WO2020093326A1 - 信息发送方法、接收方法、装置及存储介质 - Google Patents

信息发送方法、接收方法、装置及存储介质 Download PDF

Info

Publication number
WO2020093326A1
WO2020093326A1 PCT/CN2018/114628 CN2018114628W WO2020093326A1 WO 2020093326 A1 WO2020093326 A1 WO 2020093326A1 CN 2018114628 W CN2018114628 W CN 2018114628W WO 2020093326 A1 WO2020093326 A1 WO 2020093326A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
control information
user data
bandwidth
domain bandwidth
Prior art date
Application number
PCT/CN2018/114628
Other languages
English (en)
French (fr)
Inventor
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP18939764.9A priority Critical patent/EP3879735B1/en
Priority to PCT/CN2018/114628 priority patent/WO2020093326A1/zh
Priority to US17/292,430 priority patent/US20220022166A1/en
Priority to CN201880001951.7A priority patent/CN109565360B/zh
Publication of WO2020093326A1 publication Critical patent/WO2020093326A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to an information transmission method, a reception method, a device, and a storage medium in a direct connection communication scenario.
  • V2X Vehicle to Everything
  • in-vehicle equipment and other equipment such as other in-vehicle equipment, roadside infrastructure, etc.
  • sidelink direct link
  • the sending device Before sending user data to the receiving device, the sending device needs to send the necessary information required for user data reception to the receiving device through the control information.
  • the receiving device generally detects and correctly receives the control information by blind detection, and then contains the control information according to the control information. The content of the data correctly receives and demodulates user data. If TDM (Time Division Multiplexing) is used to transmit control information and corresponding user data, the processing delay and buffer consumption of the receiving device can be reduced.
  • TDM Time Division Multiplexing
  • the frequency domain resources occupied by transmission control information are the same as the frequency domain resources occupied by transmission user data. That is, the frequency domain bandwidth occupied by the control information is the same as the frequency domain bandwidth occupied by the corresponding user data; and the frequency domain position occupied by the control information is also the same as the frequency domain position occupied by the corresponding user data.
  • the receiving device Since the frequency domain resources occupied by user data are dynamically determined according to the size of the user data, the choice of modulation and coding method, etc., if the control information and user data use the same frequency domain resources, the receiving device needs to use all possible frequency in the control information. Blind detection is performed at the location of the domain, which leads to a very high complexity of blind detection of the control information by the receiving device.
  • Embodiments of the present disclosure provide an information sending method, receiving method, device, and storage medium in a direct connection communication scenario.
  • the technical solution is as follows:
  • a method for sending information in a directly connected communication scenario includes:
  • the sending device determines the first frequency domain bandwidth occupied by the control information to be sent, and the second frequency domain bandwidth occupied by user data corresponding to the control information, where the second frequency domain bandwidth is the first frequency domain bandwidth N times, where n is an integer greater than 1;
  • the sending device occupies m different frequency domain resources in a frequency division multiplexing manner to repeatedly transmit the control information to the receiving device m times; wherein, the frequency domain bandwidth of each frequency domain resource among the m different frequency domain resources Both are the first frequency domain bandwidth, and the m is an integer less than or equal to the n and greater than 1;
  • the sending device occupies a target frequency domain resource to send the user data to the receiving device, the frequency domain bandwidth of the target frequency domain resource is the second frequency domain bandwidth, and the target frequency domain resource includes the m Resources in different frequency domains.
  • the m is equal to the n
  • the m different frequency domain resources do not overlap each other in the frequency domain position
  • the total frequency domain bandwidth occupied by the m different frequency domain resources is the same as the The second frequency domain bandwidth is equal.
  • the sending device determining the first frequency domain bandwidth occupied by the control information to be sent and the second frequency domain bandwidth occupied by user data corresponding to the control information includes:
  • the sending device determines the first frequency domain bandwidth occupied by the control information to be sent
  • the sending device determines the number of resource units RE that the user data needs to occupy according to the data amount of user data corresponding to the control information and the modulation and coding method;
  • the sending device determines the second frequency domain bandwidth occupied by the user data according to the number of REs that the user data needs to occupy and the first frequency domain bandwidth; where n is the need to accommodate the user data The smallest multiple of the number of occupied REs or the closest multiple of the number of REs that the user data needs to occupy.
  • control information uses different transmission power.
  • control information uses different precoding matrices.
  • a method for receiving information in a directly connected communication scenario includes:
  • the receiving device determines multiple candidate frequency domain positions for the control device to send control information; wherein, the control information occupies m different frequency domain resources for repeated transmission in a frequency division multiplexing manner, and each of the m different frequency domain resources
  • the frequency domain bandwidths of the frequency domain resources are all the first frequency domain bandwidth, and the m is an integer greater than 1;
  • the receiving device performs blind detection on the control information according to the multiple candidate frequency domain positions
  • the receiving device After successfully receiving the control information, the receiving device receives the user data on a target frequency domain resource according to the control information; wherein the frequency domain bandwidth of the target frequency domain resource is the first frequency domain bandwidth N times, and the target frequency domain resource includes the m frequency domain resources, where n is an integer greater than 1, and m is less than or equal to n.
  • the m is equal to the n
  • the m different frequency domain resources do not overlap each other in the frequency domain position
  • the total frequency domain bandwidth occupied by the m different frequency domain resources is the same as the The second frequency domain bandwidth is equal.
  • the method further includes:
  • the receiving device determines the m times of control information to be repeatedly transmitted according to the information obtained during the blind detection process
  • the receiving device performs merge detection and / or merge reception on the m times of control information.
  • the receiving device performs blind detection on the control information according to the multiple candidate frequency domain positions, including:
  • the receiving device performs blind detection based on combined reception on the m times of repeatedly transmitted control information according to the multiple candidate frequency domain positions.
  • an information sending apparatus in a direct connection communication scenario which is applied to a sending device, and the apparatus includes:
  • the bandwidth determination module is configured to determine a first frequency domain bandwidth occupied by the control information to be sent, and a second frequency domain bandwidth occupied by user data corresponding to the control information, the second frequency domain bandwidth is the N times the bandwidth of the first frequency domain, where n is an integer greater than 1;
  • a control information sending module configured to occupy m different frequency domain resources in a frequency division multiplexing manner and repeatedly transmit the control information to the receiving device m times; wherein, each frequency domain resource of the m different frequency domain resources
  • the frequency domain bandwidths of are all the first frequency domain bandwidths, and m is an integer less than or equal to the n and greater than 1;
  • the user data sending module is further configured to occupy the target frequency domain resource to send the user data to the receiving device, the frequency domain bandwidth of the target frequency domain resource is the second frequency domain bandwidth, and the target frequency domain
  • the resources include the m different frequency domain resources.
  • the m is equal to the n
  • the m different frequency domain resources do not overlap each other in the frequency domain position
  • the total frequency domain bandwidth occupied by the m different frequency domain resources is the same as the The second frequency domain bandwidth is equal.
  • the bandwidth determination module is configured to:
  • n is the RE that needs to be occupied by the user data The smallest multiple of the number or the multiple closest to the number of REs that the user data needs to occupy.
  • control information uses different transmission power.
  • control information uses different precoding matrices.
  • an information receiving apparatus in a directly connected communication scenario which is applied to a receiving device, and the apparatus includes:
  • the frequency domain determination module is configured to determine multiple candidate frequency domain positions for the control information sent by the sending device; wherein the control information occupies m different frequency domain resources for repeated transmission in a frequency division multiplexing manner, and the m different frequencies
  • the frequency domain bandwidth of each frequency domain resource in the domain resource is the first frequency domain bandwidth, and m is an integer greater than 1;
  • a control information detection module configured to perform blind detection on the control information according to the multiple candidate frequency domain positions
  • the user data receiving module is configured to, after successfully receiving the control information, receive the user data on the target frequency domain resource according to the control information; wherein, the frequency domain bandwidth of the target frequency domain resource is the first A frequency domain bandwidth is n times, and the target frequency domain resource includes the m frequency domain resources, the n is an integer greater than 1, and the m is less than or equal to the n.
  • the m is equal to the n
  • the m different frequency domain resources do not overlap each other in the frequency domain position
  • the total frequency domain bandwidth occupied by the m different frequency domain resources is the same as the The second frequency domain bandwidth is equal.
  • the device further includes:
  • a retransmission determination module configured to determine the m times of control information that is repeatedly transmitted based on the information obtained during the blind detection process
  • the control information detection module is further configured to perform merge detection and / or merge reception on the m times of control information.
  • control information detection module is configured to perform blind detection based on combined reception on the m times of the repeatedly transmitted control information according to the multiple candidate frequency domain positions.
  • an information sending apparatus in a direct connection communication scenario which is applied to a sending device, and the apparatus includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the second frequency domain bandwidth being n of the first frequency domain bandwidth Times, the n is an integer greater than 1;
  • the frequency domain bandwidth of each of the m different frequency domain resources is the In the first frequency domain bandwidth
  • the m is an integer less than or equal to the n and greater than 1;
  • the frequency domain bandwidth of the target frequency domain resource is the second frequency domain bandwidth
  • the target frequency domain resource includes the m different frequency domains Resources.
  • an information receiving apparatus in a directly connected communication scenario which is applied to a receiving device, and the apparatus includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the control information occupies m different frequency domain resources for repeated transmission in a frequency division multiplexing manner, and each frequency domain in the m different frequency domain resources
  • the frequency domain bandwidths of resources are all the first frequency domain bandwidth, and m is an integer greater than 1;
  • the frequency domain bandwidth of the target frequency domain resource is n times the first frequency domain bandwidth
  • the target frequency domain resource includes the m frequency domain resources, the n is an integer greater than 1, and the m is less than or equal to the n.
  • a non-transitory computer-readable storage medium on which a computer program is stored, which when executed by a processor implements the steps of the method according to the first aspect Or implement the steps of the method according to the second aspect.
  • the transmitting device occupies multiple resources in different frequency domains, and repeatedly transmits control information to the receiving device in a frequency division multiplexing manner. Compared with the transmitting device transmitting control information only once, the receiving device detects the control information during blind detection. The probability of the control information is correspondingly increased, thereby reducing the complexity of the blind detection of the control information by the receiving device.
  • FIG. 1 shows a schematic diagram of a network architecture to which embodiments of the present disclosure may be applicable
  • Fig. 2 is a flow chart showing a method for sending information in a directly connected communication scenario according to an exemplary embodiment
  • 3 to 6 exemplarily show schematic diagrams of time-frequency resources occupied by several kinds of control information and user data
  • Fig. 7 is a block diagram of an information sending device in a directly connected communication scenario according to an exemplary embodiment
  • Fig. 8 is a block diagram of an information receiving device in a direct communication scenario according to an exemplary embodiment
  • Fig. 9 is a schematic structural diagram of a device in a directly connected communication scenario according to an exemplary embodiment.
  • the network architecture and business scenarios described in the embodiments of the present disclosure are intended to more clearly explain the technical solutions of the embodiments of the present disclosure, and do not constitute a limitation on the technical solutions provided by the embodiments of the present disclosure. And the emergence of new business scenarios, the technical solutions provided by the embodiments of the present disclosure are also applicable to similar technical problems.
  • FIG. 1 shows a schematic diagram of a network architecture to which the embodiments of the present disclosure may be applied.
  • the network architecture may be a network architecture of a C-V2X system.
  • C refers to the cellular (Cellular)
  • C-V2X system is based on 3G, 4G or 5G and other cellular network communication system evolution formed wireless communication system for vehicles.
  • the network architecture may include: a core network 11, an access network 12, a terminal 13, and a vehicle 14.
  • the core network 11 includes several core network devices.
  • the function of the core network equipment is mainly to provide user connections, manage users, and complete the bearer of services, as an interface provided by the bearer network to an external network.
  • the core network of the LTE (Long Term Evolution) system may include MME (Mobility Management Entity, Mobility Management Node), S-GW (Serving Gateway), P-GW (PDN Gateway) Other equipment.
  • the core network of the 5G NR system may include AMF (Access and Mobility Management Function, access and mobility management function) entity, UPF (User Plane Function, user plane function) entity and SMF (Session Management Function) entity Other equipment.
  • the access network 12 includes several access network devices 120.
  • the access network device 120 and the core network device 110 communicate with each other through some air interface technology, such as the S1 interface in the LTE system and the NG interface in the 5G NR system.
  • the access network device 120 may be a base station (Base Station, BS), which is a device deployed in the access network to provide a wireless communication function for the terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • eNodeB or eNB in the LTE system, it is called eNodeB or eNB; in the 5G NR system, it is called gNodeB or gNB.
  • the name "base station” may change.
  • the above devices that provide wireless communication functions for terminals are collectively referred to as access network equipment.
  • the terminal 13 may include various handheld devices with wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, as well as various forms of user equipment (User Equipment, UE), mobile stations ( Mobile Station (MS), terminal device (terminal) and so on.
  • UE User Equipment
  • MS Mobile Station
  • terminal terminal device
  • the access network device 120 and the terminal 13 communicate with each other through a certain air interface technology, such as a Uu interface.
  • the vehicle 14 may be an autonomous vehicle or a non-autonomous vehicle.
  • the vehicle 14 is equipped with a vehicle-mounted device, and the vehicle 14 communicates with other vehicles, terminals 13 or other devices through the vehicle-mounted device, such as RSU (Road Side Unit).
  • the in-vehicle device may also be called an in-vehicle terminal, an in-vehicle communication device, or other names, which are not limited in the embodiments of the present disclosure.
  • the vehicle-mounted device may be a device integrated in a telematics box (T-BOX) or a device separated from the vehicle body.
  • T-BOX telematics box
  • the vehicle-mounted device may be assembled in the vehicle 14 before the vehicle 14 is shipped, or may be installed in the vehicle 14 after the vehicle 14 is shipped.
  • the vehicle-mounted device of the vehicle 14 and other devices can communicate with each other through a directly connected communication interface (such as a PC5 interface). It may be called a direct link (sidelink).
  • a directly connected communication interface such as a PC5 interface
  • the vehicle-mounted device of the vehicle 14 and other devices can also be transferred through the access network 12 and the core network 11, that is, the communication link between the terminal 13 and the access network device 120 in the original cellular network is used for communication .
  • communication based on direct communication interface has the characteristics of short time delay and low overhead, and is suitable for communication between vehicle-mounted equipment and other peripheral devices with close geographical location.
  • the above network architecture shown in FIG. 1 can implement V2X service scenarios.
  • the above network architecture may also include devices such as RSU, V2X application server, and V2X control function node, which are not limited in the embodiments of the present disclosure.
  • the technical solutions described in the embodiments of the present disclosure may be applicable to the LTE system, and may also be applicable to the subsequent evolution system of the LTE system, such as the LTE-A (LTE-Advanced) system or the 5GNR system.
  • an information sending method is provided to reduce the complexity of blind detection of control information by the receiving device.
  • the sending device and the receiving device are V2X service scenarios, and the two ends of the device communicate directly.
  • the sending device and the receiving device can establish a direct link through a directly connected communication interface (such as a PC5 interface) , And then through the direct link for user data and control information interaction.
  • the transmitting device may be the vehicle-mounted device of the vehicle 14 in the network architecture shown in FIG. 1, and the receiving device may be the vehicle-mounted device of another vehicle, or may be the terminal 13 or the RSU.
  • the sending device may be the terminal 13 in the network architecture shown in FIG. 1, and the receiving device may be another terminal, or may be an on-board device or RSU of the vehicle 14.
  • the same device such as the same on-board device or the same terminal
  • it can be used as a sending device in some scenarios and can also be used as a receiving device in other scenarios.
  • the sending device Before sending user data to the receiving device, the sending device needs to send the necessary information required for user data reception to the receiving device through the control information.
  • the receiving device generally detects and correctly receives the control information by blind detection, and then contains the control information according to the control information. The content of the data correctly receives and demodulates user data.
  • the control information corresponding to the user data refers to the control information carrying the necessary information required for the user data reception, for example, the control information may include the location of the time-frequency resource block occupied by the user data, the user Information such as modulation and coding of data.
  • Fig. 2 is a flow chart showing an information sending method in a direct communication scenario according to an exemplary embodiment. This method can be applied to the network architecture shown in FIG. 1. The method may include the following steps (201-206).
  • step 201 the sending device determines the first frequency domain bandwidth occupied by the control information to be sent, and the second frequency domain bandwidth occupied by user data corresponding to the control information.
  • the control information to be sent refers to control information that needs to be sent to the receiving device but has not yet been sent.
  • the control information carries necessary information necessary for user data reception, such as the position of the time-frequency resource block occupied by the user data, the modulation and coding method of the user data, and other information.
  • the second frequency domain bandwidth is n times the first frequency domain bandwidth, and n is an integer greater than 1.
  • the second frequency domain bandwidth may be a multiple relationship of 2 times, 3 times, or 4 times the first frequency domain bandwidth.
  • this step includes the following sub-steps (2011-2013):
  • the sending device determines the first frequency domain bandwidth occupied by the control information to be sent
  • the first frequency domain bandwidth occupied by the control information is a predetermined fixed value.
  • the first frequency domain bandwidth occupied by the control information may be preset according to the data amount of the control information (that is, the number of bits of the control information).
  • the first frequency domain bandwidth may be pre-defined through a protocol, or configured by the access network device through downlink signaling to the sending device.
  • the sending device determines the number of REs (Resource Elements) that user data needs to occupy according to the amount of user data corresponding to the control information and the modulation and coding method;
  • the number of REs that user data needs to occupy also depends on the modulation and coding method.
  • the sending device determines the second frequency domain bandwidth occupied by the user data according to the number of REs required by the user data and the first frequency domain bandwidth;
  • the second frequency domain bandwidth is n times the first frequency domain bandwidth.
  • n is the smallest multiple of the number of REs that need to be occupied to accommodate user data.
  • the sending device determines that the first frequency domain bandwidth occupied by the control information is BW1, and the number of REs that user data needs to occupy is a.
  • the total bandwidth occupied by the a REs in the frequency domain is BW0. If there is a multiple n , So that n ⁇ BW1 ⁇ BW0, and (n-1) ⁇ BW1 ⁇ BW0, the sending device determines that the second frequency domain bandwidth occupied by user data is n ⁇ BW1.
  • the sending device may select the first frequency domain Three times the bandwidth (that is, 6 PRBs) is used as the second frequency domain bandwidth occupied by user data.
  • the first frequency domain bandwidth occupied by the control information is 2 PRBs
  • the frequency domain bandwidth required by the user data calculated based on the number of REs occupied by the user data is 8 PRBs
  • the sending device can select the first frequency Four times the domain bandwidth (that is, 8 PRBs) is used as the second frequency domain bandwidth occupied by user data.
  • the sending device may determine the second frequency domain bandwidth and control information occupied by user data
  • the occupied first frequency domain bandwidth is equal.
  • the data volume of user data is greater than the data volume of control information, so the second frequency domain bandwidth occupied by user data is at least twice the bandwidth of the first frequency domain occupied by control information.
  • n is the closest multiple of the number of REs that user data needs to occupy.
  • the sending device determines that the first frequency domain bandwidth occupied by the control information is BW1, and the number of REs that user data needs to occupy is a.
  • the total bandwidth occupied by the a REs in the frequency domain is BW0. If there is a multiple n , So that the absolute value of the difference between n ⁇ BW1 and BW0 is less than or equal to the absolute value of the difference between the product of BW1 and other multiples other than n and BW0, then the sending device determines that the user data is occupied
  • the second frequency domain bandwidth is n ⁇ BW1.
  • the sending device may select the first frequency domain Two times the bandwidth (that is, 8 PRBs) is used as the second frequency domain bandwidth occupied by user data.
  • the sending device can select any multiple from these two multiples and multiply it by the first frequency domain bandwidth, and determine the obtained product as the second Frequency domain bandwidth; alternatively, the sending device may select a larger multiple from the two multiples to multiply the first frequency domain bandwidth, and determine the obtained product as the second frequency domain bandwidth.
  • the sending device may select the first frequency domain 2 times the bandwidth (that is, 8 PRBs) as the second frequency domain bandwidth occupied by user data, or 3 times the first frequency domain bandwidth (that is, 12 PRBs) as the second frequency occupied by user data Domain bandwidth.
  • the sending device determines the second frequency domain bandwidth occupied by the user data according to the number of REs required by the user data and the first frequency domain bandwidth, so that the finally determined second frequency domain bandwidth and actual user data needs
  • the number of occupied REs should be as close as possible, to avoid that the second frequency domain bandwidth is too small and the user data is not sent in a timely manner, or the second frequency domain bandwidth is too large and the frequency domain resources are wasted, so that the final determination The second frequency domain bandwidth is more reasonable and accurate.
  • step 202 the sending device occupies m different frequency domain resources in a frequency division multiplexing manner to repeatedly transmit the control information to the receiving device m times.
  • the frequency domain bandwidth of each of the m different frequency domain resources is the first frequency domain bandwidth, and m is an integer less than or equal to n and greater than 1.
  • the sending device occupies the first time domain resource and m different frequency domain resources in a frequency division multiplexing manner, and repeatedly transmits the control information to the receiving device m times. It is assumed that the first frequency domain bandwidth occupied by the control information is BW1, and the second frequency domain bandwidth occupied by the control information is BW2. It is assumed that BW2 is three times that of BW1. In the example of FIG. 3, the sending device occupies the first time domain resource and two different frequency domain resources in a frequency division multiplexing manner, and repeatedly transmits the control information to the receiving device twice.
  • m and n are equal, the m different frequency domain resources do not overlap each other in the frequency domain position, and the total frequency domain bandwidth occupied by the m different frequency domain resources is equal to the second frequency domain bandwidth. That is, as shown in FIG. 4, BW2 is three times that of BW1.
  • the sending device occupies the first time-domain resource and three different frequency-domain resources in a frequency division multiplexing manner, and repeatedly transmits control information to the receiving device three times.
  • control information uses different transmission powers in the repeatedly transmitted m times of control information; and / or there are at least two times that the control information uses different precoding matrices in the repeatedly transmitted m times of control information .
  • the transmission power used for m times of control information that is repeatedly transmitted is different from each other; in other possible embodiments, the precoding matrix used for m times of control information that is repeatedly transmitted is different from each other. the same.
  • the sending device repeatedly transmits control information three times on three different frequency domain resources, and the transmission power used is transmission power 1, transmission power 2, and transmission power 3, respectively, and the three transmission powers each Not the same.
  • the sending device repeatedly transmits control information three times on three different frequency domain resources.
  • the precoding matrices used are precoding matrix 1, precoding matrix 2, and precoding matrix 3, respectively.
  • the three precoding matrices are different.
  • the time-frequency resources occupied by the control information are represented by rectangular boxes filled with diagonal lines
  • the time-frequency resources occupied by user data are represented by rectangular boxes filled with black dots.
  • step 203 the sending device occupies the target frequency domain resource and sends user data to the receiving device.
  • the frequency domain bandwidth of the target frequency domain resource is the second frequency domain bandwidth
  • the target frequency domain resource includes the above m different frequency domain resources.
  • the sending device occupies the second time domain resource and the target frequency domain resource to send user data to the receiving device.
  • the sending device sends the control information and user data to the receiving device in a TDM manner.
  • steps 201 to 203 describe the sending process on the sending device side, and the following describes the receiving process on the receiving device side through steps 204-206.
  • step 204 the receiving device determines multiple candidate frequency domain positions for the sending device to send control information.
  • the receiving device that establishes direct connection communication with the foregoing sending device first determines multiple candidate frequency domain positions for the sending device to send the control information.
  • the candidate frequency domain position refers to the frequency domain position that the control information may occupy. Since the first frequency domain bandwidth occupied by the control information is a predetermined fixed value, the receiving device may determine multiple candidate frequency domain locations for the control information sent by the sending device according to the first frequency domain bandwidth.
  • the first frequency domain bandwidth may be pre-notified by the sending device to the receiving device, or may be pre-defined by the protocol, or pre-configured by the access network device and notified to both ends of the directly connected device.
  • step 205 the receiving device performs blind detection on the control information according to the multiple candidate frequency domain positions.
  • the receiving device performs blind detection on the control information at each candidate frequency domain position according to each candidate frequency domain position. If control information is detected at a candidate frequency domain position, the control information is decoded and received.
  • the control information is repeatedly transmitted to the receiving device multiple times in a frequency division multiplexing manner.
  • the receiving device is controlling the When information is blindly detected, the probability of detecting control information is correspondingly increased, thereby reducing the complexity of blind detection of control information by the receiving device.
  • the receiving device determines m times of control information to be repeatedly transmitted based on the information obtained during the blind detection process, and then performs merge detection and / or combined reception on the m times of control information.
  • the above information may be the demodulation reference signal obtained during the blind detection process.
  • the receiving device may determine that the multiple pieces of control information are transmitted repeatedly The same control information.
  • the receiving device may perform combined detection and / or combined reception to improve the detection and reception effect of the control information.
  • step 206 after successfully receiving the control information, the receiving device receives user data on the target frequency domain resource according to the control information.
  • the control information carries necessary information necessary for user data reception, such as the position of the time-frequency resource block occupied by the user data, the modulation and coding method of the user data, and other information. After successfully receiving the control information, the receiving device correctly receives and demodulates user data according to the content contained in the control information.
  • the receiving device may also directly perform blind detection based on combined reception for m times of repeated transmission of control information to improve Blind inspection accuracy.
  • the system bandwidth for direct communication between the sending device and the receiving device is 48 PRBs (Physical Resource Block), and the first frequency domain bandwidth occupied by control information is 2 PRBs, each Two adjacent PRBs are a group, and the entire system bandwidth is divided into 24 groups of PRBs.
  • the sending device may occupy 6 consecutive PRBs (that is, 3 groups of PRBs) and repeatedly transmit control information 3 times.
  • the candidate frequency domain positions of the repeatedly transmitted control information for the third time may be Group 1 PRB to Group 3 PRB, Group 2 PRB to Group 4 PRB, Group 3 PRB to Group 5 PRB, ..., Group 22 PRB to Group 24 PRB, that is, 22 candidate frequency domain positions.
  • the receiving device may detect whether there is control information at each candidate frequency domain position, and if control information is detected at a certain candidate frequency domain position, the candidate frequency domain The control information repeatedly transmitted at the position is combined, decoded and received.
  • multiple different frequency domain resources are occupied by the sending device, and control information is repeatedly transmitted to the receiving device in a frequency division multiplexing manner, compared to the sending device transmitting only once
  • the probability of detecting the control information is correspondingly increased, thereby reducing the complexity of the blind detection of the control information by the receiving device.
  • control information data due to the limited amount of control information data, it generally occupies less frequency domain resources than user data. By occupying multiple different frequency domain resources, the control information is repeatedly transmitted to the receiving device by frequency division multiplexing multiple times. Helps improve resource utilization.
  • the position of the frequency domain that the control information may occupy is also relatively limited, which also helps to reduce the complexity of blind detection of the control information by the receiving device.
  • Fig. 7 is a block diagram of an information sending device in a direct communication scenario according to an exemplary embodiment.
  • the device has a function of implementing the method example on the side of the sending device, and the function may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the apparatus 700 may include a bandwidth determination module 710, a control information sending module 720, and a user data sending module 730.
  • the bandwidth determination module 710 is configured to determine a first frequency domain bandwidth occupied by the control information to be sent and a second frequency domain bandwidth occupied by user data corresponding to the control information, where the second frequency domain bandwidth is the N times the bandwidth of the first frequency domain, where n is an integer greater than 1.
  • the control information sending module 720 is configured to occupy m different frequency domain resources by frequency division multiplexing and repeatedly transmit the control information to the receiving device m times; wherein, each frequency domain of the m different frequency domain resources The frequency domain bandwidths of the resources are all the first frequency domain bandwidth, and the m is an integer less than or equal to the n and greater than 1.
  • the user data sending module 730 is further configured to occupy the target frequency domain resource to send the user data to the receiving device, the frequency domain bandwidth of the target frequency domain resource is the second frequency domain bandwidth, and the target frequency
  • the domain resources include the m different frequency domain resources.
  • multiple different frequency domain resources are occupied by the sending device, and control information is repeatedly transmitted to the receiving device in a frequency division multiplexing manner, compared to the sending device transmitting only once
  • the probability of detecting the control information is correspondingly increased, thereby reducing the complexity of the blind detection of the control information by the receiving device.
  • the m is equal to the n, the m different frequency domain resources do not overlap each other in frequency domain positions, and the m different frequency domain resources
  • the total occupied frequency domain bandwidth is equal to the second frequency domain bandwidth.
  • the bandwidth determination module 710 is configured to:
  • Fig. 8 is a block diagram of an information receiving device in a direct communication scenario according to an exemplary embodiment.
  • the device has a function to realize the above-mentioned method example on the receiving device side, and the function may be realized by hardware, or may be realized by hardware executing corresponding software.
  • the apparatus 800 may include a frequency domain determination module 810, a control information detection module 820, and a user data receiving module 830.
  • the frequency domain determining module 810 is configured to determine multiple candidate frequency domain positions for the control information sent by the sending device; wherein the control information occupies m different frequency domain resources and is repeatedly transmitted in a frequency division multiplexing manner, and the m different The frequency domain bandwidth of each frequency domain resource in the frequency domain resource is the first frequency domain bandwidth, and m is an integer greater than 1.
  • the control information detection module 820 is configured to perform blind detection on the control information according to the multiple candidate frequency domain positions.
  • the user data receiving module 830 is configured to, after successfully receiving the control information, receive the user data on the target frequency domain resource according to the control information; wherein, the frequency domain bandwidth of the target frequency domain resource is the N times the first frequency domain bandwidth, and the target frequency domain resource includes the m frequency domain resources, the n is an integer greater than 1, and the m is less than or equal to the n.
  • multiple different frequency domain resources are occupied by the sending device, and control information is repeatedly transmitted to the receiving device in a frequency division multiplexing manner, compared to the sending device transmitting only once
  • the probability of detecting the control information is correspondingly increased, thereby reducing the complexity of the blind detection of the control information by the receiving device.
  • the m is equal to the n, the m different frequency domain resources do not overlap each other in frequency domain positions, and the m different frequency domain resources
  • the total occupied frequency domain bandwidth is equal to the second frequency domain bandwidth.
  • the apparatus 800 further includes: a retransmission determination module (not shown in the figure).
  • the retransmission determination module is configured to determine the m times of control information that is repeatedly transmitted based on the information obtained during the blind detection process.
  • the control information detection module 820 is further configured to perform merge detection and / or merge reception on the m times of control information.
  • control information detection module 820 is configured to perform combined-based reception on the m times of repeatedly transmitted control information according to the multiple candidate frequency domain positions Blind detection.
  • the device provided by the above embodiment realizes its function, it is only exemplified by the division of the above functional modules.
  • the above functions can be allocated to different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • An exemplary embodiment of the present disclosure also provides an information sending device in a direct connection communication scenario, which can implement the information sending method in a direct connection communication scenario provided by the present disclosure.
  • the apparatus may be the sending device described above, or may be set in the sending device.
  • the device includes a processor and a memory for storing executable instructions of the processor. Among them, the processor is configured as:
  • the second frequency domain bandwidth being n of the first frequency domain bandwidth Times, the n is an integer greater than 1;
  • the frequency domain bandwidth of each of the m different frequency domain resources is the In the first frequency domain bandwidth
  • the m is an integer less than or equal to the n and greater than 1;
  • the frequency domain bandwidth of the target frequency domain resource is the second frequency domain bandwidth
  • the target frequency domain resource includes the m different frequency domains Resources.
  • the m is equal to the n
  • the m different frequency domain resources do not overlap each other in the frequency domain position
  • the total frequency domain bandwidth occupied by the m different frequency domain resources is the same as the The second frequency domain bandwidth is equal.
  • the processor is configured to:
  • n is the RE that needs to be occupied by the user data The smallest multiple of the number or the multiple closest to the number of REs that the user data needs to occupy.
  • control information uses different transmission power.
  • control information uses different precoding matrices.
  • An exemplary embodiment of the present disclosure also provides an information receiving apparatus in a directly connected communication scenario, which can implement the information receiving method in a directly connected communication scenario provided by the present disclosure.
  • the apparatus may be the receiving device described above, or may be provided in the receiving device.
  • the device includes a processor and a memory for storing executable instructions of the processor.
  • the processor is configured as:
  • the control information occupies m different frequency domain resources for repeated transmission in a frequency division multiplexing manner, and each frequency domain in the m different frequency domain resources
  • the frequency domain bandwidths of resources are all the first frequency domain bandwidth, and m is an integer greater than 1;
  • the frequency domain bandwidth of the target frequency domain resource is n times the first frequency domain bandwidth
  • the target frequency domain resource includes the m frequency domain resources, the n is an integer greater than 1, and the m is less than or equal to the n.
  • the m is equal to the n
  • the m different frequency domain resources do not overlap each other in the frequency domain position
  • the total frequency domain bandwidth occupied by the m different frequency domain resources is the same as the The second frequency domain bandwidth is equal.
  • the processor is further configured to:
  • the processor is further configured to:
  • blind detection based on combined reception is performed on the m times of repeatedly transmitted control information.
  • the devices include hardware structures and / or software modules corresponding to performing each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. A person skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 9 is a schematic structural diagram of a device 900 in a directly connected communication scenario according to an exemplary embodiment.
  • the device 900 may be a device that directly communicates with other devices in a V2X business scenario, such as in-vehicle devices, terminals, and other electronic devices.
  • the device 900 may be the sending device or the receiving device described above.
  • the device 900 includes a transmitter 901, a receiver 902, and a processor 903.
  • the processor 903 may also be a controller, which is represented as "controller / processor 903" in FIG.
  • the device 900 may further include a modem processor 905, where the modem processor 905 may include an encoder 906, a modulator 907, a decoder 908, and a demodulator 909.
  • the transmitter 901 adjusts (eg, analog conversion, filtering, amplification, up-conversion, etc.) the output samples and generates an uplink signal, which is transmitted to the access network device via the antenna.
  • the antenna receives the downlink signal transmitted by the access network device.
  • the receiver 902 adjusts (eg, filters, amplifies, down-converts, digitizes, etc.) the signal received from the antenna and provides input samples.
  • the encoder 906 receives service data and signaling messages to be sent on the uplink, and processes the service data and signaling messages (eg, formatting, encoding, and interleaving).
  • the modulator 907 further processes (eg, symbol mapping and modulation) the encoded service data and signaling messages and provides output samples.
  • the demodulator 909 processes (eg, demodulates) the input samples and provides symbol estimates.
  • the decoder 908 processes (eg, deinterleaves and decodes) the symbol estimates and provides the decoded data and signaling messages sent to the device 900.
  • the encoder 906, the modulator 907, the demodulator 909, and the decoder 908 may be implemented by a synthesized modem processor 905. These units are processed according to the radio access technology adopted by the radio access network (for example, the access technology of LTE and other evolved systems). It should be noted that, when the device 900 does not include the modem processor 905, the above functions of the modem processor 905 may also be completed by the processor 903.
  • the processor 903 controls and manages the actions of the device 900, and is used to execute the processing procedure performed by the device 900 in the foregoing embodiment of the present disclosure.
  • the processor 903 is further configured to execute various steps of the sending device or the receiving device in the foregoing method embodiments, and / or other steps of the technical solutions described in the embodiments of the present disclosure.
  • the device 900 may further include a memory 904, and the memory 904 is used to store program codes and data for the device 900.
  • FIG. 9 only shows a simplified design of the device 900.
  • the device 900 may include any number of transmitters, receivers, processors, modem processors, memories, etc., and all devices that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure Inside.
  • An embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored, and when the computer program is executed by the processor of the device 900, information transmission in the direct connection communication scenario described above is implemented Method, or implement the information receiving method in the direct connection communication scenario as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种直连通信场景下的信息发送方法、接收方法、装置及存储介质。所述方法包括:发送设备确定待发送的控制信息所占用的第一频域带宽,以及该控制信息对应的用户数据所占用的第二频域带宽;发送设备以频分复用方式占用m个不同频域资源向接收设备重复传输m次控制信息;发送设备占用目标频域资源向接收设备发送用户数据。本公开提供的技术方案中,通过发送设备占用多个不同频域资源,以频分复用方式向接收设备重复传输多次控制信息,相较于发送设备仅传输一次控制信息,接收设备在对控制信息进行盲检测时,检测到控制信息的概率相应有所提高,从而减少了接收设备对于控制信息的盲检复杂度。

Description

信息发送方法、接收方法、装置及存储介质 技术领域
本公开实施例涉及通信技术领域,特别涉及一种直连通信场景下的信息发送方法、接收方法、装置及存储介质。
背景技术
在V2X(Vehicle to Everything,车联网)技术中,车载设备与其它设备(如其它车载设备、路侧基础设施等)之间可以通过直连链路(sidelink)进行通信。针对V2X技术中的直连通信场景,需要提供更高的通信速率、更短的通信延时、更可靠的通信质量,以满足更多的业务需求。
针对V2X技术中的直连通信场景,发送设备如何向接收设备发送控制信息和用户数据,是有待研究和解决的问题。发送设备在向接收设备发送用户数据之前,需要通过控制信息将用户数据接收所需的必要信息发送给接收设备,接收设备一般采用盲检测的方式检测并正确接收到控制信息,再根据控制信息包含的内容正确地接收和解调用户数据。如果采用TDM(Time Division Multiplexing,时分复用)的方式传输控制信息及对应的用户数据,可以减少接收设备的处理时延和缓存消耗。
在相关技术中,提出传输控制信息所占用的频域资源,与传输用户数据所占用的频域资源相同。也即,控制信息所占用的频域带宽,与其对应的用户数据所占用的频域带宽相同;并且,控制信息所占用的频域位置,与其对应的用户数据所占用的频域位置也相同。
由于用户数据所占用的频域资源是根据用户数据的大小、调制编码方式的选择等动态确定的,如果控制信息和用户数据使用相同的频域资源,接收设备需要在控制信息所有可能占用的频域位置上进行盲检测,这会导致接收设备对于控制信息的盲检复杂度非常高。
发明内容
本公开实施例提供了一种直连通信场景下的信息发送方法、接收方法、装 置及存储介质。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种直连通信场景下的信息发送方法,所述方法包括:
发送设备确定待发送的控制信息所占用的第一频域带宽,以及所述控制信息对应的用户数据所占用的第二频域带宽,所述第二频域带宽是所述第一频域带宽的n倍,所述n为大于1的整数;
所述发送设备以频分复用方式占用m个不同频域资源向接收设备重复传输m次所述控制信息;其中,所述m个不同频域资源中的每一个频域资源的频域带宽均为所述第一频域带宽,所述m为小于或等于所述n,且大于1的整数;
所述发送设备占用目标频域资源向所述接收设备发送所述用户数据,所述目标频域资源的频域带宽为所述第二频域带宽,且所述目标频域资源包括所述m个不同频域资源。
可选地,所述m与所述n相等,所述m个不同频域资源在频域位置上互不重叠,且所述m个不同频域资源所占用的频域带宽总量与所述第二频域带宽相等。
可选地,所述发送设备确定待发送的控制信息所占用的第一频域带宽,以及所述控制信息对应的用户数据所占用的第二频域带宽,包括:
所述发送设备确定待发送的控制信息所占用的第一频域带宽;
所述发送设备根据所述控制信息对应的用户数据的数据量和调制编码方式,确定所述用户数据需要占用的资源单元RE的数目;
所述发送设备根据所述用户数据需要占用的RE的数目和所述第一频域带宽,确定所述用户数据所占用的第二频域带宽;其中,所述n是容纳所述用户数据需要占用的RE的数目的最小倍数或最接近所述用户数据需要占用的RE的数目的倍数。
可选地,重复传输的所述m次控制信息中,存在至少两次控制信息使用不同的发送功率。
可选地,重复传输的所述m次控制信息中,存在至少两次控制信息使用不同的预编码矩阵。
根据本公开实施例的第二方面,提供了一种直连通信场景下的信息接收方法,所述方法包括:
接收设备确定发送设备发送控制信息的多种候选频域位置;其中,所述控制信息以频分复用方式占用m个不同频域资源重复传输,所述m个不同频域资源中的每一个频域资源的频域带宽均为第一频域带宽,所述m为大于1的整数;
所述接收设备根据所述多种候选频域位置,对所述控制信息进行盲检测;
所述接收设备在成功接收所述控制信息之后,根据所述控制信息在目标频域资源上接收所述用户数据;其中,所述目标频域资源的频域带宽是所述第一频域带宽的n倍,且所述目标频域资源包括所述m个频域资源,所述n为大于1的整数,所述m小于或等于所述n。
可选地,所述m与所述n相等,所述m个不同频域资源在频域位置上互不重叠,且所述m个不同频域资源所占用的频域带宽总量与所述第二频域带宽相等。
可选地,所述方法还包括:
所述接收设备根据所述盲检测过程中得到的信息,确定重复传输的所述m次控制信息;
所述接收设备对所述m次控制信息进行合并检测和/或合并接收。
可选地,所述接收设备根据所述多种候选频域位置,对所述控制信息进行盲检测,包括:
所述接收设备根据所述多种候选频域位置,对重复传输的所述m次控制信息进行基于合并接收的盲检测。
根据本公开实施例的第三方面,提供了一种直连通信场景下的信息发送装置,应用于发送设备中,所述装置包括:
带宽确定模块,被配置为确定待发送的控制信息所占用的第一频域带宽,以及所述控制信息对应的用户数据所占用的第二频域带宽,所述第二频域带宽是所述第一频域带宽的n倍,所述n为大于1的整数;
控制信息发送模块,被配置为以频分复用方式占用m个不同频域资源向接收设备重复传输m次所述控制信息;其中,所述m个不同频域资源中的每一个频域资源的频域带宽均为所述第一频域带宽,所述m为小于或等于所述n,且大于1的整数;
用户数据发送模块,还被配置为占用目标频域资源向所述接收设备发送所述用户数据,所述目标频域资源的频域带宽为所述第二频域带宽,且所述目标 频域资源包括所述m个不同频域资源。
可选地,所述m与所述n相等,所述m个不同频域资源在频域位置上互不重叠,且所述m个不同频域资源所占用的频域带宽总量与所述第二频域带宽相等。
可选地,所述带宽确定模块,被配置为:
确定待发送的控制信息所占用的第一频域带宽;
根据所述控制信息对应的用户数据的数据量和调制编码方式,确定所述用户数据需要占用的资源单元RE的数目;
根据所述用户数据需要占用的RE的数目和所述第一频域带宽,确定所述用户数据所占用的第二频域带宽;其中,所述n是容纳所述用户数据需要占用的RE的数目的最小倍数或最接近所述用户数据需要占用的RE的数目的倍数。
可选地,重复传输的所述m次控制信息中,存在至少两次控制信息使用不同的发送功率。
可选地,重复传输的所述m次控制信息中,存在至少两次控制信息使用不同的预编码矩阵。
根据本公开实施例的第四方面,提供了一种直连通信场景下的信息接收装置,应用于接收设备中,所述装置包括:
频域确定模块,被配置为确定发送设备发送控制信息的多种候选频域位置;其中,所述控制信息以频分复用方式占用m个不同频域资源重复传输,所述m个不同频域资源中的每一个频域资源的频域带宽均为第一频域带宽,所述m为大于1的整数;
控制信息检测模块,被配置为根据所述多种候选频域位置,对所述控制信息进行盲检测;
用户数据接收模块,被配置为在成功接收所述控制信息之后,根据所述控制信息在目标频域资源上接收所述用户数据;其中,所述目标频域资源的频域带宽是所述第一频域带宽的n倍,且所述目标频域资源包括所述m个频域资源,所述n为大于1的整数,所述m小于或等于所述n。
可选地,所述m与所述n相等,所述m个不同频域资源在频域位置上互不重叠,且所述m个不同频域资源所占用的频域带宽总量与所述第二频域带宽相等。
可选地,所述装置还包括:
重传确定模块,被配置为根据所述盲检测过程中得到的信息,确定重复传输的所述m次控制信息;
所述控制信息检测模块,还被配置为对所述m次控制信息进行合并检测和/或合并接收。
可选地,所述控制信息检测模块,被配置为根据所述多种候选频域位置,对重复传输的所述m次控制信息进行基于合并接收的盲检测。
根据本公开实施例的第五方面,提供了一种直连通信场景下的信息发送装置,应用于发送设备中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
确定待发送的控制信息所占用的第一频域带宽,以及所述控制信息对应的用户数据所占用的第二频域带宽,所述第二频域带宽是所述第一频域带宽的n倍,所述n为大于1的整数;
以频分复用方式占用m个不同频域资源向接收设备重复传输m次所述控制信息;其中,所述m个不同频域资源中的每一个频域资源的频域带宽均为所述第一频域带宽,所述m为小于或等于所述n,且大于1的整数;
占用目标频域资源向所述接收设备发送所述用户数据,所述目标频域资源的频域带宽为所述第二频域带宽,且所述目标频域资源包括所述m个不同频域资源。
根据本公开实施例的第六方面,提供了一种直连通信场景下的信息接收装置,应用于接收设备中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
确定发送设备发送控制信息的多种候选频域位置;其中,所述控制信息以频分复用方式占用m个不同频域资源重复传输,所述m个不同频域资源中的每一个频域资源的频域带宽均为第一频域带宽,所述m为大于1的整数;
根据所述多种候选频域位置,对所述控制信息进行盲检测;
在成功接收所述控制信息之后,根据所述控制信息在目标频域资源上接收所述用户数据;其中,所述目标频域资源的频域带宽是所述第一频域带宽的n 倍,且所述目标频域资源包括所述m个频域资源,所述n为大于1的整数,所述m小于或等于所述n。
根据本公开实施例的第七方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述方法的步骤,或者实现如第二方面所述方法的步骤。
本公开实施例提供的技术方案可以包括以下有益效果:
通过发送设备占用多个不同频域资源,以频分复用方式向接收设备重复传输多次控制信息,相较于发送设备仅传输一次控制信息,接收设备在对控制信息进行盲检测时,检测到控制信息的概率相应有所提高,从而减少了接收设备对于控制信息的盲检复杂度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1示出了本公开实施例可能适用的一种网络架构的示意图;
图2是根据一示例性实施例示出的一种直连通信场景下的信息发送方法的流程图;
图3至图6示例性示出了几种控制信息和用户数据所占用的时频资源的示意图;
图7是根据一示例性实施例示出的一种直连通信场景下的信息发送装置的框图;
图8是根据一示例性实施例示出的一种直连通信场景下的信息接收装置的框图;
图9是根据一示例性实施例示出的一种直连通信场景中的设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描 述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例描述的网络架构以及业务场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本公开实施例可能适用的一种网络架构的示意图。该网络架构可以是一种C-V2X系统的网络架构。其中,C是指蜂窝(Cellular),C-V2X系统是基于3G、4G或5G等蜂窝网通信系统演进形成的车用无线通信系统。该网络架构可以包括:核心网11、接入网12、终端13和车辆14。
核心网11中包括若干核心网设备。核心网设备的功能主要是提供用户连接、对用户的管理以及对业务完成承载,作为承载网络提供到外部网络的接口。例如,LTE(Long Term Evolution,长期演进)系统的核心网中可以包括MME(Mobility Management Entity,移动管理节点)、S-GW(Serving Gateway,服务网关)、P-GW(PDN Gateway,PDN网关)等设备。5G NR系统的核心网中可以包括AMF(Access and Mobility Management Function,接入和移动性管理功能)实体、UPF(User Plane Function,用户平面功能)实体和SMF(Session Management Function,会话管理功能)实体等设备。
接入网12中包括若干接入网设备120。接入网设备120与核心网设备110之间通过某种空口技术互相通信,例如LTE系统中的S1接口,5G NR系统中的NG接口。接入网设备120可以是基站(Base Station,BS),所述基站是一种部署在接入网中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNodeB或者eNB;在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本公开实施例中,上述为终端提供无线通信功能的装置统称为接入网设备。
终端13可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用 户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,上面提到的设备统称为终端。接入网设备120与终端13之间通过某种空口技术互相通信,例如Uu接口。
车辆14可以是自动驾驶车辆,也可以是非自动驾驶车辆。车辆14具备一车载设备,车辆14通过车载设备实现和其它车辆、终端13或者其它设备的通信,例如RSU(Road Side Unit,路侧单元)。该车载设备也可以称为车载终端、车载通信装置或其它名称,本公开实施例对此不作限定。车载设备可以是一集成在车载通信盒(Telematics BOX,T-BOX)里的装置,也可以是一跟车体分离的装置。此外,车载设备可以在车辆14出厂前装配在车辆14中,也可以在车辆14出厂后装配在车辆14中。
车辆14的车载设备与其它设备(如其它车载设备、终端13、RSU等)之间可以通过直连通信接口(如PC5接口)互相通信,相应地,该基于直连通信接口建立的通信链路可以称为直连链路(sidelink)。此外,车辆14的车载设备与其它设备之间还可以通过接入网12以及核心网11进行中转,即利用原有的蜂窝网络中终端13与接入网设备120之间的通信链路进行通信。与基于Uu接口通信相比,基于直连通信接口通信具有时延短、开销小等特点,适合用于车载设备和地理位置接近的其它周边设备之间的通信。
上述图1所示的网络架构可以实现V2X业务场景,上述网络架构中还可以包括RSU、V2X应用服务器、V2X控制功能节点等设备,本公开实施例对此不作限定。另外,本公开实施例描述的技术方案可以适用于LTE系统,也可以适用于LTE系统后续的演进系统,如LTE-A(LTE-Advanced)系统或者5GNR系统。
在本公开实施例中,针对上述V2X业务场景中的直连通信场景,提供了一种信息发送方法,以减少接收设备对于控制信息的盲检复杂度。
在本公开实施例中,发送设备和接收设备是V2X业务场景中,进行直连通信的两端设备,发送设备和接收设备之间可以通过直连通信接口(如PC5接口)建立直连链路,然后通过该直连链路进行用户数据和控制信息的交互。例如,发送设备可以是图1所示网络架构中的车辆14的车载设备,接收设备可以是其它车辆的车载设备,也可以是终端13或者RSU等。又例如,发送设备可以是图1所示网络架构中的终端13,接收设备可以是其它终端,也可以是车辆14的车载设备或者RSU等。在一些实施例中,对于同一设备(如同一车 载设备或同一终端)来讲,其在某些场景下可以作为发送设备,在另一些场景下也可以作为接收设备。
发送设备在向接收设备发送用户数据之前,需要通过控制信息将用户数据接收所需的必要信息发送给接收设备,接收设备一般采用盲检测的方式检测并正确接收到控制信息,再根据控制信息包含的内容正确地接收和解调用户数据。在本公开实施例中,与用户数据对应的控制信息,是指携带有用户数据接收所需的必要信息的控制信息,如控制信息中可以包括用户数据所占用的时频资源块的位置、用户数据的调制编码方式等信息。
下面,通过几个示例性实施例对本公开技术方案进行介绍说明。
图2是根据一示例性实施例示出的一种直连通信场景下的信息发送方法的流程图。该方法可应用于图1所示的网络架构中。该方法可以包括如下几个步骤(201~206)。
在步骤201中,发送设备确定待发送的控制信息所占用的第一频域带宽,以及该控制信息对应的用户数据所占用的第二频域带宽。
待发送的控制信息是指需要发送给接收设备,但还未发送的控制信息。控制信息中携带有用户数据接收所需的必要信息,如用户数据所占用的时频资源块的位置、用户数据的调制编码方式等信息。
在本公开实施例中,第二频域带宽是第一频域带宽的n倍,n为大于1的整数。例如,第二频域带宽可以是第一频域带宽的2倍、3倍或4倍等倍数关系。
可选地,本步骤包括如下几个子步骤(2011~2013):
2011、发送设备确定待发送的控制信息所占用的第一频域带宽;
在本公开实施例中,控制信息所占用的第一频域带宽为预先设定的固定值。控制信息所占用的第一频域带宽可以根据控制信息的数据量(也即控制信息的比特数)预先设定。例如,该第一频域带宽可以通过协议预先定义,或者由接入网设备通过下行信令配置给发送设备。
2012、发送设备根据控制信息对应的用户数据的数据量和调制编码方式,确定用户数据需要占用的RE(Resource Element,资源单元)的数目;
通常来讲,用户数据的数据量越多,其需要占用的RE的数目就越多。当然,用户数据需要占用的RE的数目还与调制编码方式相关。
2013、发送设备根据用户数据需要占用的RE的数目和第一频域带宽,确定用户数据所占用的第二频域带宽;
在上文已经介绍,第二频域带宽是第一频域带宽的n倍。在一个可能的示例中,该n是容纳用户数据需要占用的RE的数目的最小倍数。例如,假设发送设备确定控制信息所占用的第一频域带宽为BW1,用户数据需要占用的RE的数目为a,假设该a个RE在频域上占用的带宽总和为BW0,如果存在倍数n,使得n×BW1≥BW0,且(n-1)×BW1<BW0,则发送设备确定用户数据所占用的第二频域带宽为n×BW1。比如,控制信息所占用的第一频域带宽为2个PRB,根据用户数据需要占用的RE数目计算出的用户数据需要占用的频域带宽为5个PRB,则发送设备可以选择第一频域带宽的3倍(也即6个PRB)作为用户数据所占用的第二频域带宽。再比如,控制信息所占用的第一频域带宽为2个PRB,根据用户数据需要占用的RE数目计算出的用户数据需要占用的频域带宽为8个PRB,则发送设备可以选择第一频域带宽的4倍(也即8个PRB)作为用户数据所占用的第二频域带宽。
在一些可能的情况中,如果用户数据的数据量很小,上述容纳用户数据需要占用的RE的数目的最小倍数为1,则发送设备可以确定用户数据所占用的第二频域带宽与控制信息所占用的第一频域带宽相等。但在大多数情况下,用户数据的数据量是大于控制信息的数据量的,因此用户数据所占用的第二频域带宽是控制信息所占用的第一频域带宽的至少两倍。
在另一个可能的示例中,n是最接近用户数据需要占用的RE的数目的倍数。例如,假设发送设备确定控制信息所占用的第一频域带宽为BW1,用户数据需要占用的RE的数目为a,假设该a个RE在频域上占用的带宽总和为BW0,如果存在倍数n,使得n×BW1与BW0之间的差值的绝对值,小于或等于BW1与除n之外的其它倍数的乘积与BW0之间的差值的绝对值,则发送设备确定用户数据所占用的第二频域带宽为n×BW1。比如,控制信息所占用的第一频域带宽为4个PRB,根据用户数据需要占用的RE数目计算出的用户数据需要占用的频域带宽为8个PRB,则发送设备可以选择第一频域带宽的2倍(也即8个PRB)作为用户数据所占用的第二频域带宽。
另外,如果最接近用户数据需要占用的RE的数目的倍数存在两个,则发送设备可以从这两个倍数中选择任意一个倍数与第一频域带宽相乘,将得到的乘积确定为第二频域带宽;或者,发送设备也可以从这两个倍数中选择较大的 一个倍数与第一频域带宽相乘,将得到的乘积确定为第二频域带宽。比如,控制信息所占用的第一频域带宽为4个PRB,根据用户数据需要占用的RE数目计算出的用户数据需要占用的频域带宽为10个PRB,则发送设备可以选择第一频域带宽的2倍(也即8个PRB)作为用户数据所占用的第二频域带宽,也可以选择第一频域带宽的3倍(也即12个PRB)作为用户数据所占用的第二频域带宽。
通过上述方式,发送设备根据用户数据需要占用的RE的数目和第一频域带宽,确定用户数据所占用的第二频域带宽,可以使得最终确定出的第二频域带宽与用户数据实际需要占用的RE的数目尽可能地接近,避免第二频域带宽确定地过小而导致用户数据发送不及时,或者第二频域带宽确定地过大而导致频域资源的浪费,使得最终确定出的第二频域带宽更加合理准确。
在步骤202中,发送设备以频分复用方式占用m个不同频域资源向接收设备重复传输m次控制信息。
上述m个不同频域资源中的每一个频域资源的频域带宽均为第一频域带宽,m为小于或等于n,且大于1的整数。可选地,发送设备以频分复用方式占用第一时域资源和m个不同频域资源,向接收设备重复传输m次控制信息。假设控制信息所占用的第一频域带宽为BW1,控制信息所占用的第二频域带宽为BW2,假设BW2是BW1的3倍。在图3示例中,发送设备以频分复用方式占用第一时域资源和2个不同频域资源,向接收设备重复传输2次控制信息。
可选地,m与n相等,上述m个不同频域资源在频域位置上互不重叠,且该m个不同频域资源所占用的频域带宽总量与第二频域带宽相等。即如图4所示,BW2是BW1的3倍,发送设备以频分复用方式占用第一时域资源和3个不同频域资源,向接收设备重复传输3次控制信息。
可选地,重复传输的m次控制信息中,存在至少两次控制信息使用不同的发送功率;和/或,重复传输的m次控制信息中,存在至少两次控制信息使用不同的预编码矩阵。在一些可能的实施例中,重复传输的m次控制信息使用的发送功率两两互不相同;在另一些可能的实施例中,重复传输的m次控制信息使用的预编码矩阵两两互不相同。
例如,如图5所示,发送设备在3个不同频域资源上重复传输3次控制信息,使用的发送功率分别为发送功率1、发送功率2和发送功率3,且这3个 发送功率各不相同。又例如,如图6所示,发送设备在3个不同频域资源上重复传输3次控制信息,使用的预编码矩阵分别为预编码矩阵1、预编码矩阵2和预编码矩阵3,且这3个预编码矩阵各不相同。在上述图3至图6示例中,控制信息所占用的时频资源以斜线填充的矩形框表示,用户数据所占用的时频资源以黑点填充的矩形框表示。
如果在多次重复传输的控制信息中,使用相同的发送功率和预编码矩阵,如果接收设备因为某些原因无法成功接收到采用该发送功率和预编码矩阵发送的信息,就会导致多次重复传输的控制信息全部都无法成功接收。通过上述方式,重复传输的控制信息使用不同的发送功率和/或预编码矩阵,有助于提高接收设备的检测性能,提高接收设备对控制信息的接收成功率。
在步骤203中,发送设备占用目标频域资源向接收设备发送用户数据。
在本公开实施例中,目标频域资源的频域带宽为第二频域带宽,且目标频域资源包括上述m个不同频域资源。可选地,发送设备占用第二时域资源和目标频域资源向接收设备发送用户数据。当控制信息所占用的第一时域资源和用户数据所占用的第二时域资源互不重叠时,发送设备采用TDM的方式向接收设备发送控制信息和用户数据。
上述步骤201至步骤203对发送设备侧的发送流程进行了介绍说明,下面通过步骤204-206对接收设备侧的接收流程进行介绍说明。
在步骤204中,接收设备确定发送设备发送控制信息的多种候选频域位置。
与上述发送设备建立直连通信的接收设备在对控制信息进行盲检测之前,首先确定发送设备发送控制信息的多种候选频域位置。候选频域位置也即是指控制信息可能占用的频域位置。由于控制信息所占用的第一频域带宽为预先设定的固定值,接收设备可以根据该第一频域带宽,确定出发送设备发送控制信息的多种候选频域位置。第一频域带宽可以由发送设备预先告知给接收设备,也可以由协议预先定义,或者由接入网设备预先配置并告知给直连通信的两端设备。
在步骤205中,接收设备根据该多种候选频域位置,对控制信息进行盲检测。
接收设备根据每一种候选频域位置,在该候选频域位置上,对控制信息进行盲检测。如果在某一候选频域位置上检测到控制信息,则对该控制信息进行解码接收。
在本公开实施例中,由于发送设备占用多个不同频域资源,以频分复用方式向接收设备重复传输多次控制信息,相较于发送设备仅传输一次控制信息,接收设备在对控制信息进行盲检测时,检测到控制信息的概率相应有所提高,从而减少了接收设备对于控制信息的盲检复杂度。
可选地,接收设备根据盲检测过程中得到的信息,确定重复传输的m次控制信息,然后对该m次控制信息进行合并检测和/或合并接收。上述信息可以是在盲检测过程中得到的解调参考信号,例如当多条控制信息的解调参考信号的序列相同、信号强度相同或类似时,接收设备可以确定该多条控制信息是重复传输的同一控制信息。对于重复传输的同一控制信息,接收设备可以进行合并检测和/或合并接收,以提高对控制信息的检测和接收效果。
在步骤206中,接收设备在成功接收控制信息之后,根据控制信息在目标频域资源上接收用户数据。
控制信息中携带有用户数据接收所需的必要信息,如用户数据所占用的时频资源块的位置、用户数据的调制编码方式等信息。接收设备在成功接收控制信息之后,根据控制信息包含的内容正确地接收和解调用户数据。
可选地,在接收设备能力允许的情况下,接收设备在确定出控制信息的多种候选频域位置之后,还可以直接对重复传输的m次控制信息进行基于合并接收的盲检测,以提高盲检准确性。
在一个示例中,假设发送设备与接收设备之间进行直连通信时的系统带宽为48个PRB(Physical Resource Block,物理资源块),控制信息占用的第一频域带宽为2个PRB,每2个相邻的PRB为一组,整个系统带宽共分为24组PRB。另外,假设用户数据占用的第二频域带宽为6个连续的PRB,则发送设备可以占用连续的6个PRB(也即3组PRB)重复传输3次控制信息。这样,该重复传输的3次控制信息的候选频域位置可能是第1组PRB至第3组PRB、第2组PRB至第4组PRB、第3组PRB至第5组PRB、……、第22组PRB至第24组PRB,也即共22种候选频域位置。接收设备在确定出上述22种候选频域位置之后,可以在每一种候选频域位置处检测是否存在控制信息,如果在某一候选频域位置处检测到控制信息,则对该候选频域位置处重复传输的3次控制信息进行合并解码接收。
综上所述,本公开实施例提供的技术方案中,通过发送设备占用多个不同频域资源,以频分复用方式向接收设备重复传输多次控制信息,相较于发送设 备仅传输一次控制信息,接收设备在对控制信息进行盲检测时,检测到控制信息的概率相应有所提高,从而减少了接收设备对于控制信息的盲检复杂度。
另外,由于控制信息的数据量有限,其所占据的频域资源一般相对于用户数据更少,通过占用多个不同频域资源,以频分复用方式向接收设备重复传输多次控制信息,有助于提升资源利用率。
另外,由于控制信息所占用的第一频域带宽为预先设定的固定值,因此控制信息可能占用的频域位置也相对有限,这也有助于减少接收设备对于控制信息的盲检复杂度。
需要说明的一点是,在上述方法实施例中,仅从发送设备和接收设备交互的角度,对本公开技术方案进行了介绍说明。上述有关发送设备执行的步骤,可以单独实现成为发送设备一侧的直连通信场景下的信息发送方法;上述有关接收设备执行的步骤,可以单独实现成为接收设备一侧的直连通信场景下的信息接收方法。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图7是根据一示例性实施例示出的一种直连通信场景下的信息发送装置的框图。该装置具有实现上述发送设备一侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置700可以包括:带宽确定模块710、控制信息发送模块720和用户数据发送模块730。
带宽确定模块710,被配置为确定待发送的控制信息所占用的第一频域带宽,以及所述控制信息对应的用户数据所占用的第二频域带宽,所述第二频域带宽是所述第一频域带宽的n倍,所述n为大于1的整数。
控制信息发送模块720,被配置为以频分复用方式占用m个不同频域资源向接收设备重复传输m次所述控制信息;其中,所述m个不同频域资源中的每一个频域资源的频域带宽均为所述第一频域带宽,所述m为小于或等于所述n,且大于1的整数。
用户数据发送模块730,还被配置为占用目标频域资源向所述接收设备发送所述用户数据,所述目标频域资源的频域带宽为所述第二频域带宽,且所述目标频域资源包括所述m个不同频域资源。
综上所述,本公开实施例提供的技术方案中,通过发送设备占用多个不同频域资源,以频分复用方式向接收设备重复传输多次控制信息,相较于发送设备仅传输一次控制信息,接收设备在对控制信息进行盲检测时,检测到控制信息的概率相应有所提高,从而减少了接收设备对于控制信息的盲检复杂度。
在基于图7实施例提供的一个可选实施例中,所述m与所述n相等,所述m个不同频域资源在频域位置上互不重叠,且所述m个不同频域资源所占用的频域带宽总量与所述第二频域带宽相等。
在基于图7实施例提供的另一个可选实施例中,所述带宽确定模块710,被配置为:
确定待发送的控制信息所占用的第一频域带宽;
根据所述控制信息对应的用户数据的数据量和调制编码方式,确定所述用户数据需要占用的RE的数目;
根据所述用户数据需要占用的RE的数目和所述第一频域带宽,确定所述用户数据所占用的第二频域带宽;其中,所述b是容纳所述用户数据需要占用的RE的数目的最小倍数或最接近所述用户数据需要占用的RE的数目的倍数。
在基于图7实施例提供的另一个可选实施例中,重复传输的所述m次控制信息中,存在至少两次控制信息使用不同的发送功率。
在基于图7实施例提供的另一个可选实施例中,重复传输的所述m次控制信息中,存在至少两次控制信息使用不同的预编码矩阵。
图8是根据一示例性实施例示出的一种直连通信场景下的信息接收装置的框图。该装置具有实现上述接收设备一侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置800可以包括:频域确定模块810、控制信息检测模块820和用户数据接收模块830。
频域确定模块810,被配置为确定发送设备发送控制信息的多种候选频域位置;其中,所述控制信息以频分复用方式占用m个不同频域资源重复传输,所述m个不同频域资源中的每一个频域资源的频域带宽均为第一频域带宽,所述m为大于1的整数。
控制信息检测模块820,被配置为根据所述多种候选频域位置,对所述控制信息进行盲检测。
用户数据接收模块830,被配置为在成功接收所述控制信息之后,根据所 述控制信息在目标频域资源上接收所述用户数据;其中,所述目标频域资源的频域带宽是所述第一频域带宽的n倍,且所述目标频域资源包括所述m个频域资源,所述n为大于1的整数,所述m小于或等于所述n。
综上所述,本公开实施例提供的技术方案中,通过发送设备占用多个不同频域资源,以频分复用方式向接收设备重复传输多次控制信息,相较于发送设备仅传输一次控制信息,接收设备在对控制信息进行盲检测时,检测到控制信息的概率相应有所提高,从而减少了接收设备对于控制信息的盲检复杂度。
在基于图8实施例提供的一个可选实施例中,所述m与所述n相等,所述m个不同频域资源在频域位置上互不重叠,且所述m个不同频域资源所占用的频域带宽总量与所述第二频域带宽相等。
在基于图8实施例提供的一个可选实施例中,所述装置800还包括:重传确定模块(图中未示出)。
重传确定模块,被配置为根据所述盲检测过程中得到的信息,确定重复传输的所述m次控制信息。
所述控制信息检测模块820,还被配置为对所述m次控制信息进行合并检测和/或合并接收。
在基于图8实施例提供的一个可选实施例中,所述控制信息检测模块820,被配置为根据所述多种候选频域位置,对重复传输的所述m次控制信息进行基于合并接收的盲检测。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例还提供了一种直连通信场景下的信息发送装置,能够实现本公开提供的直连通信场景下的信息发送方法。该装置可以是上文介绍的发送设备,也可以设置在发送设备中。该装置包括:处理器,以及用于存储处理器的可执行指令的存储器。其中,处理器被配置为:
确定待发送的控制信息所占用的第一频域带宽,以及所述控制信息对应的用户数据所占用的第二频域带宽,所述第二频域带宽是所述第一频域带宽的n倍,所述n为大于1的整数;
以频分复用方式占用m个不同频域资源向接收设备重复传输m次所述控制信息;其中,所述m个不同频域资源中的每一个频域资源的频域带宽均为所述第一频域带宽,所述m为小于或等于所述n,且大于1的整数;
占用目标频域资源向所述接收设备发送所述用户数据,所述目标频域资源的频域带宽为所述第二频域带宽,且所述目标频域资源包括所述m个不同频域资源。
可选地,所述m与所述n相等,所述m个不同频域资源在频域位置上互不重叠,且所述m个不同频域资源所占用的频域带宽总量与所述第二频域带宽相等。
可选地,所述处理器被配置为:
确定待发送的控制信息所占用的第一频域带宽;
根据所述控制信息对应的用户数据的数据量和调制编码方式,确定所述用户数据需要占用的RE的数目;
根据所述用户数据需要占用的RE的数目和所述第一频域带宽,确定所述用户数据所占用的第二频域带宽;其中,所述n是容纳所述用户数据需要占用的RE的数目的最小倍数或最接近所述用户数据需要占用的RE的数目的倍数。
可选地,重复传输的所述m次控制信息中,存在至少两次控制信息使用不同的发送功率。
可选地,重复传输的所述m次控制信息中,存在至少两次控制信息使用不同的预编码矩阵。
本公开一示例性实施例还提供了一种直连通信场景下的信息接收装置,能够实现本公开提供的直连通信场景下的信息接收方法。该装置可以是上文介绍的接收设备,也可以设置在接收设备中。该装置包括:处理器,以及用于存储处理器的可执行指令的存储器。其中,处理器被配置为:
确定发送设备发送控制信息的多种候选频域位置;其中,所述控制信息以频分复用方式占用m个不同频域资源重复传输,所述m个不同频域资源中的每一个频域资源的频域带宽均为第一频域带宽,所述m为大于1的整数;
根据所述多种候选频域位置,对所述控制信息进行盲检测;
在成功接收所述控制信息之后,根据所述控制信息在目标频域资源上接收所述用户数据;其中,所述目标频域资源的频域带宽是所述第一频域带宽的n倍,且所述目标频域资源包括所述m个频域资源,所述n为大于1的整数,所述m小于或等于所述n。
可选地,所述m与所述n相等,所述m个不同频域资源在频域位置上互不重叠,且所述m个不同频域资源所占用的频域带宽总量与所述第二频域带宽相等。
可选地,所述处理器还被配置为:
根据所述盲检测过程中得到的信息,确定重复传输的所述m次控制信息;
对所述m次控制信息进行合并检测和/或合并接收。
可选地,所述处理器还被配置为:
根据所述多种候选频域位置,对重复传输的所述m次控制信息进行基于合并接收的盲检测。
上述主要从发送设备和接收设备交互的角度对本公开实施例提供的方案进行了介绍。可以理解的是,设备(包括发送设备和接收设备)为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图9是根据一示例性实施例示出的一种直连通信场景中的设备900的结构示意图。该设备900可以是V2X业务场景中与其它设备进行直连通信的设备,如车载设备、终端等电子设备。该设备900可以是上文介绍的发送设备或接收设备。
所述设备900包括发射器901,接收器902和处理器903。其中,处理器903也可以为控制器,图9中表示为“控制器/处理器903”。可选的,所述设备900还可以包括调制解调处理器905,其中,调制解调处理器905可以包括编码器906、调制器907、解码器908和解调器909。
在一个示例中,发射器901调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给接入网设备。在下行链路上,天线接收接入网设备发射的下行链路信号。接收器902调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器905中,编码器906接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器907进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器909处理(例如,解调)该输入采样并提供符号估计。解码器908处理(例如,解交织和解码)该符号估计并提供发送给设备900的已解码的数据和信令消息。编码器906、调制器907、解调器909和解码器908可以由合成的调制解调处理器905来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。需要说明的是,当设备900不包括调制解调处理器905时,调制解调处理器905的上述功能也可以由处理器903完成。
处理器903对设备900的动作进行控制管理,用于执行上述本公开实施例中由设备900进行的处理过程。例如,处理器903还用于执行上述方法实施例中的发送设备或接收设备的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,设备900还可以包括存储器904,存储器904用于存储用于设备900的程序代码和数据。
可以理解的是,图9仅仅示出了设备900的简化设计。在实际应用中,设备900可以包含任意数量的发射器,接收器,处理器,调制解调处理器,存储器等,而所有可以实现本公开实施例的设备都在本公开实施例的保护范围之内。
本公开实施例还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被设备900的处理器执行时实现如上文介绍的直连通信场景中的信息发送方法,或者实现如上文介绍的直连通信场景中的信息接收方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示: 单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (21)

  1. 一种直连通信场景下的信息发送方法,其特征在于,所述方法包括:
    发送设备确定待发送的控制信息所占用的第一频域带宽,以及所述控制信息对应的用户数据所占用的第二频域带宽,所述第二频域带宽是所述第一频域带宽的n倍,所述n为大于1的整数;
    所述发送设备以频分复用方式占用m个不同频域资源向接收设备重复传输m次所述控制信息;其中,所述m个不同频域资源中的每一个频域资源的频域带宽均为所述第一频域带宽,所述m为小于或等于所述n,且大于1的整数;
    所述发送设备占用目标频域资源向所述接收设备发送所述用户数据,所述目标频域资源的频域带宽为所述第二频域带宽,且所述目标频域资源包括所述m个不同频域资源。
  2. 根据权利要求1所述的方法,其特征在于,所述m与所述n相等,所述m个不同频域资源在频域位置上互不重叠,且所述m个不同频域资源所占用的频域带宽总量与所述第二频域带宽相等。
  3. 根据权利要求1所述的方法,其特征在于,所述发送设备确定待发送的控制信息所占用的第一频域带宽,以及所述控制信息对应的用户数据所占用的第二频域带宽,包括:
    所述发送设备确定待发送的控制信息所占用的第一频域带宽;
    所述发送设备根据所述控制信息对应的用户数据的数据量和调制编码方式,确定所述用户数据需要占用的资源单元RE的数目;
    所述发送设备根据所述用户数据需要占用的RE的数目和所述第一频域带宽,确定所述用户数据所占用的第二频域带宽;其中,所述n是容纳所述用户数据需要占用的RE的数目的最小倍数或最接近所述用户数据需要占用的RE的数目的倍数。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,重复传输的所述m次控制信息中,存在至少两次控制信息使用不同的发送功率。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,重复传输的所述m次控制信息中,存在至少两次控制信息使用不同的预编码矩阵。
  6. 一种直连通信场景下的信息接收方法,其特征在于,所述方法包括:
    接收设备确定发送设备发送控制信息的多种候选频域位置;其中,所述控制信息以频分复用方式占用m个不同频域资源重复传输,所述m个不同频域资源中的每一个频域资源的频域带宽均为第一频域带宽,所述m为大于1的整数;
    所述接收设备根据所述多种候选频域位置,对所述控制信息进行盲检测;
    所述接收设备在成功接收所述控制信息之后,根据所述控制信息在目标频域资源上接收所述用户数据;其中,所述目标频域资源的频域带宽是所述第一频域带宽的n倍,且所述目标频域资源包括所述m个频域资源,所述n为大于1的整数,所述m小于或等于所述n。
  7. 根据权利要求6所述的方法,其特征在于,所述m与所述n相等,所述m个不同频域资源在频域位置上互不重叠,且所述m个不同频域资源所占用的频域带宽总量与所述第二频域带宽相等。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述接收设备根据所述盲检测过程中得到的信息,确定重复传输的所述m次控制信息;
    所述接收设备对所述m次控制信息进行合并检测和/或合并接收。
  9. 根据权利要求6所述的方法,其特征在于,所述接收设备根据所述多种候选频域位置,对所述控制信息进行盲检测,包括:
    所述接收设备根据所述多种候选频域位置,对重复传输的所述m次控制信息进行基于合并接收的盲检测。
  10. 一种直连通信场景下的信息发送装置,其特征在于,应用于发送设备中,所述装置包括:
    带宽确定模块,被配置为确定待发送的控制信息所占用的第一频域带宽,以及所述控制信息对应的用户数据所占用的第二频域带宽,所述第二频域带宽 是所述第一频域带宽的n倍,所述n为大于1的整数;
    控制信息发送模块,被配置为以频分复用方式占用m个不同频域资源向接收设备重复传输m次所述控制信息;其中,所述m个不同频域资源中的每一个频域资源的频域带宽均为所述第一频域带宽,所述m为小于或等于所述n,且大于1的整数;
    用户数据发送模块,还被配置为占用目标频域资源向所述接收设备发送所述用户数据,所述目标频域资源的频域带宽为所述第二频域带宽,且所述目标频域资源包括所述m个不同频域资源。
  11. 根据权利要求10所述的装置,其特征在于,所述m与所述n相等,所述m个不同频域资源在频域位置上互不重叠,且所述m个不同频域资源所占用的频域带宽总量与所述第二频域带宽相等。
  12. 根据权利要求10所述的装置,其特征在于,所述带宽确定模块,被配置为:
    确定待发送的控制信息所占用的第一频域带宽;
    根据所述控制信息对应的用户数据的数据量和调制编码方式,确定所述用户数据需要占用的资源单元RE的数目;
    根据所述用户数据需要占用的RE的数目和所述第一频域带宽,确定所述用户数据所占用的第二频域带宽;其中,所述n是容纳所述用户数据需要占用的RE的数目的最小倍数或最接近所述用户数据需要占用的RE的数目的倍数。
  13. 根据权利要求10至12任一项所述的装置,其特征在于,重复传输的所述m次控制信息中,存在至少两次控制信息使用不同的发送功率。
  14. 根据权利要求10至12任一项所述的装置,其特征在于,重复传输的所述m次控制信息中,存在至少两次控制信息使用不同的预编码矩阵。
  15. 一种直连通信场景下的信息接收装置,其特征在于,应用于接收设备中,所述装置包括:
    频域确定模块,被配置为确定发送设备发送控制信息的多种候选频域位置; 其中,所述控制信息以频分复用方式占用m个不同频域资源重复传输,所述m个不同频域资源中的每一个频域资源的频域带宽均为第一频域带宽,所述m为大于1的整数;
    控制信息检测模块,被配置为根据所述多种候选频域位置,对所述控制信息进行盲检测;
    用户数据接收模块,被配置为在成功接收所述控制信息之后,根据所述控制信息在目标频域资源上接收所述用户数据;其中,所述目标频域资源的频域带宽是所述第一频域带宽的n倍,且所述目标频域资源包括所述m个频域资源,所述n为大于1的整数,所述m小于或等于所述n。
  16. 根据权利要求15所述的装置,其特征在于,所述m与所述n相等,所述m个不同频域资源在频域位置上互不重叠,且所述m个不同频域资源所占用的频域带宽总量与所述第二频域带宽相等。
  17. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    重传确定模块,被配置为根据所述盲检测过程中得到的信息,确定重复传输的所述m次控制信息;
    所述控制信息检测模块,还被配置为对所述m次控制信息进行合并检测和/或合并接收。
  18. 根据权利要求15所述的装置,其特征在于,
    所述控制信息检测模块,被配置为根据所述多种候选频域位置,对重复传输的所述m次控制信息进行基于合并接收的盲检测。
  19. 一种直连通信场景下的信息发送装置,其特征在于,应用于发送设备中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    确定待发送的控制信息所占用的第一频域带宽,以及所述控制信息对应的用户数据所占用的第二频域带宽,所述第二频域带宽是所述第一频域带宽的n 倍,所述n为大于1的整数;
    以频分复用方式占用m个不同频域资源向接收设备重复传输m次所述控制信息;其中,所述m个不同频域资源中的每一个频域资源的频域带宽均为所述第一频域带宽,所述m为小于或等于所述n,且大于1的整数;
    占用目标频域资源向所述接收设备发送所述用户数据,所述目标频域资源的频域带宽为所述第二频域带宽,且所述目标频域资源包括所述m个不同频域资源。
  20. 一种直连通信场景下的信息接收装置,其特征在于,应用于接收设备中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    确定发送设备发送控制信息的多种候选频域位置;其中,所述控制信息以频分复用方式占用m个不同频域资源重复传输,所述m个不同频域资源中的每一个频域资源的频域带宽均为第一频域带宽,所述m为大于1的整数;
    根据所述多种候选频域位置,对所述控制信息进行盲检测;
    在成功接收所述控制信息之后,根据所述控制信息在目标频域资源上接收所述用户数据;其中,所述目标频域资源的频域带宽是所述第一频域带宽的n倍,且所述目标频域资源包括所述m个频域资源,所述n为大于1的整数,所述m小于或等于所述n。
  21. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述方法的步骤,或者实现如权利要求6至9任一项所述方法的步骤。
PCT/CN2018/114628 2018-11-08 2018-11-08 信息发送方法、接收方法、装置及存储介质 WO2020093326A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18939764.9A EP3879735B1 (en) 2018-11-08 2018-11-08 Information sending method and receiving method, information sending apparatus and receiving apparatus, and storage medium
PCT/CN2018/114628 WO2020093326A1 (zh) 2018-11-08 2018-11-08 信息发送方法、接收方法、装置及存储介质
US17/292,430 US20220022166A1 (en) 2018-11-08 2018-11-08 Information sending method and receiving method, information sending apparatus and receiving apparatus, and storage medium
CN201880001951.7A CN109565360B (zh) 2018-11-08 2018-11-08 信息发送方法、接收方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114628 WO2020093326A1 (zh) 2018-11-08 2018-11-08 信息发送方法、接收方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2020093326A1 true WO2020093326A1 (zh) 2020-05-14

Family

ID=65872612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114628 WO2020093326A1 (zh) 2018-11-08 2018-11-08 信息发送方法、接收方法、装置及存储介质

Country Status (4)

Country Link
US (1) US20220022166A1 (zh)
EP (1) EP3879735B1 (zh)
CN (1) CN109565360B (zh)
WO (1) WO2020093326A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113544977B (zh) * 2020-02-19 2023-11-07 北京小米移动软件有限公司 数据传输方法、装置、通信设备及存储介质
WO2022028574A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 参考信号的位置确定方法、指示方法及相关产品
CN112991707A (zh) * 2021-02-18 2021-06-18 上海三一重机股份有限公司 挖掘机通信控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796986A (zh) * 2014-01-16 2015-07-22 电信科学技术研究院 一种d2d通信方法及设备
CN107612666A (zh) * 2016-07-11 2018-01-19 北京信威通信技术股份有限公司 一种在v2x中的数据传输方法及装置
CN107733591A (zh) * 2016-08-10 2018-02-23 北京信威通信技术股份有限公司 传输方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI663857B (zh) * 2013-08-06 2019-06-21 新力股份有限公司 傳遞資料的用戶裝置及方法
CN106374985B (zh) * 2015-07-20 2020-02-28 电信科学技术研究院 一种多用户数据的发送接收方法及装置
CN106470483B (zh) * 2015-08-17 2019-12-13 电信科学技术研究院 一种信息发送与控制信息发送的方法及装置
CN106470499B (zh) * 2015-08-18 2021-10-15 北京三星通信技术研究有限公司 一种d2d通信中调度信息发送和接收的方法与设备
EP3354097B1 (en) * 2015-09-23 2020-04-29 Telefonaktiebolaget LM Ericsson (PUBL) Scheduling and transmitting control information and data for direct communication
EP4113924A1 (en) * 2015-09-25 2023-01-04 Innovative Technology Lab Co., Ltd. Method for configuring dm-rs for v2x
CN110176949A (zh) * 2016-08-12 2019-08-27 华为技术有限公司 数据发送方法、信令发送方法、装置及系统
CN108024286A (zh) * 2016-11-04 2018-05-11 北京三星通信技术研究有限公司 用于无线通信中的拥塞控制的方法和设备
US20200029340A1 (en) * 2018-07-19 2020-01-23 Samsung Electronics Co., Ltd. Method and apparatus for nr v2x resource selection
US20220353846A1 (en) * 2018-09-28 2022-11-03 Mediatek Inc. Two-stage design for new radio (nr) sidelink control information (sci)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796986A (zh) * 2014-01-16 2015-07-22 电信科学技术研究院 一种d2d通信方法及设备
CN107612666A (zh) * 2016-07-11 2018-01-19 北京信威通信技术股份有限公司 一种在v2x中的数据传输方法及装置
CN107733591A (zh) * 2016-08-10 2018-02-23 北京信威通信技术股份有限公司 传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3879735A4 *

Also Published As

Publication number Publication date
CN109565360A (zh) 2019-04-02
EP3879735A1 (en) 2021-09-15
CN109565360B (zh) 2021-04-23
EP3879735A4 (en) 2022-06-29
US20220022166A1 (en) 2022-01-20
EP3879735B1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
WO2020107346A1 (zh) Csi测量反馈方法、装置及存储介质
CN113965908B (zh) 资源碰撞解决方法、装置及存储介质
US20200288486A1 (en) 2-step sci transmission of nr v2x
CN110521265B (zh) 上行数据传输方法、装置及存储介质
US11991725B2 (en) Downlink data transmission method and device, and storage medium
WO2018027992A1 (zh) 资源调度方法、调度器、基站、终端及系统
US10863578B2 (en) Data transmission method, device and system
US20230171739A1 (en) Monitoring method and apparatus in sidelink communication, and storage medium
CN109952806B (zh) Sr配置的确定方法、装置及存储介质
WO2020133055A1 (zh) 非授权频段的资源占用方法、装置、终端和存储介质
WO2020093326A1 (zh) 信息发送方法、接收方法、装置及存储介质
US20230146227A1 (en) Method and device for requesting transmission resource for relay in nr v2x
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
WO2020093324A1 (zh) 控制信息发送方法、接收方法、装置及存储介质
WO2021016940A1 (zh) V2x通信的同步信号配置方法、装置及存储介质
CN112205045B (zh) 非地面网络中的混合自动重传请求
US20220240328A1 (en) Unicast connection establishment method and apparatus, and storage medium
WO2023210547A1 (en) Method, user equipment and network node
CN114650582A (zh) 一种被用于无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018939764

Country of ref document: EP

Effective date: 20210608