WO2020093319A1 - Electrode with trigger pocket - Google Patents

Electrode with trigger pocket Download PDF

Info

Publication number
WO2020093319A1
WO2020093319A1 PCT/CN2018/114604 CN2018114604W WO2020093319A1 WO 2020093319 A1 WO2020093319 A1 WO 2020093319A1 CN 2018114604 W CN2018114604 W CN 2018114604W WO 2020093319 A1 WO2020093319 A1 WO 2020093319A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
distal
pocket
proximal
backing layer
Prior art date
Application number
PCT/CN2018/114604
Other languages
French (fr)
Inventor
Yi ZHONG
Lijuan YAO
Ruoxi SUN
Dong Shen
Original Assignee
Covidien Lp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien Lp filed Critical Covidien Lp
Priority to PCT/CN2018/114604 priority Critical patent/WO2020093319A1/en
Publication of WO2020093319A1 publication Critical patent/WO2020093319A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/257Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]

Definitions

  • This disclosure relates to electrodes, for example, electrodes for physiological parameter monitoring.
  • Electrodes may be used for sensing one or more physiological parameters of a subject.
  • electroencephalogram (EEG) electrodes attached to the scalp of a patient may be used to detect electrical activity generated within the brain of the subject.
  • the signals generated by electrodes, for example, EEG electrodes, may be analyzed to detect anomalies or patterns indicative of physiological conditions, for example, abnormal brain function.
  • an electrode includes a distal backing layer and an electrically conductive connector.
  • the distal backing layer defines a depressible trigger pocket, which defines a distal opening.
  • the trigger pocket is configured to deform from an initial configuration to a depressed configuration in response to a proximal force applied to the distal backing layer.
  • the conductive connector defines a proximal connector surface and a distal eyelet that extends distally through the distal opening in the distal backing layer.
  • the electrically conductive connector is configured to move proximally in response to the proximal force to complete a conductive path with skin of a patient.
  • a method includes aligning an electrode with skin of a patient.
  • the electrode includes a distal backing layer and an electrically conductive connector.
  • the distal backing layer defines a depressible trigger pocket in an initial configuration.
  • the trigger pocket defines a distal opening.
  • the electrically conductive connector defines a proximal connector surface and a distal eyelet that extends distally through the distal opening in the distal backing layer.
  • the method further includes applying a proximal force to the distal backing layer of the electrode to cause the trigger pocket to deform from the initial configuration to a depressed configuration.
  • the electrically conductive connector moves proximally in response to the proximal force to complete a conductive path with the skin of the patient.
  • a method in some examples, includes forming a distal backing layer that defines a depressible trigger pocket.
  • the trigger pocket defines a distal opening.
  • the trigger pocket is configured to deform from an initial configuration to a depressed configuration in response to a proximal force applied to the distal backing layer.
  • the technique further includes inserting a distal eyelet of an electrically conductive connector distally through the distal opening in the distal backing layer of the electrode.
  • FIG. 1A is a conceptual cross-sectional diagram illustrating an example electrode including a distal backing layer defining a depressible trigger pocket.
  • FIG. 1B is a conceptual perspective view of the electrode of FIG. 1A.
  • FIG. 1C is a conceptual cross-sectional diagram illustrating the electrode of FIG. 1A in an initial configuration.
  • FIG. 1D is a conceptual cross-sectional diagram illustrating a final configuration of the electrode of FIG. 1C with the trigger pocket in a depressed configuration.
  • FIG. 2 is a flow diagram illustrating an example technique of applying an electrode to a patient.
  • FIG. 3 is a flow diagram illustrating an example technique of making an electrode for sensing electrical signals from a patient.
  • Electrodes for example, EEG electrodes or electrocardiogram (ECG) , techniques for making electrodes, and techniques for applying electrodes to the skin of a patient.
  • EEG electrocardiogram
  • Electrodes may be used to sense electrical signals from a patient.
  • EEG electrodes may be placed in electrically conductive contact with skin of a patient to sense electrical signals from the patient and transmit the signal to a monitoring device. If an electrode is applied to skin of a patient with insufficient force, then the electrode may not completely engage with the skin. If the electrode is applied with a relatively high force, then electrically conductive gel applied to the skin to facilitate signal sensing may spread out, interfering with adherence or retention of the electrode on the skin.
  • electrodes according to the disclosure may define a trigger pocket configured to provide tactile feedback to a clinician, for example, while applying the electrode to skin of a patient. Such feedback may guide the clinician to apply adequate force while applying the electrode, and provide better contact with skin to create an electrically conductive path for sensing electrical signals from the patient through the electrode.
  • FIG. 1A is a conceptual cross-sectional diagram illustrating an example electrode 10 including a distal backing layer 12 defining a depressible trigger pocket 14. The cross-section taken is taken through, for example, a center of the electrode 10 alone an x-z plane (orthogonal x-y-z axes are shown in the figures for ease of description only) .
  • FIG. 1B is a conceptual perspective view of electrode 10 of FIG. 1A.
  • electrode 10 may be used to sense one or more physiological parameters of a patient, for example, electrical signals indicative of one or more physiological parameters.
  • electrode 10 may be applied to a skin of a patient, and detect electrical activity of a brain of a patient or of a heart of a patient.
  • electrode 10 includes an electroencephalogram (EEG) electrode.
  • EEG electroencephalogram
  • Electrode 10 includes distal backing layer 12.
  • distal backing layer 12 may include a flexible or resilient material.
  • distal backing layer 12 may include a polymer, a woven material, a nonwoven material, paper, or any suitable material, or combinations, blends, or composites thereof.
  • the polymer includes polyethylene terephthalate (PET) .
  • Distal backing layer 12, or a portion of distal backing layer 12 may be configured to deform in response to a force, for example, a proximal force applied toward the patient.
  • the proximal force can be, for example, applied manually by a clinician with the clinician’s hands or with the aid of a device.
  • distal backing layer 12 defines a transverse thickness between 0.05 millimeters (0.002 inches) and 0.25 millimeters (0.010 inches) , where a thickness is measured in the z-axis direction shown in FIG. 1A.
  • trigger pocket 14 includes a raised protrusion extending distally (away from the patient) from distal backing layer 12.
  • trigger pocket 14 has a circular cross-section (the cross-section being taken in the x-y plane) , and the center of trigger pocket 14 is aligned with the center of distal backing layer 12.
  • trigger pocket 14 may have a different shape, or extend from a different region of distal backing layer 20 other than the center.
  • trigger pocket 14 may define a cross-section having an n-sided polygonal contour, where n is greater than 2.
  • Trigger pocket 14 may be offset from the center of distal backing layer 12, or disposed along a peripheral region of distal backing layer 12. In some examples, trigger pocket 14 has a distal pocket height between 0.069 millimeters (0.027 inches) and 0.889 millimeters (0.035 inches) , where the height is measured in the z-axis direction shown in Fig. 1A.
  • trigger pocket 14 has a pocket width (at its widest portion) between 14 millimeters (0.55 inches) and 17.78 millimeters (0.70 inches) , where the width is measured in the x-axis direction shown in FIG. 1A.
  • Trigger pocket 14 may be configured to generate a tactile feedback in response to the proximal force.
  • trigger pocket 14 defines a distal opening 16 in distal backing layer 12.
  • One or more electrically conductive components of electrode 10 may pass electrical signals detected from the patient through electrically conductive elements positioned adjacent to or through distal opening 16.
  • distal opening 16 has a substantially circular periphery (in the x-y plane) .
  • distal opening 16 may have a curved, polygonal, rounded corner polygonal periphery, or combinations thereof, for example, ellipsoidal, oblong, square, or rectangular.
  • Electrode 10 includes an electrically conductive connector 18.
  • Conductive connector may include any suitable conductive composition, for example, a metal or an alloy.
  • Conductive connector 18 defines a proximal connector surface 20 and a distal eyelet 22.
  • Proximal connector surface 20 is configured to face the patient when electrode 10 is attached to the patient (e.g., to a skin surface of the patient) .
  • Distal eyelet 22 extends distally through distal opening 16 in distal backing layer 12.
  • Conductive connector 18 may be in contact with portions of trigger pocket 14 adjacent distal opening 16, and move (e.g., in the z-axis direction) as trigger pocket 14 is deformed.
  • conductive connector 18 is configured to move proximally (e.g., along the z-axis direction) in response to a proximal force applied to electrode 10 to complete an electrically conductive path with a skin of the patient, as described with reference to FIGS. 1C and 1D.
  • trigger pocket 14 defines a pocket volume 24, for example, in an interior of electrode 10.
  • the pocket volume may include (e.g., contain) an electrically conductive composition.
  • the conductive composition may include an electrically conductive gel, or any other composition that promotes the formation of an electrically conductive path between conductive connector 18 and the skin of the patient.
  • electrode 10 includes a pocket support 26 in pocket volume 24.
  • Pocket support 26 may space a region of backing layer 12 or of trigger pocket 14 from other elements of electrode 10.
  • pocket support 26 may support trigger pocket 14 and maintain pocket volume 24.
  • Pocket support 26 may also space conductive connector 18 from other elements of electrode 10, for example, by retaining a surface of trigger pocket 14 adjacent distal opening 16 through which conductive connector 18 may pass away from the other elements of electrode 10.
  • pocket support 26 is in the form of a ring or cylinder along a peripheral region of trigger pocket 14.
  • Pocket support 26 may include one or more of metal, alloy, polymer, ceramic, glass, paper, or any suitable material or combinations thereof.
  • electrode 10 includes a pad 28.
  • Pad 28 may be spaced from conductive connector 18, for example, by pocket support 26.
  • Pad 28 defines a distal pad surface 30 facing proximal connector surface 20.
  • Pad 28 defines a proximal pad surface 32 opposite distal pad surface 30.
  • proximal pad surface 32, or portions of proximal pad surface 32 may contact skin of a patient when electrode 10 is applied to the skin surface.
  • electrode 10 include an electrically conductive gel layer 34 in contact with proximal pad surface 32. Conductive gel layer 34 may promote the formation of an electrically conductive path between conductive connector 18 and the skin of the patient when electrode 10 is applied to the skin surface.
  • Conductive gel layer 34 may include substantially the same composition as the conductive composition in pocket volume 24, or a different composition.
  • pad 28 may be semi-permeable, permeable, or porous, or otherwise capable of retaining a volume of a conductive composition. In some such examples, some or all of conductive gel layer 34 may be retained within a bulk of pad 28.
  • electrode 10 may include a plurality of flexible tines 36.
  • plurality of flexible tines 36 may extend proximally from proximal pad surface 32 of pad 28.
  • conductive gel layer 34 may extend across some or all of the plurality of tines 36.
  • each of the tines of plurality of flexible tines 36 may define respective proximal tips, and some or all of the proximal tips may extend proximally through conductive gel layer 34.
  • plurality of flexible tines 36 includes tines similar to that in a ZipPrep TM electrode (Aspect Medical Systems of Framingham, Massachusetts, of which Medtronic plc is the parent entity) .
  • plurality of flexible tines 36 may include a metal, an alloy, or a polymer.
  • plurality of flexible tines 36 includes a non-conductive composition, for example, nylon.
  • Electrode 10 may include a peripheral support configured to improve the structural integrity of electrode 10.
  • the peripheral support may include a foam ring 38, which may contact distal backing layer 12 and be proximal to distal backing layer 12.
  • foam ring 38 surrounds trigger pocket 14.
  • Foam ring 38 may have any suitable shape, for example, substantially conforming to a peripheral shape of electrode 10, or of trigger pocket 14.
  • foam ring 38 is a cylindrical ring.
  • Electrode 10 may include an adhesive layer 40 configured to help promote adhesion or releasable retention of electrode 10 on the skin of the patient.
  • Adhesive layer 40 may be in in contact with a proximal surface of foam ring 38, or on a proximal surface of electrode 10 facing the skin of the patient.
  • adhesive layer 40 may surround pad 28 or internal conductive components of electrode 10.
  • electrode 10 may include a releasable liner 42 in releasable contact with adhesive layer 40. Releasable liner 42 may protect adhesive layer 40 from inadvertent contact with the environment and surfaces before electrode 10 is applied, and may be removed from electrode 10 to reveal adhesive layer 40 prior to application of electrode 10.
  • Releasable liner 42 may include a polymer, paper, woven, nonwoven, or any suitable release material or combinations thereof.
  • electrode 10 further includes an electrically conductive stud 44.
  • Conductive stud 44 may include any suitable electrically conductive material, for example, a metal, an alloy, or combinations thereof.
  • conductive stud 44 may have a shape conforming to an exterior surface of eyelet 18, and may be flexibly deformable to contact the exterior surface of eyelet 18.
  • conductive stud 44 may be distal to eyelet 18, and configured to conductively contact eyelet 18 in response to a proximal force.
  • FIG. 1C is a cross-sectional diagram illustrating electrode 10 of FIG. 1A in an initial configuration 10A.
  • FIG. 1D is a conceptual cross-sectional diagram illustrating electrode 10 of FIG. 1A in a depressed configuration 10B.
  • Trigger pocket 14 is configured to deform from an initial configuration 14A to a depressed configuration 14B, in response to a proximal pressure or force F (applied in a direction toward the exterior surface of skin 46 of the patient or another surface to which electrode 10 is applied, which is in the z-axis direction in FIG. 1C) .
  • trigger pocket 14 to depressed configuration 14B causes the electrically conductive components of electrode 10 to electrically conductively couple, resulting in completion of an electrically conductive path or connection between a skin 46 and a conductive lead.
  • This applied pressure F also may promote the adhesion of electrode 10 to skin 46.
  • stud 44 When trigger pocket 14 is depressed to depressed configuration 14B, stud 44 may transform from an initial configuration 44A to a depressed configuration 44B, and may conductively contact, for example, snugly contact, an exterior surface of conductive connector 18. In depressed configuration 44B, stud 44 may be connected to a conductive lead, for example, an electrical cable through which electrical signals sensed by electrode 18 are sent.
  • pocket volume 24 may be initially filled with an electrically conductive composition, in initial configuration 10A of electrode 10.
  • the conductive composition from pocket volume 24 may permeate or migrate into or through pad 28, or into a region between plurality of flexible tines 36.
  • conductive composition in pocket 24 may conductively contact conductive gel layer 34 in depressed configuration 10B of electrode 10, completing a conductive path between skin 46 and conductive connector 18.
  • plurality of flexible tines 36 may deform from an initial configuration 36A to a depressed configuration 36B.
  • respective tips of plurality of flexible tines 36 may at least partially penetrate and clear away an external, non-conductive layer of dead skin cells, exposing more conductive cells (e.g., a layer of cells) of skin 46.
  • the depression of trigger pocket 14 may provide tactile or audio feedback indicating that sufficient pressure has been applied to engage plurality of flexible tines 36 with skin 46, increasing patient comfort by reducing or avoiding further penetration or pushing of plurality of tines 36 into skin 46.
  • the tactile feedback may also help reduce or avoid excessive pressure applied to electrode 10, and provide better retention of conductive gel layer 34 by reducing or avoiding spreading out of conductive gel layer 34 beyond electrode 10 in depressed configuration 10B.
  • releasable liner 40 is removed, for example, by a clinician, in preparation for applying electrode 10 to skin 46.
  • adhesive layer 40 is exposed and available to contact skin 46 to promote adhesion and retention of electrode 10 on skin 46.
  • FIG. 2 is a flow diagram illustrating an example technique of using electrode 10, e.g., to sense one more physiological signals or other electrical activity of a patient. While the example technique of FIG. 2 is described with reference to example electrode 10 of FIGS. 1A to 1D, the example technique of FIG. 2 may be used with any other example electrodes according to the disclosure.
  • the example technique of FIG. 2 includes attaching an electrically conductive lead to electrode 10, for example, to stud 44 of electrode 10 (50) .
  • a clinician may attach the conductive lead to stud 44 extending from distal backing layer 12 of electrode 10 (50) .
  • the conductive lead may be configured to be connected to a monitoring device, for example, an electroencephalogram (EEG) device or a multi-parametric monitor, to monitor signals sensed by electrode 10 and sent through the conductive lead.
  • EEG electroencephalogram
  • the example technique of FIG. 2 includes removing releasable liner 42 to expose adhesive layer 40 (52) .
  • a clinician may partly or completely remove releasable liner 42 before or during contacting skin 46, or otherwise during positioning or repositioning electrode 10.
  • the example technique of FIG. 2 includes aligning electrode 10 with skin 46 of the patient (54) and applying electrode 10 to skin 46.
  • a clinician may bring electrode 10 close to skin 46, orient or re-orient electrode 10, and contact skin 46 with a surface of electrode 10.
  • the aligning (54) may include contacting skin 46 with adhesive layer 40.
  • the aligning (54) may include removing electrode 10 from skin 46 and re-applying electrode 46 to skin 46.
  • the example technique of FIG. 2 includes applying proximal force F toward skin 46 of the patient to distal backing layer 12 of electrode 10 to cause trigger pocket 14 to deform from initial configuration 14A to depressed configuration 14B (54) .
  • the applying proximal force F (56) may cause adhesive layer 40 to engage with skin 46, such as the scalp or another skin surface, retaining the electrode in place.
  • the applying proximal force F (56) may also cause plurality of tines 36 to engage with skin 46, for example, by at least partly penetrating and cleaning skin 46.
  • Trigger pocket 14 may provide tactile and/or audio feedback (e.g., a popping noise) in response to applying proximal force F, indicating to the clinician that sufficient force has been applied, and that a conductive path has been completed between skin 46 and conductive connector 18 (or stud 44) .
  • conductive connector 18 may move proximally in response to proximal force F to complete the conductive path with skin 46.
  • electrode 10 may be applied to skin 46, and electrical signals may be monitored via electrode 10.
  • the clinician may apply the proximal force F to electrode 10 for any suitable duration of time to adhere adhesive layer 40 to the skin surface, such as, but not limited to 2 seconds to 10 seconds, such as about 5 seconds.
  • the electrically conductive lead may be electrically connected to stud 44 of electrode 10 after electrode 10 is applied to skin 46.
  • FIG. 3 is a flow diagram illustrating an example technique of making an electrode configured to provide tactile feedback to a user when the electrode is applied to a surface. While the example technique of FIG. 3 is described with reference to example electrode 10 of FIGS. 1A to 1D, the example technique of FIG. 3 may be used to make any other example electrodes according to the disclosure.
  • the example technique of FIG. 3 includes forming distal backing layer 12 of electrode 10 (60) .
  • Distal backing layer 12 defines depressible trigger pocket 14, and trigger pocket 14 defines distal opening 16 in distal backing layer 12, as described with reference to FIGS. 1A to 1D.
  • the forming (60) may include extruding, molding, stamping, cutting, punching, machining, or additively manufacturing distal backing layer 12, or combinations thereof.
  • the example technique of FIG. 3 includes inserting distal eyelet 22 of conductive connector 18 distally through distal opening 16 in distal backing layer 12 of electrode 10 (62) .
  • the example technique of FIG. 3 includes introducing a conductive composition in electrode 10 (64) .
  • the introducing (64) may include at least one of introducing a conductive composition in trigger pocket 24, or conductive gel layer 34.
  • the introducing (64) may include injecting, spraying, coating, dipping, or otherwise contacting one or more regions, surfaces, or volumes of electrode 10 with the conductive composition.
  • the example technique of FIG. 3 includes applying adhesive layer 40 to a surface of electrode 10 (66) .
  • the applying may include spraying, coating, drawing, or otherwise contacting adhesive layer 40 on the surface.
  • the example technique of FIG. 3 includes applying releasable liner 42 over adhesive layer 42 (68) .
  • releasable liner 42 may protect adhesive layer 42 and prevent premature or inadvertent adhesion of electrode 10 to a surface.
  • an electrode comprises a distal backing layer defining a depressible trigger pocket, wherein the trigger pocket defines a distal opening, and wherein the trigger pocket is configured to deform from an initial configuration to a depressed configuration in response to a proximal force applied to the distal backing layer; and an electrically conductive connector defining a proximal connector surface and a distal eyelet, wherein the distal eyelet extends distally through the distal opening in the distal backing layer, and wherein the electrically conductive connector is configured to move proximally in response to the proximal force to complete an electrically conductive path with skin of a patient.
  • the trigger pocket defines a pocket volume comprising a conductive composition.
  • the electrode further comprises a pocket support in the pocket volume, wherein the pocket support surrounds the conductive connector.
  • the electrode further comprises a pad proximal to the conductive connector, wherein the pad is spaced from the conductive connector in the initial configuration of the trigger pocket, wherein the pad defines a distal pad surface facing the proximal connector surface, and wherein the pad defines a proximal pad surface opposing the distal pad surface; and a plurality of flexible tines extending proximally from the proximal pad surface of the pad.
  • the electrode further comprises an electrically conductive gel layer in contact with the proximal pad surface and extending across the plurality of tines.
  • the flexible tines of the plurality of flexible tines define respective proximal tips extending proximally through the conductive gel layer
  • the distal backing layer comprises a polymer
  • the polymer comprises polyethylene terephthalate (PET) .
  • the distal backing layer defines a transverse thickness between 0.05 millimeters (0.002 inches) and 0.25 millimeters (0.010 inches) .
  • the trigger pocket has a distal pocket height between 0.069 millimeters (0.027 inches) and 0.889 millimeters (0.035 inches) .
  • the trigger pocket has a pocket width between 14 millimeters (0.55 inches) and 17.78 millimeters (0.70 inches) .
  • the electrode further comprises a foam ring in contact with the distal backing layer and proximal to the distal backing layer, wherein the foam ring surrounds the trigger pocket; and an adhesive layer in contact with a proximal surface of the foam ring.
  • the electrode further comprises a releasable liner in releasable contact with the adhesive layer.
  • the electrode further comprises a conductive stud distal to the eyelet and configured to conductively contact the eyelet in response to the proximal force.
  • the trigger pocket is configured to generate a tactile feedback in response to the proximal force.
  • a method comprises aligning an electrode with skin of a patient, wherein the electrode comprises: a distal backing layer defining a depressible trigger pocket in an initial configuration, wherein the trigger pocket defines a distal opening; and an electrically conductive connector defining a proximal connector surface and a distal eyelet, wherein the distal eyelet extends distally through the distal opening in the distal backing layer.
  • the method further comprises applying a proximal force to the distal backing layer of the electrode to cause the trigger pocket to deform from the initial configuration to a depressed configuration, wherein the electrically conductive connector moves proximally in response to the proximal force to complete an electrically conductive path with the skin of the patient.
  • the electrode further comprises an electrically conductive stud proximal to the eyelet, and wherein applying the proximal force causes the conductive stud to conductively contact the eyelet.
  • the electrode further comprises a pad proximal to the electrically conductive connector, wherein the pad is spaced from the electrically conductive connector in the initial configuration of the trigger pocket, wherein the pad defines a distal pad surface facing the proximal connector surface, and wherein the pad defines a proximal pad surface opposing the distal pad surface; and a plurality of flexible tines extending proximally from the proximal pad surface of the pad, and applying the proximal force causes the plurality of flexible tines to contact the skin of the patient.
  • the method further comprises attaching a conductive lead to the electrically conductive connector.
  • a method of forming an electrode comprises forming a distal backing layer defining a depressible trigger pocket, wherein the trigger pocket defines a distal opening, and wherein the trigger pocket is configured to deform from an initial configuration to a depressed configuration in response to a proximal force applied to the distal backing layer; and inserting a distal eyelet of an electrically conductive connector distally through the distal opening in the distal backing layer of the electrode.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

An electrode (10) includes a distal backing layer (12) and an electrically conductive connector (18). The distal backing layer (12) defines a depressible trigger pocket (14), which defines a distal opening (16). The trigger pocket (14) is configured to deform from an initial configuration to a depressed configuration in response to a proximal force applied to the distal backing layer (12). In some examples, the electrically conductive connector (18) defines a proximal connector surface (20) and a distal eyelet (22) that extends distally through the distal opening (16) in the distal backing layer (12). The conductive connector (18) is configured to move proximally in response to the proximal force to complete a conductive path with skin of a patient. An example technique includes aligning the electrode (10) with the skin of the patient, and applying a proximal force to the distal backing layer (12).

Description

ELECTRODE WITH TRIGGER POCKET TECHNICAL FIELD
This disclosure relates to electrodes, for example, electrodes for physiological parameter monitoring.
BACKGROUND
Electrodes may be used for sensing one or more physiological parameters of a subject. For example, electroencephalogram (EEG) electrodes attached to the scalp of a patient may be used to detect electrical activity generated within the brain of the subject. The signals generated by electrodes, for example, EEG electrodes, may be analyzed to detect anomalies or patterns indicative of physiological conditions, for example, abnormal brain function.
SUMMARY
The disclosure describes electrodes, techniques for adhering an electrode to a patient, and techniques for making electrodes. In some examples, an electrode includes a distal backing layer and an electrically conductive connector. The distal backing layer defines a depressible trigger pocket, which defines a distal opening. The trigger pocket is configured to deform from an initial configuration to a depressed configuration in response to a proximal force applied to the distal backing layer. The conductive connector defines a proximal connector surface and a distal eyelet that extends distally through the distal opening in the distal backing layer. The electrically conductive connector is configured to move proximally in response to the proximal force to complete a conductive path with skin of a patient.
In some examples, a method includes aligning an electrode with skin of a patient. The electrode includes a distal backing layer and an electrically conductive connector. The distal backing layer defines a depressible trigger pocket in an initial configuration. The trigger pocket defines a distal opening. The electrically conductive connector defines a proximal connector surface and a distal eyelet that extends distally through the distal opening in the distal backing layer. The method further includes applying a proximal force to the distal backing layer of the electrode to cause the trigger pocket to deform from the initial configuration to a depressed configuration. The electrically conductive connector moves proximally in response to the proximal force to complete a conductive path with the skin of the patient.
In some examples, a method includes forming a distal backing layer that defines a depressible trigger pocket. The trigger pocket defines a distal opening. The trigger pocket is  configured to deform from an initial configuration to a depressed configuration in response to a proximal force applied to the distal backing layer. The technique further includes inserting a distal eyelet of an electrically conductive connector distally through the distal opening in the distal backing layer of the electrode.
The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1A is a conceptual cross-sectional diagram illustrating an example electrode including a distal backing layer defining a depressible trigger pocket.
FIG. 1B is a conceptual perspective view of the electrode of FIG. 1A.
FIG. 1C is a conceptual cross-sectional diagram illustrating the electrode of FIG. 1A in an initial configuration.
FIG. 1D is a conceptual cross-sectional diagram illustrating a final configuration of the electrode of FIG. 1C with the trigger pocket in a depressed configuration.
FIG. 2 is a flow diagram illustrating an example technique of applying an electrode to a patient.
FIG. 3 is a flow diagram illustrating an example technique of making an electrode for sensing electrical signals from a patient.
DETAILED DESCRIPTION
This disclosure describes electrodes, for example, EEG electrodes or electrocardiogram (ECG) , techniques for making electrodes, and techniques for applying electrodes to the skin of a patient.
Electrodes may be used to sense electrical signals from a patient. For example, EEG electrodes may be placed in electrically conductive contact with skin of a patient to sense electrical signals from the patient and transmit the signal to a monitoring device. If an electrode is applied to skin of a patient with insufficient force, then the electrode may not completely engage with the skin. If the electrode is applied with a relatively high force, then electrically conductive gel applied to the skin to facilitate signal sensing may spread out, interfering with adherence or retention of the electrode on the skin. In some examples, electrodes according to the disclosure may define a trigger pocket configured to provide tactile feedback to a clinician, for example, while applying the electrode to skin of a patient. Such feedback may guide the  clinician to apply adequate force while applying the electrode, and provide better contact with skin to create an electrically conductive path for sensing electrical signals from the patient through the electrode.
FIG. 1A is a conceptual cross-sectional diagram illustrating an example electrode 10 including a distal backing layer 12 defining a depressible trigger pocket 14. The cross-section taken is taken through, for example, a center of the electrode 10 alone an x-z plane (orthogonal x-y-z axes are shown in the figures for ease of description only) . FIG. 1B is a conceptual perspective view of electrode 10 of FIG. 1A. In some examples, electrode 10 may be used to sense one or more physiological parameters of a patient, for example, electrical signals indicative of one or more physiological parameters. In some examples, electrode 10 may be applied to a skin of a patient, and detect electrical activity of a brain of a patient or of a heart of a patient. In some examples, electrode 10 includes an electroencephalogram (EEG) electrode.
Electrode 10 includes distal backing layer 12. In some examples, distal backing layer 12 may include a flexible or resilient material. For example, distal backing layer 12 may include a polymer, a woven material, a nonwoven material, paper, or any suitable material, or combinations, blends, or composites thereof. In some examples, the polymer includes polyethylene terephthalate (PET) . Distal backing layer 12, or a portion of distal backing layer 12, may be configured to deform in response to a force, for example, a proximal force applied toward the patient. The proximal force can be, for example, applied manually by a clinician with the clinician’s hands or with the aid of a device. In some examples, distal backing layer 12 defines a transverse thickness between 0.05 millimeters (0.002 inches) and 0.25 millimeters (0.010 inches) , where a thickness is measured in the z-axis direction shown in FIG. 1A.
Distal backing layer 12 defines trigger pocket 14. In some examples, trigger pocket 14 includes a raised protrusion extending distally (away from the patient) from distal backing layer 12. In the example of FIG. 1A, trigger pocket 14 has a circular cross-section (the cross-section being taken in the x-y plane) , and the center of trigger pocket 14 is aligned with the center of distal backing layer 12. However, trigger pocket 14 may have a different shape, or extend from a different region of distal backing layer 20 other than the center. For example, trigger pocket 14 may define a cross-section having an n-sided polygonal contour, where n is greater than 2. In some examples, the cross-section may have a curved contour, for example, circular, ellipsoid, or other curved contours, or their combinations. Trigger pocket 14 may be offset from the center of distal backing layer 12, or disposed along a peripheral region of distal backing layer 12. In some examples, trigger pocket 14 has a distal pocket height between 0.069 millimeters (0.027 inches) and 0.889 millimeters (0.035 inches) , where the height is measured in the z-axis direction shown in Fig. 1A. In some examples, trigger pocket 14 has a pocket width  (at its widest portion) between 14 millimeters (0.55 inches) and 17.78 millimeters (0.70 inches) , where the width is measured in the x-axis direction shown in FIG. 1A. Trigger pocket 14 may be configured to generate a tactile feedback in response to the proximal force.
In some examples, trigger pocket 14 defines a distal opening 16 in distal backing layer 12. One or more electrically conductive components of electrode 10 may pass electrical signals detected from the patient through electrically conductive elements positioned adjacent to or through distal opening 16. In some examples, distal opening 16 has a substantially circular periphery (in the x-y plane) . In other examples, distal opening 16 may have a curved, polygonal, rounded corner polygonal periphery, or combinations thereof, for example, ellipsoidal, oblong, square, or rectangular.
Electrode 10 includes an electrically conductive connector 18. Conductive connector may include any suitable conductive composition, for example, a metal or an alloy. Conductive connector 18 defines a proximal connector surface 20 and a distal eyelet 22. Proximal connector surface 20 is configured to face the patient when electrode 10 is attached to the patient (e.g., to a skin surface of the patient) . Distal eyelet 22 extends distally through distal opening 16 in distal backing layer 12. Conductive connector 18 may be in contact with portions of trigger pocket 14 adjacent distal opening 16, and move (e.g., in the z-axis direction) as trigger pocket 14 is deformed. In some examples, conductive connector 18 is configured to move proximally (e.g., along the z-axis direction) in response to a proximal force applied to electrode 10 to complete an electrically conductive path with a skin of the patient, as described with reference to FIGS. 1C and 1D.
In some examples, trigger pocket 14 defines a pocket volume 24, for example, in an interior of electrode 10. In some examples, the pocket volume may include (e.g., contain) an electrically conductive composition. The conductive composition may include an electrically conductive gel, or any other composition that promotes the formation of an electrically conductive path between conductive connector 18 and the skin of the patient.
In some examples, electrode 10 includes a pocket support 26 in pocket volume 24. Pocket support 26 may space a region of backing layer 12 or of trigger pocket 14 from other elements of electrode 10. For example, pocket support 26 may support trigger pocket 14 and maintain pocket volume 24. Pocket support 26 may also space conductive connector 18 from other elements of electrode 10, for example, by retaining a surface of trigger pocket 14 adjacent distal opening 16 through which conductive connector 18 may pass away from the other elements of electrode 10. In some examples, pocket support 26 is in the form of a ring or cylinder along a peripheral region of trigger pocket 14. Pocket support 26 may include one or  more of metal, alloy, polymer, ceramic, glass, paper, or any suitable material or combinations thereof.
In some examples, electrode 10 includes a pad 28. Pad 28 may be spaced from conductive connector 18, for example, by pocket support 26. Pad 28 defines a distal pad surface 30 facing proximal connector surface 20. Pad 28 defines a proximal pad surface 32 opposite distal pad surface 30. In some examples, proximal pad surface 32, or portions of proximal pad surface 32, may contact skin of a patient when electrode 10 is applied to the skin surface. In some examples, electrode 10 include an electrically conductive gel layer 34 in contact with proximal pad surface 32. Conductive gel layer 34 may promote the formation of an electrically conductive path between conductive connector 18 and the skin of the patient when electrode 10 is applied to the skin surface. Conductive gel layer 34 may include substantially the same composition as the conductive composition in pocket volume 24, or a different composition. In some examples, pad 28 may be semi-permeable, permeable, or porous, or otherwise capable of retaining a volume of a conductive composition. In some such examples, some or all of conductive gel layer 34 may be retained within a bulk of pad 28.
In some examples, electrode 10 may include a plurality of flexible tines 36. For example, plurality of flexible tines 36 may extend proximally from proximal pad surface 32 of pad 28. In some examples, conductive gel layer 34 may extend across some or all of the plurality of tines 36. For example, each of the tines of plurality of flexible tines 36 may define respective proximal tips, and some or all of the proximal tips may extend proximally through conductive gel layer 34. In some examples, plurality of flexible tines 36 includes tines similar to that in a ZipPrep TM electrode (Aspect Medical Systems of Framingham, Massachusetts, of which Medtronic plc is the parent entity) . In some embodiments, plurality of flexible tines 36 may include a metal, an alloy, or a polymer. In some examples, plurality of flexible tines 36 includes a non-conductive composition, for example, nylon.
Electrode 10 may include a peripheral support configured to improve the structural integrity of electrode 10. For example, the peripheral support may include a foam ring 38, which may contact distal backing layer 12 and be proximal to distal backing layer 12. In some examples, foam ring 38 surrounds trigger pocket 14. Foam ring 38 may have any suitable shape, for example, substantially conforming to a peripheral shape of electrode 10, or of trigger pocket 14. In some examples, foam ring 38 is a cylindrical ring.
Electrode 10 may include an adhesive layer 40 configured to help promote adhesion or releasable retention of electrode 10 on the skin of the patient. Adhesive layer 40 may be in in contact with a proximal surface of foam ring 38, or on a proximal surface of electrode 10 facing the skin of the patient. In some examples, adhesive layer 40 may surround pad 28 or  internal conductive components of electrode 10. In some examples, electrode 10 may include a releasable liner 42 in releasable contact with adhesive layer 40. Releasable liner 42 may protect adhesive layer 40 from inadvertent contact with the environment and surfaces before electrode 10 is applied, and may be removed from electrode 10 to reveal adhesive layer 40 prior to application of electrode 10. Releasable liner 42 may include a polymer, paper, woven, nonwoven, or any suitable release material or combinations thereof.
In some examples, electrode 10 further includes an electrically conductive stud 44. Conductive stud 44 may include any suitable electrically conductive material, for example, a metal, an alloy, or combinations thereof. In some examples, conductive stud 44 may have a shape conforming to an exterior surface of eyelet 18, and may be flexibly deformable to contact the exterior surface of eyelet 18. For example, conductive stud 44 may be distal to eyelet 18, and configured to conductively contact eyelet 18 in response to a proximal force.
FIG. 1C is a cross-sectional diagram illustrating electrode 10 of FIG. 1A in an initial configuration 10A. FIG. 1D is a conceptual cross-sectional diagram illustrating electrode 10 of FIG. 1A in a depressed configuration 10B. Trigger pocket 14 is configured to deform from an initial configuration 14A to a depressed configuration 14B, in response to a proximal pressure or force F (applied in a direction toward the exterior surface of skin 46 of the patient or another surface to which electrode 10 is applied, which is in the z-axis direction in FIG. 1C) . The deformation of trigger pocket 14 to depressed configuration 14B causes the electrically conductive components of electrode 10 to electrically conductively couple, resulting in completion of an electrically conductive path or connection between a skin 46 and a conductive lead. This applied pressure F also may promote the adhesion of electrode 10 to skin 46.
When trigger pocket 14 is depressed to depressed configuration 14B, stud 44 may transform from an initial configuration 44A to a depressed configuration 44B, and may conductively contact, for example, snugly contact, an exterior surface of conductive connector 18. In depressed configuration 44B, stud 44 may be connected to a conductive lead, for example, an electrical cable through which electrical signals sensed by electrode 18 are sent.
In some examples, pocket volume 24 may be initially filled with an electrically conductive composition, in initial configuration 10A of electrode 10. When trigger pocket 14 is depressed into deformed configuration 14B, the conductive composition from pocket volume 24 may permeate or migrate into or through pad 28, or into a region between plurality of flexible tines 36. Thus, conductive composition in pocket 24 may conductively contact conductive gel layer 34 in depressed configuration 10B of electrode 10, completing a conductive path between skin 46 and conductive connector 18.
In response to force F, plurality of flexible tines 36 may deform from an initial configuration 36A to a depressed configuration 36B. In the depressed configuration 36B, respective tips of plurality of flexible tines 36 may at least partially penetrate and clear away an external, non-conductive layer of dead skin cells, exposing more conductive cells (e.g., a layer of cells) of skin 46. In some examples, the depression of trigger pocket 14 may provide tactile or audio feedback indicating that sufficient pressure has been applied to engage plurality of flexible tines 36 with skin 46, increasing patient comfort by reducing or avoiding further penetration or pushing of plurality of tines 36 into skin 46. The tactile feedback may also help reduce or avoid excessive pressure applied to electrode 10, and provide better retention of conductive gel layer 34 by reducing or avoiding spreading out of conductive gel layer 34 beyond electrode 10 in depressed configuration 10B.
In FIG. 1C, releasable liner 40 is removed, for example, by a clinician, in preparation for applying electrode 10 to skin 46. Thus, in initial configuration 10A, adhesive layer 40 is exposed and available to contact skin 46 to promote adhesion and retention of electrode 10 on skin 46.
FIG. 2 is a flow diagram illustrating an example technique of using electrode 10, e.g., to sense one more physiological signals or other electrical activity of a patient. While the example technique of FIG. 2 is described with reference to example electrode 10 of FIGS. 1A to 1D, the example technique of FIG. 2 may be used with any other example electrodes according to the disclosure.
In some examples, the example technique of FIG. 2 includes attaching an electrically conductive lead to electrode 10, for example, to stud 44 of electrode 10 (50) . For example, a clinician may attach the conductive lead to stud 44 extending from distal backing layer 12 of electrode 10 (50) . The conductive lead may be configured to be connected to a monitoring device, for example, an electroencephalogram (EEG) device or a multi-parametric monitor, to monitor signals sensed by electrode 10 and sent through the conductive lead.
In some examples, the example technique of FIG. 2 includes removing releasable liner 42 to expose adhesive layer 40 (52) . For example, a clinician may partly or completely remove releasable liner 42 before or during contacting skin 46, or otherwise during positioning or repositioning electrode 10.
In some examples, the example technique of FIG. 2 includes aligning electrode 10 with skin 46 of the patient (54) and applying electrode 10 to skin 46. For example, a clinician may bring electrode 10 close to skin 46, orient or re-orient electrode 10, and contact skin 46 with a surface of electrode 10. In some examples, the aligning (54) may include contacting skin 46  with adhesive layer 40. The aligning (54) may include removing electrode 10 from skin 46 and re-applying electrode 46 to skin 46.
In some examples, the example technique of FIG. 2 includes applying proximal force F toward skin 46 of the patient to distal backing layer 12 of electrode 10 to cause trigger pocket 14 to deform from initial configuration 14A to depressed configuration 14B (54) . The applying proximal force F (56) may cause adhesive layer 40 to engage with skin 46, such as the scalp or another skin surface, retaining the electrode in place. The applying proximal force F (56) may also cause plurality of tines 36 to engage with skin 46, for example, by at least partly penetrating and cleaning skin 46. Trigger pocket 14 may provide tactile and/or audio feedback (e.g., a popping noise) in response to applying proximal force F, indicating to the clinician that sufficient force has been applied, and that a conductive path has been completed between skin 46 and conductive connector 18 (or stud 44) . For example, conductive connector 18 may move proximally in response to proximal force F to complete the conductive path with skin 46. In this way, electrode 10 may be applied to skin 46, and electrical signals may be monitored via electrode 10.
The clinician may apply the proximal force F to electrode 10 for any suitable duration of time to adhere adhesive layer 40 to the skin surface, such as, but not limited to 2 seconds to 10 seconds, such as about 5 seconds.
In other examples of the technique shown in FIG. 3, the electrically conductive lead may be electrically connected to stud 44 of electrode 10 after electrode 10 is applied to skin 46.
FIG. 3 is a flow diagram illustrating an example technique of making an electrode configured to provide tactile feedback to a user when the electrode is applied to a surface. While the example technique of FIG. 3 is described with reference to example electrode 10 of FIGS. 1A to 1D, the example technique of FIG. 3 may be used to make any other example electrodes according to the disclosure.
In some examples, the example technique of FIG. 3 includes forming distal backing layer 12 of electrode 10 (60) . Distal backing layer 12 defines depressible trigger pocket 14, and trigger pocket 14 defines distal opening 16 in distal backing layer 12, as described with reference to FIGS. 1A to 1D. The forming (60) may include extruding, molding, stamping, cutting, punching, machining, or additively manufacturing distal backing layer 12, or combinations thereof.
In some examples, the example technique of FIG. 3 includes inserting distal eyelet 22 of conductive connector 18 distally through distal opening 16 in distal backing layer 12 of electrode 10 (62) .
In some examples, the example technique of FIG. 3 includes introducing a conductive composition in electrode 10 (64) . The introducing (64) may include at least one of introducing a conductive composition in trigger pocket 24, or conductive gel layer 34. The introducing (64) may include injecting, spraying, coating, dipping, or otherwise contacting one or more regions, surfaces, or volumes of electrode 10 with the conductive composition.
In some examples, the example technique of FIG. 3 includes applying adhesive layer 40 to a surface of electrode 10 (66) . The applying may include spraying, coating, drawing, or otherwise contacting adhesive layer 40 on the surface. In some such examples, the example technique of FIG. 3 includes applying releasable liner 42 over adhesive layer 42 (68) . For example, releasable liner 42 may protect adhesive layer 42 and prevent premature or inadvertent adhesion of electrode 10 to a surface.
The following clauses provide some examples of the disclosure.
Clause 1: In some examples, an electrode comprises a distal backing layer defining a depressible trigger pocket, wherein the trigger pocket defines a distal opening, and wherein the trigger pocket is configured to deform from an initial configuration to a depressed configuration in response to a proximal force applied to the distal backing layer; and an electrically conductive connector defining a proximal connector surface and a distal eyelet, wherein the distal eyelet extends distally through the distal opening in the distal backing layer, and wherein the electrically conductive connector is configured to move proximally in response to the proximal force to complete an electrically conductive path with skin of a patient.
Clause 2: In some examples of the electrode of clause 1, the trigger pocket defines a pocket volume comprising a conductive composition.
Clause 3: In some examples of the electrode of clause 2, the electrode further comprises a pocket support in the pocket volume, wherein the pocket support surrounds the conductive connector.
Clause 4: In some examples of the electrode of any of clauses 1–3, the electrode further comprises a pad proximal to the conductive connector, wherein the pad is spaced from the conductive connector in the initial configuration of the trigger pocket, wherein the pad defines a distal pad surface facing the proximal connector surface, and wherein the pad defines a proximal pad surface opposing the distal pad surface; and a plurality of flexible tines extending proximally from the proximal pad surface of the pad.
Clause 5: In some examples of the electrode of clause 4, the electrode further comprises an electrically conductive gel layer in contact with the proximal pad surface and extending across the plurality of tines.
Clause 6: In some examples of the electrode of clause 5, the flexible tines of the plurality of flexible tines define respective proximal tips extending proximally through the conductive gel layer
Clause 7: In some examples of the electrode of any of clauses 1–6, the distal backing layer comprises a polymer
Clause 8: In some examples of the electrode of clause 7, the polymer comprises polyethylene terephthalate (PET) .
Clause 9: In some examples of the electrode of any of clauses 1–8, the distal backing layer defines a transverse thickness between 0.05 millimeters (0.002 inches) and 0.25 millimeters (0.010 inches) .
Clause 10: In some examples of the electrode of any of clauses 1–9, the trigger pocket has a distal pocket height between 0.069 millimeters (0.027 inches) and 0.889 millimeters (0.035 inches) .
Clause 11: In some examples of the electrode of any of clauses 1–10, the trigger pocket has a pocket width between 14 millimeters (0.55 inches) and 17.78 millimeters (0.70 inches) .
Clause 12: In some examples of the electrode of any of clauses 1–11, the electrode further comprises a foam ring in contact with the distal backing layer and proximal to the distal backing layer, wherein the foam ring surrounds the trigger pocket; and an adhesive layer in contact with a proximal surface of the foam ring.
Clause 13: In some examples of the electrode of clause 12, the electrode further comprises a releasable liner in releasable contact with the adhesive layer.
Clause 14: In some examples of the electrode of any of clauses 1–13, the electrode further comprises a conductive stud distal to the eyelet and configured to conductively contact the eyelet in response to the proximal force.
Clause 15: In some examples of the electrode of any of clauses 1–14, the trigger pocket is configured to generate a tactile feedback in response to the proximal force.
Clause 16: In some examples, a method comprises aligning an electrode with skin of a patient, wherein the electrode comprises: a distal backing layer defining a depressible trigger pocket in an initial configuration, wherein the trigger pocket defines a distal opening; and an electrically conductive connector defining a proximal connector surface and a distal eyelet, wherein the distal eyelet extends distally through the distal opening in the distal backing layer. The method further comprises applying a proximal force to the distal backing layer of the electrode to cause the trigger pocket to deform from the initial configuration to a depressed  configuration, wherein the electrically conductive connector moves proximally in response to the proximal force to complete an electrically conductive path with the skin of the patient.
Clause 17: In some examples of the method of clause 16, the electrode further comprises an electrically conductive stud proximal to the eyelet, and wherein applying the proximal force causes the conductive stud to conductively contact the eyelet.
Clause 18: In some examples of the method of clause 16 or clause 17, the electrode further comprises a pad proximal to the electrically conductive connector, wherein the pad is spaced from the electrically conductive connector in the initial configuration of the trigger pocket, wherein the pad defines a distal pad surface facing the proximal connector surface, and wherein the pad defines a proximal pad surface opposing the distal pad surface; and a plurality of flexible tines extending proximally from the proximal pad surface of the pad, and applying the proximal force causes the plurality of flexible tines to contact the skin of the patient.
Clause 19: In some examples of the electrode of any of clauses 16–18, the method further comprises attaching a conductive lead to the electrically conductive connector.
Clause 20: In some examples, a method of forming an electrode comprises forming a distal backing layer defining a depressible trigger pocket, wherein the trigger pocket defines a distal opening, and wherein the trigger pocket is configured to deform from an initial configuration to a depressed configuration in response to a proximal force applied to the distal backing layer; and inserting a distal eyelet of an electrically conductive connector distally through the distal opening in the distal backing layer of the electrode.
Various examples of the disclosure have been described. Any combination of the described systems, operations, or functions is contemplated. These and other examples are within the scope of the following claims.

Claims (16)

  1. An electrode comprising:
    a distal backing layer defining a depressible trigger pocket, wherein the trigger pocket defines a distal opening, and wherein the trigger pocket is configured to deform from an initial configuration to a depressed configuration in response to a proximal force applied to the distal backing layer; and
    an electrically conductive connector defining a proximal connector surface and a distal eyelet, wherein the distal eyelet extends distally through the distal opening in the distal backing layer, and wherein the electrically conductive connector is configured to move proximally in response to the proximal force to complete an electrically conductive path with skin of a patient.
  2. The electrode of claim 1, wherein the trigger pocket defines a pocket volume comprising a conductive composition.
  3. The electrode of claim 2, further comprising a pocket support in the pocket volume, wherein the pocket support surrounds the conductive connector.
  4. The electrode of claim 1, further comprising:
    a pad proximal to the conductive connector, wherein the pad is spaced from the conductive connector in the initial configuration of the trigger pocket, wherein the pad defines a distal pad surface facing the proximal connector surface, and wherein the pad defines a proximal pad surface opposing the distal pad surface; and
    a plurality of flexible tines extending proximally from the proximal pad surface of the pad.
  5. The electrode of claim 4, further comprising an electrically conductive gel layer in contact with the proximal pad surface and extending across the plurality of tines.
  6. The electrode of claim 5, wherein the flexible tines of the plurality of flexible tines define respective proximal tips extending proximally through the conductive gel layer.
  7. The electrode of claim 1, wherein the distal backing layer comprises a polymer.
  8. The electrode of claim 7, wherein the polymer comprises polyethylene terephthalate (PET) .
  9. The electrode of claim 1, wherein the distal backing layer defines a transverse thickness between 0.05 millimeters (0.002 inches) and 0.25 millimeters (0.010 inches) .
  10. The electrode of claim 1, wherein the trigger pocket has a distal pocket height between 0.069 millimeters (0.027 inches) and 0.889 millimeters (0.035 inches) .
  11. The electrode of claim 1, wherein the trigger pocket has a pocket width between 14 millimeters (0.55 inches) and 17.78 millimeters (0.70 inches) .
  12. The electrode of claim 1, further comprising:
    a foam ring in contact with the distal backing layer and proximal to the distal backing layer, wherein the foam ring surrounds the trigger pocket; and
    an adhesive layer in contact with a proximal surface of the foam ring.
  13. The electrode of claim 12, further comprising a releasable liner in releasable contact with the adhesive layer.
  14. The electrode of claim 1, further comprising a conductive stud distal to the eyelet and configured to conductively contact the eyelet in response to the proximal force.
  15. The electrode of claim 1, wherein the trigger pocket is configured to generate a tactile feedback in response to the proximal force.
  16. A method of forming an electrode, the method comprising:
    forming a distal backing layer defining a depressible trigger pocket, wherein the trigger pocket defines a distal opening, and wherein the trigger pocket is configured to deform from an initial configuration to a depressed configuration in response to a proximal force applied to the distal backing layer; and
    inserting a distal eyelet of an electrically conductive connector distally through the distal opening in the distal backing layer of the electrode.
PCT/CN2018/114604 2018-11-08 2018-11-08 Electrode with trigger pocket WO2020093319A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114604 WO2020093319A1 (en) 2018-11-08 2018-11-08 Electrode with trigger pocket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/114604 WO2020093319A1 (en) 2018-11-08 2018-11-08 Electrode with trigger pocket

Publications (1)

Publication Number Publication Date
WO2020093319A1 true WO2020093319A1 (en) 2020-05-14

Family

ID=70612412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114604 WO2020093319A1 (en) 2018-11-08 2018-11-08 Electrode with trigger pocket

Country Status (1)

Country Link
WO (1) WO2020093319A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204698547U (en) * 2015-06-16 2015-10-14 王吉丽 A kind of Novel electrocardiogram electrode clamp
CN105920731A (en) * 2016-04-11 2016-09-07 广州龙之杰科技有限公司 Physiotherapeutic electrode sheet for low-frequency electrotherapy
CN108209901A (en) * 2018-01-12 2018-06-29 北京工业大学 A kind of flexible Laplacian electrodes for detecting electro-physiological signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204698547U (en) * 2015-06-16 2015-10-14 王吉丽 A kind of Novel electrocardiogram electrode clamp
CN105920731A (en) * 2016-04-11 2016-09-07 广州龙之杰科技有限公司 Physiotherapeutic electrode sheet for low-frequency electrotherapy
CN108209901A (en) * 2018-01-12 2018-06-29 北京工业大学 A kind of flexible Laplacian electrodes for detecting electro-physiological signals

Similar Documents

Publication Publication Date Title
US8201330B1 (en) Physiological recording device or electrode
EP0571120A1 (en) Combined skin preparation and monitoring electrode
US6961603B2 (en) Unitary multi-electrode biopotential signal sensor and method for making same
EP2155056B1 (en) Method and device for quick press on eeg electrode
JP3554010B2 (en) Biological signal electrode device
US7489959B1 (en) Physiological recording device
US10959632B1 (en) Physiological recording device or electrode
EP1164927A1 (en) Electrode for measurement of weak bioelectrical signals
US5848966A (en) Medical device easily removed from skin and a method of removal therefrom
KR101785287B1 (en) Microneedle electrode patch and fabrication method of the microneedle electrode patch
US20170340232A1 (en) Electrode Sensor
US4583551A (en) Multipolar medical electrode
US20200187859A1 (en) Biosensor
EP2229881A1 (en) Biomedical electrode
KR20170019033A (en) Sensor for measuring biological signal
WO2020093319A1 (en) Electrode with trigger pocket
DK2314345T3 (en) Medical, self-adhesive, flexible single use and method for its production
JPS61249437A (en) Brain wave probe
WO2001017423A2 (en) Biomedical electrode including a strip of ionically-conductive adhesive
WO1998002088A1 (en) Biomedical electrode
CN210673309U (en) Disposable electrode slice
US20230309888A1 (en) Apparatus and method for hybrid biosensors
US20210186403A1 (en) Printed Electrocardiogram Leads for Medical Applications
JP2023518580A (en) Medical electrode and its system
JPH08196644A (en) Connecting structure of electrode for living body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939350

Country of ref document: EP

Kind code of ref document: A1