WO2020090977A1 - Yttrium sputtering target and film-forming method using same - Google Patents

Yttrium sputtering target and film-forming method using same Download PDF

Info

Publication number
WO2020090977A1
WO2020090977A1 PCT/JP2019/042778 JP2019042778W WO2020090977A1 WO 2020090977 A1 WO2020090977 A1 WO 2020090977A1 JP 2019042778 W JP2019042778 W JP 2019042778W WO 2020090977 A1 WO2020090977 A1 WO 2020090977A1
Authority
WO
WIPO (PCT)
Prior art keywords
yttrium
sputtering
target
less
sputtering target
Prior art date
Application number
PCT/JP2019/042778
Other languages
French (fr)
Japanese (ja)
Inventor
透 小松
高志 日野
Original Assignee
株式会社 東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝マテリアル株式会社 filed Critical 株式会社 東芝
Priority to JP2020554038A priority Critical patent/JPWO2020090977A1/en
Publication of WO2020090977A1 publication Critical patent/WO2020090977A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • One aspect of the present invention relates to a yttrium sputtering target and a film forming method using the same.
  • Patent Document 1 discloses a component for a plasma etching processing apparatus having a yttrium oxide coating.
  • Patent Document 1 discloses an yttrium oxide coating film having a controlled crystal structure and the like. As a result, in Patent Document 1, the plasma resistance is improved.
  • a film is formed by injecting yttrium oxide powder at high speed using a plasma combustion flame.
  • a sputtering method is mentioned as a film forming method that does not use a plasma combustion flame.
  • the sputtering method is a method in which a sputtering target is placed in a vacuum chamber and ionized particles are made to collide with the sputtering target. As a result, atoms or molecules on the surface (sputtering surface) of the sputtering target are repelled and a film is formed.
  • a rare gas element or nitrogen is used for the ionized particles. Since the sputtering method does not use a plasma combustion flame, the equipment is relatively inexpensive.
  • Patent Document 2 discloses a high-purity yttrium sputtering target. In Patent Document 2, high purity was achieved by combining molten salt electrolysis and electron beam melting.
  • the sputtering method is a film forming method in which an ionized rare gas element is caused to collide with a sputtering target. The target with large pores and cracks could not stand the collision and was damaged.
  • the yttrium sputtering target according to the embodiment is characterized in that the maximum diameter of the pore is 1 mm or less.
  • the figure which shows an example of the yttrium sputtering target concerning embodiment The figure which shows an example of the structure of a yttrium crystal in the yttrium sputtering target concerning embodiment.
  • the yttrium sputtering target according to the embodiment is characterized in that the maximum diameter of the pore is 1 mm or less.
  • FIG. 1 shows an example of the yttrium sputtering target according to the embodiment.
  • 1 is a yttrium sputtering target (hereinafter may be simply referred to as “target”)
  • 2 is a sputtering surface
  • 3 is a side surface.
  • the case where the yttrium sputtering target 1 is a cylindrical target is illustrated, but the shape is not particularly limited, such as a quadrangular prism type.
  • a backing plate shall be provided if necessary when installing in a sputtering device.
  • 2 and 5 show an example of the texture structure of the yttrium sputtering target 1 according to the embodiment.
  • 4 is a yttrium crystal.
  • the gap surrounded by yttrium crystals is called a pore or crack.
  • the yttrium sputtering target 1 according to the embodiment is a polycrystalline body.
  • the pore is a gap formed between two particles of yttrium crystal particles or between three particles (triple point).
  • a crack is a gap formed between four or more yttrium crystal particles.
  • FIG. 3 An example of the pore is shown in FIG. 3 and an example of the crack is shown in FIG.
  • the gap surrounded by the yttrium crystals 4-1, 4-2 and 4-3 is the pore 5.
  • FIG. 3 shows an example of pores formed at triple points between three crystal grains.
  • cracks 6 are formed in the gaps surrounded by the yttrium crystals 4-1, 4-2, 4-3, 4-4, 4-5 and 4-6.
  • an arbitrary cross section of the target 1 is observed with an optical microscope.
  • the arbitrary cross section means a cross section orthogonal to the central axis of the cylindrical target 1, a vertical cross section orthogonal to the cross section, or any other cut section.
  • the optical micrograph has a magnification of 10 times or more. If necessary, the cross section is polished so that the surface roughness Ra is 2 ⁇ m or less. Further, when the unit area described later cannot be measured in one visual field, it may be measured in a plurality of divided areas. In addition, when the measurement is performed in a plurality of divisions, the adjacent visual fields are measured. Further, the presence or absence of pores and cracks can be inspected by ultrasonic flaw detection or X-ray X-ray inspection. These tests are non-destructive tests. The pores and cracks inside the entire target 1 can be measured by ultrasonic flaw detection or X-ray radiography. A method of cutting out a cross section after performing a nondestructive inspection is effective.
  • the yttrium sputtering target 1 according to the embodiment is characterized in that the maximum diameter of the pore is 1 mm or less. Further, it is preferable that the number of pores present in any cross section of the yttrium sputtering target 1 is 0 or more and 2 or less. In addition, not only when the whole arbitrary cross section of the yttrium sputtering target 1 is used as the visual field of the arbitrary cross section, but also in the arbitrary cross section, for example, a unit area of 10 mm ⁇ 10 mm is connected to form a visual field of the arbitrary cross section. May be The longest diagonal line of the pores in the optical micrograph having a unit area of 10 mm ⁇ 10 mm is the maximum diameter.
  • the diagonal line refers to the length from each point on the outer circumference of the pore to other points.
  • the length from each point to the other plural points may be a linear distance from each point to the other plural points.
  • a unit area of 10 mm ⁇ 10 mm is performed at three positions, and the largest value among them is set as the maximum diameter of the pore. If the maximum diameter of the pores exceeds 1 mm and is large, the strength of the target 1 decreases.
  • the sputtering method is a film forming method in which ionized particles collide with the target 1. Ion particles collide with the sputtering surface of the target. As the sputtering progresses, the sputtered surface is cut away.
  • the target will be cracked from the pore due to collision of ion particles. For this reason, in the conventional target, the replacement time had to be advanced.
  • the maximum diameter of the pores is 1 mm or less, if the pores are gathered close to each other, cracking of the target and non-uniformity of the sputter rate are likely to occur. Therefore, in the target 1, if the number of pores having a maximum diameter of 1 mm or less is 2 or less in a unit area of 10 mm ⁇ 10 mm, it is possible to suppress cracking of the target and unevenness of the sputtering rate.
  • the maximum crack length of the target 1 is 3 mm or less.
  • a crack is a gap formed between four or more yttrium crystal particles. The pores connected between four or more yttrium crystal particles become cracks. The maximum diameter of cracks shall also be measured using optical micrographs. As with pores, cracks can be identified by the difference in contrast. Further, a crack is a space formed by four or more crystal grains, and is therefore not limited to a linear shape, but a undulating shape or the like. The maximum length of the crack means the length from the first end to the second end on the opposite side in the longitudinal direction of the crack shown in the optical microscope.
  • the length from the first end to the second end may be a linear distance from the first end to the second end, or from the first end through the axis of the crack to The curve distance to the end of 2 may be sufficient.
  • pores and cracks can be distinguished from each other in the optical micrograph by the difference in contrast with the yttrium crystal.
  • the maximum length of the crack is measured by observing an optical microscope photograph of an arbitrary cross section of the target 1. The longest crack observed in a unit area of 30 mm ⁇ 30 mm is the maximum crack length. A unit area of 30 mm ⁇ 30 mm may be connected to form a cross-sectional field of view. Also, cracks can be measured inside the entire target 1 by ultrasonic flaw detection or X-ray X-ray inspection. A method of cutting out a cross section after performing a nondestructive inspection is effective.
  • the number of cracks is 0 or more and 2 or less in a unit area of 30 mm ⁇ 30 mm. Even if the cracks are 3 mm or less, if three or more cracks exist in a unit area of 30 mm ⁇ 30 mm, the cracks of the target and the nonuniformity of the sputter rate are likely to occur.
  • the yttrium has a purity of 4 N or more excluding the rare earth element and the gas component.
  • the rare earth element is a rare earth element other than yttrium (Y). Therefore, the rare earth elements other than yttrium are lanthanoid elements and actinoid elements.
  • the total amount of rare earth elements other than yttrium is preferably 500 wtppm or less.
  • the lanthanoid elements are La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu.
  • the actinide element is contained in a very small amount as an unavoidable impurity.
  • La lanthanum
  • Ce cerium
  • Ho fornium
  • Er erbium
  • Nd neodymium
  • the content of the impurity metal component is determined by GDMS analysis (glow discharge mass spectrometry).
  • the GDMS analysis is suitable for quantitative analysis of metal components. Also, many elements can be analyzed at one time. Therefore, the contents of rare earth elements and other metal impurity elements can be analyzed.
  • the gas components are O (oxygen), N (nitrogen), C (carbon), S (sulfur) and H (hydrogen).
  • the gas component includes a simple substance of these elements and a compound of other components. Examples of compounds with other components include carbon monoxide (CO), carbon dioxide (CO 2 ), yttrium oxide (Y 2 O 3 ), and oxides of impurity rare earth elements.
  • CO carbon monoxide
  • CO 2 carbon dioxide
  • Y 2 O 3 yttrium oxide
  • oxides of impurity rare earth elements what is made into a compound shall be converted into a gas component simple substance.
  • those detected by the Y 2 O 3 is the oxygen in the Y 2 O 3 counts and gas components.
  • the total amount of gas components is preferably 1% by mass or less. Of the gas components, oxygen is the most abundant element. This is because yttrium is an element that is easily oxidized.
  • the oxygen content is preferably 0.6% by mass or less.
  • the analysis of the content of the gas component is performed by the IGA (Interstitial Gas Analysis) method. According to the IGA method, the contents of O (oxygen), N (nitrogen), C (carbon), S (sulfur) and H (hydrogen) can be measured.
  • impurity elements excluding rare earth elements and gas components
  • Al aluminum
  • Mg magnesium
  • Na sodium
  • Fe iron
  • Zn zinc
  • Ca calcium
  • K potassium
  • Examples include Ni (nickel), Cu (copper), W (tungsten), Mo (molybdenum), and Ta (tantalum).
  • a film obtained by sputtering an yttrium sputtering target 1 as described later is suitable for a plasma processing apparatus component.
  • the plasma processing apparatus is used for manufacturing a semiconductor device. Mixing Na, K, Ca, and Mg into the semiconductor film adversely affects semiconductor performance. Therefore, from the stage 1 of the target and the stage of the ingot, it is better that these elements are less.
  • Al, Mg, Fe, Zn, Ni, Cu, W, Mo, and Ta have high reactivity with plasma. If these elements are mixed in the obtained film, the plasma resistance of the film deteriorates.
  • the content of Al (aluminum) in the target 1 is preferably 300 mass ppm or less.
  • the content of Mg (magnesium) is preferably 50 mass ppm or less.
  • the content of Na (sodium) is preferably 100 mass ppm or less.
  • the content of Fe (iron) is preferably 800 mass ppm or less.
  • the content of Zn (zinc) is preferably 100 mass ppm or less.
  • the content of Ca (calcium) is preferably 4000 mass ppm or less.
  • the content of K is preferably 10 mass ppm or less.
  • the content of Ni is preferably 300 mass ppm or less.
  • the content of Cu is preferably 200 mass ppm or less.
  • the content of W is preferably 6000 mass ppm or less.
  • the content of Mo is preferably 3000 mass ppm or less.
  • the content of Ta is preferably 8000 mass ppm or less.
  • the average grain size of the yttrium crystal is preferably 0.3 mm or more and 25 mm or less. If the average grain size is less than 0.3 mm, grain boundaries increase. As the number of grain boundaries increases, cracks are more likely to be formed. On the other hand, when the average crystal grain size is larger than 25 mm, the triple point between yttrium crystals becomes large. When the triple point becomes large, large pores are easily formed. Therefore, the average crystal grain size is preferably 0.3 to 25 mm, more preferably 1 to 20 mm. The average crystal grain size is measured by observing the sputtering surface 2 with an optical microscope. The sputtered surface 2 is photographed with an optical microscope photograph (magnification 10 times or more).
  • the sputter surface 2 When the sputter surface 2 cannot be photographed in one field of view, it may be photographed separately. Further, the sputtering surface 2 may be subjected to etching processing to the extent that grain boundaries can be confirmed. First, the number of yttrium crystals shown in the optical micrograph is counted. By this operation, the number of yttrium crystals observed on the sputter surface 2 is obtained. If the sputter surface 2 cannot be photographed in one visual field, it may be photographed several times. The number of yttrium crystals can be calculated by connecting the photographs. Next, the area of one crystal is calculated by "the area of the sputter surface / the number of yttrium crystals observed on the sputter surface".
  • the yttrium crystal preferably has a wavy shape with a random contour. Since the contour has a corrugated shape, the bonds between the crystals are strengthened.
  • the tensile strength of the yttrium sputtering target 1 is preferably 100 MPa or more.
  • the tensile strength is a value obtained by dividing the maximum load when a tensile load is applied to the sample to break the sample by the cross-sectional area (cross-sectional area of the sample). It can be said that the higher the tensile strength, the less likely it is to break.
  • the tensile strength of the target 1 is measured according to JIS-Z-2241.
  • the sample size shall be 6 mm ⁇ 0.1 mm in diameter.
  • the cross-sectional area of the sample having a diameter of 6 mm is 28.26 mm 2 .
  • the measuring device shall be a 5567 type precision universal testing machine manufactured by Instron or has performance equivalent thereto.
  • the measurement conditions are room temperature, air, and a pulling speed of 12.6 mm / min. Since the target 1 according to the embodiment has small pores or cracks, the tensile strength can be improved. Yttrium metal is a brittle material. On the other hand, the target 1 needs to have a flat sputtering surface 2. This is because the sputter rate is not stable on a sputtered surface having large irregularities. In order to obtain a flat surface, surface processing such as polishing is required for the sputter surface 2. If the tensile strength is less than 100 MPa, cracks are likely to occur during surface processing. Therefore, the tensile strength is preferably 100 MPa or more, more preferably 135 MPa or more.
  • the breaking elongation of the target 1 is preferably 5 to 30%.
  • Elongation at break refers to the elongation of a sample up to the breaking point when a tensile test is performed. The larger the elongation at break, the greater the amount of deformation until failure. If the elongation at break is less than 5%, the amount of deformation before breaking is too small, and the durability against the stress of processing is low. If the elongation at break exceeds 30% and is large, the amount of deformation is too large and it becomes difficult for the target 1 to obtain a flat surface. Therefore, the elongation at break is preferably 5 to 30%, more preferably 10 to 20%. The elongation at break shall be measured according to JIS-Z-2241. The sample size is similar to that of tensile strength. Further, it is preferable that the measuring device is also the same. In addition, the measurement condition of the elongation at break is set to a gauge length of 30 mm.
  • the diameter of the sputter surface 2 is preferably 100 mm or more.
  • the upper limit of the diameter of the sputtering surface 2 is not particularly limited, but a diameter of 400 mm or less is preferable.
  • the upper limit of the thickness of the target 1 is not particularly limited, but is preferably 30 mm or less. If the diameter or thickness of the target 1 is too large, it may be difficult to control the average crystal grain size. Therefore, the diameter of the sputtering surface 2 of the target 1 is preferably 100 to 400 mm, more preferably 160 to 350 mm.
  • the thickness of the target 1 is preferably 10 to 30 mm, more preferably 16 to 25 mm.
  • the surface roughness Ra of the sputter surface 2 is preferably 2.0 ⁇ m or less.
  • the sputter surface 2 is a surface on which the ionized particles collide. If the surface of the sputter surface 2 is rough, the manner of collision of ionized particles becomes non-uniform. As a result, the sputter rate becomes non-uniform.
  • the surface roughness Ra of the sputter surface 2 is preferably 2.0 ⁇ m or less, more preferably 1.2 ⁇ m or less. Since the target 1 according to the embodiment has improved tensile strength, it is possible to suppress the occurrence of cracks even if polishing is performed.
  • the surface roughness of the sputter surface 2 means the surface roughness of the sputter surface of a new target before performing the sputtering step.
  • the yttrium sputtering target 1 as described above is used in a film forming method for forming a film by sputtering.
  • the film to be formed include a metal yttrium film and a yttrium compound film.
  • the yttrium compound include oxides, nitrides, fluorides, and composite compounds thereof. Specifically, it is one selected from yttrium oxide (Y 2 O 3 ), yttrium nitride (YN), yttrium fluoride (YF 3 ), and yttrium oxyfluoride (YOF).
  • Y 2 O 3 yttrium oxide
  • YN yttrium nitride
  • YF 3 yttrium fluoride
  • YOF yttrium oxyfluoride
  • a method of sputtering using an oxygen-containing atmosphere while performing an oxidation reaction is called reactive sputtering.
  • a method of forming a metal yttrium film and then subjecting it to an oxidation treatment may be mentioned.
  • the method using reactive sputtering or the method of reacting the metal yttrium film with the compound film can be applied to the nitride film, the fluoride film, and the composite compound film.
  • examples of the sputtering device include DC sputtering, magnetron sputtering, and ion beam sputtering.
  • DC sputtering is a method of applying a DC voltage between electrodes.
  • the magnetron sputtering is a method in which a magnet is arranged on the target 1 side and a DC voltage is applied between the electrodes.
  • Magnetron sputter is a type of DC sputter. By arranging the magnet, a magnetic field can be generated around the target 1 and the electron moving direction can be controlled. Thereby, the sputtering speed can be increased.
  • the ion beam sputtering is a method of irradiating the sputtering surface 2 of the target 1 with the ions emitted from the ion gun. Since the ion beam sputtering uses only the ions desired to be used for sputtering, it is possible to suppress the mixing of impurities.
  • the degree of vacuum is preferably 0.5 Pa or less.
  • the power supply output of the sputtering device is 800 W (0.8 kW) or more.
  • the power output of the sputtering apparatus is the voltage applied between the electrodes. By increasing the power output of the sputtering apparatus, the film formation speed can be increased. This improves mass productivity. With the target 1 according to the embodiment, cracking of the target 1 does not occur even if the power output of the sputtering apparatus is 800 W or higher. Therefore, the power output of the sputtering apparatus can be set to 1000 W (1 kW) or more.
  • the target 1 according to the embodiment can suppress the cracking of the target 1 even when the collision energy increases. Therefore, the life of the target 1 can be extended. Along with the increase in the size of the sputtering surface 2, a film forming method having excellent mass productivity can be obtained.
  • the upper limit of the power output of the sputtering device is not particularly limited, but is preferably 50 kW or less. When the power output exceeds 50 kW, the possibility that the target 1 will crack increases. In other words, it is suitable for a power source output of the sputtering device of 0.8 kW or more and 50 kW or less, and further 1 kW or more and 40 kW or less.
  • the yttrium sputtering target 1 according to the embodiment is not particularly limited in its manufacturing method as long as it has the above-mentioned configuration, but the method for obtaining a high yield is as follows.
  • the first manufacturing method is a method using electron beam melting (EB melting).
  • EB melting is performed using commercially available metal yttrium as a raw material.
  • the EB melting is a method of irradiating a raw material with an electron beam, melting the material, and then solidifying the material.
  • the number of EB dissolutions is preferably 2 or more, more preferably 3 or more.
  • the upper limit of the number of EB dissolutions is not particularly limited, but is preferably 10 times or less. Even if the number is increased over 10 times, it is difficult to obtain a further effect, which causes a cost increase.
  • the output of the electron beam is preferably in the range of 1 to 1000 kW.
  • the electron beam output is preferably 1 to 1000 kW, more preferably 5 to 300 kW. It is also effective to slow down the pulling speed.
  • EB melting is a method in which a melted material that is melted by an electron beam is pulled up and solidified. When the pulling speed is increased, pores are more likely to occur due to insufficient solidification. Therefore, the pulling rate is preferably less than 1 mm / min. Further, it is preferable that the pulling-up step is continuously performed without being stopped halfway. When the pulling rate is changed, the average crystal grain size tends to vary.
  • the diameter of the ingot is to be taken out after the diameter of the target 1 is increased by 20 mm or more.
  • Yttrium metal is a material that is easily oxidized.
  • the surface of the ingot is easily oxidized and pores are easily formed on the surface of the ingot. Therefore, a method of making an ingot larger than the target size of the target 1 by 20 mm or more is effective. As a result, a portion having a small pore from the ingot can be used as the target 1.
  • the second manufacturing method is a method using a high frequency melting method.
  • the high frequency melting method is a method of melting a metal using an induction coil. When a high frequency current is applied to the coil, an eddy current is generated in the metal and heat is generated. This is a method of melting the metal by this heat.
  • the high frequency current is preferably 500 Hz or higher.
  • the generated heat energy is proportional to the radius of the metal and inversely proportional to the height. Further, the generated heat energy is proportional to the square of the frequency of the current. Therefore, the thermal energy can be adjusted by controlling the size of the metal to be melted and the frequency of the current. Induction skull melting is preferable as the high-frequency melting method.
  • Induction skull melting is a melting method that combines a water-cooled metal crucible and an induction coil.
  • the water-cooled metal crucible include a water-cooled copper crucible.
  • a metallic material is placed in the crucible.
  • the metal material in the crucible melts.
  • the molten metal material is condensed at the bottom of the crucible to form a skull.
  • a magnetic field is generated. The magnetic field stirs the molten metal in the crucible. A strong stirring force allows homogeneous dissolution.
  • a degassing effect and an effect of volatilizing impurities can be obtained by creating a vacuum inside the crucible.
  • an ingot can be produced by casting a molten metal.
  • a mold that matches the target size of the target 1 that is the target, an ingot close to the target size can be manufactured. That is, the amount to be deleted from the ingot can be reduced to 10 mm or less. With such an ingot, the target 1 can be finished without performing forging or rolling.
  • the target 1 is finished by subjecting the ingot obtained by the first manufacturing method or the second manufacturing method to cutting processing, polishing processing, or the like.
  • the sputtered surface is polished so that the surface roughness Ra is 2.0 ⁇ m or less.
  • forging, rolling, etc. shall be performed as needed. It is easy to adjust the target size by performing forging or rolling.
  • the pores existing in the ingot can be crushed and made smaller.
  • the stress during processing is too large, cracks are likely to be formed in the ingot. Since the ingot obtained by the method for producing an ingot described above has generation of pores suppressed, it can be processed into the target 1 without forging or rolling.
  • a backing plate shall be joined if necessary.
  • Example 1 (Examples 1 to 8 and Comparative Example 1)
  • Commercially available yttrium was prepared as a raw material. The purity of commercially available yttrium excluding rare earth elements other than Y and gas components is 3N.
  • EB dissolution was performed on commercially available yttrium under the conditions according to Examples 1 to 5 and the condition according to Comparative Example 1, respectively.
  • the electron beam output for EB melting was unified at 20 kW.
  • a target was cut out from the obtained ingot.
  • the sputtered surface was polished.
  • the number of EB meltings, the pulling rate, the ingot size, the target size, and the surface roughness Ra of the sputter surface were as shown in Table 1.
  • induction skull melting was performed on commercially available yttrium under the conditions according to Examples 6 to 8.
  • the high frequency current applied was 500 Hz or higher.
  • the diameter, target size, and surface roughness Ra of the sputter surface of the obtained ingot were as shown in Table 2.
  • All of the plurality of targets obtained from commercially available yttrium under a plurality of conditions had a purity of 4N or more excluding rare earth elements other than Y and gas components.
  • the content of the impurity metal component was determined by GDMS analysis.
  • the content of the gas component was determined by the IGA method.
  • the maximum diameter of the pores, the maximum length of the cracks, the average crystal grain diameter, and the tensile strength of the plurality of targets obtained from commercially available yttrium were measured under a plurality of conditions.
  • the maximum diameter of the pore is measured by taking an optical micrograph (50 times) of a unit area of 10 mm ⁇ 10 mm in an arbitrary cross section of the target. Measure the longest diagonal of the pores in the picture.
  • the average crystal grain size is measured by photographing the sputtering surface of the target with an optical microscope photograph (50 times). Count the number of yttrium crystals in the photo. The area of one crystal is calculated by "area of sputter surface / number of yttrium crystals observed on sputter surface". The diameter is calculated assuming that one crystal is a perfect circle.
  • the plurality of targets 1 obtained under the conditions according to Examples 1 to 8 had a tensile strength of 100 MPa or more, and further 135 MPa or more. This is because the pores and cracks are small. Further, in the plurality of targets 1 obtained under the conditions according to Examples 1 to 8, the yttrium crystal had a wavy outline. As with the plurality of targets 1, the plurality of ingots obtained under the conditions according to Examples 1 to 8 also have small pores and cracks and a small number.
  • sputtering was performed using the plurality of targets 1 obtained under the conditions according to Examples 1 to 8 and the target obtained under the conditions according to Comparative Example 1. Sputtering was performed at a vacuum degree of 0.5 Pa or less.
  • the power output of the sputtering apparatus was set to 800 W and 2000 W, and it was confirmed whether or not the target was cracked.
  • the rate of change of the sputter rate was measured.
  • the rate of change in the sputter rate was determined by the amount of change in the cumulative amount of input power. "A” when the amount of change is 5% or less, “B” when it exceeds 5% and 10% or less, “C” when it exceeds 20% and 20% or less, and “D” when it exceeds 20%. " In other words, “A”, “B”, “C”, and “D” are listed in the descending order of the amount of change. The results are shown in Table 4.

Abstract

Provided is a yttrium sputtering target characterized by having a maximum pore radius of 1 mm or less. Additionally, the number of pores existing on a cross-section of the yttrium sputtering target is preferably 0-2. Additionally, the maximum length of cracks is preferably 3 mm or less. Additionally, the tensile strength of the yttrium sputtering target is preferably 100 MPa or higher.

Description

イットリウム製スパッタリングターゲットおよびそれを用いた成膜方法Yttrium sputtering target and film forming method using the same
 本発明の一態様は、イットリウム製スパッタリングターゲットおよびそれを用いた成膜方法に関する。 One aspect of the present invention relates to a yttrium sputtering target and a film forming method using the same.
 金属イットリウムは、メタルゲート材料、高誘電率材料などの電子材料への適用が検討されている。また、酸化イットリウムは、プラズマや薬品に対する耐久性がよい。このため、酸化イットリウム膜をプラズマ処理装置用部品の保護膜に使うことが試みられている。
 特許第6084464号公報(特許文献1)では、酸化イットリウム被膜を有するプラズマエッチング処理装置用部品が開示されている。特許文献1では、結晶構造などを制御した酸化イットリウム被膜が開示されている。これにより、特許文献1では耐プラズマ性を向上させている。特許文献1では、酸化イットリウム粉末をプラズマ燃焼炎を使って高速で噴射することで成膜している。プラズマ燃焼炎は約10000℃程度の高温が必要である。このため、設備が高価であり、安全対策も必要であった。
 プラズマ燃焼炎を使わない成膜方法としてはスパッタリング法が挙げられる。スパッタリング法は、真空チャンバ内にスパッタリングターゲットを配置し、スパッタリングターゲットにイオン化粒子を衝突させる方法である。これにより、スパッタリングターゲットの表面(スパッタ面)の原子または分子がはじき飛ばされて成膜が行われる。イオン化粒子には、希ガス元素や窒素が使われる。スパッタリング法は、プラズマ燃焼炎を使わないことから、比較的設備が安価である。また、真空チャンバ内での成膜工程を行うため、比較的安全な成膜方法である。
 特許第5738993号公報(特許文献2)には、高純度イットリウム製スパッタリングターゲットが開示されている。特許文献2では、溶融塩電解と電子ビーム溶解を組合せて高純度化していた。
Application of yttrium metal to electronic materials such as metal gate materials and high dielectric constant materials is under study. Further, yttrium oxide has good durability against plasma and chemicals. Therefore, it has been attempted to use the yttrium oxide film as a protective film of parts for plasma processing apparatuses.
Japanese Patent No. 6084464 (Patent Document 1) discloses a component for a plasma etching processing apparatus having a yttrium oxide coating. Patent Document 1 discloses an yttrium oxide coating film having a controlled crystal structure and the like. As a result, in Patent Document 1, the plasma resistance is improved. In Patent Document 1, a film is formed by injecting yttrium oxide powder at high speed using a plasma combustion flame. The plasma combustion flame requires a high temperature of about 10,000 ° C. Therefore, the equipment is expensive and safety measures are required.
A sputtering method is mentioned as a film forming method that does not use a plasma combustion flame. The sputtering method is a method in which a sputtering target is placed in a vacuum chamber and ionized particles are made to collide with the sputtering target. As a result, atoms or molecules on the surface (sputtering surface) of the sputtering target are repelled and a film is formed. A rare gas element or nitrogen is used for the ionized particles. Since the sputtering method does not use a plasma combustion flame, the equipment is relatively inexpensive. Further, since the film forming process is performed in the vacuum chamber, it is a relatively safe film forming method.
Japanese Patent No. 5738993 (Patent Document 2) discloses a high-purity yttrium sputtering target. In Patent Document 2, high purity was achieved by combining molten salt electrolysis and electron beam melting.
特許第6084464号公報Japanese Patent No. 6084464 特許第5738993号公報Japanese Patent No. 5738993
 従来のスパッタリングターゲットでは、スパッタ工程中にターゲットが割れるなどの不具合が発生していた。この原因を追究したところ、ターゲット中に大きなポアやクラックがあることが原因であった。特許文献2では、電子ビーム溶解を2~4回繰り返してイットリウム製インゴットを製造していた。電子ビーム溶解を4回程度行うことにより、高純度化できる。その一方で、インゴット中には大きなポアが残存していた。また、金属イットリウムは破壊靭性が低い材料であるため、ターゲットに加工する際にクラックが発生し易かった。
 スパッタリング法は、イオン化させた希ガス元素をスパッタリングターゲットに衝突させる成膜方法である。大きなポアやクラックが残存したターゲットでは、衝突に耐えられず破損が起きていたのである。
In the conventional sputtering target, defects such as cracking of the target occurred during the sputtering process. When the cause was investigated, it was found that the target had large pores and cracks. In Patent Document 2, electron beam melting is repeated 2 to 4 times to manufacture an yttrium ingot. High purity can be obtained by performing electron beam melting about four times. On the other hand, large pores remained in the ingot. Moreover, since yttrium metal is a material having low fracture toughness, cracks are likely to occur during processing into a target.
The sputtering method is a film forming method in which an ionized rare gas element is caused to collide with a sputtering target. The target with large pores and cracks could not stand the collision and was damaged.
 実施形態にかかるイットリウム製スパッタリングターゲットは、ポアの最大径が1mm以下であることを特徴とするものである。 The yttrium sputtering target according to the embodiment is characterized in that the maximum diameter of the pore is 1 mm or less.
実施形態にかかるイットリウム製スパッタリングターゲットの一例を示す図。The figure which shows an example of the yttrium sputtering target concerning embodiment. 実施形態にかかるイットリウム製スパッタリングターゲットにおいて、イットリウム結晶の構造の一例を示す図。The figure which shows an example of the structure of a yttrium crystal in the yttrium sputtering target concerning embodiment. 実施形態にかかるイットリウム製スパッタリングターゲットにおいて、ポアの一例を示す図。The figure which shows an example of a pore in the yttrium sputtering target concerning embodiment. 実施形態にかかるイットリウム製スパッタリングターゲットにおいて、クラックの一例を示す図。The figure which shows an example of a crack in the yttrium sputtering target concerning embodiment. 実施形態にかかるイットリウム製スパッタリングターゲットにおいて、イットリウム結晶の構造の他の例を示す図。The figure which shows the other example of the structure of a yttrium crystal in the yttrium sputtering target concerning embodiment.
実施形態Embodiment
 実施形態にかかるイットリウム製スパッタリングターゲットにおいて、ポアの最大径が1mm以下であることを特徴とするものである。
 図1に実施形態にかかるイットリウム製スパッタリングターゲットの一例を示した。図中、1はイットリウム製スパッタリングターゲット(以下、単に「ターゲット」と称する場合もある)、2はスパッタ面、3は側面、である。図1ではイットリウム製スパッタリングターゲット1が円柱型ターゲットである場合を例示したが、四角柱型など特に形状が限定されるものではない。また、スパッタ装置に設置する場合は、必要に応じ、バッキングプレートを設けるものとする。
 また、図2及び図5には、実施形態にかかるイットリウム製スパッタリングターゲット1の組織構造の一例を示した。図2及び図5中、4はイットリウム結晶、である。イットリウム結晶に囲まれた隙間が、ポアまたはクラックと呼ばれる。
 実施形態にかかるイットリウム製スパッタリングターゲット1は多結晶体である。ポアとは、イットリウム結晶粒子同士の2粒子間または3粒子間(三重点)に形成された隙間である。また、クラックとは、4個以上のイットリウム結晶粒子間につらなった隙間のことである。
The yttrium sputtering target according to the embodiment is characterized in that the maximum diameter of the pore is 1 mm or less.
FIG. 1 shows an example of the yttrium sputtering target according to the embodiment. In the figure, 1 is a yttrium sputtering target (hereinafter may be simply referred to as “target”), 2 is a sputtering surface, and 3 is a side surface. In FIG. 1, the case where the yttrium sputtering target 1 is a cylindrical target is illustrated, but the shape is not particularly limited, such as a quadrangular prism type. In addition, a backing plate shall be provided if necessary when installing in a sputtering device.
In addition, FIGS. 2 and 5 show an example of the texture structure of the yttrium sputtering target 1 according to the embodiment. 2 and 5, 4 is a yttrium crystal. The gap surrounded by yttrium crystals is called a pore or crack.
The yttrium sputtering target 1 according to the embodiment is a polycrystalline body. The pore is a gap formed between two particles of yttrium crystal particles or between three particles (triple point). A crack is a gap formed between four or more yttrium crystal particles.
 図3にポア、図4にクラックの一例を示した。図3ではイットリウム結晶4-1、4-2、4-3で囲まれた隙間がポア5となっている。図3では、3つの結晶粒間である三重点に形成されたポアの例である。また、図4では、イットリウム結晶4-1、4-2、4-3、4-4、4-5、4-6で囲まれた隙間がクラック6となっている。
 ポアまたはクラックの測定はターゲット1の任意の断面を光学顕微鏡で観察するものとする。任意の断面とは、円柱形状のターゲット1の中心軸に直交する横断面、横断面に直交する縦断面、または、その他任意に切り出された断面を意味する。光学顕微鏡写真のコントラストの違いで、イットリウム結晶とポア(またはクラック)を区別することができる。光学顕微鏡写真は、倍率10倍以上とする。また、必要に応じ、断面を表面粗さRaが2μm以下になるように研磨加工するものとする。また、後述する単位面積を一視野で測定できないときは、複数に分けて測定しても良いものとする。また、複数に分けて測定する場合は、隣り合う視野を測定していくものとする。
 また、超音波探傷検査またはX線レントゲン検査により、ポアおよびクラックの有無を検査することができる。これら検査は非破壊検査である。ターゲット1全体の内部のポアと、クラックとは、超音波探傷検査またはX線レントゲン検査により測定可能である。非破壊検査を行った後、断面を切り出す方法が有効である。
An example of the pore is shown in FIG. 3 and an example of the crack is shown in FIG. In FIG. 3, the gap surrounded by the yttrium crystals 4-1, 4-2 and 4-3 is the pore 5. FIG. 3 shows an example of pores formed at triple points between three crystal grains. Further, in FIG. 4, cracks 6 are formed in the gaps surrounded by the yttrium crystals 4-1, 4-2, 4-3, 4-4, 4-5 and 4-6.
For the measurement of pores or cracks, an arbitrary cross section of the target 1 is observed with an optical microscope. The arbitrary cross section means a cross section orthogonal to the central axis of the cylindrical target 1, a vertical cross section orthogonal to the cross section, or any other cut section. It is possible to distinguish between yttrium crystals and pores (or cracks) by the difference in the contrast of the optical micrograph. The optical micrograph has a magnification of 10 times or more. If necessary, the cross section is polished so that the surface roughness Ra is 2 μm or less. Further, when the unit area described later cannot be measured in one visual field, it may be measured in a plurality of divided areas. In addition, when the measurement is performed in a plurality of divisions, the adjacent visual fields are measured.
Further, the presence or absence of pores and cracks can be inspected by ultrasonic flaw detection or X-ray X-ray inspection. These tests are non-destructive tests. The pores and cracks inside the entire target 1 can be measured by ultrasonic flaw detection or X-ray radiography. A method of cutting out a cross section after performing a nondestructive inspection is effective.
 実施形態にかかるイットリウム製スパッタリングターゲット1において、ポアの最大径が1mm以下であることを特徴とするものである。また、イットリウム製スパッタリングターゲット1の任意の断面中に存在するポアの個数が0個以上2個以下であることが好ましい。なお、イットリウム製スパッタリングターゲット1の任意の断面の全体を任意の断面の視野とする場合のみならず、任意の断面のうち、任意の面積、例えば単位面積10mm×10mmをつなげて任意の断面の視野としてもよい。
 単位面積10mm×10mmの光学顕微鏡写真に写るポアの最も長い対角線を最大径とする。ここで、対角線とは、ポア外周上の各点から他の複数点までの長さをいう。各点から他の複数点までの長さは、各点から他の複数点までの直線距離であればよい。単位面積10mm×10mmを3箇所行い、その中で最も大きな値をポアの最大径とする。ポアの最大径が1mmを超えて大きいとターゲット1の強度が低下する。スパッタリング法は、イオン化粒子をターゲット1に衝突させる成膜方法である。ターゲットのスパッタ面には、イオン粒子が衝突していく。スパッタリングが進行するに従い、スパッタ面が削られていく。最大径が1mmを超えたポアが存在すると、イオン粒子の衝突によりポアを起点にターゲットに割れが発生してしまう。このため、従来のターゲットでは、その交換時期を早めないといけなかった。
 また、ポアが形成された箇所はスパッタレートが変わりやすい。スパッタレートが変わると、成膜される膜が不均一になり易くなる。このため、ターゲット1のポアの最大径は1mm以下、さらには0.5mm以下が好ましい。また、ポアがないこと(=ポアの最大径が0mm)が最も好ましい。
 また、単位面積10mm×10mm中に存在するポアの個数が0個以上2個以下であることが好ましい。ポアの最大径が1mm以下であったとしても、ポアが近くに集まっていると、ターゲットの割れやスパッタレートの不均一の原因となり易い。このため、ターゲット1において、単位面積10mm×10mmにおいて、最大径1mm以下のポアの個数が2個以下であれば、ターゲットの割れの発生やスパッタレートの不均一性を抑制することができる。
The yttrium sputtering target 1 according to the embodiment is characterized in that the maximum diameter of the pore is 1 mm or less. Further, it is preferable that the number of pores present in any cross section of the yttrium sputtering target 1 is 0 or more and 2 or less. In addition, not only when the whole arbitrary cross section of the yttrium sputtering target 1 is used as the visual field of the arbitrary cross section, but also in the arbitrary cross section, for example, a unit area of 10 mm × 10 mm is connected to form a visual field of the arbitrary cross section. May be
The longest diagonal line of the pores in the optical micrograph having a unit area of 10 mm × 10 mm is the maximum diameter. Here, the diagonal line refers to the length from each point on the outer circumference of the pore to other points. The length from each point to the other plural points may be a linear distance from each point to the other plural points. A unit area of 10 mm × 10 mm is performed at three positions, and the largest value among them is set as the maximum diameter of the pore. If the maximum diameter of the pores exceeds 1 mm and is large, the strength of the target 1 decreases. The sputtering method is a film forming method in which ionized particles collide with the target 1. Ion particles collide with the sputtering surface of the target. As the sputtering progresses, the sputtered surface is cut away. If there is a pore having a maximum diameter of more than 1 mm, the target will be cracked from the pore due to collision of ion particles. For this reason, in the conventional target, the replacement time had to be advanced.
In addition, the sputter rate tends to change at the location where the pores are formed. When the sputter rate changes, the deposited film tends to become non-uniform. Therefore, the maximum diameter of the pores of the target 1 is preferably 1 mm or less, more preferably 0.5 mm or less. Further, it is most preferable that there are no pores (= the maximum diameter of pores is 0 mm).
Further, it is preferable that the number of pores existing in a unit area of 10 mm × 10 mm is 0 or more and 2 or less. Even if the maximum diameter of the pores is 1 mm or less, if the pores are gathered close to each other, cracking of the target and non-uniformity of the sputter rate are likely to occur. Therefore, in the target 1, if the number of pores having a maximum diameter of 1 mm or less is 2 or less in a unit area of 10 mm × 10 mm, it is possible to suppress cracking of the target and unevenness of the sputtering rate.
 また、ターゲット1のクラックの最大長さが3mm以下であることが好ましい。クラックとは、4個以上のイットリウム結晶粒子間につらなった隙間のことである。4個以上のイットリウム結晶粒子間につながったポアがクラックとなる。クラックの最大径の測定も光学顕微鏡写真を使って行うものとする。ポアと同様にクラックもコントラストの差で判別することができる。また、クラックとは4個以上の結晶粒間につらなってできた空間であるため、直線的な形状に限らず、うねり形状などになる。なお、クラックの最大長さは光学顕微鏡に写るクラックの長手方向における第1の端部から反対側の第2の端部までの長さを言う。第1の端部から第2の端部までの長さは、第1の端部から第2の端部までの直線距離でもよいし、第1の端部から、クラックの軸心を通り第2の端部に至る曲線距離でもよい。前者は、直線的な形状または比較的小さいうねり形状のクラックの場合に有効であり、後者は、比較的大きいうねり形状のクラックの場合に有効である。クラックの長さが3mmを超えて大きいと、ターゲットの割れやスパッタレートの不均一の原因となり易い。このため、クラックの最大長さは3mm以下、さらには2mm以下であることが好ましい。また、最も好ましくはクラックがない(=クラックの最大長さが0mm)ことである。また、ポアやクラックは光学顕微鏡写真ではイットリウム結晶とのコントラストの違いで区別できる。
 クラックの最大長さの測定は、ターゲット1の任意の断面の光学顕微鏡写真を観察して行うものとする。単位面積30mm×30mm中に観察されるクラックの中で最も長いものをクラックの最大長さとする。単位面積30mm×30mmをつなげて断面の視野にしてもよい。また、クラックについてもターゲット1全体の内部を超音波探傷検査またはX線レントゲン検査により測定可能である。非破壊検査を行った後、断面を切り出す方法が有効である。
 また、クラックは単位面積30mm×30mm中に0個以上2個以下であることが好ましい。3mm以下のクラックであっても、単位面積30mm×30mm中に3個以上存在すると、ターゲットの割れやスパッタレートの不均一の原因となり易い。
Further, it is preferable that the maximum crack length of the target 1 is 3 mm or less. A crack is a gap formed between four or more yttrium crystal particles. The pores connected between four or more yttrium crystal particles become cracks. The maximum diameter of cracks shall also be measured using optical micrographs. As with pores, cracks can be identified by the difference in contrast. Further, a crack is a space formed by four or more crystal grains, and is therefore not limited to a linear shape, but a undulating shape or the like. The maximum length of the crack means the length from the first end to the second end on the opposite side in the longitudinal direction of the crack shown in the optical microscope. The length from the first end to the second end may be a linear distance from the first end to the second end, or from the first end through the axis of the crack to The curve distance to the end of 2 may be sufficient. The former is effective in the case of a crack having a linear shape or a relatively small waviness, and the latter is effective in the case of a crack having a relatively large waviness. If the crack length exceeds 3 mm and is large, it is likely to cause cracking of the target or uneven sputtering rate. Therefore, the maximum length of the crack is preferably 3 mm or less, and more preferably 2 mm or less. Moreover, it is most preferable that there is no crack (= the maximum length of the crack is 0 mm). Further, pores and cracks can be distinguished from each other in the optical micrograph by the difference in contrast with the yttrium crystal.
The maximum length of the crack is measured by observing an optical microscope photograph of an arbitrary cross section of the target 1. The longest crack observed in a unit area of 30 mm × 30 mm is the maximum crack length. A unit area of 30 mm × 30 mm may be connected to form a cross-sectional field of view. Also, cracks can be measured inside the entire target 1 by ultrasonic flaw detection or X-ray X-ray inspection. A method of cutting out a cross section after performing a nondestructive inspection is effective.
Further, it is preferable that the number of cracks is 0 or more and 2 or less in a unit area of 30 mm × 30 mm. Even if the cracks are 3 mm or less, if three or more cracks exist in a unit area of 30 mm × 30 mm, the cracks of the target and the nonuniformity of the sputter rate are likely to occur.
 また、イットリウムの純度が、希土類元素およびガス成分を除いて4N以上であることが好ましい。
 希土類元素とは、イットリウム(Y)以外の希土類元素である。このため、イットリウム以外の希土類元素とはランタノイド元素およびアクチノイド元素となる。イットリウム以外の希土類元素は合計で500wtppm以下が好ましい。ランタノイド元素は、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luである。ランタノイド元素に比べて、アクチノイド元素が不可避不純物として含有される量は非常に少ない。また、ランタノイド元素の中では、La(ランタン)、Ce(セリウム)、Ho(ホルニウム)、Er(エルビウム)、Nd(ネオジム)が主な不可避不純物になる。また、不純物金属成分の含有量はGDMS分析(グロー放電質量分析)にて行うものとする。GDMS分析は、金属成分の定量分析に適している。また、一度に多数の元素を分析することができる。このため、希土類元素およびその他の金属不純物元素の含有量を分析することができる。
Further, it is preferable that the yttrium has a purity of 4 N or more excluding the rare earth element and the gas component.
The rare earth element is a rare earth element other than yttrium (Y). Therefore, the rare earth elements other than yttrium are lanthanoid elements and actinoid elements. The total amount of rare earth elements other than yttrium is preferably 500 wtppm or less. The lanthanoid elements are La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. Compared with the lanthanoid element, the actinide element is contained in a very small amount as an unavoidable impurity. Among the lanthanoid elements, La (lanthanum), Ce (cerium), Ho (fornium), Er (erbium), and Nd (neodymium) are the main inevitable impurities. The content of the impurity metal component is determined by GDMS analysis (glow discharge mass spectrometry). The GDMS analysis is suitable for quantitative analysis of metal components. Also, many elements can be analyzed at one time. Therefore, the contents of rare earth elements and other metal impurity elements can be analyzed.
 また、ガス成分とは、O(酸素)、N(窒素)、C(炭素)、S(硫黄)、H(水素)である。ガス成分は、これら元素単体や、他の成分との化合物となっているものも含まれる。他の成分との化合物には、一酸化炭素(CO)、二酸化炭素(CO)、酸化イットリウム(Y)、不純物希土類元素の酸化物などが挙げられる。なお、化合物になっているものは、ガス成分単体に換算するものとする。例えば、Yで検出されたものは、Y中の酸素をガス成分とカウントする。
 ガス成分の合計量は1質量%以下であることが好ましい。ガス成分の中では酸素が最も多い元素となる。これはイットリウムが酸化し易い元素であるためである。酸素含有量は0.6質量%以下であることが好ましい。また、ガス成分の含有量の分析は、IGA(Interstitial Gas Analysis)法にて行うものとする。IGA法であれば、O(酸素)、N(窒素)、C(炭素)、S(硫黄)、H(水素)の含有量を測定することができる。
The gas components are O (oxygen), N (nitrogen), C (carbon), S (sulfur) and H (hydrogen). The gas component includes a simple substance of these elements and a compound of other components. Examples of compounds with other components include carbon monoxide (CO), carbon dioxide (CO 2 ), yttrium oxide (Y 2 O 3 ), and oxides of impurity rare earth elements. In addition, what is made into a compound shall be converted into a gas component simple substance. For example, those detected by the Y 2 O 3 is the oxygen in the Y 2 O 3 counts and gas components.
The total amount of gas components is preferably 1% by mass or less. Of the gas components, oxygen is the most abundant element. This is because yttrium is an element that is easily oxidized. The oxygen content is preferably 0.6% by mass or less. In addition, the analysis of the content of the gas component is performed by the IGA (Interstitial Gas Analysis) method. According to the IGA method, the contents of O (oxygen), N (nitrogen), C (carbon), S (sulfur) and H (hydrogen) can be measured.
 また、希土類元素およびガス成分を除いた不純物元素としては、Al(アルミニウム)、Mg(マグネシウム)、Na(ナトリウム)、Fe(鉄)、Zn(亜鉛)、Ca(カルシウム)、K(カリウム)、Ni(ニッケル)、Cu(銅)、W(タングステン)、Mo(モリブデン)、Ta(タンタル)が挙げられる。
 後述するようにイットリウム製スパッタリングターゲット1をスパッタして得られる膜は、プラズマ処理装置用部品に好適である。プラズマ処理装置は、半導体素子を製造することに使われる。
 Na、K、Ca、Mgが半導体膜に混入すると、半導体性能に悪影響を与える。よって、ターゲットの段階1や、インゴットの段階から、これら元素が少ない方がよい。
 また、Al、Mg、Fe、Zn、Ni、Cu、W、Mo、Taは、プラズマとの反応性が高い。得られた膜にこれら元素が混入していると、膜の耐プラズマ性が低下する。
 ターゲット1中のAl(アルミニウム)の含有量は、300質量ppm以下が好ましい。Mg(マグネシウム)の含有量は、50質量ppm以下が好ましい。Na(ナトリウム)の含有量は、100質量ppm以下が好ましい。Fe(鉄)の含有量は、800質量ppm以下が好ましい。Zn(亜鉛)の含有量は、100質量ppm以下が好ましい。Ca(カルシウム)の含有量は、4000質量ppm以下が好ましい。K(カリウム)の含有量は、10質量ppm以下が好ましい。Ni(ニッケル)の含有量は、300質量ppm以下が好ましい。Cu(銅)の含有量は、200質量ppm以下が好ましい。W(タングステン)の含有量は、6000質量ppm以下が好ましい。Mo(モリブデン)の含有量は、3000質量ppm以下が好ましい。Ta(タンタル)の含有量は、8000質量ppm以下が好ましい。
Further, as impurity elements excluding rare earth elements and gas components, Al (aluminum), Mg (magnesium), Na (sodium), Fe (iron), Zn (zinc), Ca (calcium), K (potassium), Examples include Ni (nickel), Cu (copper), W (tungsten), Mo (molybdenum), and Ta (tantalum).
A film obtained by sputtering an yttrium sputtering target 1 as described later is suitable for a plasma processing apparatus component. The plasma processing apparatus is used for manufacturing a semiconductor device.
Mixing Na, K, Ca, and Mg into the semiconductor film adversely affects semiconductor performance. Therefore, from the stage 1 of the target and the stage of the ingot, it is better that these elements are less.
Further, Al, Mg, Fe, Zn, Ni, Cu, W, Mo, and Ta have high reactivity with plasma. If these elements are mixed in the obtained film, the plasma resistance of the film deteriorates.
The content of Al (aluminum) in the target 1 is preferably 300 mass ppm or less. The content of Mg (magnesium) is preferably 50 mass ppm or less. The content of Na (sodium) is preferably 100 mass ppm or less. The content of Fe (iron) is preferably 800 mass ppm or less. The content of Zn (zinc) is preferably 100 mass ppm or less. The content of Ca (calcium) is preferably 4000 mass ppm or less. The content of K (potassium) is preferably 10 mass ppm or less. The content of Ni (nickel) is preferably 300 mass ppm or less. The content of Cu (copper) is preferably 200 mass ppm or less. The content of W (tungsten) is preferably 6000 mass ppm or less. The content of Mo (molybdenum) is preferably 3000 mass ppm or less. The content of Ta (tantalum) is preferably 8000 mass ppm or less.
 また、イットリウム結晶の平均結晶粒経は0.3mm以上25mm以下であることが好ましい。平均結晶粒経が0.3mm未満であると、粒界が増える。粒界が増えると、クラックも形成され易くなる。一方、平均結晶粒経が25mmを超えて大きいと、イットリウム結晶同士の三重点が大きくなる。三重点が大きくなると、大きなポアが形成され易くなる。このため、平均結晶粒経は0.3~25mm、さらには1~20mmの範囲内であることが好ましい。
 また、平均結晶粒径の測定は、スパッタ面2を光学顕微鏡観察により行うものとする。スパッタ面2を光学顕微鏡写真(倍率10倍以上)にて撮影する。スパッタ面2を一視野で撮影できないときは複数に分けて撮影してもよいものとする。また、スパッタ面2は粒界が確認できる程度にエッチング加工を施してもよいものとする。
 まず、光学顕微鏡写真に写るイットリウム結晶の個数をカウントする。この作業により、スパッタ面2に観察されるイットリウム結晶の個数を求める。なお、一視野でスパッタ面2を撮影できないときは、複数回に分けて撮影してもよいものとする。それぞれの写真をつなぎ合わせてイットリウム結晶の個数を求めることができる。
 次に、「スパッタ面の面積÷スパッタ面に観察されるイットリウム結晶の個数」により結晶1個の面積を計算する。結晶1個を真円と仮定して直径を求めるものとする。この直径を平均結晶粒径とするものとする。イットリウム結晶は輪郭がランダムな波型形状を有していることが好ましい。輪郭が波型形状を有することにより、結晶同士の結合が強くなる。
The average grain size of the yttrium crystal is preferably 0.3 mm or more and 25 mm or less. If the average grain size is less than 0.3 mm, grain boundaries increase. As the number of grain boundaries increases, cracks are more likely to be formed. On the other hand, when the average crystal grain size is larger than 25 mm, the triple point between yttrium crystals becomes large. When the triple point becomes large, large pores are easily formed. Therefore, the average crystal grain size is preferably 0.3 to 25 mm, more preferably 1 to 20 mm.
The average crystal grain size is measured by observing the sputtering surface 2 with an optical microscope. The sputtered surface 2 is photographed with an optical microscope photograph (magnification 10 times or more). When the sputter surface 2 cannot be photographed in one field of view, it may be photographed separately. Further, the sputtering surface 2 may be subjected to etching processing to the extent that grain boundaries can be confirmed.
First, the number of yttrium crystals shown in the optical micrograph is counted. By this operation, the number of yttrium crystals observed on the sputter surface 2 is obtained. If the sputter surface 2 cannot be photographed in one visual field, it may be photographed several times. The number of yttrium crystals can be calculated by connecting the photographs.
Next, the area of one crystal is calculated by "the area of the sputter surface / the number of yttrium crystals observed on the sputter surface". It is assumed that one crystal is a perfect circle and the diameter is obtained. This diameter shall be the average crystal grain size. The yttrium crystal preferably has a wavy shape with a random contour. Since the contour has a corrugated shape, the bonds between the crystals are strengthened.
 また、イットリウム製スパッタリングターゲット1の引張強さが100MPa以上であることが好ましい。引張強さは、試料に引張荷重を加えて破断させたときの最大荷重を断面積(試料の断面積)で割った値である。引張強さが大きいほど、破断しにくいものであるといえる。
 また、ターゲット1の引張強さの測定はJIS-Z-2241に準じて行うものとする。試料サイズは直径6mm±0.1mmのものとする。直径6mmは試料の断面積が28.26mmとなる。測定装置は、インストロン社製5567型精密万能試験機またはそれに準じた性能を有するものとする。測定条件は、室温、大気中、引張速度12.6mm/minとする。
 実施形態にかかるターゲット1は、ポアまたはクラックを小さくしているので引張強さを向上させることができる。金属イットリウムは、もろい材料である。一方、ターゲット1は、スパッタ面2を平坦にする必要がある。凹凸の大きなスパッタ面ではスパッタレートが安定しないためである。平坦面を得るには、スパッタ面2に研磨加工などの表面加工が必要である。引張強さが100MPa未満の場合は、表面加工の際にクラックが発生し易くなる。このため、引張強さは100MPa以上、さらには135MPa以上であることが好ましい。
 また、ターゲット1の破断伸びが5~30%であることが好ましい。破断伸びとは、引張試験を行った際の破断点までの試料の伸びのことである。破断伸びが大きい方が破壊までの変形量が多いことになる。破断伸びが5%未満では、破断までの変形量が小さすぎて加工の応力への耐久性が低い。また、破断伸びが30%を超えて大きいと、変形量が大きすぎてターゲット1が平坦面を得難くなる。そのため、破断伸びは5~30%、さらには10~20%が好ましい。
 破断伸びの測定についてもJIS-Z-2241に準じて行うものとする。試料サイズは引張強さのものと同様である。また、測定装置も同様のものであることが好ましい。また、破断伸びの測定条件は標点間距離(Gage Length)=30mmとする。
The tensile strength of the yttrium sputtering target 1 is preferably 100 MPa or more. The tensile strength is a value obtained by dividing the maximum load when a tensile load is applied to the sample to break the sample by the cross-sectional area (cross-sectional area of the sample). It can be said that the higher the tensile strength, the less likely it is to break.
The tensile strength of the target 1 is measured according to JIS-Z-2241. The sample size shall be 6 mm ± 0.1 mm in diameter. The cross-sectional area of the sample having a diameter of 6 mm is 28.26 mm 2 . The measuring device shall be a 5567 type precision universal testing machine manufactured by Instron or has performance equivalent thereto. The measurement conditions are room temperature, air, and a pulling speed of 12.6 mm / min.
Since the target 1 according to the embodiment has small pores or cracks, the tensile strength can be improved. Yttrium metal is a brittle material. On the other hand, the target 1 needs to have a flat sputtering surface 2. This is because the sputter rate is not stable on a sputtered surface having large irregularities. In order to obtain a flat surface, surface processing such as polishing is required for the sputter surface 2. If the tensile strength is less than 100 MPa, cracks are likely to occur during surface processing. Therefore, the tensile strength is preferably 100 MPa or more, more preferably 135 MPa or more.
Further, the breaking elongation of the target 1 is preferably 5 to 30%. Elongation at break refers to the elongation of a sample up to the breaking point when a tensile test is performed. The larger the elongation at break, the greater the amount of deformation until failure. If the elongation at break is less than 5%, the amount of deformation before breaking is too small, and the durability against the stress of processing is low. If the elongation at break exceeds 30% and is large, the amount of deformation is too large and it becomes difficult for the target 1 to obtain a flat surface. Therefore, the elongation at break is preferably 5 to 30%, more preferably 10 to 20%.
The elongation at break shall be measured according to JIS-Z-2241. The sample size is similar to that of tensile strength. Further, it is preferable that the measuring device is also the same. In addition, the measurement condition of the elongation at break is set to a gauge length of 30 mm.
 また、スパッタ面2の直径が100mm以上であることが好ましい。スパッタ面2が大きいほど、一回のスパッタ工程で成膜できる量が大きくなる。ターゲット1の交換の手間を考慮すると、量産性が向上する。実施形態にかかるターゲット1は、ポアを小さくしているため、ターゲット1を大きくしたとしてもスパッタレートを均一にできる。また、スパッタ工程中に、ターゲット1の割れの発生を抑制できる。
 このため、スパッタ面2の直径を100mm以上、さらには160mm以上にすることができる。また、ターゲット1の厚みは10mm以上、さらには16mm以上にすることができる。なお、スパッタ面2の直径の上限は特に限定されるものではないが、直径400mm以下が好ましい。また、ターゲット1の厚みの上限は特に限定されるものではないが、30mm以下が好ましい。ターゲット1の直径または厚みが大きくなりすぎると、平均結晶粒径の制御が困難となる恐れがある。このため、ターゲット1のスパッタ面2の直径は100~400mm、さらには160~350mmの範囲内が好ましい。また、ターゲット1の厚みは、10~30mm、さらには16~25mmが好ましい。
The diameter of the sputter surface 2 is preferably 100 mm or more. The larger the sputtering surface 2, the larger the amount of film that can be formed in one sputtering step. Considering the time and effort required to replace the target 1, mass productivity is improved. Since the target 1 according to the embodiment has a small pore, the sputter rate can be made uniform even if the target 1 is made large. Further, it is possible to suppress the occurrence of cracks in the target 1 during the sputtering process.
Therefore, the diameter of the sputtering surface 2 can be 100 mm or more, and further 160 mm or more. Moreover, the thickness of the target 1 can be 10 mm or more, further 16 mm or more. The upper limit of the diameter of the sputtering surface 2 is not particularly limited, but a diameter of 400 mm or less is preferable. The upper limit of the thickness of the target 1 is not particularly limited, but is preferably 30 mm or less. If the diameter or thickness of the target 1 is too large, it may be difficult to control the average crystal grain size. Therefore, the diameter of the sputtering surface 2 of the target 1 is preferably 100 to 400 mm, more preferably 160 to 350 mm. The thickness of the target 1 is preferably 10 to 30 mm, more preferably 16 to 25 mm.
 また、スパッタ面2の表面粗さRaが2.0μm以下であることが好ましい。スパッタ面2は、イオン化粒子が衝突する面である。スパッタ面2の表面が荒れていると、イオン化粒子の衝突の仕方が不均一になる。この結果、スパッタレートが不均一になる。スパッタ面2の表面粗さRaは2.0μm以下、さらには1.2μm以下が好ましい。実施形態にかかるターゲット1は、引張強さを向上させているので研磨加工を行ったとしてもクラックの発生を抑制できる。
 なお、スパッタ面2の表面粗さとは、スパッタ工程を行う前の新品のターゲットのスパッタ面の表面粗さを意味する。
The surface roughness Ra of the sputter surface 2 is preferably 2.0 μm or less. The sputter surface 2 is a surface on which the ionized particles collide. If the surface of the sputter surface 2 is rough, the manner of collision of ionized particles becomes non-uniform. As a result, the sputter rate becomes non-uniform. The surface roughness Ra of the sputter surface 2 is preferably 2.0 μm or less, more preferably 1.2 μm or less. Since the target 1 according to the embodiment has improved tensile strength, it is possible to suppress the occurrence of cracks even if polishing is performed.
The surface roughness of the sputter surface 2 means the surface roughness of the sputter surface of a new target before performing the sputtering step.
 以上のようなイットリウム製スパッタリングターゲット1は、スパッタリングすることにより、成膜する成膜方法に用いるものである。
 成膜される膜は、金属イットリウム膜、イットリウム化合物膜が挙げられる。
 イットリウム化合物は、酸化物、窒化物、フッ化物、それらの複合化合物などが挙げられる。具体的には、酸化イットリウム(Y)、窒化イットリウム(YN)、フッ化イットリウム(YF)、酸フッ化イットリウム(YOF)から選ばれる1種である。
 酸化イットリウム膜を形成する場合は、酸素含有雰囲気中でスパッタする方法が挙げられる。酸素含有雰囲気を使って、酸化反応を行いながらスパッタする方法を反応性スパッタと呼ぶ。また、金属イットリウム膜を成膜した後、酸化処理する方法も挙げられる。窒化物膜、フッ化物膜、複合化合物膜についても、反応性スパッタを用いる方法または金属イットリウム膜を化合物膜に反応させる方法が適用できる。
 また、スパッタ装置としては、DCスパッタ、マグネトロンスパッタ、イオンビームスパッタなどが挙げられる。DCスパッタは、電極間に直流電圧をかける方式である。また、マグネトロンスパッタは、ターゲット1側に磁石を配置し、電極間に直流電圧をかける方式である。マグネトロンスパッタはDCスパッタの一種である。磁石を配置することにより、ターゲット1周囲に磁界を発生させることができ、電子の移動方向を制御できる。これにより、スパッタ速度を速めることができる。イオンビームスパッタは、イオン銃から放出されたイオンをターゲット1のスパッタ面2に照射する方式である。イオンビームスパッタは、スパッタに利用したいイオンのみを使うので不純物の混入を抑制できる。
 また、スパッタ工程は、真空度0.5Pa以下であることが好ましい。また、スパッタ装置の電源出力を800W(0.8kW)以上にすることが好ましい。スパッタ装置の電源出力とは、電極間に印加する電圧のことである。
 スパッタ装置の電源出力を大きくすることにより、成膜速度を早めることができる。これにより、量産性が上がる。実施形態にかかるターゲット1は、スパッタ装置の電源出力を800W以上にしたとしても、ターゲット1の割れが発生しない。このため、スパッタ装置の電源出力を1000W(1kW)以上にすることもできる。また、スパッタ装置の電源出力を大きくすると、スパッタ面2へのイオンまたは電子の衝突エネルギーが強くなる。実施形態にかかるターゲット1は、衝突エネルギーが大きくなってもターゲット1の割れが抑制できる。このため、ターゲット1の長寿命化をなしえることができる。スパッタ面2の大型化と併せて、量産性に優れた成膜方法を得ることができる。なお、スパッタ装置の電源出力の上限は特に限定されるものではないが、50kW以下であることが好ましい。電源出力が50kWを超えると、ターゲット1が割れる可能性が高くなる。言い換えると、スパッタ装置の電源出力が0.8kW以上50kW以下、さらには1kW以上40kW以下のものに好適である。
The yttrium sputtering target 1 as described above is used in a film forming method for forming a film by sputtering.
Examples of the film to be formed include a metal yttrium film and a yttrium compound film.
Examples of the yttrium compound include oxides, nitrides, fluorides, and composite compounds thereof. Specifically, it is one selected from yttrium oxide (Y 2 O 3 ), yttrium nitride (YN), yttrium fluoride (YF 3 ), and yttrium oxyfluoride (YOF).
When forming the yttrium oxide film, a method of sputtering in an oxygen-containing atmosphere can be mentioned. A method of sputtering using an oxygen-containing atmosphere while performing an oxidation reaction is called reactive sputtering. Further, a method of forming a metal yttrium film and then subjecting it to an oxidation treatment may be mentioned. The method using reactive sputtering or the method of reacting the metal yttrium film with the compound film can be applied to the nitride film, the fluoride film, and the composite compound film.
Further, examples of the sputtering device include DC sputtering, magnetron sputtering, and ion beam sputtering. DC sputtering is a method of applying a DC voltage between electrodes. The magnetron sputtering is a method in which a magnet is arranged on the target 1 side and a DC voltage is applied between the electrodes. Magnetron sputter is a type of DC sputter. By arranging the magnet, a magnetic field can be generated around the target 1 and the electron moving direction can be controlled. Thereby, the sputtering speed can be increased. The ion beam sputtering is a method of irradiating the sputtering surface 2 of the target 1 with the ions emitted from the ion gun. Since the ion beam sputtering uses only the ions desired to be used for sputtering, it is possible to suppress the mixing of impurities.
Further, in the sputtering process, the degree of vacuum is preferably 0.5 Pa or less. Further, it is preferable that the power supply output of the sputtering device is 800 W (0.8 kW) or more. The power output of the sputtering apparatus is the voltage applied between the electrodes.
By increasing the power output of the sputtering apparatus, the film formation speed can be increased. This improves mass productivity. With the target 1 according to the embodiment, cracking of the target 1 does not occur even if the power output of the sputtering apparatus is 800 W or higher. Therefore, the power output of the sputtering apparatus can be set to 1000 W (1 kW) or more. Further, when the power output of the sputtering apparatus is increased, the collision energy of ions or electrons on the sputtering surface 2 becomes stronger. The target 1 according to the embodiment can suppress the cracking of the target 1 even when the collision energy increases. Therefore, the life of the target 1 can be extended. Along with the increase in the size of the sputtering surface 2, a film forming method having excellent mass productivity can be obtained. The upper limit of the power output of the sputtering device is not particularly limited, but is preferably 50 kW or less. When the power output exceeds 50 kW, the possibility that the target 1 will crack increases. In other words, it is suitable for a power source output of the sputtering device of 0.8 kW or more and 50 kW or less, and further 1 kW or more and 40 kW or less.
 次に、実施形態にかかるイットリウム製スパッタリングターゲット1の製造方法について説明する。実施形態にかかるイットリウム製スパッタリングターゲット1は上記構成を有していれば、その製造方法は特に限定されるものではないが、歩留り良く得るための方法は次の通りである。
 第1の製造方法は、電子ビーム溶解(EB溶解)を使う方法である。市販の金属イットリウムは、Y以外の希土類元素およびガス成分を除いた純度が2N~3N程度である。市販レベルの金属イットリウムを原料とし、EB溶解を行うものとする。EB溶解は、電子ビームを原料に照射し、溶解させた後、固めていく方法である。このEB溶解を2回以上、繰り返してイットリウムインゴットを作製していくものとする。EB溶解を行うことにより、不純物元素が低減していく。また、3回以上繰り返すことにより、インゴット中のポアが形成され難くなる。つまり、EB溶解後のインゴットを繰り返しEB溶解することにより、ポアを消滅させることができるのである。このため、EB溶解の回数は2回以上、さらには3回以上が好ましい。なお、EB溶解の回数の上限は特に限定されるものではないが10回以下が好ましい。10回を超えて増やしても、それ以上の効果が得難く、コストアップの要因となる。また、電子ビームの出力は1~1000kWの範囲内であることが好ましい。電子ビームの出力が1kW未満では溶解するのに時間がかかる。1000kWを超えるとレーザ出力が強すぎて結晶粒径のばらつきが発生し易くなる。このため、電子ビーム出力は1~1000kW、さらには5~300kWが好ましい。
 また、引き上げ速度を遅くすることも有効である。EB溶解は電子ビームにより溶解した溶解物を引き上げながら固めていく方式である。引き上げ速度を速めると、十分に固化していないため、ポアが発生する可能性が高くなる。このため、引き上げ速度は、1mm/min未満が好ましい。また、引き上げ工程は、途中で止めずに連続的に行うことが好ましい。引き上げ速度を変えると、平均結晶粒径のばらつきが生じ易くなる。
 また、インゴットの直径は、目的とするターゲット1の直径に対し、プラス20mm以上になってから取り出すものとする。金属イットリウムは酸化し易い材料である。インゴットの表面が酸化され易く、インゴット表面にポアが形成され易い。このため、ターゲット1のターゲットサイズよりも20mm以上大きなインゴットにする方法が有効である。これにより、インゴットからポアの小さい部分をターゲット1として用いることができる。
Next, a method for manufacturing the yttrium sputtering target 1 according to the embodiment will be described. The yttrium sputtering target 1 according to the embodiment is not particularly limited in its manufacturing method as long as it has the above-mentioned configuration, but the method for obtaining a high yield is as follows.
The first manufacturing method is a method using electron beam melting (EB melting). Commercially available metal yttrium has a purity of about 2N to 3N excluding rare earth elements other than Y and gas components. EB melting is performed using commercially available metal yttrium as a raw material. The EB melting is a method of irradiating a raw material with an electron beam, melting the material, and then solidifying the material. This EB melting is repeated twice or more to produce an yttrium ingot. Impurity elements are reduced by performing EB melting. Moreover, by repeating the process three times or more, it becomes difficult to form pores in the ingot. That is, the pores can be eliminated by repeatedly EB-melting the ingot after EB melting. For this reason, the number of EB dissolutions is preferably 2 or more, more preferably 3 or more. The upper limit of the number of EB dissolutions is not particularly limited, but is preferably 10 times or less. Even if the number is increased over 10 times, it is difficult to obtain a further effect, which causes a cost increase. The output of the electron beam is preferably in the range of 1 to 1000 kW. If the output of the electron beam is less than 1 kW, it takes time to melt. If it exceeds 1000 kW, the laser output is too strong and the variation in crystal grain size is likely to occur. Therefore, the electron beam output is preferably 1 to 1000 kW, more preferably 5 to 300 kW.
It is also effective to slow down the pulling speed. EB melting is a method in which a melted material that is melted by an electron beam is pulled up and solidified. When the pulling speed is increased, pores are more likely to occur due to insufficient solidification. Therefore, the pulling rate is preferably less than 1 mm / min. Further, it is preferable that the pulling-up step is continuously performed without being stopped halfway. When the pulling rate is changed, the average crystal grain size tends to vary.
Further, the diameter of the ingot is to be taken out after the diameter of the target 1 is increased by 20 mm or more. Yttrium metal is a material that is easily oxidized. The surface of the ingot is easily oxidized and pores are easily formed on the surface of the ingot. Therefore, a method of making an ingot larger than the target size of the target 1 by 20 mm or more is effective. As a result, a portion having a small pore from the ingot can be used as the target 1.
 また、第2の製造方法は、高周波溶解法を使う方法である。高周波溶解法は、誘導コイルを用いて金属を溶解する方法である。コイルに高周波電流を印加すると、金属に渦電流が生じ、熱が発生する。この熱により金属を溶解する方法である。高周波電流としては500Hz以上が好ましい。発生する熱エネルギーは、金属の半径に比例し、高さに反比例する。また、発生する熱エネルギーは、電流の周波数の2乗に比例する。このため、溶解する金属のサイズや電流の周波数を制御することにより、熱エネルギーを調整することができる。
 また、高周波溶解法としては、誘導スカル溶解が好ましい。誘導スカル溶解とは、水冷金属ルツボと誘導コイルを組み合わせた溶解法である。水冷金属ルツボとしては、水冷銅ルツボが挙げられる。ルツボ内に金属材料を配置する。誘導コイルに高周波電流を印加すると、ルツボ内の金属材料は溶解していく。ツルボの底部には金属材料の溶湯が凝結し、スカルを形成する。また、誘導コイルに高周波電流を印加すると磁界が発生する。磁界はルツボ内の金属溶湯を攪拌する。強力な攪拌力により、均質な溶解を行うことができる。また、ルツボ内を真空にすることにより、脱ガス効果や不純物の揮発効果を得ることができる。
 また、金属溶湯を鋳造することにより、インゴットを作製することができる。目的とするターゲット1のターゲットのサイズに合わせた鋳型を使うことにより、ターゲットサイズに近いインゴットを製造することができる。つまり、インゴットから削除する量を10mm以下に減らすことができる。このようなインゴットであれば、鍛造や圧延加工を施さなくてもターゲット1を仕上げることができる。
The second manufacturing method is a method using a high frequency melting method. The high frequency melting method is a method of melting a metal using an induction coil. When a high frequency current is applied to the coil, an eddy current is generated in the metal and heat is generated. This is a method of melting the metal by this heat. The high frequency current is preferably 500 Hz or higher. The generated heat energy is proportional to the radius of the metal and inversely proportional to the height. Further, the generated heat energy is proportional to the square of the frequency of the current. Therefore, the thermal energy can be adjusted by controlling the size of the metal to be melted and the frequency of the current.
Induction skull melting is preferable as the high-frequency melting method. Induction skull melting is a melting method that combines a water-cooled metal crucible and an induction coil. Examples of the water-cooled metal crucible include a water-cooled copper crucible. A metallic material is placed in the crucible. When a high frequency current is applied to the induction coil, the metal material in the crucible melts. The molten metal material is condensed at the bottom of the crucible to form a skull. Further, when a high frequency current is applied to the induction coil, a magnetic field is generated. The magnetic field stirs the molten metal in the crucible. A strong stirring force allows homogeneous dissolution. In addition, a degassing effect and an effect of volatilizing impurities can be obtained by creating a vacuum inside the crucible.
Moreover, an ingot can be produced by casting a molten metal. By using a mold that matches the target size of the target 1 that is the target, an ingot close to the target size can be manufactured. That is, the amount to be deleted from the ingot can be reduced to 10 mm or less. With such an ingot, the target 1 can be finished without performing forging or rolling.
 また、第1の製造方法または第2の製造方法により得られたインゴットを切断加工、研磨加工などを施してターゲット1に仕上げていく。スパッタ面は表面粗さRaが2.0μm以下になるように研磨加工を施すものとする。
 また、必要に応じ、鍛造加工、圧延加工などを施すものとする。鍛造加工または圧延加工を行うことにより、ターゲットサイズを調整し易い。また、インゴット内に存在するポアをつぶして小さくすることができる。一方、加工時の応力が大きすぎると、インゴットにクラックが形成され易くなる。
 なお、上記インゴットの製造方法により得られたインゴットは、ポアの発生が抑制されているので、鍛造加工または圧延加工を行わなくてもターゲット1に加工することができる。
 また、必要に応じ、バッキングプレートを接合するものとする。
In addition, the target 1 is finished by subjecting the ingot obtained by the first manufacturing method or the second manufacturing method to cutting processing, polishing processing, or the like. The sputtered surface is polished so that the surface roughness Ra is 2.0 μm or less.
Moreover, forging, rolling, etc. shall be performed as needed. It is easy to adjust the target size by performing forging or rolling. In addition, the pores existing in the ingot can be crushed and made smaller. On the other hand, if the stress during processing is too large, cracks are likely to be formed in the ingot.
Since the ingot obtained by the method for producing an ingot described above has generation of pores suppressed, it can be processed into the target 1 without forging or rolling.
In addition, a backing plate shall be joined if necessary.
(実施例)
(実施例1~8、比較例1)
 市販のイットリウムを原料として用意した。市販のイットリウムは、Y以外の希土類元素とガス成分を除いた純度は3Nである。
 次に、市販のイットリウムに対し、実施例1~5にかかる条件と、比較例1にかかる条件とによりEB溶解をそれぞれ実施した。EB溶解の電子ビーム出力は20kWで統一した。得られたインゴットからターゲットを切り出した。また、スパッタ面を研磨加工した。EB溶解の回数、引き上げ速度およびインゴットサイズ、ターゲットサイズ、スパッタ面の表面粗さRaは表1に示した通りのものとした。
(Example)
(Examples 1 to 8 and Comparative Example 1)
Commercially available yttrium was prepared as a raw material. The purity of commercially available yttrium excluding rare earth elements other than Y and gas components is 3N.
Next, EB dissolution was performed on commercially available yttrium under the conditions according to Examples 1 to 5 and the condition according to Comparative Example 1, respectively. The electron beam output for EB melting was unified at 20 kW. A target was cut out from the obtained ingot. In addition, the sputtered surface was polished. The number of EB meltings, the pulling rate, the ingot size, the target size, and the surface roughness Ra of the sputter surface were as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、市販のイットリウムに対し、実施例6~8にかかる条件により、誘導スカル溶解を行った。印加する高周波電流は500Hz以上とした。また、真空中で溶解した。得られたインゴットの直径、ターゲットサイズ、スパッタ面の表面粗さRaは表2に示した通りのものとした。 In addition, induction skull melting was performed on commercially available yttrium under the conditions according to Examples 6 to 8. The high frequency current applied was 500 Hz or higher. Moreover, it melt | dissolved in a vacuum. The diameter, target size, and surface roughness Ra of the sputter surface of the obtained ingot were as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 複数の条件で市販のイットリウムから得られた複数のターゲットはいずれもY以外の希土類元素およびガス成分を除いた純度は4N以上のものであった。なお、不純物金属成分の含有量はGDMS分析により行った。また、ガス成分の含有量は、IGA法により行った。
 次に、複数の条件で市販のイットリウムから得られた複数のターゲットのポアの最大径、クラックの最大長さ、平均結晶粒経、引張強さをそれぞれ測定した。
 ポアの最大径の測定は、ターゲットの任意の断面において、単位面積10mm×10mmの光学顕微鏡写真(50倍)を撮影することで行われる。写真に写るポアの中で最も長い対角線を測定する。この作業を単位面積(10mm×10mm)の3箇所分行い、その中で最も大きな対角線を最大径とした。また、単位面積(10mm×10mm)を3箇所分で、最も多かったポアの個数を示した。
 また、クラックの最大長さの最大径は、単位面積30mm×30mmの光学顕微鏡写真(50倍)を撮影する。写真に写るクラック(4つの結晶粒子につらなったポア)の長さを求めた。単位面積(30mm×30mm)の3箇所分行い、その中で最も長いものをクラックの最大長さとした。また、単位面積(30mm×30mm)を3箇所分で、最も多かったクラックの個数を示した。
 平均結晶粒径の測定は、ターゲットのスパッタ面を光学顕微鏡写真(50倍)で撮影することで行われる。写真上に写るイットリウム結晶の個数をカウントする。「スパッタ面の面積÷スパッタ面に観察されるイットリウム結晶の個数」により結晶1個の面積を計算する。結晶1個を真円と仮定して直径を求めたものである。
 また、引張強さの測定はJIS-Z-2241に準じて行った。試料サイズは直径6mm×長さ100mmの円柱をターゲットから切り出した。測定装置として、インストロン社製5567型精密万能試験機を用いた。測定条件は、室温、大気中、引張速度12.6mm/minとした。また、破断伸びの測定は標点間距離=30mmで行った。
 その結果を表3に示す。
All of the plurality of targets obtained from commercially available yttrium under a plurality of conditions had a purity of 4N or more excluding rare earth elements other than Y and gas components. The content of the impurity metal component was determined by GDMS analysis. The content of the gas component was determined by the IGA method.
Next, the maximum diameter of the pores, the maximum length of the cracks, the average crystal grain diameter, and the tensile strength of the plurality of targets obtained from commercially available yttrium were measured under a plurality of conditions.
The maximum diameter of the pore is measured by taking an optical micrograph (50 times) of a unit area of 10 mm × 10 mm in an arbitrary cross section of the target. Measure the longest diagonal of the pores in the picture. This work was carried out for three places of a unit area (10 mm × 10 mm), and the largest diagonal line among them was taken as the maximum diameter. In addition, the unit area (10 mm × 10 mm) for three locations shows the largest number of pores.
For the maximum diameter of the maximum crack length, an optical microscope photograph (50 times) of a unit area of 30 mm × 30 mm is taken. The length of cracks (pores connected to four crystal grains) shown in the photograph was determined. The unit area (30 mm × 30 mm) was performed for three places, and the longest one was taken as the maximum crack length. In addition, the unit area (30 mm × 30 mm) for three locations shows the number of cracks that was the largest.
The average crystal grain size is measured by photographing the sputtering surface of the target with an optical microscope photograph (50 times). Count the number of yttrium crystals in the photo. The area of one crystal is calculated by "area of sputter surface / number of yttrium crystals observed on sputter surface". The diameter is calculated assuming that one crystal is a perfect circle.
The tensile strength was measured according to JIS-Z-2241. As the sample size, a cylinder having a diameter of 6 mm and a length of 100 mm was cut out from the target. An Instron 5567 type precision universal tester was used as a measuring device. The measurement conditions were room temperature, air, and a pulling speed of 12.6 mm / min. The breaking elongation was measured at a gauge length = 30 mm.
The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~8にかかる条件で得られた複数のターゲット1は引張強さが100MPa以上、さらには135MPa以上であった。これはポアやクラックが小さいためである。また、実施例1~8にかかる条件で得られた複数のターゲット1はイットリウム結晶の輪郭が波型形状を有していた。なお、実施例1~8にかかる条件で得られる複数のインゴットについても、複数のターゲット1と同様に、ポア、クラックが小さく、個数も少ない。
 次に、実施例1~8にかかる条件で得られた複数のターゲット1と、比較例1にかかる条件で得られたターゲットとを用いて、スパッタリングを行った。スパッタリングは真空度0.5Pa以下で行った。
 スパッタ装置の電源出力を800W、2000Wの2つで行い、ターゲットの割れの発生の有無を確認した。
 また、スパッタレートの変化率を測定した。スパッタレートの変化率は、積算投入電力量の変化量により求めた。変化量が5%以下を「A」、5%を超えて10%以下のものを「B」、10%を超えて20%以下のものを「C」、20%を超えたものを「D」とした。つまり、変化量が優れているものから順に「A」、「B」、「C」、「D」とした。
 その結果を表4に示す。
The plurality of targets 1 obtained under the conditions according to Examples 1 to 8 had a tensile strength of 100 MPa or more, and further 135 MPa or more. This is because the pores and cracks are small. Further, in the plurality of targets 1 obtained under the conditions according to Examples 1 to 8, the yttrium crystal had a wavy outline. As with the plurality of targets 1, the plurality of ingots obtained under the conditions according to Examples 1 to 8 also have small pores and cracks and a small number.
Next, sputtering was performed using the plurality of targets 1 obtained under the conditions according to Examples 1 to 8 and the target obtained under the conditions according to Comparative Example 1. Sputtering was performed at a vacuum degree of 0.5 Pa or less.
The power output of the sputtering apparatus was set to 800 W and 2000 W, and it was confirmed whether or not the target was cracked.
In addition, the rate of change of the sputter rate was measured. The rate of change in the sputter rate was determined by the amount of change in the cumulative amount of input power. "A" when the amount of change is 5% or less, "B" when it exceeds 5% and 10% or less, "C" when it exceeds 20% and 20% or less, and "D" when it exceeds 20%. " In other words, “A”, “B”, “C”, and “D” are listed in the descending order of the amount of change.
The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から分かる通り、実施例1~8にかかる条件で得られた複数のターゲット1ではスパッタ工程中に割れが発生しなかった。また、実施例1~8にかかる条件で得られた複数のターゲット1では安定したスパッタレートも得られた。また、ポアの最大径を0.5mm以下、クラックの最大長さが1.2mm以下である、実施例3~8にかかる条件で得られた複数のターゲット1では、特に安定したスパッタレートが得られた。また、実施例4~8にかかる条件で得られた複数のターゲット1ではクラックがないため、スパッタ装置の電源出力を大きくしたとしてもスパッタレートは安定した。 As can be seen from Table 4, cracks did not occur during the sputtering process with the multiple targets 1 obtained under the conditions according to Examples 1 to 8. Further, a stable sputtering rate was also obtained with the plurality of targets 1 obtained under the conditions according to Examples 1 to 8. Further, in the plurality of targets 1 obtained under the conditions according to Examples 3 to 8 in which the maximum diameter of the pores is 0.5 mm or less and the maximum length of the cracks is 1.2 mm or less, a particularly stable sputtering rate is obtained. Was given. Further, since the plurality of targets 1 obtained under the conditions according to Examples 4 to 8 had no cracks, the sputtering rate was stable even if the power output of the sputtering apparatus was increased.
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。 Although several embodiments of the present invention have been illustrated above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the scope equivalent thereto. Further, the above-described respective embodiments can be implemented in combination with each other.

Claims (11)

  1.  ポアの最大径が1mm以下であることを特徴とするイットリウム製スパッタリングターゲット。 ▽ A sputtering target made of yttrium characterized in that the maximum diameter of the pore is 1 mm or less.
  2.  前記イットリウム製スパッタリングターゲットの任意の断面中に存在するポアの個数が0個以上2個以下であることを特徴とする請求項1記載のイットリウム製スパッタリングターゲット。 The yttrium sputtering target according to claim 1, wherein the number of pores present in an arbitrary cross section of the yttrium sputtering target is 0 or more and 2 or less.
  3.  イットリウムの純度が、希土類元素およびガス成分を除いて4N以上であることを特徴とする請求項1ないし請求項2のいずれか1項に記載のイットリウム製スパッタリングターゲット。 The yttrium sputtering target according to any one of claims 1 and 2, wherein the yttrium has a purity of 4N or more excluding rare earth elements and gas components.
  4.  クラックの最大長さが3mm以下であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のイットリウム製スパッタリングターゲット。 The yttrium sputtering target according to any one of claims 1 to 3, wherein the maximum crack length is 3 mm or less.
  5.  イットリウム結晶の平均結晶粒経が0.3~25mmの範囲内であることを特徴とする請求項1ないし請求項4のいずれか1項に記載のイットリウム製スパッタリングターゲット。 The yttrium sputtering target according to any one of claims 1 to 4, wherein an average grain size of the yttrium crystal is within a range of 0.3 to 25 mm.
  6.  引張強さが100MPa以上であることを特徴とする請求項1ないし請求項5のいずれか1項に記載のイットリウム製スパッタリングターゲット。 The yttrium sputtering target according to any one of claims 1 to 5, which has a tensile strength of 100 MPa or more.
  7.  スパッタ面の直径が100mm以上であることを特徴とする請求項1ないし請求項6のいずれか1項に記載のイットリウム製スパッタリングターゲット。 The yttrium sputtering target according to any one of claims 1 to 6, wherein the sputtering surface has a diameter of 100 mm or more.
  8.  スパッタ面の表面粗さRaが2.0μm以下であることを特徴とする請求項1ないし請求項7のいずれか1項に記載のイットリウム製スパッタリングターゲット。 The yttrium sputtering target according to any one of claims 1 to 7, wherein the sputtering surface has a surface roughness Ra of 2.0 µm or less.
  9.  請求項1ないし請求項8のいずれか1項に記載の前記イットリウム製スパッタリングターゲットをスパッタリングすることにより、成膜する成膜方法。 A film forming method for forming a film by sputtering the yttrium sputtering target according to any one of claims 1 to 8.
  10.  成膜した膜が金属イットリウム膜であり、該金属イットリウム膜を酸化処理することにより酸化イットリウム膜を形成することを特徴とする請求項9記載の成膜方法。 10. The film forming method according to claim 9, wherein the formed film is a metal yttrium film, and the yttrium oxide film is formed by oxidizing the metal yttrium film.
  11.  酸素含有雰囲気中でスパッタリングすることにより、酸化イットリウム膜を形成することを特徴とする請求項9記載の成膜方法。 10. The film forming method according to claim 9, wherein the yttrium oxide film is formed by sputtering in an oxygen-containing atmosphere.
PCT/JP2019/042778 2018-11-02 2019-10-31 Yttrium sputtering target and film-forming method using same WO2020090977A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020554038A JPWO2020090977A1 (en) 2018-11-02 2019-10-31 Yttrium sputtering target and film formation method using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018207285 2018-11-02
JP2018-207285 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020090977A1 true WO2020090977A1 (en) 2020-05-07

Family

ID=70463331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042778 WO2020090977A1 (en) 2018-11-02 2019-10-31 Yttrium sputtering target and film-forming method using same

Country Status (2)

Country Link
JP (1) JPWO2020090977A1 (en)
WO (1) WO2020090977A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215376A1 (en) * 2020-04-23 2021-10-28 東ソー株式会社 Yttrium ingot and sputtering target using same
WO2024053257A1 (en) * 2022-09-09 2024-03-14 日本イットリウム株式会社 Material for film formation and method for producing coating film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738993B2 (en) * 1977-07-06 1982-08-18
JPH02311394A (en) * 1989-05-25 1990-12-26 Daido Steel Co Ltd W target material
JP2009001866A (en) * 2007-06-21 2009-01-08 Nikko Kinzoku Kk Erbium sputtering target, and method for producing the same
WO2014157054A1 (en) * 2013-03-26 2014-10-02 Jx日鉱日石金属株式会社 Sputtering silicide target and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738993B2 (en) * 1977-07-06 1982-08-18
JPH02311394A (en) * 1989-05-25 1990-12-26 Daido Steel Co Ltd W target material
JP2009001866A (en) * 2007-06-21 2009-01-08 Nikko Kinzoku Kk Erbium sputtering target, and method for producing the same
WO2014157054A1 (en) * 2013-03-26 2014-10-02 Jx日鉱日石金属株式会社 Sputtering silicide target and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215376A1 (en) * 2020-04-23 2021-10-28 東ソー株式会社 Yttrium ingot and sputtering target using same
WO2024053257A1 (en) * 2022-09-09 2024-03-14 日本イットリウム株式会社 Material for film formation and method for producing coating film

Also Published As

Publication number Publication date
JPWO2020090977A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP5472353B2 (en) Silver-based cylindrical target and manufacturing method thereof
JP5783293B1 (en) Material for cylindrical sputtering target
WO2009107763A1 (en) Metallic sputtering target material
JP5203908B2 (en) Ni-Mo alloy sputtering target plate
WO2019187311A1 (en) Sputtering target member and method for producing same
WO2017033694A1 (en) High purity copper sputtering target material
WO2020090977A1 (en) Yttrium sputtering target and film-forming method using same
KR20190018561A (en) Method for producing sputtering target, and sputtering target
US20220325383A1 (en) Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy structural component, and manufacturing method of the same
JP2022048244A (en) FORMATION METHOD OF Au FILM
JP6661953B2 (en) High purity copper sputtering target material
JP6661951B2 (en) High purity copper sputtering target material
US20140112819A1 (en) Titanium alloy member and production method therefor
JP6651737B2 (en) High purity copper sputtering target material
JP6662087B2 (en) High purity copper sputtering target material
JP2003277924A (en) Method of producing ruthenium sputtering target and target obtained thereby
JP2018145518A (en) Cu-Ni alloy sputtering target
WO2023058698A1 (en) Sputtering target, method for producing same, and method for producing sputtering film using sputtering target
JP6387847B2 (en) Cu-Ga alloy sputtering target and Cu-Ga alloy ingot
TW201638348A (en) Copper-gallium alloy sputtering target
CN116727669A (en) Chromium sintered body and method for producing same, sputtering target, and method for producing substrate with chromium film
TWI613307B (en) Tantalum sputtering target and method of making the same
KR20230017181A (en) Metal-Si-based powder, manufacturing method thereof, and manufacturing method of metal-Si-based sintered body, sputtering target, and metal-Si-based thin film
JP2021127478A (en) Yttrium-made sputtering target and deposition method using the same
KR20230007314A (en) Yttrium ingot and sputtering target using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879416

Country of ref document: EP

Kind code of ref document: A1