WO2020094959A1 - Power electronic module - Google Patents

Power electronic module Download PDF

Info

Publication number
WO2020094959A1
WO2020094959A1 PCT/FR2019/052605 FR2019052605W WO2020094959A1 WO 2020094959 A1 WO2020094959 A1 WO 2020094959A1 FR 2019052605 W FR2019052605 W FR 2019052605W WO 2020094959 A1 WO2020094959 A1 WO 2020094959A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic
conductive layer
power module
bus
t2hs
Prior art date
Application number
PCT/FR2019/052605
Other languages
French (fr)
Inventor
Menouar Ameziani
Hadi ALAWIEH
Original Assignee
Institut Vedecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Vedecom filed Critical Institut Vedecom
Publication of WO2020094959A1 publication Critical patent/WO2020094959A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout

Definitions

  • the invention relates generally to the field of power electronics. More particularly, the invention relates to an electronic power module for the production of electronic power switching devices such as inverters and power converters, but not exclusively. The invention also relates to an electronic power switching device incorporating the above-mentioned electronic power module.
  • power module which is corresponding to a switching branch, or single-phase inverter
  • power module is frequently used, several power modules being associable in parallel to pass more current or to form a multi-phase inverter .
  • the new large gap semiconductors such as silicon carbide (SiC), gallium nitride (GaN) and diamond, have become major players in the power electronics industry. Silicon carbide in particular is expected to gradually replace silicon in the coming years in integrated power electronic components operating above 1000 Volts. These large gap semiconductors have an electric field of high breakdown, high switching speed and high thermal conductivity which give them excellent power switching capabilities. These new semiconductors now make it possible to have electronic power components which operate at higher voltages, temperatures and switching frequencies, and which allow higher current densities.
  • the switching loop is essentially formed by the connection links through the DC bus bars, the substrate usually of DBC type (for "Direct Bond Copper” in English) and the wired electrical interconnections called “wire bonding ”in English.
  • the value of the inductance of the switching loop is proportional to the area of the loop.
  • the architecture of the power module must therefore be designed so as to reduce the area of the switching loop as much as possible.
  • an electronic power device comprising first and second switching branches.
  • the first switching branch includes first and second transistors and first and second diodes.
  • the second switching branch includes third and fourth transistors and third and fourth diodes.
  • the first transistor is juxtaposed with the second transistor in a first direction and is juxtaposed with the fourth transistor in a second direction.
  • the third transistor is juxtaposed with the fourth transistor in the first direction and is juxtaposed with the second transistor in the second direction.
  • a first voltage is applied to electrodes of the first and third transistors.
  • a voltage of opposite polarity to the first voltage is applied to electrodes of the second and fourth transistors.
  • the invention relates to an electronic power module comprising at least a first substrate and first and second switching sections forming a switching bridge branch, the first and second switching sections comprising respectively, in equal number, at least a first electronic chip and a second electronic switch chip and being connected respectively to a first continuous power bar bus and to a second continuous power bar bus, the first and second electronic chips each comprising first and second electrode faces respectively supporting first and second power electrodes, and the first substrate comprising a first conductive layer on which the electronic chips are implanted and supporting a switching output terminal of the electronic power module.
  • the first and second electronic chips are implanted head to tail on the first conductive layer, the first electronic chip being fixed on the first conductive layer by its first electrode face and the second electronic chip being fixed on the first conductive layer by its second electrode face, and the second electrode face of the first electronic chip and the first electrode face of the second electronic chip being connected respectively to the first and second bus bus.
  • the electronic power module comprises, in equal number, a first plurality of first electronic chips and a second plurality of second electronic chips, the first and second electronic chips being implanted on the first conductive layer being arranged in first and second rows, the first and second electronic chips being implanted alternately in the first and second rows and with first and second adjacent electronic chips implanted in a row opposite respectively of second and first adjacent electronic chips located in the other row.
  • the first substrate comprises a second conductive layer isolated from the first conductive layer by a first dielectric layer, and a first heat sink attached to the second conductive layer.
  • the first substrate is of the DBC type.
  • the electronic power module comprises third and fourth conductive layers stacked on the first conductive layer and forming respectively the first and second bus continuous power bar, the first, third and fourth conductive layers being insulated from each other by second and third dielectric layers, and each second electrode face of the first electronic chip and each first electrode face of the second electronic chip being connected respectively to the first and second bus bus bar by a wire electrical interconnection.
  • the electronic power module comprises a second substrate comprising fifth and sixth conductive layers in which the first and second DC bus bars are formed respectively, the fifth and sixth conductive layers being isolated from each other by a fourth dielectric layer, and each second electrode face of the first electronic chip being fixed to the first bus continuous power bar through a conductive pad arranged in the sixth conductive layer and metallized vias arranged in the fourth layer dielectric and each first electrode face of the second electronic chip being fixed directly to the second bus continuous power bar.
  • the second substrate comprises a seventh conductive layer isolated from the fifth conductive layer by a fifth dielectric layer, and a second heat sink fixed on the seventh conductive layer.
  • the second substrate is of the DBC type.
  • the electronic chips of electronic switches are MOSFET type transistors.
  • the invention also relates to an electronic power switching device comprising at least one electronic power module as briefly described above.
  • FIG. 1 is a simplified electrical diagram of an exemplary embodiment of a power module according to the invention
  • FIG. 2 is a plan view showing a front electrode face of an electronic chip of a MOSFET transistor, as an electronic switch that can be integrated into a power module according to the invention
  • FIG. 3 is a plan view showing a rear electrode face of an electronic chip of a MOSFET transistor, as an electronic switch that can be integrated into a power module according to the invention
  • FIG. 4 is a first schematic perspective view showing architectural concepts relating to different embodiments of the power module according to the invention.
  • FIG. 5 is a second schematic perspective view showing architectural concepts relating to different embodiments of the power module according to the invention.
  • FIG. 6 is a third schematic perspective view showing architectural concepts relating to different embodiments of the power module according to the invention.
  • FIG. 7 is a fourth schematic perspective view showing architectural concepts relating to different embodiments of the power module according to the invention.
  • FIG. 8 is a schematic plan view of a particular embodiment of the power module according to the invention.
  • FIG. 9 is a schematic sectional view of the particular embodiment of FIG. 8 of the power module according to the invention.
  • FIG. 10 is a schematic plan view of another particular embodiment of the power module according to the invention.
  • FIG.1 1 is a schematic sectional view of the particular embodiment of FIG. 10 of the power module according to the invention.
  • Figs. 1 to 7 schematically show architectural concepts and structures relating to different embodiments of the invention.
  • an MP power module comprises at least one branch of a switching bridge (single-phase inverter) and includes a high FIS switching section, called " high side "in English, and a low LS switching section, called" low side "in English.
  • a switching bridge single-phase inverter
  • the high HS and low LS switching sections have substantially the same configuration and include the same number of electronic switches, each HS, LS switching section, comprising at least one switch. electronic.
  • the high HS and low LS switching sections each include two electronic switches mounted in parallel, T1 HS, T2HS and T1 LS, T2LS, respectively.
  • the high HS and low LS switching sections may include the same number of electronic switches connected in parallel. The number of electronic switches mounted in parallel will depend in particular on the electrical power requested from the power module.
  • the electronic switches may be in particular transistors of the MOSFET, IGBT, GTO type and transistors of the large gap semiconductor type such as SiC, GaN, HEMT and others.
  • the electronic switches are MOSFET transistors of the SiC type.
  • the transistors are considered here as having efficient PIN intrinsic diodes (PIN for “Positive - Intrinsic - Negative” in English), so that the Schottky diodes mounted in antiparallel are not provided in these embodiments.
  • the PM power module has three PHS, PLS and Ps power connection points connected respectively to a DC + continuous power bus bus of positive polarity, a power bus bus DC- electric current of negative polarity and a switched output terminal OUT of the module.
  • the connection point Ps is a common connection point between the high HS and low LS switching sections.
  • drain electrodes D of the transistors T1 HS and T2HS are connected together and connected to the connection point PHS.
  • Source electrodes S of transistors T1 HS and T2HS are connected together and connected to the common connection point Ps.
  • Gate electrodes G of transistors T1 HS and T2HS are connected together and connected to a control terminal Cd H s of the module MP power.
  • drain electrodes D of the transistors T1 LS and T2LS are connected together and connected to the common connection point Ps.
  • Source electrodes S of the transistors T1 LS and T2LS are connected together and connected at the PLS connection point.
  • Grid electrodes G of the transistors T1 LS and T2LS are connected together and connected to a control terminal Cd L s of the power module MP.
  • the source electrode is located on a first face of the chip, namely, the metallized front face
  • the drain electrode is located on the other face of the chip, namely, the metallized rear face.
  • Figs.2 and 3 show by way of example an implantation of electrodes on the front and rear faces of a chip, as available from suppliers of semiconductor components for MOSFET transistors of SiC type. Such an implantation of electrodes is suitable for the transistors T1 HS, T2HS, and T1 LS, T2LS, of the power module MP.
  • the front face F A v of the transistor chips T1 HS, T2HS, and T1 LS, T2LS comprises three metal blocks of electrode PS1, PS2 and PG, provided for connection by soldering or brazing.
  • the blocks PS1 and PS2 correspond to the source electrode S.
  • the block PG corresponds to the gate electrode G.
  • FIG. 3 shows the rear face FAR of the transistor chips T1 HS, T2HS, and T1 LS, T2LS, which comprises a metallic pad of PD electrode corresponding to the drain electrode D and provided for a connection by welding or brazing.
  • Fig. 4 shows schematically the layout and electrical connection configuration of the transistors T1 HS, T2HS, and T1 LS, T2LS, in the power module MP.
  • the transistors T1 HS, T2HS, and T1 LS, T2LS are here located at the four corners of a rectangle, or square, on the same SUB substrate.
  • the substrate SUB is here of the DBC type and comprises a central dielectric layer CD sandwiched between high CFI and low CL conductive layers.
  • the conductive layers CFI and CL are made of copper.
  • the high conductive layer CFI supports the common connection point Ps of the power module MP, common connection point Ps which corresponds to the switched output terminal OUT of the module MP.
  • the two transistors of the same switching section are located at diagonally opposite corners of the rectangle.
  • the transistors T1 HS and T2HS are located respectively in diagonally opposite corners C3 and C1 of the rectangle and the transistors T1 LS and T2LS are located respectively in diagonally opposite corners C2 and C4 of the rectangle.
  • transistor chips are used with an implantation of the power electrodes on the two faces.
  • This characteristic of the invention makes it possible to minimize the lengths of the connection links and, correspondingly, the areas of the switching loops.
  • the drain electrodes S present on the front faces (cf. FIG. 2) of the chips, are soldered on the high conductive layer CH of the substrate SUB.
  • the source electrodes D present on the rear faces (see Fig. 3) of the chips, are connected to the bus DC DC power supply bar.
  • the diagonally opposite chips of the T1 LS and T2LS transistors are implanted on the substrate SUB head to tail with respect to the chips of the T1 HS and T2HS transistors (that is to say, with a 180 degree reversal).
  • the drain electrodes D present on the rear faces (cf. FIG. 3) of the chips, are welded on the high conductive layer CH of the substrate SUB.
  • the source electrodes S present on the front faces (cf. Fig. 2) of the chips, are connected to the bus DC continuous power supply bar.
  • Fig.5 shows schematically by way of example the surface of the switching loop for the current flow path T34 between the transistors T1 HS and T2LS.
  • the surface of the switching loop is greatly reduced compared to the solutions known in the prior art. Indeed, as it appears in the illustrative example of Fig.5, the width La of the switching loop can be small given that the thickness of the transistor chips which is only a few hundred micrometers. The length Lo of the switching loop is determined by the spacing between the transistor chips.
  • Figs.6 and 7 show other examples of architecture corresponding respectively to power modules MPa and MPb.
  • the power module MPa is a minimal embodiment with a single transistor THS, TLS, per switching section HS, LS.
  • the MPb power module is an embodiment with three transistors in parallel per switching section.
  • the high HS switching section includes the transistors T1 HS, T2HS and T3HS.
  • the LS low switching section includes the T1 LS, T2LS and T3LS transistors.
  • the chips of the transistors are implanted on the substrate SUB by being distributed over two substantially parallel rows R1 and R2.
  • the row R1 here comprises the transistors T1 LS, T2HS and T3LS and the row R2 comprises the transistors T1 HS, T2LS and T3HS.
  • the chips are implanted alternately, a chip of a switching section being followed by a chip of the other switching section, and two adjacent chips are implanted head to tail.
  • the chips opposite in rows R1 and R2 are installed head to tail.
  • the transistors T1 HS, T2HS, T1 LS and T2LS are soldered onto the high conductive layer CH of the substrate SUB of the DBC type, as described above with reference to FIGS. 4 and 5.
  • the upper conductive layer CH comprises a majority portion, supporting the connection (Ps) to the switched output terminal OUT, on which the source electrodes S of the transistors T1 HS are welded and T2HS and the drain electrodes D of the transistors T1 LS and T2LS.
  • Four conductive gate control tracks PG1 HS, PG2HS, PG1 LS and PG2LS are formed in the high CH conductive layer for connection of the gate electrodes of the transistors T1 HS, T2HS, T1 LS and T2LS, respectively.
  • a DIS heat sink is fixed, in close thermal contact, against the low conductive layer CB of the SUB substrate.
  • the dielectric layer CD has a thickness which is reduced to the minimum required so as to facilitate the evacuation of the calories emitted by the transistors T1 HS, T2HS, T1 LS and T2LS towards the heat sink DIS.
  • the DC + and DC- continuous power supply bus bars are formed respectively by conductive layers CS1 and CS2 made of copper.
  • the conductive layers CS1 and CS2 are stacked and laminated on the substrate SUB, above the high conductive layer CH, being electrically insulated by dielectric layers DS1 and DS2.
  • the dielectric layer DS1 is interposed between the high conductive layer CH and the conductive layer CS1.
  • the dielectric layer DS2 is interposed between the conductive layer CS1 and the conductive layer CS2.
  • WB welded electrical interconnection wires are used to connect the transistors T1 HS, T2HS, T1 LS and T2LS to the conductive layers CS1 and CS2 corresponding respectively to the DC + and DC- bus bars.
  • the drain electrodes D of the transistors T1 HS and T2HS are connected by welded interconnection wires WB to the conductive layer CS1.
  • the source electrodes S of the transistors T1 LS and T2LS are connected by welded electrical interconnection wires WB to the conductive layer CS2.
  • the conductive tracks for gate control PG1 HS, PG2HS, PG1 LS and PG2LS, for the electrical connection of the gate electrodes G of transistors T1 HS, T2HS, T1 LS and T2LS are arranged in the high CH conductive layer by removal of metal, typically by known techniques of photolithography and wet etching.
  • the gate electrodes G of the transistors T1 HS and T2HS are welded directly to the conductive tracks for gate control PG1 HS, PG2HS, respectively.
  • the gate electrodes G of the transistors T1 LS and T2LS are connected to the conductive gate control tracks PG 1 LS and PG2LS, respectively, by means of welded electrical interconnection wires WB.
  • the transistors T1 HS, T2HS, T1 LS and T2LS are soldered between a lower substrate SUBL and an upper substrate SUBH.
  • the lower substrate SUB L of DBC type, is analogous to the lower substrate SUB of the power module MP1.
  • the transistors T 1 HS, T2HS, T1 LS and T2LS are soldered onto the high conductive layer CH L of the substrate SUB L.
  • the upper conductive layer CH L comprises a majority portion, supporting the connection (Ps) to the switched output terminal OUT, on which the source electrodes S of the transistors T1 HS are welded. and T2HS and the drain electrodes D of the transistors T1 LS and T2LS.
  • Two conductive gate control tracks PL1 HS and PL2HS are formed in the high conductive layer CH L for the connection of the gate electrodes G of the transistors T1 HS and T2HS, respectively.
  • the gate electrodes G of the transistors T1 HS and T2HS are soldered directly to the conductive gate control tracks PL1 HS and PL2HS, respectively.
  • a DIS L heat sink is fixed, in close thermal contact, against the low conductive layer CB L of the lower substrate SUB L.
  • the dielectric layer CD L has a thickness which is reduced to the minimum required so as to facilitate the evacuation of the calories emitted by the transistors T1 HS, T2HS, T1 LS and T2LS towards the heat sink DIS L.
  • the SUB H upper substrate is also of the DBC type and comprises three conductive layers CBH, CIH and CHH and two dielectric layers CD1 H and CD2H.
  • the conductive layers CB H and CH H are respectively low and high conductive layers of the upper substrate SUB H.
  • the conductive layer CI H is an intermediate conductive layer of the upper substrate SUB H.
  • the dielectric layer CD1 H is interposed between the low conductive layer CB H and the intermediate conductive layer CI H.
  • the dielectric layer CD2 H is interposed between the intermediate conductive layer CI H and the high conductive layer CB H.
  • a DIS H heat sink is fixed, in close thermal contact, against the high conductive layer CH H of the substrate SUB H.
  • the dielectric layers CD1 H and CD2 H have thicknesses which are reduced to the minimum required in order to facilitate the evacuation of the calories emitted by the transistors T1 HS, T2HS, T1 LS and T2LS towards the heat sink DISH.
  • the low conductive layer CBH comprises a majority portion, corresponding to the DC bus power bus DC-, on which are welded the source electrodes S of the transistors T1 LS and T2LS and the drain electrodes D of the transistors T1 HS and T2HS.
  • Two conductive gate control tracks PL1 LS and PL2LS are formed in the low conductive layer CBH for the connection of the gate electrodes G of the transistors T1 LS and T2LS, respectively. Only the conductive gate control track PL1 LS is visible in Fig. 1 1.
  • the location of the conductive gate control tracks PL1 LS and PL2LS above the gates G of the transistors T1 LS and T2LS is shown in a thin line in FIG. 10.
  • the gate electrodes G of the transistors T1 LS and T2LS are welded directly to the conductive gate control tracks PL1 LS and PL2LS, respectively.
  • the drain electrodes D of the transistors T1 HS and T2HS are electrically connected to the intermediate conductive layer CIH, corresponding to the bus DC power supply bus DC +, through conductive connection pads of drain and metal vias.
  • a conductive drain connection pad and a plurality of vias are formed for the connection of each of the drain electrodes D of the transistors T1 HS and T2HS.
  • Each drain electrode D is welded to a conductive drain connection pad.
  • the conductive drain connection pad C2HS and vias V2HS for the transistor T2HS are visible in Fig. 1 1.
  • the drain connection conductive pads are formed in the low conductive layer CBH and are electrically connected to the intermediate conductive layer CIH by the vias formed in the dielectric layer CD1 H.
  • the conductive drain connection pads can be formed in the low conductive layer CBH by metal removal, typically by known techniques of photolithography and wet etching.
  • the vias can be formed by drilling and metallization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

The module comprises at least one substrate (SUBL) and first and second switching sections forming a switching bridge branch, the switching sections comprising in equal number at least one first electronic chip (T2HS) and a second electronic chip (T1LS), each having first and second electrode faces respectively supporting first and second power electrodes (S, D), and the substrate comprising a conductive layer (CHL), on which the chips are implanted. According to the invention, the first and second chips are implanted head-to-end, the first chip being fixed on the conductive layer by its first face and the second chip being fixed on the conductive layer by its second face, and the second face of the first chip and the first face of the second chip respectively being connected to first and second DC bus bars (DC-, DC+).

Description

DESCRIPTION  DESCRIPTION
TITRE: MODULE ELECTRONIQUE DE PUISSANCE TITLE: ELECTRONIC POWER MODULE
[0001]! La présente invention revendique la priorité de la demande française 1871394 déposée le 7 novembre 2018 dont le contenu (texte, dessins et revendications) est ici incorporé par référence. ! The present invention claims priority from French application 1871394 filed on November 7, 2018, the content of which (text, drawings and claims) is hereby incorporated by reference.
[0002] L’invention concerne de manière générale le domaine de l’électronique de puissance. Plus particulièrement, l’invention se rapporte à un module électronique de puissance pour la réalisation de dispositifs électroniques de commutation de puissance tels que des onduleurs et convertisseurs de puissance, mais pas exclusivement. L’invention concerne aussi un dispositif électronique de commutation de puissance incorporant le module électronique de puissance susmentionné.  The invention relates generally to the field of power electronics. More particularly, the invention relates to an electronic power module for the production of electronic power switching devices such as inverters and power converters, but not exclusively. The invention also relates to an electronic power switching device incorporating the above-mentioned electronic power module.
[0003] Les dispositifs électroniques de commutation de puissance sont très présents dans de nombreux domaines d’activité comme les transports, les industries, l’éclairage, le chauffage, etc. Avec la transition énergétique souhaitée vers des sources d'énergie renouvelables et moins productrices d’émissions de CO2, l’électronique de puissance est appelée à se généraliser encore davantage et doit répondre à des contraintes économiques et technologiques croissantes.  [0003] Electronic power switching devices are very present in many fields of activity such as transport, industry, lighting, heating, etc. With the desired energy transition to renewable energy sources that produce less CO2 emissions, power electronics are set to become more widespread and must respond to growing economic and technological constraints.
[0004] Les différentes contraintes s’appliquant aux dispositifs électroniques de puissance ont conduit vers une architecture modulaire des ponts de commutation. Ainsi, est fréquemment utilisé un module élémentaire de commutation de puissance, dit « module de puissance », qui correspond à une branche de commutation, ou onduleur monophasé, plusieurs modules de puissance étant associables en parallèle pour passer davantage de courant ou former un onduleur multiphasé.  The various constraints applying to electronic power devices have led to a modular architecture of switching bridges. Thus, an elementary power switching module, called "power module", which is corresponding to a switching branch, or single-phase inverter, is frequently used, several power modules being associable in parallel to pass more current or to form a multi-phase inverter .
[0005] Les nouveaux semiconducteurs à grand gap, comme le carbure de silicium (SiC), le nitrure de gallium (GaN) et le diamant, sont devenus des acteurs majeurs de la filière électronique de puissance. Le carbure de silicium en particulier est appelé à remplacer progressivement dans les prochaines années le silicium dans les composants électroniques de puissance intégrés fonctionnant au-delà de 1000 Volts. Ces semiconducteurs à grand gap présentent un champ électrique de claquage élevé, une grande vitesse de commutation et une forte conductivité thermique qui leur confèrent d’excellentes aptitudes pour la commutation de puissance. Ces nouveaux semiconducteurs permettent aujourd’hui de disposer de composants électroniques de puissance qui fonctionnent à des tensions, des températures et des fréquences de commutation plus élevées, et qui autorisent des densités de courant supérieures. The new large gap semiconductors, such as silicon carbide (SiC), gallium nitride (GaN) and diamond, have become major players in the power electronics industry. Silicon carbide in particular is expected to gradually replace silicon in the coming years in integrated power electronic components operating above 1000 Volts. These large gap semiconductors have an electric field of high breakdown, high switching speed and high thermal conductivity which give them excellent power switching capabilities. These new semiconductors now make it possible to have electronic power components which operate at higher voltages, temperatures and switching frequencies, and which allow higher current densities.
[0006] Dans un module de puissance, une attention particulière doit être portée à la réduction de l’inductance de la boucle de commutation, afin notamment de protéger le module contre des surtensions potentiellement destructrices, limiter les rayonnements électromagnétiques et réduire la chaleur générée.  In a power module, special attention must be paid to reducing the inductance of the switching loop, in particular to protect the module against potentially destructive overvoltages, limit electromagnetic radiation and reduce the heat generated.
[0007] La boucle de commutation est formée essentiellement par les liaisons de connexion à travers les bus barre d’alimentation électrique continue, le substrat habituellement de type DBC (pour « Direct Bond Copper » en anglais) et les interconnexions électriques filaires dites « wire bonding » en anglais. La valeur de l’inductance de la boucle de commutation est proportionnelle à la surface de la boucle. L’architecture du module de puissance doit donc être conçue de façon à réduire autant que possible la surface de la boucle de commutation.  The switching loop is essentially formed by the connection links through the DC bus bars, the substrate usually of DBC type (for "Direct Bond Copper" in English) and the wired electrical interconnections called "wire bonding ”in English. The value of the inductance of the switching loop is proportional to the area of the loop. The architecture of the power module must therefore be designed so as to reduce the area of the switching loop as much as possible.
[0008] Dans US2014/0084993A1 , il est proposé un dispositif électronique de puissance comportant des première et deuxième branches de commutation. La première branche de commutation comprend des premier et deuxième transistors et des première et deuxième diodes. La deuxième branche de commutation comprend des troisième et quatrième transistors et des troisième et quatrième diodes. Le premier transistor est juxtaposé au deuxième transistor dans une première direction et est juxtaposé au quatrième transistor dans une seconde direction. Le troisième transistor est juxtaposé au quatrième transistor dans la première direction et est juxtaposé au deuxième transistor dans la seconde direction. Une première tension est appliquée à des électrodes des premier et troisième transistors. Une tension de polarité opposée à la première tension est appliquée à des électrodes des deuxième et quatrième transistors.  In US2014 / 0084993A1, there is proposed an electronic power device comprising first and second switching branches. The first switching branch includes first and second transistors and first and second diodes. The second switching branch includes third and fourth transistors and third and fourth diodes. The first transistor is juxtaposed with the second transistor in a first direction and is juxtaposed with the fourth transistor in a second direction. The third transistor is juxtaposed with the fourth transistor in the first direction and is juxtaposed with the second transistor in the second direction. A first voltage is applied to electrodes of the first and third transistors. A voltage of opposite polarity to the first voltage is applied to electrodes of the second and fourth transistors.
[0009] Il apparaît aujourd’hui souhaitable de proposer une architecture de module de puissance qui soit optimisée notamment pour une réduction maximale de l’inductance de boucle de commutation et des rayonnements électromagnétiques. [0010] Selon un premier aspect, l’invention concerne un module électronique de puissance comprenant au moins un premier substrat et des première et deuxième sections de commutation formant une branche de pont de commutation, les première et deuxième sections de commutation comprenant respectivement, en nombre égal, au moins une première puce électronique et une deuxième puce électronique d’interrupteurs électroniques et étant reliées respectivement à un premier bus barre d’alimentation continue et à un deuxième bus barre d’alimentation continue, les première et deuxième puces électroniques comprenant chacune des première et deuxième faces d’électrode supportant respectivement des première et deuxième électrodes de puissance, et le premier substrat comprenant une première couche conductrice sur laquelle sont implantées les puces électroniques et supportant une borne de sortie de commutation du module électronique de puissance. Conformément à l’invention, les première et deuxième puces électroniques sont implantées tête bêche sur la première couche conductrice, la première puce électronique étant fixée sur la première couche conductrice par sa première face d’électrode et la deuxième puce électronique étant fixée sur la première couche conductrice par sa deuxième face d’électrode, et la deuxième face d’électrode de la première puce électronique et la première face d’électrode de la deuxième puce électronique étant reliées respectivement aux premier et deuxième bus barre d’alimentation continue. It now seems desirable to propose a power module architecture which is optimized in particular for a maximum reduction of the switching loop inductance and electromagnetic radiation. According to a first aspect, the invention relates to an electronic power module comprising at least a first substrate and first and second switching sections forming a switching bridge branch, the first and second switching sections comprising respectively, in equal number, at least a first electronic chip and a second electronic switch chip and being connected respectively to a first continuous power bar bus and to a second continuous power bar bus, the first and second electronic chips each comprising first and second electrode faces respectively supporting first and second power electrodes, and the first substrate comprising a first conductive layer on which the electronic chips are implanted and supporting a switching output terminal of the electronic power module. According to the invention, the first and second electronic chips are implanted head to tail on the first conductive layer, the first electronic chip being fixed on the first conductive layer by its first electrode face and the second electronic chip being fixed on the first conductive layer by its second electrode face, and the second electrode face of the first electronic chip and the first electrode face of the second electronic chip being connected respectively to the first and second bus bus.
[0011] Selon une forme de réalisation particulière, le module électronique de puissance comprend, en nombre égal, une première pluralité de premières puces électroniques et une deuxième pluralité de deuxièmes puces électroniques, les premières et deuxièmes puces électroniques étant implantées sur la première couche conductrice en étant disposées en des première et deuxième rangées, les premières et deuxièmes puces électroniques étant implantées de manière alternée dans les première et deuxième rangées et avec des premières et deuxièmes puces électroniques adjacentes implantées dans une rangée en regard respectivement de deuxièmes et premières puces électroniques adjacentes implantées dans l’autre rangée.  According to a particular embodiment, the electronic power module comprises, in equal number, a first plurality of first electronic chips and a second plurality of second electronic chips, the first and second electronic chips being implanted on the first conductive layer being arranged in first and second rows, the first and second electronic chips being implanted alternately in the first and second rows and with first and second adjacent electronic chips implanted in a row opposite respectively of second and first adjacent electronic chips located in the other row.
[0012] Selon une caractéristique particulière, le premier substrat comprend une deuxième couche conductrice isolée de la première couche conductrice par une première couche diélectrique, et un premier dissipateur thermique fixé sur la deuxième couche conductrice. According to a particular characteristic, the first substrate comprises a second conductive layer isolated from the first conductive layer by a first dielectric layer, and a first heat sink attached to the second conductive layer.
[0013] Selon une autre caractéristique particulière, le premier substrat est de type DBC.  According to another particular characteristic, the first substrate is of the DBC type.
[0014] Selon encore une autre caractéristique particulière, le module électronique de puissance comprend des troisième et quatrième couches conductrices empilées sur la première couche conductrice et formant respectivement les premier et deuxième bus barre d’alimentation continue, les première, troisième et quatrième couches conductrices étant isolées entre elles par des deuxième et troisième couches diélectriques, et chaque deuxième face d’électrode de première puce électronique et chaque première face d’électrode de deuxième puce électronique étant reliées respectivement aux premier et deuxième bus barre d’alimentation continue par un fil d’interconnexion électrique.  According to yet another particular characteristic, the electronic power module comprises third and fourth conductive layers stacked on the first conductive layer and forming respectively the first and second bus continuous power bar, the first, third and fourth conductive layers being insulated from each other by second and third dielectric layers, and each second electrode face of the first electronic chip and each first electrode face of the second electronic chip being connected respectively to the first and second bus bus bar by a wire electrical interconnection.
[0015] Selon une autre forme de réalisation particulière, le module électronique de puissance comprend un deuxième substrat comprenant des cinquième et sixième couches conductrices dans lesquelles sont formés respectivement les premier et deuxième bus barre d’alimentation continue, les cinquième et sixième couches conductrices étant isolées entre elles par une quatrième couche diélectrique, et chaque deuxième face d’électrode de première puce électronique étant fixée au premier bus barre d’alimentation continue à travers une pastille conductrice aménagée dans la sixième couche conductrice et des vias métallisés aménagés dans la quatrième couche diélectrique et chaque première face d’électrode de deuxième puce électronique étant fixée directement au deuxième bus barre d’alimentation continue.  According to another particular embodiment, the electronic power module comprises a second substrate comprising fifth and sixth conductive layers in which the first and second DC bus bars are formed respectively, the fifth and sixth conductive layers being isolated from each other by a fourth dielectric layer, and each second electrode face of the first electronic chip being fixed to the first bus continuous power bar through a conductive pad arranged in the sixth conductive layer and metallized vias arranged in the fourth layer dielectric and each first electrode face of the second electronic chip being fixed directly to the second bus continuous power bar.
[0016] Selon une caractéristique particulière, le deuxième substrat comprend une septième couche conductrice isolée de la cinquième couche conductrice par une cinquième couche diélectrique, et un deuxième dissipateur thermique fixé sur la septième couche conductrice.  According to a particular characteristic, the second substrate comprises a seventh conductive layer isolated from the fifth conductive layer by a fifth dielectric layer, and a second heat sink fixed on the seventh conductive layer.
[0017] Selon une autre caractéristique particulière, le deuxième substrat est de type DBC.  According to another particular characteristic, the second substrate is of the DBC type.
[0018] Selon encore une autre caractéristique particulière, les puces électroniques d’interrupteurs électroniques sont des transistors de type MOSFET. [0019] L’invention concerne aussi un dispositif électronique de commutation de puissance comprenant au moins un module électronique de puissance tel que décrit brièvement ci-dessus. According to yet another particular characteristic, the electronic chips of electronic switches are MOSFET type transistors. The invention also relates to an electronic power switching device comprising at least one electronic power module as briefly described above.
[0020] D’autres avantages et caractéristiques de la présente invention apparaîtront plus clairement à la lecture de la description détaillée ci-dessous de plusieurs formes de réalisation particulières de l’invention, en référence aux dessins annexés, dans lesquels : Other advantages and characteristics of the present invention will appear more clearly on reading the detailed description below of several particular embodiments of the invention, with reference to the accompanying drawings, in which:
[0021] [Fig. 1] est un schéma électrique simplifié d’un exemple de réalisation d’un module de puissance selon l’invention ;  [Fig. 1] is a simplified electrical diagram of an exemplary embodiment of a power module according to the invention;
[0022] [Fig. 2] est une vue plane montrant une face d’électrode avant d’une puce électronique d’un transistor MOSFET, en tant qu’interrupteur électronique intégrable dans un module de puissance selon l’invention ;  [Fig. 2] is a plan view showing a front electrode face of an electronic chip of a MOSFET transistor, as an electronic switch that can be integrated into a power module according to the invention;
[0023] [Fig. 3] est une vue plane montrant une face d’électrode arrière d’une puce électronique d’un transistor MOSFET, en tant qu’interrupteur électronique intégrable dans un module de puissance selon l’invention ;  [Fig. 3] is a plan view showing a rear electrode face of an electronic chip of a MOSFET transistor, as an electronic switch that can be integrated into a power module according to the invention;
[0024] [Fig. 4] est une première vue schématique en perspective montrant des concepts architecturaux relatifs à différentes formes de réalisation du module de puissance selon l’invention ;  [Fig. 4] is a first schematic perspective view showing architectural concepts relating to different embodiments of the power module according to the invention;
[0025] [Fig. 5] est une deuxième vue schématique en perspective montrant des concepts architecturaux relatifs à différentes formes de réalisation du module de puissance selon l’invention ;  [Fig. 5] is a second schematic perspective view showing architectural concepts relating to different embodiments of the power module according to the invention;
[0026] [Fig. 6] est une troisième vue schématique en perspective montrant des concepts architecturaux relatifs à différentes formes de réalisation du module de puissance selon l’invention ;  [Fig. 6] is a third schematic perspective view showing architectural concepts relating to different embodiments of the power module according to the invention;
[0027] [Fig. 7] est une quatrième vue schématique en perspective montrant des concepts architecturaux relatifs à différentes formes de réalisation du module de puissance selon l’invention ;  [Fig. 7] is a fourth schematic perspective view showing architectural concepts relating to different embodiments of the power module according to the invention;
[0028] [Fig. 8] est une vue schématique plane d’une forme de réalisation particulière du module de puissance selon l’invention ; [Fig. 8] is a schematic plan view of a particular embodiment of the power module according to the invention;
[0029] [Fig. 9] est une vue schématique en coupe de la forme de réalisation particulière de la Fig. 8 du module de puissance selon l’invention ; [0030] [Fig. 10] est une vue schématique plane d’une autre forme de réalisation particulière du module de puissance selon l’invention ; et [Fig. 9] is a schematic sectional view of the particular embodiment of FIG. 8 of the power module according to the invention; [Fig. 10] is a schematic plan view of another particular embodiment of the power module according to the invention; and
[0031 ] [Fig.1 1 ] est une vue schématique en coupe de la forme de réalisation particulière de la Fig. 10 du module de puissance selon l’invention. [Fig.1 1] is a schematic sectional view of the particular embodiment of FIG. 10 of the power module according to the invention.
[0032] Des première et deuxième formes de réalisation particulières MP1 et MP2 du module de puissance selon l’invention sont décrites ici en référence aux Figs.8, 9, et Figs.10, 1 1 , respectivement. Les Figs.1 à 7 montrent de manière schématique des concepts architecturaux et structures relatifs à différentes formes de réalisation de l’invention. First and second particular embodiments MP1 and MP2 of the power module according to the invention are described here with reference to Figs.8, 9, and Figs.10, 1 1, respectively. Figs. 1 to 7 schematically show architectural concepts and structures relating to different embodiments of the invention.
[0033] Comme montré par le schéma électrique de principe de la Fig .1 , un module de puissance MP selon l’invention comprend au moins une branche de pont de commutation (onduleur monophasé) et comporte une section de commutation haute FIS, dite « high side » en anglais, et une section de commutation basse LS, dite « low side » en anglais. As shown by the electrical diagram in principle of Fig .1, an MP power module according to the invention comprises at least one branch of a switching bridge (single-phase inverter) and includes a high FIS switching section, called " high side "in English, and a low LS switching section, called" low side "in English.
[0034] De manière générale, conformément à l’invention, les sections de commutation haute HS et basse LS ont sensiblement la même configuration et comprennent un même nombre d’interrupteurs électroniques, chaque section de commutation HS, LS, comprenant au moins un interrupteur électronique. In general, according to the invention, the high HS and low LS switching sections have substantially the same configuration and include the same number of electronic switches, each HS, LS switching section, comprising at least one switch. electronic.
[0035] Dans le module de puissance MP de la Fig.1 , les sections de commutation haute HS et basse LS comprennent chacune deux interrupteurs électroniques montés en parallèle, T1 HS, T2HS et T1 LS, T2LS, respectivement. De manière générale, conformément à l’invention, les sections de commutation haute HS et basse LS pourront comprendre un même nombre quelconque d’interrupteurs électroniques montés en parallèle. Le nombre des interrupteurs électroniques montés en parallèle dépendra notamment de la puissance électrique demandée au module de puissance. In the power module MP of Fig.1, the high HS and low LS switching sections each include two electronic switches mounted in parallel, T1 HS, T2HS and T1 LS, T2LS, respectively. In general, in accordance with the invention, the high HS and low LS switching sections may include the same number of electronic switches connected in parallel. The number of electronic switches mounted in parallel will depend in particular on the electrical power requested from the power module.
[0036] De manière générale, dans la présente invention, les interrupteurs électroniques pourront être notamment des transistors de type MOSFET, IGBT, GTO et des transistors de type semiconducteur à grand gap tels que SiC, GaN, HEMT et autres. In general, in the present invention, the electronic switches may be in particular transistors of the MOSFET, IGBT, GTO type and transistors of the large gap semiconductor type such as SiC, GaN, HEMT and others.
[0037] Comme cela est connu de l’homme du métier, il est généralement avantageux de monter une diode Schottky en antiparallèle avec chacun des interrupteurs électroniques, de façon à assurer un recouvrement rapide en commutation et à protéger les interrupteurs. Certaines formes de réalisation de l’invention pourront donc incorporer des diodes Schottky montées en antiparallèle avec les interrupteurs électroniques. As is known to those skilled in the art, it is generally advantageous to mount a Schottky diode in antiparallel with each of the switches electronic, so as to ensure rapid switching recovery and protect the switches. Certain embodiments of the invention may therefore incorporate Schottky diodes mounted in antiparallel with the electronic switches.
[0038] Dans les exemples de forme de réalisation décrits ici, les interrupteurs électroniques sont des transistors MOSFET de type SiC. Les transistors sont considérés ici comme ayant des diodes intrinsèques PIN performantes (PIN pour « Positive - Intrinsic - Négative » en anglais), de sorte que les diodes Schottky montées en antiparallèle ne sont pas prévues dans ces formes de réalisation. In the exemplary embodiments described here, the electronic switches are MOSFET transistors of the SiC type. The transistors are considered here as having efficient PIN intrinsic diodes (PIN for “Positive - Intrinsic - Negative” in English), so that the Schottky diodes mounted in antiparallel are not provided in these embodiments.
[0039] Comme visible à la Fig .1 , le module de puissance PM comporte trois points de connexion de puissance PHS, PLS et Ps reliés respectivement à un bus barre d’alimentation électrique continue DC+ de polarité positive, un bus barre d’alimentation électrique continue DC- de polarité négative et une borne de sortie commutée OUT du module. Le point de connexion Ps est un point de connexion commun entre les sections de commutation haute HS et basse LS. As shown in Fig .1, the PM power module has three PHS, PLS and Ps power connection points connected respectively to a DC + continuous power bus bus of positive polarity, a power bus bus DC- electric current of negative polarity and a switched output terminal OUT of the module. The connection point Ps is a common connection point between the high HS and low LS switching sections.
[0040] Dans la section de commutation haute HS, des électrodes de drain D des transistors T1 HS et T2HS sont connectées ensemble et reliées au point de connexion PHS. Des électrodes de source S des transistors T1 HS et T2HS sont connectées ensemble et reliées au point de connexion commun Ps. Des électrodes de grille G des transistors T1 HS et T2HS sont connectées ensemble et reliées à une borne de commande CdHs du module de puissance MP. In the high switching section HS, drain electrodes D of the transistors T1 HS and T2HS are connected together and connected to the connection point PHS. Source electrodes S of transistors T1 HS and T2HS are connected together and connected to the common connection point Ps. Gate electrodes G of transistors T1 HS and T2HS are connected together and connected to a control terminal Cd H s of the module MP power.
[0041 ] Dans la section de commutation basse LS, des électrodes de drain D des transistors T1 LS et T2LS sont connectées ensemble et reliées au point de connexion commun Ps. Des électrodes de source S des transistors T1 LS et T2LS sont connectées ensemble et reliées au point de connexion PLS. Des électrodes de grille G des transistors T1 LS et T2LS sont connectées ensemble et reliées à une borne de commande CdLs du module de puissance MP. In the low LS switching section, drain electrodes D of the transistors T1 LS and T2LS are connected together and connected to the common connection point Ps. Source electrodes S of the transistors T1 LS and T2LS are connected together and connected at the PLS connection point. Grid electrodes G of the transistors T1 LS and T2LS are connected together and connected to a control terminal Cd L s of the power module MP.
[0042] Dans la présente invention, il est préconisé d’utiliser des interrupteurs électroniques ayant des première et deuxième électrodes de puissance situées respectivement sur des première et deuxième faces opposées des puces. Plus précisément, dans le cas d’un transistor MOSFET, l’électrode de source est située sur une première face de la puce, à savoir, la face avant métallisée, et l’électrode de drain est située sur l’autre face la puce, à savoir, la face arrière métallisée. In the present invention, it is recommended to use electronic switches having first and second power electrodes located respectively on first and second opposite faces of the chips. More specifically, in the case of a MOSFET transistor, the source electrode is located on a first face of the chip, namely, the metallized front face, and the drain electrode is located on the other face of the chip, namely, the metallized rear face.
[0043] Les Figs.2 et 3 montrent à titre d’exemple une implantation d’électrodes sur les faces avant et arrière d’une puce, telle que disponible chez les fournisseurs de composants semiconducteurs pour les transistors MOSFET de type SiC. Une telle implantation d’électrodes convient pour les transistors T1 HS, T2HS, et T1 LS, T2LS, du module de puissance MP. Figs.2 and 3 show by way of example an implantation of electrodes on the front and rear faces of a chip, as available from suppliers of semiconductor components for MOSFET transistors of SiC type. Such an implantation of electrodes is suitable for the transistors T1 HS, T2HS, and T1 LS, T2LS, of the power module MP.
[0044] Comme visible à la Fig.2, la face avant FAv des puces de transistor T1 HS, T2HS, et T1 LS, T2LS, comprend trois pavés métalliques d’électrode PS1 , PS2 et PG, prévus pour une liaison par soudure ou brasage. Les pavés PS1 et PS2 correspondent à l’électrode de source S. Le pavé PG correspond à l’électrode de grille G. La Fig.3 montre la face arrière FAR des puces de transistors T1 HS, T2HS, et T1 LS, T2LS, qui comprend un pavé métallique d’électrode PD correspondant à l’électrode de drain D et prévu pour une liaison par soudure ou brasage. As shown in FIG. 2, the front face F A v of the transistor chips T1 HS, T2HS, and T1 LS, T2LS, comprises three metal blocks of electrode PS1, PS2 and PG, provided for connection by soldering or brazing. The blocks PS1 and PS2 correspond to the source electrode S. The block PG corresponds to the gate electrode G. FIG. 3 shows the rear face FAR of the transistor chips T1 HS, T2HS, and T1 LS, T2LS, which comprises a metallic pad of PD electrode corresponding to the drain electrode D and provided for a connection by welding or brazing.
[0045] La Fig .4 montre de manière schématique la configuration d’implantation et de connexion électrique des transistors T1 HS, T2HS, et T1 LS, T2LS, dans le module de puissance MP. Fig. 4 shows schematically the layout and electrical connection configuration of the transistors T1 HS, T2HS, and T1 LS, T2LS, in the power module MP.
[0046] Comme bien visible à la Fig.4, les transistors T1 HS, T2HS, et T1 LS, T2LS, sont ici implantés aux quatre coins d’un rectangle, ou carrée, sur un même substrat SUB. Le substrat SUB est ici de type DBC et comprend une couche centrale diélectrique CD enserrée entre des couches conductrices haute CFI et basse CL. Les couches conductrices CFI et CL sont en cuivre. La couche conductrice haute CFI supporte le point de connexion commun Ps du module de puissance MP, point de connexion commun Ps qui correspond à la borne de sortie commutée OUT du module MP. As clearly seen in Fig.4, the transistors T1 HS, T2HS, and T1 LS, T2LS, are here located at the four corners of a rectangle, or square, on the same SUB substrate. The substrate SUB is here of the DBC type and comprises a central dielectric layer CD sandwiched between high CFI and low CL conductive layers. The conductive layers CFI and CL are made of copper. The high conductive layer CFI supports the common connection point Ps of the power module MP, common connection point Ps which corresponds to the switched output terminal OUT of the module MP.
[0047] Les deux transistors d’une même section de commutation sont implantés en des coins diagonalement opposés du rectangle. Ainsi, les transistors T1 HS et T2HS sont implantés respectivement dans des coins C3 et C1 diagonalement opposés du rectangle et les transistors T1 LS et T2LS sont implantés respectivement dans des coins C2 et C4 diagonalement opposés du rectangle. The two transistors of the same switching section are located at diagonally opposite corners of the rectangle. Thus, the transistors T1 HS and T2HS are located respectively in diagonally opposite corners C3 and C1 of the rectangle and the transistors T1 LS and T2LS are located respectively in diagonally opposite corners C2 and C4 of the rectangle.
[0048] Conformément à l’invention, comme décrit ci-dessus en référence aux Figs.2 et 3, il est utilisé des puces de transistor avec une implantation des électrodes de puissance sur les deux faces. Cette caractéristique de l’invention permet de minimiser les longueurs des liaisons de connexion et, corrélativement, les surfaces des boucles de commutation. According to the invention, as described above with reference to Figs.2 and 3, transistor chips are used with an implantation of the power electrodes on the two faces. This characteristic of the invention makes it possible to minimize the lengths of the connection links and, correspondingly, the areas of the switching loops.
[0049] Pour les transistors T1 HS et T2HS, diagonalement opposés, les électrodes de drain S, présentent sur les faces avant (cf. Fig.2) des puces, sont soudées sur la couche conductrice haute CH du substrat SUB. Les électrodes de source D, présentent sur les faces arrière (cf. Fig.3) des puces, sont reliées au bus barre d’alimentation électrique continue DC+.  For the transistors T1 HS and T2HS, diagonally opposite, the drain electrodes S, present on the front faces (cf. FIG. 2) of the chips, are soldered on the high conductive layer CH of the substrate SUB. The source electrodes D, present on the rear faces (see Fig. 3) of the chips, are connected to the bus DC DC power supply bar.
[0050] Les puces des transistors T1 LS et T2LS, diagonalement opposés, sont implantées sur le substrat SUB tête bêche par rapport aux puces des transistors T1 HS et T2HS (c’est-à-dire, avec un retournement de 180 degrés). Les électrodes de drain D, présentent sur les faces arrière (cf. Fig.3) des puces, sont soudées sur la couche conductrice haute CH du substrat SUB. Les électrodes de source S, présentent sur les faces avant (cf. Fig.2) des puces, sont reliées au bus barre d’alimentation électrique continue DC-.  The diagonally opposite chips of the T1 LS and T2LS transistors are implanted on the substrate SUB head to tail with respect to the chips of the T1 HS and T2HS transistors (that is to say, with a 180 degree reversal). The drain electrodes D, present on the rear faces (cf. FIG. 3) of the chips, are welded on the high conductive layer CH of the substrate SUB. The source electrodes S, present on the front faces (cf. Fig. 2) of the chips, are connected to the bus DC continuous power supply bar.
[0051 ] Les différents trajets de circulation de courant possibles T12, T14, T34 et T32 entre les transistors T1 HS, T2HS, T1 LS et T2LS sont montrés à la Fig.4. On notera que les sens de circulation de courant sont inversés dans les trajets parallèles correspondant à deux cotés opposés du rectangle, ce qui introduit un phénomène d’auto-compensation du rayonnement électromagnétique qui réduit les émissions électromagnétiques du module de puissance MP. Ainsi, les trajets T12 et T34 ont des sens contraires de circulation de courant et il en va de même pour les trajets T14 et T32.  The different possible current flow paths T12, T14, T34 and T32 between the transistors T1 HS, T2HS, T1 LS and T2LS are shown in Fig.4. It will be noted that the directions of current flow are reversed in the parallel paths corresponding to two opposite sides of the rectangle, which introduces a phenomenon of self-compensation of the electromagnetic radiation which reduces the electromagnetic emissions of the power module MP. Thus, paths T12 and T34 have opposite directions of current flow and the same applies to paths T14 and T32.
[0052] La Fig.5 montre schématiquement à titre d’exemple la surface de la boucle de commutation pour le trajet de circulation de courant T34 entre les transistors T1 HS et T2LS. Avec la configuration d’implantation et de connexion électrique des transistors décrite ci-dessus, la surface de la boucle de commutation est grandement réduite par rapport aux solutions connues de la technique antérieure. En effet, comme cela apparaît dans l’exemple illustratif de la Fig.5, la largeur La de la boucle de commutation peut être faible compte-tenu que l’épaisseur des puces de transistor qui n’est que de quelques centaines de micromètres. La longueur Lo de la boucle de commutation est déterminée par l’écartement entre les puces de transistor. [0053] Les Figs.6 et 7 montrent d’autres exemples d’architecture correspondant respectivement à des modules de puissance MPa et MPb. Fig.5 shows schematically by way of example the surface of the switching loop for the current flow path T34 between the transistors T1 HS and T2LS. With the layout and electrical connection configuration of the transistors described above, the surface of the switching loop is greatly reduced compared to the solutions known in the prior art. Indeed, as it appears in the illustrative example of Fig.5, the width La of the switching loop can be small given that the thickness of the transistor chips which is only a few hundred micrometers. The length Lo of the switching loop is determined by the spacing between the transistor chips. Figs.6 and 7 show other examples of architecture corresponding respectively to power modules MPa and MPb.
[0054] Le module de puissance MPa est une forme de réalisation minimale avec un seul transistor THS, TLS, par section de commutation HS, LS. The power module MPa is a minimal embodiment with a single transistor THS, TLS, per switching section HS, LS.
[0055] Le module de puissance MPb est une forme de réalisation avec trois transistors en parallèle par section de commutation. La section de commutation haute HS comprend les transistors T1 HS, T2HS et T3HS. La section de commutation basse LS comprend les transistors T1 LS, T2LS et T3LS. The MPb power module is an embodiment with three transistors in parallel per switching section. The high HS switching section includes the transistors T1 HS, T2HS and T3HS. The LS low switching section includes the T1 LS, T2LS and T3LS transistors.
[0056] Comme bien illustré par la forme de réalisation de la Fig.7, de manière générale dans la présente invention, les puces des transistors sont implantées sur le substrat SUB en étant réparties sur deux rangées sensiblement parallèles R1 et R2. La rangée R1 comprend ici les transistors T1 LS, T2HS et T3LS et la rangée R2 comprend les transistors T1 HS, T2LS et T3HS. Dans une même rangée R1 ou R2, les puces sont implantées de manière alternée, une puce d’une section de commutation étant suivie d’une puce de l’autre section de commutation, et deux puces adjacentes sont implantées tête bêche. De plus, les puces en regard dans les rangées R1 et R2 sont implantées tête bêche. As well illustrated by the embodiment of Fig.7, generally in the present invention, the chips of the transistors are implanted on the substrate SUB by being distributed over two substantially parallel rows R1 and R2. The row R1 here comprises the transistors T1 LS, T2HS and T3LS and the row R2 comprises the transistors T1 HS, T2LS and T3HS. In the same row R1 or R2, the chips are implanted alternately, a chip of a switching section being followed by a chip of the other switching section, and two adjacent chips are implanted head to tail. In addition, the chips opposite in rows R1 and R2 are installed head to tail.
[0057] En référence aux Figs.8 et 9, il est maintenant décrit en détail l’architecture du module de puissance MP1 , en tant que premier exemple de réalisation particulière de la présente invention. With reference to FIGS. 8 and 9, the architecture of the power module MP1 is now described in detail, as the first particular embodiment of the present invention.
[0058] Dans l’architecture du module de puissance MP1 , les transistors T1 HS, T2HS, T1 LS et T2LS sont soudés sur la couche conductrice haute CH du substrat SUB de type DBC, comme décrit ci-dessus en référence aux Figs.4 et 5. In the architecture of the power module MP1, the transistors T1 HS, T2HS, T1 LS and T2LS are soldered onto the high conductive layer CH of the substrate SUB of the DBC type, as described above with reference to FIGS. 4 and 5.
[0059] Comme visible aux Figs.8 et 9, la couche conductrice haute CH comporte une portion majoritaire, supportant la connexion (Ps) à la borne de sortie commutée OUT, sur laquelle sont soudées les électrodes de source S des transistors T1 HS et T2HS et les électrodes de drain D des transistors T1 LS et T2LS. Quatre pistes conductrices de commande de grille PG1 HS, PG2HS, PG1 LS et PG2LS sont formées dans la couche conductrice haute CH pour la connexion des électrodes de grille des transistors T1 HS, T2HS, T1 LS et T2LS, respectivement. As shown in Figs.8 and 9, the upper conductive layer CH comprises a majority portion, supporting the connection (Ps) to the switched output terminal OUT, on which the source electrodes S of the transistors T1 HS are welded and T2HS and the drain electrodes D of the transistors T1 LS and T2LS. Four conductive gate control tracks PG1 HS, PG2HS, PG1 LS and PG2LS are formed in the high CH conductive layer for connection of the gate electrodes of the transistors T1 HS, T2HS, T1 LS and T2LS, respectively.
[0060] Un dissipateur thermique DIS est fixé, en contact thermique étroit, contre la couche conductrice basse CB du substrat SUB. La couche diélectrique CD a une épaisseur qui est réduite au minimum requis de façon à faciliter l’évacuation des calories émises par les transistors T1 HS, T2HS, T1 LS et T2LS vers le dissipateur thermique DIS. A DIS heat sink is fixed, in close thermal contact, against the low conductive layer CB of the SUB substrate. The dielectric layer CD has a thickness which is reduced to the minimum required so as to facilitate the evacuation of the calories emitted by the transistors T1 HS, T2HS, T1 LS and T2LS towards the heat sink DIS.
[0061] Comme bien visible à la Fig.4B, les bus barres d’alimentation électrique continue DC+ et DC- sont formés respectivement par des couches conductrices CS1 et CS2 en cuivre. Les couches conductrices CS1 et CS2 sont empilées et stratifiées sur le substrat SUB, au-dessus de la couche conductrice haute CH, en étant isolées électriquement par des couches diélectriques DS1 et DS2. La couche diélectrique DS1 est interposée entre la couche conductrice haute CH et la couche conductrice CS1. La couche diélectrique DS2 est interposée entre la couche conductrice CS1 et la couche conductrice CS2.  As clearly visible in FIG. 4B, the DC + and DC- continuous power supply bus bars are formed respectively by conductive layers CS1 and CS2 made of copper. The conductive layers CS1 and CS2 are stacked and laminated on the substrate SUB, above the high conductive layer CH, being electrically insulated by dielectric layers DS1 and DS2. The dielectric layer DS1 is interposed between the high conductive layer CH and the conductive layer CS1. The dielectric layer DS2 is interposed between the conductive layer CS1 and the conductive layer CS2.
[0062] Des fils d’interconnexion électrique soudés WB sont utilisés pour relier les transistors T1 HS, T2HS, T1 LS et T2LS aux couches conductrices CS1 et CS2 correspondant respectivement aux bus barres d’alimentation électrique continue DC+ et DC-. Les électrodes de drain D des transistors T1 HS et T2HS sont reliées par des fils d’interconnexion soudés WB à la couche conductrice CS1. Les électrodes de source S des transistors T1 LS et T2LS sont reliées par des fils d’interconnexion électrique soudés WB à la couche conductrice CS2.  WB welded electrical interconnection wires are used to connect the transistors T1 HS, T2HS, T1 LS and T2LS to the conductive layers CS1 and CS2 corresponding respectively to the DC + and DC- bus bars. The drain electrodes D of the transistors T1 HS and T2HS are connected by welded interconnection wires WB to the conductive layer CS1. The source electrodes S of the transistors T1 LS and T2LS are connected by welded electrical interconnection wires WB to the conductive layer CS2.
[0063] Comme bien visible aux Figs.8 et 9, les pistes conductrices de commande de grille PG1 HS, PG2HS, PG1 LS et PG2LS, pour la connexion électrique des électrodes de grille G des transistors T1 HS, T2HS, T1 LS et T2LS, sont aménagées dans la couche conductrice haute CH par retrait de métal, typiquement par les techniques connues de photolithographie et gravure humide.  As clearly visible in Figs.8 and 9, the conductive tracks for gate control PG1 HS, PG2HS, PG1 LS and PG2LS, for the electrical connection of the gate electrodes G of transistors T1 HS, T2HS, T1 LS and T2LS , are arranged in the high CH conductive layer by removal of metal, typically by known techniques of photolithography and wet etching.
[0064] Les électrodes de grille G des transistors T1 HS et T2HS sont soudées directement aux pistes conductrices de commande de grille PG1 HS, PG2HS, respectivement. Les électrodes de grille G des transistors T1 LS et T2LS sont reliées aux pistes conductrices de commande de grille PG 1 LS et PG2LS, respectivement, par l’intermédiaire de fils d’interconnexion électrique soudés WB.  The gate electrodes G of the transistors T1 HS and T2HS are welded directly to the conductive tracks for gate control PG1 HS, PG2HS, respectively. The gate electrodes G of the transistors T1 LS and T2LS are connected to the conductive gate control tracks PG 1 LS and PG2LS, respectively, by means of welded electrical interconnection wires WB.
[0065] En référence aux Figs.10 et 11 , il est maintenant décrit en détail l’architecture du module de puissance MP2, en tant que deuxième exemple de réalisation particulière de la présente invention. [0066] Dans l’architecture du module de puissance MP2, les transistors T1 HS, T2HS, T1 LS et T2LS sont soudés entre un substrat inférieur SUBL et un substrat supérieur SUBH. Referring to Figs.10 and 11, it is now described in detail the architecture of the power module MP2, as a second particular embodiment of the present invention. In the architecture of the power module MP2, the transistors T1 HS, T2HS, T1 LS and T2LS are soldered between a lower substrate SUBL and an upper substrate SUBH.
[0067] Le substrat inférieur SUBL, de type DBC, est analogue au substrat inférieur SUB du module de puissance MP1. Les transistors T 1 HS, T2HS, T1 LS et T2LS sont soudés sur la couche conductrice haute CHL du substrat SUBL. The lower substrate SUB L , of DBC type, is analogous to the lower substrate SUB of the power module MP1. The transistors T 1 HS, T2HS, T1 LS and T2LS are soldered onto the high conductive layer CH L of the substrate SUB L.
[0068] Comme visible aux Figs.10 et 11 , la couche conductrice haute CHL comporte une portion majoritaire, supportant la connexion (Ps) à la borne de sortie commutée OUT, sur laquelle sont soudées les électrodes de source S des transistors T1 HS et T2HS et les électrodes de drain D des transistors T1 LS et T2LS. Deux pistes conductrices de commande de grille PL1 HS et PL2HS sont formées dans la couche conductrice haute CHL pour la connexion des électrodes de grille G des transistors T1 HS et T2HS, respectivement. Les électrodes de grille G des transistors T1 HS et T2HS sont soudées directement sur les pistes conductrices de commande de grille PL1 HS et PL2HS, respectivement. As shown in Figs. 10 and 11, the upper conductive layer CH L comprises a majority portion, supporting the connection (Ps) to the switched output terminal OUT, on which the source electrodes S of the transistors T1 HS are welded. and T2HS and the drain electrodes D of the transistors T1 LS and T2LS. Two conductive gate control tracks PL1 HS and PL2HS are formed in the high conductive layer CH L for the connection of the gate electrodes G of the transistors T1 HS and T2HS, respectively. The gate electrodes G of the transistors T1 HS and T2HS are soldered directly to the conductive gate control tracks PL1 HS and PL2HS, respectively.
[0069] Un dissipateur thermique DISL est fixé, en contact thermique étroit, contre la couche conductrice basse CBL du substrat inférieur SUBL. La couche diélectrique CDL a une épaisseur qui est réduite au minimum requis de façon à faciliter l’évacuation des calories émises par les transistors T1 HS, T2HS, T1 LS et T2LS vers le dissipateur thermique DISL. A DIS L heat sink is fixed, in close thermal contact, against the low conductive layer CB L of the lower substrate SUB L. The dielectric layer CD L has a thickness which is reduced to the minimum required so as to facilitate the evacuation of the calories emitted by the transistors T1 HS, T2HS, T1 LS and T2LS towards the heat sink DIS L.
[0070] Le substrat supérieur SUBH est aussi de type DBC et comporte trois couches conductrices CBH, CIH et CHH et deux couches diélectriques CD1 H et CD2H. Les couches conductrices CBH et CHH sont respectivement des couches conductrices basse et haute du substrat supérieur SUBH. La couche conductrice CIH est une couche conductrice intermédiaire du substrat supérieur SUBH. La couche diélectrique CD1 H est interposée entre la couche conductrice basse CBH et la couche conductrice intermédiaire CIH. La couche diélectrique CD2H est interposée entre la couche conductrice intermédiaire CIH et la couche conductrice haute CBH. The SUB H upper substrate is also of the DBC type and comprises three conductive layers CBH, CIH and CHH and two dielectric layers CD1 H and CD2H. The conductive layers CB H and CH H are respectively low and high conductive layers of the upper substrate SUB H. The conductive layer CI H is an intermediate conductive layer of the upper substrate SUB H. The dielectric layer CD1 H is interposed between the low conductive layer CB H and the intermediate conductive layer CI H. The dielectric layer CD2 H is interposed between the intermediate conductive layer CI H and the high conductive layer CB H.
[0071] Un dissipateur thermique DISH est fixé, en contact thermique étroit, contre la couche conductrice haute CHH du substrat SUBH. Les couches diélectriques CD1 H et CD2H ont des épaisseurs qui sont réduites au minimum requis de façon à faciliter l’évacuation des calories émises par les transistors T1 HS, T2HS, T1 LS et T2LS vers le dissipateur thermique DISH. A DIS H heat sink is fixed, in close thermal contact, against the high conductive layer CH H of the substrate SUB H. The dielectric layers CD1 H and CD2 H have thicknesses which are reduced to the minimum required in order to facilitate the evacuation of the calories emitted by the transistors T1 HS, T2HS, T1 LS and T2LS towards the heat sink DISH.
[0072] La couche conductrice basse CBH comporte une portion majoritaire, correspondant au bus barre d’alimentation électrique continue DC-, sur laquelle sont soudées les électrodes de source S des transistors T1 LS et T2LS et les électrodes de drain D des transistors T1 HS et T2HS. Deux pistes conductrices de commande de grille PL1 LS et PL2LS sont formées dans la couche conductrice basse CBH pour la connexion des électrodes de grille G des transistors T1 LS et T2LS, respectivement. Seule la piste conductrice de commande de grille PL1 LS est visible à la Fig .1 1 . La localisation des pistes conductrices de commande de grille PL1 LS et PL2LS au-dessus des grilles G des transistors T1 LS et T2LS est montrée en trait fin à la Fig.10. Les électrodes de grille G des transistors T1 LS et T2LS sont soudées directement sur les pistes conductrices de commande de grille PL1 LS et PL2LS, respectivement. The low conductive layer CBH comprises a majority portion, corresponding to the DC bus power bus DC-, on which are welded the source electrodes S of the transistors T1 LS and T2LS and the drain electrodes D of the transistors T1 HS and T2HS. Two conductive gate control tracks PL1 LS and PL2LS are formed in the low conductive layer CBH for the connection of the gate electrodes G of the transistors T1 LS and T2LS, respectively. Only the conductive gate control track PL1 LS is visible in Fig. 1 1. The location of the conductive gate control tracks PL1 LS and PL2LS above the gates G of the transistors T1 LS and T2LS is shown in a thin line in FIG. 10. The gate electrodes G of the transistors T1 LS and T2LS are welded directly to the conductive gate control tracks PL1 LS and PL2LS, respectively.
[0073] Les électrodes de drain D des transistors T1 HS et T2HS sont reliées électriquement à la couche conductrice intermédiaire CIH, correspondant au bus barre d’alimentation électrique continue DC+, à travers des pastilles conductrices de connexion de drain et des vias métalliques. Une pastille conductrice de connexion de drain et une pluralité de vias sont formées pour la connexion de chacune des électrodes de drain D des transistors T1 HS et T2HS. Chaque électrode de drain D est soudée à une pastille conductrice de connexion de drain. La pastille conductrice de connexion de drain C2HS et des vias V2HS pour le transistor T2HS sont visibles à la Fig.1 1 . Les pastilles conductrices de connexion de drain sont formées dans la couche conductrice basse CBH et sont reliées électriquement à la couche conductrice intermédiaire CIH par les vias formés dans la couche diélectrique CD1 H. The drain electrodes D of the transistors T1 HS and T2HS are electrically connected to the intermediate conductive layer CIH, corresponding to the bus DC power supply bus DC +, through conductive connection pads of drain and metal vias. A conductive drain connection pad and a plurality of vias are formed for the connection of each of the drain electrodes D of the transistors T1 HS and T2HS. Each drain electrode D is welded to a conductive drain connection pad. The conductive drain connection pad C2HS and vias V2HS for the transistor T2HS are visible in Fig. 1 1. The drain connection conductive pads are formed in the low conductive layer CBH and are electrically connected to the intermediate conductive layer CIH by the vias formed in the dielectric layer CD1 H.
[0074] Les pastilles conductrices de connexion de drain pourront être formées dans la couche conductrice basse CBH par retrait de métal, typiquement par les techniques connues de photolithographie et gravure humide. Les vias pourront être formés par perçage et métallisation. The conductive drain connection pads can be formed in the low conductive layer CBH by metal removal, typically by known techniques of photolithography and wet etching. The vias can be formed by drilling and metallization.
[0075] Bien entendu, l’invention ne se limite pas aux formes de réalisation particulières qui ont été décrites ici à titre d’exemple. L’homme du métier, selon les applications considérées, pourra apporter différentes modifications et variantes entrant dans le champ de protection de l’invention. Of course, the invention is not limited to the particular embodiments which have been described here by way of example. The skilled person, depending on the applications considered, may make various modifications and variants falling within the scope of protection of the invention.

Claims

REVENDICATIONS
[Revendications 1] !Module électronique de puissance comprenant au moins un premier substrat (SUB) et des première et deuxième sections de commutation (HS, LS) formant une branche de pont de commutation, lesdites première et deuxième sections de commutation (HS, LS) comprenant respectivement, en nombre égal, au moins une première puce électronique (THS) et une deuxième puce électronique (TLS) d’interrupteurs électroniques et étant reliées respectivement à un premier bus barre d’alimentation continue (DC+) et à un deuxième bus barre d’alimentation continue (DC-), lesdites première et deuxième puces électroniques (THS, TLS) comprenant chacune des première et deuxième faces d’électrode (FAV, FAR) supportant respectivement des première et deuxième électrodes de puissance (S, D), et ledit premier substrat (SUB) comprenant une première couche conductrice (CH) sur laquelle sont implantées lesdites puces électroniques (THS, TLS) et supportant une borne de sortie de commutation (OUT, PS) dudit module électronique de puissance, caractérisé en ce que lesdites première et deuxième puces électroniques (THS, TLS) sont implantées tête bêche sur ladite première couche conductrice (CH), ladite première puce électronique (THS) étant fixée sur ladite première couche conductrice (CH) par sa première face d’électrode (FAV, S) et ladite deuxième puce électronique (TLS) étant fixée sur ladite première couche conductrice (CH) par sa deuxième face d’électrode (FAR, D), et ladite deuxième face d’électrode (FAR, D) de ladite première puce électronique (THS) et ladite première face d’électrode (FAV, S) de ladite deuxième puce électronique (TLS) étant reliées respectivement auxdits premier et deuxième bus barre d’alimentation continue (DC+, DC-). [Claims 1]! Electronic power module comprising at least a first substrate (SUB) and first and second switching sections (HS, LS) forming a switching bridge branch, said first and second switching sections (HS, LS ) comprising, in equal number, respectively, at least a first electronic chip (THS) and a second electronic chip (TLS) of electronic switches and being connected respectively to a first bus DC bus (DC +) and to a second bus continuous power bar (DC-), said first and second electronic chips (THS, TLS) each comprising first and second electrode faces (FAV, FAR) respectively supporting first and second power electrodes (S, D) , and said first substrate (SUB) comprising a first conductive layer (CH) on which are implanted said electronic chips (THS, TLS) and supporting a sol terminal switching rtie (OUT, PS) of said electronic power module, characterized in that said first and second electronic chips (THS, TLS) are installed head to tail on said first conductive layer (CH), said first electronic chip (THS) being fixed to said first conductive layer (CH) by its first electrode face (FAV, S) and said second electronic chip (TLS) being fixed to said first conductive layer (CH) by its second electrode face (FAR, D ), and said second electrode face (FAR, D) of said first electronic chip (THS) and said first electrode face (FAV, S) of said second electronic chip (TLS) being connected respectively to said first and second bus continuous power bar (DC +, DC-).
[Revendications 2] Module électronique de puissance selon la revendication 1 , caractérisé en ce qu’il comprend, en nombre égal, une première pluralité de dites premières puces électroniques (T1 HS, T2HS, T3HS) et une deuxième pluralité de dites deuxièmes puces électroniques (T1 LS, T2LS, T3LS), lesdites premières et deuxièmes puces électroniques (T1 HS, T2HS, T3HS ; T1 LS, T2LS, T3LS) étant implantées sur ladite première couche conductrice (CH) en étant disposées en des première et deuxième rangées (R1 , R2), lesdites premières et deuxièmes puces électroniques (T1 HS, T2HS, T3HS ; T1 LS, T2LS, T3LS) étant implantées de manière alternée (T1 LS, T2HS, T3LS ; T1 HS, T2LS, T3HS) dans lesdites première et deuxième rangées (R1 , R2) et avec des premières et deuxièmes puces électroniques adjacentes (T2HS ; T1 LS, T3LS) implantées dans une dite rangée (R1 ) en regard respectivement de deuxièmes et premières puces électroniques adjacentes (T2LS ; T1 HS, T3HS) implantées dans l’autre rangée (R2). [Claims 2] Electronic power module according to claim 1, characterized in that it comprises, in equal number, a first plurality of said first electronic chips (T1 HS, T2HS, T3HS) and a second plurality of said second electronic chips (T1 LS, T2LS, T3LS), said first and second electronic chips (T1 HS, T2HS, T3HS; T1 LS, T2LS, T3LS) being implanted on said first conductive layer (CH) by being arranged in first and second rows ( R1, R2), said first and second electronic chips (T1 HS, T2HS, T3HS; T1 LS, T2LS, T3LS) being alternately implanted (T1 LS, T2HS, T3LS; T1 HS, T2LS, T3HS) in said first and second rows (R1, R2) and with first and second adjacent electronic chips (T2HS; T1 LS, T3LS) implanted in a said row (R1) opposite respectively second and first adjacent electronic chips (T2LS; T1 HS, T3HS) located in the other row (R2).
[Revendications 3] Module électronique de puissance selon la revendication 1 ou 2, caractérisé en ce que ledit premier substrat (SUB) comprend une deuxième couche conductrice (CB) isolée de ladite première couche conductrice (CH) par une première couche diélectrique (CD), et un premier dissipateur thermique (DIS) fixé sur ladite deuxième couche conductrice (CB). [Claims 3] Electronic power module according to claim 1 or 2, characterized in that said first substrate (SUB) comprises a second conductive layer (CB) isolated from said first conductive layer (CH) by a first dielectric layer (CD) , and a first heat sink (DIS) fixed on said second conductive layer (CB).
[Revendications 4] Module électronique de puissance selon la revendication 3, caractérisé en ce que ledit premier substrat (SUB, SUBL) est de type DBC.[Claims 4] Electronic power module according to claim 3, characterized in that said first substrate (SUB, SUB L ) is of the DBC type.
[Revendications 5] Module électronique de puissance selon l’une quelconque des revendications 1 à 4, caractérisé en ce qu’il comprend des troisième et quatrième couches conductrices (CS1 , CS2) empilées sur ladite première couche conductrice (CH) et formant respectivement lesdits premier et deuxième bus barre d’alimentation continue (DC+, DC-), lesdites première, troisième et quatrième couches conductrices (CH, CS1 , CS2) étant isolées entre elles par des deuxième et troisième couches diélectriques (DS1 , DS2), et chaque dite deuxième face d’électrode (FAR, D) de première puce électronique (T1 HS, T2HS) et chaque dite première face d’électrode (FAV, S) de deuxième puce électronique (T1 LS, T2LS) étant reliées respectivement auxdits premier et deuxième bus barre d’alimentation continue (DC+, DC-) par un fil d’interconnexion électrique (WB). [Claims 5] Electronic power module according to any one of claims 1 to 4, characterized in that it comprises third and fourth conductive layers (CS1, CS2) stacked on said first conductive layer (CH) and respectively forming said first and second bus DC bus (DC +, DC-), said first, third and fourth conductive layers (CH, CS1, CS2) being isolated from each other by second and third dielectric layers (DS1, DS2), and each said second electrode face (FAR, D) of first electronic chip (T1 HS, T2HS) and each said first electrode face (FAV, S) of second electronic chip (T1 LS, T2LS) being connected respectively to said first and second bus continuous power bar (DC +, DC-) by an electrical interconnection wire (WB).
[Revendications 6] Module électronique de puissance selon l’une quelconque des revendications 1 à 4, caractérisé en ce qu’il comprend un deuxième substrat (SUBH) comprenant des cinquième et sixième couches conductrices (CIH, CBH) dans lesquelles sont formés respectivement lesdits premier et deuxième bus barre d’alimentation continue (DC+, DC-), lesdites cinquième et sixième couches conductrices (CIH, CBH) étant isolées entre elles par une quatrième couche diélectrique (CD1 H), et chaque dite deuxième face d’électrode (FAR, D) de première puce électronique (T1 HS, T2HS) étant fixée audit premier bus barre d’alimentation continue (DC+) à travers une pastille conductrice (C2HS) aménagée dans ladite sixième couche conductrice (CBH) et des vias métallisés (V2HS) aménagés dans ladite quatrième couche diélectrique (CD1 H) et chaque dite première face d’électrode (FAV, S) de deuxième puce électronique (T1 LS, T2LS) étant fixée directement audit deuxième bus barre d’alimentation continue (DC-). [Claims 6] Electronic power module according to any one of claims 1 to 4, characterized in that it comprises a second substrate (SUBH) comprising fifth and sixth conductive layers (CIH, CBH) in which said said are formed respectively first and second DC busbar bus (DC +, DC-), said fifth and sixth conductive layers (CIH, CBH) being isolated from each other by a fourth dielectric layer (CD1 H), and each said second face electrode (FAR, D) of first electronic chip (T1 HS, T2HS) being fixed to said first bus continuous power bar (DC +) through a conductive pad (C2 HS ) arranged in said sixth conductive layer (CB H ) and metallized vias (V2 HS ) arranged in said fourth dielectric layer (CD1 H) and each said first electrode face (FAV, S) of second electronic chip (T1 LS , T2 LS ) being fixed directly to said second bus bus d '' continuous supply (DC-).
[Revendications 7] Module électronique de puissance selon la revendication 6, caractérisé en ce que ledit deuxième substrat (SUBH) comprend une septième couche conductrice (CFIH) isolée de ladite cinquième couche conductrice (CIH) par une cinquième couche diélectrique (CD2H), et un deuxième dissipateur thermique (DISH) fixé sur ladite septième couche conductrice (CFIH). [Claims 7] Electronic power module according to claim 6, characterized in that said second substrate (SUB H ) comprises a seventh conductive layer (CFI H ) isolated from said fifth conductive layer (CI H ) by a fifth dielectric layer (CD2 H ), and a second heat sink (DIS H ) fixed on said seventh conductive layer (CFIH).
[Revendications 8] Module électronique de puissance selon la revendication 6 ou 7, caractérisé en ce que ledit deuxième substrat (SUBH) est de type DBC.[Claims 8] Electronic power module according to claim 6 or 7, characterized in that said second substrate (SUB H ) is of the DBC type.
[Revendications 9] Module électronique de puissance selon l’une quelconque des revendications 1 à 8, caractérisé en ce que lesdites puces électroniques d’interrupteurs électroniques sont des transistors de type MOSFET. [Claims 9] Electronic power module according to any one of claims 1 to 8, characterized in that said electronic chips of electronic switches are MOSFET type transistors.
[Revendications 10] Dispositif électronique de commutation de puissance caractérisé en ce qu’il comprend au moins un module électronique de puissance (MP, MPa, MPb, MP1 , MP2) selon l’une quelconque des revendications 1 à 9.  [Claims 10] Electronic power switching device characterized in that it comprises at least one electronic power module (MP, MPa, MPb, MP1, MP2) according to any one of claims 1 to 9.
PCT/FR2019/052605 2018-11-07 2019-11-04 Power electronic module WO2020094959A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1871394A FR3088138B1 (en) 2018-11-07 2018-11-07 POWER ELECTRONIC MODULE
FR1871394 2018-11-07

Publications (1)

Publication Number Publication Date
WO2020094959A1 true WO2020094959A1 (en) 2020-05-14

Family

ID=66530105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/052605 WO2020094959A1 (en) 2018-11-07 2019-11-04 Power electronic module

Country Status (2)

Country Link
FR (1) FR3088138B1 (en)
WO (1) WO2020094959A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070164423A1 (en) * 2006-01-13 2007-07-19 Martin Standing Multi-chip semiconductor package
US20140084993A1 (en) 2012-09-24 2014-03-27 Kabushiki Kaisha Toshiba Semiconductor device
FR3050571A1 (en) * 2016-04-20 2017-10-27 Centre Nat Rech Scient ELECTRONIC POWER CONVERTER USING TWO MULTIPLE POLES OF POWER WITH N AND P COMPLEMENTARY SUBSTRATES
WO2018096147A1 (en) * 2016-11-25 2018-05-31 Abb Schweiz Ag Power semiconductor module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070164423A1 (en) * 2006-01-13 2007-07-19 Martin Standing Multi-chip semiconductor package
US20140084993A1 (en) 2012-09-24 2014-03-27 Kabushiki Kaisha Toshiba Semiconductor device
FR3050571A1 (en) * 2016-04-20 2017-10-27 Centre Nat Rech Scient ELECTRONIC POWER CONVERTER USING TWO MULTIPLE POLES OF POWER WITH N AND P COMPLEMENTARY SUBSTRATES
WO2018096147A1 (en) * 2016-11-25 2018-05-31 Abb Schweiz Ag Power semiconductor module

Also Published As

Publication number Publication date
FR3088138A1 (en) 2020-05-08
FR3088138B1 (en) 2022-01-21

Similar Documents

Publication Publication Date Title
JP5040765B2 (en) Semiconductor device
US7285801B2 (en) LED with series-connected monolithically integrated mesas
US20050179104A1 (en) Lateral conduction schottky diode with plural mesas
US20060227827A1 (en) Semiconductor laser device and heat sink used therein
US9324645B2 (en) Method and system for co-packaging vertical gallium nitride power devices
FR2842352A1 (en) POWER SEMICONDUCTOR DEVICE
EP2521175B1 (en) Electrical interconnection device of at least one electronic component with a power supply comprising means for reducing loop inductance between a first and a second terminal
US8166769B2 (en) Self-cooled vertical electronic component
FR3099965A1 (en) BOX STRUCTURE FOR POWER SUPPLY DEVICE
JP7428018B2 (en) semiconductor module
EP3610503A1 (en) Electronic power module and electrical power converter incorporating same
EP2577729A1 (en) Electronic chip having channels through which a heat transport coolant can flow, electronic components and communication arm incorporating said chip
US20200194359A1 (en) Power converter having a conductive clip
US10686085B2 (en) Power electronics assemblies having opticondistors and an embedded active cooling chip
WO2016071366A1 (en) Electronic power device with vertical 3d switching cell
US11133303B2 (en) Semiconductor device and semiconductor arrangement comprising semiconductor devices
JP2024008998A (en) Electronic circuit, semiconductor module, and semiconductor device
WO2020094959A1 (en) Power electronic module
JP5566354B2 (en) Power semiconductor switch and power conversion device
US10453769B2 (en) Thermal management structure with integrated heat sink
EP3242322B1 (en) Electronic power device with planar electrical interconnection structure
JP2018206871A (en) Semiconductor element and method for manufacturing the same
FR3050571A1 (en) ELECTRONIC POWER CONVERTER USING TWO MULTIPLE POLES OF POWER WITH N AND P COMPLEMENTARY SUBSTRATES
CN100470866C (en) Semi-conductor solid-state light source device
JP2005310923A (en) Semiconductor device and chip packaging method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19818207

Country of ref document: EP

Kind code of ref document: A1