WO2020093200A1 - 基于几何光学变换的oam信道提取与添加系统及方法 - Google Patents

基于几何光学变换的oam信道提取与添加系统及方法 Download PDF

Info

Publication number
WO2020093200A1
WO2020093200A1 PCT/CN2018/113979 CN2018113979W WO2020093200A1 WO 2020093200 A1 WO2020093200 A1 WO 2020093200A1 CN 2018113979 W CN2018113979 W CN 2018113979W WO 2020093200 A1 WO2020093200 A1 WO 2020093200A1
Authority
WO
WIPO (PCT)
Prior art keywords
oam
spatial light
light modulator
extraction
channel
Prior art date
Application number
PCT/CN2018/113979
Other languages
English (en)
French (fr)
Inventor
沈飞
郭忠义
郭凯
周红平
周清峰
冯志康
Original Assignee
东莞理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞理工学院 filed Critical 东莞理工学院
Priority to CN201880001931.XA priority Critical patent/CN109564329B/zh
Priority to PCT/CN2018/113979 priority patent/WO2020093200A1/zh
Publication of WO2020093200A1 publication Critical patent/WO2020093200A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29382Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM including at least adding or dropping a signal, i.e. passing the majority of signals
    • G02B6/29383Adding and dropping

Definitions

  • the present invention is based on the forward application and reverse application of geometric optical transformation combined with a lens focusing method to realize the extraction of some OAM channels or the increase of OAM channels.
  • OAM orthogonal angular momentum
  • they are orthogonal to each other, and theoretically the value of the topological charge can be infinite.
  • the transmission capability of the optical communication system has been greatly improved.
  • the operation of the OAM communication system is only a point-to-point application and does not involve any intermediate network node processing, which greatly limits the scalability of the OAM communication system.
  • the beam carrying orbital angular momentum has been a hot research hotspot, and it is widely used in various aspects such as quantum information and optical communication.
  • the spiral phase structure of the OAM beam is expressed by exp (-il ⁇ ), where ⁇ refers to the angular coordinate, and the integer l refers to the azimuth index, which represents the topological charge of the OAM light.
  • refers to the angular coordinate
  • l refers to the azimuth index
  • This feature allows multiple OAM channels to be multiplexed and demultiplexed efficiently. Without increasing the spectrum bandwidth, the spectrum efficiency and information transmission capacity of the optical communication system are greatly increased.
  • the present invention combines programmable spatial light modulators based on OAM beam mode conversion, and can realize extraction and addition of multiple OAM channels.
  • the invention can simultaneously realize the extraction and addition of multiple OAM beams by combining a mode converter based on linear optical geometric transformation, a Fourier lens and a spatial light modulator.
  • the invention includes a geometric optical transformation from rectangular coordinates to log-polar coordinates and an opposite geometric optical transformation.
  • the geometric transformation can be realized by two pure phase diffractive optical elements.
  • is the wavelength of the incident wave
  • f is the focal length of the Fourier lens
  • the parameters a and b determine the length and position of the converted beam
  • d is the length of the converted beam. Adjust the value of b according to the position of the converted beam you want to obtain. B is usually taken to be 1 mm, and the value is taken up and down as needed.
  • the second pure phase diffractive optical element realizes the phase correction of the transformed beam, and its phase function can be expressed as
  • the OAM beam with directional phase gradient is transformed into a rectangular plane wave with lateral phase gradient.
  • a first Fourier lens with a focal length of f 2 is placed behind the second pure phase diffractive optical element, where the distance between the first Fourier lens and the second phase diffractive element is f 2 .
  • This first Fourier lens focuses a rectangular plane wave with different lateral phase gradients to a narrow elongated spot, and the position corresponding to each elongated spot is proportional to the topological charge carried by the OAM beam, which can be described as
  • OAM beams carrying different topological charges l will present laterally elongated beam spots at different positions on the focal plane of the first Fourier lens.
  • the narrow and long spots at different lateral positions can be converted into OAM beams with corresponding topological charges.
  • a flat mirror is placed on the back focal plane of the first Fourier lens
  • the narrow and long spot will be reflected back to the original optical system.
  • the reflected narrow spot first passes through the first Fourier lens, and the front focal plane of the first Fourier lens will be restored to a rectangular plane wave with a lateral phase gradient.
  • the second phase diffractive element transforms the rectangular plane wave with different lateral phase gradients into a ring with directional phase gradient, and after passing through the first phase diffractive element, the phase is corrected.
  • the narrow spot can be restored to an OAM beam, and the topological charge size and sign of the recovered OAM beam are determined by the position of the narrow spot in the back focal plane of the lens.
  • the light field recovered at the back focal plane of the lens is reversed. Judging from the phase of the light field, the lateral phase gradient is flipped up and down, which causes the topological charge of the recovered OAM beam to be opposite to that of the input OAM beam.
  • a first beam splitter is added at the input. It not only realizes the separation of the beam, but also because the recovered OAM beam is reflected, it has the same topological charge as the input OAM beam.
  • a programmable spatial light modulator is placed in the back focal plane of the first Fourier lens.
  • the programmable spatial light modulator is divided into many small rectangular areas along the y direction.
  • the standard for dividing the small rectangular areas is that each specific small area should contain the spot transformed by the OAM beam with the corresponding topological charge through the system. region.
  • Each small rectangular area divided by the programmable spatial light modulator can be programmed to control whether it is a reflected beam or a diffracted beam.
  • we add a symmetrical mode converter to the right of the programmable spatial light modulator, and then program to control the transmission or reflection of each small area of the spatial light modulator according to the requirements, so as to realize the extraction of multiple OAM channels, Add to.
  • a composite OAM beam is input at the a port of the first beam splitter, and after being focused by the first mode converter and the first Fourier lens, a series of horizontally parallel narrow light spots will be obtained in the back focal plane, and these light spots are spaced apart. Satisfy equation (3).
  • the original input OAM beam is recovered at the b port of the first beam splitter.
  • the OAM beam to be extracted is output at the d port of the second beam splitter. This realizes the extraction of the OAM channel.
  • One or more OAM channels to be added are input to the c port of the second beam splitter. After being converted by the second mode converter and focused by the lens, a narrow and long beam spot will appear at the corresponding position of the spatial light modulator. Control the corresponding area on the spatial light modulator to project the beam. After the original OAM composite channel is transformed by the first mode converter and focused by the lens, it presents a narrow and light spot at the corresponding position of the spatial light modulator. Here, the designated area is programmed to reflect the beam. In this way, after the mixed light spot reversely passes through the first mode converter and the first beam splitter, the function of adding a channel on the basis of the original OAM channel can be realized at the b port of the first beam splitter.
  • the present invention we add a symmetrical mode converter to the right of the programmable spatial light modulator, and then program to control the transmission or reflection of each small area of the spatial light modulator according to the requirements, so as to realize the extraction of multiple OAM channels, Add to.
  • the OAM beams carrying different topological charges are orthogonal to each other, and in theory, the value of the topological charge can be infinite.
  • the transmission capability of the optical communication system has been greatly improved.
  • the operation of the OAM communication system is only a point-to-point application and does not involve any intermediate network node processing, which greatly limits the scalability of the OAM communication system.
  • the invention combines the programmable spatial light modulator based on the OAM beam mode conversion, and can realize the extraction and addition of the OAM channel.
  • FIG. 1 System diagram of OAM channel addition and extraction

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明提供了一种基于几何光学变换的OAM信道提取与添加系统及方法,所述系统通过结合基于线性光学几何变换的模式转换器、傅里叶透镜和可编程空间光调制器同时实现多路OAM光束的提取与添加。在可编程空间光调制器的右边加入一个对称的模式转换器,再根据要求编程控制空间光调制器每个小区域的透射或反射,即可实现多路OAM信道的提取、添加。本发明基于OAM光束模式变换的基础上结合可编程空间光调制器,可以实现OAM信道的提取和添加。

Description

基于几何光学变换的OAM信道提取与添加系统及方法 技术领域
本发明是基于几何光学变换的正向应用和反向应用并结合透镜聚焦的方法,实现部分OAM信道的提取或OAM信道的增加。
背景技术
对于携带不同拓扑荷的OAM(轨道角动量)光束相互正交,并且从理论上来说拓扑荷的取值可以是无限的。将OAM光束作为载波的光通信应用方案被提出后,光通信系统的传输能力得到了极大的提升。但是对于OAM通信系统的操作,仅仅是点到点的应用,不涉及任何中间网络节点的处理,大大的限制了OAM通信系统的扩展性。
在最近几十年,携带轨道角动量(OAM)的光束是一个很热的研究热点,其广泛应用在量子信息、光通信等各个方面。OAM光束的螺旋相位结构由exp(-ilθ)表述,其中θ指的是角度坐标,整数l指的是方位指数,代表的是OAM光的拓扑荷。对于携带不同拓扑荷的OAM光束,彼此之间是相互正交的。这种特性使得多个OAM信道可以高效的复用和解复用。在不增加频谱带宽的情况下,大大的增加了光通信系统的频谱效率和信息传输能力。
对于大部分的OAM的复用通信系统还只是静态的点到点系统,即发送端发送的复合OAM光束直接经过信道传输,并在接收端解复用,在传输过程中不涉及任何的OAM光束操作。因此这种点到点的光通信网络不 具备在网络中某一节点实现OAM信道的光分插复用功能,这极大的限制了OAM光通信网络的扩展性和可用性。目前,针对这个问题,有人提出了一种基于液晶空间光调制器和相位光栅两种光学元件实现OAM信道可重构分插复用方案,这很好的增强了系统的可扩展性。但是这种方案一次性只能实现一个OAM信道的提取或添加,还远远满足不了OAM光通信系统的性能要求。针对这个问题,可以展望,如果提出了一种可以同时实现多路OAM信道的提取或添加的方案,将会很好的完善OAM光通信复用系统。
发明内容
为了解决现有技术中问题,本发明基于OAM光束模式变换的基础上结合可编程空间光调制器,可以实现多路OAM信道的提取和添加。
本发明通过结合基于线性光学几何变换的模式转换器、傅里叶透镜和空间光调制器可以同时实现多路OAM光束的提取与添加。本发明包含了一个直角坐标到对数-极坐标的几何光学变换和一个相反的几何光学变换。对于直角坐标到对数-极坐标的光学几何变换,该几何变换可以由两个纯相位衍射光学元件实现。第一个纯相位衍射光学元件实现了输入平面上点(x,y)位置到输出平面点位置(u,v)的映射,其中
Figure PCTCN2018113979-appb-000001
v=aarctan(y/x)。其相位函数可表示为
Figure PCTCN2018113979-appb-000002
其中,λ是入射波的波长,f是傅里叶透镜的焦距,参数a和参数b分 别决定着变换后光束的长度和位置,
Figure PCTCN2018113979-appb-000003
这里d是变换后光束的长度。根据想要得到的变换后光束的位置,来调整b的取值,b通常取1mm,根据需要在1mm上下进行取值。第二个纯相位衍射光学元件实现的是对变换后的光束进行相位纠正,它的相位函数可表示为
Figure PCTCN2018113979-appb-000004
通过两个纯相位衍射光学元件的几何变形与相位纠正,将带有方向相位梯度的OAM光束变换为带有横向相位梯度的矩形平面波。接着在第二个纯相位衍射光学元件的后面放置一个焦距为f 2的第一傅里叶透镜,其中第一傅里叶透镜与第二个相位衍射元件的距离为f 2。这个第一傅里叶透镜聚焦带有不同横向相位梯度的矩形平面波到定的横向位置的狭长光斑,每个狭长光斑对应的位置与OAM光束带有的拓扑荷成一定的比例关系,可描述为
Figure PCTCN2018113979-appb-000005
这样,携带不同的拓扑荷l的OAM光束经几何变换以及聚焦后,会在第一傅里叶透镜的焦平面上的不同位置呈现横向的狭长光斑。
对于上述元件组成的光学系统,如果反向使用的话,可以实现将不同横向位置的狭长光斑变换成带有相应拓扑荷的OAM光束。假设在第一傅里叶透镜的后焦平面放置一个平面反射镜,狭长的光斑将会被反射回原来的光学系统。反射的狭长光斑首先经过第一傅里叶透镜,在第一傅里叶透镜的前焦平面会恢复成带有横向相位梯度的矩形平面波。接着第二相位衍 射元件将带有不同横向相位梯度的矩形平面波变换成带有方向相位梯度的圆环,并且在经过第一相位衍射元件后,相位得到纠正。这样狭长的光斑就可恢复成OAM光束,并且恢复的OAM光束拓扑荷大小和正负由狭长光斑在透镜后焦平面的位置所决定。但值得注意的是,狭长光斑经过了平面镜的反射后,在透镜的后焦平面恢复的光场被翻转。从光场的相位来看,横向相位梯度被上下翻转,这就导致了恢复出的OAM光束的拓扑荷和输入OAM光束的拓扑荷相反。为了在输入端分离输入的OAM光束与恢复的OAM光束,在输入端加入了一个第一分束器。既实现了光束的分离,同时也因为恢复的OAM光束经过反射,使其带有的拓扑荷和输入OAM光束的拓扑荷相同。
在本发明中,在第一傅里叶透镜后焦平面我们放置的是可编程空间光调制器。该可编程空间光调制器沿着y方向被划分为很多矩形小区域,矩形小区域的划分标准是每个特定小区域要包含由带有相应拓扑荷的OAM光束经系统变换成的光斑所在的区域。该可编程空间光调制器划分的每个小矩形区域都可以被编程控制是反射光束还是衍射光束。本发明中,我们在可编程空间光调制器的右边加入一个对称的模式转换器,再根据要求编程控制空间光调制器每个小区域的透射或反射,即可实现多路OAM信道的提取、添加。
OAM信道的提取
在第一分束器的a端口输入复合的OAM光束,经过第一模式转换器及第一傅里叶透镜聚焦后,会在后焦平面得到一系列横向的平行的狭长光斑,且这些光斑间隔满足方程(3)。我们可以通过PC编程控制空间光调制器上一个或多个指定的区域透射光束,剩下的区域反射光束。对于反射的 光束,经过第一模式转换器的反向作用,在第一分束器的b端口恢复出原有的输入OAM光束。对于透射的光束,在经过第二模式转换器的反向作用后,会在第二分束器的d端口输出要提取的OAM光束。这便实现了OAM信道的提取。
OAM信道的添加
在第二分束器的c端口输入要添加的一个或多个OAM信道,经第二个模式转换器变换及透镜聚焦后,会在空间光调制器的相应位置上呈现出狭长光斑,通过编程控制空间光调制器上对应的区域投射光束。原有OAM复合信道经过第一个模式转换器变换和透镜聚焦后在空间光调制器相应的位置上呈现狭长的光斑,这里通过编程控制指定的区域反射光束。这样,混合的光斑反向经过第一个模式转换器及第一分束器后,即可在第一分束器的b端口实现在原有OAM信道的基础上添加信道的功能。
本发明的有益效果是:
本发明中,我们在可编程空间光调制器的右边加入一个对称的模式转换器,再根据要求编程控制空间光调制器每个小区域的透射或反射,即可实现多路OAM信道的提取、添加。对于携带不同拓扑荷的OAM光束相互正交,并且从理论上来说拓扑荷的取值可以是无限的。将OAM光束作为载波的光通信应用方案被提出后,光通信系统的传输能力得到了极大的提升。但是对于OAM通信系统的操作,仅仅是点到点的应用,不涉及任何中间网络节点的处理,大大的限制了OAM通信系统的扩展性。本发明基于OAM光束模式变换的基础上结合可编程空间光调制器,可以实现 OAM信道的提取和添加。
附图说明
图1OAM信道添加与提取的系统示意图;
图2实现OAM信道提取时在第一分束器的a端口的输入的l=3,8的复合OAM光强图;
图3实现OAM信道提取时在第二分束器的d端口的提取的l=3的复合OAM光强图;
图4实现OAM信道提取时在第一分束器的b端口的输出的剩余的l=8的OAM光强图;
图5实现OAM信道提取时在第一分束器的a端口的输入的l=10,2,-5的复合OAM光强图;
图6实现OAM信道提取时在第二分束器的d端口的提取的l=2,-5的复合OAM光强图;
图7实现OAM信道提取时在第一分束器的b端口的输出的剩余的l=10的OAM光强图;
图8实现OAM信道添加时在第一分束器的a端口的输入的l=3,8的复合OAM光强图;
图9实现OAM信道添加时在第二分束器的c端口的输入添加的l=-4的OAM光束光强图;
图10实现OAM信道添加时在第一分束器的b端口的输出的l=3,8,-4的复合OAM光束光强图;
图11实现OAM信道添加时在第一分束器的a端口的输入的l=8,-5,的复合OAM光强图;
图12实现OAM信道添加时在第二分束器的c端口的输入添加的l=3,-10的OAM光束光强图;
图13实现OAM信道添加时在第一分束器的b端口的输出的l=3,8,-5,-10的复合OAM光束光强图。
具体实施方式
下面结合附图对本发明做进一步说明。
具体实施方式1:OAM信道的单个提取:在第一分束器的a端口输入l=3,8的OAM复合信道,通过在可编程空间光调制器上设置l=3对应区域透射光束,其它区域反射光束。在第一分束器的b端口检测到拓扑荷为8的光强图,在第二分束器的d端口检测到拓扑荷l=3的光强图。
具体实施方式2:OAM信道的多个提取:在第一分束器的a端口输入l=10,2,-5的OAM复合信道,通过在可编程空间光调制器上设置l=2,-5对应区域透射光束,其它区域反射光束。在第一分束器的b端口检测到拓扑荷为l=2,-5的光强图,在第二分束器的d端口检测到拓扑荷l=10的光强图。
具体实施方式3:OAM信道的单个添加:在第二分束器的c端口输入l=-4的OAM复合信道,在第一分束器的a端口输入l=3,8的OAM复合信道,通过在可编程空间光调制器上设置l=-4对应区域透射光束,其它区域 反射光束。在第一分束器的b端口检测到拓扑荷l=3,8,-4的光强图。
具体实施方式4:OAM信道的多个添加:在第二分束器的c端口输入l=3,-10的OAM复合信道,在第一分束器的a端口输入l=8,-5的OAM复合信道,通过在可编程空间光调制器上设置l=3,-10对应区域透射光束,其它区域反射光束。在第一分束器的b端口检测到拓扑荷l=3,8,-5,-10的光强图。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (4)

  1. 一种基于几何光学变换的OAM信道提取与添加系统,其特征在于:所述系统通过结合基于线性光学几何变换的模式转换器、傅里叶透镜和可编程空间光调制器同时实现多路OAM光束的提取与添加,所述系统包含了一个直角坐标到对数-极坐标的几何光学变换和一个相反的几何光学变换;对于直角坐标到对数-极坐标的光学几何变换,该几何变换由模式转换器中的两个纯相位衍射光学元件实现,第一个纯相位衍射光学元件实现了输入平面上点(x,y)位置到输出平面点位置(u,v)的映射,其中
    Figure PCTCN2018113979-appb-100001
    v=aarctan(y/x),其相位函数表示为
    Figure PCTCN2018113979-appb-100002
    其中,λ是入射波的波长,f是傅里叶透镜的焦距,参数a和参数b分别决定着变换后光束的长度和位置,
    Figure PCTCN2018113979-appb-100003
    这里d是变换后光束的长度,第二个纯相位衍射光学元件实现的是对变换后的光束进行相位纠正,它的相位函数表示为
    Figure PCTCN2018113979-appb-100004
    通过两个纯相位衍射光学元件的几何变形与相位纠正,将带有方向相位梯度的OAM光束变换为带有横向相位梯度的矩形平面波;接着在第二个纯相位衍射光学元件的后面放置一个焦距为f 2的傅里叶透镜,其中傅里叶透镜与第二个纯相位衍射光学元件的距离为f 2,这个傅里叶透镜聚焦带有不同横向相位梯度的矩形平面波到特定的横向位置的狭长光斑,每个狭长光斑对应的位置与OAM光束带有的拓扑荷成一定的比例关系,描述为
    Figure PCTCN2018113979-appb-100005
    这样,携带不同的拓扑荷l的OAM光束经几何变换以及聚焦后,会在傅里叶透镜的焦平面上的不同位置呈现横向的狭长光斑;
    在输入端加入一个分束器;在透镜后焦平面设置的是可编程空间光调制器,该可编程空间光调制器沿着y方向被划分为很多矩形小区域;该可编程空间光调制器划分的每个矩形小区域都被编程控制是反射光束还是衍射光束;在可编程空间光调制器的右边加入一个和其左边对称的模式转换器,再根据要求编程控制可编程空间光调制器每个小区域的透射或反射,实现多路OAM信道的提取、添加。
  2. 根据权利要求1所述的基于几何光学变换的OAM信道提取与添加系统,其特征在于:所述b的取值原则:根据想要得到的变换后光束的位置,来调整b的取值,b通常取1mm,根据需要在1mm上下进行取值。
  3. 根据权利要求1所述的基于几何光学变换的OAM信道提取与添加系统,其特征在于:所述矩形小区域的划分标准是每个特定小区域要包含由带有相应拓扑荷的OAM光束经系统变换成的光斑所在的区域。
  4. 根据权利要求1至3任意一项所述的系统的OAM信道提取与添加方法,其特征在于:
    OAM信道的提取方法如下:
    在第一分束器的a端口输入复合的OAM光束,经过第一模式转换器及第一傅里叶透镜聚焦后,在后焦平面得到一系列横向的平行的狭长光斑,且这些光斑间隔满足方程(3),通过PC编程控制可编程空间光调制器上一个或多个指定的区域透射光束,剩下的区域反射光束,对于反射的光束,经过第一模式转换器的反向作用,在第一分束器的b端口恢复出原有的输入OAM光束,对于透射的光束,在经过第二模式 转换器的反向作用后,在分束器第二分束器的d端口输出要提取的OAM光束,实现OAM信道的提取;
    OAM信道的添加方法如下:
    在第二分束器的c端口输入要添加的一个或多个OAM信道,经第二模式转换器变换及第二傅里叶透镜聚焦后,在可编程空间光调制器的相应位置上呈现出狭长光斑,通过可编程空间光调制器上对应的区域投射光束,原有OAM复合信道经过第一模式转换器变换和第一傅里叶透镜聚焦后在可编程空间光调制器相应的位置上呈现狭长的光斑,这里通过编程控制指定的区域反射光束,这样,混合的光斑反向经过第一模式转换器及第一分束器后,即可在第一分束器的b端口实现在原有OAM信道的基础上添加信道的功能。
PCT/CN2018/113979 2018-11-05 2018-11-05 基于几何光学变换的oam信道提取与添加系统及方法 WO2020093200A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880001931.XA CN109564329B (zh) 2018-11-05 2018-11-05 基于几何光学变换的oam信道提取与添加系统及方法
PCT/CN2018/113979 WO2020093200A1 (zh) 2018-11-05 2018-11-05 基于几何光学变换的oam信道提取与添加系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/113979 WO2020093200A1 (zh) 2018-11-05 2018-11-05 基于几何光学变换的oam信道提取与添加系统及方法

Publications (1)

Publication Number Publication Date
WO2020093200A1 true WO2020093200A1 (zh) 2020-05-14

Family

ID=65872664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113979 WO2020093200A1 (zh) 2018-11-05 2018-11-05 基于几何光学变换的oam信道提取与添加系统及方法

Country Status (2)

Country Link
CN (1) CN109564329B (zh)
WO (1) WO2020093200A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251655A (zh) * 2008-03-21 2008-08-27 北京理工大学 一种实现光束轨道角动量态叠加和调制的装置
CN101726868A (zh) * 2009-12-15 2010-06-09 北京理工大学 一种实现光束轨道角动量态复用编码的方法和装置
CN103457659A (zh) * 2013-08-22 2013-12-18 华中科技大学 一种适用于自由空间光通信的空分复用系统及方法
CN105162587A (zh) * 2015-09-25 2015-12-16 华南师范大学 多用户轨道角动量复用网络系统及其量子密钥分发方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941405A (zh) * 2014-04-11 2014-07-23 苏州大学 一种完美拉盖尔-高斯光束的产生方法及其装置
US10761014B2 (en) * 2014-11-04 2020-09-01 Nec Corporation Method and apparatus for remote sensing using optical orbital angular momentum (OAM)-based spectroscopy for object recognition
GB2533397B (en) * 2014-12-19 2020-09-23 Cambridge Entpr Ltd Optical Systems
GB201516870D0 (en) * 2015-09-23 2015-11-04 Roadmap Systems Ltd Optical systems
CN106788745B (zh) * 2016-11-25 2018-12-25 深圳大学 一种轨道角动量相干解复用的装置及分离检测的方法
CN106533574A (zh) * 2016-12-26 2017-03-22 华中科技大学 一种太赫兹涡旋光束轨道角动量态的解调装置和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251655A (zh) * 2008-03-21 2008-08-27 北京理工大学 一种实现光束轨道角动量态叠加和调制的装置
CN101726868A (zh) * 2009-12-15 2010-06-09 北京理工大学 一种实现光束轨道角动量态复用编码的方法和装置
CN103457659A (zh) * 2013-08-22 2013-12-18 华中科技大学 一种适用于自由空间光通信的空分复用系统及方法
CN105162587A (zh) * 2015-09-25 2015-12-16 华南师范大学 多用户轨道角动量复用网络系统及其量子密钥分发方法

Also Published As

Publication number Publication date
CN109564329B (zh) 2021-02-12
CN109564329A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
US11784465B2 (en) Semiconductor laser beam combining device
CN103969933B (zh) 激光光源、波长转换光源、合光光源和投影显示装置
US20220128666A1 (en) Optical components for scanning lidar
EP3128682B1 (en) Optical communication apparatus and method
CN102033312B (zh) 基于mems技术的可调谐光滤波器
CN104316179A (zh) 一种光谱压缩的超光谱成像系统
EP1345053A3 (en) Optical wavelenght division multiplexer
US9372311B2 (en) Wavelength selective switch
JPH04110916A (ja) 半導体レーザ用合波装置
CN111221081B (zh) 一种基于LCoS的波长选择开关
US11728919B2 (en) Optical communications apparatus and wavelength selection method
WO2018107452A1 (zh) 自由空间通信系统中的光通信装置和方法以及发射天线
CN109212767B (zh) 一种激光合束系统
Clevenson et al. Incoherent light imaging using an optical phased array
NL9001610A (nl) Beeldprojektie-inrichting.
CN107436526A (zh) 一种光源装置以及投影显示装置
US10876891B1 (en) Enhanced co-registered optical systems
CN110520773A (zh) 用于波长选择开关的复曲面形微透镜阵列
CN206248884U (zh) 一种基于透射式相位光栅阵列的分辨率可调波长选择开关
WO2022017275A1 (zh) 一种光源系统及投影系统
WO2020093200A1 (zh) 基于几何光学变换的oam信道提取与添加系统及方法
CN112526678B (zh) 一种光谱处理装置以及可重构光分插复用器
CN105785515A (zh) 一种带宽可调的平顶型光学滤波器
US4930868A (en) Combiner for optical or electro-optical systems
JP2014056004A (ja) 波長選択光スイッチ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939261

Country of ref document: EP

Kind code of ref document: A1