WO2020091062A1 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2020091062A1
WO2020091062A1 PCT/JP2019/043098 JP2019043098W WO2020091062A1 WO 2020091062 A1 WO2020091062 A1 WO 2020091062A1 JP 2019043098 W JP2019043098 W JP 2019043098W WO 2020091062 A1 WO2020091062 A1 WO 2020091062A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
secondary battery
electrolyte secondary
porous layer
resin
Prior art date
Application number
PCT/JP2019/043098
Other languages
French (fr)
Japanese (ja)
Inventor
栄子 柏崎
央江 吉丸
村上 力
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2020091062A1 publication Critical patent/WO2020091062A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries are widely used as batteries for personal computers, mobile phones, personal digital assistants, etc. due to their high energy density, and recently they have been used in consumer products such as electric tools and vacuum cleaners.
  • the battery is being developed as a vehicle battery and a vehicle battery.
  • non-aqueous electrolyte secondary batteries for example, non-aqueous electrolyte secondary batteries described in Patent Documents 1 and 2 are known.
  • the present invention has been made in view of the above problems, and an object thereof is to realize a non-aqueous electrolyte secondary battery having an excellent charge capacity after high rate discharge.
  • a non-aqueous electrolyte secondary battery includes a porous layer containing an inorganic filler and a resin, a positive electrode, a negative electrode, and a non-aqueous electrolyte, and heats the inorganic filler at ⁇ 40 ° C. to 200 ° C.
  • the expansion layer has a coefficient of expansion of 11 ppm / ° C. or less, and the porous layer is impregnated with a solution containing propylene carbonate, a polyoxyalkylene nonionic surfactant and water in a weight ratio of 85: 12: 3, and then has a frequency of 2455 MHz.
  • the non-aqueous electrolyte contains 0.5 ppm or more and 300 ppm or less of an additive having an ionic conductivity reduction rate L represented by the following formula (A) of 1.0% or more and 6.0% or less.
  • L (LA-LB) / LA ...
  • LA was prepared by dissolving LiPF 6 in a mixed solvent containing ethylene carbonate, ethylmethyl carbonate and diethyl carbonate in a volume ratio of 3: 5: 2 such that the concentration thereof was 1 mol / L.
  • the ionic conductivity (mS / cm) of the reference electrolytic solution is represented, and LB represents the ionic conductivity (mS / cm) of the electrolytic solution prepared by dissolving the additive in the reference electrolytic solution in an amount of 1.0% by weight. .
  • the non-aqueous electrolyte secondary battery according to Aspect 2 of the present invention is the same as in Aspect 1, except that the porous layer is laminated on one side or both sides of the polyolefin porous film.
  • the porous layer has a polyolefin, a (meth) acrylate resin, a fluorine-containing resin, a polyamide resin, a polyester resin. It includes a resin selected from the group consisting of resins and water-soluble polymers.
  • the polyamide resin is an aramid resin.
  • the nonaqueous electrolyte secondary battery according to Aspect 5 of the present invention is the nonaqueous electrolyte secondary battery according to any one of Aspects 1 to 4, wherein the nonaqueous electrolyte solution contains an electrolyte containing lithium.
  • the non-aqueous electrolyte secondary battery according to Aspect 6 of the present invention in any one of Aspects 1 to 5, the non-aqueous electrolyte contains an aprotic polar solvent.
  • a non-aqueous electrolyte secondary battery includes a porous layer containing an inorganic filler and a resin, a positive electrode, a negative electrode and a non-aqueous electrolyte, and the inorganic filler at ⁇ 40 ° C. to 200 ° C.
  • the thermal expansion coefficient is 11 ppm / ° C. or less, and the porous layer is impregnated with a solution containing propylene carbonate, a polyoxyalkylene type nonionic surfactant and water in a weight ratio of 85: 12: 3, and then the frequency is increased.
  • the temperature rising rate of the surface of the porous layer from the start of irradiation to 15 seconds after the start of irradiation was 0.93 ° C./sec or more and 1.25 ° C./sec or less, which was measured while irradiating the microwave of 2455 MHz with an output of 1800 W.
  • the non-aqueous electrolyte contains 0.5 ppm or more and 300 ppm or less of an additive having an ionic conductivity reduction rate L represented by the following formula (A) of 1.0% or more and 6.0% or less.
  • L (LA-LB) / LA ...
  • LA is a reference in which LiPF 6 is dissolved in a mixed solvent containing ethylene carbonate, ethylmethyl carbonate and diethyl carbonate in a volume ratio of 3: 5: 2 so that the concentration becomes 1 mol / L.
  • the thermal expansion coefficient of the inorganic filler contained in the porous layer and the temperature rising rate of the porous layer surface are adjusted to an appropriate range, and the ionic conductivity decrease rate and the content of the additive contained in the non-aqueous electrolyte are included. Adjust the amount to a specific range. As a result, the flow of ions in the non-aqueous electrolyte secondary battery including them can be adjusted to a suitable value, and as a result, the charge capacity of the non-aqueous electrolyte secondary battery after high rate discharge can be maintained high.
  • the porous layer may be disposed between the polyolefin porous film and at least one of the positive electrode and the negative electrode as a member constituting the non-aqueous electrolyte secondary battery.
  • the porous layer may be formed on one side or both sides of the polyolefin porous film.
  • the porous layer may be formed on the active material layer of at least one of the positive electrode and the negative electrode.
  • the porous layer may be arranged between the polyolefin porous film and at least one of the positive electrode and the negative electrode so as to be in contact with them.
  • the porous layer arranged between the polyolefin porous film and at least one of the positive electrode and the negative electrode may be one layer or two or more layers.
  • the porous layer is preferably an insulating porous layer containing a resin.
  • the porous layer is preferably a surface facing the positive electrode in the polyolefin porous film.
  • the porous layer is laminated on the surface in contact with the positive electrode.
  • the charge capacity after high rate discharge is affected by the denseness of the porous layer.
  • the denser the porous layer the less likely lithium ions will permeate.
  • the factor affecting the compactness of such a porous layer is the void structure of the porous layer.
  • the void structure of the porous layer may include the area of the inner wall of the void, the degree of bending of the void, and the like. It is considered that the smaller the area of the inner wall of the voids and the degree of waviness of the voids, the lower the density of the porous layer, and conversely, the greater the area of the inner wall of the voids and the degree of waviness of the voids, the higher the density of the porous layer. Be done.
  • the present inventors focused on the temperature rising rate of the surface of the porous layer as a parameter reflecting the denseness of the porous layer.
  • the lower the denseness of the porous layer the smaller the rate of temperature rise on the surface of the porous layer.
  • the higher the denseness of the porous layer the higher the temperature rising rate on the surface of the porous layer.
  • the porous layer in one embodiment of the present invention is impregnated with a solution containing propylene carbonate, a polyoxyalkylene type nonionic surfactant and water in a weight ratio of 85: 12: 3, and then a microwave having a frequency of 2455 MHz is used.
  • the temperature increase rate of the surface of the porous layer measured from 15 seconds after the start of irradiation was 0.93 ° C./sec or more and 1.25 ° C./sec or less, which was measured while irradiating with an output of 1800 W.
  • the rate of temperature rise on the surface of the porous layer is preferably 0.95 ° C./sec or more, more preferably 0.97 ° C./sec or more.
  • the rate of temperature rise on the surface of the porous layer is preferably 1.23 ° C./sec or less, more preferably 1.20 ° C./sec or less.
  • FIG. 1 is a diagram showing an example of the temperature change on the surface of the porous layer.
  • the temperature increase rate from the start of irradiation to 15 seconds later corresponds to the slope at which the contribution ratio (R 2 ) when the curve in the area surrounded by the solid line in FIG. 1 is linearly approximated is maximized.
  • the rate of temperature rise on the surface of the porous layer is 1.25 ° C / sec or less, the denseness of the porous layer is not too high. That is, the flow path of the lithium ion does not become too long, and the flow path does not have too many branches. Therefore, since lithium ions easily pass through the porous layer, the charge capacity of the non-aqueous electrolyte secondary battery after high rate discharge can be improved. Further, when the temperature rising rate is 0.93 ° C./sec or more, the porous layer has a certain degree of denseness, so that strength and safety are secured.
  • the polyoxyalkylene type nonionic surfactant means a polymer having an oxyalkylene group and acting as a nonionic surfactant.
  • the polyoxyalkylene type nonionic surfactant is not particularly limited as long as it can promote the penetration of the solution into the inside of the porous layer.
  • the heat generated by the polyoxyalkylene nonionic surfactant is insignificant compared to water, so it is considered that the difference in the structure of the polyoxyalkylene nonionic surfactant does not significantly affect the calorific value. This is because.
  • polyoxyalkylene type nonionic surfactant examples include polyoxyalkylene alkyl ethers, polyoxyalkylene tridecyl ethers, polyoxyalkylene polycyclic phenyl ethers, polyoxyalkylene aryl ethers, and compounds represented by the following formula (1). The compound etc. which are mentioned can be used.
  • the compound represented by the formula (1) can also be referred to as an ethylene oxide / propylene oxide copolymer.
  • a commercially available SN wet 980 (manufactured by San Nopco Ltd.) can be mentioned.
  • the SN wet 980 is composed of a compound represented by the formula (1) in which the average value of m is 7 and the average value of n is 19.
  • the porous layer contains an inorganic filler having a thermal expansion coefficient of 11 ppm / ° C. or less at ⁇ 40 ° C. to 200 ° C.
  • the inorganic filler means a filler composed of an inorganic material.
  • the coefficient of thermal expansion of the inorganic filler can affect the uniformity of the distribution of the constituents and voids in the porous layer, and the uniformity of the degree of void deformation during battery operation. It is considered that this is because the thermal expansion coefficient of the inorganic filler may affect whether or not the distribution of the constituent components and voids during the formation of the porous layer can be easily made uniform.
  • the coefficient of thermal expansion of the inorganic filler at ⁇ 40 ° C. to 200 ° C. is 11 ppm / ° C. or less, a porous layer in which voids and constituent components are uniformly distributed can be obtained.
  • the voids in the porous layer are less likely to be deformed during battery operation. Therefore, since lithium ions easily pass through the porous layer, the charge capacity of the non-aqueous electrolyte secondary battery after high rate discharge can be improved.
  • the coefficient of thermal expansion is preferably larger than 0 ppm / ° C, more preferably 1 ppm / ° C or more.
  • the lower limit of the content of the inorganic filler in the porous layer is preferably 50% by weight or more, and 70% by weight or more with respect to the total weight of the inorganic filler and the resin constituting the porous layer. More preferably, it is more preferably 90% by weight or more.
  • the upper limit value of the content of the inorganic filler in the porous layer is preferably 99% by weight or less, and more preferably 98% by weight or less.
  • the content of the inorganic filler is preferably 50% by weight or more from the viewpoint of heat resistance. Further, the content of the inorganic filler is preferably 99% by weight or less from the viewpoint of adhesion between the inorganic fillers. Further, by containing the inorganic filler, the slipperiness and heat resistance of the separator or the like having the porous layer can be improved.
  • the inorganic filler is a filler that is stable in the non-aqueous electrolyte and electrochemically stable. From the viewpoint of ensuring the safety of the battery, the inorganic filler is preferably a filler having a heat resistant temperature of 150 ° C. or higher.
  • the inorganic filler is preferably an inorganic filler containing oxygen element.
  • the inorganic filler containing an oxygen element means a filler composed of an inorganic material containing an oxygen element.
  • the inorganic substance containing an oxygen element include, but are not limited to, barium zirconate titanate, calcium titanate, aluminum titanate, and borosilicate glass.
  • the atomic composition percentage of oxygen in the inorganic filler containing oxygen element is 60 at% or more.
  • the inorganic fillers repel each other and are easily dispersed. Therefore, the inorganic fillers are less likely to interact with each other, and the constituent components can be dispersed more uniformly. Therefore, the rate of temperature rise on the surface of the porous layer can also be adjusted by controlling the atomic composition percentage of oxygen contained in the inorganic filler.
  • the shape of the inorganic filler may change depending on the method for producing the inorganic filler and / or the dispersion condition of the inorganic filler when producing a coating liquid for forming the porous layer.
  • the shape of the inorganic filler is any shape, such as a spherical shape, an oval shape, a rectangular shape, or a shape such as a gourd shape obtained by heat-sealing particles having a spherical shape, or an indefinite shape having no specific shape. Good. From the viewpoint of ion permeability and liquid retention of the porous layer, the shape of the inorganic filler is more preferably a gourd shape or an amorphous shape.
  • the resin contained in the porous layer is preferably insoluble in the electrolytic solution of the battery and is electrochemically stable in the usage range of the battery.
  • the resin include polyolefin; (meth) acrylate resin; fluorine-containing resin; polyamide resin; polyimide resin; polyester resin; rubbers; resin having a melting point or glass transition temperature of 180 ° C. or higher; water-soluble polymer Polycarbonate, polyacetal, polyether ether ketone, etc .;
  • polyolefins polyolefins, polyester resins, (meth) acrylate resins, fluorine-containing resins, polyamide resins and water-soluble polymers are preferable.
  • polyethylene polyethylene, polypropylene, polybutene, ethylene-propylene copolymer and the like are preferable.
  • polyamide resin aramid resins such as aromatic polyamide and wholly aromatic polyamide are preferable.
  • the aramid resin examples include poly (paraphenylene terephthalamide), poly (metaphenylene isophthalamide), poly (parabenzamide), poly (metabenzamide), poly (4,4′-benzanilide terephthalate). Amide), poly (paraphenylene-4,4′-biphenylenedicarboxylic acid amide), poly (metaphenylene-4,4′-biphenylenedicarboxylic acid amide), poly (paraphenylene-2,6-naphthalenedicarboxylic acid amide), Poly (metaphenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloroparaphenylene terephthalamide), paraphenylene terephthalamide / 2,6-dichloroparaphenylene terephthalamide copolymer, metaphenylene terephthalamide / 2 , 6-diclosure Paraphenylene terephthalamide copolymer and the like. Of these, poly (paraphenylene
  • polyester resin aromatic polyester such as polyarylate and liquid crystal polyester are preferable.
  • Examples of rubbers include styrene-butadiene copolymer and its hydride, methacrylic acid ester copolymer, acrylonitrile-acrylic acid ester copolymer, styrene-acrylic acid ester copolymer, ethylene propylene rubber, polyvinyl acetate and the like. Can be mentioned.
  • Examples of the resin having a melting point or glass transition temperature of 180 ° C. or higher include polyphenylene ether, polysulfone, polyether sulfone, polyphenylene sulfide, polyetherimide, polyamideimide, and polyetheramide.
  • water-soluble polymers examples include polyvinyl alcohol, polyethylene glycol, cellulose ether, sodium alginate, polyacrylic acid, polyacrylamide, polymethacrylic acid and the like.
  • fluorine-containing resin examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer Coalescence, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-trichloroethylene copolymer, vinylidene fluoride-vinyl fluoride copolymer, vinylidene fluoride-hexafluoro Examples thereof include propylene-tetrafluoroethylene copolymer and ethylene-tetrafluoroethylene copolymer.
  • PVDF polyvinylidene fluoride
  • PVDF polytetrafluoroethylene
  • porous layer when the porous layer is arranged facing the positive electrode, it is easy to maintain various performances such as rate characteristics and resistance characteristics of the non-aqueous electrolyte secondary battery even if oxidative deterioration occurs during battery operation.
  • Fluorine-containing resins are preferred.
  • the porous layer in the present embodiment is preferably arranged between the separator for non-aqueous electrolyte secondary battery and the positive electrode active material layer included in the positive electrode.
  • a porous layer arranged between the separator for the non-aqueous electrolyte secondary battery and the positive electrode active material layer provided in the positive electrode refers to at least the physical properties of.
  • the average thickness of the porous layer is preferably in the range of 0.5 ⁇ m to 10 ⁇ m, and preferably in the range of 1 ⁇ m to 5 ⁇ m, from the viewpoint of securing adhesiveness to the electrode and high energy density. Is more preferable.
  • the thickness of the porous layer is 0.5 ⁇ m or more per layer, an internal short circuit due to damage of the non-aqueous electrolyte secondary battery can be sufficiently suppressed, and the amount of the electrolyte retained in the porous layer can be suppressed. Will be sufficient.
  • the film thickness of the porous layer exceeds 10 ⁇ m per layer, the lithium ion permeation resistance increases in the non-aqueous electrolyte secondary battery, so the positive electrode may deteriorate when the cycle is repeated. Therefore, in the non-aqueous electrolyte secondary battery, the rate characteristics and the cycle characteristics may deteriorate. In addition, since the distance between the positive electrode and the negative electrode increases, the internal volume efficiency of the non-aqueous electrolyte secondary battery may decrease.
  • the basis weight per unit area of the porous layer can be appropriately determined in consideration of the strength, film thickness, weight and handling property of the porous layer.
  • the basis weight per unit area of the porous layer is preferably 0.5 to 20 g / m 2 and more preferably 0.5 to 10 g / m 2 per porous layer.
  • the weight energy density and volume energy density of the non-aqueous electrolyte secondary battery can be increased.
  • the basis weight of the porous layer exceeds the above range, the non-aqueous electrolyte secondary battery tends to be heavy.
  • the porosity of the porous layer is preferably 20 to 90% by volume, and more preferably 30 to 80% by volume so that sufficient ion permeability can be obtained.
  • the pore size of the pores of the porous layer is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less. By setting the pore diameters to these sizes, the non-aqueous electrolyte secondary battery can obtain sufficient ion permeability.
  • the porous layer can be formed by using the coating liquid obtained by dissolving or dispersing the resin in the solvent and dispersing the inorganic filler.
  • the solvent can be said to be a solvent for dissolving the resin and a dispersion medium for dispersing the resin or the inorganic filler.
  • Examples of the method for forming the coating liquid include a mechanical stirring method, an ultrasonic dispersion method, a high pressure dispersion method, and a media dispersion method.
  • the method for forming the porous layer is, for example, a method in which the coating liquid is directly applied to the surface of the base material and then the solvent is removed; after the coating liquid is applied to an appropriate support, the solvent is removed to form a porous layer.
  • To form a porous layer press-bond the porous layer and the base material, and then peel off the support; after applying the coating liquid to an appropriate support, press-contact the base material on the coated surface, and then the support And a method of removing the solvent after removing the substrate; and a method of removing the solvent after dip coating by dipping the substrate in the coating solution.
  • the solvent does not adversely affect the base material, dissolves the resin uniformly and stably, and disperses the inorganic filler uniformly and stably.
  • the solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, acetone and water.
  • the coating liquid may appropriately contain a dispersant, a plasticizer, a surfactant, a pH adjuster and the like as components other than the resin and the inorganic filler.
  • a conventionally known method can be adopted, and specific examples thereof include a gravure coater method, a dip coater method, a bar coater method and a die coater method. ..
  • the method of removing the solvent is generally drying. Further, the solvent contained in the coating liquid may be replaced with another solvent before drying.
  • the shear viscosity of the coating liquid is preferably 1 Pa ⁇ s or less, more preferably 0.5 Pa ⁇ s or less.
  • the shear viscosity of the coating liquid is 1 Pa ⁇ s or less, the denseness of the porous layer does not become too high, and the constituent components can be dispersed more uniformly. Therefore, by controlling the shear viscosity of this coating liquid, the temperature rising rate of the surface of the porous layer can be controlled. Further, this makes it possible to control the permeation of lithium ions.
  • the shear viscosity refers to continuous shear in an interval 1 having a shear rate of 0.1 to 1000 [1 / sec] and an interval 2 having a shear rate of 1000 to 0.1 [1 / sec]. This refers to the shear viscosity at a shear rate of 0.4 [1 / sec] at interval 2 when the viscosity is measured.
  • the non-aqueous electrolyte in one embodiment of the present invention contains an additive having an ionic conductivity decrease rate L represented by the following formula (A) of 1.0% or more and 6.0% or less, 0.5 ppm to 300 ppm. contains.
  • L (LA-LB) / LA ...
  • LA is a reference in which LiPF 6 is dissolved in a mixed solvent containing ethylene carbonate, ethylmethyl carbonate and diethyl carbonate in a volume ratio of 3: 5: 2 so that the concentration becomes 1 mol / L.
  • the ionic conductivity (mS / cm) of the electrolyte for use is shown.
  • LB represents the ionic conductivity (mS / cm) of the electrolytic solution prepared by dissolving 1.0% by weight of the additive in the reference electrolytic solution.
  • the additive is not particularly limited as long as it is a compound that satisfies the ionic conductivity reduction rate L represented by the formula (A) of 1.0% or more and 6.0% or less.
  • examples of such a compound include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], triethyl phosphate, vinylene carbonate, propane sultone, 2,6-dione.
  • the non-aqueous electrolytic solution contains an electrolyte and an organic solvent.
  • the electrolyte include an electrolyte containing lithium.
  • the electrolyte containing lithium for example, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiBF 4, LiCF 3 SO 3, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) 3, Examples thereof include metal salts such as Li 2 B 10 Cl 10 , lithium salts of lower aliphatic carboxylic acids and lithium salts such as LiAlCl 4 .
  • the electrolyte may be used alone or in combination of two or more kinds.
  • organic solvent examples include carbonates, ethers, esters, nitriles, amides, carbamates and sulfur-containing compounds, and fluorine groups introduced into these organic solvents.
  • An aprotic polar solvent such as a fluorine-containing organic solvent may be used.
  • the organic solvent may be used alone or in combination of two or more.
  • the organic solvent is preferably a mixed solvent containing a cyclic compound such as ethylene carbonate and a chain compound such as ethylmethyl carbonate and diethyl carbonate.
  • the mixed solvent contains the cyclic compound and the chain compound preferably in a volume ratio of 2: 8 to 4: 6, more preferably in a volume ratio of 2: 8 to 3: 7, and particularly preferably. Is included in a volume ratio of 3: 7.
  • the mixed solvent in which the cyclic compound and the chain compound are mixed at a volume ratio of 3: 7 is an organic solvent that is generally used in the non-aqueous electrolyte solution of the non-aqueous electrolyte secondary battery.
  • the additive in one embodiment of the present invention reduces the ionic conductivity of the reference electrolyte solution.
  • the following reasons can be considered as reasons why the reduction of the charge capacity after high-rate discharge can be suppressed by adding the additive to the non-aqueous electrolyte solution.
  • the dissociation degree of ions in the non-aqueous electrolyte may be reduced. This can reduce the depletion of ions at the interface between the separator and the electrode during charge / discharge, particularly when the battery is operated at high speed. Therefore, it is considered that the reduction of the charge capacity after the high rate discharge can be suppressed.
  • the non-aqueous electrolyte solution contains the additive in an amount of 0.5 ppm or more, preferably 20 ppm or more, and more preferably 45 ppm or more.
  • the non-aqueous electrolyte contains the additive in an amount of 300 ppm or less, preferably 250 ppm or less, and 180 ppm or less. Is more preferable.
  • the degree of ion dissociation in the vicinity of the positive electrode during repeated charging and discharging, particularly when the battery is operated at a high speed It is strongly influenced by the amount of additives.
  • the nonaqueous electrolyte secondary battery according to the embodiment of the present invention can suitably reduce the degree of dissociation of ions near the positive electrode regardless of the type of the nonaqueous electrolyte. That is, regardless of the type and amount of the electrolyte contained in the non-aqueous electrolytic solution, and the type of the organic solvent contained, the addition of 0.5 ppm or more and 300 ppm or less of the additive causes dissociation of ions near the positive electrode.
  • the degree can be suitably reduced. As a result, it is possible to suppress a decrease in charge capacity after high rate discharge.
  • non-aqueous electrolytic Examples include a method of pre-dissolving the additive in the non-aqueous electrolyte solution to be injected into the container that will be the housing of the liquid secondary battery, so that the content of the additive is 0.5 ppm or more and 300 ppm or less. it can.
  • the positive electrode in one embodiment of the present invention is not particularly limited as long as it is generally used as the positive electrode of a non-aqueous electrolyte secondary battery.
  • a positive electrode sheet having a structure in which an active material layer containing a positive electrode active material and a binder is formed on a positive electrode current collector can be used as the positive electrode.
  • the active material layer may further contain a conductive agent.
  • the positive electrode active material includes, for example, a material capable of being doped / dedoped with metal ions such as lithium ions or sodium ions.
  • metal ions such as lithium ions or sodium ions.
  • Specific examples of the material include a lithium composite oxide containing at least one transition metal such as V, Mn, Fe, Co, and Ni.
  • Examples of the conductive agent include natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers and carbonaceous materials such as organic polymer compound fired bodies.
  • the conductive agent may be used alone or in combination of two or more kinds.
  • binder examples include fluororesin such as polyvinylidene fluoride (PVDF), acrylic resin, and styrene-butadiene rubber.
  • PVDF polyvinylidene fluoride
  • acrylic resin acrylic resin
  • styrene-butadiene rubber examples include fluororesin such as polyvinylidene fluoride (PVDF), acrylic resin, and styrene-butadiene rubber.
  • the binder also has a function as a thickener.
  • Examples of the positive electrode current collector include conductors such as Al, Ni and stainless steel. Among them, Al is more preferable because it is easily processed into a thin film and is inexpensive.
  • the positive electrode sheet may be produced, for example, by pressure molding a positive electrode active material, a conductive agent and a binder on a positive electrode current collector; a positive electrode active material, a conductive agent and a binder using an appropriate organic solvent. Is applied to a positive electrode current collector, dried, and then pressed to fix it to the positive electrode current collector; and the like.
  • the negative electrode in one embodiment of the present invention is not particularly limited as long as it is generally used as a negative electrode of a non-aqueous electrolyte secondary battery.
  • a negative electrode sheet having a structure in which an active material layer containing a negative electrode active material and a binder is formed on a negative electrode current collector can be used as the negative electrode.
  • the active material layer may further contain a conductive agent.
  • the negative electrode active material for example, a material capable of doping / dedoping metal ions such as lithium ions or sodium ions can be mentioned.
  • the material include a carbonaceous material and the like.
  • the carbonaceous material include natural graphite, artificial graphite, cokes, carbon black and pyrolytic carbons.
  • Examples of the negative electrode current collector include Cu, Ni and stainless steel.
  • Cu is more preferable because it is difficult to form an alloy with lithium and is easily processed into a thin film.
  • Examples of the method for producing the negative electrode sheet include a method in which the negative electrode active material is pressure-molded on the negative electrode current collector; the negative electrode active material is made into a paste using an appropriate organic solvent, and then the paste is used as the negative electrode current collector. And the like, and then pressurizing and fixing to the negative electrode current collector; and the like.
  • the paste preferably contains the conductive agent and the binder.
  • the non-aqueous electrolyte secondary battery in one embodiment of the present invention may include a polyolefin porous film.
  • a polyolefin porous film may only be called a "porous film.”
  • the porous film contains a polyolefin-based resin as a main component and has a large number of pores connected to the inside thereof, so that a gas and a liquid can pass from one surface to the other surface.
  • the porous film alone can serve as a separator for a non-aqueous electrolyte secondary battery. It can also be a base material of the laminated separator for a non-aqueous electrolyte secondary battery in which the above-mentioned porous layer is laminated.
  • a laminate in which the porous layer is laminated in the present specification, also referred to as "non-aqueous electrolyte secondary battery laminated separator” or “laminated separator” .
  • the separator for a non-aqueous electrolyte secondary battery in one embodiment of the present invention may further include other layers such as an adhesive layer, a heat resistant layer, and a protective layer, in addition to the polyolefin porous film.
  • the proportion of polyolefin in the porous film is 50% by volume or more of the entire porous film, more preferably 90% by volume or more, and further preferably 95% by volume or more. Further, it is more preferable that the polyolefin contains a high molecular weight component having a weight average molecular weight of 5 ⁇ 10 5 to 15 ⁇ 10 6 . In particular, when the polyolefin contains a high molecular weight component having a weight average molecular weight of 1,000,000 or more, the strength of the separator for a non-aqueous electrolyte secondary battery is improved, which is more preferable.
  • the polyolefin which is a thermoplastic resin
  • a copolymer may be used.
  • the homopolymer include polyethylene, polypropylene and polybutene.
  • the copolymer include ethylene-propylene copolymer.
  • polyethylene is more preferable because it can block excessive current from flowing at lower temperatures. Note that blocking the flow of this excessive current is also referred to as shutdown.
  • the polyethylene include low density polyethylene, high density polyethylene, linear polyethylene (ethylene- ⁇ -olefin copolymer), and ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more. Among these, ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more is more preferable.
  • the thickness of the porous film is preferably 4 to 40 ⁇ m, more preferably 5 to 30 ⁇ m, and further preferably 6 to 15 ⁇ m.
  • the basis weight per unit area of the porous film can be appropriately determined in consideration of strength, film thickness, weight and handleability.
  • the basis weight is preferably 4 to 20 g / m 2 , and preferably 4 to 12 g / m 2 so that the weight energy density and the volume energy density of the non-aqueous electrolyte secondary battery can be increased. More preferably, it is more preferably 5 to 10 g / m 2 .
  • the air permeability of the porous film is preferably 30 to 500 sec / 100 mL in Gurley value, and more preferably 50 to 300 sec / 100 mL.
  • the air permeability of the laminated separator for a non-aqueous electrolyte secondary battery in which the above-mentioned porous layer is laminated on the porous film is preferably 30 to 1000 sec / 100 mL in terms of Gurley value, and is 50 to 800 sec / 100 mL. Is more preferable. Since the laminated separator for a non-aqueous electrolyte secondary battery has the above-mentioned air permeability, it is possible to obtain sufficient ion permeability in the non-aqueous electrolyte secondary battery.
  • the porosity of the porous film is preferably 20 to 80% by volume so as to increase the holding amount of the electrolytic solution and to surely prevent the flow of an excessive current at a lower temperature. It is more preferably 30 to 75% by volume.
  • the pore size of the pores of the porous film is 0.3 ⁇ m or less so that sufficient ion permeability can be obtained and particles can be prevented from entering the positive electrode and the negative electrode. Is preferable, and 0.14 ⁇ m or less is more preferable.
  • the method for producing the porous film is not particularly limited.
  • a sheet-shaped polyolefin resin composition is prepared by kneading a polyolefin resin, a pore-forming agent such as an inorganic filler and a plasticizer, and optionally an antioxidant and the like and then extruding the kneaded product. After removing the pore-forming agent from the sheet-shaped polyolefin resin composition with an appropriate solvent, the polyolefin resin composition from which the pore-forming agent has been removed may be stretched to produce a polyolefin porous film. it can.
  • the above-mentioned inorganic filler is not particularly limited, and examples thereof include inorganic fillers, specifically calcium carbonate and the like.
  • the plasticizer is not particularly limited, and examples thereof include low molecular weight hydrocarbons such as liquid paraffin.
  • a method including the following steps can be mentioned.
  • A a step of kneading an ultrahigh molecular weight polyethylene, a low molecular weight polyethylene having a weight average molecular weight of 10,000 or less, a pore forming agent such as calcium carbonate or a plasticizer, and an antioxidant to obtain a polyolefin resin composition
  • B a step of rolling the obtained polyolefin resin composition with a pair of rolling rollers and gradually cooling it while pulling it with a take-up roller having a different speed ratio to form a sheet
  • C A step of removing the pore forming agent from the obtained sheet with a suitable solvent.
  • D A step of stretching the sheet from which the pore forming agent has been removed at an appropriate stretching ratio.
  • Method for producing laminated separator for non-aqueous electrolyte secondary battery examples include, for example, in the above-mentioned “method for producing a porous layer”, as the base material to which the coating liquid is applied, The method of using a polyolefin porous film can be mentioned.
  • the porous layer is laminated on one side or both sides of the polyolefin porous film to obtain a non-aqueous electrolyte secondary battery laminated separator.
  • Non-aqueous electrolyte secondary battery As a method for manufacturing the non-aqueous electrolyte secondary battery according to the embodiment of the present invention, a conventionally known manufacturing method can be adopted. For example, by arranging the positive electrode, the polyolefin porous film, and the negative electrode in this order, a member for a non-aqueous electrolyte secondary battery is formed.
  • the porous layer may be present between the polyolefin porous film and at least one of the positive electrode and the negative electrode.
  • the member for a non-aqueous electrolyte secondary battery is put in a container which is a casing of the non-aqueous electrolyte secondary battery. After filling the inside of the container with the non-aqueous electrolyte, the container is sealed while reducing the pressure. Thereby, the non-aqueous electrolyte secondary battery according to the embodiment of the present invention can be manufactured.
  • Film thickness (unit: ⁇ m)
  • the thicknesses of the non-aqueous electrolyte secondary battery separator and the porous layer were measured using a high precision digital length measuring machine (VL-50) manufactured by Mitutoyo Corporation.
  • the film thickness of the porous layer was a value obtained by subtracting the film thickness of the part where the porous layer was not formed from the film thickness of the part where the porous layer was formed in each laminate.
  • Shear viscosity The shear viscosities of the coating solutions used in Examples 1 to 5 and Comparative Examples 1 to 4 were continuously measured using a rheometer (MCR301 manufactured by Anton Paar Co.) under the following conditions at intervals 1 and 2. It was measured. The shear viscosity at a shear rate of 0.4 [1 / sec] in this interval 2 was adopted.
  • test piece was prepared from the non-aqueous electrolyte secondary battery laminates of Examples 1 to 5 and Comparative Examples 1 to 4 produced as described below. I cut it out. The test piece was impregnated with a solution containing propylene carbonate, SN Wet 980 (manufactured by San Nopco Ltd.) and water in a weight ratio of 85: 12: 3. Thereafter, these test pieces were spread on a Teflon (registered trademark) sheet (size: 12 cm ⁇ 10 cm).
  • Teflon registered trademark
  • the test piece was folded in half so that an optical fiber type thermometer (Neoptix Reflex thermometer manufactured by Astec Co., Ltd.) coated with Teflon (registered trademark) was sandwiched between the porous layer surfaces. After that, in order to surely bring the thermometer into contact with the surface of the porous layer, a PTFE plate was placed on the test piece except for 1 mm around the thermometer to prevent floating.
  • an optical fiber type thermometer Neoptix Reflex thermometer manufactured by Astec Co., Ltd.
  • Teflon registered trademark
  • test piece impregnated with the solution in a microwave irradiator equipped with a turntable (manufactured by Micro Electronics Co., Ltd., 9 kW microwave oven, frequency 2455 MHz) in a state of sandwiching a thermometer
  • the test piece was irradiated with microwave at 1800 W for 2 minutes.
  • the temperature change of the test piece during microwave irradiation was measured every 0.2 seconds with the optical fiber thermometer.
  • the slope at which the contribution ratio is maximum in the linear approximation of the temperature of the porous layer surface and the microwave irradiation time from the start of microwave irradiation to 15 seconds is the temperature rise rate of the porous layer surface (° C / sec. ).
  • Reduction rate of ionic conductivity (%) By dissolving LiPF 6 in a mixed solvent prepared by mixing ethylene carbonate, ethyl methyl carbonate and diethyl carbonate in a volume ratio of 3: 5: 2 so that the concentration becomes 1 mol / L, a reference electrolyte solution is obtained. Got Each additive was added to the reference electrolyte solution to be 1% and dissolved, and then the ionic conductivity (mS / cm) was measured. The ionic conductivity was measured using an electric conductivity meter (ES-71) manufactured by Horiba Ltd. The ionic conductivity decrease rate is represented by the following formula (A).
  • L (LA-LB) / LA ... (A) L: reduction rate of ionic conductivity (%), LA: ionic conductivity (mS / cm) before adding the additive, LB: Ionic conductivity (mS / cm) after adding the additive.
  • a non-aqueous electrolyte secondary battery assembled as described below was subjected to CC at 25 ° C. in a voltage range of 4.1 to 2.7 V and a charging current value of 0.2 C.
  • -CV charging final current condition 0.02C
  • CC discharge with a discharge current value of 0.2C was set as one cycle, and four cycles of initial charge / discharge were performed at 25 ° C.
  • CC-CV charging is a charging method in which charging is performed with a set constant current, and after reaching a predetermined voltage, the current is reduced while maintaining the voltage.
  • CC discharge is a method of discharging to a predetermined voltage with a set constant current. The same applies to the following.
  • CC-CV charging with a charging current value of 1C (end current condition 0.02C) and discharging current values of 0.2C, 1C, 2C were performed in this order.
  • the discharge was carried out.
  • Charging / discharging was performed for 3 cycles at 55 ° C. for each rate.
  • the voltage range was set to 2.7V to 4.2V.
  • the charge capacity at the time of 1C charge of the 3rd cycle at the time of 2C discharge rate characteristic measurement was measured, and it was set as the charge capacity after high rate discharge.
  • the designed capacity of the non-aqueous electrolyte secondary batteries manufactured in Examples and Comparative Examples was 20.5 mAh.
  • Example 1 ⁇ Production of porous layer> (Production of coating liquid)
  • barium titanate zirconate manufactured by Sakai Chemical Industry Co., Ltd., BTZ-01-8020
  • vinylidene fluoride-hexafluoropropylene copolymer manufactured by Arkema Ltd .: trade name "KYNAR2801"
  • solvent As a mixture, N-methyl-2-pyrrolidone (manufactured by Kanto Chemical Co., Inc.) was mixed in the following manner.
  • the obtained coating liquid was applied to one surface of a polyethylene porous film (thickness 12 ⁇ m, porosity 44%), which is a separator for a non-aqueous electrolyte secondary battery, by a doctor blade method.
  • the obtained coating film was dried at 80 ° C. to form the porous layer 1 on one surface of the non-aqueous electrolyte secondary battery separator.
  • a laminate 1 including the separator for non-aqueous electrolyte secondary battery and the porous layer 1 was obtained.
  • the doctor blade clearance was adjusted so that the basis weight of the porous layer 1 was 7 g / m 2 .
  • Table 1 shows the measurement results of various physical properties of the coating liquid, the inorganic filler, and the laminate 1.
  • Preparation of non-aqueous electrolyte secondary battery A commercially available positive electrode manufactured by applying LiNi 0.5 Mn 0.3 Co 0.2 O 2 / conductive agent / PVDF (weight ratio 92/5/3) to an aluminum foil was used. An aluminum foil was applied to the commercially available positive electrode so that the size of the part where the positive electrode active material layer was formed was 40 mm ⁇ 35 mm, and the part where the width of 13 mm was not formed and the positive electrode active material layer was not formed remained on the outer periphery thereof. It was cut out and used as the positive electrode of the non-aqueous electrolyte secondary battery described later.
  • the positive electrode active material layer had a thickness of 58 ⁇ m and a density of 2.50 g / cm 3 .
  • a commercially available negative electrode manufactured by applying graphite / styrene-1,3-butadiene copolymer / sodium carboxymethyl cellulose (weight ratio 98/1/1) to a copper foil was used.
  • a copper foil was applied to the commercially available negative electrode so that the size of the part where the negative electrode active material layer was formed was 50 mm ⁇ 40 mm, and the part where the width of 13 mm was not formed and the negative electrode active material layer was not formed remained on the outer periphery thereof. It was cut out to obtain a negative electrode for a non-aqueous electrolyte secondary battery described later.
  • the negative electrode active material layer had a thickness of 49 ⁇ m and a density of 1.40 g / cm 3 .
  • LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate, ethylmethyl carbonate, and diethyl carbonate were mixed at a volume ratio of 3: 5: 2 so that the concentration thereof was 1 mol / L, to obtain an electrolytic solution stock solution 1.
  • the electrolytic solution stock solution 1 is an aprotic polar solvent electrolytic solution containing Li + ions.
  • Addition liquid 1 was obtained by adding diethyl carbonate to 10.3 mg of dibutylhydroxytoluene (BHT, ionic conductivity reduction rate: 5.3%) to dissolve to 5 mL.
  • BHT dibutylhydroxytoluene
  • the non-aqueous electrolyte solution 1 was obtained by mixing 300 ⁇ L of the additive solution 1 and 1700 ⁇ L of the electrolyte solution stock solution 1.
  • Table 2 shows the content of the additive in the non-aqueous electrolyte solution 1.
  • a nonaqueous electrolytic solution secondary battery 1 was manufactured by the method described below.
  • a non-aqueous electrolyte secondary battery member 1 was obtained by stacking the positive electrode, the laminate 1 with the porous layer facing the positive electrode side, and the negative electrode in this order in a laminate pouch.
  • the positive electrode and the negative electrode were arranged such that the entire main surface of the positive electrode active material layer of the positive electrode was included in the range of the main surface of the negative electrode active material layer of the negative electrode. That is, the positive electrode and the negative electrode were arranged such that the entire main surface of the positive electrode active material layer of the positive electrode overlaps the main surface of the negative electrode active material layer of the negative electrode.
  • the non-aqueous electrolyte secondary battery member 1 was placed in a prefabricated bag in which an aluminum layer and a heat seal layer were laminated. Further, 0.23 mL of the non-aqueous electrolyte solution 1 was put in this bag. Then, the inside of the bag was depressurized and the bag was heat-sealed to manufacture the non-aqueous electrolyte secondary battery 1.
  • Example 2 ⁇ Preparation of non-aqueous electrolyte secondary battery> (Preparation of non-aqueous electrolyte) LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 so that the concentration thereof was 1 mol / L, to obtain an electrolytic solution stock solution 2.
  • Addition liquid 2 was obtained by adding diethyl carbonate to 10.0 mg of vinylene carbonate (VC, reduction rate of ionic conductivity: 1.3%) to make 5 mL.
  • 200 ⁇ L of the additive solution 2 and 1800 ⁇ L of the electrolytic solution stock solution 2 were mixed, and 900 ⁇ L of the electrolytic solution stock solution 2 was added to 100 ⁇ L of the mixed solution of the additive solution 2 and the electrolytic solution stock solution 2 to obtain an additive solution 3.
  • a non-aqueous electrolyte solution 2 was prepared by mixing 50 ⁇ L of the additive solution 3 and 1950 ⁇ L of the electrolyte solution stock solution 2. Table 2 shows the content of the additive in the non-aqueous electrolyte solution 2.
  • a non-aqueous electrolyte secondary battery 2 was produced in the same manner as in Example 1 except that the non-aqueous electrolyte 2 was used instead of the non-aqueous electrolyte 1.
  • Example 3 ⁇ Production of Laminated Body Comprising Non-Aqueous Electrolyte Secondary Battery Separator and Porous Layer>
  • the porous layer 2 was formed.
  • Table 1 shows the measurement results of various physical properties of the coating liquid, the inorganic filler, and the laminate 2.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the laminate 2 was used instead of the laminate 1 and the non-aqueous electrolyte 3 was used instead of the non-aqueous electrolyte 1.
  • a battery 3 was produced.
  • Example 4 ⁇ Preparation of non-aqueous electrolyte secondary battery> (Preparation of non-aqueous electrolyte) 90 ⁇ L of the additive solution 4 and 1910 ⁇ L of the electrolytic solution stock solution 1 were mixed to obtain a non-aqueous electrolytic solution 4.
  • Table 2 shows the content of the additive in the non-aqueous electrolyte solution 4.
  • a non-aqueous electrolyte secondary was prepared in the same manner as in Example 1 except that the laminate 2 was used instead of the laminate 1 and the non-aqueous electrolyte 4 was used instead of the non-aqueous electrolyte 1. Battery 4 was produced.
  • Example 5 ⁇ Production of Laminated Body Comprising Non-Aqueous Electrolyte Secondary Battery Separator and Porous Layer>
  • one side of the separator for a non-aqueous electrolyte secondary battery was replaced with a porous layer 1 instead of the porous layer 1.
  • the quality layer 3 was formed. Thereby, a laminate 3 including the separator for non-aqueous electrolyte secondary battery and the porous layer 3 was obtained.
  • Table 1 shows the measurement results of various physical properties of the coating liquid, the inorganic filler, and the laminate 3.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the laminate 3 was used instead of the laminate 1 and the non-aqueous electrolyte 5 was used instead of the non-aqueous electrolyte 1.
  • a battery 5 was produced.
  • a non-aqueous electrolyte secondary was prepared in the same manner as in Example 1 except that the laminate 2 was used instead of the laminate 1 and the non-aqueous electrolyte 6 was used instead of the non-aqueous electrolyte 1.
  • a battery 6 was produced.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the laminate 4 was used instead of the laminate 1 and the non-aqueous electrolyte 4 was used instead of the non-aqueous electrolyte 1. Battery 7 was produced.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that the laminate 5 was used instead of the laminate 1 and the non-aqueous electrolyte 4 was used instead of the non-aqueous electrolyte 1.
  • a battery 8 was produced.
  • the non-aqueous electrolyte secondary batteries of Examples 1 to 5 were superior to the non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 4 in charge capacity after high rate discharge.
  • the inorganic filler has a thermal expansion coefficient of 1 ppm / ° C. or more and 11 ppm / ° C. or less, and the temperature rising rate of the porous layer surface is 0.93 ° C. / 0.5 ppm or more and 300 ppm or less of an additive having a ionic conductivity reduction rate of 1.0% or more and 6.0% or less in the nonaqueous electrolytic solution contains.
  • Comparative Example 1 the ionic conductivity decrease rate of the additive exceeds 6.0%.
  • Comparative Example 2 the coefficient of thermal expansion of the inorganic filler exceeds 11 ppm / ° C, and the rate of temperature rise on the surface of the porous layer is less than 0.93 ° C / sec.
  • Comparative Example 3 the rate of temperature rise on the surface of the porous layer exceeds 1.25 ° C / sec. Comparative Example 4 contains no additive.
  • the non-aqueous electrolyte secondary battery according to the embodiment of the present invention maintains a high charge capacity after high rate discharge. Therefore, it can be suitably used for various applications, particularly as a battery for consumer use such as an electric power tool and a vacuum cleaner, and an on-vehicle battery that requires high-rate discharge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

The purpose of the present invention is to achieve a non-aqueous electrolyte secondary battery that has excellent charging capacity after high-rate discharge. This non-aqueous electrolyte secondary battery comprises: a porous layer that includes a resin and an inorganic filler that has a thermal expansion coefficient of no more than 11 ppm/̊C, the rate at which the temperature of the surface of the porous layer increases being 0.93̊C/sec–1.25̊C/sec; a positive electrode; a negative electrode; and a non-aqueous electrolyte that contains 0.5–300 ppm of a prescribed additive.

Description

非水電解液二次電池Non-aqueous electrolyte secondary battery
 本発明は、非水電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery.
 非水電解液二次電池、特にリチウムイオン二次電池は、エネルギー密度が高いのでパーソナルコンピュータ、携帯電話、携帯情報端末などに用いる電池として広く使用され、また最近では電動工具、掃除機等の民生用の電池および車載用の電池として開発が進められている。 Non-aqueous electrolyte secondary batteries, especially lithium-ion secondary batteries, are widely used as batteries for personal computers, mobile phones, personal digital assistants, etc. due to their high energy density, and recently they have been used in consumer products such as electric tools and vacuum cleaners. The battery is being developed as a vehicle battery and a vehicle battery.
 非水電解液二次電池として、例えば、特許文献1および2に記載されたような非水電解液二次電池が知られている。 As non-aqueous electrolyte secondary batteries, for example, non-aqueous electrolyte secondary batteries described in Patent Documents 1 and 2 are known.
特許第5569515号公報Patent No. 5569515 特開2009-146822号公報JP, 2009-146822, A
 しかしながら、上述のような従来技術は、ハイレート放電後の充電容量の観点からは改善の余地があった。 However, the above-mentioned conventional technology has room for improvement in terms of charge capacity after high-rate discharge.
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、ハイレート放電後の充電容量に優れた非水電解液二次電池を実現することにある。 The present invention has been made in view of the above problems, and an object thereof is to realize a non-aqueous electrolyte secondary battery having an excellent charge capacity after high rate discharge.
 本発明の態様1に係る非水電解液二次電池は、無機フィラーと樹脂とを含む多孔質層、正極、負極および非水電解液を備え、前記無機フィラーの-40℃~200℃における熱膨張係数が11ppm/℃以下であり、前記多孔質層は、プロピレンカーボネート、ポリオキシアルキレン型非イオン界面活性剤および水を85:12:3の重量比で含む溶液を含浸させた後、周波数2455MHzのマイクロ波を出力1800Wで照射しながら測定された、照射開始から15秒後までの前記多孔質層表面の温度上昇速度が0.93℃/秒以上、1.25℃/秒以下であり、前記非水電解液は、下記式(A)で表されるイオン電導度低下率Lが1.0%以上、6.0%以下である添加剤を0.5ppm以上、300ppm以下含有する。
L=(LA-LB)/LA・・・(A)
(式(A)中、LAは、エチレンカーボネート、エチルメチルカーボネートおよびジエチルカーボネートを3:5:2の体積比で含む混合溶媒に、LiPFをその濃度が1mol/Lとなるように溶解させた参照用電解液のイオン電導度(mS/cm)を表し、LBは、前記参照用電解液に、添加剤を1.0重量%溶解させた電解液のイオン電導度(mS/cm)を表す。)
 また、本発明の態様2に係る非水電解液二次電池は、前記態様1において、前記多孔質層が、ポリオレフィン多孔質フィルムの片面または両面に積層されている。
A non-aqueous electrolyte secondary battery according to Aspect 1 of the present invention includes a porous layer containing an inorganic filler and a resin, a positive electrode, a negative electrode, and a non-aqueous electrolyte, and heats the inorganic filler at −40 ° C. to 200 ° C. The expansion layer has a coefficient of expansion of 11 ppm / ° C. or less, and the porous layer is impregnated with a solution containing propylene carbonate, a polyoxyalkylene nonionic surfactant and water in a weight ratio of 85: 12: 3, and then has a frequency of 2455 MHz. Of the temperature of the porous layer surface increased from 0.93 ° C./second to 1.25 ° C./second measured from the start of irradiation to 15 seconds after irradiation with the microwave of 1800 W. The non-aqueous electrolyte contains 0.5 ppm or more and 300 ppm or less of an additive having an ionic conductivity reduction rate L represented by the following formula (A) of 1.0% or more and 6.0% or less.
L = (LA-LB) / LA ... (A)
(In the formula (A), LA was prepared by dissolving LiPF 6 in a mixed solvent containing ethylene carbonate, ethylmethyl carbonate and diethyl carbonate in a volume ratio of 3: 5: 2 such that the concentration thereof was 1 mol / L. The ionic conductivity (mS / cm) of the reference electrolytic solution is represented, and LB represents the ionic conductivity (mS / cm) of the electrolytic solution prepared by dissolving the additive in the reference electrolytic solution in an amount of 1.0% by weight. .)
Further, the non-aqueous electrolyte secondary battery according to Aspect 2 of the present invention is the same as in Aspect 1, except that the porous layer is laminated on one side or both sides of the polyolefin porous film.
 また、本発明の態様3に係る非水電解液二次電池は、前記態様1または2において、前記多孔質層が、ポリオレフィン、(メタ)アクリレート系樹脂、含フッ素樹脂、ポリアミド系樹脂、ポリエステル系樹脂および水溶性ポリマーからなる群より1種以上選択される樹脂を含む。 Further, in the non-aqueous electrolyte secondary battery according to Aspect 3 of the present invention, in the Aspect 1 or 2, the porous layer has a polyolefin, a (meth) acrylate resin, a fluorine-containing resin, a polyamide resin, a polyester resin. It includes a resin selected from the group consisting of resins and water-soluble polymers.
 また、本発明の態様4に係る非水電解液二次電池は、前記態様3において、上記ポリアミド系樹脂がアラミド樹脂である。 Further, in the non-aqueous electrolyte secondary battery according to Aspect 4 of the present invention, in the Aspect 3, the polyamide resin is an aramid resin.
 また、本発明の態様5に係る非水電解液二次電池は、前記態様1~4のいずれか1つにおいて、前記非水電解液が、リチウムを含有している電解質を含む。 The nonaqueous electrolyte secondary battery according to Aspect 5 of the present invention is the nonaqueous electrolyte secondary battery according to any one of Aspects 1 to 4, wherein the nonaqueous electrolyte solution contains an electrolyte containing lithium.
 また、本発明の態様6に係る非水電解液二次電池は、前記態様1~5のいずれか1つにおいて、前記非水電解液が、非プロトン性極性溶媒を含む。 Further, in the non-aqueous electrolyte secondary battery according to Aspect 6 of the present invention, in any one of Aspects 1 to 5, the non-aqueous electrolyte contains an aprotic polar solvent.
 本発明の一態様によれば、ハイレート放電後の充電容量に優れた非水電解液二次電池を実現できる。 According to one aspect of the present invention, it is possible to realize a non-aqueous electrolyte secondary battery having excellent charge capacity after high rate discharge.
多孔質層表面の温度変化の一例を示す図である。It is a figure which shows an example of the temperature change of the porous layer surface.
 本発明の一実施形態に関して以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態に関しても本発明の技術的範囲に含まれる。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。 An embodiment of the present invention will be described below, but the present invention is not limited to this. The present invention is not limited to each configuration described below, various modifications are possible within the scope shown in the claims, and the technical means disclosed in different embodiments are appropriately combined. The obtained embodiments are also included in the technical scope of the present invention. Unless otherwise specified in the present specification, “A to B” representing a numerical range means “A or more and B or less”.
 本発明の一実施形態に係る非水電解液二次電池は、無機フィラーと樹脂とを含む多孔質層、正極、負極および非水電解液を備え、前記無機フィラーの-40℃~200℃における熱膨張係数が11ppm/℃以下であり、前記多孔質層は、プロピレンカーボネート、ポリオキシアルキレン型非イオン界面活性剤および水を85:12:3の重量比で含む溶液を含浸させた後、周波数2455MHzのマイクロ波を出力1800Wで照射しながら測定された、照射開始から15秒後までの前記多孔質層表面の温度上昇速度が0.93℃/秒以上、1.25℃/秒以下であり、前記非水電解液は、下記式(A)で表されるイオン電導度低下率Lが1.0%以上、6.0%以下である添加剤を0.5ppm以上、300ppm以下含有する。
L=(LA-LB)/LA・・・(A)
 式(A)中、LAは、エチレンカーボネート、エチルメチルカーボネートおよびジエチルカーボネートを3:5:2の体積比で含む混合溶媒に、LiPFをその濃度が1mol/Lとなるように溶解させた参照用電解液のイオン電導度(mS/cm)を表し、LBは、前記参照用電解液に、添加剤を1.0重量%溶解させた電解液のイオン電導度(mS/cm)を表す。
A non-aqueous electrolyte secondary battery according to an embodiment of the present invention includes a porous layer containing an inorganic filler and a resin, a positive electrode, a negative electrode and a non-aqueous electrolyte, and the inorganic filler at −40 ° C. to 200 ° C. The thermal expansion coefficient is 11 ppm / ° C. or less, and the porous layer is impregnated with a solution containing propylene carbonate, a polyoxyalkylene type nonionic surfactant and water in a weight ratio of 85: 12: 3, and then the frequency is increased. The temperature rising rate of the surface of the porous layer from the start of irradiation to 15 seconds after the start of irradiation was 0.93 ° C./sec or more and 1.25 ° C./sec or less, which was measured while irradiating the microwave of 2455 MHz with an output of 1800 W. The non-aqueous electrolyte contains 0.5 ppm or more and 300 ppm or less of an additive having an ionic conductivity reduction rate L represented by the following formula (A) of 1.0% or more and 6.0% or less.
L = (LA-LB) / LA ... (A)
In formula (A), LA is a reference in which LiPF 6 is dissolved in a mixed solvent containing ethylene carbonate, ethylmethyl carbonate and diethyl carbonate in a volume ratio of 3: 5: 2 so that the concentration becomes 1 mol / L. Represents the ionic conductivity (mS / cm) of the working electrolyte solution, and LB represents the ionic conductivity (mS / cm) of the electrolyte solution prepared by dissolving 1.0% by weight of the additive in the reference electrolyte solution.
 このように多孔質層に含まれる無機フィラーの熱膨張係数および多孔質層表面の温度上昇速度を適切な範囲に調整すると共に、非水電解液に含まれる添加剤のイオン電導度低下率および含有量を特定の範囲に調整する。これにより、これらを備える非水電解液二次電池におけるイオンの流れを好適なものに調整し、その結果、非水電解液二次電池のハイレート放電後の充電容量を高く維持することができる。 In this way, the thermal expansion coefficient of the inorganic filler contained in the porous layer and the temperature rising rate of the porous layer surface are adjusted to an appropriate range, and the ionic conductivity decrease rate and the content of the additive contained in the non-aqueous electrolyte are included. Adjust the amount to a specific range. As a result, the flow of ions in the non-aqueous electrolyte secondary battery including them can be adjusted to a suitable value, and as a result, the charge capacity of the non-aqueous electrolyte secondary battery after high rate discharge can be maintained high.
 [多孔質層]
 本発明の一実施形態において、多孔質層は、非水電解液二次電池を構成する部材として、ポリオレフィン多孔質フィルムと、正極および負極の少なくともいずれか一方との間に配置され得る。前記多孔質層は、ポリオレフィン多孔質フィルムの片面または両面に形成され得る。或いは、前記多孔質層は、正極および負極の少なくともいずれか一方の活物質層上に形成され得る。或いは、前記多孔質層は、ポリオレフィン多孔質フィルムと、正極および負極の少なくともいずれか一方との間に、これらと接するように配置されてもよい。ポリオレフィン多孔質フィルムと正極および負極の少なくともいずれか一方との間に配置される多孔質層は1層でもよく2層以上であってもよい。多孔質層は、樹脂を含む絶縁性の多孔質層であることが好ましい。
[Porous layer]
In one embodiment of the present invention, the porous layer may be disposed between the polyolefin porous film and at least one of the positive electrode and the negative electrode as a member constituting the non-aqueous electrolyte secondary battery. The porous layer may be formed on one side or both sides of the polyolefin porous film. Alternatively, the porous layer may be formed on the active material layer of at least one of the positive electrode and the negative electrode. Alternatively, the porous layer may be arranged between the polyolefin porous film and at least one of the positive electrode and the negative electrode so as to be in contact with them. The porous layer arranged between the polyolefin porous film and at least one of the positive electrode and the negative electrode may be one layer or two or more layers. The porous layer is preferably an insulating porous layer containing a resin.
 非水電解液二次電池用セパレータである後述のポリオレフィン多孔質フィルムの片面に多孔質層が積層される場合には、当該多孔質層は、好ましくは、ポリオレフィン多孔質フィルムにおける正極と対向する面に積層される。より好ましくは、当該多孔質層は、正極と接する面に積層される。 When a porous layer is laminated on one side of a polyolefin porous film described below which is a separator for a non-aqueous electrolyte secondary battery, the porous layer is preferably a surface facing the positive electrode in the polyolefin porous film. To be laminated. More preferably, the porous layer is laminated on the surface in contact with the positive electrode.
 ハイレート放電後の充電容量は、多孔質層の緻密性の影響を受けると考えられる。多孔質層の緻密性が低いほど、リチウムイオンが透過し易いため、ハイレート放電後の充電容量は向上する。一方、多孔質層の緻密性が高いほど、リチウムイオンは透過しにくい傾向にある。 It is considered that the charge capacity after high rate discharge is affected by the denseness of the porous layer. The less dense the porous layer is, the more easily lithium ions permeate, so that the charge capacity after high rate discharge is improved. On the other hand, the denser the porous layer, the less likely lithium ions will permeate.
 このような多孔質層の緻密性に影響する因子としては、多孔質層の空隙構造が挙げられる。多孔質層の空隙構造としては、空隙の内壁の面積および空隙のくねり具合等が含まれ得る。空隙の内壁の面積および空隙のくねり具合が小さいほど多孔質層の緻密性が低くなり、反対に、空隙の内壁の面積および空隙のくねり具合が大きいほど、多孔質層の緻密性が高くなると考えられる。 The factor affecting the compactness of such a porous layer is the void structure of the porous layer. The void structure of the porous layer may include the area of the inner wall of the void, the degree of bending of the void, and the like. It is considered that the smaller the area of the inner wall of the voids and the degree of waviness of the voids, the lower the density of the porous layer, and conversely, the greater the area of the inner wall of the voids and the degree of waviness of the voids, the higher the density of the porous layer. Be done.
 本発明者らは、多孔質層の緻密性を反映したパラメータとして、多孔質層表面の温度上昇速度に着目した。多孔質層の緻密性が低いほど、多孔質層表面の温度上昇速度は小さくなる。一方、多孔質層の緻密性が高いほど、多孔質層表面の温度上昇速度は大きくなる。 The present inventors focused on the temperature rising rate of the surface of the porous layer as a parameter reflecting the denseness of the porous layer. The lower the denseness of the porous layer, the smaller the rate of temperature rise on the surface of the porous layer. On the other hand, the higher the denseness of the porous layer, the higher the temperature rising rate on the surface of the porous layer.
 本発明の一実施形態における多孔質層は、プロピレンカーボネート、ポリオキシアルキレン型非イオン界面活性剤および水を85:12:3の重量比で含む溶液を含浸させた後、周波数2455MHzのマイクロ波を出力1800Wで照射しながら測定された、照射開始から15秒後までの前記多孔質層表面の温度上昇速度が0.93℃/秒以上、1.25℃/秒以下である。前記多孔質層表面の温度上昇速度は、好ましくは0.95℃/秒以上、より好ましくは0.97℃/秒以上である。また、前記多孔質層表面の温度上昇速度は、好ましくは1.23℃/秒以下であり、より好ましくは、1.20℃/秒以下である。 The porous layer in one embodiment of the present invention is impregnated with a solution containing propylene carbonate, a polyoxyalkylene type nonionic surfactant and water in a weight ratio of 85: 12: 3, and then a microwave having a frequency of 2455 MHz is used. The temperature increase rate of the surface of the porous layer measured from 15 seconds after the start of irradiation was 0.93 ° C./sec or more and 1.25 ° C./sec or less, which was measured while irradiating with an output of 1800 W. The rate of temperature rise on the surface of the porous layer is preferably 0.95 ° C./sec or more, more preferably 0.97 ° C./sec or more. The rate of temperature rise on the surface of the porous layer is preferably 1.23 ° C./sec or less, more preferably 1.20 ° C./sec or less.
 図1は、多孔質層表面の温度変化の一例を示す図である。照射開始から15秒後までの温度上昇速度は、図1にて実線で囲まれている領域の曲線を直線近似した場合の寄与率(R)が最大化する傾きに相当する。 FIG. 1 is a diagram showing an example of the temperature change on the surface of the porous layer. The temperature increase rate from the start of irradiation to 15 seconds later corresponds to the slope at which the contribution ratio (R 2 ) when the curve in the area surrounded by the solid line in FIG. 1 is linearly approximated is maximized.
 多孔質層表面の温度上昇速度が1.25℃/秒以下であれば、多孔質層の緻密性が高すぎない。つまり、リチウムイオンの流路が細長くなりすぎず、また、当該流路の分岐も多すぎない。それゆえ、リチウムイオンが多孔質層を透過し易いため、非水電解液二次電池のハイレート放電後の充電容量を向上させることができる。また、前記温度上昇速度が0.93℃/秒以上であれば、多孔質層が、ある程度の緻密性を有するため、強度および安全性が確保される。 If the rate of temperature rise on the surface of the porous layer is 1.25 ° C / sec or less, the denseness of the porous layer is not too high. That is, the flow path of the lithium ion does not become too long, and the flow path does not have too many branches. Therefore, since lithium ions easily pass through the porous layer, the charge capacity of the non-aqueous electrolyte secondary battery after high rate discharge can be improved. Further, when the temperature rising rate is 0.93 ° C./sec or more, the porous layer has a certain degree of denseness, so that strength and safety are secured.
 本明細書において、ポリオキシアルキレン型非イオン界面活性剤とは、オキシアルキレン基を有し、かつ、非イオン界面活性剤として作用する重合体を意味する。ポリオキシアルキレン型非イオン界面活性剤としては、多孔質層内部への前記溶液の浸透を促進させることができるものであれば特に限定されない。ポリオキシアルキレン型非イオン界面活性剤による発熱は水に比べれば微々たるものであり、それゆえ、ポリオキシアルキレン型非イオン界面活性剤の構造の違いは発熱量に大きな影響を与えないと考えられるためである。ポリオキシアルキレン型非イオン界面活性剤としては、例えば、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレントリデシルエーテル、ポリオキシアルキレン多環フェニルエーテル、ポリオキシアルキレンアリールエーテル、および、下記式(1)で表される化合物等を用いることができる。 In the present specification, the polyoxyalkylene type nonionic surfactant means a polymer having an oxyalkylene group and acting as a nonionic surfactant. The polyoxyalkylene type nonionic surfactant is not particularly limited as long as it can promote the penetration of the solution into the inside of the porous layer. The heat generated by the polyoxyalkylene nonionic surfactant is insignificant compared to water, so it is considered that the difference in the structure of the polyoxyalkylene nonionic surfactant does not significantly affect the calorific value. This is because. Examples of the polyoxyalkylene type nonionic surfactant include polyoxyalkylene alkyl ethers, polyoxyalkylene tridecyl ethers, polyoxyalkylene polycyclic phenyl ethers, polyoxyalkylene aryl ethers, and compounds represented by the following formula (1). The compound etc. which are mentioned can be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、m=5~10、n=10~25であり、各繰り返し単位の配列は、ブロック、ランダムまたは交互のいずれであってもよい。)
 前記式(1)で表される化合物は、エチレンオキシド/プロピレンオキシド共重合体とも換言できる。当該化合物で構成されるポリオキシアルキレン型非イオン界面活性剤の具体例としては、市販のSNウエット980(サンノプコ株式会社製)が挙げられる。なお、SNウエット980は、mの平均値が7、nの平均値が19である式(1)で表される化合物からなる。
(In the formula, m = 5 to 10 and n = 10 to 25, and the arrangement of each repeating unit may be block, random or alternating.)
The compound represented by the formula (1) can also be referred to as an ethylene oxide / propylene oxide copolymer. As a specific example of the polyoxyalkylene type nonionic surfactant composed of the compound, a commercially available SN wet 980 (manufactured by San Nopco Ltd.) can be mentioned. The SN wet 980 is composed of a compound represented by the formula (1) in which the average value of m is 7 and the average value of n is 19.
 また、前記多孔質層は、-40℃~200℃における熱膨張係数が11ppm/℃以下である無機フィラーを含んでいる。本明細書において、無機フィラーとは、無機物から構成されたフィラーを意味する。当該無機フィラーの熱膨張係数は、多孔質層中での構成成分および空隙の分布の均一性、並びに電池作動時の空隙変形度の均一性に影響し得る。これは、無機フィラーの熱膨張係数が、多孔質層形成時の構成成分および空隙の分布を容易に均一化することができるか否かに影響し得るためと考えられる。多孔質層内で空隙および構成成分がより均一に分布しているほど、または、電池作動時の空隙変形均一性が高いほど、リチウムイオンが多孔質層を透過し易い。そのため、非水電解液二次電池のハイレート放電後の充電容量は向上する傾向にある。 Also, the porous layer contains an inorganic filler having a thermal expansion coefficient of 11 ppm / ° C. or less at −40 ° C. to 200 ° C. In the present specification, the inorganic filler means a filler composed of an inorganic material. The coefficient of thermal expansion of the inorganic filler can affect the uniformity of the distribution of the constituents and voids in the porous layer, and the uniformity of the degree of void deformation during battery operation. It is considered that this is because the thermal expansion coefficient of the inorganic filler may affect whether or not the distribution of the constituent components and voids during the formation of the porous layer can be easily made uniform. The more evenly distributed the voids and constituents in the porous layer, or the higher the uniformity of void deformation during battery operation, the easier lithium ions permeate through the porous layer. Therefore, the charge capacity of the non-aqueous electrolyte secondary battery after high rate discharge tends to be improved.
 無機フィラーの-40℃~200℃における熱膨張係数が11ppm/℃以下であれば、空隙および構成成分が均一に分布した多孔質層が得られる。また、当該多孔質層の空隙の、電池作動時の変形が少ない。それゆえ、リチウムイオンが多孔質層を透過し易いため、非水電解液二次電池のハイレート放電後の充電容量を向上させることができる。 If the coefficient of thermal expansion of the inorganic filler at −40 ° C. to 200 ° C. is 11 ppm / ° C. or less, a porous layer in which voids and constituent components are uniformly distributed can be obtained. In addition, the voids in the porous layer are less likely to be deformed during battery operation. Therefore, since lithium ions easily pass through the porous layer, the charge capacity of the non-aqueous electrolyte secondary battery after high rate discharge can be improved.
 なお、上記熱膨張係数は、0ppm/℃より大きいことが好ましく、1ppm/℃以上であることがより好ましい。非水電解液二次電池作動時の発熱に伴い多孔質層が変形する際に、多孔質層を構成する無機フィラーとバインダー樹脂との接触部へ応力が集中することにより、多孔質層内部の空隙構造が非可逆的に変化し、結果として電池特性に悪影響を与えるおそれがある。前記熱膨張係数が上記範囲であれば、このような悪影響を回避することができる。 The coefficient of thermal expansion is preferably larger than 0 ppm / ° C, more preferably 1 ppm / ° C or more. When the porous layer is deformed due to heat generation during the operation of the non-aqueous electrolyte secondary battery, stress concentrates on the contact portion between the inorganic filler and the binder resin forming the porous layer, so that the inside of the porous layer The void structure may change irreversibly, and as a result, the battery characteristics may be adversely affected. When the coefficient of thermal expansion is within the above range, such adverse effects can be avoided.
 多孔質層における無機フィラーの含有量の下限値は、当該無機フィラーと、多孔質層を構成する樹脂との総重量に対して、50重量%以上であることが好ましく、70重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。一方、多孔質層における無機フィラーの含有量の上限値は、99重量%以下であることが好ましく、98重量%以下であることがより好ましい。前記無機フィラーの含有量は、50重量%以上であることが耐熱性の観点から好ましい。また、前記無機フィラーの含有量は、99重量%以下であることが無機フィラー間の密着性の観点から好ましい。また、無機フィラーを含有することで、前記多孔質層を有するセパレータ等の滑り性および耐熱性を向上し得る。 The lower limit of the content of the inorganic filler in the porous layer is preferably 50% by weight or more, and 70% by weight or more with respect to the total weight of the inorganic filler and the resin constituting the porous layer. More preferably, it is more preferably 90% by weight or more. On the other hand, the upper limit value of the content of the inorganic filler in the porous layer is preferably 99% by weight or less, and more preferably 98% by weight or less. The content of the inorganic filler is preferably 50% by weight or more from the viewpoint of heat resistance. Further, the content of the inorganic filler is preferably 99% by weight or less from the viewpoint of adhesion between the inorganic fillers. Further, by containing the inorganic filler, the slipperiness and heat resistance of the separator or the like having the porous layer can be improved.
 無機フィラーは、非水電解液に安定であり、かつ、電気化学的に安定なフィラーであることが好ましい。電池の安全性を確保する観点からは、無機フィラーは、耐熱温度が150℃以上のフィラーであることが好ましい。 It is preferable that the inorganic filler is a filler that is stable in the non-aqueous electrolyte and electrochemically stable. From the viewpoint of ensuring the safety of the battery, the inorganic filler is preferably a filler having a heat resistant temperature of 150 ° C. or higher.
 前記無機フィラーは、酸素元素を含む無機フィラーであることが好ましい。本明細書において、酸素元素を含む無機フィラーとは、酸素元素を含む無機物から構成されたフィラーを意味する。酸素元素を含む無機物としては、例えば、チタン酸ジルコン酸バリウム、チタン酸カルシウム、チタン酸アルミニウムおよびホウケイ酸ガラス等が挙げられるが、これらに限定されない。 The inorganic filler is preferably an inorganic filler containing oxygen element. In the present specification, the inorganic filler containing an oxygen element means a filler composed of an inorganic material containing an oxygen element. Examples of the inorganic substance containing an oxygen element include, but are not limited to, barium zirconate titanate, calcium titanate, aluminum titanate, and borosilicate glass.
 さらに、酸素元素を含む無機フィラーにおける酸素の原子組成百分率が60at%以上であることが好ましい。酸素の原子組成百分率が60at%以上であれば、無機フィラー同士が反発することにより、分散し易い。それゆえ、無機フィラー同士が相互作用しにくく、構成成分をより均一に分散させることができる。従って、無機フィラーに含まれる酸素の原子組成百分率を制御することによっても、多孔質層表面の温度上昇速度を調整することができる。 Furthermore, it is preferable that the atomic composition percentage of oxygen in the inorganic filler containing oxygen element is 60 at% or more. When the atomic composition percentage of oxygen is 60 at% or more, the inorganic fillers repel each other and are easily dispersed. Therefore, the inorganic fillers are less likely to interact with each other, and the constituent components can be dispersed more uniformly. Therefore, the rate of temperature rise on the surface of the porous layer can also be adjusted by controlling the atomic composition percentage of oxygen contained in the inorganic filler.
 無機フィラーの形状は、無機フィラーの製造方法および/または多孔質層を形成するための塗工液を作製するときの無機フィラーの分散条件等によって変化し得る。無機フィラーの形状は、球形、長円形、矩形、もしくは球形の粒子同士の熱融着等で得られる瓢箪形等の形状、または特定の形状を有さない不定形等、何れの形状であってもよい。多孔質層のイオン透過性および保液性の観点からは、無機フィラーの形状は、瓢箪形または不定形であることがより好ましい。 The shape of the inorganic filler may change depending on the method for producing the inorganic filler and / or the dispersion condition of the inorganic filler when producing a coating liquid for forming the porous layer. The shape of the inorganic filler is any shape, such as a spherical shape, an oval shape, a rectangular shape, or a shape such as a gourd shape obtained by heat-sealing particles having a spherical shape, or an indefinite shape having no specific shape. Good. From the viewpoint of ion permeability and liquid retention of the porous layer, the shape of the inorganic filler is more preferably a gourd shape or an amorphous shape.
 多孔質層に含まれる樹脂は、電池の電解液に不溶であり、また、その電池の使用範囲において電気化学的に安定であることが好ましい。前記樹脂としては、例えば、ポリオレフィン;(メタ)アクリレート系樹脂;含フッ素樹脂;ポリアミド系樹脂;ポリイミド系樹脂;ポリエステル系樹脂;ゴム類;融点またはガラス転移温度が180℃以上の樹脂;水溶性ポリマー;ポリカーボネート、ポリアセタール、ポリエーテルエーテルケトン等が挙げられる。 The resin contained in the porous layer is preferably insoluble in the electrolytic solution of the battery and is electrochemically stable in the usage range of the battery. Examples of the resin include polyolefin; (meth) acrylate resin; fluorine-containing resin; polyamide resin; polyimide resin; polyester resin; rubbers; resin having a melting point or glass transition temperature of 180 ° C. or higher; water-soluble polymer Polycarbonate, polyacetal, polyether ether ketone, etc .;
 上述の樹脂のうち、ポリオレフィン、ポリエステル系樹脂、(メタ)アクリレート系樹脂、含フッ素樹脂、ポリアミド系樹脂および水溶性ポリマーが好ましい。 Among the above resins, polyolefins, polyester resins, (meth) acrylate resins, fluorine-containing resins, polyamide resins and water-soluble polymers are preferable.
 ポリオレフィンとしては、ポリエチレン、ポリプロピレン、ポリブテン、およびエチレン-プロピレン共重合体等が好ましい。 As the polyolefin, polyethylene, polypropylene, polybutene, ethylene-propylene copolymer and the like are preferable.
 ポリアミド系樹脂としては、芳香族ポリアミドおよび全芳香族ポリアミドなどのアラミド樹脂が好ましい。 As the polyamide resin, aramid resins such as aromatic polyamide and wholly aromatic polyamide are preferable.
 アラミド樹脂としては、具体的には、例えば、ポリ(パラフェニレンテレフタルアミド)、ポリ(メタフェニレンイソフタルアミド)、ポリ(パラベンズアミド)、ポリ(メタベンズアミド)、ポリ(4,4’-ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(メタフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(メタフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(2-クロロパラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体、メタフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体等が挙げられる。このうち、ポリ(パラフェニレンテレフタルアミド)がより好ましい。 Specific examples of the aramid resin include poly (paraphenylene terephthalamide), poly (metaphenylene isophthalamide), poly (parabenzamide), poly (metabenzamide), poly (4,4′-benzanilide terephthalate). Amide), poly (paraphenylene-4,4′-biphenylenedicarboxylic acid amide), poly (metaphenylene-4,4′-biphenylenedicarboxylic acid amide), poly (paraphenylene-2,6-naphthalenedicarboxylic acid amide), Poly (metaphenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloroparaphenylene terephthalamide), paraphenylene terephthalamide / 2,6-dichloroparaphenylene terephthalamide copolymer, metaphenylene terephthalamide / 2 , 6-diclosure Paraphenylene terephthalamide copolymer and the like. Of these, poly (paraphenylene terephthalamide) is more preferable.
 ポリエステル系樹脂としては、ポリアリレートなどの芳香族ポリエステルおよび液晶ポリエステルが好ましい。 As the polyester resin, aromatic polyester such as polyarylate and liquid crystal polyester are preferable.
 ゴム類としては、スチレン-ブタジエン共重合体およびその水素化物、メタクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリ酢酸ビニル等を挙げることができる。 Examples of rubbers include styrene-butadiene copolymer and its hydride, methacrylic acid ester copolymer, acrylonitrile-acrylic acid ester copolymer, styrene-acrylic acid ester copolymer, ethylene propylene rubber, polyvinyl acetate and the like. Can be mentioned.
 融点又はガラス転移温度が180℃以上の樹脂としては、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルアミド等を挙げることができる。 Examples of the resin having a melting point or glass transition temperature of 180 ° C. or higher include polyphenylene ether, polysulfone, polyether sulfone, polyphenylene sulfide, polyetherimide, polyamideimide, and polyetheramide.
 水溶性ポリマーとしては、ポリビニルアルコール、ポリエチレングリコール、セルロースエーテル、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリルアミド、ポリメタクリル酸等を挙げることができる。 Examples of water-soluble polymers include polyvinyl alcohol, polyethylene glycol, cellulose ether, sodium alginate, polyacrylic acid, polyacrylamide, polymethacrylic acid and the like.
 含フッ素樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-トリクロロエチレン共重合体、フッ化ビニリデン-フッ化ビニル共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体およびエチレン-テトラフルオロエチレン共重合体等が挙げられる。中でも、多孔質層が正極に対向して配置される場合には、電池作動時に酸化劣化が生じたとしても非水電解液二次電池のレート特性および抵抗特性等の各種性能を維持し易いため、含フッ素樹脂が好ましい。 Examples of the fluorine-containing resin include polyvinylidene fluoride (PVDF), polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer Coalescence, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-trichloroethylene copolymer, vinylidene fluoride-vinyl fluoride copolymer, vinylidene fluoride-hexafluoro Examples thereof include propylene-tetrafluoroethylene copolymer and ethylene-tetrafluoroethylene copolymer. Among them, when the porous layer is arranged facing the positive electrode, it is easy to maintain various performances such as rate characteristics and resistance characteristics of the non-aqueous electrolyte secondary battery even if oxidative deterioration occurs during battery operation. Fluorine-containing resins are preferred.
 本実施形態における多孔質層は、非水電解液二次電池用セパレータと正極が備える正極活物質層との間に配置されることが好ましい。多孔質層の物性に関する下記説明においては、非水電解液二次電池としたときに、非水電解液二次電池用セパレータと正極が備える正極活物質層との間に配置された多孔質層の物性を少なくとも指す。 The porous layer in the present embodiment is preferably arranged between the separator for non-aqueous electrolyte secondary battery and the positive electrode active material layer included in the positive electrode. In the following description regarding the physical properties of the porous layer, when a non-aqueous electrolyte secondary battery, a porous layer arranged between the separator for the non-aqueous electrolyte secondary battery and the positive electrode active material layer provided in the positive electrode. Refers to at least the physical properties of.
 前記多孔質層の平均膜厚は、電極との接着性および高エネルギー密度を確保する観点から、多孔質層一層当たり0.5μm~10μmの範囲であることが好ましく、1μm~5μmの範囲であることがより好ましい。 The average thickness of the porous layer is preferably in the range of 0.5 μm to 10 μm, and preferably in the range of 1 μm to 5 μm, from the viewpoint of securing adhesiveness to the electrode and high energy density. Is more preferable.
 多孔質層の膜厚が一層当たり0.5μm以上であると、非水電解液二次電池の破損等による内部短絡を充分に抑制することができ、また、多孔質層における電解液の保持量が充分となる。 When the thickness of the porous layer is 0.5 μm or more per layer, an internal short circuit due to damage of the non-aqueous electrolyte secondary battery can be sufficiently suppressed, and the amount of the electrolyte retained in the porous layer can be suppressed. Will be sufficient.
 一方、多孔質層の膜厚が一層当たり10μmを超えると、非水電解液二次電池において、リチウムイオンの透過抵抗が増加するので、サイクルを繰り返すと正極が劣化するおそれがある。それゆえ、非水電解液二次電池において、レート特性およびサイクル特性が低下するおそれがある。また、正極および負極間の距離が増加するので非水電解液二次電池の内部容積効率が低下し得る。 On the other hand, when the film thickness of the porous layer exceeds 10 μm per layer, the lithium ion permeation resistance increases in the non-aqueous electrolyte secondary battery, so the positive electrode may deteriorate when the cycle is repeated. Therefore, in the non-aqueous electrolyte secondary battery, the rate characteristics and the cycle characteristics may deteriorate. In addition, since the distance between the positive electrode and the negative electrode increases, the internal volume efficiency of the non-aqueous electrolyte secondary battery may decrease.
 多孔質層の単位面積当たりの目付は、多孔質層の強度、膜厚、重量およびハンドリング性を考慮して適宜決定することができる。多孔質層の単位面積当たりの目付は、多孔質層一層当たり、0.5~20g/mであることが好ましく、0.5~10g/mであることがより好ましい。 The basis weight per unit area of the porous layer can be appropriately determined in consideration of the strength, film thickness, weight and handling property of the porous layer. The basis weight per unit area of the porous layer is preferably 0.5 to 20 g / m 2 and more preferably 0.5 to 10 g / m 2 per porous layer.
 多孔質層の単位面積当たりの目付をこれらの数値範囲とすることにより、非水電解液二次電池の重量エネルギー密度および体積エネルギー密度を高くすることができる。多孔質層の目付が前記範囲を超える場合には、非水電解液二次電池が重くなる傾向がある。 By setting the basis weight per unit area of the porous layer within these numerical ranges, the weight energy density and volume energy density of the non-aqueous electrolyte secondary battery can be increased. When the basis weight of the porous layer exceeds the above range, the non-aqueous electrolyte secondary battery tends to be heavy.
 多孔質層の空隙率は、充分なイオン透過性を得ることができるように、20~90体積%であることが好ましく、30~80体積%であることがより好ましい。また、多孔質層が有する細孔の孔径は、1.0μm以下であることが好ましく、0.5μm以下であることがより好ましい。細孔の孔径をこれらのサイズとすることにより、非水電解液二次電池は、充分なイオン透過性を得ることができる。 The porosity of the porous layer is preferably 20 to 90% by volume, and more preferably 30 to 80% by volume so that sufficient ion permeability can be obtained. The pore size of the pores of the porous layer is preferably 1.0 μm or less, more preferably 0.5 μm or less. By setting the pore diameters to these sizes, the non-aqueous electrolyte secondary battery can obtain sufficient ion permeability.
 [多孔質層の製造方法]
 樹脂を溶媒に溶解または分散させると共に、無機フィラーを分散させることにより得られた塗工液を用いて、多孔質層を形成することができる。なお、前記溶媒は、樹脂を溶解させる溶媒であるとともに、樹脂または無機フィラーを分散させる分散媒であるとも言える。塗工液の形成方法としては、例えば、機械攪拌法、超音波分散法、高圧分散法、メディア分散法等が挙げられる。
[Method for producing porous layer]
The porous layer can be formed by using the coating liquid obtained by dissolving or dispersing the resin in the solvent and dispersing the inorganic filler. The solvent can be said to be a solvent for dissolving the resin and a dispersion medium for dispersing the resin or the inorganic filler. Examples of the method for forming the coating liquid include a mechanical stirring method, an ultrasonic dispersion method, a high pressure dispersion method, and a media dispersion method.
 多孔質層の形成方法としては、例えば、塗工液を基材の表面に直接塗布した後、溶媒を除去する方法;塗工液を適当な支持体に塗布した後、溶媒を除去して多孔質層を形成し、この多孔質層と基材とを圧着させ、次いで支持体を剥がす方法;塗工液を適当な支持体に塗布した後、塗布面に基材を圧着させ、次いで支持体を剥がした後に溶媒を除去する方法;および、塗工液中に基材を浸漬することによってディップコーティングを行った後に溶媒を除去する方法等が挙げられる。 The method for forming the porous layer is, for example, a method in which the coating liquid is directly applied to the surface of the base material and then the solvent is removed; after the coating liquid is applied to an appropriate support, the solvent is removed to form a porous layer. To form a porous layer, press-bond the porous layer and the base material, and then peel off the support; after applying the coating liquid to an appropriate support, press-contact the base material on the coated surface, and then the support And a method of removing the solvent after removing the substrate; and a method of removing the solvent after dip coating by dipping the substrate in the coating solution.
 前記溶媒は基材に悪影響を及ぼさず、前記樹脂を均一かつ安定に溶解し、前記無機フィラーを均一かつ安定に分散させる溶媒であることが好ましい。前記溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、アセトンおよび水等が挙げられる。 Preferably, the solvent does not adversely affect the base material, dissolves the resin uniformly and stably, and disperses the inorganic filler uniformly and stably. Examples of the solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, acetone and water.
 前記塗工液は、樹脂および無機フィラー以外の成分として、分散剤、可塑剤、界面活性剤およびpH調整剤等を適宜含んでいてもよい。 The coating liquid may appropriately contain a dispersant, a plasticizer, a surfactant, a pH adjuster and the like as components other than the resin and the inorganic filler.
 なお、前記基材には、後述するポリオレフィン多孔質フィルムの他に、その他のフィルム、正極および負極などを用いることができる。 Note that, in addition to the polyolefin porous film described later, other films, a positive electrode, a negative electrode, and the like can be used as the base material.
 塗工液の基材への塗布方法としては、従来公知の方法を採用することができ、具体的には、例えば、グラビアコーター法、ディップコーター法、バーコーター法およびダイコーター法等が挙げられる。 As a method for applying the coating liquid to the substrate, a conventionally known method can be adopted, and specific examples thereof include a gravure coater method, a dip coater method, a bar coater method and a die coater method. ..
 溶媒の除去方法は、乾燥による方法が一般的である。また、塗工液に含まれる溶媒を他の溶媒に置換してから乾燥を行ってもよい。 -The method of removing the solvent is generally drying. Further, the solvent contained in the coating liquid may be replaced with another solvent before drying.
 塗工液のせん断粘度は、1Pa・s以下であることが好ましく、0.5Pa・s以下であることがより好ましい。せん断粘度が高い場合は、構成成分が相互に作用しやすく、得られる多孔質層の緻密性が高くなり易い。塗工液のせん断粘度が1Pa・s以下であれば、多孔質層の緻密性が高くなりすぎず、かつ、構成成分をより均一に分散させることができる。従って、この塗工液のせん断粘度を制御することによって、多孔質層表面の温度上昇速度を制御することができる。また、これにより、リチウムイオンの透過を制御することができる。 The shear viscosity of the coating liquid is preferably 1 Pa · s or less, more preferably 0.5 Pa · s or less. When the shear viscosity is high, the constituent components are likely to interact with each other, and the resulting porous layer is likely to have high denseness. When the shear viscosity of the coating liquid is 1 Pa · s or less, the denseness of the porous layer does not become too high, and the constituent components can be dispersed more uniformly. Therefore, by controlling the shear viscosity of this coating liquid, the temperature rising rate of the surface of the porous layer can be controlled. Further, this makes it possible to control the permeation of lithium ions.
 なお、本明細書において、せん断粘度とは、せん断速度0.1~1000[1/sec]であるインターバル1とせん断速度1000~0.1[1/sec]であるインターバル2とにおいて連続でせん断粘度を測定した際の、インターバル2におけるせん断速度0.4[1/sec]時のせん断粘度を指す。 In addition, in this specification, the shear viscosity refers to continuous shear in an interval 1 having a shear rate of 0.1 to 1000 [1 / sec] and an interval 2 having a shear rate of 1000 to 0.1 [1 / sec]. This refers to the shear viscosity at a shear rate of 0.4 [1 / sec] at interval 2 when the viscosity is measured.
 [非水電解液]
 本発明の一実施形態における非水電解液は、下記式(A)で表されるイオン電導度低下率Lが1.0%以上、6.0%以下である添加剤を0.5ppm~300ppm含有する。
L=(LA-LB)/LA・・・(A)
 式(A)中、LAは、エチレンカーボネート、エチルメチルカーボネートおよびジエチルカーボネートを3:5:2の体積比で含む混合溶媒に、LiPFをその濃度が1mol/Lとなるように溶解させた参照用電解液のイオン電導度(mS/cm)を表す。LBは、前記参照用電解液に、添加剤を1.0重量%溶解させた電解液のイオン電導度(mS/cm)を表す。
[Non-aqueous electrolyte]
The non-aqueous electrolyte in one embodiment of the present invention contains an additive having an ionic conductivity decrease rate L represented by the following formula (A) of 1.0% or more and 6.0% or less, 0.5 ppm to 300 ppm. contains.
L = (LA-LB) / LA ... (A)
In formula (A), LA is a reference in which LiPF 6 is dissolved in a mixed solvent containing ethylene carbonate, ethylmethyl carbonate and diethyl carbonate in a volume ratio of 3: 5: 2 so that the concentration becomes 1 mol / L. The ionic conductivity (mS / cm) of the electrolyte for use is shown. LB represents the ionic conductivity (mS / cm) of the electrolytic solution prepared by dissolving 1.0% by weight of the additive in the reference electrolytic solution.
 前記添加剤は、式(A)で表されるイオン電導度低下率Lが1.0%以上、6.0%以下であることを充足する化合物であれば特に限定されない。そのような化合物としては、例えば、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、トリエチルフォスフェイト、ビニレンカーボネート、プロパンサルトン、2,6-ジ-tert-ブチル-4-メチルフェノール、6-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-t-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン、リン酸トリス(2,4-ジ-tert-ブチルフェニル)、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、ジブチルヒドロキシトルエン等を挙げることができる。 The additive is not particularly limited as long as it is a compound that satisfies the ionic conductivity reduction rate L represented by the formula (A) of 1.0% or more and 6.0% or less. Examples of such a compound include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], triethyl phosphate, vinylene carbonate, propane sultone, 2,6-dione. -Tert-butyl-4-methylphenol, 6- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-t-butyldibenzo [d , F] [1,3,2] dioxaphosphine, tris (2,4-di-tert-butylphenyl) phosphate, 2- [1- (2-hydroxy-3,5-di-tert-) Pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, dibutylhydroxytoluene and the like can be mentioned.
 非水電解液は、電解質と有機溶媒とを含む。前記電解質としては、リチウムを含有している電解質が挙げられる。リチウムを含有している電解質としては、例えば、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、低級脂肪族カルボン酸リチウム塩およびLiAlCl等のリチウム塩、等の金属塩が挙げられる。前記電解質は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。 The non-aqueous electrolytic solution contains an electrolyte and an organic solvent. Examples of the electrolyte include an electrolyte containing lithium. As the electrolyte containing lithium, for example, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiBF 4, LiCF 3 SO 3, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) 3, Examples thereof include metal salts such as Li 2 B 10 Cl 10 , lithium salts of lower aliphatic carboxylic acids and lithium salts such as LiAlCl 4 . The electrolyte may be used alone or in combination of two or more kinds.
 前記非水電解液を構成する有機溶媒としては、例えば、カーボネート類、エーテル類、エステル類、ニトリル類、アミド類、カーバメート類および含硫黄化合物、並びにこれらの有機溶媒にフッ素基が導入されてなる含フッ素有機溶媒等の非プロトン性極性溶媒が挙げられる。前記有機溶媒は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the organic solvent that constitutes the non-aqueous electrolytic solution include carbonates, ethers, esters, nitriles, amides, carbamates and sulfur-containing compounds, and fluorine groups introduced into these organic solvents. An aprotic polar solvent such as a fluorine-containing organic solvent may be used. The organic solvent may be used alone or in combination of two or more.
 前記有機溶媒は、前記参照用電解液と同様に、エチレンカーボネート等の環状化合物とエチルメチルカーボネート、ジエチルカーボネート等の鎖状化合物とを含む混合溶媒であることが好ましい。前記混合溶媒は、前記環状化合物と、前記鎖状化合物とを、好ましくは2:8~4:6の体積比で含み、より好ましくは2:8~3:7の体積比で含み、特に好ましくは3:7の体積比で含む。なお、環状化合物および鎖状化合物を3:7の体積比にて混合した混合溶媒は、非水電解液二次電池の非水電解液に、特に一般に使用される有機溶媒である。 Like the reference electrolyte, the organic solvent is preferably a mixed solvent containing a cyclic compound such as ethylene carbonate and a chain compound such as ethylmethyl carbonate and diethyl carbonate. The mixed solvent contains the cyclic compound and the chain compound preferably in a volume ratio of 2: 8 to 4: 6, more preferably in a volume ratio of 2: 8 to 3: 7, and particularly preferably. Is included in a volume ratio of 3: 7. The mixed solvent in which the cyclic compound and the chain compound are mixed at a volume ratio of 3: 7 is an organic solvent that is generally used in the non-aqueous electrolyte solution of the non-aqueous electrolyte secondary battery.
 本発明の一実施形態における添加剤は、前記参照用電解液のイオン電導度を低下させるものである。前記添加剤を非水電解液に添加することにより、ハイレート放電後の充電容量の低下を抑制できる理由としては、例えば、以下の理由が考えられる。前記添加剤を添加することによって、前記非水電解液中のイオンの解離度が低下し得る。これにより、充放電時、特に高速で電池を作動させた際の、セパレータと電極との界面におけるイオンの枯渇が低減され得る。それによって、ハイレート放電後の充電容量の低下を抑制できる、と考えられる。 The additive in one embodiment of the present invention reduces the ionic conductivity of the reference electrolyte solution. The following reasons can be considered as reasons why the reduction of the charge capacity after high-rate discharge can be suppressed by adding the additive to the non-aqueous electrolyte solution. By adding the additive, the dissociation degree of ions in the non-aqueous electrolyte may be reduced. This can reduce the depletion of ions at the interface between the separator and the electrode during charge / discharge, particularly when the battery is operated at high speed. Therefore, it is considered that the reduction of the charge capacity after the high rate discharge can be suppressed.
 電極近傍におけるイオンの枯渇を低減させるという観点から、前記非水電解液は、前記添加剤を0.5ppm以上含有し、20ppm以上含有することが好ましく、45ppm以上含有することがより好ましい。 From the viewpoint of reducing the depletion of ions near the electrodes, the non-aqueous electrolyte solution contains the additive in an amount of 0.5 ppm or more, preferably 20 ppm or more, and more preferably 45 ppm or more.
 一方、前記添加剤の含有量が過剰に多い場合、非水電解液全体のイオンの解離度が過剰に低下することにより、非水電解液二次電池全体におけるイオンの流れが阻害されると考えられる。従って、かえってハイレート放電後の充電容量等の電池特性が低下するおそれがある。非水電解液二次電池全体におけるイオンの流れの阻害を抑制するとの観点から、前記非水電解液は、前記添加剤を300ppm以下含有し、250ppm以下含有することが好ましく、180ppm以下含有することがより好ましい。 On the other hand, when the content of the additive is excessively large, the degree of dissociation of ions in the entire non-aqueous electrolyte solution is excessively reduced, which is considered to hinder the flow of ions in the entire non-aqueous electrolyte secondary battery. Be done. Therefore, on the contrary, the battery characteristics such as the charge capacity after high rate discharge may be deteriorated. From the viewpoint of suppressing inhibition of ion flow in the entire non-aqueous electrolyte secondary battery, the non-aqueous electrolyte contains the additive in an amount of 300 ppm or less, preferably 250 ppm or less, and 180 ppm or less. Is more preferable.
 ここで、本発明の一実施形態に係る非水電解液二次電池においては、充放電を繰り返した際、特に高速で電池を作動させた際における正極付近のイオンの解離度は、電解質近傍の添加剤の量に強く影響を受ける。 Here, in the non-aqueous electrolyte secondary battery according to the embodiment of the present invention, the degree of ion dissociation in the vicinity of the positive electrode during repeated charging and discharging, particularly when the battery is operated at a high speed, It is strongly influenced by the amount of additives.
 従って、本発明の一実施形態に係る非水電解液二次電池は、非水電解液の種類に関係なく、正極付近のイオンの解離度を好適に小さくすることができる。すなわち、当該非水電解液に含まれる電解質の種類、量、および、含まれる有機溶媒の種類に関係なく、前記添加剤を0.5ppm以上、300ppm以下含有することにより、正極付近のイオンの解離度を好適に小さくすることができる。その結果、ハイレート放電後の充電容量の低下を抑制することができる。 Therefore, the nonaqueous electrolyte secondary battery according to the embodiment of the present invention can suitably reduce the degree of dissociation of ions near the positive electrode regardless of the type of the nonaqueous electrolyte. That is, regardless of the type and amount of the electrolyte contained in the non-aqueous electrolytic solution, and the type of the organic solvent contained, the addition of 0.5 ppm or more and 300 ppm or less of the additive causes dissociation of ions near the positive electrode. The degree can be suitably reduced. As a result, it is possible to suppress a decrease in charge capacity after high rate discharge.
 前記非水電解液における添加剤の含有量を0.5ppm以上、300ppm以下に制御する方法は、特に限定されないが、例えば、後述する非水電解液二次電池の製造方法にて、非水電解液二次電池の筐体となる容器に注入する前記非水電解液に、前記添加剤を、その含有量が0.5ppm以上、300ppm以下となるように、前もって溶解させる方法等を挙げることができる。 The method for controlling the content of the additive in the non-aqueous electrolytic solution to be 0.5 ppm or more and 300 ppm or less is not particularly limited, but, for example, in the method for manufacturing a non-aqueous electrolytic solution secondary battery described later, non-aqueous electrolytic Examples include a method of pre-dissolving the additive in the non-aqueous electrolyte solution to be injected into the container that will be the housing of the liquid secondary battery, so that the content of the additive is 0.5 ppm or more and 300 ppm or less. it can.
 [正極]
 本発明の一実施形態における正極は、一般に非水電解液二次電池の正極として使用されるものであれば、特に限定されない。例えば、正極として、正極活物質および結着剤を含む活物質層が正極集電体上に成形された構造を備える正極シートを使用することができる。なお、前記活物質層は、更に導電剤を含んでもよい。
[Positive electrode]
The positive electrode in one embodiment of the present invention is not particularly limited as long as it is generally used as the positive electrode of a non-aqueous electrolyte secondary battery. For example, a positive electrode sheet having a structure in which an active material layer containing a positive electrode active material and a binder is formed on a positive electrode current collector can be used as the positive electrode. The active material layer may further contain a conductive agent.
 前記正極活物質としては、例えば、リチウムイオンまたはナトリウムイオン等の金属イオンをドープ・脱ドープ可能な材料が挙げられる。当該材料としては、具体的には、例えば、V、Mn、Fe、CoおよびNi等の遷移金属を少なくとも1種類含んでいるリチウム複合酸化物が挙げられる。 The positive electrode active material includes, for example, a material capable of being doped / dedoped with metal ions such as lithium ions or sodium ions. Specific examples of the material include a lithium composite oxide containing at least one transition metal such as V, Mn, Fe, Co, and Ni.
 前記導電剤としては、例えば、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維および有機高分子化合物焼成体等の炭素質材料等が挙げられる。前記導電剤は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the conductive agent include natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers and carbonaceous materials such as organic polymer compound fired bodies. The conductive agent may be used alone or in combination of two or more kinds.
 前記結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂、アクリル樹脂、スチレンブタジエンゴムが挙げられる。なお、結着剤は、増粘剤としての機能も有している。 Examples of the binder include fluororesin such as polyvinylidene fluoride (PVDF), acrylic resin, and styrene-butadiene rubber. The binder also has a function as a thickener.
 前記正極集電体としては、例えば、Al、Niおよびステンレス等の導電体が挙げられる。中でも、薄膜に加工し易く、安価であることから、Alがより好ましい。 Examples of the positive electrode current collector include conductors such as Al, Ni and stainless steel. Among them, Al is more preferable because it is easily processed into a thin film and is inexpensive.
 正極シートの製造方法としては、例えば、正極活物質、導電剤および結着剤を正極集電体上で加圧成型する方法;適当な有機溶剤を用いて正極活物質、導電剤および結着剤をペースト状にした後、当該ペーストを正極集電体に塗工し、乾燥した後に加圧して正極集電体に固着する方法;等が挙げられる。 The positive electrode sheet may be produced, for example, by pressure molding a positive electrode active material, a conductive agent and a binder on a positive electrode current collector; a positive electrode active material, a conductive agent and a binder using an appropriate organic solvent. Is applied to a positive electrode current collector, dried, and then pressed to fix it to the positive electrode current collector; and the like.
 [負極]
 本発明の一実施形態における負極としては、一般に非水電解液二次電池の負極として使用されるものであれば、特に限定されない。例えば、負極として、負極活物質および結着剤を含む活物質層が負極集電体上に成形された構造を備える負極シートを使用することができる。なお、前記活物質層は、更に導電剤を含んでもよい。
[Negative electrode]
The negative electrode in one embodiment of the present invention is not particularly limited as long as it is generally used as a negative electrode of a non-aqueous electrolyte secondary battery. For example, a negative electrode sheet having a structure in which an active material layer containing a negative electrode active material and a binder is formed on a negative electrode current collector can be used as the negative electrode. The active material layer may further contain a conductive agent.
 前記負極活物質としては、例えば、リチウムイオンまたはナトリウムイオン等の金属イオンをドープ・脱ドープ可能な材料が挙げられる。当該材料としては、例えば、炭素質材料等が挙げられる。炭素質材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラックおよび熱分解炭素類等が挙げられる。 As the negative electrode active material, for example, a material capable of doping / dedoping metal ions such as lithium ions or sodium ions can be mentioned. Examples of the material include a carbonaceous material and the like. Examples of the carbonaceous material include natural graphite, artificial graphite, cokes, carbon black and pyrolytic carbons.
 前記負極集電体としては、例えば、Cu、Niおよびステンレス等が挙げられる。リチウムと合金を作り難く、かつ薄膜に加工し易いことから、Cuがより好ましい。 Examples of the negative electrode current collector include Cu, Ni and stainless steel. Cu is more preferable because it is difficult to form an alloy with lithium and is easily processed into a thin film.
 負極シートの製造方法としては、例えば、負極活物質を負極集電体上で加圧成型する方法;適当な有機溶剤を用いて負極活物質をペースト状にした後、当該ペーストを負極集電体に塗工し、乾燥した後に加圧して負極集電体に固着する方法;等が挙げられる。前記ペーストには、好ましくは前記導電剤および前記結着剤が含まれる。 Examples of the method for producing the negative electrode sheet include a method in which the negative electrode active material is pressure-molded on the negative electrode current collector; the negative electrode active material is made into a paste using an appropriate organic solvent, and then the paste is used as the negative electrode current collector. And the like, and then pressurizing and fixing to the negative electrode current collector; and the like. The paste preferably contains the conductive agent and the binder.
 [ポリオレフィン多孔質フィルム]
 本発明の一実施形態における非水電解液二次電池は、ポリオレフィン多孔質フィルムを備えていてもよい。以下では、ポリオレフィン多孔質フィルムを単に「多孔質フィルム」と称することがある。前記多孔質フィルムは、ポリオレフィン系樹脂を主成分とし、その内部に連結した細孔を多数有しており、一方の面から他方の面に気体および液体を通過させることが可能となっている。前記多孔質フィルムは、単独で非水電解液二次電池用セパレータとなり得る。また、上述の多孔質層が積層された非水電解液二次電池用積層セパレータの基材ともなり得る。
[Polyolefin porous film]
The non-aqueous electrolyte secondary battery in one embodiment of the present invention may include a polyolefin porous film. Below, a polyolefin porous film may only be called a "porous film." The porous film contains a polyolefin-based resin as a main component and has a large number of pores connected to the inside thereof, so that a gas and a liquid can pass from one surface to the other surface. The porous film alone can serve as a separator for a non-aqueous electrolyte secondary battery. It can also be a base material of the laminated separator for a non-aqueous electrolyte secondary battery in which the above-mentioned porous layer is laminated.
 前記ポリオレフィン多孔質フィルムの少なくとも一方の面上に、前記多孔質層が積層されてなる積層体を、本明細書において、「非水電解液二次電池用積層セパレータ」または「積層セパレータ」とも称する。また、本発明の一実施形態における非水電解液二次電池用セパレータは、ポリオレフィン多孔質フィルムの他に、接着層、耐熱層、保護層等のその他の層をさらに備えていてもよい。 On at least one surface of the polyolefin porous film, a laminate in which the porous layer is laminated, in the present specification, also referred to as "non-aqueous electrolyte secondary battery laminated separator" or "laminated separator" .. Further, the separator for a non-aqueous electrolyte secondary battery in one embodiment of the present invention may further include other layers such as an adhesive layer, a heat resistant layer, and a protective layer, in addition to the polyolefin porous film.
 多孔質フィルムに占めるポリオレフィンの割合は、多孔質フィルム全体の50体積%以上であり、90体積%以上であることがより好ましく、95体積%以上であることがさらに好ましい。また、前記ポリオレフィンには、重量平均分子量が5×10~15×10の高分子量成分が含まれていることがより好ましい。特に、ポリオレフィンに重量平均分子量が100万以上の高分子量成分が含まれていると、非水電解液二次電池用セパレータの強度が向上するのでより好ましい。 The proportion of polyolefin in the porous film is 50% by volume or more of the entire porous film, more preferably 90% by volume or more, and further preferably 95% by volume or more. Further, it is more preferable that the polyolefin contains a high molecular weight component having a weight average molecular weight of 5 × 10 5 to 15 × 10 6 . In particular, when the polyolefin contains a high molecular weight component having a weight average molecular weight of 1,000,000 or more, the strength of the separator for a non-aqueous electrolyte secondary battery is improved, which is more preferable.
 熱可塑性樹脂である前記ポリオレフィンとしては、具体的には、例えば、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテンおよび1-ヘキセン等の単量体を重合してなる、単独重合体または共重合体が挙げられる。前記単独重合体としては、例えばポリエチレン、ポリプロピレン、ポリブテンを挙げることができる。また、前記共重合体としては、例えばエチレン-プロピレン共重合体を挙げることができる。 The polyolefin, which is a thermoplastic resin, is specifically a homopolymer obtained by polymerizing monomers such as ethylene, propylene, 1-butene, 4-methyl-1-pentene and 1-hexene. Alternatively, a copolymer may be used. Examples of the homopolymer include polyethylene, polypropylene and polybutene. Examples of the copolymer include ethylene-propylene copolymer.
 このうち、過大電流が流れることをより低温で阻止することができるため、ポリエチレンがより好ましい。なお、この過大電流が流れることを阻止することをシャットダウンともいう。前記ポリエチレンとしては、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン(エチレン-α-オレフィン共重合体)、重量平均分子量が100万以上の超高分子量ポリエチレン等が挙げられる。このうち、重量平均分子量が100万以上の超高分子量ポリエチレンがさらに好ましい。 Among these, polyethylene is more preferable because it can block excessive current from flowing at lower temperatures. Note that blocking the flow of this excessive current is also referred to as shutdown. Examples of the polyethylene include low density polyethylene, high density polyethylene, linear polyethylene (ethylene-α-olefin copolymer), and ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more. Among these, ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more is more preferable.
 多孔質フィルムの膜厚は、4~40μmであることが好ましく、5~30μmであることがより好ましく、6~15μmであることがさらに好ましい。 The thickness of the porous film is preferably 4 to 40 μm, more preferably 5 to 30 μm, and further preferably 6 to 15 μm.
 多孔質フィルムの単位面積当たりの目付は、強度、膜厚、重量およびハンドリング性を考慮して適宜決定することができる。ただし、非水電解液二次電池の重量エネルギー密度および体積エネルギー密度を高くすることができるように、前記目付は、4~20g/mであることが好ましく、4~12g/mであることがより好ましく、5~10g/mであることがさらに好ましい。 The basis weight per unit area of the porous film can be appropriately determined in consideration of strength, film thickness, weight and handleability. However, the basis weight is preferably 4 to 20 g / m 2 , and preferably 4 to 12 g / m 2 so that the weight energy density and the volume energy density of the non-aqueous electrolyte secondary battery can be increased. More preferably, it is more preferably 5 to 10 g / m 2 .
 多孔質フィルムの透気度は、ガーレ値で30~500sec/100mLであることが好ましく、50~300sec/100mLであることがより好ましい。多孔質フィルムが前記透気度を有することにより、充分なイオン透過性を得ることができる。多孔質フィルムに上述の多孔質層を積層させた非水電解液二次電池用積層セパレータの透気度は、ガーレ値で30~1000sec/100mLであることが好ましく、50~800sec/100mLであることがより好ましい。非水電解液二次電池用積層セパレータは、前記透気度を有することにより、非水電解液二次電池において、充分なイオン透過性を得ることができる。 The air permeability of the porous film is preferably 30 to 500 sec / 100 mL in Gurley value, and more preferably 50 to 300 sec / 100 mL. When the porous film has the above-mentioned air permeability, sufficient ion permeability can be obtained. The air permeability of the laminated separator for a non-aqueous electrolyte secondary battery in which the above-mentioned porous layer is laminated on the porous film is preferably 30 to 1000 sec / 100 mL in terms of Gurley value, and is 50 to 800 sec / 100 mL. Is more preferable. Since the laminated separator for a non-aqueous electrolyte secondary battery has the above-mentioned air permeability, it is possible to obtain sufficient ion permeability in the non-aqueous electrolyte secondary battery.
 多孔質フィルムの空隙率は、電解液の保持量を高めると共に、過大電流が流れることをより低温で確実に阻止する機能を得ることができるように、20~80体積%であることが好ましく、30~75体積%であることがより好ましい。また、多孔質フィルムが有する細孔の孔径は、充分なイオン透過性を得ることができ、かつ、正極および負極への粒子の入り込みを防止することができるように、0.3μm以下であることが好ましく、0.14μm以下であることがより好ましい。 The porosity of the porous film is preferably 20 to 80% by volume so as to increase the holding amount of the electrolytic solution and to surely prevent the flow of an excessive current at a lower temperature. It is more preferably 30 to 75% by volume. The pore size of the pores of the porous film is 0.3 μm or less so that sufficient ion permeability can be obtained and particles can be prevented from entering the positive electrode and the negative electrode. Is preferable, and 0.14 μm or less is more preferable.
 [ポリオレフィン多孔質フィルムの製造方法]
 多孔質フィルムの製造方法は特に限定されるものではない。例えば、ポリオレフィン系樹脂と、無機充填剤および可塑剤等の孔形成剤と、任意で酸化防止剤等を混練した後に押し出すことで、シート状のポリオレフィン樹脂組成物を作製する。適当な溶媒にて当該孔形成剤を当該シート状のポリオレフィン樹脂組成物から除去した後、当該孔形成剤が除去されたポリオレフィン樹脂組成物を延伸することで、ポリオレフィン多孔質フィルムを製造することができる。
[Method for producing polyolefin porous film]
The method for producing the porous film is not particularly limited. For example, a sheet-shaped polyolefin resin composition is prepared by kneading a polyolefin resin, a pore-forming agent such as an inorganic filler and a plasticizer, and optionally an antioxidant and the like and then extruding the kneaded product. After removing the pore-forming agent from the sheet-shaped polyolefin resin composition with an appropriate solvent, the polyolefin resin composition from which the pore-forming agent has been removed may be stretched to produce a polyolefin porous film. it can.
 上記無機充填剤としては、特に限定されるものではなく、無機フィラー、具体的には炭酸カルシウム等が挙げられる。上記可塑剤としては、特に限定されるものではなく、流動パラフィン等の低分子量の炭化水素が挙げられる。 The above-mentioned inorganic filler is not particularly limited, and examples thereof include inorganic fillers, specifically calcium carbonate and the like. The plasticizer is not particularly limited, and examples thereof include low molecular weight hydrocarbons such as liquid paraffin.
 具体的には、以下に示すような工程を含む方法を挙げることができる。
(A)超高分子量ポリエチレンと、重量平均分子量1万以下の低分子量ポリエチレンと、炭酸カルシウムまたは可塑剤等の孔形成剤と、酸化防止剤とを混練してポリオレフィン樹脂組成物を得る工程、
(B)得られたポリオレフィン樹脂組成物を一対の圧延ローラで圧延し、速度比を変えた巻き取りローラで引っ張りながら段階的に冷却し、シートを成形する工程、
(C)得られたシートの中から適当な溶媒にて孔形成剤を除去する工程。
(D)孔形成剤が除去されたシートを適当な延伸倍率にて延伸する工程。
Specifically, a method including the following steps can be mentioned.
(A) a step of kneading an ultrahigh molecular weight polyethylene, a low molecular weight polyethylene having a weight average molecular weight of 10,000 or less, a pore forming agent such as calcium carbonate or a plasticizer, and an antioxidant to obtain a polyolefin resin composition,
(B) a step of rolling the obtained polyolefin resin composition with a pair of rolling rollers and gradually cooling it while pulling it with a take-up roller having a different speed ratio to form a sheet,
(C) A step of removing the pore forming agent from the obtained sheet with a suitable solvent.
(D) A step of stretching the sheet from which the pore forming agent has been removed at an appropriate stretching ratio.
 [非水電解液二次電池用積層セパレータの製造方法]
 本発明の一実施形態における非水電解液二次電池用積層セパレータの製造方法としては、例えば、上述の「多孔質層の製造方法」において、前記塗工液を塗布する基材として、上述のポリオレフィン多孔質フィルムを使用する方法を挙げることができる。
[Method for producing laminated separator for non-aqueous electrolyte secondary battery]
Examples of the method for producing a laminated separator for a non-aqueous electrolyte secondary battery in one embodiment of the present invention include, for example, in the above-mentioned “method for producing a porous layer”, as the base material to which the coating liquid is applied, The method of using a polyolefin porous film can be mentioned.
 言い換えると、前記ポリオレフィン多孔質フィルムの片面または両面に前記多孔質層が積層されて非水電解液二次電池用積層セパレータが得られる。 In other words, the porous layer is laminated on one side or both sides of the polyolefin porous film to obtain a non-aqueous electrolyte secondary battery laminated separator.
 [非水電解液二次電池の製造方法]
 本発明の一実施形態に係る非水電解液二次電池の製造方法としては、従来公知の製造方法を採用することができる。例えば、正極、ポリオレフィン多孔質フィルムおよび負極をこの順で配置することにより非水電解液二次電池用部材を形成する。ここで、多孔質層は、ポリオレフィン多孔質フィルムと正極および負極の少なくとも一方との間に存在し得る。次いで、非水電解液二次電池の筐体となる容器に当該非水電解液二次電池用部材を入れる。当該容器内を前記非水電解液で満たした後、減圧しつつ密閉する。これにより、本発明の一実施形態に係る非水電解液二次電池を製造することができる。
[Method for producing non-aqueous electrolyte secondary battery]
As a method for manufacturing the non-aqueous electrolyte secondary battery according to the embodiment of the present invention, a conventionally known manufacturing method can be adopted. For example, by arranging the positive electrode, the polyolefin porous film, and the negative electrode in this order, a member for a non-aqueous electrolyte secondary battery is formed. Here, the porous layer may be present between the polyolefin porous film and at least one of the positive electrode and the negative electrode. Then, the member for a non-aqueous electrolyte secondary battery is put in a container which is a casing of the non-aqueous electrolyte secondary battery. After filling the inside of the container with the non-aqueous electrolyte, the container is sealed while reducing the pressure. Thereby, the non-aqueous electrolyte secondary battery according to the embodiment of the present invention can be manufactured.
 以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
 [測定方法]
 実施例および比較例における各種の測定を、以下の方法によって行った。
[Measuring method]
Various measurements in Examples and Comparative Examples were performed by the following methods.
 (1)膜厚(単位:μm)
 非水電解液二次電池用セパレータおよび多孔質層の膜厚は、株式会社ミツトヨ製の高精度デジタル測長機(VL-50)を用いて測定した。多孔質層の膜厚は、各々の積層体において多孔質層が形成されている部分の膜厚から、多孔質層が形成されていない部分の膜厚を引いた値とした。
(1) Film thickness (unit: μm)
The thicknesses of the non-aqueous electrolyte secondary battery separator and the porous layer were measured using a high precision digital length measuring machine (VL-50) manufactured by Mitutoyo Corporation. The film thickness of the porous layer was a value obtained by subtracting the film thickness of the part where the porous layer was not formed from the film thickness of the part where the porous layer was formed in each laminate.
 (2)せん断粘度
 実施例1~5および比較例1~4で使用した塗工液のせん断粘度を、レオメーター(アントンパール社製 MCR301)を用いて下記の条件でインターバル1および2を連続で測定した。このインターバル2におけるせん断速度0.4[1/sec]時のせん断粘度を採用した。
使用治具:コーンプレート(CP-50-1)、測定位置:1mm、測定温度:25℃
インターバル1のせん断速度:0.1~1000[1/sec]、
インターバル2のせん断速度:1000~0.1[1/sec]。
(2) Shear viscosity The shear viscosities of the coating solutions used in Examples 1 to 5 and Comparative Examples 1 to 4 were continuously measured using a rheometer (MCR301 manufactured by Anton Paar Co.) under the following conditions at intervals 1 and 2. It was measured. The shear viscosity at a shear rate of 0.4 [1 / sec] in this interval 2 was adopted.
Jig used: cone plate (CP-50-1), measurement position: 1 mm, measurement temperature: 25 ° C
Shear rate in interval 1: 0.1-1000 [1 / sec],
Shear rate at interval 2: 1000 to 0.1 [1 / sec].
 (3)無機フィラーに含まれる酸素の原子組成百分率
 実施例1の無機フィラー中に含まれる酸素の原子組成百分率[at%]の計算方法を下記に示した。
化学式:BaTi0.8Zr0.2
Ba:Ti:Zr:O=1:0.8:0.2:3
酸素の原子組成百分率[at%]=3/(1+0.8+0.2+3)×100=60[at%]
 実施例2~5および比較例1~4で使用した無機フィラーについても、同様の計算方法で酸素の原子組成百分率を算出した。
(3) Atomic Composition Percentage of Oxygen Included in Inorganic Filler The calculation method of the atomic composition percentage [at%] of oxygen contained in the inorganic filler of Example 1 is shown below.
Chemical formula: BaTi 0.8 Zr 0.2 O 3
Ba: Ti: Zr: O = 1: 0.8: 0.2: 3
Atomic composition percentage of oxygen [at%] = 3 / (1 + 0.8 + 0.2 + 3) × 100 = 60 [at%]
With respect to the inorganic fillers used in Examples 2 to 5 and Comparative Examples 1 to 4, the atomic composition percentage of oxygen was calculated by the same calculation method.
 (4)マイクロ波照射時のセパレータ温度変化挙動測定
 後述のようにして作製した実施例1~5および比較例1~4の非水電解液二次電池用積層体から4cm×4cmの試験片を切り出した。当該試験片にプロピレンカーボネート、SNウエット980(サンノプコ株式会社製)および水を85:12:3の重量比で含む溶液を含浸させた。その後、これらの試験片を、テフロン(登録商標)シート(サイズ:12cm×10cm)の上に広げた。テフロン(登録商標)で被覆された光ファイバー式温度計(アステック株式会社製、Neoptix Reflex温度計)を多孔質層面で挟むように、試験片を半分に折り曲げた。その後、温度計と前記多孔質層面とを確実に接触させるため、温度計の周囲1mmを除く試験片上に、浮き防止のためにPTFE板を置いた。
(4) Measurement of Separator Temperature Change Behavior During Microwave Irradiation A 4 cm × 4 cm test piece was prepared from the non-aqueous electrolyte secondary battery laminates of Examples 1 to 5 and Comparative Examples 1 to 4 produced as described below. I cut it out. The test piece was impregnated with a solution containing propylene carbonate, SN Wet 980 (manufactured by San Nopco Ltd.) and water in a weight ratio of 85: 12: 3. Thereafter, these test pieces were spread on a Teflon (registered trademark) sheet (size: 12 cm × 10 cm). The test piece was folded in half so that an optical fiber type thermometer (Neoptix Reflex thermometer manufactured by Astec Co., Ltd.) coated with Teflon (registered trademark) was sandwiched between the porous layer surfaces. After that, in order to surely bring the thermometer into contact with the surface of the porous layer, a PTFE plate was placed on the test piece except for 1 mm around the thermometer to prevent floating.
 次に、ターンテーブルを備えたマイクロ波照射装置(ミクロ電子社製、9kWマイクロ波オーブン、周波数2455MHz)内に、前記溶液を含浸させた、温度計を挟んだ状態の試験片を固定した後、当該試験片に1800Wで2分間マイクロ波を照射した。 Next, after fixing a test piece impregnated with the solution in a microwave irradiator equipped with a turntable (manufactured by Micro Electronics Co., Ltd., 9 kW microwave oven, frequency 2455 MHz) in a state of sandwiching a thermometer, The test piece was irradiated with microwave at 1800 W for 2 minutes.
 マイクロ波照射時の試験片の温度変化を、前記光ファイバー式温度計で、0.2秒ごとに測定した。 The temperature change of the test piece during microwave irradiation was measured every 0.2 seconds with the optical fiber thermometer.
 マイクロ波の照射開始から15秒後までの、多孔質層表面の温度とマイクロ波の照射時間との直線近似において寄与率が最大時の傾きを、多孔質層表面の温度上昇速度(℃/秒)とした。 The slope at which the contribution ratio is maximum in the linear approximation of the temperature of the porous layer surface and the microwave irradiation time from the start of microwave irradiation to 15 seconds is the temperature rise rate of the porous layer surface (° C / sec. ).
 (5)熱膨張係数の測定
 実施例1~5および比較例1~4で使用した無機フィラーの-40℃~200℃における熱膨張係数(ppm/℃)を、TMA402 F1Hyperion(NETZSCH製)を用いて下記の条件で測定した。
測定雰囲気:ヘリウム、測定荷重:0.02N、昇温速度:5℃/分、参照試料:石英、測定方法:圧縮モード。
(5) Measurement of Thermal Expansion Coefficient The thermal expansion coefficient (ppm / ° C.) of the inorganic fillers used in Examples 1 to 5 and Comparative Examples 1 to 4 at −40 ° C. to 200 ° C. was measured using TMA402 F1 Hyperion (made by NETZSCH). Was measured under the following conditions.
Measurement atmosphere: helium, measurement load: 0.02 N, heating rate: 5 ° C./min, reference sample: quartz, measurement method: compression mode.
 (6)イオン電導度低下率(%)
 エチレンカーボネート、エチルメチルカーボネートおよびジエチルカーボネートを3:5:2(体積比)で混合してなる混合溶媒に、LiPFをその濃度が1mol/Lとなるように溶解することにより、参照用電解液を得た。当該参照用電解液に、各添加剤を1%となるように添加して溶解した後、イオン電導度(mS/cm)を測定した。イオン電導度は株式会社堀場製作所製の電気伝導率計(ES-71)を用いて測定した。
イオン電導度低下率は、下記式(A)で表される。
(6) Reduction rate of ionic conductivity (%)
By dissolving LiPF 6 in a mixed solvent prepared by mixing ethylene carbonate, ethyl methyl carbonate and diethyl carbonate in a volume ratio of 3: 5: 2 so that the concentration becomes 1 mol / L, a reference electrolyte solution is obtained. Got Each additive was added to the reference electrolyte solution to be 1% and dissolved, and then the ionic conductivity (mS / cm) was measured. The ionic conductivity was measured using an electric conductivity meter (ES-71) manufactured by Horiba Ltd.
The ionic conductivity decrease rate is represented by the following formula (A).
 L=(LA-LB)/LA・・・(A)
L:イオン電導度低下率(%)、
LA:添加剤を添加する前のイオン電導度(mS/cm)、
LB:添加剤を添加した後のイオン電導度(mS/cm)。
L = (LA-LB) / LA ... (A)
L: reduction rate of ionic conductivity (%),
LA: ionic conductivity (mS / cm) before adding the additive,
LB: Ionic conductivity (mS / cm) after adding the additive.
 (7)非水電解液二次電池の電池特性
 後述のようにして組み立てた非水電解液二次電池を、25℃で電圧範囲4.1~2.7V、充電電流値0.2CのCC-CV充電(終止電流条件0.02C)、放電電流値0.2CのCC放電を1サイクルとして、4サイクルの初期充放電を25℃にて実施した。
(7) Battery Characteristics of Non-Aqueous Electrolyte Secondary Battery A non-aqueous electrolyte secondary battery assembled as described below was subjected to CC at 25 ° C. in a voltage range of 4.1 to 2.7 V and a charging current value of 0.2 C. -CV charging (final current condition 0.02C), CC discharge with a discharge current value of 0.2C was set as one cycle, and four cycles of initial charge / discharge were performed at 25 ° C.
 なお、1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする。また、CC-CV充電とは、設定した一定の電流で充電し、所定の電圧に到達後、電流を絞りながら、その電圧を維持する充電方法である。CC放電とは、設定した一定の電流で所定の電圧まで放電する方法である。これらは以下も同様である。 Note that the current value for discharging the rated capacity based on the discharge capacity of 1 hour rate in 1 hour is 1C. CC-CV charging is a charging method in which charging is performed with a set constant current, and after reaching a predetermined voltage, the current is reduced while maintaining the voltage. CC discharge is a method of discharging to a predetermined voltage with a set constant current. The same applies to the following.
 前記初期充放電を行った非水電解液二次電池に対して、充電電流値1CのCC-CV充電(終止電流条件0.02C)、放電電流値0.2C、1C、2Cの順によりCC放電を実施した。各レートにつき充放電を3サイクル、55℃にて実施した。このとき、電圧範囲は2.7V~4.2Vとした。このとき、2C放電レート特性測定時の3サイクル目の1C充電のときの充電容量を測定し、ハイレート放電後の充電容量とした。なお、実施例、比較例にて製造した非水電解液二次電池の設計容量は、20.5mAhであった。 For the non-aqueous electrolyte secondary battery subjected to the initial charging / discharging, CC-CV charging with a charging current value of 1C (end current condition 0.02C) and discharging current values of 0.2C, 1C, 2C were performed in this order. The discharge was carried out. Charging / discharging was performed for 3 cycles at 55 ° C. for each rate. At this time, the voltage range was set to 2.7V to 4.2V. At this time, the charge capacity at the time of 1C charge of the 3rd cycle at the time of 2C discharge rate characteristic measurement was measured, and it was set as the charge capacity after high rate discharge. The designed capacity of the non-aqueous electrolyte secondary batteries manufactured in Examples and Comparative Examples was 20.5 mAh.
 [実施例1]
 <多孔質層の製造>
 (塗工液の製造)
 無機フィラーとしてチタン酸ジルコン酸バリウム(堺化学工業株式会社製、BTZ-01-8020)、バインダー樹脂としてフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(アルケマ株式会社製:商品名「KYNAR2801」)、溶媒としてN-メチル-2-ピロリドン(関東化学株式会社製)を以下の態様にて混合した。
[Example 1]
<Production of porous layer>
(Production of coating liquid)
As an inorganic filler, barium titanate zirconate (manufactured by Sakai Chemical Industry Co., Ltd., BTZ-01-8020), as a binder resin, vinylidene fluoride-hexafluoropropylene copolymer (manufactured by Arkema Ltd .: trade name "KYNAR2801"), solvent As a mixture, N-methyl-2-pyrrolidone (manufactured by Kanto Chemical Co., Inc.) was mixed in the following manner.
 まず、チタン酸ジルコン酸バリウム90重量部に対して、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体10重量部を添加し、混合物を得た。次に、得られた混合物に対して、固形分(チタン酸ジルコン酸バリウムおよびフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)の濃度が40重量%となるように前記溶媒を添加し、混合液を得た。得られた混合液を自転・公転ミキサー(株式会社シンキー製 あわとり練太郎)および薄膜旋回型高速ミキサー(プライミクス株式会社製 フィルミックス)を用いて攪拌および混合して均一な塗工液を得た。 First, 10 parts by weight of vinylidene fluoride-hexafluoropropylene copolymer was added to 90 parts by weight of barium zirconate titanate to obtain a mixture. Next, the solvent was added to the obtained mixture so that the concentration of solids (barium zirconate titanate and vinylidene fluoride-hexafluoropropylene copolymer) was 40% by weight, and the mixture was mixed. Obtained. The resulting mixed liquid was stirred and mixed using a rotation / revolution mixer (Awatori Kentaro made by Shinky Co., Ltd.) and a thin film swivel type high speed mixer (Filmix made by Primix Co., Ltd.) to obtain a uniform coating liquid. ..
 (多孔質層の製造)
 得られた前記塗工液を、非水電解液二次電池用セパレータであるポリエチレンの多孔質フィルム(厚さ12μm、空隙率44%)の片面にドクターブレード法により塗工した。得られた塗膜を、80℃にて乾燥することで、前記非水電解液二次電池用セパレータの片面に多孔質層1を形成した。これにより非水電解液二次電池用セパレータと多孔質層1とを備えた積層体1を得た。このとき、多孔質層1の目付は7g/mとなるようにドクターブレードのクリアランスを調整した。塗工液、無機フィラーおよび積層体1の各種物性の測定結果を表1に示す。
(Production of porous layer)
The obtained coating liquid was applied to one surface of a polyethylene porous film (thickness 12 μm, porosity 44%), which is a separator for a non-aqueous electrolyte secondary battery, by a doctor blade method. The obtained coating film was dried at 80 ° C. to form the porous layer 1 on one surface of the non-aqueous electrolyte secondary battery separator. Thus, a laminate 1 including the separator for non-aqueous electrolyte secondary battery and the porous layer 1 was obtained. At this time, the doctor blade clearance was adjusted so that the basis weight of the porous layer 1 was 7 g / m 2 . Table 1 shows the measurement results of various physical properties of the coating liquid, the inorganic filler, and the laminate 1.
 <非水電解液二次電池の作製>
 (正極の作製)
 LiNi0.5Mn0.3Co0.2/導電剤/PVDF(重量比92/5/3)をアルミニウム箔に塗布することにより製造された市販の正極を用いた。前記市販の正極を、正極活物質層が形成された部分の大きさが40mm×35mmであり、かつその外周に幅13mmで正極活物質層が形成されていない部分が残るように、アルミニウム箔を切り取って後述の非水電解液二次電池の正極とした。正極活物質層の厚さは58μm、密度は2.50g/cmであった。
<Preparation of non-aqueous electrolyte secondary battery>
(Preparation of positive electrode)
A commercially available positive electrode manufactured by applying LiNi 0.5 Mn 0.3 Co 0.2 O 2 / conductive agent / PVDF (weight ratio 92/5/3) to an aluminum foil was used. An aluminum foil was applied to the commercially available positive electrode so that the size of the part where the positive electrode active material layer was formed was 40 mm × 35 mm, and the part where the width of 13 mm was not formed and the positive electrode active material layer was not formed remained on the outer periphery thereof. It was cut out and used as the positive electrode of the non-aqueous electrolyte secondary battery described later. The positive electrode active material layer had a thickness of 58 μm and a density of 2.50 g / cm 3 .
 (負極の作製)
 黒鉛/スチレン-1,3-ブタジエン共重合体/カルボキシメチルセルロースナトリウム(重量比98/1/1)を銅箔に塗布することにより製造された市販の負極を用いた。前記市販の負極を、負極活物質層が形成された部分の大きさが50mm×40mmであり、かつその外周に幅13mmで負極活物質層が形成されていない部分が残るように、銅箔を切り取って後述の非水電解液二次電池の負極とした。負極活物質層の厚さは49μm、密度は1.40g/cmであった。
(Preparation of negative electrode)
A commercially available negative electrode manufactured by applying graphite / styrene-1,3-butadiene copolymer / sodium carboxymethyl cellulose (weight ratio 98/1/1) to a copper foil was used. A copper foil was applied to the commercially available negative electrode so that the size of the part where the negative electrode active material layer was formed was 50 mm × 40 mm, and the part where the width of 13 mm was not formed and the negative electrode active material layer was not formed remained on the outer periphery thereof. It was cut out to obtain a negative electrode for a non-aqueous electrolyte secondary battery described later. The negative electrode active material layer had a thickness of 49 μm and a density of 1.40 g / cm 3 .
 (非水電解液の作製)
 エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネートを3:5:2の体積比で混合した混合溶媒に、LiPFをその濃度が1mol/Lとなるように溶解して、電解液原液1を得た。電解液原液1は、Liイオンを含む非プロトン性極性溶媒電解液である。
(Preparation of non-aqueous electrolyte)
LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate, ethylmethyl carbonate, and diethyl carbonate were mixed at a volume ratio of 3: 5: 2 so that the concentration thereof was 1 mol / L, to obtain an electrolytic solution stock solution 1. The electrolytic solution stock solution 1 is an aprotic polar solvent electrolytic solution containing Li + ions.
 ジブチルヒドロキシトルエン(BHT、イオン電導度低下率:5.3%)10.3mgにジエチルカーボネートを加えて溶かして5mLとし、添加液1を得た。300μLの添加液1と1700μLの電解液原液1とを混合し、非水電解液1を得た。非水電解液1における添加剤の含有量を表2に示す。 Addition liquid 1 was obtained by adding diethyl carbonate to 10.3 mg of dibutylhydroxytoluene (BHT, ionic conductivity reduction rate: 5.3%) to dissolve to 5 mL. The non-aqueous electrolyte solution 1 was obtained by mixing 300 μL of the additive solution 1 and 1700 μL of the electrolyte solution stock solution 1. Table 2 shows the content of the additive in the non-aqueous electrolyte solution 1.
 (非水電解液二次電池の組み立て)
 前記正極、前記負極、積層体1および非水電解液1を使用して、以下に示す方法にて非水電解液二次電池1を製造した。
(Assembly of non-aqueous electrolyte secondary battery)
Using the positive electrode, the negative electrode, the laminate 1, and the nonaqueous electrolytic solution 1, a nonaqueous electrolytic solution secondary battery 1 was manufactured by the method described below.
 ラミネートパウチ内で、前記正極、多孔質層を正極側に対向させた積層体1、および、負極をこの順で積層することにより、非水電解液二次電池用部材1を得た。このとき、正極の正極活物質層における主面の全部が、負極の負極活物質層における主面の範囲に含まれるように、正極および負極を配置した。すなわち、正極の正極活物質層における主面の全部が、負極の負極活物質層における主面に重なるように、正極および負極を配置した。 A non-aqueous electrolyte secondary battery member 1 was obtained by stacking the positive electrode, the laminate 1 with the porous layer facing the positive electrode side, and the negative electrode in this order in a laminate pouch. At this time, the positive electrode and the negative electrode were arranged such that the entire main surface of the positive electrode active material layer of the positive electrode was included in the range of the main surface of the negative electrode active material layer of the negative electrode. That is, the positive electrode and the negative electrode were arranged such that the entire main surface of the positive electrode active material layer of the positive electrode overlaps the main surface of the negative electrode active material layer of the negative electrode.
 続いて、非水電解液二次電池用部材1を、予め作製していた、アルミニウム層とヒートシール層とが積層されてなる袋に入れた。さらにこの袋に非水電解液1を0.23mL入れた。そして、袋内を減圧しつつ、当該袋をヒートシールすることにより、非水電解液二次電池1を作製した。 Next, the non-aqueous electrolyte secondary battery member 1 was placed in a prefabricated bag in which an aluminum layer and a heat seal layer were laminated. Further, 0.23 mL of the non-aqueous electrolyte solution 1 was put in this bag. Then, the inside of the bag was depressurized and the bag was heat-sealed to manufacture the non-aqueous electrolyte secondary battery 1.
 その後、上述の方法にて得られた非水電解液二次電池1のハイレート放電後の充電容量の測定を行った。その結果を表2に示す。 After that, the charge capacity of the non-aqueous electrolyte secondary battery 1 obtained by the above method after high rate discharge was measured. The results are shown in Table 2.
 [実施例2]
 <非水電解液二次電池の作製>
 (非水電解液の作製)
 エチレンカーボネートおよびジエチルカーボネートを3:7の体積比で混合した混合溶媒に、LiPFをその濃度が1mol/Lとなるように溶解して、電解液原液2を得た。
[Example 2]
<Preparation of non-aqueous electrolyte secondary battery>
(Preparation of non-aqueous electrolyte)
LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 so that the concentration thereof was 1 mol / L, to obtain an electrolytic solution stock solution 2.
 ビニレンカーボネート(VC、イオン電導度低下率:1.3%)10.0mgにジエチルカーボネートを加えて溶かして5mLとし、添加液2を得た。200μLの添加液2と1800μLの電解液原液2を混合し、この添加液2と電解液原液2との混合液100μLに電解液原液2を900μL加えて、添加液3を得た。50μLの添加液3と1950μLの電解液原液2を混合し、非水電解液2とした。非水電解液2における前記添加剤の含有量を表2に示す。 Addition liquid 2 was obtained by adding diethyl carbonate to 10.0 mg of vinylene carbonate (VC, reduction rate of ionic conductivity: 1.3%) to make 5 mL. 200 μL of the additive solution 2 and 1800 μL of the electrolytic solution stock solution 2 were mixed, and 900 μL of the electrolytic solution stock solution 2 was added to 100 μL of the mixed solution of the additive solution 2 and the electrolytic solution stock solution 2 to obtain an additive solution 3. A non-aqueous electrolyte solution 2 was prepared by mixing 50 μL of the additive solution 3 and 1950 μL of the electrolyte solution stock solution 2. Table 2 shows the content of the additive in the non-aqueous electrolyte solution 2.
 (非水電解液二次電池の組み立て)
 非水電解液1の代わりに非水電解液2を使用したこと以外は、実施例1と同様の方法により、非水電解液二次電池2を作製した。
(Assembly of non-aqueous electrolyte secondary battery)
A non-aqueous electrolyte secondary battery 2 was produced in the same manner as in Example 1 except that the non-aqueous electrolyte 2 was used instead of the non-aqueous electrolyte 1.
 その後、上述の方法にて得られた非水電解液二次電池2のハイレート放電後の充電容量の測定を行った。その結果を表2に示す。 After that, the charge capacity of the non-aqueous electrolyte secondary battery 2 obtained by the above method after high rate discharge was measured. The results are shown in Table 2.
 [実施例3]
 <非水電解液二次電池用セパレータと多孔質層とを備えた積層体の製造>
 無機フィラーとしてチタン酸カルシウム(豊島製作所製 D50=0.3μm)を用いたこと以外は、実施例1と同様にして、非水電解液二次電池用セパレータの片面に多孔質層1の代わりに多孔質層2を形成した。これにより、非水電解液二次電池用セパレータと多孔質層2とを備えた積層体2を得た。塗工液、無機フィラーおよび積層体2の各種物性の測定結果を表1に示す。
[Example 3]
<Production of Laminated Body Comprising Non-Aqueous Electrolyte Secondary Battery Separator and Porous Layer>
In the same manner as in Example 1 except that calcium titanate (D50 = 0.3 μm manufactured by Toyoshima Seisakusho) was used as the inorganic filler, instead of the porous layer 1 on one surface of the separator for a non-aqueous electrolyte secondary battery. The porous layer 2 was formed. As a result, a laminate 2 including the separator for non-aqueous electrolyte secondary battery and the porous layer 2 was obtained. Table 1 shows the measurement results of various physical properties of the coating liquid, the inorganic filler, and the laminate 2.
 <非水電解液二次電池の作製>
 (非水電解液の作製)
 エチレンカーボネート、エチルメチルカーボネートおよびジエチルカーボネートを4:4:2の体積比で混合してなる混合溶媒に、LiPFをその濃度が1mol/Lとなるように溶解して、電解液原液3を得た。
<Preparation of non-aqueous electrolyte secondary battery>
(Preparation of non-aqueous electrolyte)
LiPF 6 was dissolved in a mixed solvent prepared by mixing ethylene carbonate, ethylmethyl carbonate and diethyl carbonate in a volume ratio of 4: 4: 2 so that the concentration thereof was 1 mol / L, to obtain an electrolytic solution stock solution 3. It was
 ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](Irg.1010、イオン電導度低下率:4.0%)11.2mgにジエチルカーボネートを加え、溶解させて5mLとし、添加液4を得た。90μLの添加液4と1910μLの電解液原液3とを混合し、非水電解液3を得た。非水電解液3における添加剤の含有量を表2に示す。 Diethyl carbonate was added to 11.2 mg of pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (Irg.1010, ionic conductivity reduction rate: 4.0%), and dissolved. It was made to be 5 mL and the addition liquid 4 was obtained. 90 μL of the additive solution 4 and 1910 μL of the electrolytic solution stock solution 3 were mixed to obtain a non-aqueous electrolytic solution 3. Table 2 shows the content of the additive in the non-aqueous electrolyte solution 3.
 (非水電解液二次電池の組み立て)
 積層体1の代わりに積層体2を使用したこと、および非水電解液1の代わりに非水電解液3を使用したこと以外は、実施例1と同様の方法により、非水電解液二次電池3を作製した。
(Assembly of non-aqueous electrolyte secondary battery)
A non-aqueous electrolyte secondary was prepared in the same manner as in Example 1 except that the laminate 2 was used instead of the laminate 1 and the non-aqueous electrolyte 3 was used instead of the non-aqueous electrolyte 1. A battery 3 was produced.
 その後、上述の方法にて得られた非水電解液二次電池3のハイレート放電後の充電容量の測定を行った。その結果を表2に示す。 After that, the charge capacity of the non-aqueous electrolyte secondary battery 3 obtained by the above method after high rate discharge was measured. The results are shown in Table 2.
 [実施例4]
 <非水電解液二次電池の作製>
 (非水電解液の作製)
 90μLの添加液4と1910μLの電解液原液1とを混合し、非水電解液4を得た。非水電解液4における前記添加剤の含有量を表2に示す。
[Example 4]
<Preparation of non-aqueous electrolyte secondary battery>
(Preparation of non-aqueous electrolyte)
90 μL of the additive solution 4 and 1910 μL of the electrolytic solution stock solution 1 were mixed to obtain a non-aqueous electrolytic solution 4. Table 2 shows the content of the additive in the non-aqueous electrolyte solution 4.
 (非水電解液二次電池の組み立て)
 積層体1の代わりに積層体2を使用したこと、および非水電解液1の代わりに非水電解液4を使用したこと以外は、実施例1と同様の方法により、非水電解液二次電池4を作製した。
(Assembly of non-aqueous electrolyte secondary battery)
A non-aqueous electrolyte secondary was prepared in the same manner as in Example 1 except that the laminate 2 was used instead of the laminate 1 and the non-aqueous electrolyte 4 was used instead of the non-aqueous electrolyte 1. Battery 4 was produced.
 その後、上述の方法にて得られた非水電解液二次電池4のハイレート放電後の充電容量の測定を行った。その結果を表2に示す。 After that, the charge capacity of the non-aqueous electrolyte secondary battery 4 obtained by the above method after high rate discharge was measured. The results are shown in Table 2.
 [実施例5]
 <非水電解液二次電池用セパレータと多孔質層とを備えた積層体の製造>
 無機フィラーとしてチタン酸アルミニウム(豊島製作所製 D50=0.9μm)を用いたこと以外は、実施例1と同様にして非水電解液二次電池用セパレータの片面に多孔質層1の代わりに多孔質層3を形成した。これにより、非水電解液二次電池用セパレータと多孔質層3とを備えた積層体3を得た。塗工液、無機フィラーおよび積層体3の各種物性の測定結果を表1に示す。
[Example 5]
<Production of Laminated Body Comprising Non-Aqueous Electrolyte Secondary Battery Separator and Porous Layer>
In the same manner as in Example 1, except that aluminum titanate (D50 = 0.9 μm manufactured by Toyoshima Seisakusho) was used as the inorganic filler, one side of the separator for a non-aqueous electrolyte secondary battery was replaced with a porous layer 1 instead of the porous layer 1. The quality layer 3 was formed. Thereby, a laminate 3 including the separator for non-aqueous electrolyte secondary battery and the porous layer 3 was obtained. Table 1 shows the measurement results of various physical properties of the coating liquid, the inorganic filler, and the laminate 3.
 <非水電解液二次電池の作製>
 (非水電解液の作製)
 エチレンカーボネート、エチルメチルカーボネートおよびジエチルカーボネートを2:5:3の体積比で混合してなる混合溶媒に、LiPFをその濃度が1mol/Lとなるように溶解して、電解液原液4を得た。90μLの添加液4と1910μLの電解液原液4を混合し、非水電解液5とした。非水電解液5における前記添加剤の含有量を表2に示す。
<Preparation of non-aqueous electrolyte secondary battery>
(Preparation of non-aqueous electrolyte)
LiPF 6 was dissolved in a mixed solvent prepared by mixing ethylene carbonate, ethylmethyl carbonate and diethyl carbonate in a volume ratio of 2: 5: 3 so that the concentration thereof was 1 mol / L, to obtain an electrolytic solution stock solution 4. It was 90 μL of the additive solution 4 and 1910 μL of the electrolytic solution stock solution 4 were mixed to form a non-aqueous electrolytic solution 5. Table 2 shows the content of the additive in the non-aqueous electrolyte solution 5.
 (非水電解液二次電池の組み立て)
 積層体1の代わりに積層体3を使用したこと、および非水電解液1の代わりに非水電解液5を使用したこと以外は、実施例1と同様の方法により、非水電解液二次電池5を作製した。
(Assembly of non-aqueous electrolyte secondary battery)
A non-aqueous electrolyte secondary was prepared in the same manner as in Example 1 except that the laminate 3 was used instead of the laminate 1 and the non-aqueous electrolyte 5 was used instead of the non-aqueous electrolyte 1. A battery 5 was produced.
 その後、上述の方法にて得られた非水電解液二次電池5のハイレート放電後の充電容量の測定を行った。その結果を表2に示す。 After that, the charge capacity of the non-aqueous electrolyte secondary battery 5 obtained by the above method after high rate discharge was measured. The results are shown in Table 2.
 [比較例1]
 <非水電解液二次電池の作製>
 (非水電解液の作製)
 トリス-(4-t-ブチル-2,6-ジ-メチル-3-ヒドロキシベンジル)イソシアヌレイト(Cyanox1790、イオン電導度低下率:6.1%)9.7mgにジエチルカーボネートを加えて溶かして5mLとし、添加液5を得た。90μLの添加液5と1910μLの電解液原液1を混合し、非水電解液6を得た。非水電解液6における前記添加剤の含有量を表2に示す。
[Comparative Example 1]
<Preparation of non-aqueous electrolyte secondary battery>
(Preparation of non-aqueous electrolyte)
Diethyl carbonate was added to and dissolved in 9.7 mg of tris- (4-t-butyl-2,6-di-methyl-3-hydroxybenzyl) isocyanurate (Cyanox 1790, ionic conductivity reduction rate: 6.1%). 5 mL was added to obtain Additive Liquid 5. 90 μL of the additive solution 5 and 1910 μL of the electrolytic solution stock solution 1 were mixed to obtain a non-aqueous electrolytic solution 6. Table 2 shows the content of the additive in the non-aqueous electrolyte solution 6.
 (非水電解液二次電池の組み立て)
 積層体1の代わりに積層体2を使用したこと、および非水電解液1の代わりに非水電解液6を使用したこと以外は、実施例1と同様の方法により、非水電解液二次電池6を作製した。
(Assembly of non-aqueous electrolyte secondary battery)
A non-aqueous electrolyte secondary was prepared in the same manner as in Example 1 except that the laminate 2 was used instead of the laminate 1 and the non-aqueous electrolyte 6 was used instead of the non-aqueous electrolyte 1. A battery 6 was produced.
 その後、上述の方法にて得られた非水電解液二次電池6のハイレート放電後の充電容量の測定を行った。その結果を表2に示す。 After that, the charge capacity of the non-aqueous electrolyte secondary battery 6 obtained by the above method after high rate discharge was measured. The results are shown in Table 2.
 [比較例2]
 <非水電解液二次電池用セパレータと多孔質層とを備えた積層体の製造>
 無機フィラーとして、目開き53μmの篩をスルーしたホウ砂(和光純薬製)を用いたこと以外は実施例1と同様にして非水電解液二次電池用セパレータの片面に多孔質層1の代わりに多孔質層4を形成した。これにより、非水電解液二次電池用セパレータと多孔質層4との積層体4を得た。塗工液、無機フィラーおよび積層体4の各種物性の測定結果を表1に示す。
[Comparative Example 2]
<Production of Laminated Body Comprising Non-Aqueous Electrolyte Secondary Battery Separator and Porous Layer>
As the inorganic filler, except that borax (manufactured by Wako Pure Chemical Industries, Ltd.) that passed through a sieve having an opening of 53 μm was used, the porous layer 1 was formed on one surface of the separator for the non-aqueous electrolyte secondary battery in the same manner as in Example 1. Instead, the porous layer 4 was formed. Thereby, a laminate 4 of the separator for non-aqueous electrolyte secondary battery and the porous layer 4 was obtained. Table 1 shows the measurement results of various physical properties of the coating liquid, the inorganic filler, and the laminate 4.
 <非水電解液二次電池の作製>
 (非水電解液二次電池の組み立て)
 積層体1の代わりに積層体4を使用したこと、および非水電解液1の代わりに非水電解液4を使用したこと以外は、実施例1と同様の方法により、非水電解液二次電池7を作製した。
<Preparation of non-aqueous electrolyte secondary battery>
(Assembly of non-aqueous electrolyte secondary battery)
A non-aqueous electrolyte secondary was prepared in the same manner as in Example 1 except that the laminate 4 was used instead of the laminate 1 and the non-aqueous electrolyte 4 was used instead of the non-aqueous electrolyte 1. Battery 7 was produced.
 その後、上述の方法にて得られた非水電解液二次電池7のハイレート放電後の充電容量の測定を行った。その結果を表2に示す。 After that, the charge capacity of the non-aqueous electrolyte secondary battery 7 obtained by the above method after high rate discharge was measured. The results are shown in Table 2.
 [比較例3]
 <非水電解液二次電池用セパレータと多孔質層とを備えた積層体の製造>
 無機フィラーとして、アルミナ(住友化学株式会社製 AKP3000)を用いたこと以外は実施例1と同様にして非水電解液二次電池用セパレータの片面に多孔質層1の代わりに多孔質層5を形成した。これにより、非水電解液二次電池用セパレータと多孔質層5との積層体5を得た。塗工液、無機フィラーおよび積層体5の各種物性の測定結果を表1に示す。
[Comparative Example 3]
<Production of Laminated Body Comprising Non-Aqueous Electrolyte Secondary Battery Separator and Porous Layer>
A porous layer 5 was used instead of the porous layer 1 on one surface of the separator for a non-aqueous electrolyte secondary battery in the same manner as in Example 1 except that alumina (AKP3000 manufactured by Sumitomo Chemical Co., Ltd.) was used as the inorganic filler. Formed. Thereby, a laminate 5 of the separator for non-aqueous electrolyte secondary battery and the porous layer 5 was obtained. Table 1 shows the measurement results of various physical properties of the coating liquid, the inorganic filler, and the laminate 5.
 <非水電解液二次電池の作製>
 (非水電解液二次電池の組み立て)
 積層体1の代わりに積層体5を使用したこと、および非水電解液1の代わりに非水電解液4を使用したこと以外は、実施例1と同様の方法により、非水電解液二次電池8を作製した。
<Preparation of non-aqueous electrolyte secondary battery>
(Assembly of non-aqueous electrolyte secondary battery)
A non-aqueous electrolyte secondary was prepared in the same manner as in Example 1 except that the laminate 5 was used instead of the laminate 1 and the non-aqueous electrolyte 4 was used instead of the non-aqueous electrolyte 1. A battery 8 was produced.
 その後、上述の方法にて得られた非水電解液二次電池8のハイレート放電後の充電容量の測定を行った。その結果を表2に示す。 After that, the charge capacity of the non-aqueous electrolyte secondary battery 8 obtained by the above method after high rate discharge was measured. The results are shown in Table 2.
 [比較例4]
 <非水電解液二次電池の作製>
 (非水電解液二次電池の組み立て)
 積層体1の代わりに積層体2を使用したこと、および非水電解液1の代わりに電解液原液1を使用したこと以外は、実施例1と同様の方法により、非水電解液二次電池9を作製した。
[Comparative Example 4]
<Preparation of non-aqueous electrolyte secondary battery>
(Assembly of non-aqueous electrolyte secondary battery)
A non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except that the laminate 2 was used instead of the laminate 1 and the electrolytic solution stock solution 1 was used instead of the non-aqueous electrolyte solution 1. 9 was produced.
 その後、上述の方法にて得られた非水電解液二次電池9のハイレート放電後の充電容量の測定を行った。その結果を表2に示す。 After that, the charge capacity of the non-aqueous electrolyte secondary battery 9 obtained by the above method after high rate discharge was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1および2に示されるように、実施例1~5の非水電解液二次電池は、比較例1~4の非水電解液二次電池に比べてハイレート放電後の充電容量に優れていることがわかった。実施例1~5の非水電解液二次電池は、無機フィラーの熱膨張係数が、1ppm/℃以上、11ppm/℃以下であり、多孔質層表面の温度上昇速度が、0.93℃/秒以上、1.25℃/秒以下であり、かつ、非水電解液において、イオン電導度低下率が1.0%以上、6.0%以下である添加剤を0.5ppm以上、300ppm以下含有する。一方、比較例1は、添加剤のイオン電導度低下率が6.0%を超えている。比較例2は、無機フィラーの熱膨張係数が11ppm/℃を超えており、かつ、多孔質層表面の温度上昇速度が0.93℃/秒未満である。比較例3は、多孔質層表面の温度上昇速度が1.25℃/秒を超えている。比較例4は、添加剤を含んでいない。 As shown in Tables 1 and 2, the non-aqueous electrolyte secondary batteries of Examples 1 to 5 were superior to the non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 4 in charge capacity after high rate discharge. I found out that In the non-aqueous electrolyte secondary batteries of Examples 1 to 5, the inorganic filler has a thermal expansion coefficient of 1 ppm / ° C. or more and 11 ppm / ° C. or less, and the temperature rising rate of the porous layer surface is 0.93 ° C. / 0.5 ppm or more and 300 ppm or less of an additive having a ionic conductivity reduction rate of 1.0% or more and 6.0% or less in the nonaqueous electrolytic solution contains. On the other hand, in Comparative Example 1, the ionic conductivity decrease rate of the additive exceeds 6.0%. In Comparative Example 2, the coefficient of thermal expansion of the inorganic filler exceeds 11 ppm / ° C, and the rate of temperature rise on the surface of the porous layer is less than 0.93 ° C / sec. In Comparative Example 3, the rate of temperature rise on the surface of the porous layer exceeds 1.25 ° C / sec. Comparative Example 4 contains no additive.
 本発明の一実施形態に係る非水電解液二次電池は、ハイレート放電後の充電容量が高く維持される。従って、様々な用途、特に電動工具、掃除機等の民生用の電池および車載用電池等のハイレート放電を行うことが必要となる電池として好適に利用することができる。 The non-aqueous electrolyte secondary battery according to the embodiment of the present invention maintains a high charge capacity after high rate discharge. Therefore, it can be suitably used for various applications, particularly as a battery for consumer use such as an electric power tool and a vacuum cleaner, and an on-vehicle battery that requires high-rate discharge.

Claims (6)

  1.  無機フィラーと樹脂とを含む多孔質層、正極、負極および非水電解液を備え、
     前記無機フィラーの-40℃~200℃における熱膨張係数が11ppm/℃以下であり、
     前記多孔質層は、プロピレンカーボネート、ポリオキシアルキレン型非イオン界面活性剤および水を85:12:3の重量比で含む溶液を含浸させた後、周波数2455MHzのマイクロ波を出力1800Wで照射しながら測定された、照射開始から15秒後までの前記多孔質層表面の温度上昇速度が0.93℃/秒以上、1.25℃/秒以下であり、
     前記非水電解液は、下記式(A)で表されるイオン電導度低下率Lが1.0%以上、6.0%以下である添加剤を0.5ppm以上、300ppm以下含有する、非水電解液二次電池。
    L=(LA-LB)/LA・・・(A)
    (式(A)中、LAは、エチレンカーボネート、エチルメチルカーボネートおよびジエチルカーボネートを3:5:2の体積比で含む混合溶媒に、LiPFをその濃度が1mol/Lとなるように溶解させた参照用電解液のイオン電導度(mS/cm)を表し、LBは、前記参照用電解液に、添加剤を1.0重量%溶解させた電解液のイオン電導度(mS/cm)を表す。)
    A porous layer containing an inorganic filler and a resin, a positive electrode, a negative electrode and a non-aqueous electrolyte,
    The thermal expansion coefficient of the inorganic filler at −40 ° C. to 200 ° C. is 11 ppm / ° C. or less,
    The porous layer was impregnated with a solution containing propylene carbonate, a polyoxyalkylene-type nonionic surfactant and water in a weight ratio of 85: 12: 3, and then was irradiated with a microwave having a frequency of 2455 MHz at an output of 1800 W. The measured rate of temperature rise on the surface of the porous layer from the start of irradiation to 15 seconds later is 0.93 ° C./sec or more and 1.25 ° C./sec or less,
    The non-aqueous electrolyte contains 0.5 ppm or more and 300 ppm or less of an additive having an ionic conductivity decrease rate L represented by the following formula (A) of 1.0% or more and 6.0% or less. Water electrolyte secondary battery.
    L = (LA-LB) / LA ... (A)
    (In the formula (A), LA was prepared by dissolving LiPF 6 in a mixed solvent containing ethylene carbonate, ethylmethyl carbonate and diethyl carbonate in a volume ratio of 3: 5: 2 such that the concentration thereof was 1 mol / L. The ionic conductivity (mS / cm) of the reference electrolytic solution is represented, and LB represents the ionic conductivity (mS / cm) of the electrolytic solution prepared by dissolving the additive in the reference electrolytic solution in an amount of 1.0% by weight. .)
  2.  前記多孔質層は、ポリオレフィン多孔質フィルムの片面または両面に積層されている、請求項1に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the porous layer is laminated on one side or both sides of a polyolefin porous film.
  3.  前記多孔質層が、ポリオレフィン、(メタ)アクリレート系樹脂、含フッ素樹脂、ポリアミド系樹脂、ポリエステル系樹脂および水溶性ポリマーからなる群より1種以上選択される樹脂を含む、請求項1または2に記載の非水電解液二次電池。 The porous layer contains a resin selected from the group consisting of a polyolefin, a (meth) acrylate resin, a fluorine-containing resin, a polyamide resin, a polyester resin, and a water-soluble polymer. The non-aqueous electrolyte secondary battery described.
  4.  上記ポリアミド系樹脂がアラミド樹脂である、請求項3に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 3, wherein the polyamide resin is an aramid resin.
  5.  前記非水電解液は、リチウムを含有している電解質を含む、請求項1~4のいずれか1項に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the non-aqueous electrolyte contains an electrolyte containing lithium.
  6.  前記非水電解液は、非プロトン性極性溶媒を含む、請求項1~5のいずれか1項に記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte contains an aprotic polar solvent.
PCT/JP2019/043098 2018-11-01 2019-11-01 Non-aqueous electrolyte secondary battery WO2020091062A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018206792A JP7130525B2 (en) 2018-11-01 2018-11-01 Non-aqueous electrolyte secondary battery
JP2018-206792 2018-11-01

Publications (1)

Publication Number Publication Date
WO2020091062A1 true WO2020091062A1 (en) 2020-05-07

Family

ID=70463312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043098 WO2020091062A1 (en) 2018-11-01 2019-11-01 Non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP7130525B2 (en)
WO (1) WO2020091062A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338684A (en) * 2000-05-26 2001-12-07 Sony Corp Nonaqueous electrolyte cell
JP2011154987A (en) * 2009-12-29 2011-08-11 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2018045911A (en) * 2016-09-15 2018-03-22 住友化学株式会社 Laminate separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2019139972A (en) * 2018-02-09 2019-08-22 住友化学株式会社 Nonaqueous electrolyte solution secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001338684A (en) * 2000-05-26 2001-12-07 Sony Corp Nonaqueous electrolyte cell
JP2011154987A (en) * 2009-12-29 2011-08-11 Sony Corp Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2018045911A (en) * 2016-09-15 2018-03-22 住友化学株式会社 Laminate separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2019139972A (en) * 2018-02-09 2019-08-22 住友化学株式会社 Nonaqueous electrolyte solution secondary battery

Also Published As

Publication number Publication date
JP2020072046A (en) 2020-05-07
JP7130525B2 (en) 2022-09-05

Similar Documents

Publication Publication Date Title
JP6012838B1 (en) Method for producing separator for non-aqueous electrolyte secondary battery
JP6171117B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
US10707517B2 (en) Nonaqueous electrolyte secondary battery
KR101775313B1 (en) Nonaqueous electrolyte secondary battery laminated separator, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery
JP2017103204A (en) Separator for nonaqueous electrolyte secondary battery, laminate separator for nonaqueous electrolyte secondary battery, member for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR102002272B1 (en) Nonaqueous electrolyte secondary battery
US20230155248A1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
KR102004120B1 (en) Nonaqueous electrolyte secondary battery
US20190252658A1 (en) Separator and secondary battery including the separator
WO2020091062A1 (en) Non-aqueous electrolyte secondary battery
JP2019110063A (en) Nonaqueous electrolyte secondary battery
WO2020091024A1 (en) Non-aqueous electrolyte secondary battery
JP7133440B2 (en) Non-aqueous electrolyte secondary battery
US10741815B2 (en) Nonaqueous electrolyte secondary battery
JP6430624B1 (en) Non-aqueous electrolyte secondary battery
WO2020091025A1 (en) Non-aqueous electrolyte secondary battery
JP6430621B1 (en) Non-aqueous electrolyte secondary battery
JPWO2018078702A1 (en) Separator, and secondary battery including the separator
JP6463396B2 (en) Nonaqueous electrolyte secondary battery separator
JP2019050226A (en) Separator for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877724

Country of ref document: EP

Kind code of ref document: A1