WO2020091269A1 - 자기장 생성 장치 및 이를 구비하는 체내 선량 제어 조사 치료 장치 - Google Patents

자기장 생성 장치 및 이를 구비하는 체내 선량 제어 조사 치료 장치 Download PDF

Info

Publication number
WO2020091269A1
WO2020091269A1 PCT/KR2019/013594 KR2019013594W WO2020091269A1 WO 2020091269 A1 WO2020091269 A1 WO 2020091269A1 KR 2019013594 W KR2019013594 W KR 2019013594W WO 2020091269 A1 WO2020091269 A1 WO 2020091269A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
radiation
particle beam
field generating
affected tissue
Prior art date
Application number
PCT/KR2019/013594
Other languages
English (en)
French (fr)
Inventor
김근주
김정일
이용석
김상훈
김인수
이정훈
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2020091269A1 publication Critical patent/WO2020091269A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/06Magnetotherapy using magnetic fields produced by permanent magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient

Definitions

  • the present invention relates to an apparatus for generating a magnetic field and an apparatus for controlling radiation dose control in the body having the same, and more specifically, to generate a magnetic field to control charged particles by forming a magnetic field in the affected tissue in a direction crossing the irradiation direction of radiation or particle beam
  • the present invention relates to a magnetic field generating device having a magnetic field shielding unit capable of attenuating a magnetic field leaking from a negative and a magnetic field generating unit to an external region, and an internal dose control irradiation treatment device having the same.
  • a radiotherapy device is a medical device that uses radiation or particle beams for the treatment of diseases.
  • Malignants such as cancer by using photon beams such as X-rays and gamma rays, or beams of radiation such as proton beams or electron beams
  • It is a treatment device that delays or destroys the growth of tumor tissue.
  • the normal tissue cells may die, cause genetic defects, or even cause cancer. Furthermore, when the normal tissue and the tumor tissue are in close proximity, there is a case where the therapeutic dose such as radiation cannot be sufficiently investigated due to side effects such as radiation.
  • the mucosal tissue in the human body is one of the most sensitive areas such as radiation, and side effects may occur when a certain dose or more is delivered to the mucosal structure. Therefore, in irradiation treatment using radiation or the like, the tumor to be destroyed should be adjusted to minimize damage to normal tissue surrounding the tumor while receiving a sufficient irradiation amount.
  • Korean Patent Registration No. 10-1689130 discloses a photon beam radiation therapy apparatus for controlling the dose of mucosal tissues in the body using a magnetic field, but a malfunction of the radiation therapy apparatus due to an external leakage magnetic field as well as a linear constituting the radiation therapy apparatus There may be a problem that affects the electron beam in the accelerator and causes a change in radiation dose or interferes with accurate beam targeting to the tumor tissue, making accurate radiation treatment difficult.
  • the disclosed magnetic field generating structure it is difficult to obtain a high magnetic field at the center, and it is difficult to obtain a uniform magnetic field in the treatment area.
  • a multi-lead collimator (MLC) has been adopted as a radiation treatment device to intensively treat only tumor tissue while minimizing irradiation of normal tissues.
  • MLC multi-leaf collimator
  • Such a multi-leaf collimator (MLC) uses a motor.
  • the magnetic field in the motor must be able to be suppressed to a certain level or less (eg, up to 600 Gauss, G).
  • the present invention was devised to solve the problems of the prior art as described above, so that the magnetic field is formed in the affected tissue in a direction crossing the irradiation direction of the radiation or particle beam to control charged particles scattered in tumor tissue in the human body, etc.
  • the damage to the normal tissue caused by the scattered charged particles can be minimized, and furthermore, by arranging the magnetic field generator in an area inside the magnetic field shield to attenuate the magnetic field leaking to the outside area, the linearity located in the outside area of the magnetic field shield
  • An object of the present invention is to provide a magnetic field generating device capable of effectively suppressing the influence of a magnetic field on an accelerator, an electron gun, a multi-leaf collimator (MLC), and an internal dose control irradiation treatment device having the same.
  • MLC multi-leaf collimator
  • Irradiation treatment apparatus for solving the above problems, a radiation irradiation unit for irradiating the radiation or particle beam to the affected tissue of the subject; A magnetic field generator that forms a magnetic field in a first region including the affected tissue; And a magnetic field shielding portion that attenuates leakage of the magnetic field generated by the magnetic field generator and applied to the affected tissue to the outer region, wherein the affected portion tissue is located in the inner region.
  • the magnetic field generating unit may form the magnetic field in a second direction crossing the first direction to which the radiation or particle beam is irradiated.
  • first direction of the radiation or particle beam may intersect perpendicularly to the second direction of the magnetic field.
  • the magnetic field can control the trajectory of the charged particles generated by the radiation or particle beam.
  • the magnetic field shielding portion is provided with a magnetic material (magnetic material), to achieve a magnetic circuit structure for the magnetic field formed from the magnetic field generating unit, and at the same time, to attenuate the magnetic field leaking to the external region.
  • a magnetic material magnetic material
  • a magnetic field focusing part provided at both ends of the inner region of the magnetic field shielding part may be further included.
  • the magnetic field focusing unit may focus the magnetic field in the inner region to increase the intensity of the magnetic field formed in the affected tissue.
  • the magnetic field focusing portion includes an outer portion of a first outer diameter located on the side of the magnetic field generating portion, and an inner portion of a second outer diameter located inside the magnetic field generating portion, wherein the first outer diameter is greater than the second outer diameter. It is preferred.
  • the magnetic field generating unit may include a plurality of electromagnets or permanent magnets arranged in a symmetrical structure left and right based on an axis to which the radiation or particle beam is irradiated.
  • the magnetic field generating unit is configured using an electromagnet, and by controlling the direction and intensity of the magnetic field through the control of the electromagnet, it is possible to control charged particles generated on the path of the irradiated radiation or particle beam.
  • the magnetic field generating unit is configured by using a permanent magnet, it can achieve a structure in which a permanent magnet is additionally disposed between a plurality of magnets arranged in a symmetrical structure.
  • a permanent magnet may be additionally disposed between the plurality of magnets to form a Halbach array structure.
  • the magnetic field shielding part is configured to include two magnetic bodies that are disposed left and right based on an axis to which the radiation or particle beam is irradiated, and the first irradiating part transmits the radiation or particle beam through the two magnetic bodies to the affected part. You can investigate by organization.
  • the magnetic field shielding part is configured to include a magnetic body having an opening structure through which the radiation or particle beam can pass, and the first irradiation part irradiates the radiation or particle beam to the affected tissue through the opening structure.
  • a magnetic body having an opening structure through which the radiation or particle beam can pass
  • the first irradiation part irradiates the radiation or particle beam to the affected tissue through the opening structure.
  • the magnetic field shielding unit may be driven in conjunction with the first irradiation unit so that the radiation or particle beam can be irradiated through the opening structure.
  • the magnetic field generating unit may be driven in conjunction with the magnetic field shielding unit and the first irradiation unit.
  • the magnetic field is generated on the radiation beam path by adjusting the magnetic field direction and intensity while allowing the magnetic field to be formed in the affected tissue in a direction crossing the irradiation direction of radiation.
  • the treatment effect can be enhanced while suppressing damage to normal tissues.
  • a magnetic field generator is disposed in the magnetic field shield to attenuate the magnetic field leaking to the external area, thereby accelerating the linear accelerator, electron gun, and multileaf collimator. It is possible to minimize the influence on various parts sensitive to a magnetic field such as, and to concentrate the external leakage magnetic field inside to increase the central magnetic field in the affected area.
  • FIG. 1 is a block diagram of an irradiation treatment apparatus according to an embodiment of the present invention.
  • FIGS. 2A and 2B are configuration diagrams of an irradiation treatment apparatus according to an embodiment of the present invention.
  • 3 and 4 are diagrams for explaining a magnetic field distribution in an external region of an irradiation treatment apparatus according to an embodiment of the present invention.
  • FIG 5 is a view for explaining the magnetic field distribution in the inner region of the irradiation treatment apparatus according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining the configuration of the magnetic field shield of the irradiation treatment apparatus according to an embodiment of the present invention.
  • FIG. 7 and 8 are diagrams illustrating a magnetic field distribution according to a type of a magnetic field shield of an irradiation treatment apparatus according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components are not limited by the terms, and the terms are used to distinguish one component from other components. Used only.
  • FIG. 1 a block diagram of an irradiation treatment apparatus 10 according to an embodiment of the present invention is shown.
  • a first irradiation unit 100 for irradiating radiation or particle beams to the affected tissue of the subject a magnetic field to the affected tissue
  • It may be configured to include a shield 300.
  • the magnetic field generating unit 200 may form the magnetic field in a second direction that intersects the first direction in which the radiation or particle beam is irradiated, and further, the first direction of the radiation or particle beam is the magnetic field. It can be made to intersect perpendicularly to the second direction.
  • the irradiation treatment apparatus 10 may further include a control unit 500 that can control the, further provided on both ends of the inner region of the magnetic field shield 300 is focused on the magnetic field of the inner region (focusing) is formed in the affected tissue It may be configured to further include a magnetic field focusing unit 400 to increase the strength of the magnetic field.
  • the magnetic field is generated in the magnetic field generator 200 in a direction crossing the irradiation direction of radiation irradiated from the first irradiation unit 100 to the affected tissue It is possible to control the charged particles generated on the radiation or particle beam path by adjusting the magnetic field direction and intensity of the magnetic field generator 200 while being formed in the first region including the radiation field, thereby enhancing the radiation treatment effect.
  • the magnetic field generator 200 in the magnetic field shield 300 inside the magnetic field to attenuate the magnetic field leaking to the outside area, the magnetic field leakage, such as a linear accelerator, electron gun, multi-leaf collimator (MLC) It is possible to effectively suppress malfunction of sensitive sensitive parts.
  • the magnetic field leakage such as a linear accelerator, electron gun, multi-leaf collimator (MLC) It is possible to effectively suppress malfunction of sensitive sensitive parts.
  • FIGS. 2A and 2B illustrate a specific configuration of the irradiation treatment apparatus 10 according to an embodiment of the present invention.
  • FIG. 2A illustrates a case in which an electromagnet is used as the magnetic field generator 200
  • FIG. 2B illustrates a case in which a permanent magnet is used as the magnetic field generator 200. have.
  • the irradiation treatment apparatus 10 according to an embodiment of the present invention is divided into each configuration and examined in more detail with reference to FIGS. 2A and 2B.
  • the first irradiator 100 irradiates radiation or particle beams to the affected tissue of the irradiated body.
  • the first irradiator 100 includes an electron gun 110 generating an electron beam and a linear accelerator 120 accelerating the electron beam generated from the electron gun 110. ), A bending magnet (130) that turns the direction of the accelerated electron beam, a target (140) that generates radiation such as X-rays while the electron beam collides, and radiation generated by the target (140) It may be configured to include a multi-lead collimator (MLC) 150 to limit the irradiated area.
  • MLC multi-lead collimator
  • the present invention is not necessarily limited thereto, and in addition, it may be embodied in various structures capable of generating radiation or particle beams and irradiating the affected tissue.
  • the irradiation treatment apparatus 10 it is possible to perform treatment by irradiating radiation or particle beams generated by the first irradiation unit 100 to affected tissues of a subject, such as a patient. .
  • a magnetic field generator 200 is provided to form a magnetic field in the affected tissue, and By forming the magnetic field in the magnetic field generating unit 200 in a second direction crossing the first direction to which the radiation is radiated, damage to normal tissue is controlled by controlling charged particles that may be generated in the affected tissue by radiation. It can be effectively prevented.
  • the magnetic field generating unit 200 has a plurality of electromagnets (FIG. 2A) or permanent magnets disposed in a symmetrical structure on the basis of an axis to which the radiation is irradiated. 2b).
  • the magnetic field generating unit 200 when used in the irradiation treatment apparatus 10 according to an embodiment of the present invention, the generated magnetic field affects the radiation irradiation unit 100 and the like, resulting in malfunction. Problems may appear.
  • the multi-leaf collimator 150 of the magnetic field generating unit 200 is provided with a motor 151 to drive multi-leaf in the form of an opening through which radiation is irradiated.
  • a motor 151 to drive multi-leaf in the form of an opening through which radiation is irradiated.
  • malfunction or inoperability may be caused by a magnetic field leaking to the outside, and in particular, if a multi-leaf is incorrectly driven and displaced, a dangerous situation in which a large amount of radiation is irradiated to normal tissue may be caused.
  • a predetermined reference value eg, 600 Gauss, G.
  • an electron beam path is distorted by an external magnetic field, which may cause an error such as radiation dose, and furthermore, beam targeting becomes difficult and accurate. Irradiation and treatment are also difficult.
  • the affected tissue is located in the inner region, and is generated by the magnetic field generator to generate the affected area It has a magnetic field shield 300 to attenuate leakage of the magnetic field applied to the tissue to the external region, so that the magnetic field generated by the magnetic field generating unit 200 may appear by affecting the first irradiation unit 100 or the like Malfunctions and the like are prevented.
  • the magnetic field shield 300 is preferably configured in the form of a cylindrical shape made of a magnetic material such as pure iron, and accordingly, a loop (loop) with respect to the magnetic field formed from the magnetic field generating unit 200 ) It is possible to attenuate the magnetic field leaking to the external region at the same time as the magnetic circuit structure of the shape.
  • FIGS. 3 and 4 illustrate the magnetic field distribution in the outer region of the irradiation treatment device 10 according to an embodiment of the present invention.
  • FIG. 3 illustrates a magnetic field distribution in an external region of the irradiation treatment device 10 having the magnetic field generator 200 using an electromagnet.
  • FIG. 3 (a) illustrates a case where the magnetic field shield 300 is not provided.
  • the external magnetic field strength at the motor 151 is 500 Gauss (G). Although it satisfies the normal operating conditions of the furnace motor 151 (for example, less than or equal to 600 Gauss (G)), it represents a situation in which it is difficult to rule out the possibility that a malfunction may be caused because it is close to the threshold.
  • FIG. 3 (b) illustrates a case in which the magnetic field shield 300 is provided.
  • the external magnetic field strength in the motor 151 is 70 Gauss (G). It can be confirmed that the normal operating conditions of the motor 151 (for example, 600 gauss (G) or less) can be sufficiently satisfied, and further, the magnetic field in the central region corresponding to the affected tissue is also strengthened to 2320 gauss (G). It can be seen (2100 Gauss (G) in FIG. 3 (a)).
  • FIG. 3 (c) illustrates a case in which the magnetic field concentrator 400 is provided together with the magnetic field shield 300.
  • the magnetic field in the central region corresponding to the affected tissue is concentrated to 2670 Gauss (G) by providing the magnetic field focusing unit 400, and at this time, it is external to the motor 151.
  • the magnetic field strength is also 200 gauss (G), which satisfies the normal operating conditions.
  • FIG. 4 illustrates the magnetic field distribution in the outer region of the radiation treatment apparatus 10 having the magnetic field generator 200 using a permanent magnet.
  • FIG. 4 (a) illustrates a case where the magnetic field shield 300 is not provided.
  • the external magnetic field strength at the motor 151 is 1000 Gauss (G). It can be seen that it is out of normal operating conditions (for example, less than or equal to 600 Gauss (G)) of the furnace motor 151, and thus it is very likely that a malfunction is caused.
  • Figure 4 (b) illustrates a case having a magnetic field shield 300, as can be seen in Figure 4 (b), the external magnetic field strength in the motor 151 to 250 Gauss (G) It can be confirmed that the normal operating conditions of the motor 151 (for example, 600 Gauss (G) or less) can be sufficiently satisfied, and further, the magnetic field in the central region corresponding to the affected tissue is also strengthened to 2460 Gauss (G). It can be seen (2090 Gauss (G) in FIG. 4 (a)).
  • FIG. 4 (c) illustrates a case in which a Halbach magnet 210 is provided in the magnetic field generator 200 together with the magnetic field shield 300 to form a Halbach array structure.
  • a Halbach magnet 210 is provided in the magnetic field generator 200 together with the magnetic field shield 300 to form a Halbach array structure.
  • the magnetic field in the central region corresponding to the affected tissue While strengthening to 2890 Gauss (G), it can be seen that the external magnetic field strength in the motor 151 can be further improved to 110 Gauss (G).
  • FIG. 5 illustrates the magnetic field distribution in the inner region of the radiation treatment apparatus 10 according to an embodiment of the present invention.
  • FIG. 5 (a) illustrates a case in which the magnetic field generator 200 is constructed using an electromagnet
  • FIG. 5 (b) the magnetic field generator 200 is constructed using a permanent magnet. Is illustrated.
  • the first irradiation unit 100 is provided with a magnetic field generator 200 in an inner region of the magnetic field shield 300 ), A magnetic field is formed in a direction crossing the direction of the radiation or particle beam.
  • the magnetic field shielding part 300 is composed of a magnetic material, such as a cylindrical shape, formed from the magnetic field generating part 200 It is possible to attenuate a magnetic circuit structure for a magnetic field, and attenuate a magnetic field leaking to an external region.
  • the magnetic field focusing part 400 is provided at both ends of the inner region of the magnetic field shield 300 to focus the magnetic field of the inner region to increase the strength of the magnetic field formed in the affected tissue. There will be.
  • the magnetic field focusing part 400 has an outer portion 410 of a first outer diameter located on the side of the magnetic field generating part 200, and an interior of the magnetic field generating part 200. It may be configured to include the inner portion 420 of the second outer diameter located at, wherein the first outer diameter has a larger value than the second outer diameter while forming a shape corresponding to the shape of the magnetic field generating unit 200 The structure to be fastened can be achieved.
  • the magnetic field generating unit 200 may be configured to include a plurality of electromagnets or permanent magnets arranged in a symmetrical structure left and right based on an axis to which the radiation is irradiated.
  • the magnetic field generating unit 200 may be configured by using a permanent magnet, wherein the magnetic field generating unit 200 is arranged in a symmetrical structure of the left and right Permanent magnets may be additionally disposed between the magnets of to form a Halbach array structure.
  • a permanent magnet having a magnetic field direction opposite to a central magnetic field direction is additionally disposed between a plurality of magnets arranged in the left and right symmetrical structures to further improve characteristics such as magnetic field strength and external leakage magnetic field. It can be improved.
  • FIG. 6 illustrates the configuration of the magnetic field shield 300 of the radiation treatment apparatus 10 according to an embodiment of the present invention.
  • the magnetic field shielding unit 300 is preferably driven in conjunction with the first irradiation unit 100 so that the radiation can be irradiated through the first opening structure (310).
  • the magnetic field shield 300 is more preferably provided with a second opening structure 340 for irradiating a radiation beam for monitoring the affected tissue.
  • FIG. 7 and 8 illustrate the magnetic field distribution according to the type of the magnetic field shield 300 of the irradiation treatment apparatus 10 according to an embodiment of the present invention.
  • FIG. 7 (a) shows the magnetic field distribution when the magnetic field shield 300 having the separable shielding structure of FIG. 6 (a) is provided. As can be seen in Figure 7 (a), it can be seen that the external magnetic field in the motor 151 has a high value close to 450 Gauss (G).
  • FIG. 7 (b) shows a magnetic field distribution when the magnetic field shield 300 having the integral shielding structure of FIG. 6 (b) is provided. As can be seen in Figure 7 (b), it can be seen that the external magnetic field in the motor 151 has a value close to 300 Gauss (G).
  • FIG. 7 (c) shows the magnetic field distribution when the magnetic field shielding unit 300 having the integral shielding structure of FIG. 6 (b) is provided with the magnetic field generating unit 200 having the Halbach magnet 210. Doing. As can be seen in Figure 7 (c), it can be seen that the external magnetic field in the motor 151 is only about 100 Gauss (G).
  • FIG. 8 the magnetic field distribution at the position of the motor 151 according to the angle is displayed in a graph with respect to the cases of FIGS. 7 (a) to 7 (c) above.
  • FIG. 8 (A) when the magnetic field shield 300 having a separable shielding structure is provided (FIG. 8 (A)), a range of about 0.041 Tesla (T) to 0.045 Tesla (T) is provided. It can be seen that it can have a magnetic field, and a magnetic field shield 300 having an integral shielding structure (Fig. 8 (B)) has a magnetic field in the range of about 0.026 Tesla (T) to 0.028 Tesla (T). You can see that you can have.
  • the magnetic field generator 200 having the Halbach magnet 210 is provided together with the magnetic field shield 300 having an integral shielding structure (FIG. 8 (C)), about 0.01 Tesla (T) As it indicates the magnetic field, it can be seen that the external magnetic field by the magnetic field generator 200 can be suppressed to effectively prevent malfunctions of the electron gun 110, the linear accelerator 120, and the motor 151.
  • the magnetic field generator 200 while the magnetic field is formed in the affected tissue in the direction perpendicular to the direction of radiation, the magnetic field generator 200 generates the magnetic field generator 200 )
  • the magnetic field shield 300 By placing the magnetic field shield 300 in the inner region to attenuate the magnetic field leaking to the outer region, thereby preventing a decrease in radiation dose due to charged particles that may occur in affected tissues by irradiation of radiation or particle beams. It is possible to effectively suppress malfunctions that may occur due to leakage.

Abstract

본 발명은 자기장 생성 장치 및 이를 구비하는 체내 선량 제어 조사 치료 장치에 관한 것으로서, 보다 구체적으로는 자기장을 방사선 또는 입자빔의 조사 방향과 교차하는 방향으로 환부 조직에 형성하여 하전 입자를 제어하는 자기장 발생부와 자기장 발생부에서 외부 영역으로 누설되는 자기장을 감쇠시킬 수 있는 자기장 차폐부를 구비하는 자기장 생성 장치 및 이를 구비하는 체내 선량 제어 조사 치료 장치에 관한 것이다. 본 발명에서는, 방사선 또는 입자빔을 피조사체의 환부 조직으로 조사하는 방사선 조사부; 자기장을 상기 환부 조직을 포함하는 제1 영역에 형성하는 자기장 발생부; 및 상기 환부 조직이 내부 영역에 위치하고, 상기 자기장 발생부에 의하여 생성되어 상기 환부 조직으로 인가되는 자기장이 외부 영역으로 누설되는 것을 감쇠시키는 자기장 차폐부;를 포함하는 것을 특징으로 하는 조사 치료 장치를 개시한다.

Description

자기장 생성 장치 및 이를 구비하는 체내 선량 제어 조사 치료 장치
본 발명은 자기장 생성 장치 및 이를 구비하는 체내 선량 제어 조사 치료 장치에 관한 것으로서, 보다 구체적으로는 자기장을 방사선 또는 입자빔의 조사 방향과 교차하는 방향으로 환부 조직에 형성하여 하전 입자를 제어하는 자기장 발생부와 자기장 발생부에서 외부 영역으로 누설되는 자기장을 감쇠시킬 수 있는 자기장 차폐부를 구비하는 자기장 생성 장치 및 이를 구비하는 체내 선량 제어 조사 치료 장치에 관한 것이다.
최근 고령화 시대의 도래와 더불어 국민 생활수준이 향상됨에 따라 건강한 삶을 영위하기 위한 질병의 조기 진단과 치료에 대한 관심이 점점 높아지고 있는 추세에 있다. 특히, 조사 치료(radiotherapy) 장치는 질병의 치료에 방사선 또는 입자빔 등을 사용하는 의료 장비로서, X선, 감마선과 같은 광자 또는 양성자선 등의 방사선이나 전자 등의 입자빔을 이용하여 암과 같은 악성 종양 조직 등의 성장을 지연시키거나 파괴하는 치료 장치이다.
그런데, 인체의 정상 조직에 고 에너지를 갖고 있는 방사선량이 과다하게 조사되는 경우, 정상 조직 세포가 사멸하거나, 유전적인 결함을 초래하기도 하고, 오히려 암을 발생시키기도 한다. 나아가, 정상 조직과 종양 조직이 근접해 있을 경우, 방사선 등의 부작용으로 인하여 방사선 등의 치료 선량을 충분히 조사하지 못하는 경우가 발생한다.
보다 구체적인 예로, 인체내의 점막 조직은 방사선 등에 가장 민감한 부위 중 하나로서, 점막 구조에 일정 조사량 이상이 전달될 때 부작용이 발생할 수 있다. 따라서, 방사선 등을 이용한 조사 치료 시, 파괴할 종양이 충분한 조사량을 받으면서도, 종양을 둘러싸고 있는 정상 조직에 대한 손상을 최소화하도록 조절되어야 한다.
이에 대하여, 대한민국 등록특허 제10-1689130호에서는 자기장을 이용한 체내 점막조직 선량 제어 광자빔 방사선 치료장치를 개시하고 있으나, 외부 누설 자기장으로 인한 방사선 치료 장치의 오작동 뿐만 아니라 상기 방사선 치료 장치를 구성하는 선형 가속기 내의 전자빔에 영향을 주면서 방사선 선량에 변화를 초래하거나 종양 조직에 정확한 빔 타겟팅을 방해하여 정확한 방사선 치료를 어렵게 하는 문제가 따를 수 있다. 또한, 개시된 자기장 발생 구조의 경우 중심에서 높은 자기장을 얻기 어려울 뿐만 아니라, 치료영역에서 균일한 자기장을 얻기 어렵다.
또한, 최근 방사선 치료 장치에는 정상 조직에 대한 방사선 조사를 최소화하면서도 종양 조직 만을 집중적으로 치료하기 위하여 다엽 콜리메이터(Multi-Leaf Collimator, MLC)를 채택하고 있는데, 이러한 다엽 콜리메이터(MLC)는 모터를 이용하여 구동되는 바 모터의 오동작을 방지하기 위해서는 모터에서의 자기장을 일정 수준(예를 들어, 최대 600 가우스(Gauss, G)) 이하로 억제할 수 있어야 한다.
이에 따라, 방사선 등의 조사에 의해 인체 내 종양 조직 등에서 발생할 수 있는 하전 입자를 제어함과 동시에 나아가 선형 가속기, 다엽 콜리메이터(MLC) 등에 대한 자기장의 영향을 효과적으로 억제할 수 있는 구조의 조사 치료 장치의 개발이 절실히 요구되고 있다. 특히, 발생된 하전 입자를 제어하기 위해서는 일정 값 이상의 자기장과 함께 점막 등의 위치에 따른 적절한 자기장 방향 제어가 필요하게 된다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위해 창안된 것으로, 자기장을 방사선 또는 입자빔의 조사 방향과 교차하는 방향으로 환부 조직에 형성되도록 하여 인체 내 종양 조직 등에서 산란된 하전 입자를 제어하여 산란된 하전 입자에 의한 정상 조직의 손상을 최소화 할 수 있으며, 나아가 상기 자기장 발생부를 자기장 차폐부 내부 영역에 배치하여 외부 영역으로 누설되는 자기장을 감쇠하여 줌으로써, 상기 자기장 차폐부의 외부 영역에 위치하는 선형 가속기, 전자총, 다엽 콜리메이터(MLC) 등에 대한 자기장의 영향을 효과적으로 억제할 수 있는 자기장 생성 장치 및 이를 구비하는 체내 선량 제어 조사 치료 장치를 제공하는 것을 목적으로 한다.
그 외 본 발명의 세부적인 목적은 아래에 기재되는 구체적인 내용을 통하여 이 기술 분야의 전문가나 연구자에게 자명하게 파악되고 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 한 측면에 따른 조사 치료 장치는, 방사선 또는 입자빔을 피조사체의 환부 조직으로 조사하는 방사선 조사부; 자기장을 상기 환부 조직을 포함하는 제1 영역에 형성하는 자기장 발생부; 및 상기 환부 조직이 내부 영역에 위치하고, 상기 자기장 발생부에 의하여 생성되어 상기 환부 조직으로 인가되는 자기장이 외부 영역으로 누설되는 것을 감쇠시키는 자기장 차폐부;를 포함하는 것을 특징으로 한다.
이때, 상기 자기장 발생부에서는 상기 자기장을 상기 방사선 또는 입자빔이 조사되는 제1 방향과 교차하는 제2 방향으로 형성할 수 있다.
나아가, 상기 방사선 또는 입자빔의 제1 방향은 상기 자기장의 제2 방향과 수직하게 교차할 수 있다.
또한, 상기 자기장은 상기 방사선 또는 입자빔에 의하여 생성되는 하전 입자의 궤적을 제어할 수 있다.
또한, 상기 자기장 차폐부는 자상체(magnetic material)를 구비하여 구성되어, 상기 자기장 발생부로부터 형성되는 자기장에 대한 자기 회로 구조를 이룸과 동시에, 상기 외부 영역으로 누설되는 자기장을 감쇠시킬 수 있다.
또한, 상기 자기장 차폐부의 내부 영역의 양측 종단에 구비되는 자기장 집속부를 더 포함할 수 있다.
나아가, 상기 자기장 집속부는 상기 내부 영역의 자기장을 집속(focusing)시켜 상기 환부 조직에 형성되는 자기장의 세기를 증가시킬 수 있다.
여기서, 상기 자기장 집속부는, 상기 자기장 발생부의 측부에 위치하는 제1 외경의 외측부와, 상기 자기장 발생부의 내부에 위치하는 제2 외경의 내측부를 포함하며, 상기 제1 외경은 상기 제2 외경보다 큰 것이 바람직하다.
또한, 상기 자기장 발생부는 상기 방사선 또는 입자빔이 조사되는 축을 기준으로 좌우 대칭 구조를 이루어 배치되는 복수의 전자석 또는 영구 자석을 포함하여 구성될 수 있다.
또한, 상기 자기장 발생부는 전자석을 이용하여 구성되며, 상기 전자석의 제어를 통해 자기장의 방향과 세기를 조절하여 조사되는 방사선 또는 입자빔의 경로 상에 발생된 하전 입자를 제어할 수 있다.
이때, 상기 자기장 발생부는 영구 자석을 이용하여 구성되며, 상기 좌우 대칭 구조를 이루어 배치되는 복수의 자석 사이에 영구 자석이 추가 배치되는 구조를 이룰 수 있다.
나아가, 상기 복수의 자석 사이에 영구 자석이 추가 배치되어 할바흐 배열(Halbach array) 구조를 이룰 수 있다.
또한, 상기 자기장 차폐부는 상기 방사선 또는 입자빔이 조사되는 축을 기준으로 좌우로 배치되는 두 개의 자성체를 포함하여 구성되며, 상기 제1 조사부는 상기 두 개의 자성체 사이를 통해 상기 방사선 또는 입자빔을 상기 환부 조직으로 조사할 수 있다.
또한, 상기 자기장 차폐부는 상기 방사선 또는 입자빔이 투과할 수 있는 개구 구조를 구비하는 자성체를 포함하여 구성되며, 상기 제1 조사부는 상기 개구 구조를 통해 상기 방사선 또는 입자빔을 상기 환부 조직으로 조사할 수 있다.
이때, 상기 자기장 차폐부는, 상기 방사선 또는 입자빔이 상기 개구 구조를 통해 조사될 수 있도록 상기 제1 조사부와 연동하여 구동될 수 있다.
또한, 상기 자기장 발생부는, 상기 자기장 차폐부 및 상기 제1 조사부와 연동하여 구동될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 조사 치료 장치에서는, 자기장 발생부에서 자기장을 방사선의 조사 방향과 교차하는 방향으로 환부 조직에 형성되도록 하면서 자기장 방향 및 세기를 조절하여 방사선 빔 경로상에 발생된 하전 입자를 제어할 수 있어 정상 조직의 손상을 억제하면서 치료 효과를 높일 수 있으며, 자기장 차폐부 내부 영역에 자기장 발생부를 배치하여 외부 영역으로 누설되는 자기장을 감쇠하여 줌으로써 선형 가속기, 전자총, 다엽 콜리메이터 등 자기장에 민감한 여러 부품들에 대한 영향을 최소화할 수 있으며 외부 누설 자기장을 내부로 집속함으로써 상기 환부 영역에서의 중심 자기장을 높일 수 있게 된다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 본 발명의 일 실시 예에 따른 조사 치료 장치의 블록도이다.
도 2a와 도 2b는 본 발명의 일 실시 예에 따른 조사 치료 장치의 구성도이다.
도 3과 도 4는 본 발명의 일 실시 예에 따른 조사 치료 장치의 외부 영역에서의 자기장 분포를 설명하는 도면이다.
도 5는 본 발명의 일 실시 예에 따른 조사 치료 장치의 내부 영역에서의 자기장 분포를 설명하는 도면이다.
도 6은 본 발명의 일 실시 예에 따른 조사 치료 장치의 자기장 차폐부의 구성을 설명하는 도면이다.
도 7과 도 8은 본 발명의 일 실시 예에 따른 조사 치료 장치의 자기장 차폐부의 종류에 따른 자기장 분포를 설명하는 도면이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 이하에서는 특정 실시예들을 첨부된 도면을 기초로 상세히 설명하고자 한다.
이하의 실시예는 본 명세서에서 기술된 방법, 장치 및/또는 시스템에 대한 포괄적인 이해를 돕기 위해 제공된다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.
본 발명의 실시예들을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 상세한 설명에서 사용되는 용어는 단지 본 발명의 실시 예들을 기술하기 위한 것이며, 결코 제한적이어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다. 본 설명에서, "포함" 또는 "구비"와 같은 표현은 어떤 특성들, 숫자들, 단계들, 동작들, 요소들, 이들의 일부 또는 조합을 가리키기 위한 것이며, 기술된 것 이외에 하나 또는 그 이상의 다른 특성, 숫자, 단계, 동작, 요소, 이들의 일부 또는 조합의 존재 또는 가능성을 배제하도록 해석되어서는 안 된다.
또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되는 것은 아니며, 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
아래에서는, 본 발명의 일 실시예에 따른 조사 치료(radiotherapy) 장치에 대한 예시적인 실시 형태들을 첨부된 도면을 참조하여 차례로 설명한다.
먼저, 도 1에서는 본 발명의 일 실시예에 따른 조사 치료 장치(10)의 블록도가 도시되어 있다. 도 1에서 볼 수 있는 바와 같이, 본 발명의 일 실시예에 따른 조사 치료 장치(10)는, 방사선 또는 입자빔을 피조사체의 환부 조직으로 조사하는 제1 조사부(100), 자기장을 상기 환부 조직을 포함하는 제1 영역에 형성하는 자기장 발생부(200) 및 상기 환부 조직이 내부 영역에 위치하고, 상기 자기장 발생부에 의하여 생성되어 상기 환부 조직으로 인가되는 자기장이 외부 영역으로 누설되는 것을 감쇠시키는 자기장 차폐부(300)를 포함하여 구성될 수 있다.
이때, 상기 자기장 발생부(200)에서는 상기 자기장을 상기 방사선 또는 입자빔이 조사되는 제1 방향과 교차하는 제2 방향으로 형성할 수 있으며, 나아가 상기 방사선 또는 입자빔의 제1 방향이 상기 자기장의 제2 방향과 수직하게 교차하도록 할 수 있다.
또한, 본 발명의 일 실시예에 따른 조사 치료 장치(10)는, 도 1에서 볼 수 있는 바와 같이, 상기 제1 조사부(100), 자기장 발생부(200), 자기장 차폐부(300)의 구동을 제어할 수 있는 제어부(500)를 더 포함할 수 있으며, 나아가 상기 자기장 차폐부(300)의 내부 영역의 양측 종단에 구비되어 상기 내부 영역의 자기장을 집속(focusing)시켜 상기 환부 조직에 형성되는 자기장의 세기를 증가시키는 자기장 집속부(400)를 더 포함하여 구성될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 조사 치료 장치(10)에서는, 상기 자기장 발생부(200)에서 자기장을 상기 제1 조사부(100)에서 조사되는 방사선의 조사 방향과 교차하는 방향으로 환부 조직을 포함하는 제1 영역에 형성되도록 하면서 자기장 발생부(200)의 자기장 방향 및 세기를 조절하여 방사선 또는 입자빔 경로상에 생성되는 하전 입자를 제어할 수 있어 방사선 치료 효과를 높일 수 있다. 또한 상기 자기장 발생부(200)를 자기장 차폐부(300) 내부 영역에 배치하여 외부 영역으로 누설되는 자기장을 감쇠시킴으로써 자기장의 누설에 의해 나타날 수 있는 선형 가속기, 전자총, 다엽 콜리메이터(MLC) 등 자기장에 민감한 여려 부품들의 오동작을 효과적으로 억제할 수 있게 된다.
또한, 도 2a와 도 2b에서는 본 발명의 일 실시예에 따른 조사 치료 장치(10)의 구체적인 구성을 예시하고 있다.
이때, 도 2a에서는 상기 자기장 발생부(200)로서 전자석(electromagnet)을 사용하는 경우를 예시하고 있고, 도 2b에서는 상기 자기장 발생부(200)로서 영구 자석(permanent magnet)을 사용하는 경우를 예시하고 있다.
이하, 도 2a와 도 2b를 참조하여 본 발명의 일 실시예에 따른 조사 치료 장치(10)를 각 구성별로 나누어 보다 자세하게 살핀다.
먼저, 상기 제1 조사부(100)에서는 방사선 또는 입자빔을 피조사체의 환부 조직으로 조사하게 된다.
보다 구체적으로, 도 2a 및 도 2b에서 볼 수 있는 바와 같이, 상기 제1 조사부(100)는, 전자빔을 생성하는 전자총(110), 상기 전자총(110)에서 생성된 전자빔을 가속하는 선형 가속기(120), 상기 가속된 전자빔의 방향을 틀어주는 휨 자석(bending magnet)(130), 상기 전자빔이 충돌하면서 X선 등 방사선을 생성하는 타겟(target)(140) 및 상기 타겟(140)에서 생성된 방사선이 조사되는 영역을 제한하는 다엽 콜리메이터(Multi-Leaf Collimator, MLC)(150)를 포함하여 구성될 수 있다. 그러나, 본 발명이 반드시 이에 한정되는 것은 아니며, 이외에도 방사선 또는 입자빔을 생성하여 환부 조직으로 조사할 수 있는 다양한 구조로 구현될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 조사 치료 장치(10)에서는 상기 제1 조사부(100)에서 생성된 방사선 또는 입자빔을 환자 등 피조사체의 환부 조직으로 조사하여 치료를 수행할 수 있게 된다.
그런데, 상기 방사선 또는 입자빔이 조사되는 궤적에 방사선 또는 입자빔에 민감한 부위가 있을 경우 일정 조사량 이상이 전달되면 부작용이 발생할 수 있다. 특히, 방사선 등에 민감한 정상 조직과 종양 조직이 근접해 있을 경우 종양 조직에 충분한 치료 조사 선량을 전달할 수 없어 치료 효과가 낮아질 수 밖에 없다. 나아가, 점막 조직 등의 경우 방사선 조사 경로에 형성되는 2차 전자 등의 하전 입자에 의하여 쉽게 손상이 발생할 수 있다. 따라서, 방사선 등을 이용한 조사 치료 시, 파괴할 종양이 충분한 조사량을 받으면서도, 종양을 둘러싸고 있는 정상 조직에 대한 손상을 최소화하도록 조절되어야 한다.
이에 따라, 본 발명의 일 실시예에 따른 조사 치료 장치(10)에서는, 도 2a 및 도 2b에서 볼 수 있는 바와 같이, 자기장을 상기 환부 조직에 형성하는 자기장 발생부(200)를 구비하고, 상기 자기장 발생부(200)에서 상기 자기장을 상기 방사선이 조사되는 제1 방향과 교차하는 제2 방향으로 형성하도록 함으로써, 방사선 조사에 의해 환부 조직에서 발생할 수 있는 하전 입자를 제어하여 정상 조직에 대한 손상을 효과적으로 방지할 수 있다.
보다 구체적으로, 도 2a 및 도 2b에서 볼 수 있는 바와 같이, 상기 자기장 발생부(200)는 상기 방사선이 조사되는 축을 기준으로 좌우 대칭 구조를 이루어 배치되는 복수의 전자석(도 2a) 또는 영구 자석(도 2b)을 포함하여 구성될 수 있다.
그런데, 본 발명의 일 실시예에 따른 조사 치료 장치(10)에서 상기 자기장 발생부(200)를 사용하는 경우, 이로 인하여 발생하는 자기장이 상기 방사선 조사부(100) 등에 영향을 주어 오동작 등을 초래하는 문제가 나타날 수 있다.
보다 구체적으로, 상기 자기장 발생부(200)의 다엽 콜리메이터(150)에는 모터(151)가 구비되어 방사선이 조사되는 개구의 형태로 다엽(multi-leaf)을 구동하게 되는데, 상기 모터(151)의 경우 외부로 누설되는 자기장에 의하여 오동작 또는 동작 불능이 초래될 수 있으며, 특히 다엽(multi-leaf)이 잘못 구동되어 위치가 틀어질 경우 정상 조직에 다량의 방사선 등이 조사되는 위험한 상황이 초래될 수 있는 바, 상기 다엽 콜리메이터(150)의 모터(151)의 정상 동작을 보장하기 위하여 외부 자기장이 반드시 미리 정해진 기준치(예를 들어, 600 가우스(Gauss, G)) 이하로 조절될 수 있도록 유지하는 것이 바람직하다.
또한, 상기 모터(151) 이외에 상기 전자총(110) 및 선형 가속기(120)에서도 외부 자기장에 의하여 전자빔의 경로 등이 틀어지면서 방사선 조사량 등에 오차가 발생할 수 있고 나아가 빔 타겟팅(beam targeting)도 어려워지면서 정확한 방사선 조사 및 치료도 힘들어지는 문제가 따르게 된다.
이에 따라, 본 발명의 일 실시예에 따른 조사 치료 장치(10)에서는, 도 2a 및 도 2b에서 볼 수 있는 바와 같이, 상기 환부 조직이 내부 영역에 위치하고, 상기 자기장 발생부에 의하여 생성되어 상기 환부 조직으로 인가되는 자기장이 외부 영역으로 누설되는 것을 감쇠시키는 자기장 차폐부(300)를 구비하여, 상기 자기장 발생부(200)에서 발생하는 자기장이 상기 제1 조사부(100) 등에 영향을 주어 나타날 수 있는 오동작 등을 방지하게 된다.
이때, 상기 자기장 차폐부(300)는 순철 등의 자상체(magnetic material)로 이루어지는 원통형 등의 형태로 구성되는 것이 바람직하며, 이에 따라 상기 자기장 발생부(200)로부터 형성되는 자기장에 대하여 루프(loop) 형상의 자기 회로 구조를 이룸과 동시에, 외부 영역으로 누설되는 자기장을 감쇠시키도록 할 수 있게 된다.
이어서, 도 3과 도 4는 본 발명의 일 실시예에 따른 조사 치료 장치(10)의 외부 영역에서의 자기장 분포를 예시하고 있다.
먼저, 도 3에서는 전자석을 사용하는 자기장 발생부(200)를 구비하는 조사 치료 장치(10)의 외부 영역에서의 자기장 분포를 예시하고 있다.
이때, 도 3(a)에서는 자기장 차폐부(300)를 구비하지 않는 경우를 예시하고 있는데, 도 3(a)에서 볼 수 있는 바와 같이 모터(151)에서의 외부 자기장 세기가 500 가우스(G)로 모터(151)의 정상 동작 조건(예를 들어, 600 가우스(G) 이하)에는 만족하나 경계치에 가까워 오동작이 유발될 가능성을 배제하기 어려운 상황을 나타낸다.
반면, 도 3(b)에서는 자기장 차폐부(300)를 구비하는 경우를 예시하고 있는데, 도 3(b)에서 볼 수 있는 바와 같이 모터(151)에서의 외부 자기장 세기가 70 가우스(G)로 모터(151)의 정상 동작 조건(예를 들어, 600 가우스(G) 이하)을 충분히 만족할 수 있음을 확인할 수 있으며, 나아가 환부 조직에 대응하는 중심 영역에서의 자기장도 2320 가우스(G)로 강화된 것을 알 수 있다(도 3(a)에서는 2100 가우스(G)).
또한, 도 3(c)에서는 자기장 차폐부(300)와 함께 자기장 집속부(400)도 구비하는 경우를 예시하고 있다. 도 3(c)에서 볼 수 있는 바와 같이 자기장 집속부(400)를 구비함으로써 환부 조직에 대응하는 중심 영역에서의 자기장을 집속시켜 2670 가우스(G)까지 강화되었으며, 이때 모터(151)에서의 외부 자기장 세기도 200 가우스(G)로 정상 동작 조건을 충분히 만족할 수 있음을 확인할 수 있다.
또한, 도 4에서는 영구 자석을 사용하는 자기장 발생부(200)를 구비하는 방사선 치료 장치(10)의 외부 영역에서의 자기장 분포를 예시하고 있다.
먼저, 도 4(a)에서는 자기장 차폐부(300)를 구비하지 않는 경우를 예시하고 있는데, 도 4(a)에서 볼 수 있는 바와 같이 모터(151)에서의 외부 자기장 세기가 1000 가우스(G)로 모터(151)의 정상 동작 조건(예를 들어, 600 가우스(G) 이하)을 벗어나고 있어 오동작이 유발될 가능성을 매우 높은 상황임을 알 수 있다.
반면, 도 4(b)에서는 자기장 차폐부(300)를 구비하는 경우를 예시하고 있는데, 도 4(b)에서 볼 수 있는 바와 같이 모터(151)에서의 외부 자기장 세기가 250 가우스(G)로 모터(151)의 정상 동작 조건(예를 들어, 600 가우스(G) 이하)을 충분히 만족할 수 있음을 확인할 수 있으며, 나아가 환부 조직에 대응하는 중심 영역에서의 자기장도 2460 가우스(G)로 강화된 것을 알 수 있다(도 4(a)에서는 2090 가우스(G)).
또한, 도 4(c)에서는 자기장 차폐부(300)와 함께 자기장 발생부(200)에 할바흐 자석(210)을 구비하여 할바흐 배열(Halbach array) 구조를 이루는 경우를 예시하고 있다. 도 4(c)에서 볼 수 있는 바와 같이 상기 자기장 발생부(200)에 할바흐 자석(210)을 구비하여 할바흐 배열(Halbach array) 구조를 이루도록 함으로써 환부 조직에 대응하는 중심 영역에서의 자기장을 2890 가우스(G)까지 강화하면서도, 모터(151)에서의 외부 자기장 세기도 110 가우스(G)로 더욱 개선할 수 있음을 확인할 수 있다.
또한, 도 5는 본 발명의 일 실시예에 따른 방사선 치료 장치(10)의 내부 영역에서의 자기장 분포를 설명하고 있다.
보다 구체적으로, 도 5(a)에서는 전자석을 사용하여 자기장 발생부(200)를 구성하는 경우를 예시하고 있고, 도 5(b)에서는 영구 자석을 사용하여 자기장 발생부(200)를 구성하는 경우를 예시하고 있다.
도 5에서 볼 수 있는 바와 같이, 본 발명의 일 실시예에 따른 방사선 치료 장치(10)에서는 상기 자기장 차폐부(300)의 내부 영역에 자기장 발생부(200)가 구비되여 상기 제1 조사부(100)에서 조사되는 방사선 또는 입자빔의 방향과 교차하는 방향으로 자기장이 형성되게 된다.
이때, 본 발명의 일 실시예에 따른 조사 치료 장치(10)에서, 상기 자기장 차폐부(300)는 원통형 등의 자상체(magnetic material)를 구비하여 구성되어, 상기 자기장 발생부(200)로부터 형성되는 자기장에 대한 자기 회로 구조를 이룸과 동시에, 외부 영역으로 누설되는 자기장을 감쇠시킬 수 있게 된다.
또한, 상기 자기장 집속부(400)는 상기 자기장 차폐부(300)의 내부 영역의 양측 종단에 구비되어 상기 내부 영역의 자기장을 집속(focusing)시켜 상기 환부 조직에 형성되는 자기장의 세기를 증가시킬 수 있게 된다.
나아가, 도 5에서 볼 수 있는 바와 같이, 상기 자기장 집속부(400)는 상기 자기장 발생부(200)의 측부에 위치하는 제1 외경의 외측부(410)와, 상기 자기장 발생부(200)의 내부에 위치하는 제2 외경의 내측부(420)를 포함하여 구성될 수 있으며, 이때 상기 제1 외경은 상기 제2 외경보다 큰 값을 가지면서 상기 자기장 발생부(200)의 형상에 대응하는 형상을 이루어 체결되는 구조를 이룰 수 있다.
또한, 상기 자기장 발생부(200)는 상기 방사선이 조사되는 축을 기준으로 좌우 대칭 구조를 이루어 배치되는 복수의 전자석 또는 영구 자석을 포함하여 구성될 수 있다.
나아가, 도 5(b)에서 볼 수 있는 바와 같이, 상기 자기장 발생부(200)는 영구 자석을 이용하여 구성될 수 있으며, 이때 상기 자기장 발생부(200)는 상기 좌우 대칭 구조를 이루어 배치되는 복수의 자석 사이에 영구 자석이 추가 배치되어 할바흐 배열(Halbach array) 구조를 이루도록 할 수도 있다.
나아가, 상기 자기장 발생부(200)에서는 상기 좌우 대칭 구조를 이루어 배치되는 복수의 자석 사이에 중심 자기장 방향과 반대의 자기장 방향을 가지는 영구 자석을 추가 배치함으로써 자기장 세기 및 외부 누설 자기장 등의 특성을 더욱 개선할 수도 있다.
또한, 도 6에서는 본 발명의 일 실시예에 따른 방사선 치료 장치(10)의 자기장 차폐부(300)의 구성을 예시하고 있다.
먼저, 도 6(a)에서 볼 수 있는 바와 같이, 상기 자기장 차폐부(300)는 상기 방사선이 조사되는 축을 기준으로 좌우로 배치되는 두 개의 자성체(310, 320)를 포함하여 구성될 수 있으며(=분리형 차폐 구조), 이때 상기 방사선 조사부(100)는 상기 두 개의 자성체(310, 320) 사이를 통해 방사선을 상기 환부 조직으로 조사할 수 있게 된다.
또한, 도 6(b)에서 볼 수 있는 바와 같이, 상기 자기장 차폐부(300)는 상기 방사선이 투과할 수 있는 제1 개구 구조(330)를 구비하는 자성체를 포함하여 구성될 수 있으며(=일체형 차폐 구조), 이때 상기 제1 조사부(100)는 상기 제1 개구 구조를 통해 방사선 또는 입자빔을 상기 환부 조직으로 조사할 수 있게 된다. 이때, 상기 자기장 차폐부(300)는 상기 방사선이 상기 제1 개구 구조(310)를 통해 조사될 수 있도록 상기 제1 조사부(100)와 연동하여 구동되는 것이 바람직하다. 나아가, 상기 자기장 차폐부(300)에는 환부 조직을 모니터링 하기 위한 방사선 빔을 조사하는 제2 개구 구조(340)가 구비되는 것이 더욱 바람직하다.
또한, 도 7과 도 8에서는 본 발명의 일 실시예에 따른 조사 치료 장치(10)의 자기장 차폐부(300)의 종류에 따른 자기장 분포를 예시하고 있다.
먼저, 도 7(a)에서는 도 6(a)의 분리형 차폐 구조를 가지는 자기장 차폐부(300)를 구비하는 경우의 자기장 분포를 도시하고 있다. 도 7(a)에서 볼 수 있는 바와 같이, 모터(151)에서의 외부 자기장이 450 가우스(G)에 근접하는 높은 값을 가지는 것을 알 수 있다.
또한, 도 7(b)에서는 도 6(b)의 일체형 차폐 구조를 가지는 자기장 차폐부(300)를 구비하는 경우의 자기장 분포를 도시하고 있다. 도 7(b)에서 볼 수 있는 바와 같이, 모터(151)에서의 외부 자기장이 300 가우스(G)에 근접하는 값을 가지는 것을 알 수 있다.
나아가, 도 7(c)에서는 도 6(b)의 일체형 차폐 구조를 가지는 자기장 차폐부(300)와 함께 할바흐 자석(210)을 가지는 자기장 발생부(200)를 구비하는 경우의 자기장 분포를 도시하고 있다. 도 7(c)에서 볼 수 있는 바와 같이, 모터(151)에서의 외부 자기장이 100 가우스(G) 정도에 그치는 것을 확인할 수 있다.
보다 구체적으로 도 8에서는 위 도 7(a) 내지 도 7(c)의 경우에 대하여 각도에 따른 모터(151) 위치에서의 자기장 분포를 그래프로 표시하고 있다. 도 8에서 볼 수 있는 바와 같이, 분리형 차폐 구조를 가지는 자기장 차폐부(300)를 구비하는 경우(도 8의 (A))에는 약 0.041 테슬라(T)에서 0.045 테슬라(T)에 근접하는 범위의 자기장을 가질 수 있음을 알 수 있고, 일체형 차폐 구조를 가지는 자기장 차폐부(300)를 구비하는 경(도 8의 (B))에는 약 0.026 테슬라(T)에서 0.028 테슬라(T) 범위의 자기장을 가질 수 있음을 알 수 있다.
특히, 일체형 차폐 구조를 가지는 자기장 차폐부(300)와 함께 할바흐 자석(210)을 가지는 자기장 발생부(200)를 구비하는 경우(도 8의 (C))에는 약 0.01 테슬라(T) 정도의 자기장을 나타내는 바, 자기장 발생부(200)에 의한 외부 자기장을 억제하여 전자총(110), 선형 가속기(120), 모터(151) 등의 오동작 등을 효과적으로 방지할 수 있음을 알 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 조사 치료 장치(10)에서는, 자기장 발생부(200)에서 자기장을 방사선의 조사 방향과 수직한 방향으로 환부 조직에 형성되도록 하면서, 상기 자기장 발생부(200)를 자기장 차폐부(300) 내부 영역에 배치하여 외부 영역으로 누설되는 자기장을 감쇠시킴으로써, 방사선 또는 입자빔의 조사에 의해 환부 조직에서 발생할 수 있는 하전 입자에 의한 방사선 선량의 감소를 방지하면서 나아가 자기장의 누설에 의해 나타날 수 있는 오동작을 효과적으로 억제할 수 있게 된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 기재된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의해서 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (16)

  1. 방사선 또는 입자빔을 피조사체의 환부 조직으로 조사하는 제1 조사부;
    자기장을 상기 환부 조직을 포함하는 제1 영역에 형성시키는 자기장 발생부; 및
    상기 환부 조직이 내부 영역에 위치하고, 상기 자기장 발생부에 의하여 생성되어 상기 환부 조직으로 인가되는 자기장이 외부 영역으로 누설되는 것을 감쇠시키는 자기장 차폐부;
    를 포함하는 것을 특징으로 하는 조사 치료 장치.
  2. 제1항에 있어서,
    상기 자기장 발생부에서는 상기 자기장을 상기 방사선 또는 입자빔이 조사되는 제1 방향과 교차하는 제2 방향으로 형성하는 것을 특징으로 하는 조사 치료 장치.
  3. 제2항에 있어서,
    상기 방사선 또는 입자빔의 제1 방향은 상기 자기장의 제2 방향과 수직하게 교차하는 것을 특징으로 하는 조사 치료 장치.
  4. 제1항에 있어서,
    상기 자기장은 상기 방사선 또는 입자빔에 의하여 생성되는 하전 입자의 궤적을 제어하는 것을 특징으로 하는 조사 치료 장치.
  5. 제1항에 있어서,
    상기 자기장 차폐부는 자상체(magnetic material)를 구비하여 구성되어, 상기 자기장 발생부로부터 형성되는 자기장에 대한 자기 회로 구조를 이룸과 동시에, 상기 외부 영역으로 누설되는 자기장을 감쇠시키는 것을 특징으로 하는 조사 치료 장치.
  6. 제1항에 있어서,
    상기 자기장 차폐부의 내부 영역의 양측 종단에 구비되는 자기장 집속부를 더 포함하는 것을 특징으로 하는 조사 치료 장치.
  7. 제6항에 있어서,
    상기 자기장 집속부는 상기 내부 영역의 자기장을 집속(focusing)시켜 상기 환부 조직에 형성되는 자기장의 세기를 증가시키는 것을 특징으로 하는 조사 치료 장치.
  8. 제6항에 있어서,
    상기 자기장 집속부는,
    상기 자기장 발생부의 측부에 위치하는 제1 외경의 외측부와,
    상기 자기장 발생부의 내부에 위치하는 제2 외경의 내측부를 포함하며,
    상기 제1 외경은 상기 제2 외경보다 큰 것을 특징으로 하는 조사 치료 장치.
  9. 제1항에 있어서,
    상기 자기장 발생부는 상기 방사선 또는 입자빔이 조사되는 축을 기준으로 좌우 대칭 구조를 이루어 배치되는 복수의 전자석 또는 영구 자석을 포함하여 구성되는 것을 특징으로 하는 조사 치료 장치.
  10. 제9항에 있어서,
    상기 자기장 발생부는 전자석을 이용하여 구성되며,
    상기 전자석의 제어를 통해 자기장의 방향과 세기를 조절하여 조사되는 방사선 또는 입자빔의 경로 상에 발생된 하전 입자를 제어하는 것을 특징으로 하는 조사 치료 장치.
  11. 제9항에 있어서,
    상기 자기장 발생부는 영구 자석을 이용하여 구성되며,
    상기 좌우 대칭 구조를 이루어 배치되는 복수의 자석 사이에 영구 자석이 추가 배치되는 구조를 이루는 것을 특징으로 하는 조사 치료 장치.
  12. 제11항에 있어서,
    상기 복수의 자석 사이에 영구 자석이 추가 배치되어 할바흐 배열(Halbach array) 구조를 이루는 것을 특징으로 하는 조사 치료 장치.
  13. 제1항에 있어서,
    상기 자기장 차폐부는 상기 방사선 또는 입자빔이 조사되는 축을 기준으로 좌우로 배치되는 두 개의 자성체를 포함하여 구성되며,
    상기 제1 조사부는 상기 두 개의 자성체 사이를 통해 상기 방사선 또는 입자빔을 상기 환부 조직으로 조사하는 것을 특징으로 하는 조사 치료 장치.
  14. 제1항에 있어서,
    상기 자기장 차폐부는 상기 방사선 또는 입자빔이 투과할 수 있는 개구 구조를 구비하는 자성체를 포함하여 구성되며,
    상기 제1 조사부는 상기 개구 구조를 통해 상기 방사선 또는 입자빔을 상기 환부 조직으로 조사하는 것을 특징으로 하는 조사 치료 장치.
  15. 제13항에 있어서,
    상기 자기장 차폐부는,
    상기 방사선 또는 입자빔이 상기 개구 구조를 통해 조사될 수 있도록 상기 제1 조사부와 연동하여 구동되는 것을 특징으로 하는 조사 치료 장치.
  16. 제1항에 있어서,
    상기 자기장 발생부는,
    상기 자기장 차폐부 및 상기 제1 조사부와 연동하여 구동되는 것을 특징으로 하는 조사 치료 장치.
PCT/KR2019/013594 2018-10-30 2019-10-16 자기장 생성 장치 및 이를 구비하는 체내 선량 제어 조사 치료 장치 WO2020091269A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180131305A KR102158861B1 (ko) 2018-10-30 2018-10-30 자기장 생성 장치 및 이를 구비하는 체내 선량 제어 방사선 치료 장치
KR10-2018-0131305 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020091269A1 true WO2020091269A1 (ko) 2020-05-07

Family

ID=70463365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013594 WO2020091269A1 (ko) 2018-10-30 2019-10-16 자기장 생성 장치 및 이를 구비하는 체내 선량 제어 조사 치료 장치

Country Status (2)

Country Link
KR (1) KR102158861B1 (ko)
WO (1) WO2020091269A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102411368B1 (ko) * 2020-04-24 2022-06-21 주식회사 라덱셀 자기장 생성 장치 및 그의 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277197A (ja) * 1992-03-31 1993-10-26 Hitachi Medical Corp 荷電粒子治療装置
US20120253172A1 (en) * 2011-03-31 2012-10-04 Wilfried Loeffler Radiation therapy system with high frequency shielding
KR101378447B1 (ko) * 2012-11-19 2014-03-26 한국전기연구원 Mri 기반 linac 시스템을 위한 자기장 차폐 구조
KR20160076703A (ko) * 2014-12-23 2016-07-01 재단법인 아산사회복지재단 자기장을 이용한 체내 점막조직 선량 제어 광자빔 방사선 치료장치
US20170021187A1 (en) * 2014-04-02 2017-01-26 University Of Maryland, Baltimore Methods and systems for controlling magnetic fields and magnetic field induced current

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284171B1 (ko) * 2009-12-18 2013-07-10 한국전자통신연구원 양성자를 이용한 치료 장치 및 이를 이용한 치료 방법
GB2507792B (en) * 2012-11-12 2015-07-01 Siemens Plc Combined MRI and radiation therapy system
KR101803346B1 (ko) * 2015-10-16 2017-11-30 재단법인 아산사회복지재단 자기장을 이용한 종양표면선량 강화 방사선 치료장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277197A (ja) * 1992-03-31 1993-10-26 Hitachi Medical Corp 荷電粒子治療装置
US20120253172A1 (en) * 2011-03-31 2012-10-04 Wilfried Loeffler Radiation therapy system with high frequency shielding
KR101378447B1 (ko) * 2012-11-19 2014-03-26 한국전기연구원 Mri 기반 linac 시스템을 위한 자기장 차폐 구조
US20170021187A1 (en) * 2014-04-02 2017-01-26 University Of Maryland, Baltimore Methods and systems for controlling magnetic fields and magnetic field induced current
KR20160076703A (ko) * 2014-12-23 2016-07-01 재단법인 아산사회복지재단 자기장을 이용한 체내 점막조직 선량 제어 광자빔 방사선 치료장치

Also Published As

Publication number Publication date
KR20200048805A (ko) 2020-05-08
KR102158861B1 (ko) 2020-09-23

Similar Documents

Publication Publication Date Title
KR101803346B1 (ko) 자기장을 이용한 종양표면선량 강화 방사선 치료장치
CN105120954B (zh) 机载于可转动龙门架上的具有能量选择的紧凑的质子治疗系统
US11759654B2 (en) Radiotherapy device and control driving method thereof
CN109464749B (zh) 中子捕获治疗系统
WO2016010398A1 (ko) 방사선 치료기 및 방사선 치료기의 정도 관리 방법
US20210031053A1 (en) Radiation treatment head and radiation treatment device
JP2023078466A (ja) 中性子捕捉療法システム
WO2020235824A2 (ko) 뇌 이상 단백질 치료를 위한 방사선 치료 시스템 및 이의 치료 방법
WO2020091269A1 (ko) 자기장 생성 장치 및 이를 구비하는 체내 선량 제어 조사 치료 장치
WO2020004794A1 (ko) 동물용 방사선 치료기
WO2021085905A1 (ko) 자기공명영상 유도 및 체내 선량 제어가 가능한 방사선 치료기
CN109464752B (zh) 中子捕获治疗系统
KR101839369B1 (ko) 붕소중성자포획치료(bnct) 시설
CN109464750B (zh) 中子捕获治疗系统
KR102587860B1 (ko) 자기장 생성 장치 및 그의 제어 방법
KR20220145522A (ko) 자기장 생성 장치 및 그의 제어 방법
KR102411368B1 (ko) 자기장 생성 장치 및 그의 제어 방법
US20230065665A1 (en) Device for generating magnetic field and method for controlling same
RU2807304C1 (ru) Устройство генерации магнитного поля и способ управления им
CN109464751A (zh) 中子捕获治疗系统
KR20230064842A (ko) 자기장 생성 장치 및 이를 구비하는 체내 선량 제어 방사선 치료 장치
CN118022203A (en) Boron neutron capture treatment device based on compact high-current proton RFQ accelerator
WO2018236083A1 (ko) 피부질환치료용 전자선 산란장치, 이를 포함하는 피부질환치료용 방사선치료시스템 및 이를 이용한 피부표면에 대한 호형 전자선 조사방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879716

Country of ref document: EP

Kind code of ref document: A1