WO2020094086A1 - 现代节水技术与循环农业体系及其构建方法 - Google Patents

现代节水技术与循环农业体系及其构建方法 Download PDF

Info

Publication number
WO2020094086A1
WO2020094086A1 PCT/CN2019/116186 CN2019116186W WO2020094086A1 WO 2020094086 A1 WO2020094086 A1 WO 2020094086A1 CN 2019116186 W CN2019116186 W CN 2019116186W WO 2020094086 A1 WO2020094086 A1 WO 2020094086A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
soil
slope
runoff
irrigation
Prior art date
Application number
PCT/CN2019/116186
Other languages
English (en)
French (fr)
Inventor
张锦宇
张颖
罗旭辉
Original Assignee
福建省农业科学院农业生态研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建省农业科学院农业生态研究所 filed Critical 福建省农业科学院农业生态研究所
Publication of WO2020094086A1 publication Critical patent/WO2020094086A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B79/00Methods for working soil
    • A01B79/02Methods for working soil combined with other agricultural processing, e.g. fertilising, planting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/22Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing plant material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/22Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing plant material
    • A01G24/23Wood, e.g. wood chips or sawdust
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/30Growth substrates; Culture media; Apparatus or methods therefor based on or containing synthetic organic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/02Methods or installations for obtaining or collecting drinking water or tap water from rain-water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/108Rainwater harvesting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • the invention relates to a technology for controlling soil erosion, in particular to the construction of high-standard farmland, modern water-saving technology, circular agriculture system and its construction method.
  • Sloping arable land is an important source of soil erosion in China, and it is also a productive land on which the masses of hilly areas depend for their survival and development.
  • a large amount of sloping arable land causes serious soil erosion, destroys arable land resources, reduces land productivity, endangers national food security, ecological security and flood control security, and restricts the sustainable development of the economy and society.
  • the purpose of the present invention is to provide a modern water-saving technology and a circular agriculture system and its construction method to form an ecological barrier to protect slope farmland, and use the water and fertilizer irrigation system constructed by high-standard farmland to control the field soil erosion and water and fertilizer supply. balance.
  • the water and fertilizer cycle and organic manure field conserving field soil, fertilizer, water and other conditions, coupling soil and water conservation and modern high-efficiency cultivated agriculture, increase the cropping area and income of the ridge crops, improve land utilization, and achieve the effect of increasing cultivated land.
  • modern water-saving technology and circular agricultural system which includes a planting system, drainage and water and soil conservation systems installed on slopes and sloping fields, connected with drainage and water and soil conservation systems and used for collection
  • the rainwater storage tank and the water-saving irrigation system arranged on the planting system.
  • the water-saving irrigation system drains the water and fertilizer collected in the tank to the planting system after fertilization.
  • a modern water-saving technology and the construction method of circular agriculture system are as follows:
  • Step 1 Select planting plants according to the topography and climatic conditions on slope farmland or slope land; and initially determine the water demand of irrigation project;
  • Step 2 Calculate the runoff per unit runoff area of each year and the formula of the intensity of rainstorm under heavy rain according to the formulas of precipitation and collection efficiency of each decade.
  • Step 3 Perform frequency analysis on each year's runoff or rainstorm to obtain the water and soil runoff per unit runoff area at the design frequency;
  • Step 4 Calculate the total inflow of rainwater runoff in each year, ten days or storm conditions according to the runoff area on the slope farmland or on the slope land;
  • Step 5 According to the terrain, planting plants and regional irrigation division conditions, pre-set several water storage standard volumes, and calculate the water balance separately;
  • n number of years
  • Step 7 Calculate the storage volume corresponding to the design guarantee rate, which is the required storage volume
  • Step 8 Make an economic comparison of different combinations of runoff area and water storage volume, and find the combination of runoff area and water storage volume with the smallest cost. Among them, the runoff area is revised and divided according to the economic and technical requirements of the slope protection system Protected area
  • Step 9 The difference between the total amount of precipitation runoff in each year, each period, and the step 1 plant irrigation project is discharged as overflow and is the inflow of the downstream constructed wetland system;
  • Step 10 Determine the size of the constructed wetland system based on the measured values of overflow discharge and inflow and perennial non-point source pollution.
  • a terrace wall planting system is adopted on the slope wall of the sloping field, such as: the slope soil collapse soil improvement system, replacing the water and fertilizer enrichment layer on the original system with bedding, straw, sawdust, mushroom residue, Recyclable wastes such as sugar dregs, coal ash, garbage, etc. are used to make an eutrophic matrix layer, making it a fertile soil for plant growth on the terrace walls of slope farmland.
  • the terrace grids and grass slope protect the "enriched substrate” Renew and use old materials to make garden organic fertilizer, effectively improve the soil, enhance the fertility, and promote the quality and efficiency of slope farmland.
  • the water-saving irrigation system returns the water and fertilizer of the water collection tank to the slope and cultivated land to form a balance of regional water and fertilizer loss and supplementation.
  • Field water, soil and fertilizer dynamics through the Internet platform such as: ⁇ a kind of agricultural achievement transformation and production marketing System and its use method>
  • the platform's ⁇ water-saving irrigation and water and fertilizer integrated control system> implements remote control.
  • FIG. 1 is a connection diagram between devices or systems of the present invention.
  • FIG. 2 is a specific positional relationship diagram between various devices or systems of the present invention.
  • FIG. 3 is a plan view of a slope farmland and a side cross-sectional view of the A-A surface
  • FIG. 4 is a top view of a slope-collapse soil improvement system installed in a terrace planting system
  • 5 and 4 are cross-sectional views at B-B.
  • Fig. 6 is a cross-sectional view at C-C in Fig. 4.
  • Fig. 7 is a top view of the pipe network shield body system of the slope landslide ditch.
  • FIG. 8 is a cross-sectional view at D-D in FIG. 7.
  • FIG. 9 is a cross-sectional view of a constructed wetland in a constructed wetland system.
  • FIG. 10 Schematic diagram of the overall structure of the constructed wetland system.
  • Figure 11 Flowchart of modern water-saving technology and the construction method of circular agriculture system.
  • 1 planting system 2 slope soil collapse soil improvement system, 3 slope land collapse gully pipe network protection system, 4 water collection tank, 5 artificial wetland system, 6 water saving irrigation system, 7 soil and water conservation system, 21 eutrophic substrate Layer, 22 coated membrane surface layer, 23 reinforced fixed net, 24 plants, 31 horizontal drainage ditch, 32 vertical drainage ditch, 33 water collection well, 41 artificial wetland, 411 overflow channel, 42 circulation filtration system, 43 matrix layer A , 44 matrix layer B, 45 matrix layer C, 46 matrix layer D, 421 water inlet pipe, 422 water outlet pipe, 49 partition net.
  • a modern water-saving technology and circular agriculture system characterized in that it includes a planting system 2, drainage and water and soil conservation systems installed on slopes and sloping fields, and drainage and water and soil conservation
  • the system is connected to the rainwater collecting tank 4, and the water saving irrigation system 6 is arranged on the planting system.
  • the water saving irrigation system guides the water and fertilizer collected in the water collecting tank to the planting system after fertilization.
  • Slope farmland here mainly refers to slopes, terraces, etc. Cistern can refer to water cellar, pond weir, pool or water tank.
  • the drainage and water and soil conservation systems are divided into drainage and drainage systems and soil and water conservation systems 7.
  • the drainage and drainage systems include slope-collapse ditch pipe network protection system 3 or drainage trenches of brick, stone, concrete and earth channels ;
  • the soil and water conservation system includes the slope soil and water conservation system and the field platform storage system.
  • the field platform impregnation system is fish scale pit, horizontal ditch, slub ditch and horizontal step.
  • the planting system includes plants planted on the slope arable land, plants planted on the soil improvement system on the slope landslide or plants planted on the ridge wall.
  • the soil improvement system for landslides on slopes is described in the patent of ZL2014 2 0268813.4, which includes an eutrophic matrix layer 21 covering the slope surface of the sloping field and a film-mesh surface layer 22 covering the eutrophic substrate layer 21
  • the eutrophic matrix layer 21 is a sponge, a water-absorbent resin or an ultra-lightweight nutrition matrix layer
  • the film-coated mesh surface layer 22 is a shading mesh fabric, agricultural mesh fabric, woven PE fabric or household mesh fabric.
  • the eutrophic matrix layer is a control transfer layer for changes in soil moisture and fertilizer distribution.
  • the soil reinforcement method is used to change the mechanical properties of the soil, which is used to strengthen the soil to achieve the balance of the effects of hydraulic erosion, gravity erosion and wind erosion on the soil surface and the overall soil mechanics on the slope wall or slope surface of the slope farmland. Control the dual functions of soil erosion and soil conservation.
  • a reinforced fixed net 23 is provided on the surface or inside of the eutrophic matrix layer 21, and the reinforced fixed net 23 is a warp and weft rope net formed by intersecting horizontally and vertically a plurality of warp threads and a plurality of weft threads.
  • the invention also includes an artificial wetland system located downstream of the sump, which includes a surface flow artificial wetland, a horizontal subsurface flow artificial wetland, a vertical subsurface flow artificial wetland, and a tidal flow artificial wetland.
  • the water-saving irrigation system can irrigate the designated area according to demand, and can be connected with the existing agricultural achievement conversion and production and marketing system for on-demand irrigation; it should be pointed out that the agricultural achievement conversion and production and marketing system It is described in the patent of ZL201810012528.9.
  • the water and soil conservation system is one of a slope soil and water conservation system and a field platform impregnation system.
  • the soil and water conservation system for slope collapse is described in the patent of ZL201420268813.4; the platform infiltration system is Yulinkeng, horizontal ditch, slub ditch and horizontal step.
  • the slope network protection system is one of the slope network protection system or ordinary ditch system;
  • the pipe network protection system of the slope landslide ditch includes several horizontal drainage channels 31 arranged on the slope farmland and arranged in order from top to bottom, and several vertical drainage channels 31 are arranged vertically and connected with each horizontal drainage channel.
  • the vertical drainage ditch 32 that intersects and connects, and at the intersection of the horizontal drainage ditch 31 and the vertical drainage ditch 32, a plurality of water collection wells 33 extending underground are provided.
  • the uppermost horizontal drainage ditch 31 is used as an upper intercepting ditch.
  • the water collection well 33 can also be used as a sedimentation basin; of course, a sedimentation well can be built separately.
  • the end of the vertical drainage ditch 32 communicates with the sump.
  • the slope network protection system of the pipe network of the Gangganggou can refer to the content disclosed in the ZL201410125995.4 patent document.
  • the shelter system of the pipe network of the slope landslide ditch can also use a common ditch system, which is a ditches and drains made of brick, stone, concrete or / and soil.
  • the constructed wetland system is one of surface flow constructed wetland, horizontal subsurface flow constructed wetland, vertical subsurface flow constructed wetland or tidal flow constructed wetland.
  • Horizontal subsurface flow constructed wetland is a form of subsurface flow type wetland. Sewage flows from the end of the water inlet in the horizontal direction through sand and gravel, media, plant roots, and then flows to the end of the water outlet to achieve the purpose of purification.
  • sewage flows longitudinally from the surface to the bottom of the bed. In the process of longitudinal flow, the sewage sequentially passes through different media layers to achieve the purpose of purification.
  • the tidal mixed flow constructed wetland includes a constructed wetland 41 distributed at the bottom of the slope and a circulation filter system 42 provided in the constructed wetland 41.
  • the constructed wetland 41 is provided with a number of criss-cross overflow channels 411.
  • the constructed wetland includes fillers Bed body and aquatic plants growing on the surface of the packed bed body; the packed bed body includes a submerged biological contact layer and a substrate layer above the submerged biological contact layer, and the submerged biological contact layer and the substrate layer are provided for separation and communication Separator 49; the substrate layer includes a substrate layer A43 and a substrate layer B44 in order from top to bottom, the submerged biological contact layer includes a substrate layer C45 and a substrate layer D46 in order from top to bottom; the circulation filtration system includes circulation filtration Equipment, water inlet pipe 421, water outlet pipe 422 and electromagnetic control equipment; the water inlet pipe and water outlet pipe are set in the constructed wetland, the electromagnetic control equipment is connected to the water inlet pipe and water outlet pipe to realize water circulation; the circulation filtering equipment is arranged on the water circulation Filtering is achieved; a vent pipe leading to the bottom of the wetland is provided on the constructed wetland.
  • the tidal mixed flow constructed wetland and its sewage treatment method can refer to
  • the purpose of the constructed wetland is that when the rainfall exceeds the load of the catchment tank, the rainwater will flow over the catchment tank and finally flow into the constructed wetland system and then flow through the purified wetland to the river;
  • the water-saving irrigation system includes a water pump, a fertiliser, an irrigation pipe and a control system.
  • the irrigation pipe is laid on the plantation on the slope farmland and connected to the water pump.
  • the fertiliser is connected to the irrigation pipe to fertilize the water body.
  • the water pump is controlled by the control system Its water supply.
  • the irrigation method here can be sprinkler irrigation or drip irrigation according to the type of vegetation.
  • Water-saving irrigation systems are divided into farmland irrigation systems for irrigating plantations and terrace wall irrigation systems for irrigating terrace planting systems according to different irrigation areas.
  • Step 1 Select planting plants according to the topography and climatic conditions on slope farmland or slope land; and initially determine the water demand of irrigation project;
  • Step 2 Calculate the runoff per unit runoff area of each year and the formula of the intensity of rainstorm under heavy rain according to the formulas of precipitation and collection efficiency of each decade.
  • Step 3 Perform frequency analysis on each year's runoff or rainstorm to obtain the water and soil runoff per unit runoff area at the design frequency;
  • Step 4 Calculate the total inflow of rainwater runoff in each year, ten days or storm conditions according to the runoff area on the slope farmland or on the slope land;
  • Step 5 According to the terrain, planting plants and regional irrigation division conditions, pre-set several water storage standard volumes, and calculate the water balance separately;
  • n number of years
  • Step 7 Calculate the storage volume corresponding to the design guarantee rate, which is the required storage volume
  • Step 8 Make an economic comparison of different combinations of runoff area and water storage volume, and find the combination of runoff area and water storage volume with the smallest cost. Among them, the runoff area is revised and divided according to the economic and technical requirements of the slope protection system Protected area
  • Step 9 The difference between the total amount of precipitation runoff in each year, each period, and the step 1 plant irrigation project is discharged as overflow and is the inflow of the downstream constructed wetland system;
  • Step 10 Determine the size of the constructed wetland system based on the measured values of overflow discharge and inflow and perennial non-point source pollution.
  • the critical period of water demand affecting crops and the amount of irrigation water to be supplemented should be analyzed and determined.
  • the number of crop irrigations, irrigation quota and irrigation quota should be determined according to the water storage capacity and irrigation area of the rainwater harvesting project.
  • V storage volume (m 3 ):
  • K-volume coefficient can be taken according to regulations.
  • the choice of water storage project form should be determined according to local soil quality, project use, building materials, construction conditions and other factors. For water storage projects combining domestic water supply and irrigation water, water cellars, water kilns, covered pools or pools built in houses should be used.
  • Ki is the annual collection efficiency of the i-th material:
  • n the number of types of runoff surface materials.
  • Crop irrigation should use efficient and suitable irrigation methods.
  • Improvement of cultivated geology and quantity increase the cropping area of crops on the ridges, improve the overall quality of cultivated land, and realize the overall utilization rate of cultivated geology and quantity.
  • Rainwater harvesting and utilization The use of its own rainwater conditions to form a "waterlogging drainage, dry energy irrigation” soil erosion rainwater harvesting and utilization project and soil conservation system, has obvious advantages in low rainfall areas.
  • Non-point source pollution control The emission and circulation of farmland non-point source pollution treatment are controlled within the region.
  • Soil and water loss and water and fertilizer supply control field water, soil and fertilizer dynamic management and precise control. Engineering or biological measures are taken on the staircase walls and slopes to keep the water and fertilizer loss and water and fertilizer supply within the allowable fluctuation range. If the water and fertilizer loss is not controlled, soil and water conservation and soil improvement cannot be carried out.
  • Improve soil function Its purpose is to increase soil organic matter and nutrient content, improve soil properties and improve soil fertility.
  • Water conservancy soil improvement Water and fertilizer irrigation systems deliver chemical substance pairs to change the soil acidity or alkaline soil chemical improvement system, and regularly carry out soil disinfection.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Botany (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biotechnology (AREA)
  • Forests & Forestry (AREA)
  • Wood Science & Technology (AREA)
  • Soil Sciences (AREA)
  • Ecology (AREA)
  • Microbiology (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Cultivation Of Plants (AREA)

Abstract

提供一种现代节水技术与循环农业体系及其构建方法。该体系包括种植系统(1)、设置于坡地及坡耕地上的引排水和水土保持系统(7)、与引排水和水土保持系统(7)相连接并用于集蓄雨水的集水池(4)、布设于种植系统(1)上的节水灌溉系统(6),节水灌溉系统(6)将集水池(4)内收集的水肥经过肥化后引流回种植系统(1)。构建方法为根据坡地的各个条件进行计算,确定不同系统的规格要求,整个系统的建立,提高耕地总体利用率,达到增加耕地质量和补充耕地面积的功效。同时田间植物间作,改善田间气候生态环境,形成保护坡耕地的生态屏障。

Description

现代节水技术与循环农业体系及其构建方法 技术领域
本发明涉及一种水土流失治理技术,尤其涉及高标准农田建设、现代节水技术与循环农业体系及其构建方法。
背景技术
坡耕地是我国水土流失的重要策源地,也是目前广大山丘区群众赖以生存和发展的生产用地。大量的坡耕地导致严重的水土流失,破坏耕地资源,降低土地生产力,危及国家粮食安全、生态安全和防洪安全,制约经济社会的可持续发展。
因地制宜地建设雨水集蓄利用工程、蓄排引灌、田间生产道路、地埂梯壁种植利用等配套措施,是《全国水土保持规划(2015-2030)年》和《水利改革发展“十三五”规划》,国家发展改革委、水利部联合编制印发了《全国坡耕地水土流失综合治理“十三五”专项建设方案》的核心内容。也是《国家农业综合开发高标准农田建设规划》的重要组成。
发明内容
本发明的目的在于提供一种现代节水技术与循环农业体系及其构建方法,让其形成保护坡耕地的生态屏障,利用高标准农田建设的水肥灌溉系统来控制田间水土流失与水肥供给间的平衡。通过水肥循环和有机肥下田,保育田间土、肥、水等条件,耦合水土保持与现代高效栽培农业,增加田埂作物种植面积和收入,提高土地利用率,达到增加耕地的功效。
本发明的目的是这样实现的:现代节水技术与循环农业体系,它包括种植系统、设置于坡地及坡耕地上的引排水和水土保持系统、与引排水和水土保持系统相连接并用于集蓄雨水的集水池、布设于种植系统上的节水灌溉系统,节水灌溉系统将集水池内收集的水肥经过肥化后引流回种植系统。
一种现代节水技术与循环农业体系的构建方法如下:
步骤1:根据坡耕地或坡地上的地形和气候条件选择种植物;并初步确定灌溉工程需水量;
步骤2:根据各年、各旬降水量和旬集流效率公式计算各年单位径流面积上的径流量以及暴雨条件下的暴雨强度公式;
步骤3:对各年径流量或暴雨进行频率分析,求得设计频率下单位径流面积上的水土径流量;
步骤4:按照坡耕地或坡地上径流面积计算各年、旬或暴雨条件下雨水径流总入流量;
步骤5:按地形、种植物和区域灌溉划分条件、预设定几个蓄水标准容积,并分别进行水量平衡计算;
步骤6:
计算在预定蓄水容积下发生缺水的年数,凡年内有一个计算时段发生缺水的,即应认为该年发生了缺水;各蓄水容积下的供水保证率可按下式计算:
Figure PCTCN2019116186-appb-000001
式中:R—供水保证率(%);
n—年数;
m—计算得到的在某个蓄水容积下的缺水年数;
步骤7:计算与设计保证率相应的蓄水容积,为所求的蓄水容积;
步骤8:对不同径流面积和蓄水容积组合进行经济比较,求得造价最小的径流面积和蓄水容积组合,其中径流面积采用符合坡地崩岗沟管网防护体系统的经济和技术要求修正划分保护区域;
步骤9:各年、各旬、降水径流总量与步骤1种植物灌溉工程需水量的差,为溢流排出,为下游人工湿地系统的入流量;
步骤10:根据溢流排出与入流量及常年面源污染的测定值,确定人工湿地系统大小。
本发明的优点在于:
1、充分利用田埂梯壁种植物工程来保持田间水、土、肥,在达到保水、保土、保肥的同时,耦合水土保持与现代农业,增加田埂作物收入,提高耕地总体利用率,达到增加耕地质量和补充耕地面积的功效。同时田间植物间作,改善田间气候生态环境,形成保护坡耕地的生态屏障。
2、利用高标准农田建设坡耕地上的雨水集蓄利用工程建设,依山就势、科学合理配置坡地崩岗沟管网防护体系统以及集水池,构建成一个水土保持和土壤改良体系,有效控制项目区内地表雨水径流和土壤肥力保育,形成“涝能排、旱能灌”的水土流失雨水集蓄利用工程和土壤保育体系。
3、通过技术集成,在坡耕地田埂梯壁上采用梯壁种植系统,如:坡地崩岗土壤改良系统,将原系统上的水肥富集层,替换为垫料、秸秆、锯末、菇渣、糖渣、煤灰、垃圾等可再生废弃物制作富养基质层,使之成为坡耕地田埂梯壁上种植物生长的沃土,使用一定时间后,田埂梯壁网、草护坡“富养基质”更新、旧料下地做园地有机肥,有效改良土壤,增强地力,促进坡耕地提质增效。
4、节水灌溉系统将集水池的水、肥送回坡地和坡耕地上形成区域水肥流失和补充的平衡,田间水、土、肥动态通过互联网平台如:<一种农业成果转化与生产营销体系及其使用方法>平台的<节水灌溉与水肥一体控制系统>实行远程控制。
5、设置人工湿地。如:潮汐混合流人工湿地,当区域暴雨使水土流失量大于集水量或坡耕地施肥与面源污染导致集水池中污染水不能满足灌溉条件时,集水排到潮汐混合流人工湿地,由人工湿地系统处理后向江河排放。
附图说明
图1是本发明各个设备或系统之间的连接关系图。
图2是本发明各个设备或系统之间的具体位置关系图。
图3是坡耕地俯视图以及A-A面的侧剖图;
图4是梯壁种植系统中设置坡地崩岗土壤改良系统的俯视图;
图5图4中B-B处的剖面图。
图6图4中C-C处的剖面图。
图7是所述坡地崩岗沟管网防护体系统的俯视图。
图8是图7中D-D处的剖面图。
图9人工湿地系统中人工湿地的截面图。
图10人工湿地系统的整体结构示意图。
图11现代节水技术与循环农业体系的构建方法流程图。
标号说明:1种植系统、2坡地崩岗土壤改良系统、3坡地崩岗沟管网防护体系统、4集水池、5人工湿地系统、6节水灌溉系统、7水土保持系统、21富养基质层、22覆膜网面层、23加强固定网、24植物、31水平排水沟、32竖向排水沟、33集水井、41人工湿地、411溢流通道、42循环过滤系统、43基质层A、44基质层B、45基质层C、46基质层D、421进水管、422出水管、49分隔网。
具体实施方式
下面结合说明书附图和实施例对本发明内容进行详细说明:
如图1-3所示:一种现代节水技术与循环农业体系,其特征在于:它包括种植系统2、设置于坡地及坡耕地上的引排水和水土保持系统、与引排水和水土保持系统相连接并用于集蓄雨水的集水池4、布设于种植系统上的节水灌溉系统6,节水灌溉系统将集水池内收集的水肥经过肥化后引导回种植系统。
这里的坡耕地主要指坡地、梯田等。集水池可以为指水窖、塘堰、水池或水箱。
所述的引排水和水土保持系统分为引排水系统和水土保持系统7,所述引排水系统包括坡地崩岗沟管网防护体系统3或砖、石、混凝土以及土渠类的引排水沟;所述水土保持系统包括坡地崩岗水土保持系统以及田间台地蓄渗系统。
田间台地蓄渗系统为鱼鳞坑、水平沟、竹节沟、水平阶。
所述种植系统包括位于种植于坡耕地上的植物、种植于坡地崩岗土壤改良系统上的植物或种植于田埂壁上的植物。
所述坡地崩岗土壤改良系统记载于ZL2014 2 0268813.4的专利中,它包括覆盖在坡地坡面上的富养基质层21以及覆盖在富养基质层21上的覆膜网面层22,所述富养基质层21为海绵、吸水性树脂或超轻量营养基质层;所述覆膜网面层22为遮阳网布、农用网布、编织PE布或家用网布。富养基质层为土壤湿度和肥料分布变化的控制传递层,水肥分布变化只是该富养基质层在土壤改良过程中的一种运动形式;覆膜网面层一方面是解决富养基质层结构松散,避免松散位移问题,保证土壤富养基质层功能正常工作。另一方面是用土壤加筋法改变土壤力学性状,用于加固土壤,达到平衡坡耕地梯壁或坡地坡面上的水力侵蚀、重力侵蚀和风力侵蚀对土壤表面和整体的土力学影响,从而治理水土流失和土壤保育的双重作用。所述富养基质层21的表面或其内部设置有加强固定网23,所述加强固定网23为由若干根经线和若干根纬线相互横竖交织而成的经纬绳网。
本发明还包括位于集水池下游的人工湿地系统,所述包括人工湿地系统表面流人工湿地,水平潜流人工湿地、垂直潜流人工湿地和潮汐流人工湿地。
在使用的时候,节水灌溉系统可以根据需求进行指定区域的灌溉,更可以和现有的农业成果转化与生产营销体系进行对接按需灌溉;需要指出的是所述农业成果转化与生产营销体系记载于ZL201810012528.9的专利中。
所述水土保持系统为坡地崩岗水土保持系统和田间台地蓄渗系统中的一种。其中坡地崩岗水土保持系统记载于ZL201420268813.4的专利中;所述台地蓄渗系统为鱼鳞坑、水平沟、竹节沟和水平阶等。
坡地崩岗沟管网防护体系统为坡地崩岗沟管网防护体系统或普通沟渠系统中的一种;
如图7-8示所述坡地崩岗沟管网防护体系统包括设置于坡耕地上的并至上至下依次排列的若干道水平排水沟31以及若干道竖向设置并与每个水平排水沟 31交汇联通的竖向排水沟32,在水平排水沟31和竖向排水沟32的交汇处设有若干个向地下延伸的集水井33。最上方的水平排水沟31作为上部截水沟使用,使用过程中,集水井33还可以作为沉沙池使用;当然也可以另外建立沉沙井。竖向排水沟32的末端与集水池联通。坡地崩岗沟管网防护体系统的具体使用方式可以参考ZL201410125995.4专利文件内所公开的内容。
坡地崩岗沟管网防护体系统还可以采用普通沟渠系统,所述普通沟渠系统为通过砖、石、混凝土或/和土制成的引、排水沟。
如图9-10所示:所述人工湿地系统为表面流人工湿地,水平潜流人工湿地、垂直潜流人工湿地或潮汐流人工湿地中的一种。
表面流人工湿地,即在湿地四周筑有一定高度的围墙,维持一定的水层厚度,同时湿地中种植挺水型植物。
水平潜流人工湿地,是潜流式湿地的一种形式,污水由进水口一端沿水平方向流动的过程中依次通过砂石、介质、植物根系,流向出水口一端,以达到净化目的。
垂直潜流人工湿地,污水由表面纵向流至床底,在纵向流的过程中污水依次经过不同的介质层,达到净化的目的。
潮汐混合流人工湿地包括分布于坡底的人工湿地41以及设置于人工湿地41内的循环过滤系统42,所述人工湿地41内设有若干纵横交错的溢流通道411,所述人工湿地包括填料床体以及生长于填料床体表面的水生植物;所述填料床体包括潜流生物接触层以及潜流生物接触层上方的基质层,所述潜流生物接触层和基质层之间设有分隔与连通用分隔网49;所述基质层从上往下依次包括基质层A43和基质层B44,所述潜流生物接触层从上往下依次包括基质层C45和基质层D46;所述循环过滤系统包括循环过滤设备、进水管421、出水管422以及电磁控制设备;所述进水管和出水管设在人工湿地内,电磁控制设备与进水管和出水管连接实现水路循环;循环过滤设备设置于该水路循环上实现过滤;在人工湿地上设有通向湿地底部的通气管。潮汐混合流人工湿地及其污水处理的方法,可以参考ZL201610466623.7专利文件中所公开的内容。
人工湿地的作用为当雨量超过集水池的负载时,雨水漫过集水池最终流入人工湿地系统并通过人工湿地净化最终流向江河;
节水灌溉系统包括水泵、施肥器、灌溉管路以及控制系统,灌溉管路布设于坡耕地上的种植园处并与水泵连接,施肥器与灌溉管路连接对水体施肥,水泵通过控制系统控制其供水。通过节水灌溉系统将下雨时候储蓄的水量输送回坡耕地上的种植园进行灌溉,灌溉的同时还进行的施肥处理,达到水肥一体化的精准控制。这里的灌溉方式可以根据植被的种类选择喷灌或滴灌等方式。节水灌溉系统根据灌溉区域不同分为用于灌溉种植园的农田灌溉系统以及用于灌溉梯壁种植系统的梯壁灌溉系统。
如图11所示:本发明所述的现代节水技术与循环农业体系的构建方法如下:
步骤1:根据坡耕地或坡地上的地形和气候条件选择种植物;并初步确定灌溉工程需水量;
步骤2:根据各年、各旬降水量和旬集流效率公式计算各年单位径流面积上的径流量以及暴雨条件下的暴雨强度公式;
步骤3:对各年径流量或暴雨进行频率分析,求得设计频率下单位径流面积上的水土径流量;
步骤4:按照坡耕地或坡地上径流面积计算各年、旬或暴雨条件下雨水径流总入流量;
步骤5:按地形、种植物和区域灌溉划分条件、预设定几个蓄水标准容积,并分别进行水量平衡计算;
步骤6:
计算在预定蓄水容积下发生缺水的年数,凡年内有一个计算时段发生缺水的,即应认为该年发生了缺水;各蓄水容积下的供水保证率可按下式计算:
Figure PCTCN2019116186-appb-000002
式中:R—供水保证率(%);
n—年数;
m—计算得到的在某个蓄水容积下的缺水年数;
步骤7:计算与设计保证率相应的蓄水容积,为所求的蓄水容积;
步骤8:对不同径流面积和蓄水容积组合进行经济比较,求得造价最小的径流面积和蓄水容积组合,其中径流面积采用符合坡地崩岗沟管网防护体系统的经济和技术要求修正划分保护区域;
步骤9:各年、各旬、降水径流总量与步骤1种植物灌溉工程需水量的差,为溢流排出,为下游人工湿地系统的入流量;
步骤10:根据溢流排出与入流量及常年面源污染的测定值,确定人工湿地系统大小。
本发明中,对作物进行集雨补充灌溉时,应在收集当地降雨和作物需水资料和对农业实践经验进行调查的基础上,分析确定影响作物的需水关键期及需要补充的灌溉水量,并应根据集雨工程蓄水容量和灌溉面积确定作物灌水次数、灌水定额和灌溉定额。
1、蓄水工程容积确定:
Figure PCTCN2019116186-appb-000003
式中:V—蓄水容积(m 3):
W—设计保证率条件下年供水量(m 3),
α—蓄水工程蒸发、渗漏损失系数,可取0.02-0.5。
K—容积系数,可按规定取值。
蓄水工程形式的选择应根据当地土质、工程用途、建筑材料、施工条件等因素确定。对于生活供水和灌溉用水合用的蓄水工程应采用水窖、水窑、有顶盖的水池或在房屋内修建的水池。
2、坡耕地雨水径流总量:
Figure PCTCN2019116186-appb-000004
式中:W—设计保证率条件下,水土流失或雨水集蓄的年径流量和供水量(m 3):
Si—第i种材料的径流面面积(m):
Ki就—第i种材料的年集流效率:
Pp—频率等于设计保证率的年降水量(mm):
n—径流面材料种类数。
3、灌溉工程需水量:
Figure PCTCN2019116186-appb-000005
式中:
W—设计保证率条件下,雨水利用灌溉工程的年需水量(m 3):
Si—第i次灌溉面积((hm 2):
Mi—第i次灌水定额(m 3/hm 2),按规定取值:
n—灌水次数。
作物灌溉应采用高效适用的灌水方法。
本发明能够实现以下效果
在耕地质和量上实现:
耕地质和量的提升:增加田埂作物种植面积,提高耕地整体质量,实现耕地质和量总体利用率。
雨水集蓄利用:利用自身雨水条件,形成“涝能排、旱能灌”的水土流失雨水集蓄利用工程和土壤保育体系,在少雨地区优势明显。
面源污染控制:农田面源污染处理排放与循环在区域内控制。
水土流失与水肥供给控制:田间水、土、肥动态管理,精准控制。梯壁和坡地采取工程或生物措施,使水肥流失量与水肥供给量控制在容许的波动量范围内,如果水肥流失量得不到控制,水土保育与土壤改良亦无法进行。
在土地保育上实现:
改良土壤功能:其目的是增加土壤有机质和养分含量,改良土壤性状,提高土壤肥力。
改变力学性状:用于加固土壤,平衡水力侵蚀、重力侵蚀和风力侵蚀对土壤表面和整体的土力学影响,防止土壤崩塌发生。
水利土壤改良:用水肥灌溉系统输送化学物质对来改变土壤酸性或碱性土壤化学改良系统,定期进行土壤消毒。

Claims (10)

  1. 一种现代节水技术与循环农业体系,其特征在于:它包括种植系统、设置于坡地及坡耕地上的引排水和水土保持系统、与引排水和水土保持系统相连接并用于集蓄雨水的集水池、布设于种植系统上的节水灌溉系统,节水灌溉系统将集水池内收集的水肥经过肥化后引流回种植系统。
  2. 根据权利要求1所述的现代节水技术与循环农业体系,其特征在于:所述的引排水和水土保持系统分为引排水系统和水土保持系统,所述引排水系统包括坡地崩岗沟管网防护体系统或砖、石、混凝土以及土渠类的引排水沟;所述水土保持系统包括坡地崩岗水土保持系统以及田间台地蓄渗系统。
  3. 根据权利要求2所述的现代节水技术与循环农业体系,其特征在于:田间台地蓄渗系统为鱼鳞坑、水平沟、竹节沟、水平阶。
  4. 根据权利要求2所述的现代节水技术与循环农业体系,其特征在于:所述坡地崩岗沟管网防护体系统包括设置于坡耕地上的并至上至下依次排列的若干道水平排水沟(31)以及若干道竖向设置并与每个水平排水沟(31)交汇联通的竖向排水沟(32),在水平排水沟(31)和竖向排水沟(32)的交汇处设有若干个向地下延伸的集水井(33)。
  5. 根据权利要求1所述的现代节水技术与循环农业体系,其特征在于:所述种植系统包括位于种植于坡耕地上的植物、种植于坡地崩岗土壤改良系统上的植物或种植于田埂壁上的植物。
  6. 根据权利要求1所述的现代节水技术与循环农业体系,其特征在于:它还包括位于集水池下游的人工湿地系统,湿地系统包括表面流人工湿地,水平潜流人工湿地、垂直潜流人工湿地或潮汐流人工湿地。
  7. 根据权利要求1所述的现代节水技术与循环农业体系,其特征在于:集水池蒸发、渗漏损失系数为0.02-0.5。
  8. 根据权利要求1所述的现代节水技术与循环农业体系,其特征在于:节水灌溉系统包括水泵、施肥器以及控制系统,施肥器设置在坡顶或坡面上,水泵通过输水管网连接施肥器,水泵通过控制系统控制其供水。
  9. 根据权利要求1-8所述现代节水技术与循环农业体系的构建方法:其特征在于:具体构建步骤如下:
    步骤1:根据坡耕地或坡地上的地形和气候条件选择种植物;并初步确定灌 溉工程需水量;
    步骤2:根据各年、各旬降水量和旬集流效率公式计算各年单位径流面积上的径流量以及暴雨条件下的暴雨强度公式;
    步骤3:对各年径流量或暴雨进行频率分析,求得设计频率下单位径流面积上的水土径流量;
    步骤4:按照坡耕地或坡地上径流面积计算各年、旬或暴雨条件下雨水径流总入流量;
    步骤5:按地形、种植物和区域灌溉划分条件、预设定几个蓄水标准容积,并分别进行水量平衡计算;
    步骤6:
    计算在预定蓄水容积下发生缺水的年数,凡年内有一个计算时段发生缺水的,即应认为该年发生了缺水;各蓄水容积下的供水保证率可按下式计算:
    Figure PCTCN2019116186-appb-100001
    式中:R—供水保证率(%);
    n—年数;
    m—计算得到的在某个蓄水容积下的缺水年数;
    步骤7:计算与设计保证率相应的蓄水容积,为所求的蓄水容积;
    步骤8:对不同径流面积和蓄水容积组合进行经济比较,求得造价最小的径流面积和蓄水容积组合,其中径流面积采用符合坡地崩岗沟管网防护体系统的经济和技术要求修正划分保护区域;
    步骤9:各年、各旬、降水径流总量与步骤1种植物灌溉工程需水量的差,为溢流排出,为下游人工湿地系统的入流量;
    步骤10:根据溢流排出与入流量及常年面源污染的测定值,确定人工湿地系统大小。
  10. 根据权利要求9所述现代节水技术与循环农业体系的构建方法:其特征在于:构件过程中:各个参数确认如下:
    1、蓄水工程容积确定:
    Figure PCTCN2019116186-appb-100002
    式中:V—蓄水容积(m 3):
    W—设计保证率条件下年供水量(m 3),
    α—蓄水工程蒸发、渗漏损失系数,可取0.02-0.5。
    K—容积系数,可按规定取值。
    蓄水工程形式的选择应根据当地土质、工程用途、建筑材料、施工条件等因素确定。对于生活供水和灌溉用水合用的蓄水工程应采用水窖、水窑、有顶盖的水池或在房屋内修建的水池。
    2、坡耕地雨水径流总量:
    Figure PCTCN2019116186-appb-100003
    式中:W—设计保证率条件下,水土流失或雨水集蓄的年径流量和供水量(m 3):
    Si—第i种材料的径流面面积(m):
    Ki就—第i种材料的年集流效率:
    Pp—频率等于设计保证率的年降水量(mm):
    n—径流面材料种类数。
    3、灌溉工程需水量:
    Figure PCTCN2019116186-appb-100004
    式中:
    W—设计保证率条件下,雨水利用灌溉工程的年需水量(m 3):
    Si—第i次灌溉面积((hm 2):
    Mi—第i次灌水定额(m 3/hm 2),按规定取值:
    n—灌水次数。
PCT/CN2019/116186 2018-11-08 2019-11-07 现代节水技术与循环农业体系及其构建方法 WO2020094086A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811323195.8 2018-11-08
CN201811323195.8A CN109845439B (zh) 2018-11-08 2018-11-08 现代节水技术与循环农业体系及其构建方法

Publications (1)

Publication Number Publication Date
WO2020094086A1 true WO2020094086A1 (zh) 2020-05-14

Family

ID=66889896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116186 WO2020094086A1 (zh) 2018-11-08 2019-11-07 现代节水技术与循环农业体系及其构建方法

Country Status (2)

Country Link
CN (1) CN109845439B (zh)
WO (1) WO2020094086A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220205211A1 (en) * 2020-11-05 2022-06-30 Baofu Sheng Systematic protecting and utilizing method for hill resources
CN114780659A (zh) * 2022-04-21 2022-07-22 中国科学院地理科学与资源研究所 南方红壤丘陵区流域水土保持措施多目标空间配置方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109845439B (zh) * 2018-11-08 2024-02-09 福建省农业科学院农业生态研究所 现代节水技术与循环农业体系及其构建方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866774A (zh) * 2014-03-31 2014-06-18 张锦宇 用于护坡与崩岗排水固土的沟管网防护体
KR20140122782A (ko) * 2013-04-11 2014-10-21 민승기 옹벽용 배수로에서 배수 촉진장치
CN205124576U (zh) * 2015-11-24 2016-04-06 中国电建集团成都勘测设计研究院有限公司 边坡自灌溉种植结构
CN205636756U (zh) * 2016-01-22 2016-10-12 岭南新科生态科技研究院(北京)有限公司 一种半干旱地区生态护坡结构
CN205830289U (zh) * 2016-07-22 2016-12-28 贵州大学 一种喀斯特石灰岩旱坡地适用的植物篱
CN106703054A (zh) * 2017-01-23 2017-05-24 杭州江润科技有限公司 公路路堑边坡生态护坡结构及施工方法
CN107130615A (zh) * 2017-06-09 2017-09-05 福建省农业科学院土壤肥料研究所 集水式微润灌溉治理崩岗的系统及其方法
CN208029584U (zh) * 2017-09-21 2018-11-02 焦爱玲 一种梯田坡面蓄水及自排灌溉装置
CN109845439A (zh) * 2018-11-08 2019-06-07 福建省农业科学院农业生态研究所 现代节水技术与循环农业体系及其构建方法
CN209546305U (zh) * 2018-11-08 2019-10-29 福建省农业科学院农业生态研究所 坡耕地水土保育与现代农业技术集成体系

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102124932B (zh) * 2011-03-30 2013-01-30 中国农业科学院农业环境与可持续发展研究所 一种坡地集雨节灌控污系统和方法
CN103588303B (zh) * 2013-11-11 2015-04-08 武汉理工大学 三峡库区山坡地沟壑农业面源污染生态谷坊阻控系统
CN203827757U (zh) * 2014-05-23 2014-09-17 张锦宇 坡地崩岗水土保持系统
CN104591395B (zh) * 2015-01-27 2016-06-29 河海大学 平原地区灌排耦合生态型灌区水循环利用的节水减污方法
CN107211715A (zh) * 2017-07-14 2017-09-29 水利部交通运输部国家能源局南京水利科学研究院 一种生态农田系统及构建方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140122782A (ko) * 2013-04-11 2014-10-21 민승기 옹벽용 배수로에서 배수 촉진장치
CN103866774A (zh) * 2014-03-31 2014-06-18 张锦宇 用于护坡与崩岗排水固土的沟管网防护体
CN205124576U (zh) * 2015-11-24 2016-04-06 中国电建集团成都勘测设计研究院有限公司 边坡自灌溉种植结构
CN205636756U (zh) * 2016-01-22 2016-10-12 岭南新科生态科技研究院(北京)有限公司 一种半干旱地区生态护坡结构
CN205830289U (zh) * 2016-07-22 2016-12-28 贵州大学 一种喀斯特石灰岩旱坡地适用的植物篱
CN106703054A (zh) * 2017-01-23 2017-05-24 杭州江润科技有限公司 公路路堑边坡生态护坡结构及施工方法
CN107130615A (zh) * 2017-06-09 2017-09-05 福建省农业科学院土壤肥料研究所 集水式微润灌溉治理崩岗的系统及其方法
CN208029584U (zh) * 2017-09-21 2018-11-02 焦爱玲 一种梯田坡面蓄水及自排灌溉装置
CN109845439A (zh) * 2018-11-08 2019-06-07 福建省农业科学院农业生态研究所 现代节水技术与循环农业体系及其构建方法
CN209546305U (zh) * 2018-11-08 2019-10-29 福建省农业科学院农业生态研究所 坡耕地水土保育与现代农业技术集成体系

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220205211A1 (en) * 2020-11-05 2022-06-30 Baofu Sheng Systematic protecting and utilizing method for hill resources
CN114780659A (zh) * 2022-04-21 2022-07-22 中国科学院地理科学与资源研究所 南方红壤丘陵区流域水土保持措施多目标空间配置方法
CN114780659B (zh) * 2022-04-21 2024-05-07 中国科学院地理科学与资源研究所 南方红壤丘陵区流域水土保持措施多目标空间配置方法

Also Published As

Publication number Publication date
CN109845439A (zh) 2019-06-07
CN109845439B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN103321195B (zh) 一种采用护坡技术的农田生态拦截沟渠及其构建方法
CN105659962B (zh) 一种水稻种植区农业面源污染生态治理方法
CN102630539B (zh) 水稻适雨灌溉方法
CN105776736A (zh) 一种低山丘陵区农业面源污染治理的方法
WO2020094086A1 (zh) 现代节水技术与循环农业体系及其构建方法
CN203080678U (zh) 绿色小区抗冲击雨水生态利用系统
CN205501932U (zh) 一种新型绿化水利护坡
CN106638512A (zh) 一种平原水网区农田面源污染全过程生态控制网络体系及其构建方法
CN103466899B (zh) 一种中部水网地区面源污染的拦控系统及其构建方法
CN201813703U (zh) 一种设施农业膜面集雨重力滴灌系统
CN103321194B (zh) 一种采用护坡技术的旱地生态拦截沟渠及其构建方法
CN102926362A (zh) 一种农田排水的控污减排方法
CN207553247U (zh) 下凹绿地雨水利用与收集系统
CN111519582B (zh) 城市河道生态护坡监测系统
CN106192873A (zh) 海岛湿地生态保水方法
CN104420676A (zh) 一种解决农业面源污染的方法
CN109944294A (zh) 一种西南丘陵地区坡地路带沟雨水收集与再利用系统
CN206052848U (zh) 一种高效农田雨水渗透灌溉循环系统
CN209546305U (zh) 坡耕地水土保育与现代农业技术集成体系
CN108557988A (zh) 一种农业面源污染控制的旱地土壤渗滤系统及方法
CN109452037B (zh) 模块化绿色屋顶系统
CN102301931B (zh) 用于温室栽培的集雨水调控施肥灌溉设施
CN101695264B (zh) 用于温室栽培的集雨水调控施肥灌溉设施
CN207252336U (zh) 大棚种植系统
CN110042810A (zh) 一种坡耕地径流污染拦蓄系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881781

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19881781

Country of ref document: EP

Kind code of ref document: A1