition and liquid crystal display element
JP6690647B2 (en) Piperidine derivative, liquid crystal composition, and liquid crystal display device
WO2015001821A1 (en) Liquid crystal composition and liquid crystal display element
WO2015151607A1 (en) Liquid crystal display element and liquid crystal composition
JP2018095668A (en) Liquid crystal composition and liquid crystal display element
JP2017132847A (en) Liquid crystal composition and liquid crystal display element
JPWO2016098523A1 (en) Liquid crystal composition and liquid crystal display element
WO2016047249A1 (en) Liquid crystal composition and liquid crystal display element
WO2017163663A1 (en) Liquid-crystal composition and liquid-crystal display element
JP6344142B2 (en) Liquid crystal composition and liquid crystal display element
JP6696405B2 (en) Liquid crystal composition and liquid crystal display device
JP6753285B2 (en) Liquid crystal composition and liquid crystal display element
JP2018021089A (en) Liquid crystal composition and liquid crystal display element
WO2020095499A1 (en) Liquid crystal composition and liquid crystal display element
JPWO2018105291A1 (en) Liquid crystal composition and liquid crystal display element
JP7131048B2 (en) Liquid crystal composition and liquid crystal display element
JP2018044144A (en) Liquid crystal composition and liquid crystal display element
JP2019156904A (en) Liquid crystal composition and liquid crystal display element
JP2019189771A (en) Liquid crystal composition and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018500953

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002138

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886777

Country of ref document: EP

Kind code of ref document: A1