WO2020093248A1 - 一种光控分体式非承压太阳能热水装置 - Google Patents
一种光控分体式非承压太阳能热水装置 Download PDFInfo
- Publication number
- WO2020093248A1 WO2020093248A1 PCT/CN2018/114210 CN2018114210W WO2020093248A1 WO 2020093248 A1 WO2020093248 A1 WO 2020093248A1 CN 2018114210 W CN2018114210 W CN 2018114210W WO 2020093248 A1 WO2020093248 A1 WO 2020093248A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- pipeline
- light
- water inlet
- solenoid valve
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Definitions
- the invention relates to the technical field of solar water heating devices, in particular to a light-controlled split type non-pressure solar water heating device.
- the object of the present invention is to provide a light-controlled split-type non-pressured solar water heating device, which solves one or more of the above-mentioned problems in the prior art.
- the invention provides a light-controlled split-type non-pressure solar water heating device, which includes a water tank, a heat collector and a microcomputer controller, the water tank and the heat collector are split structures, the water tank includes an outer shell and an inner tank, and the outer shell and the inner tank There is a thermal insulation layer between the water tanks.
- the side wall of the water tank is provided with a first water inlet and a first water outlet.
- the first water inlet is set higher than the first water outlet.
- the heat collector includes a second water inlet and a second water outlet. A water outlet and the second water inlet are communicated through the first pipeline, and the second water outlet and the first water inlet are communicated through the second pipeline.
- a check valve, a circulation pump, and a first solenoid valve are sequentially arranged on the first pipeline.
- the circulation pump is connected to the microcomputer control instrument
- the first solenoid valve is connected to the microcomputer control instrument
- the heat collector is provided with a light intensity sensor
- the light intensity sensor is connected to the microcomputer control instrument.
- a first water level sensor is provided on the top of the water tank, and a second water level sensor is provided on the bottom of the water tank.
- the first water level sensor is connected to the microcomputer controller, and the second water level sensor is connected to the microcomputer controller.
- a third water inlet is provided on the top of the water tank, and the third water inlet is connected to the water source through a third pipeline.
- a second solenoid valve is provided on the third pipeline, and the second solenoid valve is connected to the microcomputer controller.
- it further includes a water outlet switch, and the water outlet switch communicates with the first pipeline through a fourth pipeline, the connection point is between the circulation pump and the first solenoid valve, and a micro-pressure sensor is provided on the fourth pipeline.
- the sensor is connected to the computer controller.
- the top of the water tank is provided with an overflow.
- the light-controlled split-type non-pressured solar hot water device of the embodiment of the present invention utilizes light intensity and duration to automatically control the pressureless circulation and return of water flow, which overcomes the poor water-based thermal insulation performance of the integrated machine and the pressure-split split machine It is easy to leak and other shortcomings, and its application prospects are bright.
- FIG. 1 is a schematic structural diagram of a light-controlled split-type non-pressurized solar water heating device according to an embodiment of the present invention.
- a light-controlled split-type non-pressure solar hot water device includes a water tank 10, a heat collector 20 and a microcomputer controller 30.
- the water tank 10 and the heat collector 20 are split structures.
- the water tank 10 includes an outer shell and an inner tank, the outer shell and A heat insulation layer 15 is provided between the inner bladders.
- a side wall of the water tank 10 is provided with a first water inlet 13 and a first water outlet 12.
- the first water inlet 13 is set higher than the first water outlet 12, and the heat collector 20 includes a
- the circulation pump 34 is connected to the microcomputer controller 30, the first solenoid valve 35 is connected to the microcomputer controller 30, and the heat collector 20 is provided.
- the water tank 10 includes an outer shell and an inner liner, and a heat insulation layer 15 is provided between the outer shell and the inner liner.
- the heat insulation layer 15 is filled with heat insulation material, and the PE closed-cell foam material is selected as the heat insulation water tank of the electric water heater. Because solar water heaters can only work during the day, and people generally use hot water at night, it is necessary to store the hot water generated by the collector during the day through an insulated water tank.
- the installation position of the water tank 10 is relatively flexible. It can be made into a cylinder or a rectangular parallelepiped under the washing table on the side of the balcony or in the storage room. The volume can be determined according to the surface area of the collector.
- the microcomputer controller 30 is the center for controlling the entire device, and is controlled by a special microcomputer control program. According to the signals from the light intensity sensor, the water level sensor, and the water flow micro pressure sensor, the water supply of the water tank 10, the circulating water pump 34, and the solenoid valve are accurately controlled In order to realize the continuous and intermittent operation of the whole device and the normal water demand.
- the heat collector 20 is installed on the left and right sides of the vacuum heat collecting tube horizontally arranged in the frame, and a water inlet pipe at the bottom of the stainless steel is installed in the vacuum heat collecting pipe, and the water inlet flows from the lower part of the middle column of the frame along the stainless steel water inlet pipe in the vacuum heat collecting pipe , Fill the entire collector slowly from the outside to the middle.
- the heat collector 20 can be installed outside the balcony guardrail or on the sloping roof, but the position must be higher than the water tank 10, otherwise it is not conducive to the backflow of water when there is no light.
- the circulating water pump 34 is used to realize the heating cycle of the water flow and the pressure increase of normal water, and the input power of the pump is selected according to the size of the heat collector 20.
- the one-way valve 40 allows the water flow from the water tank 10 to the heat collector 20, and can prevent the reverse flow.
- a first water level sensor 32 is provided on the top of the water tank 10, and a second water level sensor 33 is provided on the bottom of the water tank 10.
- the first water level sensor 32 is connected to the microcomputer controller 30, and the second water level sensor 33 is connected to the microcomputer controller 30.
- a third water inlet 11 is provided on the top of the water tank 10, and the third water inlet 11 communicates with the water source through a third pipeline 63, and a second electromagnetic valve 36 is provided on the third pipeline 63, and the second electromagnetic valve 36 is connected to the microcomputer The controller 30 is connected.
- the water outlet switch 50 communicates with the first pipe 61 through a fourth pipe 64.
- the connection point between the first pipe 61 and the fourth pipe 64 is located at the circulation pump 34 and the first solenoid valve 35.
- a micro-pressure sensor 37 is provided on the fourth pipeline 64, and the micro-pressure sensor 37 is connected to the computer controller 30.
- PP-R pipes may be used for the first pipe 61, the second pipe 62, the third pipe 63, and the fourth pipe 64.
- an overflow port 14 is provided on the top of the water tank 10.
- the overflow port 14 can be directly connected to the drainage system of the building. When the water in the water tank 10 expands due to heat, excess water can be discharged from the water tank 10.
- the microcomputer controller 30 starts to operate. Check the water level of the water tank 10, if the water does not reach the low water level, the second water level sensor 33 sends a signal to the microcomputer controller 30, the microcomputer controller 30 opens the second solenoid valve 36 to replenish the water tank 10, after the water is added to the high water level, the first The water level sensor 32 sends a signal, the microcomputer controller 30 closes the second solenoid valve 36, and the water replenishment ends. Then, the circulating water pump 34 is started, and the first solenoid valve 35 is opened to fill the heat collector 20.
- the microcomputer controller 30 turns off the circulating water pump 34 and the first solenoid valve 35. At this time, the collector 20 The water still absorbs heat and heats up, and then cyclically changes water according to different timings of light intensity. If the light intensity does not reach the set value, the microcomputer controller 30 automatically delays for a certain period of time, opens the first solenoid valve 35, and the water in the heat collector 20 and the pipeline returns to the water tank 10 using the water level drop, so that the entire device All the water returns to the water tank 10 for heat preservation, so that the whole device is in a standby state, and when the light intensity reaches the set requirement again, the whole device repeats the above-mentioned cycle.
- a light-controlled split-type non-pressured solar hot water device in the embodiment provided by the present invention can automatically control the pressureless circulation and backflow of water flow by using light intensity and duration, overcoming the poor water insulation performance and pressure bearing of the integrated machine
- the split machine is easy to leak and other shortcomings, and its application prospect is bright.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
一种光控分体式非承压太阳能热水装置,包括水箱(10)、集热器(20)和微电脑控制仪(30),水箱(10)包括外壳和内胆,外壳和内胆之间设有保温层(15),水箱(10)的侧壁设有第一进水口(13)和第一出水口(12),第一进水口(13)设置高度高于第一出水口(12),集热器(20)包括第二进水口(21)和第二出水口(22),第一出水口(12)与第二进水口(21)通过第一管路(61)连通,第二出水口(22)与第一进水口(13)通过第二管路(62)连通,第一管路(61)上依次设有单向阀(40)、循环泵(34)和第一电磁阀(35),循环泵(34)与微电脑控制仪(30)连接,第一电磁阀(35)与微电脑控制仪(30)连接,集热器(20)设有光强传感器(31),光强传感器(31)与微电脑控制仪(30)连接。该热水装置利用光照强弱及持续时间自动控制水流的无压力循环、回流,克服了一体机水性保温性能差、承压分体机易泄露等缺点。
Description
本发明涉及太阳能热水装置的技术领域,特别涉及一种光控分体式非承压太阳能热水装置。
当前市场上的太阳能产品大多以紧凑式的太阳能产品为主,将水箱和集热器结合在一起,这种产品在售后安装的过程当中,由于水箱必须安装在屋顶上,而且因为各个用户所选择的产品差异巨大,导致产品和建筑很难取得一致的整体完美效果,很大程度上影响了建筑的整体外观。此外,普通紧凑式太阳能产品的上水需要手工操作,使用不方便。而针对这些问题,市场上出现了分体式承压热水器,该系统中介质传输管和水箱均需承受压力,对其制造和安装的要求比较高,且由于是承压式的不可避免的产生泄露现象。
发明内容
本发明的目的在于提供一种光控分体式非承压太阳能热水装置,解决上述现有技术问题中的一个或者多个。
本发明提供一种光控分体式非承压太阳能热水装置,包括水箱、集热器和微电脑控制仪,水箱和集热器为分体式结构,水箱包括外壳和内胆,外壳和内胆之间设有保温层,水箱的侧壁设有第一进水口和第一出水口,第一进水口设置高度高于第一出水口,集热器包括第二进水口和第二出水口,第一出水口与第二进水口通过第一管路连通,第二出水口与第一进水口通过第二管路连通,第一管路上依次设有单向阀、循环泵和第一电磁阀,循环泵与微电脑控制仪连接,第一电磁阀与微电脑控制仪连接,集热器设有光强传感器,光强传感器与微电脑控制仪连接。
在一些实施方式中,水箱顶部设有第一水位传感器,水箱底部设有第二水位传感器,第一水位传感器与微电脑控制仪连接,第二水位传感器与微电脑控制仪连接。
在一些实施方式中,水箱顶部设有第三进水口,第三进水口通过第三 管路与水源连通,第三管路上设有第二电磁阀,第二电磁阀与微电脑控制仪连接。
在一些实施方式中,还包括出水开关,出水开关与第一管路通过第四管路连通,连通点位于循环泵和第一电磁阀之间,第四管路上设有微压传感器,微压传感器与电脑控制仪连接。
在一些实施方式中,水箱的顶部设有溢流口。
有益效果:本发明实施例的光控分体式非承压太阳能热水装置利用光照强弱及持续时间自动控制水流的无压力循环、回流,克服了一体机水性保温性能差、承压分体机易泄露等缺点,其应用前景光明。
图1为本发明一实施方式中一种光控分体式非承压太阳能热水装置的结构示意图。
下面结合说明书附图,对本发明进行进一步详细的说明。
如图1所示,
一种光控分体式非承压太阳能热水装置,包括水箱10、集热器20和微电脑控制仪30,水箱10和集热器20为分体式结构,水箱10包括外壳和内胆,外壳和内胆之间设有保温层15,水箱10的侧壁设有第一进水口13和第一出水口12,第一进水口13设置高度高于第一出水口12,集热器20包括第二进水口21和第二出水口22,第一出水口12与第二进水口21通过第一管路61连通,第二出水口22与第一进水口13通过第二管路62连通,第一管路61上依次设有单向阀40、循环泵34和第一电磁阀35,循环泵34与微电脑控制仪30连接,第一电磁阀35与微电脑控制仪30连接,集热器20设有光强传感器31,光强传感器31与微电脑控制仪30连接。
其中,水箱10包括外壳和内胆,外壳和内胆之间设有保温层15,保温层15填充有保温材料,和电热水器的保温水箱一样选择PE闭孔发泡材料。因为太阳能热水器只能白天工作,而人一般在晚上才使用热水,所以必须通过保温水箱把集热器在白天产生的热水储存起来。水箱10的安装位置比较灵活,可以社会在阳台边侧的洗涤台下或者储藏间内,可做成圆柱体或长方体,体积可以根据集热器表面积配套确定。
其中,微电脑控制仪30为控制整个装置的中枢,采用微电脑专用控制程序控制,根据光强传感器、水位传感器、水流微压传感器传来的信号,精确控制水箱10的补水、循环水泵34、电磁阀的通断,以实现整个装置的连续、间断运行及正常用水需要。
其中,集热器20采用框架水平设置的真空集热管分装在左右两侧,真空集热管内加装不锈钢底部的进水管,进水从框架中间立柱下部沿着真空集热管内的不锈钢进水管,从两外侧朝中间缓慢充满整个集热器。集热器20可安装在阳台护栏外侧或坡屋顶上,但位置必须高于水箱10,否则不利于无光时水的回流。
循环水泵34用以实现水流的加热循环和正常用水的增压需要,依据集热器20大小,选定泵的输入功率。单向阀40允许水流从水箱10进入集热器20,而可以防止其逆流。
进一步的,水箱10顶部设有第一水位传感器32,水箱10底部设有第二水位传感器33,第一水位传感器32与微电脑控制仪30连接,第二水位传感器33与微电脑控制仪30连接。
进一步的,水箱10顶部设有第三进水口11,第三进水口11通过第三管路63与水源连通,第三管路63上设有第二电磁阀36,第二电磁阀36与微电脑控制仪30连接。
进一步的,还包括出水开关50,出水开关50与第一管路61通过第四管路64连通,第一管路61和第四管路64的连通点位于循环泵34和第一电磁阀35之间,第四管路64上设有微压传感器37,微压传感器37与电脑控制仪30连接。
其中,第一管路61、第二管路62、第三管路63和第四管路64均可采用PP-R管。
进一步的,水箱10的顶部设有溢流口14。
具体的,溢流口14可以直接连接的建筑的排水系统中,当水箱10的水受热膨胀时,可以将多余的水排出水箱10。
工作原理:早晨当设置在集热器10上的光强传感器31检测到一定光强的太阳光时,微电脑控制仪30启动运行。检查水箱10的水位,如水未达到低水位,第二水位传感器33就发出信号给微电脑控制仪30,微电脑控制仪30打开第二电磁阀36给水箱10补水,水加到高水位后,第一水位传感器32发出信号,微电脑控制仪30关闭第二电磁阀36,补水结束。接着 启动循环水泵34,打开第一电磁阀35给集热器20上水,到设定的上水时间,微电脑控制仪30关闭循环水泵34和第一电磁阀35,此时集热器20中的水静止吸热升温,然后根据光强的不同定时进行循环换水。如光强未达到设定值,微电脑控制仪30自动延时一定时间后,打开第一电磁阀35,集热器20及管路中的水利用水位落差流回到水箱10,使整个装置的水全部回到水箱10保温,这样整个装置处于待机状态,当光强又一次达到设定要求时,整个装置重复上述循环。
在白天有光正运转的时段,只需打开出水开关50就能用上热水;当无光或者晚上整个装置处于待机状态时,打开出水开关50,第四管路64的结存的水就从第四管路64流出,从而带动水流微压传感器37产生信号,微电脑控制仪30控制循环水泵34运转,此时第一电磁阀35关闭,压力水从第四管路64源源不断送来。关闭出水开关50,水流微压传感器37信号消失,循环水泵34停止运转,第四管路64上结存部分水以备下次使用。
本发明提供的实施方案中的一种光控分体式非承压太阳能热水装置能利用光照强弱及持续时间自动控制水流的无压力循环、回流,克服了一体机水性保温性能差、承压分体机易泄露等缺点,其应用前景光明。
以上表述仅为本发明的优选方式,应当指出,对本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些也应视为本发明的保护范围之内。
Claims (5)
- 一种光控分体式非承压太阳能热水装置,其特征在于,包括水箱(10)、集热器(20)和微电脑控制仪(30),所述水箱(10)和集热器(20)为分体式结构,所述水箱(10)包括外壳和内胆,所述外壳和所述内胆之间设有保温层(15),所述水箱(10)的侧壁设有第一进水口(13)和第一出水口(12),所述第一进水口(13)设置高度高于所述第一出水口(12),所述集热器(20)包括第二进水口(21)和第二出水口(22),所述第一出水口(12)与所述第二进水口(21)通过第一管路(61)连通,所述第二出水口(22)与所述第一进水口(13)通过第二管路(62)连通,所述第一管路(61)上依次设有单向阀(40)、循环泵(34)和第一电磁阀(35),所述循环泵(34)与所述微电脑控制仪(30)连接,所述第一电磁阀(35)与所述微电脑控制仪(30)连接,所述集热器(20)设有光强传感器(31),所述光强传感器(31)与所述微电脑控制仪(30)连接。
- 根据权利要求1所述的一种光控分体式非承压太阳能热水装置,其特征在于,所述水箱(10)顶部设有第一水位传感器(32),所述水箱(10)底部设有第二水位传感器(33),所述第一水位传感器(32)与所述微电脑控制仪(30)连接,所述第二水位传感器(33)与所述微电脑控制仪(30)连接。
- 根据权利要求1所述的一种光控分体式非承压太阳能热水装置,其特征在于,所述水箱(10)顶部设有第三进水口(11),所述第三进水口(11)通过第三管路(63)与水源连通,所述第三管路(63)上设有第二电磁阀(36),所述第二电磁阀(36)与所述微电脑控制仪(30)连接。
- 根据权利要求1所述的一种光控分体式非承压太阳能热水装置,其特征在于,还包括出水开关(50),所述出水开关(50)与所述第一管路(61)通过第四管路(64)连通,所述第一管路(61)和第四管路(64)的连通点位于所述循环泵(34)和所述第一电磁阀(35)之间,所述第四管路(64)上设有微压传感器(37),所述微压传感器(37)与所述电脑控制仪(30)连接。
- 根据权利要求1所述的一种光控分体式非承压太阳能热水装置,其特征在于,所述水箱(10)的顶部设有溢流口(14)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/114210 WO2020093248A1 (zh) | 2018-11-06 | 2018-11-06 | 一种光控分体式非承压太阳能热水装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/114210 WO2020093248A1 (zh) | 2018-11-06 | 2018-11-06 | 一种光控分体式非承压太阳能热水装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020093248A1 true WO2020093248A1 (zh) | 2020-05-14 |
Family
ID=70610758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/114210 WO2020093248A1 (zh) | 2018-11-06 | 2018-11-06 | 一种光控分体式非承压太阳能热水装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020093248A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112378090A (zh) * | 2020-11-16 | 2021-02-19 | 海安长泽新能源科技有限公司 | 一种光控太阳能热水装置 |
CN117433169A (zh) * | 2023-11-02 | 2024-01-23 | 山东龙普太阳能股份有限公司 | 一种太阳能热水器漏水报警装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000023571A (ja) * | 1998-07-10 | 2000-01-25 | Toru Hino | 植物栽培装置及び栽培方法 |
CN201983349U (zh) * | 2011-03-22 | 2011-09-21 | 毕国忠 | 太阳能采暖智能主动控制系统 |
CN102563913A (zh) * | 2012-03-06 | 2012-07-11 | 秦三根 | 一种太阳能非承压储水集热器和集热运行方法 |
CN102818373A (zh) * | 2011-06-10 | 2012-12-12 | 夏邦良 | 分体式智能型单泵非承压太阳能热水装置 |
CN103245068A (zh) * | 2012-02-08 | 2013-08-14 | 宓玉敏 | 平板型分体式太阳能热水器 |
CN103245083A (zh) * | 2012-02-08 | 2013-08-14 | 宓玉敏 | 真空管型分体式太阳能热水器 |
-
2018
- 2018-11-06 WO PCT/CN2018/114210 patent/WO2020093248A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000023571A (ja) * | 1998-07-10 | 2000-01-25 | Toru Hino | 植物栽培装置及び栽培方法 |
CN201983349U (zh) * | 2011-03-22 | 2011-09-21 | 毕国忠 | 太阳能采暖智能主动控制系统 |
CN102818373A (zh) * | 2011-06-10 | 2012-12-12 | 夏邦良 | 分体式智能型单泵非承压太阳能热水装置 |
CN103245068A (zh) * | 2012-02-08 | 2013-08-14 | 宓玉敏 | 平板型分体式太阳能热水器 |
CN103245083A (zh) * | 2012-02-08 | 2013-08-14 | 宓玉敏 | 真空管型分体式太阳能热水器 |
CN102563913A (zh) * | 2012-03-06 | 2012-07-11 | 秦三根 | 一种太阳能非承压储水集热器和集热运行方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112378090A (zh) * | 2020-11-16 | 2021-02-19 | 海安长泽新能源科技有限公司 | 一种光控太阳能热水装置 |
CN117433169A (zh) * | 2023-11-02 | 2024-01-23 | 山东龙普太阳能股份有限公司 | 一种太阳能热水器漏水报警装置 |
CN117433169B (zh) * | 2023-11-02 | 2024-04-16 | 山东龙普太阳能股份有限公司 | 一种太阳能热水器漏水报警装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202990016U (zh) | 节能型恒温恒压循环供水系统 | |
CN102679534A (zh) | 一种节能恒温电热水器 | |
CN201311103Y (zh) | 分体非承压太阳能热水器 | |
WO2020093248A1 (zh) | 一种光控分体式非承压太阳能热水装置 | |
DK201900071U1 (da) | Kombineret system til opvarmning af forsyningsvand og et opvarmningsmedium til husopvarmning | |
CN107388337B (zh) | 一种分布式高效节能相变储热系统 | |
CN204705054U (zh) | 太阳能热水器控制装置 | |
CN207784766U (zh) | 一种冷暖床垫 | |
TW201321688A (zh) | 可瞬熱供水之貯熱型電熱水器及其控制方法 | |
CN207620173U (zh) | 一种热能利用的节能多用幕墙 | |
CN207350870U (zh) | 一种全智能太空能热水器 | |
CN105972680B (zh) | 太阳能室内供暖系统 | |
CN205641131U (zh) | 多罐式太阳能供暖系统 | |
CN201561491U (zh) | 活动式太阳能洗浴装置 | |
CN204254713U (zh) | 一种用户侧分布蓄存热水供应系统 | |
CN112378090A (zh) | 一种光控太阳能热水装置 | |
CN208332708U (zh) | 一种壁挂式太阳能空气能热水器 | |
CN102829558A (zh) | 一种温度智能调节式热水器 | |
CN208519978U (zh) | 一种空气能开水器 | |
CN103912910B (zh) | 一种居室独立供暖供热水一体化装置 | |
CN201837111U (zh) | 一种采用排空阀的管道排空水箱 | |
CN206256723U (zh) | 太阳能公用供水站 | |
CN206320842U (zh) | 一种多能互补综合一体化中央热水系统及地板供暖系统 | |
CN110873358A (zh) | 一种节能节水热水供应系统及其供水方法 | |
CN201212741Y (zh) | 生活热水自动供给装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18939271 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18939271 Country of ref document: EP Kind code of ref document: A1 |