WO2020094098A1 - 信道状态信息的反馈方法及装置 - Google Patents

信道状态信息的反馈方法及装置 Download PDF

Info

Publication number
WO2020094098A1
WO2020094098A1 PCT/CN2019/116318 CN2019116318W WO2020094098A1 WO 2020094098 A1 WO2020094098 A1 WO 2020094098A1 CN 2019116318 W CN2019116318 W CN 2019116318W WO 2020094098 A1 WO2020094098 A1 WO 2020094098A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback
channel state
state information
beamforming
processing mode
Prior art date
Application number
PCT/CN2019/116318
Other languages
English (en)
French (fr)
Inventor
于健
吴伟民
代静
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020237014426A priority Critical patent/KR102608748B1/ko
Priority to EP19882547.3A priority patent/EP3866505A4/en
Priority to AU2019375823A priority patent/AU2019375823B9/en
Priority to SG11202104817SA priority patent/SG11202104817SA/en
Priority to KR1020217016166A priority patent/KR102528328B1/ko
Priority to BR112021008941-1A priority patent/BR112021008941A2/pt
Priority to JP2021524153A priority patent/JP7125555B2/ja
Publication of WO2020094098A1 publication Critical patent/WO2020094098A1/zh
Priority to US17/314,422 priority patent/US11483048B2/en
Priority to JP2022128767A priority patent/JP7364145B2/ja
Priority to US17/957,563 priority patent/US11990966B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method and device for feeding back channel state information.
  • MIMO multiple-input multiple-output
  • the beamformer needs to obtain channel state information from the beamformee, so that the beamformer can implement beamforming, rate control, resource allocation, etc. based on the channel state information Features.
  • the 802.11 standard is a general standard for WLAN.
  • the Institute of Electrical and Electronics Engineers institute of electrical and electronic engineers
  • the next-generation 802.11 standard supports extremely high throughput (EHT) data transmission, that is, the next-generation 802.11 standard supports larger bandwidth (such as 320MHZ) and more streaming Number (for example, 16 spatial streams).
  • EHT extremely high throughput
  • the beamforming responder needs to feed back more channel state information to the beamforming initiator, resulting in excessive feedback overhead. Therefore, for the next-generation 802.11 standard, how to feed back channel state information to achieve a balance between the feedback overhead and feedback accuracy of the channel state information is an urgent problem to be solved.
  • the present application provides a method and device for feedback of channel state information, which is used to flexibly feed back channel state information to achieve a balance between feedback overhead and feedback accuracy of channel state information.
  • a method for feedback of channel state information which includes: a beamforming initiator sends a media access control (MAC) frame, and the MAC frame includes a processing mode bitmap, and each processing mode bitmap n bits correspond to one feedback unit respectively, and the value of n bits is used to indicate the processing method of the channel state information of the corresponding feedback unit, n is a positive integer; the beamforming initiator receives the beamforming report sent by the beamforming responder, The beamforming report includes one or more feedback fields, each of which corresponds to a feedback unit, and the feedback field contains the channel state information of the corresponding feedback unit. The channel state information of the corresponding feedback unit is processed by the bitmap Indicate the processing method.
  • MAC media access control
  • each n bits in the processing mode bitmap respectively correspond to a feedback unit, and the value of the n bits is used to indicate the processing mode of the channel state information of the corresponding feedback unit.
  • the beamforming initiator can instruct the beamforming responder to adopt a processing method with greater feedback accuracy through processing bitmaps to ensure the feedback accuracy;
  • the beamforming initiator may instruct the beamforming responder to adopt a processing method with a smaller feedback overhead through the processing mode bitmap to reduce the feedback overhead.
  • the beamforming initiator can configure an appropriate processing method according to needs, and instruct the beamforming responder to use different processing methods to process the channel state information of different feedback units, so that when the channel state information is fed back, the channel state information can be realized.
  • the feedback unit is a slice, a resource unit, or a channel.
  • the MAC frame is a null data packet announcement (NDPA) frame, or a beamforming report polling trigger frame.
  • NDPA null data packet announcement
  • a feedback method for channel state information which includes: a beamforming responder receives a MAC frame sent by a beamforming initiator, the MAC frame includes a processing mode bitmap, and each n bits in the processing mode bitmap are respectively Corresponding to a feedback unit, the value of n bits is used to indicate the processing method of the channel state information of the corresponding feedback unit, n is a positive integer; the beamforming responder sends a beamforming report to the beamforming initiator, and the beamforming report includes a Or multiple feedback fields, each feedback field corresponds to a feedback unit, the feedback field contains the channel state information of the corresponding feedback unit, and the channel state information of the corresponding feedback unit is processed by the processing mode indicated by the processing mode bitmap .
  • each n bits in the processing mode bitmap respectively correspond to a feedback unit, and the value of the n bits is used to indicate the processing mode of the channel state information of the corresponding feedback unit.
  • the beamforming initiator can instruct the beamforming responder to adopt a processing method with greater feedback accuracy through processing bitmaps to ensure the feedback accuracy;
  • the beamforming initiator may instruct the beamforming responder to adopt a processing method with a smaller feedback overhead through the processing mode bitmap to reduce the feedback overhead.
  • the beamforming initiator can configure an appropriate processing method according to needs, and instruct the beamforming responder to use different processing methods to process the channel state information of different feedback units, so that when the channel state information is fed back, the channel state information can be realized.
  • the feedback unit is a slice, a resource unit, or a channel.
  • the MAC frame is an NDPA frame, or a beamforming report polling trigger frame.
  • a feedback method for channel state information including: a beamforming initiator sending a MAC frame, the MAC frame includes at least two user information corresponding to a target beamforming responder, and at least two user information includes configuration parameters At least one configuration parameter has different values; the beamforming initiator receives the beamforming report sent by the target beamforming responder, and the beamforming report contains channel state information corresponding to at least two user information respectively.
  • the MAC frame may include at least two user information corresponding to the target beamforming responder, and at least one of the configuration parameters included in the at least two user information has different values. That is, the beamforming responder can instruct the target beamforming responder to feed back multiple channel state information through multiple user information corresponding to the target beamforming responder in the MAC frame, and the multiple channel state information can be processed in different ways , And / or, the multiple channel state information is channel state information of resource units in different parts, so as to realize flexible feedback of the channel state information.
  • the user information includes at least one or more of the following configuration parameters: resource unit start index, resource unit end index, processing mode indication information, group number, and codebook information.
  • the MAC frame is an NDPA frame, or a beamforming report polling trigger frame.
  • a feedback method of channel state information including: a target beamforming responder receiving a MAC frame sent by a beamforming initiator, the MAC frame containing at least two user information corresponding to the target beamforming responder, at least two The configuration information included in the user information has at least one configuration parameter with different values; the target beamforming responder sends a beamforming report to the beamforming initiator, and the beamforming report includes channel state information corresponding to at least two user information respectively.
  • the MAC frame may include at least two user information corresponding to the target beamforming responder, and at least one of the configuration parameters included in the at least two user information has different values. That is, the beamforming responder can instruct the target beamforming responder to feed back multiple channel state information through multiple user information corresponding to the target beamforming responder in the MAC frame, and the multiple channel state information can be processed in different ways , And / or, the multiple channel state information is channel state information of resource units in different parts, so as to realize flexible feedback of the channel state information.
  • the user information includes at least one or more of the following configuration parameters: resource unit start index, resource unit end index, processing mode indication information, group number, and codebook information.
  • the MAC frame is an NDPA frame, or a beamforming report polling trigger frame.
  • a communication device which is used to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the communication device includes a unit for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • a communication device which is used to execute the method in the second aspect or any possible implementation manner of the second aspect.
  • the communication device includes a unit for performing the method in any possible implementation manner of the foregoing second aspect or second aspect.
  • a communication device which is used to execute the method in the third aspect or any possible implementation manner of the third aspect.
  • the communication device includes a unit for performing the method in the third aspect or any possible implementation manner of the third aspect.
  • a communication device which is used to execute the method in the fourth aspect or any possible implementation manner of the fourth aspect.
  • the communication device includes a unit for performing the method in the fourth aspect or any possible implementation manner of the fourth aspect.
  • a communication device in a ninth aspect, includes: a processor and a transceiver, and optionally, a memory; wherein the processor, the transceiver, and the memory communicate with each other through an internal connection.
  • the processor is configured to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the transceiver is controlled by the processor and is used to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the memory is used to store instructions, which are called by the processor to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • a communication device includes: a processor and a transceiver, and optionally, a memory; wherein the processor, the transceiver, and the memory communicate with each other through an internal connection.
  • the processor is configured to execute the method in the second aspect or any possible implementation manner of the second aspect.
  • the transceiver is controlled by the processor and is used to execute the method in the second aspect or any possible implementation manner of the second aspect.
  • the memory is used to store instructions, which are called by the processor to perform the method in the second aspect or any possible implementation manner of the second aspect.
  • a communication device includes: a processor and a transceiver, and optionally, a memory; wherein the processor, the transceiver, and the memory communicate with each other through an internal connection.
  • the processor is configured to execute the method in the third aspect or any possible implementation manner of the third aspect.
  • the transceiver is controlled by the processor and is used to perform the method in the third aspect or any possible implementation manner of the third aspect.
  • the memory is used to store instructions that are called by the processor to perform the method in the third aspect or any possible implementation manner of the third aspect.
  • a communication device includes: a processor and a transceiver, and optionally, a memory; wherein the processor, the transceiver, and the memory communicate with each other through an internal connection.
  • the processor is configured to execute the method in the fourth aspect or any possible implementation manner of the fourth aspect.
  • the transceiver is controlled by the processor and is used to execute the method in the fourth aspect or any possible implementation manner of the fourth aspect.
  • the memory is used for storing instructions, which are called by the processor to perform the method in the fourth aspect or any possible implementation manner of the fourth aspect.
  • a computer-readable storage medium for storing a computer program, the computer program including instructions for performing the method in the first aspect or any possible implementation manner of the first aspect .
  • a fourteenth aspect there is provided a computer-readable storage medium for storing a computer program, the computer program including instructions for performing the method in the second aspect or any possible implementation manner of the second aspect .
  • a computer-readable storage medium for storing a computer program, the computer program including instructions for performing the method of the third aspect or any possible implementation manner of the third aspect .
  • a computer-readable storage medium for storing a computer program, the computer program including instructions for performing the method in the fourth aspect or any possible implementation manner of the fourth aspect .
  • a computer program comprising instructions for performing the method of the first aspect or any possible implementation of the first aspect.
  • a computer program comprising instructions for performing the method of the second aspect or any possible implementation of the second aspect.
  • a computer program comprising instructions for performing the method of the third aspect or any possible implementation of the third aspect.
  • a computer program comprising instructions for performing the method of the fourth aspect or any possible implementation of the fourth aspect.
  • a chip including a processing circuit and a transceiver pin, and optionally, a memory; wherein the processing circuit, the transceiver pin, and the memory communicate with each other through an internal connection.
  • the processing circuit is configured to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the transceiver pin is controlled by the processing circuit and is used to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the memory is used to store instructions, which are called by the processing circuit to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • a chip in a twenty-second aspect, includes a processing circuit and a transceiver pin, and optionally a memory; wherein the processing circuit, the transceiver pin, and the memory communicate with each other through an internal connection.
  • the processing circuit is configured to execute the method in the second aspect or any possible implementation manner of the second aspect.
  • the transceiver pin accepts the control of the processing circuit and is used to execute the method in the second aspect or any possible implementation manner of the second aspect.
  • the memory is used to store instructions that are called by the processing circuit to perform the method in the second aspect or any possible implementation manner of the second aspect.
  • a chip in a twenty-third aspect, includes a processing circuit and a transceiver pin, and optionally, a memory; wherein the processing circuit, the transceiver pin, and the memory communicate with each other through an internal connection.
  • the processing circuit is configured to execute the method in the third aspect or any possible implementation manner of the third aspect.
  • the transceiver pin is controlled by the processing circuit and is used to perform the method in the third aspect or any possible implementation manner of the third aspect.
  • the memory is used to store instructions that are called by the processing circuit to perform the method in the third aspect or any possible implementation manner of the third aspect.
  • a chip in a twenty-fourth aspect, includes a processing circuit and a transceiver pin, and optionally a memory; wherein the processing circuit, the transceiver pin, and the memory communicate with each other through an internal connection.
  • the processing circuit is configured to execute the method in the fourth aspect or any possible implementation manner of the fourth aspect.
  • the transceiver pin is controlled by the processing circuit and is used to execute the method in the fourth aspect or any possible implementation manner of the fourth aspect.
  • the memory is used to store instructions, which are called by the processing circuit to execute the method in the fourth aspect or any possible implementation manner of the fourth aspect.
  • Figure 1 is a schematic diagram of a single user feedback process of channel state information in the 802.11ax standard
  • FIG. 2 is a schematic diagram of a multi-user feedback process of channel state information in the 802.11ax standard
  • FIG. 3 is a flowchart 1 of a method for feeding back channel state information according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram 1 of a MIMO control field provided by an embodiment of the present application.
  • FIG. 5 is a second schematic structural diagram of a MIMO control field provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram 3 of a MIMO control field provided by an embodiment of the present application.
  • FIG. 7 is a flowchart 2 of a method for feeding back channel state information according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram 1 of an NDPA frame provided by an embodiment of this application.
  • FIG. 9 is a second schematic structural diagram of an NDPA frame provided by an embodiment of this application.
  • FIG. 10 is a flowchart 3 of a method for feeding back channel state information according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram 1 of a BRP trigger frame provided by an embodiment of the present application.
  • FIG. 12 is a second schematic structural diagram of a BRP trigger frame provided by an embodiment of the present application.
  • FIG. 13 is a flowchart 4 of a channel state information feedback method provided by an embodiment of the present application.
  • FIG. 14 is a fourth schematic structural diagram of a MIMO control field provided by an embodiment of the present application.
  • 15 is a flowchart 5 of a channel state information feedback method provided by an embodiment of the present application.
  • 16 is a schematic structural diagram 3 of an NDPA frame provided by an embodiment of the present application.
  • 17 is a schematic structural diagram 4 of an NDPA frame provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram 3 of a BRP trigger frame provided by an embodiment of the present application.
  • 20 is a schematic structural diagram 4 of a BRP trigger frame provided by an embodiment of the present application.
  • 21 is a schematic structural diagram 5 of a BRP trigger frame provided by an embodiment of the present application.
  • 22 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the feedback process of the channel state information of the 802.11ax standard is divided into: a single user feedback process and a multi-user feedback process.
  • the following uses a beamforming initiator as an access point (AP) and a beamforming responder as a station (STA) as an example for description.
  • AP access point
  • STA station
  • the AP sends an NDPA frame to notify the target STA (such as STA1 in Figure 1) to prepare for channel estimation; after that, the AP sends a null data packet (NDP) , So that the target STA performs channel estimation according to the long training sequence in NDP to determine channel state information; the target STA sends a beamforming report to the AP, and the beamforming report contains channel state information.
  • NDP null data packet
  • the interframe space between the NDPA frame and the NDP, and the interframe space between the NDP and the beamforming report are short interframe spaces (SIFS).
  • the AP sends an NDPA frame to notify multiple target STAs (such as STA1, STA2, and STA3 in FIG. 2) to prepare for channel estimation; after that, the AP sends NDP.
  • Each target STA performs channel estimation; the AP sends a beamforming report polling (BRP) trigger frame to trigger multiple target STAs to feed back channel status information; and multiple target STAs send beamforming reports to the AP.
  • BRP beamforming report polling
  • the resource unit is a frequency domain resource, and the resource unit includes one or more subcarriers.
  • WLAN systems define the following types of RUs: 26-subcarrier RU (that is, one RU contains 26 subcarriers), 52-subcarrier RU (that is, one RU contains 52 subcarriers), 106-subcarrier RU ( That is, one RU contains 106 subcarriers, 242-subcarrier RU (that is, one RU contains 242 subcarriers), 484-subcarrier RU (that is, one RU contains 484 subcarriers), 996-subcarrier RU (that is, one RU contains 996 subcarriers) etc.
  • CBW channel bandwidths
  • the channel bandwidths (CBW) supported by the 802.11ax standard are: 20MHZ, 40MHZ, 80MHZ, 80 + 80MHZ (that is, two channels with a bandwidth of 80MHZ are supported, and the two channels are not continuous and non-overlapping) , And 160MHZ.
  • Table 1 shows the total number of RUs under each channel bandwidth.
  • the beamforming report can be divided into 8 slices.
  • the channel state information contained in the beamforming report is also divided into 8 parts, and each slice carries part of the channel state information.
  • the technical solution of the present application is applied to WLAN, and the standards adopted by WLAN may be IEEE 802.11 standards, such as 802.11ac standard, 802.11ax standard, and next-generation 802.11 standard.
  • the scenarios applicable to the technical solution of the present application include: communication between the AP and the STA, communication between the AP and the AP, and communication between the STA and the STA.
  • the AP may serve as a beamforming initiator or a beamforming responder.
  • the STA can act as a beamforming initiator or a beamforming responder.
  • the AP may be a wireless router, a wireless transceiver, a wireless switch, or the like.
  • STA has different names, such as subscriber unit, access terminal, mobile station, mobile station, mobile device, terminal, user equipment, etc.
  • STAs can be cellular phones, smart phones, wireless local loop (wireless local loop, WLL), and other handheld devices and computer devices with wireless local area network communication functions.
  • WLL wireless local loop
  • FIG. 3 it is a method for feeding back channel state information according to an embodiment of the present application.
  • the method includes the following steps:
  • the beamforming initiator generates and sends a MAC frame, where the MAC frame includes a bitmap of the processing mode.
  • the MAC frame is an NDPA frame, or a BRP trigger frame.
  • the beamforming initiator sends the MAC frame in a broadcast manner.
  • processing mode bitmap is used to indicate the processing mode of the channel state information of multiple feedback units, and the processing mode of the channel state information of different feedback units may be the same or different.
  • a plurality of different processing methods are predetermined between the beamforming initiator and the beamforming responder.
  • the feedback overhead corresponding to different processing methods is different.
  • different processing methods use different numbers of packets, and / or, different processing methods use different numbers of quantization levels.
  • the number of packets is used to indicate the number of subcarriers grouped into a group.
  • the beamforming responder only needs to feed back the channel state information of one subcarrier in the group of subcarriers to reduce feedback overhead.
  • the foregoing processing manner includes a first processing manner and a second processing manner.
  • the feedback overhead corresponding to the first processing mode is greater than the feedback overhead corresponding to the second processing mode, including one of the following situations: (1) The number of packets used in the first processing mode is smaller than that in the second processing mode The number of packets used; (2) The number of quantization levels used in the first processing method is greater than the number of packets used in the second processing method; (3) The first processing method is a non-differential processing method, so The second processing method is a difference processing method.
  • the difference processing method refers to calculating the difference between the current channel state information and the previously buffered channel state information to determine the difference between the channel state information.
  • the beamforming responder feeds back the difference in channel state information to the beamforming initiator.
  • the beamforming initiator determines the current channel state information according to the difference between the channel state information and the previously buffered channel state information. Compared with the absolute value of the channel state information, the variation range of the difference of the channel state information is smaller, so fewer quantization bits can be used to represent the difference of the channel state information, thereby reducing feedback overhead.
  • the channel state information includes: a feedback matrix (such as a V matrix) and a signal-to-noise ratio (SNR).
  • the above processing method may be a processing method for one parameter in channel state information (such as a feedback matrix or a signal-to-noise ratio), or a plurality of parameters in channel state information (such as a feedback matrix and a signal-to-noise ratio ).
  • one feedback unit may include at least one slice, or at least one RU, or at least one channel.
  • the feedback unit is a 26-subcarrier RU, or a 52-subcarrier RU, or a 242-subcarrier RU.
  • the feedback unit is a 20 MHz bandwidth channel, or a 40 MHz bandwidth channel, or a 80 MHz bandwidth channel.
  • each n bits in the processing mode bitmap correspond to one feedback unit, and the value of the n bits is used to indicate the processing mode of the channel state information of the corresponding feedback unit, where n is a positive integer.
  • the 1st to nth bits in the bitmap correspond to the first feedback unit
  • the n + 1th to 2nth bits correspond to the second feedback unit
  • Ln + n bits correspond to the Lth feedback unit.
  • L is an integer greater than or equal to 0.
  • the specific value of n is pre-configured, or defined in the standard, or indicated by the beamforming initiator.
  • the MAC frame further includes a value indication field, and the value indication field is used to indicate the value of n.
  • n there is a correspondence between the value of n and the number of processing methods.
  • the processing mode includes only the first processing mode and the second processing mode
  • the value of n is 1, that is, each bit in the processing mode bitmap corresponds to a feedback unit.
  • the processing mode includes a first processing mode, a second processing mode, and a third processing mode
  • the value of n is 2, that is, each two bits in the processing mode bitmap correspond to a feedback unit.
  • the type of the feedback unit corresponding to the n bits in the processing mode bitmap is pre-configured or defined in the standard. That is, whether the n bits in the processing mode bitmap correspond to 26-subcarrier RU, 52-subcarrier RU, or 40MHz bandwidth channel are pre-configured or defined in the standard.
  • the type of the feedback unit corresponding to the n bits in the processing mode bitmap is indicated by the beamforming initiator.
  • the beamforming initiator implicitly indicates the type of the feedback unit corresponding to n bits in the bitmap in the processing mode.
  • the total number of bits included in the bitmap in the processing manner indicates the type of the feedback unit. For example, if each bit in the processing mode bitmap corresponds to a feedback unit, and the total number of bits contained in the processing mode bitmap is 8, the corresponding bit in the processing mode bitmap corresponds to The type of the feedback unit is fragmentation, that is, each bit in the processing mode bitmap corresponds to a fragmentation.
  • the channel bandwidth to be detected is 320 MHz
  • the bandwidth of the channel to be detected is 320 MHz
  • the bandwidth of the channel to be detected is 320 MHz
  • the bandwidth of the processing mode bitmap corresponds to a feedback unit, and the total number of bits contained in the processing mode bitmap is 16, then The type of the feedback unit corresponding to one bit in the processing mode bitmap is a 20 MHz bandwidth channel.
  • the bandwidth of the channel to be detected is 160 MHz.
  • each bit in the processing mode bitmap corresponds to a feedback unit, and the total number of bits included in the processing mode bitmap Is 16
  • the type of the feedback unit corresponding to one bit in the processing mode bitmap is 106-subcarrier RU.
  • the bandwidth of the channel to be detected is 160 MHz. If each bit in the processing mode bitmap corresponds to a feedback unit, and the total number of bits included in the processing mode bitmap Is 74, then the type of the feedback unit corresponding to one bit in the processing mode bitmap is 26-subcarrier RU.
  • the MAC frame may or may not include partial bandwidth information, and the partial bandwidth information is used to indicate a portion of the bandwidth of the channel.
  • the partial bandwidth information includes a resource unit start index and a resource unit end index.
  • the resource unit start index combined with the resource unit end index is used to indicate a continuous segment of resource units. For example, if the resource unit start index is 0 and the resource unit end index is 10, the resource unit start index combined with the resource unit end index is used to indicate the first to eleventh 26-subcarrier RU.
  • the index of the resource unit is defined in the standard. If the MAC frame does not contain part of the bandwidth information, the MAC frame is used to request the beamforming responder to feedback channel state information of the entire channel bandwidth. If the MAC frame includes partial bandwidth information, the MAC frame is used to request the beamforming responder to feedback channel state information of the partial channel bandwidth.
  • the type of the feedback unit corresponding to every n bits in the processing mode bitmap is related to whether the MAC frame contains part of bandwidth information.
  • the MAC frame does not contain part of the bandwidth information, and the entire channel bandwidth is 320MHZ.
  • the bit The total number is 16
  • the type of the feedback unit corresponding to one bit in the processing mode bitmap is 20 MHz.
  • the MAC frame contains part of the bandwidth information. In the part of the bandwidth information, the start index of the resource unit is 0 and the end index of the resource unit is 15. If each bit in the processing mode bitmap corresponds to a feedback unit, and the processing mode bit The total number of bits included in the bitmap is 16, and the type of the feedback unit corresponding to one bit in the processing mode bitmap is 26-subcarrier RU.
  • the MAC frame includes partial bandwidth information and the feedback unit is RU, which n RU corresponds to each n bit in the processing mode bitmap can be determined in conjunction with partial bandwidth information.
  • the MAC frame contains part of the bandwidth information.
  • the start index of the resource unit is 7 and the end index of the resource unit is 14.
  • the processing bitmap The first bit corresponds to the eighth 26-subcarrier RU, the second bit corresponds to the ninth 26-subcarrier RU, and so on, the eighth bit corresponds to the fifteenth 26-subcarrier RU.
  • the beamforming initiator explicitly indicates the type of the feedback unit corresponding to n bits in the bitmap in the processing manner.
  • the MAC frame further includes a feedback unit indication field, and the feedback unit indication field is used to indicate the type of the feedback unit corresponding to n bits in the processing mode bitmap.
  • the beamforming initiator receives the beamforming report sent by the beamforming responder.
  • the beamforming report includes one or more feedback fields, each feedback field corresponds to a feedback unit, the feedback field contains channel state information of the corresponding feedback unit, and the channel state information contained in the feedback field passes through The processing method indicated by the processing method bitmap.
  • the beamforming report may further include one or more MIMO control fields, each MIMO control field corresponds to a feedback field, and the MIMO control field is used to indicate the channel state information used by the corresponding feedback field. Configuration parameters.
  • the structure of the beamforming report may refer to Table 2.
  • the MIMO control field 1 is used to indicate the configuration parameters used for the channel state information included in the feedback field 1, and the channel state information included in the feedback field 1 is the processing method described in step S101
  • the channel state information of the feedback unit corresponding to the 1st to nth bits in the bitmap, the channel state information contained in the feedback field 1 undergoes the processing indicated by the values of the 1st to nth bits in the bitmap in the processing mode Way of processing.
  • the MIMO control field 2 is used to indicate the configuration parameters used by the channel state information contained in the feedback field 2.
  • the channel state information contained in the feedback field 2 is the n + 1th to 2nth bits in the bitmap in the processing manner described in step S101
  • the channel state information contained in the feedback field 2 is processed by the processing mode indicated by the values of the n + 1th to 2nth bits in the processing mode bitmap.
  • the MIMO control field may refer to the structure shown in FIG. 4.
  • the MIMO control field includes: number of columns (Nc) index, number of rows (Nr) index, channel bandwidth, number of groups (Ng), codebook information ( codebook information, feedback type, remaining feedback segment, remaining feedback segment, first feedback segment, first start index of resource unit (RU start index), end index of resource unit (RU end) index), probe session token number, and one or more reserved bits.
  • the MIMO control field may also refer to the structure shown in FIG. 5.
  • the MIMO control field further includes: processing mode indication information, and the processing mode indication information is used to indicate the processing mode adopted by the channel state information included in the corresponding feedback field.
  • the beamforming report includes only one MIMO control field, and the MIMO control field is used to uniformly indicate configuration parameters of channel state information included in each feedback field in the beamforming report.
  • the structure of the beamforming report may refer to Table 3.
  • the MIMO control field is used to uniformly indicate the channel state information contained in the feedback field 1, feedback field 2, feedback field 3, and other feedback fields (not shown in Table 3).
  • Configuration parameters the channel state information contained in the feedback field 1 is the channel state information of the feedback unit corresponding to the 1st to nth bits in the bitmap in the processing manner in step S101, and the channel state information contained in the feedback field 1 undergoes the processing
  • the processing of the processing mode is indicated by the values of the 1st to nth bits in the mode bitmap.
  • the channel state information contained in the feedback field 2 is the channel state information of the feedback unit corresponding to the n + 1th to 2nth bit in the processing mode bitmap in step S101, and the channel state information contained in the feedback field 2 undergoes the processing
  • the processing of the processing mode is indicated by the value of the n + 1th to 2nth bit in the mode bitmap.
  • the channel state information contained in the feedback field 3 is the channel state information of the feedback unit corresponding to the 2n + 1th to 3nth bits in the processing mode bitmap in step S101, and the channel state information contained in the feedback field 3 undergoes the processing
  • the processing of the processing mode is indicated by the values of the 2n + 1th to 3nth bits in the mode bitmap.
  • the MIMO control field may refer to the structure shown in FIG. 4.
  • the MIMO control field may refer to the structure shown in FIG. 6.
  • the MIMO control field further includes: a processing mode bitmap, which is used to indicate the processing mode used for the channel state information included in each feedback field in the beamforming report.
  • the above processing method bitmap can also be used as an independent field in the beamforming report and has an independent serial number, which is not limited in this embodiment of the present application.
  • the MIMO control field provided in the embodiment of the present application is applied to the next-generation 802.11 standard, compared to the MIMO control field in the 802.11ax standard, the channel bandwidth, The number of bits occupied by the three information of the resource unit start index and the resource unit end index increases in order to be able to indicate a larger bandwidth and a larger number of RUs; the columns in the MIMO control field shown in FIGS. 4 to 6 The number of bits occupied by the two information, the number index and the row number index, increases so that more spatial stream numbers can be indicated.
  • the category field is used to indicate the category to which the MAC frame belongs.
  • the action field is used to indicate the sub-category to which the MAC frame belongs.
  • each n bits in the processing mode bitmap correspond to a feedback unit, and the value of the n bits is used to indicate the processing mode of the channel state information of the corresponding feedback unit.
  • the beamforming initiator can instruct the beamforming responder to adopt a processing method with greater feedback accuracy through processing bitmaps to ensure the feedback accuracy;
  • the beamforming initiator may instruct the beamforming responder to adopt a processing method with a smaller feedback overhead through the processing mode bitmap to reduce the feedback overhead.
  • the beamforming responder can use appropriate processing methods to process the channel state information of different feedback units, so that when the channel state information is fed back, the feedback overhead of the channel state information and the feedback accuracy are balanced.
  • the feedback method of the channel state information shown in FIG. 3 is described below with reference to specific application scenarios.
  • a feedback method of channel state information includes the following steps:
  • the beamforming initiator generates and sends an NDPA frame, where the NDPA frame contains a bitmap of the processing mode.
  • FIG. 8 is a schematic structural diagram of an NDPA frame provided by an embodiment of the present application.
  • the site information of the NDPA frame may include a processing mode bitmap, and the processing mode bitmap included in the site information is only applicable to the beamforming responder corresponding to the site information. It should be noted that, in the NDPA frame, the bitmaps of the processing methods included in the information of different sites may be the same or different.
  • FIG. 9 is a schematic structural diagram of another NDPA frame provided by an embodiment of the present application.
  • the common domain of the NDPA frame contains the processing mode bit map, which is suitable for the beamforming responder corresponding to the information of each site in the NDPA frame.
  • step S101 for a detailed description of the bitmap of the processing mode included in the NDPA frame, reference may be made to step S101, and the embodiment of the present application will not repeat them here.
  • the NDPA frame includes a MAC frame header, a sounding session token (sounding dialog token) field, one or more site information, and a frame check sequence (frame check sequence (FCS) field.
  • sounding session token sounding dialog token
  • site information one or more site information
  • FCS frame check sequence
  • the MAC frame header includes: (1) a frame control (frame control) field, used to indicate the type of the MAC frame. (2) The duration field is used to indicate the length of time that the MAC frame and the corresponding confirmation frame occupy the channel. (3) The receiving address (receiving addresses, RA) field is used to identify the receiving end of the MAC frame. (4) Transmitting address (TA) field, used to identify the sending end of the MAC frame.
  • frame control frame control
  • the duration field is used to indicate the length of time that the MAC frame and the corresponding confirmation frame occupy the channel.
  • the receiving address (receiving addresses, RA) field is used to identify the receiving end of the MAC frame.
  • TA Transmitting address
  • Site information can also include one or more of the following parameters: association identifier (AID), partial bandwidth information (partial bandwidth information), feedback type, Ng, disambiguation bits, codebook size (codebook size), column number index.
  • AID association identifier
  • Partial bandwidth information partial bandwidth information
  • feedback type partial bandwidth information
  • Ng feedback type
  • disambiguation bits codebook size (codebook size)
  • column number index Part of the bandwidth information includes resource unit start index and resource unit end index.
  • the frame check sequence field is used to enable the receiving end to check whether the received MAC frame is correct.
  • the probe session token contains the NDPA type and probe session token number.
  • the NDPA type is used to indicate the type of the NDPA frame, that is, the NDPA frame is a very high throughput (VHT) NDPA frame (that is, the NDPA frame of the 802.11ac standard), HE NDPA frame, positioning ( ranging) NDPA frame, or EHT NDPA frame.
  • VHT very high throughput
  • NDPA type occupies 2 bits.
  • the NDPA type indicates that the NDPA frame is a VHT NDPA frame; if the value of these two bits is 01, the NDPA type indicates the NDPA frame is HENDPA frame; if the value of these two bits is 10, the NDPA type indicates that the NDPA frame is rangingNDPA frame; if the value of these two bits is 11, the NDPA type indicates that the NDPA frame is EHT NDPA frame.
  • the probe session token number is used to identify the probe session.
  • the site information in the NDPA frame, if the site information includes special AID, that is, the value of the AID field in the site information is a special value, such as 2045, the site information can be used in addition to requesting a beamforming response
  • the feedback function is other than channel state information.
  • other fields in the site information are used to indicate other information.
  • the site information when the site information is used for other functions, the site information further includes an NDPA subtype (subtype), and the NDPA subtype is used to indicate the subtype to which the NDPA frame belongs.
  • the beamforming initiator sends an NDP.
  • the beamforming initiator sends a BRP trigger frame.
  • the beamforming initiator in the single-user feedback process, does not perform step S203; in the multi-user feedback process, the beamforming initiator performs step S203.
  • step S204 It is the same as step S104.
  • step S204 For a detailed description, refer to the embodiment shown in FIG. 3, and details are not described herein again.
  • a method for feeding back channel state information includes the following steps:
  • the beamforming initiator sends an NDPA frame.
  • the beamforming initiator sends an NDP.
  • the beamforming initiator generates and sends a BRP trigger frame, where the BRP trigger frame includes a processing mode bitmap.
  • FIG. 11 is a schematic structural diagram of a BRP trigger frame provided by an embodiment of the present application.
  • the user information of the BRP trigger frame may include a processing mode bitmap, and the processing mode bitmap included in the user information is only applicable to the beamforming responder corresponding to the user information.
  • the bitmaps of the processing methods included in different user information may be the same or different.
  • FIG. 12 is a schematic structural diagram of a BRP trigger frame provided by an embodiment of the present application.
  • the common domain of the BRP trigger frame contains a processing mode bitmap, which is suitable for the beamforming responder corresponding to each user information in the BRP trigger frame.
  • step S101 for a detailed description of the processing method bit bitmap included in the BRP trigger frame, reference may be made to step S101, and the embodiment of the present application will not repeat them here.
  • the BRP trigger frame includes: MAC frame header, public domain, site-by-site domain, and FCS field.
  • the public domain includes some public information, such as: trigger frame type (trigger), uplink length (uplink), etc., the specific content can refer to the 802.11 standard, which will not be repeated here.
  • Each site domain includes one or more user information (user information).
  • the user information includes at least one or more of the following parameters: AID, resource unit allocation (RU allocation), uplink forward error correction coding type (uplink forward error correction coding type, UL FEC coding type), uplink modulation And coding strategy (uplink modulation and coding scheme, UL MCS), uplink dual carrier modulation (uplink dual carder modulation, UL DCM), spatial stream allocation / random access resource unit information (spatial, stream allocation, random access access resource information) Uplink received signal strength indication (uplink target received signal strength indication), feedback fragment retransmission bitmap (feedback segment remission mission bitmap), and one or more reserved bits.
  • AID resource unit allocation
  • uplink forward error correction coding type uplink forward error correction coding type, UL FEC coding type
  • uplink modulation And coding strategy uplink modulation and coding scheme, UL MCS
  • uplink dual carrier modulation uplink dual carder modulation, UL DCM
  • spatial stream allocation / random access resource unit information spatial stream allocation / random access resource
  • step S304 Same as step S104.
  • step S304 Same as step S104.
  • a method for feeding back channel state information includes the following steps:
  • the beamforming initiator generates and sends a MAC frame, where the MAC frame includes at least two user information corresponding to the target beamforming responder, and at least one of the configuration parameters included in the configuration parameter included in the at least two user information The values are different.
  • the user information is used to instruct the corresponding beamforming responder to feedback channel state information.
  • the configuration parameters included in the user information include one or more of the following: resource unit start index, resource unit end index, processing mode indication information, group number, and codebook information.
  • the processing mode indication information is used to indicate the processing mode of the channel state information.
  • the resource unit start index and the resource unit end index are used to indicate which part of the resource unit's channel state information the beamforming responder feeds back. Therefore, if the at least two user information contains the resource unit start index and / or the resource unit end If the indexes are different, the target beamforming responder feeds back the channel state information of different parts of the resource units according to the at least two user information.
  • the target beamforming responder adopts different processing methods for the channel state information corresponding to the at least two user information.
  • the MAC frame is an NDPA frame, or a BRP trigger frame. It should be noted that, in the NDPA frame, the user information contained in the MAC frame is generally called site information.
  • the beamforming initiator sends the MAC frame in a broadcast manner.
  • the beamforming initiator receives a beamforming report sent by a target beamforming responder, where the beamforming report includes channel state information corresponding to the at least two user information respectively.
  • the beamforming report includes multiple feedback fields, each feedback field corresponds to user information, and the feedback field includes channel state information requested by the corresponding user information.
  • the beamforming report includes multiple MIMO control fields, each MIMO control field corresponds to a feedback field, and the MIMO control field is used to indicate a configuration parameter of channel state information included in the corresponding feedback field.
  • the structure of the beamforming report may refer to Table 2, and the structure of the MIMO control field may refer to FIG. 4 or FIG. 5.
  • the beamforming report includes only one MIMO control field, and the MIMO control field is used to uniformly indicate configuration parameters of channel state information included in each feedback field in the beamforming report.
  • the structure of the beamforming report may refer to Table 3, and the MIMO control field may refer to FIG. 4, FIG. 6, or FIG. 14.
  • the MIMO control field includes: number indication information, processing method bit map, packet number bit map, and codebook information bit map.
  • the number indication information is used to indicate the number of feedback fields included in the beamforming report.
  • the processing mode bitmap is used to indicate the processing mode adopted by the channel state information included in each feedback field in the beamforming report.
  • the grouping number bitmap is used to indicate the number of groupings used for the channel state information included in each feedback field in the beamforming report.
  • the codebook information bitmap is used to indicate the codebook information used by the channel state information included in each feedback field in the beamforming report.
  • the MIMO control field may further include a plurality of partial bandwidth information, and the partial bandwidth information includes a resource unit start index and a resource unit end index.
  • Each partial bandwidth information corresponds to a feedback field, and the partial bandwidth information is used to indicate which part of the resource unit's channel state information the channel state information contained in the corresponding feedback field is.
  • resource unit start index 1 and resource unit end index 1 correspond to feedback field 1
  • resource unit start index n and resource unit end index n correspond to feedback field n.
  • the MAC frame may include at least two user information corresponding to the target beamforming responder, and at least one configuration parameter value exists in the configuration parameters included in the at least two user information Not the same. That is, the beamforming responder can instruct the target beamforming responder to feed back multiple channel state information through multiple user information corresponding to the target beamforming responder in the MAC frame, and the multiple channel state information can be processed in different ways , And / or, the multiple channel state information is channel state information of resource units in different parts, so as to realize flexible feedback of the channel state information.
  • a method for feeding back channel state information includes the following steps:
  • the beamforming initiator generates and sends an NDPA frame, where the NDPA frame includes at least two site information corresponding to the target beamforming responder, and at least one of the configuration parameters included in the configuration parameter included in the at least two site information The values are different.
  • the NDPA frame contains multiple site information, and at least two of the multiple site information have the same AID. It can be understood that at least two site information having the same AID correspond to the same beamforming responder.
  • the AIDs of the site information 1 and the site information 2 in the NDPA frame are both AID1.
  • at least one of the configuration parameters included in the site information 1 and the site information 2 has different values. For example, the start index of the resource unit included in the site information 1 is 0, and the end index of the resource unit is 8. The start index of the resource unit included in the site information 2 is 18, and the end index of the resource unit is 26.
  • the site information 1 is used to request the beamforming responder to feedback the first to ninth 26-subcarrier RU channel state information; the site information 2 is used to request the beamforming responder to feedback the 19th to 27th 26- Channel status information of subcarrier RU. That is, site information 1 and site information 2 are used to request channel state information of different RUs from the same beamforming responder.
  • the Ng indication included in the site information 1 is 4, and the Ng indication included in the site information 2 is 16. In this way, the channel state information requested by the site information 1 and the channel state information requested by the site information 2 are different in the degree of grouping.
  • part of the bandwidth information contained in site information 1 and site information 2 are different.
  • the positions of multiple sites with the same AID are adjacent.
  • the beamforming responder determines that the information of the two adjacent sites contains different AIDs, and the information of the previous one of the two adjacent sites contains the AID and If the AID of the beamforming responder is the same, the beamforming responder does not need to continue to read the site information afterwards, thereby saving the time for the beamforming responder to read the information.
  • the AID field is omitted from the other station information except the first station information in the multiple station information to reduce transmission overhead.
  • the first site information among the plurality of site information increases the number indication information, and the number indication information is used to indicate the number of site information having the same AID.
  • the site information 3 removes the AID field, and the site information 2 adds the number indication information, which is used to indicate The number of site information for the same AID is 2.
  • the beamforming initiator sends an NDP.
  • the beamforming initiator sends a BRP trigger frame.
  • the beamforming initiator in the single-user feedback process, does not perform step S503; in the multi-user feedback process, the beamforming initiator performs step S503.
  • step S504. Same as step S402.
  • step S504. same as step S402.
  • another method for feeding back channel state information includes the following steps:
  • the beamforming initiator sends an NDPA frame.
  • the beamforming initiator sends an NDP.
  • the beamforming initiator generates and sends a BRP trigger frame, where the BRP trigger frame includes at least two user information corresponding to the target beamforming responder, and at least one configuration parameter exists among the configuration parameters included in the at least two user information The value of is different.
  • FIG. 19 is a schematic structural diagram of a BRP trigger frame provided by an embodiment of the present application.
  • the BRP trigger frame also includes the following parameters: resource unit start index, resource unit end index, processing mode indication information, group number, and codebook information.
  • the BRP trigger frame contains multiple user information, and at least two of the multiple user information have the same AID.
  • the AIDs of the user information 4 and the user information 5 are both AID1.
  • at least one of the configuration parameters included in the user information 4 and the user information 5 has different values. For example, suppose the start index of the resource unit included in the user information 4 is 6, the end index of the resource unit is 10, and the Ng indicator is 4; the start index of the resource unit included in the user information 5 is 20, the end index of the resource unit is 25, and the Ng indicator Is 8.
  • the user information 4 is used to request the beamforming responder corresponding to AID1 to feed back the channel state information of the seventh to eleventh 26-subcarrier RU, and the number of packets used by the channel state information is 4.
  • User information 5 is used to request the beamforming responder corresponding to AID1 to feed back the channel state information of the 21st to 26th 26-subcarrier RU, and the number of packets used for the channel state information is 8.
  • multiple user information with the same AID are located adjacent to each other, so as to save the time for the beamforming responder to read the information.
  • the AID field is omitted from all other station information except the first station information in the multiple station information to reduce transmission overhead .
  • the first site information among the plurality of site information increases the number indication information, and the number indication information is used to indicate the number of site information having the same AID. 21, assuming that user information 4, user information 5, and user information 6 in the BRP trigger frame have the same AID, the AID field is removed from user information 5 and user information 6, and the number indication information is added to the user information The number indication information is used to indicate that the number of site information with the same AID is three.
  • step S604. Same as step S402.
  • step S604. same as step S402.
  • each network element such as a beamforming initiator and a beamforming responder
  • each network element includes a hardware structure and / or a software module corresponding to each function in order to implement the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software function modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner. The following uses an example of dividing each function module corresponding to each function as an example:
  • the communication device includes a receiving module 101, a sending module 102, and a processing module 103.
  • the processing module 103 is configured to generate a MAC frame, the MAC frame includes a processing mode bitmap, and each of the processing mode bitmaps n bits correspond to one feedback unit, and the value of the n bits is used to indicate the processing method of the channel state information of the corresponding feedback unit, and n is a positive integer.
  • the sending module 102 is configured to send the MAC frame generated by the processing module 103.
  • the receiving module 101 is configured to receive a beamforming report sent by a beamforming responder, the beamforming report includes one or more feedback fields, each feedback field corresponds to a feedback unit, and the feedback field includes corresponding feedback
  • the channel state information of the unit, and the channel state information contained in the feedback field are processed by the processing mode indicated by the processing mode bitmap.
  • the feedback unit is a slice, a resource unit, or a channel.
  • the MAC frame is an NDPA frame, or a beamforming report polling trigger frame.
  • the receiving module 101 is configured to receive a MAC frame, the MAC frame includes a processing mode bitmap, and each of the processing mode bitmaps n bits correspond to one feedback unit, and the value of the n bits is used to indicate the processing method of the channel state information of the corresponding feedback unit, and n is a positive integer.
  • the processing module 103 is configured to generate a beamforming report, the beamforming report includes one or more feedback fields, each feedback field corresponds to a feedback unit, and the feedback field includes channel state information of the corresponding feedback unit, The channel state information included in the feedback field is processed by the processing mode indicated by the processing mode bitmap.
  • the sending module 102 is configured to send a beamforming report to the beamforming initiator.
  • the feedback unit is a slice, a resource unit, or a channel.
  • the MAC frame is an NDPA frame, or a beamforming report polling trigger frame.
  • the processing module is configured to generate a MAC frame, where the MAC frame includes at least two user information corresponding to the target beamforming responder, the At least one of the configuration parameters included in the at least two user information has different values.
  • the sending module 102 is configured to send the MAC frame generated by the processing module 103.
  • the receiving module 101 is configured to receive a beamforming report sent by the target beamforming responder, where the beamforming report includes channel state information corresponding to the at least two user information respectively.
  • the user information includes at least one or more of the following configuration parameters: resource unit start index, resource unit end index, processing mode indication information, group number, and codebook information.
  • the MAC frame is an NDPA frame, or a beamforming report polling trigger frame.
  • the receiving module is configured to receive a MAC frame, and the MAC frame includes at least two user information corresponding to the target beamforming responder. At least one of the configuration parameters included in the at least two user information has different values.
  • the processing module is configured to generate a beamforming report, and the beamforming report includes channel state information corresponding to the at least two user information respectively.
  • the sending module is configured to send a beamforming report to the beamforming initiator.
  • the receiving module 101 is used to perform step S102 in FIG. 3, FIG. 7 Step S204 in FIG. 10, step S304 in FIG. 10, step S402 in FIG. 13, step S504 in FIG. 15, step S604 in FIG. 18, and / or other processes for the technical solutions described herein.
  • the sending module 102 is used to perform step S101 in FIG. 3, steps S201-S203 in FIG. 7, steps S301-S303 in FIG. 10, step S401 in FIG. 13, steps S501-S503 in FIG. 15, Steps S601-S603 in 18, and / or other processes for the technical solutions described herein.
  • the receiving module 101 is used to perform step S101 in FIG. 3, steps S201-S203 in FIG. 7, steps S301-S303 in FIG. 10, and steps in FIG. 13. S401, steps S501-S503 in FIG. 15, steps S601-S603 in FIG. 18, and / or other processes for the technical solutions described herein.
  • the sending module 102 is used to perform step S102 in FIG. 3, step S204 in FIG. 7, step S304 in FIG. 10, step S402 in FIG. 13, step S504 in FIG. 15, step S604 in FIG. 18, And / or other processes used in the technical solutions described herein. All relevant content of each step involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
  • the communication device provided in the above embodiments of the present application may be implemented in various product forms.
  • the communication device may be configured as a general-purpose processing system; for another example, the communication device may be implemented by a general bus architecture;
  • the communication device may be implemented by an application specific integrated circuit (application specific integrated circuit, ASIC).
  • ASIC application specific integrated circuit
  • the communication apparatus described in the embodiments of the present application may be a communication device, and the communication device includes a processor 201 and a transceiver 202.
  • the communication device further includes a storage medium 203.
  • the processor 201 is used to execute the channel state information feedback method shown in FIG. 3, FIG. 7, FIG. 10, FIG. 13, FIG. 15 and FIG.
  • the transceiver 202 is controlled by the processor 201 and is used to execute the feedback method of the channel state information shown in FIG. 3, FIG. 7, FIG. 10, FIG. 13, FIG. 15 and FIG.
  • the communication device described in the embodiments of the present application may also be implemented by a general-purpose processor, that is, commonly known as a chip.
  • the general-purpose processor includes a processing circuit 201 and a transceiver pin 202.
  • the general-purpose processor may also include a storage medium 203.
  • the processing circuit 201 is used to execute the feedback method of the channel state information shown in FIG. 3, FIG. 7, FIG. 10, FIG. 13, FIG. 15 and FIG.
  • the transceiver pin 202 is controlled by the processing circuit 201, and is used to execute the feedback method of the channel state information shown in FIG. 3, FIG. 7, FIG. 10, FIG. 13, FIG. 15, and FIG.
  • the communication device described in the embodiments of the present application may also be implemented using the following circuits or devices: one or more field programmable gate arrays (FPGA), programmable logic Any combination of devices (programmable logic, device, PLD), controllers, state machines, gate logic, discrete hardware components, any other suitable circuits, or circuits capable of performing the various functions described throughout this application.
  • FPGA field programmable gate arrays
  • PLD programmable logic
  • controllers programmable logic
  • state machines gate logic
  • discrete hardware components any other suitable circuits, or circuits capable of performing the various functions described throughout this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

一种信道状态信息的反馈方法及装置,涉及通信技术领域,用于灵活地反馈信道状态信息,实现信道状态信息的反馈开销与反馈精度之间的平衡。该方法包括:波束成形发起者发送MAC帧,MAC帧包含处理方式比特位图,处理方式比特位图中每n个比特分别对应一个反馈单元,n个比特的取值用于指示对应的反馈单元的信道状态信息的处理方式;波束成形发起者接收波束成形报告,波束成形报告包括一个或多个反馈字段,每个反馈字段分别对应一个反馈单元,所述反馈字段包含对应的反馈单元的信道状态信息,所述反馈字段包含的信道状态信息经过所述处理方式比特位图所指示处理方式的处理。本申请适用于信道状态信息的反馈流程。

Description

信道状态信息的反馈方法及装置
本申请要求于2018年11月07日提交国家知识产权局、申请号为201811321478.9、申请名称为“信道状态信息的反馈方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及信道状态信息的反馈方法及装置。
背景技术
在无线局域网(wireless local area network,WLAN)等无线通信系统中,多输入多输出(multiple-input multiple-output,MIMO)技术是一种被广泛采用的技术。在采用MIMO技术的情况下,波束成形发起者(beamformer)需要从波束成形响应者(beamformee)获取信道状态信息,以便于波束成形发起者根据信道状态信息,实现波束成形、速率控制、资源分配等功能。
802.11标准是WLAN的通用标准。目前,电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)正在开展802.11ax之后的下一代802.11标准的讨论。相比于之前的802.11标准,该下一代802.11标准支持极高吞吐率(extremely high throughput,EHT)的数据传输,也即下一代802.11标准支持更大的带宽(例如320MHZ),以及更多的流数(例如16个空间流)。这样一来,波束成形响应者需要向波束成形发起者反馈更多的信道状态信息,导致反馈开销过大。因此,对于下一代802.11标准来说,如何反馈信道状态信息,实现信道状态信息的反馈开销与反馈精度的平衡,是亟待解决的问题。
发明内容
本申请提供一种信道状态信息的反馈方法及装置,用于灵活地反馈信道状态信息,实现信道状态信息的反馈开销与反馈精度的平衡。
为达到上述目的,本申请提供如下技术方案:
第一方面,提供一种信道状态信息的反馈方法,包括:波束成形发起者发送媒体接入控制(media access control,MAC)帧,MAC帧包含处理方式比特位图,处理方式比特位图中每n个比特分别对应一个反馈单元,n个比特的取值用于指示对应的反馈单元的信道状态信息的处理方式,n为正整数;波束成形发起者接收波束成形响应者发送的波束成形报告,波束成形报告包括一个或多个反馈字段,每个反馈字段分别对应一个反馈单元,反馈字段包含对应的反馈单元的信道状态信息,所述对应的反馈单元的信道状态信息经过处理方式比特位图所指示处理方式的处理。
基于上述技术方案,所述处理方式比特位图中每n个比特分别对应一个反馈单元,并且,n个比特的取值用于指示对应的反馈单元的信道状态信息的处理方式。可以理解的是,不同处理方式对应的反馈开销不同,反馈精度也不同。因此,对于一些反馈单元(例如较为重要的信道)的信道状态信息,波束成形发起者可以通过处理方式比特位图,指示波束成形响应者采用反馈精度较大的处理方式,以保证反馈精度;对于另一些反馈单元(例如不重要的信道)的信道状态信息,波束成形发起者可以通过处 理方式比特位图,指示波束成形响应者采用反馈开销较小的处理方式,以减少反馈开销。这样一来,波束成形发起者可以根据需要配置合适的处理方式,指示波束成形响应者采用不同的处理方式来处理不同反馈单元的信道状态信息,从而在反馈信道状态信息时,实现信道状态信息的反馈开销与反馈精度的平衡。
一种可能的设计中,反馈单元为分片、资源单元或者信道。
一种可能的设计中,MAC帧为空数据分组声明(null data packet announcement,NDPA)帧,或者波束成形报告轮询触发帧。
第二方面,提供一种信道状态信息的反馈方法,包括:波束成形响应者接收波束成形发起者发送的MAC帧,MAC帧包含处理方式比特位图,处理方式比特位图中每n个比特分别对应一个反馈单元,n个比特的取值用于指示对应的反馈单元的信道状态信息的处理方式,n为正整数;波束成形响应者向波束成形发起者发送波束成形报告,波束成形报告包括一个或多个反馈字段,每个反馈字段分别对应一个反馈单元,反馈字段包含对应的反馈单元的信道状态信息,所述对应的反馈单元的信道状态信息经过处理方式比特位图所指示处理方式的处理。
基于上述技术方案,所述处理方式比特位图中每n个比特分别对应一个反馈单元,并且,n个比特的取值用于指示对应的反馈单元的信道状态信息的处理方式。可以理解的是,不同处理方式对应的反馈开销不同,反馈精度也不同。因此,对于一些反馈单元(例如较为重要的信道)的信道状态信息,波束成形发起者可以通过处理方式比特位图,指示波束成形响应者采用反馈精度较大的处理方式,以保证反馈精度;对于另一些反馈单元(例如不重要的信道)的信道状态信息,波束成形发起者可以通过处理方式比特位图,指示波束成形响应者采用反馈开销较小的处理方式,以减少反馈开销。这样一来,波束成形发起者可以根据需要配置合适的处理方式,指示波束成形响应者采用不同的处理方式来处理不同反馈单元的信道状态信息,从而在反馈信道状态信息时,实现信道状态信息的反馈开销与反馈精度的平衡。
一种可能的设计中,反馈单元为分片、资源单元或者信道。
一种可能的设计中,MAC帧为NDPA帧,或者波束成形报告轮询触发帧。
第三方面,提供一种信道状态信息的反馈方法,包括:波束成形发起者发送MAC帧,MAC帧包含目标波束成形响应者对应的至少两个用户信息,至少两个用户信息包含的配置参数中至少存在一种配置参数的取值不相同;波束成形发起者接收目标波束成形响应者发送的波束成形报告,波束成形报告包含至少两个用户信息分别对应的信道状态信息。
基于上述技术方案,由于MAC帧可包含目标波束成形响应者对应的至少两个用户信息,并且,所述至少两个用户信息包含的配置参数中至少存在一种配置参数的取值不相同。也即,波束成形响应者可通过MAC帧中目标波束成形响应者对应的多个用户信息,向目标波束成形响应者指示反馈多个信道状态信息,这多个信道状态信息可以采用不同的处理方式,和/或,这多个信道状态信息是不同部分的资源单元的信道状态信息,从而实现信道状态信息地灵活反馈。
一种可能的设计中,用户信息至少包含以下配置参数中的一种或多种:资源单元起始索引、资源单元结束索引、处理方式指示信息、分组数以及码本信息。
一种可能的设计中,MAC帧为NDPA帧,或者波束成形报告轮询触发帧。
第四方面,提供一种信道状态信息的反馈方法,包括:目标波束成形响应者接收波束成形发起者发送的MAC帧,MAC帧包含目标波束成形响应者对应的至少两个用户信息,至少两个用户信息包含的配置参数中至少存在一种配置参数的取值不相同;目标波束成形响应者向波束成形发起者发送波束成形报告,波束成形报告包括至少两个用户信息分别对应的信道状态信息。
基于上述技术方案,由于MAC帧可包含目标波束成形响应者对应的至少两个用户信息,并且,所述至少两个用户信息包含的配置参数中至少存在一种配置参数的取值不相同。也即,波束成形响应者可通过MAC帧中目标波束成形响应者对应的多个用户信息,向目标波束成形响应者指示反馈多个信道状态信息,这多个信道状态信息可以采用不同的处理方式,和/或,这多个信道状态信息是不同部分的资源单元的信道状态信息,从而实现信道状态信息地灵活反馈。
一种可能的设计中,用户信息至少包含以下配置参数中的一种或多种:资源单元起始索引、资源单元结束索引、处理方式指示信息、分组数以及码本信息。
一种可能的设计中,MAC帧为NDPA帧,或者波束成形报告轮询触发帧。
第五方面,提供一种通信装置,该通信装置用于执行第一方面或第一方面任意可能的实现方式中的方法。具体地,该通信装置包括用于执行上述第一方面或第一方面任意可能的实现方式中的方法的单元。
第六方面,提供一种通信装置,该通信装置用于执行第二方面或第二方面任意可能的实现方式中的方法。具体地,该通信装置包括用于执行上述二方面或第二方面任意可能的实现方式中的方法的单元。
第七方面,提供一种通信装置,该通信装置用于执行第三方面或第三方面任意可能的实现方式中的方法。具体地,该通信装置包括用于执行上述第三方面或第三方面任意可能的实现方式中的方法的单元。
第八方面,提供一种通信装置,该通信装置用于执行第四方面或第四方面任意可能的实现方式中的方法。具体地,该通信装置包括用于执行上述第四方面或第四方面任意可能的实现方式中的方法的单元。
第九方面,提供一种通信设备,该通信设备包括:处理器和收发器,可选的,还包括存储器;其中,处理器和收发器、存储器通过内部连接互相通信。处理器,用于执行第一方面或第一方面任意可能的实现方式中的方法。收发器,接受处理器的控制,用于执行第一方面或第一方面任意可能的实现方式中的方法。存储器,用于存储指令,该指令被处理器调用,以执行第一方面或第一方面任意可能的实现方式中的方法。
第十方面,提供一种通信设备,该通信设备包括:处理器和收发器,可选的,还包括存储器;其中,处理器和收发器、存储器通过内部连接互相通信。处理器,用于执行第二方面或第二方面任意可能的实现方式中的方法。收发器,接受处理器的控制,用于执行第二方面或第二方面任意可能的实现方式中的方法。存储器,用于存储指令,该指令被处理器调用,以执行第二方面或第二方面任意可能的实现方式中的方法。
第十一方面,提供一种通信设备,该通信设备包括:处理器和收发器,可选的,还包括存储器;其中,处理器和收发器、存储器通过内部连接互相通信。处理器,用 于执行第三方面或第三方面任意可能的实现方式中的方法。收发器,接受处理器的控制,用于执行第三方面或第三方面任意可能的实现方式中的方法。存储器,用于存储指令,该指令被处理器调用,以执行第三方面或第三方面任意可能的实现方式中的方法。
第十二方面,提供一种通信设备,该通信设备包括:处理器和收发器,可选的,还包括存储器;其中,处理器和收发器、存储器通过内部连接互相通信。处理器,用于执行第四方面或第四方面任意可能的实现方式中的方法。收发器,接受处理器的控制,用于执行第四方面或第四方面任意可能的实现方式中的方法。存储器,用于存储指令,该指令被处理器调用,以执行第四方面或第四方面任意可能的实现方式中的方法。
第十三方面,提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面任意可能的实现方式中的方法的指令。
第十四方面,提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面任意可能的实现方式中的方法的指令。
第十五方面,提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,该计算机程序包括用于执行第三方面或第三方面任意可能的实现方式中的方法的指令。
第十六方面,提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,该计算机程序包括用于执行第四方面或第四方面任意可能的实现方式中的方法的指令。
第十七方面,提供一种计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第十八方面,提供一种计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第十九方面,提供一种计算机程序,该计算机程序包括用于执行第三方面或第三方面的任意可能的实现方式中的方法的指令。
第二十方面,提供一种计算机程序,该计算机程序包括用于执行第四方面或第四方面的任意可能的实现方式中的方法的指令。
第二十一方面,提供一种芯片,该芯片包括处理电路和收发管脚,可选地,还包括存储器;其中,处理电路和收发管脚、存储器通过内部连接互相通信。处理电路,用于执行第一方面或第一方面任意可能的实现方式中的方法。收发管脚,接受处理电路的控制,用于执行第一方面或第一方面任意可能的实现方式中的方法。存储器,用于存储指令,所述指令被处理电路调用,以执行第一方面或第一方面任意可能的实现方式中的方法。
第二十二方面,提供一种芯片,该芯片包括处理电路和收发管脚,可选地,还包括存储器;其中,处理电路和收发管脚、存储器通过内部连接互相通信。处理电路,用于执行第二方面或第二方面任意可能的实现方式中的方法。收发管脚,接受处理电 路的控制,用于执行第二方面或第二方面任意可能的实现方式中的方法。存储器,用于存储指令,所述指令被处理电路调用,以执行第二方面或第二方面任意可能的实现方式中的方法。
第二十三方面,提供一种芯片,该芯片包括处理电路和收发管脚,可选地,还包括存储器;其中,处理电路和收发管脚、存储器通过内部连接互相通信。处理电路,用于执行第三方面或第三方面任意可能的实现方式中的方法。收发管脚,接受处理电路的控制,用于执行第三方面或第三方面任意可能的实现方式中的方法。存储器,用于存储指令,所述指令被处理电路调用,以执行第三方面或第三方面任意可能的实现方式中的方法。
第二十四方面,提供一种芯片,该芯片包括处理电路和收发管脚,可选地,还包括存储器;其中,处理电路和收发管脚、存储器通过内部连接互相通信。处理电路,用于执行第四方面或第四方面任意可能的实现方式中的方法。收发管脚,接受处理电路的控制,用于执行第四方面或第四方面任意可能的实现方式中的方法。存储器,用于存储指令,所述指令被处理电路调用,以执行第四方面或第四方面任意可能的实现方式中的方法。
其中,第五方面至第二十四方面中任意一种实现方式所带来的技术效果可参见上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为802.11ax标准中信道状态信息的单用户反馈流程的示意图;
图2为802.11ax标准中信道状态信息的多用户反馈流程的示意图;
图3为本申请实施例提供的一种信道状态信息的反馈方法的流程图一;
图4为本申请实施例提供的一种MIMO控制字段的结构示意图一;
图5为本申请实施例提供的一种MIMO控制字段的结构示意图二;
图6为本申请实施例提供的一种MIMO控制字段的结构示意图三;
图7为本申请实施例提供的一种信道状态信息的反馈方法的流程图二;
图8为本申请实施例提供的一种NDPA帧的结构示意图一;
图9为本申请实施例提供的一种NDPA帧的结构示意图二;
图10为本申请实施例提供的一种信道状态信息的反馈方法的流程图三;
图11为本申请实施例提供的一种BRP触发帧的结构示意图一;
图12为本申请实施例提供的一种BRP触发帧的结构示意图二;
图13为本申请实施例提供的一种信道状态信息的反馈方法的流程图四;
图14为本申请实施例提供的一种MIMO控制字段的结构示意图四;
图15为本申请实施例提供的一种信道状态信息的反馈方法的流程图五;
图16为本申请实施例提供的一种NDPA帧的结构示意图三;
图17为本申请实施例提供的一种NDPA帧的结构示意图四;
图18为本申请实施例提供的一种信道状态信息的反馈方法的流程图六;
图19为本申请实施例提供的一种BRP触发帧的结构示意图三;
图20为本申请实施例提供的一种BRP触发帧的结构示意图四;
图21为本申请实施例提供的一种BRP触发帧的结构示意图五;
图22为本申请实施例提供的一种通信装置的结构示意图;
图23为本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
下面先对一些概念进行简单介绍。
(1)802.11ax标准的信道状态信息的反馈流程
当前,802.11ax标准的信道状态信息的反馈流程分为:单用户反馈流程和多用户反馈流程。下面以波束成形发起者为接入点(access point,AP),波束成形响应者为站点(station,STA)为例进行说明。
如图1所示,在单用户反馈流程中,AP发送NDPA帧,以通知目标STA(例如图1中STA1)做好信道估计的准备;之后,AP发送空数据分组(null data packet,NDP),以使得目标STA根据NDP中的长训练序列,进行信道估计,确定信道状态信息;目标STA向AP发送波束成形报告,该波束成形报告包含信道状态信息。
示例性的,NDPA帧与NDP之间的帧间间隔,以及NDP与波束成形报告之间的帧间间隔均为短帧间间隔(short interframe space,SIFS)。
如图2所示,在多用户反馈流程中,AP发送NDPA帧,以通知多个目标STA(例如图2中的STA1、STA2以及STA3)做好信道估计的准备;之后,AP发送NDP,多个目标STA进行信道估计;AP发送波束成形报告轮询(beamforming report poll,BRP)触发帧,以触发多个目标STA反馈信道状态信息;多个目标STA分别向AP发送波束成形报告。
需要说明的是,上述NDPA帧、BRP触发帧以及波束成形报告均属于MAC帧。
(2)资源单元(resource unit,RU)
资源单元是一种频域资源,资源单元包含一个或多个子载波。当前,WLAN系统定义了以下类型的RU:26-子载波(subcarrier)RU(也即一个RU包含26个子载波),52-subcarrier RU(也即一个RU包含52个子载波),106-subcarrier RU(也即一个RU包含106个子载波),242-subcarrier RU(也即一个RU包含242个子载波),484-subcarrier RU(也即一个RU包含484个子载波),996-subcarrier RU(也即一个RU包含996个子载波)等。
当前,802.11ax标准支持的信道带宽(channel bandwidth,CBW)分别为:20MHZ,40MHZ,80MHZ,80+80MHZ(也即支持两个带宽为80MHZ的信道,这两个信道之间不连续非重叠),以及160MHZ。表一示出各个信道带宽下的RU总数量。
表一
Figure PCTCN2019116318-appb-000001
Figure PCTCN2019116318-appb-000002
(3)分片
波束成形报告可以分为8个分片。在这种情况下,波束成形报告包含的信道状态信息也被分为8个部分,每个分片承载一部分信道状态信息。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请的技术方案应用于WLAN,WLAN采用的标准可以为IEEE的802.11标准,例如802.11ac标准,802.11ax标准,以及下一代的802.11标准等。本申请的技术方案适用的场景包括:AP与STA之间的通信、AP与AP之间的通信、以及STA与STA之间的通信等。在本申请实施例中,AP可以作为波束成形发起者,也可以作为波束成形响应者。STA可以作为波束成形发起者,也可以作为波束成形响应者。其中,AP可以是无线路由器、无线收发机、无线交换机等。STA有不同的名称,例如用户单元、接入终端、移动站、移动台、移动设备、终端、用户设备等。在实际应用中,STA可以是蜂窝电话、智能手机、无线本地环路(wireless local loop,WLL),以及其他具有无线局域网通信功能的手持设备、计算机设备。
如图3所示,为本申请实施例提供的一种信道状态信息的反馈方法,该方法包括以下步骤:
S101、波束成形发起者生成并发送MAC帧,所述MAC帧包含处理方式比特位图。
其中,所述MAC帧为NDPA帧,或者BRP触发帧。
一种可能的实现方式中,波束成形发起者以广播的方式发送所述MAC帧。
需要说明的是,所述处理方式比特位图用于指示多个反馈单元的信道状态信息的处理方式,不同反馈单元的信道状态信息的处理方式可以是相同的或者是不同的。
在本申请实施例中,波束成形发起者和波束成形响应者之间预先规定了多种不同的处理方式。可选的,不同的处理方式对应的反馈开销是不同的。例如,不同的处理方式所采用的分组数不相同,和/或,不同的处理方式所采用的量化级数不相同。需要说明的是,分组数用于指示被分成一组的子载波的数目。需要说明的是,对于一组子载波来说,波束成形响应者仅需反馈该组子载波中一个子载波的信道状态信息,以减少反馈开销。
示例性的,上述处理方式包括第一处理方式和第二处理方式。所述第一处理方式对应的反馈开销大于所述第二处理方式对应的反馈开销,包括以下情形之一:(1)所述第一处理方式所采用的分组数小于所述第二处理方式所采用的分组数;(2)所述第 一处理方式所采用的量化级数大于所述第二处理方式所采用的分组数;(3)所述第一处理方式为非差量处理方式,所述第二处理方式为差量处理方式。其中,差量处理方式是指以本次的信道状态信息与之前缓存的信道状态信息进行差值计算,确定信道状态信息的差值。这样一来,波束成形响应者向波束成形发起者反馈信道状态信息的差值。波束成形发起者根据该信道状态信息的差值,以及之前缓存的信道状态信息,确定本次的信道状态信息。相比于信道状态信息的绝对值,信道状态信息的差值的变化范围较小,因此可用采用较少的量化比特来表示信道状态信息的差值,从而减少反馈开销。
示例性的,所述信道状态信息包括:反馈矩阵(例如V矩阵)和信噪比(signal to noise ratio,SNR)。可选的,上述处理方式可以是对于信道状态信息中的一种参数(例如反馈矩阵或者信噪比)的处理方式,或者是对于信道状态信息中的多种参数(例如反馈矩阵和信噪比)的处理方式。
在本申请实施例中,一个反馈单元可以包括至少一个分片,或者至少一个RU,又或者至少一个信道。例如,所述反馈单元为26-subcarrier RU,或者52-subcarrier RU,又或者242-subcarrier RU。又例如,所述反馈单元为20MHZ带宽的信道,或者40MHZ带宽的信道,又或者80MHZ带宽的信道。
示例性的,所述处理方式比特位图中每n个比特对应一个反馈单元,所述n个比特的取值用于指示对应的反馈单元的信道状态信息的处理方式,n为正整数。例如,所述处理方式比特位图中第1至第n个比特对应第一个反馈单元,第n+1至第2n个比特对应第二个反馈单元,以此类推,第Ln+1至第Ln+n个比特对应第L个反馈单元。其中,L为大于等于0的整数。
在本申请实施例中,n的具体取值是预先配置的,或者是标准中定义的,又或者是波束成形发起者指示的。例如,所述MAC帧还包括取值指示字段,所述取值指示字段用于指示n的取值。
可选的,n的取值与处理方式的数目存在对应关系。示例性的,2 n-1≤M≤2 n,或者,M≤2 n,其中M为处理方式的数目。例如,若处理方式仅包括第一处理方式和第二处理方式,则n的取值为1,也即所述处理方式比特位图中每一个比特分别对应一个反馈单元。又例如,处理方式包括第一处理方式、第二处理方式和第三处理方式,则n的取值为2,也即所述处理方式比特位图中每两个比特分别对应一个反馈单元。
可选的,所述处理方式比特位图中n个比特对应的反馈单元的类型是预先配置的或者标准中定义的。也即,所述处理方式比特位图中n个比特是对应26-subcarrier RU,还是对应52-subcarrier RU,或者对应40MHZ带宽的信道,是预先配置的或者标准中定义的。
可选的,所述处理方式比特位图中n个比特对应的反馈单元的类型是波束成形发起者指示的。
作为一种实现方式,波束成形发起者以隐式的方式指示所述处理方式比特位图中n个比特对应的反馈单元的类型。示例性的,以所述处理方式比特位图包含的比特的总数目指示反馈单元的类型。例如,若所述处理方式比特位图中每一个比特分别对应一个反馈单元,且所述处理方式比特位图包含的比特的总数目为8,则所述处理方式 比特位图中一个比特对应的反馈单元的类型即为分片,也即所述处理方式比特位图中每一个比特分别对应一个分片。又例如,假设待检测的信道带宽为320MHZ,若所述处理方式比特位图中每一个比特分别对应一个反馈单元,且所述处理方式比特位图中包含的比特的总数目为8,则所述处理方式比特位图中一个比特对应的反馈单元的类型为40MHZ带宽的信道。又例如,假设待检测的信道的带宽为320MHZ,若所述处理方式比特位图中每一个比特分别对应一个反馈单元,且所述处理方式比特位图中包含的比特的总数目为16,则所述处理方式比特位图中一个比特对应的反馈单元的类型为20MHZ带宽的信道。又例如,结合表一进行说明,假设待检测的信道的带宽为160MHZ,若处理方式比特位图中每一个比特分别对应一个反馈单元,且所述处理方式比特位图中包含的比特的总数目为16,则所述处理方式比特位图中一个比特对应的反馈单元的类型为106-subcarrier RU。又例如,结合表一进行说明,假设待检测的信道的带宽为160MHZ,若处理方式比特位图中每一个比特分别对应一个反馈单元,且所述处理方式比特位图中包含的比特的总数目为74,则所述处理方式比特位图中一个比特对应的反馈单元的类型为26-subcarrier RU。
需要说明的是,所述MAC帧可以包含或者不包含部分带宽信息,所述部分带宽信息用于指示信道的一部分带宽。示例性的,所述部分带宽信息包括资源单元起始索引和资源单元结束索引。资源单元起始索引结合资源单元结束索引用于指示连续的一段资源单元。例如,资源单元起始索引为0,资源单元结束索引为10,则资源单元起始索引结合资源单元结束索引用于指示第1个到第11个的26-subcarrier RU。需要说明的是,资源单元的索引是标准中定义的。若所述MAC帧不包含部分带宽信息,则所述MAC帧用于请求波束成形响应者反馈整个信道带宽的信道状态信息。若所述MAC帧包含部分带宽信息,则所述MAC帧用于请求波束成形响应者反馈部分信道带宽的信道状态信息。
可选的,所述处理方式比特位图中每n个比特对应的反馈单元的类型与MAC帧是否包含部分带宽信息有关。例如,MAC帧不包含部分带宽信息,而整个信道带宽为320MHZ,在这种情况下,若处理方式比特位图中每一个比特对应一个反馈单元,且所述处理方式比特位图包含的比特的总数目为16,则所述处理方式比特位图中一个比特对应的反馈单元的类型为20MHZ。又例如,MAC帧包含部分带宽信息,部分带宽信息中资源单元起始索引为0,资源单元结束索引为15,若处理方式比特位图中每一个比特对应一个反馈单元,且所述处理方式比特位图包含的比特的总数目为16,则所述处理方式比特位图中一个比特对应的反馈单元的类型为26-subcarrier RU。
可选的,若所述MAC帧包含部分带宽信息,且反馈单元为RU,则所述处理方式比特位图中每n个比特具体对应哪一个RU可以结合部分带宽信息来确定。例如,MAC帧包含部分带宽信息,部分带宽信息中资源单元起始索引为7,资源单元结束索引为14,若处理方式比特位图包含的比特的总数目为8,则处理方式比特位图中第1个比特对应第8个26-subcarrier RU,第2个比特对应第9个26-subcarrier RU,以此类推,第8个比特对应第15个26-subcarrier RU。
作为另一种实现方式,波束成形发起者以显式的方式指示所述处理方式比特位图中n个比特对应的反馈单元的类型。示例性的,所述MAC帧还包含反馈单元指示字 段,所述反馈单元指示字段用于指示所述处理方式比特位图中n个比特对应的反馈单元的类型。
S102、波束成形发起者接收波束成形响应者发送的波束成形报告。
其中,所述波束成形报告包括一个或多个反馈字段,每个反馈字段分别对应一个反馈单元,所述反馈字段包含对应的反馈单元的信道状态信息,所述反馈字段包含的信道状态信息经过所述处理方式比特位图所指示处理方式的处理。
作为一种实现方式,波束成形报告还可以包括一个或多个MIMO控制字段,每个MIMO控制字段对应一个反馈字段,所述MIMO控制字段用于指示对应的反馈字段包含的信道状态信息所采用的配置参数。
示例性的,在这种情况下,波束成形报告的结构可参考表二。
结合表二进行举例说明,在波束成形报告中,MIMO控制字段1用于指示反馈字段1包含的信道状态信息所采用的配置参数,反馈字段1包含的信道状态信息是步骤S101中所述处理方式比特位图中第1至第n个比特对应的反馈单元的信道状态信息,反馈字段1包含的信道状态信息经过所述处理方式比特位图中第1至第n个比特的取值所指示处理方式的处理。MIMO控制字段2用于指示反馈字段2包含的信道状态信息所采用的配置参数,反馈字段2包含的信道状态信息是步骤S101中所述处理方式比特位图中第n+1至第2n个比特对应的反馈单元的信道状态信息,反馈字段2包含的信道状态信息经过所述处理方式比特位图中第n+1至第2n个比特的取值所指示处理方式的处理。
表二
序号 字段
0 类别字段
1 动作字段
2 MIMO控制字段1
3 反馈字段1
4 MIMO控制字段2
5 反馈字段2
…… ……
可选的,在波束成形报告采用表二所示的结构时,MIMO控制字段可参考图4所示的结构。如图4所示,MIMO控制字段包括:列数(number of columns,Nc)索引,行数(number of rows,Nr)索引,信道带宽,分组数(number of grouping,Ng),码本信息(codebook information),反馈类型(feedback type),剩余反馈分片(remaining feedback segment),第一反馈分片(first feedback segment),资源单元起始索引(RU start index),资源单元结束索引(RU end index),探测会话令牌号,以及一个或多个保留(reserved)比特。
或者,在波束成形报告采用表二所示的结构时,MIMO控制字段还可参考图5所示的结构。如图5所示,MIMO控制字段还包括:处理方式指示信息,该处理方式指示信息用于指示对应的反馈字段包含的信道状态信息所采用的处理方式。
作为另一种实现方式,波束成形报告仅包含一个MIMO控制字段,该MIMO控制 字段用于统一指示波束成形报告中各个反馈字段包含的信道状态信息的配置参数。
示例性的,在这种情况下,波束成形报告的结构可参考表三。
结合表三进行举例说明,在波束成形报告中,MIMO控制字段用于统一指示反馈字段1、反馈字段2、反馈字段3以及其他反馈字段(表三中未示出)包含的信道状态信息所采用的配置参数。其中,反馈字段1包含的信道状态信息是步骤S101中所述处理方式比特位图中第1至第n个比特对应的反馈单元的信道状态信息,反馈字段1包含的信道状态信息经过所述处理方式比特位图中第1至第n个比特的取值所指示处理方式的处理。反馈字段2包含的信道状态信息是步骤S101中所述处理方式比特位图中第n+1至第2n个比特对应的反馈单元的信道状态信息,反馈字段2包含的信道状态信息经过所述处理方式比特位图中第n+1至第2n个比特的取值所指示处理方式的处理。反馈字段3包含的信道状态信息是步骤S101中所述处理方式比特位图中第2n+1至第3n个比特对应的反馈单元的信道状态信息,反馈字段3包含的信道状态信息经过所述处理方式比特位图中第2n+1至第3n个比特的取值所指示处理方式的处理。
表三
序号 字段
0 类别字段
1 动作字段
2 MIMO控制字段
3 反馈字段1
4 反馈字段2
5 反馈字段3
…… ……
可选的,在波束成形报告采用表三所示的结构时,MIMO控制字段可参考图4所示的结构。
或者,在波束成形报告采用表三所示的结构时,MIMO控制字段可参考图6所示的结构。如图6所示,MIMO控制字段还包含:处理方式比特位图,该处理方式比特位图用于指示波束成形报告中各个反馈字段包含的信道状态信息所采用的处理方式。
可选的,如表四所示,上述处理方式比特位图也可以作为波束成形报告中的一个独立字段,拥有独立的序号,本申请实施例对此不作任何限定。
表四
序号 字段
0 类别字段
1 动作字段
2 处理方式比特位图
3 MIMO控制字段
4 反馈字段1
5 反馈字段2
6 反馈字段3
…… ……
可选的,若本申请实施例提供的MIMO控制字段应用于下一代802.11标准中,则相比于802.11ax标准中的MIMO控制字段,图4至图6所示的MIMO控制字段中信道带宽、资源单元起始索引和资源单元结束索引这三个信息占用的比特数目增加,以便于能够指示更大的带宽,以及更多的RU个数;图4至图6所示的MIMO控制字段中列数索引和行数索引这两个信息占用的比特数目增加,以便于能够指示更多的空间流数。
另外,需要说明的是,在表二、表三或表四中,类别字段用于指示该MAC帧所属的类别。动作字段用于指示该MAC帧所属的子类别。
基于图3所示的技术方案,所述处理方式比特位图中每n个比特分别对应一个反馈单元,并且,n个比特的取值用于指示对应的反馈单元的信道状态信息的处理方式。可以理解的是,不同处理方式对应的反馈开销不同,反馈精度也不同。因此,对于一些反馈单元(例如较为重要的信道)的信道状态信息,波束成形发起者可以通过处理方式比特位图,指示波束成形响应者采用反馈精度较大的处理方式,以保证反馈精度;对于另一些反馈单元(例如不重要的信道)的信道状态信息,波束成形发起者可以通过处理方式比特位图,指示波束成形响应者采用反馈开销较小的处理方式,以减少反馈开销。这样一来,波束成形响应者可以采用合适的处理方式来处理不同反馈单元的信道状态信息,从而在反馈信道状态信息时,实现信道状态信息的反馈开销与反馈精度的平衡。
下面结合具体应用场景来说明图3所示的信道状态信息的反馈方法。
如图7所示,为本申请提供的一种信道状态信息的反馈方法,包括以下步骤:
S201、波束成形发起者生成并发送NDPA帧,该NDPA帧包含处理方式比特位图。
示例性的,图8为本申请实施例提供的一种NDPA帧的结构示意图。如图8所示,NDPA帧的站点信息可以包含处理方式比特位图,站点信息包含的处理方式比特位图仅适用于该站点信息对应的波束成形响应者。需要说明的是,在NDPA帧中,不同站点信息包含的处理方式比特位图可以是相同的,也可以是不相同的。
示例性的,图9为本申请实施例提供的另一种NDPA帧的结构示意图。如图9所示,NDPA帧的公共域包含处理方式比特位图,该处理方式比特位图适用于NDPA帧中各个站点信息对应的波束成形响应者。
需要说明的是,在本申请实施例中,NDPA帧包含的处理方式比特位图的详细描述可参考步骤S101,本申请实施例在此不再赘述。
结合图8和图9进行说明,NDPA帧包括:MAC帧头,探测会话令牌(sounding dialog token)字段,一个或多个站点信息,以及帧校验序列(frame check sequence,FCS)字段。
其中,MAC帧头包括:(1)帧控制(frame control)字段,用于指示该MAC帧的类型。(2)时长(duration)字段,用于指示该MAC帧以及相应的确认帧占用信道的时间长度。(3)接收地址(receiving address,RA)字段,用于标识MAC帧的接收端。(4)发送地址(transmitting address,TA)字段,用于标识MAC帧的发送端。
站点信息还可以包含以下参数中的一种或多种:关联标识(association identifier,AID)、部分带宽信息(partial bandwidth information)、反馈类型、Ng、消歧 (disambiguation)比特、码本尺寸(codebook size)、列数索引。部分带宽信息包括资源单元起始索引和资源单元结束索引。
帧检验序列字段,用于使接收端检测接收到的MAC帧是否正确。
可选的,如图8所示,在NDPA帧中,探测会话令牌包含NDPA类型和探测会话令牌号。其中,NDPA类型用于指示该NDPA帧的类型,也即指示该NDPA帧是非常高吞吐率(very high throughput,VHT)NDPA帧(也即802.11ac标准的NDPA帧),HE NDPA帧,定位(ranging)NDPA帧,或者EHT NDPA帧。示例性的,NDPA类型占用2个比特,若这两个比特的取值为00,则NDPA类型指示该NDPA帧为VHT NDPA帧;若这两个比特的取值为01,则NDPA类型指示该NDPA帧为HE NDPA帧;若这两个比特的取值为10,则NDPA类型指示该NDPA帧为ranging NDPA帧;若这两个比特的取值为11,则NDPA类型指示该NDPA帧为EHT NDPA帧。探测会话令牌号用于标识探测会话。
可选的,如图8所示,在NDPA帧中,若站点信息包含special AID,也即站点信息中AID字段的取值为特殊值,例如2045,则该站点信息可用于除了请求波束成形响应者反馈信道状态信息之外的其他功能。在这种情况下,站点信息中的其他字段用于指示其他信息。可选的,在站点信息用于其他功能的情况下,该站点信息还包括NDPA子类型(subtype),NDPA子类型用于指示该NDPA帧所属的子类型。
S202、波束成形发起者发送NDP。
S203(可选的)、波束成形发起者发送BRP触发帧。
具体实现中,在单用户反馈流程中,波束成形发起者不执行步骤S203;在多用户反馈流程中,波束成形发起者执行步骤S203。
S204、与步骤S104相同,详细描述可参考图3所示的实施例,在此不再赘述。
如图10所示,为本申请实施例提供的一种信道状态信息的反馈方法,包括以下步骤:
S301、波束成形发起者发送NDPA帧。
S302、波束成形发起者发送NDP。
S303、波束成形发起者生成并发送BRP触发帧,所述BRP触发帧包含处理方式比特位图。
可选的,图11为本申请实施例提供的一种BRP触发帧的结构示意图。如图11所示,BRP触发帧的用户信息可以包含处理方式比特位图,用户信息包含的处理方式比特位图仅适用于该用户信息对应的波束成形响应者。需要说明的是,在BRP触发帧中,不同用户信息包含的处理方式比特位图可以是相同的,也可以是不相同的。
可选的,图12为本申请实施例提供的一种BRP触发帧的结构示意图。如图12所示,BRP触发帧的公共域包含处理方式比特位图,该处理方式比特位图适用于BRP触发帧中各个用户信息对应的波束成形响应者。
需要说明的是,在本申请实施例中,BRP触发帧包含的处理方式比特位图的详细描述可参考步骤S101,本申请实施例在此不再赘述。
结合图11和图12进行说明,BRP触发帧包括:MAC帧头、公共域,逐个站点域,以及FCS字段。其中,公共域包括一些公共信息,例如:触发帧类型(trigger ytpe)、 上行长度(uplink length)等,具体内容可参考802.11标准,在此不予赘述。逐个站点域包括一个或多个用户信息(user information)。其中,用户信息至少包括以下参数中的一种或者多种:AID,资源单元分配(RU allocation),上行前向纠错码编码类型(uplink forward error correction coding type,UL FEC coding type),上行调制与编码策略(uplink modulation and coding scheme,UL MCS),上行双载波调制(uplink dual carder modulation,UL DCM),空间流分配/随机接入资源单元信息(spatial stream allocation/random access resource unit information),上行接收信号强度指示(uplink target received signal strength indication),反馈分片重传位图(feedback segment retansmission bitmap),以及一个或多个保留比特。上述各参数的具体含义可参考802.11标准,此处不予赘述。
S304、与步骤S104相同,详细描述可参考图3所示的实施例,在此不再赘述。
如图13所示,为本申请实施例提供的一种信道状态信息的反馈方法,包括以下步骤:
S401、波束成形发起者生成并发送MAC帧,所述MAC帧包含目标波束成形响应者对应的至少两个用户信息,所述至少两个用户信息包含的配置参数中至少存在一种配置参数的取值不相同。
其中,所述用户信息用于指示对应的波束成形响应者反馈信道状态信息。示例性的,所述用户信息包含的配置参数包括以下一种或者多种:资源单元起始索引、资源单元结束索引、处理方式指示信息、分组数以及码本信息。其中,所述处理方式指示信息用于指示信道状态信息的处理方式。
由于资源单元起始索引结合资源单元结束索引用于指示波束成形响应者反馈哪一部分资源单元的信道状态信息,因此若所述至少两个用户信息包含的资源单元起始索引和/或资源单元结束索引不相同,则目标波束成形响应者根据所述至少两个用户信息,分别反馈不同部分的资源单元的信道状态信息。
由于处理方式指示信息、分组数以及码本信息用于指示信道状态信息的处理方式,因此若所述至少两个用户信息包含的处理方式指示信息、分组数和/或码本信息不相同,则目标波束成形响应者对所述至少两个用户信息对应的信道状态信息所采用的处理方式不相同。
可选的,所述MAC帧为NDPA帧,或者BRP触发帧。需要说明的是,在NDPA帧中,上述MAC帧包含的用户信息一般称为站点信息。
一种可选的实现方式中,波束成形发起者以广播的方式发送所述MAC帧。
S402、波束成形发起者接收目标波束成形响应者发送的波束成形报告,所述波束成形报告包含所述至少两个用户信息分别对应的信道状态信息。
可选的,波束成形报告包括多个反馈字段,每个反馈字段对应一个用户信息,所述反馈字段包含对应的用户信息所请求的信道状态信息。
作为一种实现方式,所述波束成形报告包括多个MIMO控制字段,每个MIMO控制字段对应一个反馈字段,所述MIMO控制字段用于指示对应的反馈字段包含的信道状态信息的配置参数。示例性的,在这种情况下,波束成形报告的结构可参考表二,MIMO控制字段的结构可参考图4或图5。
作为另一种实现方式,所述波束成形报告仅包括一个MIMO控制字段,该MIMO控制字段用于统一指示波束成形报告中各个反馈字段包含的信道状态信息的配置参数。示例性的,在这种情况下,波束成形报告的结构可参考表三,MIMO控制字段可参考图4、图6或图14。
如图14所示,MIMO控制字段包含:数目指示信息,处理方式比特位图、分组数比特位图,码本信息比特位图。其中,数目指示信息用于指示波束成形报告包括的反馈字段的数目。所述处理方式比特位图用于指示波束成形报告中各个反馈字段包含的信道状态信息所采用的处理方式。所述分组数比特位图用于指示波束成形报告中各个反馈字段包含的信道状态信息所采用的分组数。所述码本信息比特位图用于指示波束成形报告中各个反馈字段包含的信道状态信息所采用的码本信息。
另外,如图14所示,MIMO控制字段还可以包含多个部分带宽信息,所述部分带宽信息包含资源单元起始索引以及资源单元结束索引。每一个部分带宽信息对应一个反馈字段,部分带宽信息用于说明对应的反馈字段包含的信道状态信息是哪一部分资源单元的信道状态信息。以图14为例,资源单元起始索引1与资源单元结束索引1对应反馈字段1,以此类推,资源单元起始索引n与资源单元结束索引n对应反馈字段n。
基于图13所示的技术方案,由于MAC帧可包含目标波束成形响应者对应的至少两个用户信息,并且,所述至少两个用户信息包含的配置参数中至少存在一种配置参数的取值不相同。也即,波束成形响应者可通过MAC帧中目标波束成形响应者对应的多个用户信息,向目标波束成形响应者指示反馈多个信道状态信息,这多个信道状态信息可以采用不同的处理方式,和/或,这多个信道状态信息是不同部分的资源单元的信道状态信息,从而实现信道状态信息地灵活反馈。
下面结合具体应用场景来说明图13所示的技术方案。
如图15所示,为本申请实施例提供的一种信道状态信息的反馈方法,包括以下步骤:
S501、波束成形发起者生成并发送NDPA帧,所述NDPA帧包含目标波束成形响应者对应的至少两个站点信息,所述至少两个站点信息包含的配置参数中至少存在一种配置参数的取值不相同。
作为一种实现方式,NDPA帧包含多个站点信息,所述多个站点信息中至少两个站点信息具有相同的AID。可以理解的是,具有相同的AID的至少两个站点信息对应同一个波束成形响应者。示例性的,如图16所示,NDPA帧中站点信息1和站点信息2的AID均为AID1。并且,站点信息1和站点信息2包含的配置参数中至少存在一种配置参数的取值不相同。例如,站点信息1包含的资源单元起始索引为0,资源单元结束索引为8;站点信息2包含的资源单元起始索引为18,资源单元结束索引为26。这样一来,站点信息1用于请求波束成形响应者反馈第1个到第9个26-subcarrier RU的信道状态信息;站点信息2用于请求波束成形响应者反馈第19到第27个26-subcarrier RU的信道状态信息。也即,站点信息1和站点信息2分别用于向同一个波束成形响应者请求不同RU的信道状态信息。又例如,站点信息1包含的Ng指示为4,站点信息2包含的Ng指示为16。这样一来,站点信息1所请求的信道状态信息与 站点信息2所请求的信道状态信息在分组程度上不相同。
可选的,站点信息1和站点信息2包含的部分带宽信息不同。
可选的,在NDPA帧中,具有相同AID的多个站点信息的位置相邻。这样一来,在读取NDPA帧的过程中,若波束成形响应者确定两个相邻的站点信息包含的AID不相同,且这两个相邻的站点信息中前一个站点信息包含的AID与该波束成形响应者的AID相同,则该波束成形响应者无需继续读取之后的站点信息,从而节省波束成形响应者读取信息的时间。
进一步的,在NDPA帧中,若相邻的多个站点信息具有相同的AID,则这多个站点信息中除了第一个站点信息之外的其他站点信息均省略AID字段,以减少传输开销。另外,在这多个站点信息中的第一个站点信息增加数目指示信息,该数目指示信息用于指示具有相同AID的站点信息的个数。结合图17进行说明,假设NDPA帧中站点信息2和站点信息3具有相同的AID,则站点信息3去除了AID字段,而站点信息2中增加了数目指示信息,该数目指示信息用于指示具有相同AID的站点信息的个数为2。
S502、波束成形发起者发送NDP。
S503(可选的)、波束成形发起者发送BRP触发帧。
具体实现中,在单用户反馈流程中,波束成形发起者不执行步骤S503;在多用户反馈流程中,波束成形发起者执行步骤S503。
S504、与步骤S402相同,详细描述可参考图13所示的实施例,在此不再赘述。
如图18所示,为本申请实施例提供的另一种信道状态信息的反馈方法,包括以下步骤:
S601、波束成形发起者发送NDPA帧。
S602、波束成形发起者发送NDP。
S603、波束成形发起者生成并发送BRP触发帧,所述BRP触发帧包含目标波束成形响应者对应的至少两个用户信息,所述至少两个用户信息包含的配置参数中至少存在一种配置参数的取值不相同。
可选的,图19为本申请实施例提供的一种BRP触发帧的结构示意图。如图19所示,BRP触发帧还包含以下参数:资源单元起始索引、资源单元结束索引、处理方式指示信息、分组数以及码本信息。
作为一种实现方式,BRP触发帧包含多个用户信息,所述多个用户信息中至少两个用户信息具有相同的AID。示例性的,如图20所示,在BRP触发帧中,用户信息4与用户信息5的AID均为AID1。并且,用户信息4与用户信息5包含的配置参数中至少存在一种配置参数的取值不相同。例如,假设用户信息4包含的资源单元起始索引为6,资源单元结束索引为10,Ng指示为4;用户信息5包含的资源单元起始索引为20,资源单元结束索引为25,Ng指示为8。这样一来,用户信息4用于请求AID1所对应的波束成形响应者反馈第7个至第11个26-subcarrier RU的信道状态信息,且该信道状态信息所采用的分组数为4。用户信息5用于请求AID1所对应的波束成形响应者反馈第21个到第26个26-subcarrier RU的信道状态信息,且该信道状态信息所采用的分组数为8。
可选的,在BRP触发帧中,具有相同的AID的多个用户信息的位置相邻,以便于节省波束成形响应者读取信息的时间。
进一步的,在BRP触发帧中,若相邻的多个站点信息具有相同的AID,则这多个站点信息中除了第一个站点信息之外的其他站点信息均省略AID字段,以减少传输开销。另外,在这多个站点信息中的第一个站点信息增加数目指示信息,该数目指示信息用于指示具有相同AID的站点信息的个数。结合图21进行说明,假设BRP触发帧中用户信息4、用户信息5以及用户信息6具有相同的AID,则用户信息5以及用户信息6去除了AID字段,而用户信息中增加了数目指示信息,该数目指示信息用于指示具有相同AID的站点信息的个数为3。
S604、与步骤S402相同,详细描述可参考图13所示的实施例,在此不再赘述。
上述主要从每一个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,每一个网元,例如波束成形发起者和波束成形响应者,为了实现上述功能,其包含了执行每一个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
图22为本申请实施例提供的一种通信装置的结构示意图。如图22所示,通信装置包括:接收模块101、发送模块102以及处理模块103。
作为一种实现方式,若所述通信装置作为波束成形发起者,则所述处理模块103,用于生成MAC帧,所述MAC帧包含处理方式比特位图,所述处理方式比特位图中每n个比特分别对应一个反馈单元,所述n个比特的取值用于指示对应的反馈单元的信道状态信息的处理方式,n为正整数。所述发送模块102,用于发送处理模块103生成的MAC帧。所述接收模块101,用于接收波束成形响应者发送的波束成形报告,所述波束成形报告包括一个或多个反馈字段,每个反馈字段分别对应一个反馈单元,所述反馈字段包含对应的反馈单元的信道状态信息,所述反馈字段包含的信道状态信息经过所述处理方式比特位图所指示处理方式的处理。
可选的,所述反馈单元为分片、资源单元或者信道。
可选的,所述MAC帧为NDPA帧,或者波束成形报告轮询触发帧。
作为一种实现方式,若所述通信装置作为波束成形响应者,则所述接收模块101,用于接收MAC帧,所述MAC帧包含处理方式比特位图,所述处理方式比特位图中每n个比特分别对应一个反馈单元,所述n个比特的取值用于指示对应的反馈单元的信 道状态信息的处理方式,n为正整数。所述处理模块103,用于生成波束成形报告,所述波束成形报告包括一个或多个反馈字段,每个反馈字段分别对应一个反馈单元,所述反馈字段包含对应的反馈单元的信道状态信息,所述反馈字段包含的信道状态信息经过所述处理方式比特位图所指示处理方式的处理。所述发送模块102,用于向所述波束成形发起者发送波束成形报告。
可选的,所述反馈单元为分片、资源单元或者信道。
可选的,所述MAC帧为NDPA帧,或者波束成形报告轮询触发帧。
作为另一种实现方式,若所述通信装置作为波束成形发起者,则所述处理模块,用于生成MAC帧,所述MAC帧包含目标波束成形响应者对应的至少两个用户信息,所述至少两个用户信息包含的配置参数中至少存在一种配置参数的取值不相同。所述发送模块102,用于发送所述处理模块103生成的MAC帧。所述接收模块101,用于接收所述目标波束成形响应者发送的波束成形报告,所述波束成形报告包含所述至少两个用户信息分别对应的信道状态信息。
可选的,所述用户信息至少包含以下配置参数中的一种或多种:资源单元起始索引、资源单元结束索引、处理方式指示信息、分组数以及码本信息。
可选的,所述MAC帧为NDPA帧,或者波束成形报告轮询触发帧。
作为另一种实现方式,若所述通信装置作为目标波束成形响应者,则所述接收模块,用于接收MAC帧,所述MAC帧包含目标波束成形响应者对应的至少两个用户信息,所述至少两个用户信息包含的配置参数中至少存在一种配置参数的取值不相同。所述处理模块,用于生成波束成形报告,所述波束成形报告包含所述至少两个用户信息分别对应的信道状态信息。所述发送模块,用于向所述波束成形发起者发送波束成形报告。
结合图3、图7、图10、图13、图15以及图18进行说明,若所述通信装置作为波束成形发起者,则所述接收模块101用于执行图3中的步骤S102,图7中的步骤S204,图10中的步骤S304,图13中的步骤S402,图15中的步骤S504,图18中的步骤S604,和/或用于本文描述的技术方案的其他过程。所述发送模块102用于执行图3中的步骤S101,图7中的步骤S201-S203,图10中的步骤S301-S303,图13中的步骤S401,图15中的步骤S501-S503,图18中的步骤S601-S603,和/或用于本文描述的技术方案的其他过程。
若所述通信装置作为波束成形响应者,则所述接收模块101用于执行图3中的步骤S101,图7中的步骤S201-S203,图10中的步骤S301-S303,图13中的步骤S401,图15中的步骤S501-S503,图18中的步骤S601-S603,和/或用于本文描述的技术方案的其他过程。所述发送模块102用于执行图3中的步骤S102,图7中的步骤S204,图10中的步骤S304,图13中的步骤S402,图15中的步骤S504,图18中的步骤S604,和/或用于本文描述的技术方案的其他过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
上述本申请实施例提供的通信装置,可以有多种产品形态来实现,例如,所述通信装置可配置成通用处理系统;又例如,所述通信装置可以由一般性的总线体系结构来实现;又例如,所述通信装置可以由专用集成电路(application specific integrated  circuit,ASIC)来实现等。下面提供本申请实施例所述的通信装置可能的几种产品形态,应当理解的是,以下的产品形态仅为举例,不对本申请实施例所述的通信装置的可能的产品形态进行限定。
图23是本申请实施例所述的通信装置可能的产品形态的结果图。
作为一种可能的产品形态,本申请实施例所述的通信装置可以为通信设备,所述通信设备包括处理器201和收发器202。可选的,所述通信设备还包括存储介质203。其中,所述处理器201用于执行图3、图7、图10、图13、图15以及图18所示的信道状态信息的反馈方法。所述收发器202,接受处理器201的控制,用于执行图3、图7、图10、图13、图15以及图18所示的信道状态信息的反馈方法。
作为另一种可能的产品形态,本申请实施例所述的通信装置也可以由通用处理器来实现,也即俗称的芯片来实现。该通用处理器包括:处理电路201和收发管脚202。可选的,该通用处理器还可以包括存储介质203。其中,处理电路201用于执行图3、图7、图10、图13、图15以及图18所示的信道状态信息的反馈方法。所述收发管脚202,接受处理电路201的控制,用于执行图3、图7、图10、图13、图15以及图18所示的信道状态信息的反馈方法。
作为另一种可能的产品形态,本申请实施例所述的通信装置也可以使用下述电路或者器件来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其他适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种信道状态信息的反馈方法,其特征在于,所述方法包括:
    波束成形发起者发送媒体接入控制MAC帧,所述MAC帧包含处理方式比特位图,所述处理方式比特位图中每n个比特分别对应一个反馈单元,所述n个比特的取值用于指示对应的反馈单元的信道状态信息的处理方式,n为正整数;
    波束成形发起者接收波束成形响应者发送的波束成形报告,所述波束成形报告包括一个或多个反馈字段,每个反馈字段分别对应一个反馈单元,所述反馈字段包含对应的反馈单元的信道状态信息,所述反馈字段包含的信道状态信息经过所述处理方式比特位图所指示处理方式的处理。
  2. 根据权利要求1所述的信道状态信息的反馈方法,其特征在于,所述反馈单元为分片、资源单元或者信道。
  3. 根据权利要求1或2所述的信道状态信息的反馈方法,其特征在于,所述MAC帧为空数据分组声明NDPA帧,或者波束成形报告轮询触发帧。
  4. 一种信道状态信息的反馈方法,其特征在于,所述方法包括:
    波束成形响应者接收波束成形发起者发送的媒体接入控制MAC帧,所述MAC帧包含处理方式比特位图,所述处理方式比特位图中每n个比特分别对应一个反馈单元,所述n个比特的取值用于指示对应的反馈单元的信道状态信息的处理方式,n为正整数;
    所述波束成形响应者向所述波束成形发起者发送波束成形报告,所述波束成形报告包括一个或多个反馈字段,每个反馈字段分别对应一个反馈单元,所述反馈字段包含对应的反馈单元的信道状态信息,所述反馈字段包含的信道状态信息经过所述处理方式比特位图所指示处理方式的处理。
  5. 根据权利要求4所述的信道状态信息的反馈方法,其特征在于,所述反馈单元为分片、资源单元或者信道。
  6. 根据权利要求4或5所述的信道状态信息的反馈方法,其特征在于,所述MAC帧为空数据分组声明NDPA帧,或者波束成形报告轮询触发帧。
  7. 一种信道状态信息的反馈方法,其特征在于,所述方法包括:
    波束成形发起者发送媒体接入控制MAC帧,所述MAC帧包含目标波束成形响应者对应的至少两个用户信息,所述至少两个用户信息包含的配置参数中至少存在一种配置参数的取值不相同;
    所述波束成形发起者接收所述目标波束成形响应者发送的波束成形报告,所述波束成形报告包含所述至少两个用户信息分别对应的信道状态信息。
  8. 根据权利要求7所述的信道状态信息的反馈方法,其特征在于,所述用户信息至少包含以下配置参数中的一种或多种:资源单元起始索引、资源单元结束索引、处理方式指示信息、分组数以及码本信息。
  9. 根据权利要求7或8所述的信道状态信息的反馈方法,其特征在于,所述MAC帧为空数据分组声明NDPA帧,或者波束成形报告轮询触发帧。
  10. 一种信道状态信息的反馈方法,其特征在于,所述方法包括:
    目标波束成形响应者接收波束成形发起者发送的媒体接入控制MAC帧,所述 MAC帧包含所述目标波束成形响应者对应的至少两个用户信息,所述至少两个用户信息包含的配置参数中至少存在一种配置参数的取值不相同;
    所述目标波束成形响应者向所述波束成形发起者发送波束成形报告,所述波束成形报告包括所述至少两个用户信息分别对应的信道状态信息。
  11. 根据权利要求10所述的信道状态信息的反馈方法,其特征在于,所述用户信息至少包含以下配置参数中的一种或多种:资源单元起始索引、资源单元结束索引、处理方式指示信息、分组数以及码本信息。
  12. 根据权利要求10或11所述的信道状态信息的反馈方法,其特征在于,所述MAC帧为空数据分组声明NDPA帧,或者波束成形报告轮询触发帧。
  13. 一种通信装置,其特征在于,包括:
    发送模块,用于发送媒体接入控制MAC帧,所述MAC帧包含处理方式比特位图,所述处理方式比特位图中每n个比特分别对应一个反馈单元,所述n个比特的取值用于指示对应的反馈单元的信道状态信息的处理方式,n为正整数;
    接收模块,用于接收波束成形响应者发送的波束成形报告,所述波束成形报告包括一个或多个反馈字段,每个反馈字段分别对应一个反馈单元,所述反馈字段包含对应的反馈单元的信道状态信息,所述反馈字段包含的信道状态信息经过所述处理方式比特位图所指示处理方式的处理。
  14. 根据权利要求13所述的通信装置,其特征在于,所述反馈单元为分片、资源单元或者信道。
  15. 根据权利要求13或14所述的通信装置,其特征在于,所述MAC帧为空数据分组声明NDPA帧,或者波束成形报告轮询触发帧。
  16. 一种通信装置,其特征在于,包括:
    接收模块,用于接收波束成形发起者发送的媒体接入控制MAC帧,所述MAC帧包含处理方式比特位图,所述处理方式比特位图中每n个比特分别对应一个反馈单元,所述n个比特的取值用于指示对应的反馈单元的信道状态信息的处理方式,n为正整数;
    发送模块,用于向所述波束成形发起者发送波束成形报告,所述波束成形报告包括一个或多个反馈字段,每个反馈字段分别对应一个反馈单元,所述反馈字段包含对应的反馈单元的信道状态信息,所述反馈字段包含的信道状态信息经过所述处理方式比特位图所指示处理方式的处理。
  17. 根据权利要求16所述的通信装置,其特征在于,所述反馈单元为分片、资源单元或者信道。
  18. 根据权利要求16或17所述的通信装置,其特征在于,所述MAC帧为空数据分组声明NDPA帧,或者波束成形报告轮询触发帧。
  19. 一种通信装置,其特征在于,包括:
    发送模块,用于发送媒体接入控制MAC帧,所述MAC帧包含目标波束成形响应者对应的至少两个用户信息,所述至少两个用户信息包含的配置参数中至少存在一种配置参数的取值不相同;
    接收模块,用于接收所述目标波束成形响应者发送的波束成形报告,所述波束成 形报告包含所述至少两个用户信息分别对应的信道状态信息。
  20. 根据权利要求19所述的通信装置,其特征在于,所述用户信息至少包含以下配置参数中的一种或多种:资源单元起始索引、资源单元结束索引、处理方式指示信息、分组数以及码本信息。
  21. 根据权利要求19或20所述的通信装置,所述MAC帧为空数据分组声明NDPA帧,或者波束成形报告轮询触发帧。
  22. 一种通信装置,其特征在于,包括:
    接收模块,用于接收波束成形发起者发送的媒体接入控制MAC帧,所述MAC帧包含目标波束成形响应者对应的至少两个用户信息,所述至少两个用户信息包含的配置参数中至少存在一种配置参数的取值不相同;
    发送模块,用于向所述波束成形发起者发送波束成形报告,所述波束成形报告包括所述至少两个用户信息分别对应的信道状态信息。
  23. 根据权利要求22所述的通信装置,其特征在于,所述用户信息至少包含以下配置参数中的一种或多种:资源单元起始索引、资源单元结束索引、处理方式指示信息、分组数以及码本信息。
  24. 根据权利要求22或23所述的通信装置,所述MAC帧为空数据分组声明NDPA帧,或者波束成形报告轮询触发帧。
  25. 一种通信设备,其特征在于,包括处理器和收发器,处理器和收发器通过内部连接互相通信;所述处理器用于执行权利要求1-12任意一项所述的信道状态信息的反馈方法;所述收发器接受处理器的控制,用于执行权利要求1-12任意一项所述的信道状态信息的反馈方法。
  26. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于执行权利要求1-12任意一项所述的信道状态信息的反馈方法的指令。
  27. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行权利要求1-12任意一项所述的信道状态信息的反馈方法的指令。
  28. 一种芯片,其特征在于,所述芯片包括处理电路和收发管脚,其中,处理电路和收发管脚通过内部连接互相通信;所述处理电路用于执行权利要求1-12任意一项所述的信道状态信息的反馈方法;所述收发管脚接受处理电路的控制,用于执行权利要求1-12任意一项所述的信道状态信息的反馈方法。
PCT/CN2019/116318 2018-11-07 2019-11-07 信道状态信息的反馈方法及装置 WO2020094098A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020237014426A KR102608748B1 (ko) 2018-11-07 2019-11-07 채널 상태 정보 피드백 방법 및 장치
EP19882547.3A EP3866505A4 (en) 2018-11-07 2019-11-07 FEEDBACK METHOD AND DEVICE FOR CHANNEL STATUS INFORMATION
AU2019375823A AU2019375823B9 (en) 2018-11-07 2019-11-07 Channel state information feedback method and apparatus
SG11202104817SA SG11202104817SA (en) 2018-11-07 2019-11-07 Channel state information feedback method and apparatus
KR1020217016166A KR102528328B1 (ko) 2018-11-07 2019-11-07 채널 상태 정보 피드백 방법 및 장치
BR112021008941-1A BR112021008941A2 (pt) 2018-11-07 2019-11-07 método de retroalimentação de informações de estado de canal e aparelho
JP2021524153A JP7125555B2 (ja) 2018-11-07 2019-11-07 チャネル状態情報フィードバック方法および装置
US17/314,422 US11483048B2 (en) 2018-11-07 2021-05-07 Channel state information feedback method and apparatus
JP2022128767A JP7364145B2 (ja) 2018-11-07 2022-08-12 チャネル状態情報フィードバック方法および装置
US17/957,563 US11990966B2 (en) 2018-11-07 2022-09-30 Channel state information feedback method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811321478.9A CN111162825B (zh) 2018-11-07 2018-11-07 信道状态信息的反馈方法及装置
CN201811321478.9 2018-11-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/314,422 Continuation US11483048B2 (en) 2018-11-07 2021-05-07 Channel state information feedback method and apparatus

Publications (1)

Publication Number Publication Date
WO2020094098A1 true WO2020094098A1 (zh) 2020-05-14

Family

ID=70554957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116318 WO2020094098A1 (zh) 2018-11-07 2019-11-07 信道状态信息的反馈方法及装置

Country Status (9)

Country Link
US (2) US11483048B2 (zh)
EP (1) EP3866505A4 (zh)
JP (2) JP7125555B2 (zh)
KR (2) KR102528328B1 (zh)
CN (2) CN111162825B (zh)
AU (1) AU2019375823B9 (zh)
BR (1) BR112021008941A2 (zh)
SG (1) SG11202104817SA (zh)
WO (1) WO2020094098A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3975446A1 (en) * 2020-09-25 2022-03-30 Samsung Electronics Co., Ltd. Device and method using adaptive codebook for dual beamforming feedback and wireless communication system including the same
WO2022069027A1 (en) * 2020-09-30 2022-04-07 Huawei Technologies Co., Ltd. Triggering beamformed up link physical layer protocol data units
EP4161189A4 (en) * 2020-05-29 2023-11-15 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR SENDING/RECEIVING ZERO DATA PACKET ANNOUNCEMENT FRAME
EP4149012A4 (en) * 2020-05-22 2023-11-15 Huawei Technologies Co., Ltd. METHOD FOR TRANSMITTING ZERO DATA PACKET ANNOUNCEMENT FRAME, AND ASSOCIATED DEVICE

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11510283B2 (en) * 2019-05-14 2022-11-22 Intel Corporation WLAN sensing using high-efficiency (HE) trigger- based (TB) PPDUs (HE TB PPDUs)
WO2021253300A1 (zh) * 2020-06-17 2021-12-23 北京小米移动软件有限公司 通信方法及设备、电子设备以及计算机可读存储介质
US20230388992A1 (en) * 2020-10-28 2023-11-30 Beijing Xiaomi Mobile Software Co., Ltd. Communication method and communication device
CN114630357A (zh) * 2020-12-11 2022-06-14 华为技术有限公司 信道探测方法及相关装置
CN115087021A (zh) * 2021-03-12 2022-09-20 华为技术有限公司 基于触发的空数据分组传输方法及相关装置
KR20230159434A (ko) * 2021-03-22 2023-11-21 엘지전자 주식회사 센싱을 위한 개선된 ndpa 프레임
CN115515176A (zh) * 2021-06-07 2022-12-23 华为技术有限公司 通信方法及装置
EP4369794A1 (en) * 2021-07-06 2024-05-15 Beijing Xiaomi Mobile Software Co., Ltd. Communication method and communication device
CN115733590A (zh) * 2021-08-28 2023-03-03 华为技术有限公司 Ndpa帧的传输方法及相关装置
WO2023087319A1 (zh) * 2021-11-22 2023-05-25 北京小米移动软件有限公司 通信方法及装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001745A (zh) * 2011-09-19 2013-03-27 中兴通讯股份有限公司 反馈信道信息矩阵维数的通知方法及装置
US20160081075A1 (en) * 2014-09-12 2016-03-17 Samsung Electronics Co., Ltd. Apparatus and method for channel state information feedback in wireless communication system
CN106454930A (zh) * 2015-08-07 2017-02-22 中兴通讯股份有限公司 信道探测报告传输方法及装置
US20170054542A1 (en) * 2015-08-19 2017-02-23 Qualcomm Incorporated Sounding design for channel feedback
CN107645737A (zh) * 2016-07-21 2018-01-30 中兴通讯股份有限公司 一种信道测量的方法、无线通信装置及设备

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4005974B2 (ja) * 2004-01-09 2007-11-14 株式会社東芝 通信装置、通信方法、および通信システム
JP4924106B2 (ja) * 2006-04-27 2012-04-25 ソニー株式会社 無線通信システム、並びに無線通信装置及び無線通信方法
JP4775288B2 (ja) * 2006-04-27 2011-09-21 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法
KR101482262B1 (ko) * 2007-10-18 2015-01-13 엘지전자 주식회사 무선 통신 시스템에서 피드백 메시지 전송 방법
US9088393B2 (en) * 2010-07-30 2015-07-21 Lg Electronics Inc. Method and apparatus for reporting channel state information of multi-channel in wireless local area network system
US9118364B2 (en) 2010-10-06 2015-08-25 Broadcom Corporation Differential feedback within single user, multiple user, multiple access, and/or MIMO wireless communications
US8891640B2 (en) * 2011-06-21 2014-11-18 Marvell World Trade Ltd. Uplink training for MIMO implicit beamforming
CN103326829B (zh) * 2012-03-22 2018-01-02 中兴通讯股份有限公司 信道测量反馈的指示方法及发送站点
US8874103B2 (en) * 2012-05-11 2014-10-28 Intel Corporation Determining proximity of user equipment for device-to-device communication
KR20170030540A (ko) * 2014-06-26 2017-03-17 엘지전자 주식회사 무선 통신 시스템에서 다중 사용자 상향링크 데이터 전송을 위한 방법 및 이를 위한 장치
US10075873B2 (en) 2015-03-02 2018-09-11 Qualcomm Incorporated Methods and apparatus for channel state information sounding and feedback
CN115189729B (zh) * 2015-07-10 2023-09-26 交互数字专利控股公司 针对ofdma wlan的统一反馈
WO2017030295A1 (ko) * 2015-08-19 2017-02-23 엘지전자(주) 무선 통신 시스템에서 채널 상태의 피드백 방법 및 이를 위한 장치
WO2017043713A1 (ko) * 2015-09-08 2017-03-16 엘지전자(주) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2017069589A1 (ko) * 2015-10-23 2017-04-27 엘지전자(주) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
US10928505B1 (en) * 2017-05-12 2021-02-23 Marvell Asia Pte, Ltd. Null data packet (NDP) announcement frame and trigger frame for NDP ranging
US10772099B2 (en) * 2018-02-16 2020-09-08 Qualcomm Incorporated Punctured sounding and partial bandwidth feedback
US11115104B2 (en) * 2018-05-25 2021-09-07 Intel Corporation Enhanced signaling and use of multiple transmission chains
US11973547B2 (en) * 2019-05-10 2024-04-30 Lg Electronics Inc. Method and device for receiving feedback frame in wireless LAN system
CN113346937A (zh) * 2020-03-02 2021-09-03 华为技术有限公司 信道探测方法和装置
US11979866B2 (en) * 2020-09-10 2024-05-07 Samsung Electronics Co., Ltd. Apparatus and method for channel sounding based on aggregated physical protocol data unit
US20220399923A1 (en) * 2021-06-14 2022-12-15 Huawei Technologies Co., Ltd. Methods and systems for wi-fi sensing announcement
US12021594B2 (en) * 2021-09-30 2024-06-25 Huawei Technologies Co., Ltd. Null data packet announcement (NDPA) frame indication
US20230189223A1 (en) * 2021-12-14 2023-06-15 Nxp Usa, Inc. Null data packet announcement for sensing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001745A (zh) * 2011-09-19 2013-03-27 中兴通讯股份有限公司 反馈信道信息矩阵维数的通知方法及装置
US20160081075A1 (en) * 2014-09-12 2016-03-17 Samsung Electronics Co., Ltd. Apparatus and method for channel state information feedback in wireless communication system
CN106454930A (zh) * 2015-08-07 2017-02-22 中兴通讯股份有限公司 信道探测报告传输方法及装置
US20170054542A1 (en) * 2015-08-19 2017-02-23 Qualcomm Incorporated Sounding design for channel feedback
CN107645737A (zh) * 2016-07-21 2018-01-30 中兴通讯股份有限公司 一种信道测量的方法、无线通信装置及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "IEEE Standard for Information technology-- Telecommunications and information exchange between systemsLocal and metropolitan area networks-- Specific requirements--Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications--Amendment 4: Enhancements for Very High Throu", IEEE STANDARD, 18 December 2013 (2013-12-18), pages 1 - 425, XP068055837, ISBN: 978-0-7381-8860-7 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4149012A4 (en) * 2020-05-22 2023-11-15 Huawei Technologies Co., Ltd. METHOD FOR TRANSMITTING ZERO DATA PACKET ANNOUNCEMENT FRAME, AND ASSOCIATED DEVICE
US11943170B2 (en) 2020-05-22 2024-03-26 Huawei Technologies Co., Ltd. Null data packet announcement frame transmission method and related apparatus
EP4161189A4 (en) * 2020-05-29 2023-11-15 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR SENDING/RECEIVING ZERO DATA PACKET ANNOUNCEMENT FRAME
EP3975446A1 (en) * 2020-09-25 2022-03-30 Samsung Electronics Co., Ltd. Device and method using adaptive codebook for dual beamforming feedback and wireless communication system including the same
US11387877B2 (en) 2020-09-25 2022-07-12 Samsung Electronics Co., Ltd. Device and method using adaptive codebook for dual beamforming feedback and wireless communication system including the same
WO2022069027A1 (en) * 2020-09-30 2022-04-07 Huawei Technologies Co., Ltd. Triggering beamformed up link physical layer protocol data units

Also Published As

Publication number Publication date
US11483048B2 (en) 2022-10-25
EP3866505A4 (en) 2021-12-22
BR112021008941A2 (pt) 2021-08-10
JP7364145B2 (ja) 2023-10-18
AU2019375823B9 (en) 2022-10-27
CN111162825A (zh) 2020-05-15
JP7125555B2 (ja) 2022-08-24
AU2019375823B2 (en) 2022-10-13
KR102528328B1 (ko) 2023-05-02
AU2019375823A1 (en) 2021-06-10
EP3866505A1 (en) 2021-08-18
JP2022506632A (ja) 2022-01-17
KR102608748B1 (ko) 2023-11-30
CN111162825B (zh) 2023-12-29
JP2022184835A (ja) 2022-12-13
KR20210082512A (ko) 2021-07-05
SG11202104817SA (en) 2021-06-29
US20210266054A1 (en) 2021-08-26
KR20230061580A (ko) 2023-05-08
CN117728872A (zh) 2024-03-19
US20230097165A1 (en) 2023-03-30
US11990966B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
WO2020094098A1 (zh) 信道状态信息的反馈方法及装置
EP3219041B1 (en) Acknowledgment for multiple user communication in a wlan
US9088393B2 (en) Method and apparatus for reporting channel state information of multi-channel in wireless local area network system
US10205570B2 (en) Method and apparatus for configuring pilot sequence in WLAN system
EP4017175A1 (en) Frequency domain resource allocation method and apparatus
KR20120117881A (ko) 무선랜 시스템에서 링크 적응을 기반으로 한 채널 정보 보고 방법 및 이를 지원하는 장치
US10390328B2 (en) Beamforming training in orthogonal frequency division multiple access (OFDMA) communication systems
JP7457162B2 (ja) ヌル・データ・パケット・アナウンスメント・フレーム伝送方法及び関連装置
US20220417063A1 (en) Channel sounding method and apparatus
US11917547B2 (en) Power save for multi-user (MU) operation
KR102034530B1 (ko) 무선 통신 시스템에서 다중 프레임 전송 방법 및 전송기
TW202322585A (zh) 一種天線通道探測方法、裝置和儲存介質
WO2016029683A1 (zh) 一种用于无线局域网络中传输数据的方法和装置
EP4336898A1 (en) Data transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524153

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 122022022609

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021008941

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019882547

Country of ref document: EP

Effective date: 20210511

ENP Entry into the national phase

Ref document number: 20217016166

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019375823

Country of ref document: AU

Date of ref document: 20191107

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021008941

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210507