WO2020090529A1 - 転送装置及びリソース割当方法 - Google Patents
転送装置及びリソース割当方法 Download PDFInfo
- Publication number
- WO2020090529A1 WO2020090529A1 PCT/JP2019/041190 JP2019041190W WO2020090529A1 WO 2020090529 A1 WO2020090529 A1 WO 2020090529A1 JP 2019041190 W JP2019041190 W JP 2019041190W WO 2020090529 A1 WO2020090529 A1 WO 2020090529A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- loss
- occurrence
- time
- buffer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/90—Buffering arrangements
- H04L49/9063—Intermediate storage in different physical parts of a node or terminal
- H04L49/9068—Intermediate storage in different physical parts of a node or terminal in the network interface card
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/90—Buffering arrangements
- H04L49/9084—Reactions to storage capacity overflow
Definitions
- the present invention relates to an IP (Internet Protocol) network in which packet transfer is performed, and particularly in the case where a plurality of communication services are multiplexed in the same IP network, a transfer device that performs path control and packet transfer, and a transfer device
- IP Internet Protocol
- the present invention relates to a resource allocation method that allocates an IF (interface) to be used according to a buffer.
- a burst of traffic in which traffic temporarily increases may cause a packet loss (discard of a packet) in a transfer device.
- a transfer device suppresses packet loss (also referred to as loss) due to bursts as much as possible. For this reason, packets are buffered by a buffer that uses a queue called a packet buffer.
- This buffering means that when the amount of traffic at the time of packet transfer in the IF (interface) for packet transfer installed in the buffer exceeds the maximum transfer capacity of the IF, packets with the exceeded traffic amount are input to the buffer. Executed.
- IF is a physical IF such as a port for packet transfer connected to the network.
- Optical fibers and metal cables connected to the network are connected to the IF.
- the IF may be a logical IF separated by a VLAN (Virtual Local Area Network) or the like.
- the buffer there is a limit to the amount of packets that can be buffered in the buffer of the transfer device because it depends on the buffer capacity of the buffer.
- the buffer there are the shared buffer 11 shown in FIG. 5 and the plurality of buffers 11a, 11b, ..., 11n shown in FIG.
- the shared buffer 11 shown in FIG. 5 is mounted and connected to the transfer control unit 12A that controls packet transfer in the transfer device 10A.
- this shared buffer 11 all the IFs connected to the network are preliminarily mounted so as to be shared.
- the buffers 11a to 11n shown in FIG. 6 are divided into a number of groups (n groups in this example) in which all the IFs are grouped into a plurality of groups according to the dependency with the connection destination, and the buffers 11a to 11n. Each has a group-based IF pre-installed therein. A set of IFs on a group basis is called an IF group.
- the buffer capacities of the buffers 11a to 11n are determined in advance according to the number of IFs (four IFs in this example) of the mounted IF group. Further, the buffers 11a to 11n are connected to the transfer control unit 12B and mounted in the transfer device 10B.
- the transfer control units 12A (FIG. 5) and 12B (FIG. 6) are configured by using an ASIC (Application Specific Integrated Circuit) or the like.
- burst can be visualized by observing (detecting) the counter value (traffic volume) of the packet input to the IF, and the amount of change over time.
- the counter value (traffic volume) of the packet input to the IF
- microburst traffic also referred to as microtraffic
- This microphone traffic cannot be confirmed in detail by the usual visualization method because of its low time resolution.
- Patent Document 1 and Non-Patent Document 1 a method of visualizing the temporal change of the burst is being studied. For example, since a transfer delay occurs when the buffer capacity usage rate increases, there is a method in which packets for delay measurement are constantly distributed. Further, as described in Non-Patent Document 2, by using a monitoring technique whose processing is light, a traffic amount is acquired at a very short interval, and when this traffic amount is close to a limit value, a burst occurs. Therefore, there is also a method of estimating the presence or absence of a burst.
- the resource in the resource allocation described in this specification refers to an IF including a buffer.
- Resource allocation is IF allocation that allocates packet traffic to an IF. This IF allocation is to perform IF expansion using an unused IF in accordance with a resource allocation instruction from the host device.
- a congestion state of the network is estimated from a packet loss amount and the like, and an accommodating device (corresponding to a buffer equipped with a plurality of IFs) suitable for eliminating the loss is selected or disclosed in Patent Document 2.
- An accommodating device corresponding to a buffer equipped with a plurality of IFs
- Patent Document 2 A method of selecting a transfer route as described is known.
- the buffer capacity is limited to one buffer in advance, so there was a limit to the buffer capacity. Therefore, in the transfer device 10B including the buffers 11a to 11n for each IF group illustrated in FIG. 6, it is considered that the loss amount can be further suppressed by appropriately selecting which traffic is accommodated in which IF group. ..
- the present invention has been made in view of the above circumstances, and packet loss occurs when a transfer device that performs packet transfer includes a group of buffers equipped with grouped IFs (interfaces) in group units.
- An object of the present invention is to provide a transfer device and a resource allocation method capable of allocating an IF to be used according to a buffer so as not to exist.
- the invention divides a plurality of IFs (interfaces) for packet transfer into a group of a number smaller than the number of IFs, and It has a plurality of buffers that are equipped with IFs and the buffer capacity is determined according to the number of installed IFs. Packets are transferred to and from the network via the IFs of each buffer, and the traffic volume during packet transfer is A transfer device that buffers packets with an excess traffic volume in a buffer when the maximum transfer capacity of the IF is exceeded, and discards packets when transferring packets by the IF per unit time in all the IF groups of the transfer device.
- Select IF group a transfer device, characterized in that it comprises an IF assignment unit that performs IF allocation to allocate traffic of the IF to the packet of the selected IF group.
- the invention according to claim 7 is divided into a number of groups in which a plurality of IFs for packet transfer are grouped in a unit smaller than the number of IFs, and the IFs in each group are mounted, and the IFs are mounted according to the number of mounted IFs. It has a plurality of buffers with a fixed buffer capacity, transfers packets to and from the network via the IF of each buffer, and exceeds the maximum transfer capacity of the IF when the traffic volume during packet transfer exceeds the maximum transfer capacity.
- the transfer device that transfers packets includes a number of groups of buffers each including a grouped IF in group units, a buffer is provided so that packet loss does not occur.
- the IF to be used can be assigned according to
- the IF allocation is performed by adding an IF to an unused IF mounted on a buffer of the selected IF group, and connecting an IF to a network of another buffer. It is a process of allocating traffic to the IF after the pre-processing of any one of the IF connection destination change to be changed and the IF increase / decrease to increase or decrease the IF in use in the selected buffer is executed.
- the transfer device according to claim 1, wherein:
- the presence / absence of a burst occurrence which is the burst traffic occurrence when the traffic volume during packet transfer in the IF exceeds the maximum transfer capacity of the IF, is detected, and the detected burst occurrence information is detected.
- a management unit that stores the loss information in the storage unit in units of IF groups in association with the loss occurrence time information is provided, and the IF allocation unit determines whether a loss has occurred based on the loss occurrence information stored in the storage unit.
- the IF group with the smallest burst occurrence among the IF groups in which no loss has occurred is determined based on the information on the presence or absence of the burst occurrence as described above.
- a transfer device according to claim 1 or 2, characterized in that non-occurrence time Aringu is selected regarded as the longest IF group.
- the IF group with the smallest burst occurrence among the IF groups with no loss is buffered based on the information on the presence or absence of the loss and the information on the presence or absence of the burst associated with the time information acquired by the management unit. It can be selected by considering it as the IF group with the longest ring non-occurrence time.
- the calculation for this selection can be realized by a simple calculation formula because the selection algorithm is simple. Therefore, when performing IF allocation, IF allocation can be performed so that loss can be prevented by simple calculation.
- the IF allocation unit is configured to, if there is no IF group in which the loss has not occurred at the time of packet transfer by IF per unit time, in all the IF groups of the transfer device. 3. The transfer device according to claim 1, wherein the IF group with the smallest loss is selected and the IF allocation is performed.
- the IF to be used can be assigned according to the buffer so that packet loss is minimized.
- the IF assigning unit estimates the loss from the traffic characteristic of each IF group, 3.
- an IF group having the smallest burst occurrence is selected as an IF group having the longest non-occurrence time of the buffering among the IF groups that have not yet occurred. ..
- the IF group having the traffic characteristics estimated by the estimation unit when the presence of the loss-free IF group is detected, the IF group having the minimum burst occurrence in the loss-less IF group, It can be selected by considering it as the IF group with the longest buffering non-occurrence time.
- the calculation for this selection can be realized by a simple calculation formula because the selection algorithm is simple. Therefore, when performing IF allocation, it is possible to perform IF allocation so that loss can be prevented by simple estimation calculation.
- the IF allocation unit when the IF allocation unit does not detect the presence of an IF group in which a loss has not occurred in the IF groups having the traffic characteristics estimated by the estimation unit, the IF groups are lost from all the estimated IF groups. 6.
- the IF to be used can be assigned according to the buffer so that the packet loss is minimized.
- a transfer device for transferring a packet when a transfer device for transferring a packet is provided with a group of buffers equipped with grouped IFs (interfaces) in group units, an IF that should be used according to the buffer so that packet loss does not occur. It is possible to provide a transfer device and a resource allocation method for allocating resources.
- FIG. 1 is a block diagram showing the configuration of a transfer device according to an embodiment of the present invention.
- the transfer device 10C shown in FIG. 1 is different from the transfer device 10B (FIG. 6) in that a resource allocation control unit (also referred to as a control unit) 20 is provided in addition to the configuration of the transfer device 10B.
- the control unit 20 performs control for allocating IFs to be used according to the buffers 11a to 11n according to a resource allocation instruction from a host device (not shown).
- the control unit 20 includes a resource management unit 21, a resource estimation unit 22, and an IF allocation unit 23.
- the buffers 11a to 11n are divided into a plurality of groups (n groups) in which all the IFs are grouped in accordance with the dependency relationship with the connection destination and the like, and each of the buffers 11a to 11n is grouped in advance. It is equipped with an IF. That is, the buffer 11a is equipped with four IFs forming one group a indicated by reference signs a1, a2, a3 and a4. The buffer 11b is equipped with four IFs forming one group b indicated by reference numerals b1, b2, b3 and b4. The buffer 11n mounts four IFs forming one group n shown by reference numerals n1, n2, n3 and n4.
- IF expansion is performed by connecting to the optical fiber or metal cable of the network.
- the IF connection destination change for changing the connection of the IF to the network to the IF of another buffer is also performed manually.
- the buffer for example, 11a
- the four IFa1 to a4 in use that are one group a are changed to three IFa1 to a3, and the three IFa1 to a3 in use are changed to four IFa1 to a4.
- the number of IFs to be added or removed is also manually increased. It should be noted that IF addition, IF connection destination change, and IF increase / decrease are referred to as preprocessing in the claims.
- the number of buffers 11a to 11n and the number of IFa1 to n4 of each group pre-installed for each buffer 11a to 11n are fixed in advance and cannot be changed.
- the resource management unit (also referred to as a management unit) 21 detects the traffic amount at the time of packet transfer by the IF mounted in each of the buffers 11a to 11n and determines the usage rate of the buffer capacity of each of the buffers 11a to 11n. Manage to detect. However, since the usage rate cannot be directly detected, it is detected as described later. Further, the detection of the traffic amount is performed by a method such as counting the packets input to the IF.
- Each of the buffers 11a to 11n is used by buffering the packet of the traffic amount when the traffic amount at the IF exceeds the maximum transfer capacity of the IF. Since the buffer capacity can be converted into a traffic volume, the traffic volume that exceeds the traffic volume is integrated, and the usage rate of the buffer capacity can be detected by comparing the integrated value with the buffer capacity of one buffer.
- the management unit 21 that detects the usage rate as described above detects the occurrence of burst and the occurrence of packet loss as follows.
- the management unit 21 detects the traffic volume at the time of packet transfer for each of the IF groups a to n of the transfer device 10C in a preset cycle, detects the occurrence of burst as described later, and also detects packet loss (loss). ) Is detected. Furthermore, the management unit 21 stores each of the information regarding the presence or absence of the determined burst and the information regarding the presence or absence of the loss in the storage unit (not shown) such as various memory devices or hard disk devices in units of IF groups. .. Since packet loss occurs at the IF when the buffer is full, it can be detected at the IF.
- the vertical axis of FIG. 2 represents the burst generation amount b i (t), and the horizontal axis represents the time t.
- i in b i (t) is the serial number a1 to a4, b1 to b4, n1 to n4 of the IF (see FIG. 1).
- the predetermined level line th1 represents the threshold value corresponding to the maximum transfer capacity of the IF.
- the management unit 21 detects the traffic amounts k1 and k2 of packets in one IF for each IF group a to n, and detects that a burst has occurred when the detected traffic amounts k1 and k2 exceed the threshold th1.
- the detected burst occurrence information “1” is stored in the storage unit.
- the management unit 21 detects that no burst has occurred (not generated), and stores the detected burst non-occurrence information “0” in the storage unit.
- the detection of the occurrence of packet loss will be described with reference to FIG.
- the vertical axis of FIG. 3 indicates the packet loss generation amount l i (t), and the horizontal axis indicates the time t.
- the i in l i (t) is the serial number a1 to a4, b1 to b4, and n1 to n4 of the IF.
- the predetermined level line th2 is a threshold value for determining the occurrence of packet loss at the IF.
- the management unit 21 stores the detected packet loss occurrence information “1” when detecting the packet loss amount k3 in which the count value of the packet loss exceeds the threshold th2 in one IF for each IF group a to n. Memorize in the department. When the count value is equal to or less than the threshold value th2, the management unit 21 determines that no loss has occurred, and stores the determined packet loss non-occurrence information “0” in the storage unit.
- one or both of the burst generation amount b i (t) and the packet loss generation amount l i (t) is referred to as the IF i traffic characteristic.
- the total value of the burst generation amounts b i (t) of each IF n1 to n4 of the IF group is defined as the total traffic characteristic b n (t).
- the total traffic characteristic b n (t) when each of the IF n1 to n4 of the IF group n is i is represented by the following equation (1).
- the total value of the packet loss occurrence amounts l i (t) of each IF n1 to n4 of the IF group is defined as the total traffic characteristic l n (t).
- the total traffic characteristic l n (t) when each IF n1 to n4 of the IF group n is i is represented by the following equation (2).
- the resource estimation unit 22 adds an IF to the existing buffers 11a to 11n, for example, an unused IFa4 of the buffer 11a is set as a used state, or a connection destination of the IF is changed, for example, a buffer.
- a connection destination of the IF is changed, for example, a buffer.
- this estimation may include estimation when the above-mentioned IF increase / decrease is performed.
- the traffic characteristics of the IF that is the target for IF addition or IF connection change is known.
- the total traffic characteristic b ′ n (t), which is the total value of the burst generation amount b i (t) of the IF group n, after adding the IF of the existing buffer (for example, the buffer 11 n) or after changing the connection destination of the IF is It is expressed by the following equation (3).
- the total traffic characteristic l ′ n (t) that is the total value of the loss generation amount l i (t) of the IF group n is It is expressed by the following equation (4).
- the IF allocation unit 23 allocates an IF to be used according to the buffer so that packet loss does not occur in response to a resource allocation request from a host device or the like. This IF allocation processing will be described with reference to the flowchart shown in FIG.
- a resource allocation request (IF allocation request) from a host device or the like is input to the IF allocation unit 23 in step S1 of FIG.
- step S2 the IF allocating unit 23, in the total traffic characteristic b ′ n (t) of the IF group in response to the resource allocation request, b target (t) of IF addition or change of IF connection destination ⁇ see formula (3) ⁇ . And l target (t) ⁇ see equation (4) ⁇ are unknown (known).
- step S3 the IF assigning unit 23, among all the IF groups a to n of the transfer device 10C, has an IF group in which a packet loss has not occurred per unit time. It is determined whether to do.
- step S4 the IF allocation unit 23 selects the IF group n with the longest buffering non-occurrence time B n in the IF group in which no loss has occurred. In other words, the IF allocation unit 23 selects the IF group having the smallest total traffic characteristic b n (t), which is the total value of the burst generation amount b i (t) of the above formula (1). This selection is performed by the IF assigning unit 23 by comparing the information on the occurrence of bursts stored in the storage unit in units of IF groups.
- the calculation formula of the buffering non-occurrence time B n in the selected IF group n is expressed by the following formula (6) when the function f (x) which is the following formula (5) is defined.
- step S5 the IF allocation unit 23 performs IF allocation instructed by the resource allocation request to the IF group selected in step S4.
- step S3 it is assumed that there is no loss-occurring IF group per unit time (No), in other words, loss has occurred in all IF groups a to n.
- the IF allocation unit 23 determines that the IF group with the smallest loss (IF group n) from all the IF groups a to n, in other words, the loss non-occurrence time L n is the longest. Select IF group n.
- the IF assigning unit 23 assigns an IF to the selected IF group n in step S5.
- the calculation formula of the loss non-occurrence time L n in the selected IF group n is expressed by the following formula (7) when the function f (x) which is the above formula (5) is defined.
- an arbitrary value may be set as the integration interval of the above equations (6) and (7), that is, the time to be calculated.
- the reason for setting the times B n and L n according to the equations (6) and (7) will be described.
- buffering is not performed so much, that is, there is still some IF until a loss occurs. I tried to select a group.
- step S2 if the determination result is known (No), which is not unknown, in step S7 the estimation unit 22 performs resource estimation processing for all known IF groups a to n.
- this resource estimation process changes how the traffic characteristics of each IF group a to n change when the IF is added to the existing buffers 11a to 11n or the connection destination of the IF is changed. It is to estimate whether to do.
- the total traffic characteristic b ′ n (t) which is the total value of the burst generation amounts b i (t) of each IF group a to n is It is represented by (3).
- the total traffic characteristic l ′ n (t) which is the total value of the loss generation amounts l i (t) of each IF group a to n, is expressed by the above equation (4).
- step S8 the IF allocation unit 23 determines whether or not there is an IF group in which packet loss has not occurred per unit time among the IF groups a to n of the estimated traffic characteristics. It is determined whether or not there is an IF group in which no loss has occurred in the group after the IF is added or the connection destination of the IF is changed.
- step S9 the IF allocation unit 23 selects the IF group n with the longest buffering non-occurrence time B n among the IF groups in which no loss has occurred.
- the IF assigning unit 23 assigns an IF to the selected IF group n in step S5.
- step S10 the IF allocation unit 23
- the IF group n with the smallest loss that is, the IF group n with the longest loss non-occurrence time L n is selected from all the IF groups a to n.
- the IF assigning unit 23 assigns an IF to the selected IF group n in step S5.
- the transfer device 10C is divided into a number of groups a to n in which a plurality of IFs a1 to n4 for packet transfer are grouped in a unit smaller than the number of IFs, and IFa1 to a4, b1 to b4, ... It has n1 to n4 and has a plurality of buffers 11a to 11n whose buffer capacity is determined according to the number of mounted IFs.
- Packets are transferred to and from the network via the IF of each of the buffers 11a to 11n, and when the traffic amount at the time of packet transfer exceeds the maximum transfer capacity of the IF, the packets with the exceeded traffic amount are buffered in the buffer. ..
- Such a transfer device 10C has the following characteristic configuration.
- the transfer device 10C includes the IF allocation unit 23. If there is an IF group in which a loss indicating packet discard has not occurred at the time of packet transfer by IF per unit time in all the IF groups of the transfer device 10C, the IF allocating unit 23 selects from among the IF groups in which no loss has occurred. The IF group having the longest buffering non-occurrence time is selected, and the packet traffic is allocated to the IF of the selected IF group.
- the transfer device 10C that performs packet transfer is provided with the number of groups of buffers in which the grouped IFs are mounted in group units, the IFs to be used according to the buffers are generated so that packet loss does not occur. Can be assigned.
- the above-mentioned IF allocation is performed by adding an IF in which an unused IF mounted in the buffer of the selected IF group is used, and an IF connection destination for changing the connection of the IF to the network to the IF of another buffer. It is assumed that the process is to allocate traffic to the IF after any one of the pre-processes of changing and increasing or decreasing the IF in use in the selected buffer is increased or decreased.
- the transfer device 10C further includes a management unit 21.
- the management unit 21 detects the presence or absence of burst occurrence, which is the burst traffic occurrence when the traffic volume at the time of packet transfer in the IF exceeds the maximum transfer capacity of the IF, and the detected occurrence information of the burst occurrence is the burst occurrence information.
- the information is stored in the storage unit for each IF group in association with the presence / absence time information, and the presence / absence of a loss during packet transfer at the IF is detected.
- the process of storing in the storage unit in units of IF groups in association with the information is performed.
- the IF allocation unit 23 detects the presence of an IF group in which no loss has occurred, based on the information on the occurrence of loss stored in the storage unit, the IF assignment unit 23 determines that no loss has occurred based on the information on the occurrence of burst.
- the IF group having the smallest occurrence of burst in the IF groups is selected as the IF group having the longest buffering non-occurrence time.
- the IF group with the smallest burst occurrence among the IF groups with no loss is determined from the loss occurrence presence information and the burst occurrence information associated with the time information acquired by the management unit 21. It can be selected by considering it as the IF group with the longest buffering non-occurrence time.
- the calculation for this selection can be realized by a simple calculation formula because the selection algorithm is simple. Therefore, when performing IF allocation, IF allocation can be performed so that loss can be prevented by simple calculation.
- the IF allocating unit 23 has the highest loss from all the IF groups.
- the IF allocation is performed by selecting a small IF group.
- the IF to be used can be assigned according to the buffer so that packet loss is minimized.
- the transfer device 10C is further provided with the estimation unit 22.
- the estimation unit 22 estimates the information regarding the presence / absence of a burst and the information regarding the presence / absence of loss, which are associated with the time information, from the traffic characteristics of each IF group after the preprocessing is executed.
- the IF allocation unit 23 detects the presence of an IF group in which no loss has occurred in the IF group having the traffic characteristics estimated by the estimation unit 22, the occurrence of burst is the smallest in the IF group in which no loss has occurred.
- the IF group is selected by considering it as the IF group having the longest unbuffered time.
- the IF group having the traffic characteristics estimated by the estimation unit 22 when the presence of an IF group in which no loss has occurred is detected, the IF group with the smallest burst occurrence in the IF group in which no loss has occurred is selected.
- the buffer group can be selected by considering it as the IF group having the longest non-occurrence time.
- the calculation for this selection can be realized by a simple calculation formula because the selection algorithm is simple. Therefore, when performing IF allocation, it is possible to perform IF allocation so that loss can be prevented by simple estimation calculation.
- the IF allocation unit 23 does not detect the presence of an IF group in which no loss has occurred in the IF group having the traffic characteristics estimated by the estimation unit 22, the IF having the smallest loss from all the estimated IF groups. It is configured to select a group and perform IF allocation.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
【課題】パケット転送を行う転送装置に、グループ化したIF(インタフェース)をグループ単位で搭載するバッファをグループ数備える場合に、パケットロスが生じないようにバッファに応じて利用すべきIFを割り当てる。 【解決手段】パケットの転送装置10Cは、グループ単位のIFを搭載する複数のバッファ11a~11nを有し、バッファ毎のIFにおけるパケット転送時のトラフィック量がIFの最大転送容量を超えた際に、超えたトラフィック量のパケットをバッファにバッファリングする。転送装置10Cに備えたIF割当部23は、全IFグループ中に、単位時間当たり、IFでのパケット転送時にパケット廃棄を示すロスの未発生のIFグループが存在する場合、ロス未発生のIFグループ内から、バッファリングの未発生時間が最長のIFグループを選択し、選択されたIFグループのIFにパケットのトラフィックを割り当てるIF割当を行う。
Description
本発明は、パケット転送が行われるIP(Internet Protocol)ネットワークにおいて、特に複数の通信サービスが同一IPネットワークに多重されている場合に、その経路制御とパケット転送を担う転送装置、及び、転送装置のバッファに応じて利用すべきIF(interface)を割り当てるリソース割当方法に関する。
IPネットワーク(ネットワークともいう)においては、一時的にトラフィックが急増するバーストトラフィック(バーストともいう)により、転送装置においてパケットロス(パケットの破棄)が発生する場合がある。一般に、転送装置では、バーストを起因とするパケットロス(ロスともいう)を可能な限り抑制する。このため、パケットバッファと呼ばれるキューを利用したバッファにより、パケットのバッファリングを行っている。このバッファリングは、バッファに搭載されたパケット転送用のIF(インタフェース)におけるパケット転送時のトラフィック量が、IFの最大転送容量を超えた際に、超えたトラフィック量のパケットがバッファに入力されて実行される。
IFは、ネットワークに接続されるパケット転送用のポート等の物理IFである。IFには、ネットワークに繋がる光ファイバやメタルケーブルが接続されている。なお、IFとして、VLAN(Virtual Local Area Network)等で分離される論理IFを指す場合もある。
通常、転送装置のバッファにバッファリングできるパケット量は、バッファのバッファ容量に依存するため限界がある。バッファとしては、図5に示す共用バッファ11や、図6に示す複数のバッファ11a,11b,…,11nがある。
図5に示す共用バッファ11は、転送装置10Aにおけるパケットの転送制御を行う転送制御部12Aに接続されて搭載されている。この共用バッファ11には、ネットワークに接続される全てのIFが、予め共用可能に搭載されている。
図6に示すバッファ11a~11nは、全てのIFを接続先との依存関係等に応じて複数にグループ化した数のグループ(本例ではn個のグループ)に分かれており、バッファ11a~11nの個々がグループ単位のIFを予め搭載している。1グループ単位のIFの組をIFグループという。その搭載されるIFグループのIF数(本例では4つのIF)に応じて各バッファ11a~11nのバッファ容量が予め決められている。また、バッファ11a~11nは、転送装置10Bにおいて、転送制御部12Bに接続されて搭載されている。なお、転送制御部12A(図5),12B(図6)は、ASIC(Application Specific Integrated Circuit)等を用いて構成される。
上述したバーストは、通常、IFに入力されるパケットのカウンタ値(トラフィック量)を観測(検出)することで、その時間変化量を可視化できる。しかし、バーストの中でも、秒単位等の非常に短期間のみトラフィックが急増するマイクロバーストトラフィック(マイクロトラフィックともいう)と呼ばれるバーストが存在する。このマイクトラフィックは、通常の可視化方法では時間分解能が低いため詳細を確認することが出来ない。
また、マイクロトラフィックの有無を可視化する方法も幾つか検討されている。例えば、バーストが発生した場合にバッファ容量の残量が減ることから、バッファ容量の使用率を監視することでマイクロトラフィックを可視化できる。しかしながら、ハードウェアの制限により、バッファ容量の使用率を常時監視することができない場合が多い。
そこで、特許文献1及び非特許文献1に記載のように、バーストの時間変化を可視化する手法が検討されている。例えば、バッファ容量の使用率が高くなると転送遅延が生じることから、常時、遅延測定用のパケットを流通させる方法がある。また、非特許文献2に記載のように、処理が軽微な監視技術を使うことで、非常に短い間隔でトラフィック量を取得し、このトラフィック量が限界値に近い場合はバーストが発生していると見做し、バーストの有無を推定する方法もある。
ここで、本明細書に記載するリソース割当におけるリソースは、バッファを含むIFをいう。リソース割当は、IFにパケットのトラフィックを割り当てるIF割当である。このIF割当は、上位装置からのリソース割当指示に応じて未使用のIFを使用するIF増設等を行うことである。
IPネットワークにおけるリソース割当の方法としては、パケットロス量等からネットワークの輻輳状態を推定し、ロスを解消するに適した収容装置(複数IF搭載のバッファに該当)を選択したり、特許文献2に記載のように転送経路を選択したりする方法が知られている。
Joshi,Raj,et al. "BurstRadar: Practical Real-time Microburst Monitoring for Datacenter Networks." Proceedings of the 9th Asia-Pacific Workshop on Systems. ACM, 2018.
"Streaming telemetry",[online],2016 OpenConfig,[平成30年10月16日検索],インターネット〈URL:http://www.openconfig.net/projects/telemetry/>
上述したように、パケットロスを抑制するためのバッファにおいては、1つのバッファに予めバッファ容量が定められているのでバッファ容量に限界があった。そこで、図6に示したIFグループ毎のバッファ11a~11nを備える転送装置10Bでは、どのIFグループに、どのトラフィックを収容するかを適切に選択することで、ロス量を更に抑制できると考えられる。
しかしながら、上述したような従来のリソース割当方法では、ロス量のみを考慮したリソース割当(IF割当)の最適化が殆どで、ロスの前兆とも言えるバッファ容量の使用率を考慮したIF割当は検討されていない。つまり、ロスを検出してから最適なIF割当を行うので、ロスの発生は免れないという問題があった。
本発明は、このような事情に鑑みてなされたものであり、パケット転送を行う転送装置に、グループ化したIF(インタフェース)をグループ単位で搭載するバッファをグループ数備える場合に、パケットロスが生じないようにバッファに応じて利用すべきIFを割り当てることができる転送装置及びリソース割当方法を提供することを課題とする。
上記課題を解決するための手段として、請求項1に係る発明は、パケット転送用の複数のIF(interface)をIF数よりも少数単位でグループ化した数のグループに分かれ、且つそのグループ単位のIFを搭載し、搭載されるIF数に応じてバッファ容量が定められた複数のバッファを有し、バッファ毎のIFを介してネットワークとの間でパケット転送を行い、パケット転送時のトラフィック量がIFの最大転送容量を超えた際に、超えたトラフィック量のパケットをバッファにバッファリングする転送装置であって、転送装置の全IFグループ中に、単位時間当たり、IFでのパケット転送時にパケット廃棄を示すロスの未発生のIFグループが存在する場合、ロス未発生のIFグループ内から、前記バッファリングの未発生時間が最長のIFグループを選択し、選択されたIFグループのIFにパケットのトラフィックを割り当てるIF割当を行うIF割当部を備えることを特徴とする転送装置である。
請求項7に係る発明は、パケット転送用の複数のIFをIF数よりも少数単位でグループ化した数のグループに分かれ、且つそのグループ単位のIFを搭載し、搭載されるIF数に応じてバッファ容量が定められた複数のバッファを有し、バッファ毎のIFを介してネットワークとの間でパケット転送を行い、パケット転送時のトラフィック量がIFの最大転送容量を超えた際に、超えたトラフィック量のパケットをバッファにバッファリングする転送装置によるリソース割当方法であって、前記転送装置は、当該転送装置の全IFグループ中に、単位時間当たり、IFでのパケット転送時にパケット廃棄を示すロスの未発生のIFグループが存在するか否かを検知するステップと、前記IFグループが存在すると検知された場合に、ロス未発生のIFグループ内から、前記バッファリングの未発生時間が最長のIFグループを選択するステップと、前記選択されたIFグループのIFにパケットのトラフィックを割り当てるIF割当を行うステップとを実行することを特徴とするリソース割当方法である。
請求項1の構成及び請求項7の方法によれば、パケット転送を行う転送装置に、グループ化したIFをグループ単位で搭載するバッファをグループ数備える場合に、パケットのロスが生じないようにバッファに応じて利用すべきIFを割り当てることができる。
請求項2に係る発明は、前記IF割当は、前記選択されたIFグループのバッファに搭載された未使用のIFを使用状態とするIF増設、IFのネットワークへの接続を他のバッファのIFに変更するIF接続先変更、及び、当該選択されたバッファにおいて使用中のIFを増加又は減少させるIF増減設の何れか1つの事前処理が実行された後のIFに、トラフィックを割り当てる処理であることを特徴とする請求項1に記載の転送装置である。
この構成によれば、IF増設、IF接続先変更及びIF増減設の何れかが行われたIF割当の対象となる、バッファに応じて利用すべきIFを割り当てることができる。
請求項3に係る発明は、前記IFでのパケット転送時のトラフィック量がIFの最大転送容量を超えた際のバーストトラヒック発生であるバースト発生の有無を検知し、この検知したバースト発生有無の情報を、バースト発生有無の時間情報に対応付けて、IFグループ単位で記憶部に記憶すると共に、前記IFでのパケット転送時の前記ロスの発生有無を検知し、検知したロス発生有無の情報を、ロス発生有無の時間情報に対応付けて、IFグループ単位で記憶部に記憶する管理部を備え、前記IF割当部は、記憶部に記憶された前記ロス発生有無の情報を基にロス未発生のIFグループの存在を検知した際に、前記バースト発生有無の情報を基に、ロス未発生のIFグループにおいてバースト発生有が最小のIFグループを、前記バッファリングの未発生時間が最長のIFグループと見做して選択することを特徴とする請求項1又は2に記載の転送装置である。
この構成によれば、管理部で取得される時間情報が対応付けられたロス発生有無の情報及びバースト発生有無の情報から、ロス未発生のIFグループにおいてバースト発生有が最小のIFグループを、バッファリングの未発生時間が最長のIFグループと見做して選択できる。この選択のための計算は、選択のアルゴリズムが簡単であるため、単純な計算式で実現できる。このため、IF割当を行う際に、単純な計算でロスを未然に防止できるようにIF割当を行うことができる。
請求項4に係る発明は、前記IF割当部は、転送装置の全IFグループ中に、単位時間当たり、IFでのパケット転送時に前記ロスが未発生のIFグループが存在しない場合、当該全IFグループからロスが一番小さいIFグループを選択してIF割当を行うことを特徴とする請求項1又は2に記載の転送装置である。
この構成によれば、パケットのロスが最小限となるようにバッファに応じて利用すべきIFを割り当てることができる。
請求項5に係る発明は、バースト発生有無の時間情報が対応付けられたバースト発生有無の情報及びロス発生有無の時間情報が対応付けられたロス発生有無の情報を、前記事前処理を実行後の各IFグループのトラフィック特性から推定する推定部を備え、前記IF割当部は、前記推定部で推定されたトラフィック特性のIFグループにおいて、ロス未発生のIFグループの存在を検知した際に、ロス未発生のIFグループにおいてバースト発生有が最小のIFグループを、前記バッファリングの未発生時間が最長のIFグループと見做して選択することを特徴とする請求項2に記載の転送装置である。
この構成によれば、推定部で推定されたトラフィック特性のIFグループにおいて、ロス未発生のIFグループの存在を検知した際に、ロス未発生のIFグループにおいてバースト発生有が最小のIFグループを、バッファリングの未発生時間が最長のIFグループと見做して選択できる。この選択のための計算は、選択のアルゴリズムが簡単であるため、単純な計算式で実現できる。このため、IF割当を行う際に、単純な推定計算でロスを未然に防止できるようにIF割当を行うことができる。
請求項6に係る発明は、前記IF割当部は、前記推定部で推定されたトラフィック特性のIFグループにおいて、ロス未発生のIFグループの存在を検知しない場合、当該推定された全IFグループからロスが一番小さいIFグループを選択してIF割当を行うことを特徴とする請求項5に記載の転送装置である。
この構成によれば、推定部で推定されたトラフィック特性のIFグループにおいて、パケットのロスが最小限となるようにバッファに応じて利用すべきIFを割り当てることができる。
本発明によれば、パケット転送を行う転送装置に、グループ化したIF(インタフェース)をグループ単位で搭載するバッファをグループ数備える場合に、パケットロスが生じないようにバッファに応じて利用すべきIFを割り当てる転送装置及びリソース割当方法を提供することができる。
以下、本発明の実施形態を、図面を参照して説明する。
<実施形態の構成>
以下、本発明の実施形態を、図面を参照して説明する。但し、本明細書の全図において機能が対応する構成部分には同一符号を付し、その説明を適宜省略する。
<実施形態の構成>
以下、本発明の実施形態を、図面を参照して説明する。但し、本明細書の全図において機能が対応する構成部分には同一符号を付し、その説明を適宜省略する。
図1は、本発明の実施形態に係る転送装置の構成を示すブロック図である。
図1に示す転送装置10Cが、転送装置10B(図6)と異なる点は、転送装置10Bの構成に加え、リソース割当制御部(制御部ともいう)20を備えた点にある。制御部20は、図示せぬ上位装置からのリソース割当指示により、バッファ11a~11nに応じて利用すべきIFを割り当てる制御を行う。この制御部20は、リソース管理部21と、リソース推定部22と、IF割当部23とを備えて構成されている。
図1に示す転送装置10Cが、転送装置10B(図6)と異なる点は、転送装置10Bの構成に加え、リソース割当制御部(制御部ともいう)20を備えた点にある。制御部20は、図示せぬ上位装置からのリソース割当指示により、バッファ11a~11nに応じて利用すべきIFを割り当てる制御を行う。この制御部20は、リソース管理部21と、リソース推定部22と、IF割当部23とを備えて構成されている。
但し、バッファ11a~11nは、全IFを接続先との依存関係等に応じて複数にグループ化した数のグループ(n個のグループ)に分かれており、バッファ11a~11nの個々が予めグループ単位のIFを搭載している。即ち、バッファ11aは符号a1,a2,a3,a4で示す1グループaを成す4つのIFを搭載する。バッファ11bは符号b1,b2,b3,b4で示す1グループbを成す4つのIFを搭載する。バッファ11nは符号n1,n2,n3,n4で示す1グループnを成す4つのIFを搭載する。
各グループa~nのIFa1~a4,b1~b4,…,n1~n4(IFa1~n4とも表現する)には、未使用のIFも有り、この未使用のIFを使用する場合は、人手でネットワークの光ファイバやメタルケーブルに結線を行うといったIF増設が行われる。また、IFのネットワークへの接続を他のバッファのIFに変更するIF接続先変更も人手により行われる。更に、バッファ(例えば11a)において、1グループaである使用中の4つのIFa1~a4を3つのIFa1~a3に変更したり、使用中の3つのIFa1~a3を4つのIFa1~a4に変更したりするIF増減設も人手で行われる。なお、IF増設、IF接続先変更及びIF増減設は、請求項記載の事前処理を指す。
但し、バッファ11a~11nの数と、バッファ11a~11n毎に予め搭載された各グループのIFa1~n4の数は、予め固定されており変更不可能となっている。
次に、リソース管理部(管理部ともいう)21は、バッファ11a~11n毎に搭載されたIFでのパケット転送時のトラフィック量を検出して、バッファ11a~11n毎のバッファ容量の使用率を検知する管理を行う。但し、使用率は、直接検出できないので、後述のように検知する。また、トラフィック量の検出は、IFに入力されるパケットをカウントする等の手法で行われる。
各バッファ11a~11nは、IFでのトラフィック量がIFの最大転送容量を超えた際に、超えたトラフィック量のパケットがバッファリングされて使用される。バッファ容量はトラフィック量に換算できるので、その超えたトラフィック量を積算し、この積算値を、1バッファのバッファ容量と比較することでバッファ容量の使用率を検知できる。
IFのトラフィック量が所定値以下になれば、バッファリングされたパケットがIFを介して転送される。このため、その転送されるパケットのトラフィック量を検出して積算値から減算し、この減算後の積算値を、バッファ容量と比較することでバッファ容量の使用率を検知可能となっている。このように使用率を検知する管理部21は、次のようにバースト発生とパケットロス発生を検知する。
管理部21は、予め設定された周期で、転送装置10CのIFグループa~n毎にパケット転送時のトラフィック量を検出し、後述のようにバースト発生の有無を検知すると共に、パケットロス(ロス)の発生の有無を検知する。更に、管理部21は、それら判定したバースト発生有無の情報と、ロス発生有無の情報との各々を、IFグループ単位で、各種メモリ装置やハードディスク装置等の記憶部(図示せず)に記憶する。パケットロスは、バッファが満杯の場合にIFで発生するので、IFにおいて検出可能となっている。
バースト発生有無の検知を、図2を参照して説明する。図2の縦軸はバースト発生量bi(t)、横軸は時間tを示す。bi(t)のiは、IFの通番a1~a4,b1~b4,n1~n4(図1参照)である。所定レベルの線th1は、IFの最大転送容量に対応する閾値を表わす。
管理部21は、IFグループa~n毎に1つのIFにおいてパケットのトラフィック量k1,k2を検出し、この検出したトラフィック量k1,k2が閾値th1を超えた場合にバースト発生有と検知し、この検知されたバースト発生情報「1」を記憶部に記憶する。トラフィック量k1,k2は、k2の方が発生時間tが2倍長いので、この発生時間tに応じてk1=「1」、k2=「1,1」のように記憶してもよい。
また、管理部21は、検出したトラフィック量が閾値th1以下の場合はバースト発生無(未発生)と検知し、この検知されたバースト未発生情報「0」を記憶部に記憶する。
パケットロス発生有無の検出を、図3を参照して説明する。図3の縦軸はパケットロス発生量li(t)、横軸は時間tを示す。li(t)のiは、IFの通番a1~a4,b1~b4,n1~n4である。所定レベルの線th2は、IFでのパケットロス発生を判断する閾値である。
管理部21は、IFグループa~n毎に1つのIFにおいて、パケットロスのカウント値が閾値th2を超えたパケットロス量k3を検出した際に、この検出したパケットロス発生情報「1」を記憶部に記憶する。また、管理部21は、上記カウント値が閾値th2以下の場合はロス発生無と判定し、この判定したパケットロス未発生情報「0」を記憶部に記憶する。
但し、バースト発生量bi(t)とパケットロス発生量li(t)の何れか一方、又は双方を併せてIFiのトラフィック特性と称す。
IFグループ(例えばIFグループn)の各IFn1~n4のバースト発生量bi(t)の合計値を、合計トラフィック特性bn(t)と定義する。IFグループnの各IFn1~n4をiとした場合の合計トラフィック特性bn(t)は下式(1)で表わされる。
IFグループ(例えばIFグループn)の各IFn1~n4のパケットロス発生量li(t)の合計値を、合計トラフィック特性ln(t)と定義する。IFグループnの各IFn1~n4をiとした場合の合計トラフィック特性ln(t)は下式(2)で表わされる。
次に、リソース推定部(推定部ともいう)22は、既存のバッファ11a~11nにIFを増設、例えばバッファ11aの未使用のIFa4を使用状態として増設したり、IFの接続先変更、例えばバッファ11bのIFa1からバッファ11bのIFb1に接続先変更したりした場合に、各IFグループa~nのトラフィック特性がどのように変化するかを推定する。なお、この推定には、前述したIF増減設を行った場合の推定も含めてもよい。但し、IF増設やIF接続先変更を行う対象としてのIFのトラフィック特性は既知であるとする。
既存のバッファ(例えばバッファ11n)のIFを増設後、又はIFの接続先変更後において、IFグループnのバースト発生量bi(t)の合計値である合計トラフィック特性b′n(t)は下式(3)で表わされる。
b′n(t)=bn(t)+btarget(t) …(3)
但し、「′」は、IFの増設後又はIFの接続先変更後を表わす。「target」は、増設されたIF又は接続先変更されたIFを表わす。
既存のバッファ(例えばバッファ11n)にIFを増設後、又はIFの接続先変更後において、IFグループnのロス発生量li(t)の合計値である合計トラフィック特性l′n(t)は下式(4)で表わされる。
l′n(t)=ln(t)+ltarget(t) …(4)
次に、IF割当部23は、上位装置等からのリソース割当要求に応じて、パケットロスが生じないようにバッファに応じて利用すべきIFを割り当てる。このIF割当処理を図4に示すフローチャートを参照して説明する。
図4のステップS1において、上位装置等からのリソース割当要求(IF割当要求)がIF割当部23に入力されたとする。
ステップS2において、IF割当部23は、リソース割当要求に応じたIFグループの合計トラフィック特性b′n(t)において、IF増設又はIF接続先変更のbtarget(t){式(3)参照}及びltarget(t){式(4)参照}が未知か否か(既知か)を判定する。
その判定結果が未知(Yes)の場合、ステップS3において、IF割当部23は、転送装置10Cの全てのIFグループa~nの中に、単位時間当たり、パケットロスが未発生のIFグループが存在するか否かを判定する。
この判定結果、存在する場合(Yes)、ステップS4において、IF割当部23は、ロス未発生のIFグループ内で、バッファリング未発生時間Bnが最長のIFグループnを選択する。言い換えれば、IF割当部23は、上記式(1)のバースト発生量bi(t)の合計値である合計トラフィック特性bn(t)が最小のIFグループを選択する。この選択は、IF割当部23が、記憶部にIFグループ単位で記憶されたバースト発生有無の情報を比較することにより行われる。
上記選択されたIFグループnにおけるバッファリング未発生時間Bnの計算式は、下式(5)となる関数f(x)を定義したとき、下式(6)で表わされる。
次に、ステップS5において、IF割当部23は、上記ステップS4で選択されたIFグループに、リソース割当要求で指示されるIF割当を行う。
一方、上記ステップS3の判定結果、単位時間当たり、ロス未発生のIFグループが存在しない(No)、言い換えれば、全IFグループa~nでロス発生が生じていたとする。このNoの場合は、ステップS6において、IF割当部23は、全IFグループa~nからロスが一番小さいIFグループ(IFグループnとする)、言い換えれば、ロス未発生時間Lnが最長のIFグループnを選択する。この選択されたIFグループnに、ステップS5で、IF割当部23がIF割当を行う。
上記選択されたIFグループnにおけるロス未発生時間Lnの計算式は、上式(5)となる関数f(x)を定義したとき、下式(7)で表わされる。
ここで、上式(6)及び(7)の積分区間、即ち計算の対象とする時間は任意の値を設定してもよい。式(6)及び(7)による時間Bn及びLnの設定理由について説明する。一般に、パケットロスが発生していなくても、バーストが発生しバッファリングが行われている場合は、ロスの兆候であると捉えることができる。このため、本発明では、ロスが発生していないIFグループから最もトラヒック特性が優れたIFグループを選出する場合、バッファリングが余り行われていない、つまりロスが発生するまではまだ余裕のあるIFグループを選出するようにした。
次に、上記ステップS2において、判定結果が未知で無い既知(No)の場合、ステップS7において、推定部22が、既知の全IFグループa~nに対してリソース推定処理を行う。
このリソース推定処理は、前述したように、既存のバッファ11a~11nにIFを増設したり、IFの接続先変更を行ったりした場合に、各IFグループa~nのトラフィック特性がどのように変化するかを推定するものである。例えばバッファ11nのIFn4を増設後、又はIFn4の接続先変更後において、各IFグループa~nのバースト発生量bi(t)の合計値である合計トラフィック特性b′n(t)は上式(3)で表わされる。更に、各IFグループa~nのロス発生量li(t)の合計値である合計トラフィック特性l′n(t)は上式(4)で表わされる。
このようなリソース推定処理後、ステップS8において、IF割当部23は、推定されたトラフィック特性のIFグループa~nの中に、単位時間当たり、パケットロスが未発生のIFグループが存在するか否かを判定、或いは、IFを増設後又はIFの接続先変更後のグループに、ロス未発生のIFグループが存在するか否かを判定する。
この判定結果、存在する場合(Yes)、ステップS9において、IF割当部23は、ロス未発生のIFグループの中で、バッファリング未発生時間Bnが最長のIFグループnを選択する。この選択されたIFグループnに、ステップS5で、IF割当部23がIF割当を行う。
一方、上記ステップS8の判定結果、単位時間当たり、ロス未発生のIFグループが存在しない、言い換えれば、全IFグループa~nでロス発生の場合(No)は、ステップS10において、IF割当部23が、全IFグループa~nからロスが一番小さいIFグループn、言い換えれば、ロス未発生時間Lnが最長のIFグループnを選択する。この選択されたIFグループnに、ステップS5で、IF割当部23がIF割当を行う。
<実施形態の効果>
本実施形態に係る転送装置10Cによるリソース割当処理の効果について説明する。
転送装置10Cは、パケット転送用の複数のIFa1~n4を当該IF数よりも少数単位でグループ化した数のグループa~nに分かれ、且つそのグループ単位のIFa1~a4,b1~b4,…,n1~n4を搭載し、搭載されるIF数に応じてバッファ容量が定められた複数のバッファ11a~11nを有する。バッファ11a~11n毎のIFを介してネットワークとの間でパケット転送を行い、パケット転送時のトラフィック量がIFの最大転送容量を超えた際に、超えたトラフィック量のパケットをバッファにバッファリングする。このような転送装置10Cを次のような特徴構成とした。
本実施形態に係る転送装置10Cによるリソース割当処理の効果について説明する。
転送装置10Cは、パケット転送用の複数のIFa1~n4を当該IF数よりも少数単位でグループ化した数のグループa~nに分かれ、且つそのグループ単位のIFa1~a4,b1~b4,…,n1~n4を搭載し、搭載されるIF数に応じてバッファ容量が定められた複数のバッファ11a~11nを有する。バッファ11a~11n毎のIFを介してネットワークとの間でパケット転送を行い、パケット転送時のトラフィック量がIFの最大転送容量を超えた際に、超えたトラフィック量のパケットをバッファにバッファリングする。このような転送装置10Cを次のような特徴構成とした。
(1)転送装置10CにIF割当部23を備えた。IF割当部23は、転送装置10Cの全IFグループ中に、単位時間当たり、IFでのパケット転送時にパケット廃棄を示すロスの未発生のIFグループが存在する場合、ロス未発生のIFグループ内から、バッファリングの未発生時間が最長のIFグループを選択し、選択されたIFグループのIFにパケットのトラフィックを割り当てるIF割当を行う構成とした。
この構成によれば、パケット転送を行う転送装置10Cに、グループ化したIFをグループ単位で搭載するバッファをグループ数備える場合に、パケットのロスが生じないようにバッファに応じて利用すべきIFを割り当てることができる。
(2)上記IF割当は、上記選択されたIFグループのバッファに搭載された未使用のIFを使用状態とするIF増設、IFのネットワークへの接続を他のバッファのIFに変更するIF接続先変更、及び、当該選択されたバッファにおいて使用中のIFを増加又は減少させるIF増減設の何れか1つの事前処理が実行された後のIFに、トラフィックを割り当てる処理であることとした。
この構成によれば、IF増設、IF接続先変更及びIF増減設の何れかの事前処理が行われたIF割当の対象としての、バッファに応じて利用すべきIFを割り当てることができる。
(3)転送装置10Cに管理部21を更に備えた。管理部21は、IFでのパケット転送時のトラフィック量がIFの最大転送容量を超えた際のバーストトラヒック発生であるバースト発生の有無を検知し、この検知したバースト発生有無の情報を、バースト発生有無の時間情報に対応付けて、IFグループ単位で記憶部に記憶すると共に、IFでのパケット転送時のロスの発生有無を検知し、この検知したロス発生有無の情報を、ロス発生有無の時間情報に対応付けて、IFグループ単位で記憶部に記憶する処理を行う。この際、IF割当部23は、記憶部に記憶されたロス発生有無の情報を基にロス未発生のIFグループの存在を検知した際に、バースト発生有無の情報を基に、ロス未発生のIFグループにおいてバースト発生有が最小のIFグループを、バッファリングの未発生時間が最長のIFグループと見做して選択する構成とした。
この構成によれば、管理部21で取得される時間情報が対応付けられたロス発生有無の情報及びバースト発生有無の情報から、ロス未発生のIFグループにおいてバースト発生有が最小のIFグループを、バッファリングの未発生時間が最長のIFグループと見做して選択できる。この選択のための計算は、選択のアルゴリズムが簡単であるため、単純な計算式で実現できる。このため、IF割当を行う際に、単純な計算でロスを未然に防止できるようにIF割当を行うことができる。
(4)IF割当部23は、転送装置10Cの全IFグループ中に、単位時間当たり、IFでのパケット転送時にロスが未発生のIFグループが存在しない場合、当該全IFグループからロスが一番小さいIFグループを選択してIF割当を行う構成とした。
この構成によれば、パケットのロスが最小限となるようにバッファに応じて利用すべきIFを割り当てることができる。
(5)転送装置10Cに推定部22を更に備えた。推定部22は、上記時間情報が対応付けられたバースト発生有無の情報及びロス発生有無の情報を、事前処理を実行後の各IFグループのトラフィック特性から推定する。この際、IF割当部23は、推定部22で推定されたトラフィック特性のIFグループにおいて、ロス未発生のIFグループの存在を検知した際に、ロス未発生のIFグループにおいてバースト発生有が最小のIFグループを、バッファリングの未発生時間が最長のIFグループと見做して選択する構成とした。
この構成によれば、推定部22で推定されたトラフィック特性のIFグループにおいて、ロス未発生のIFグループの存在を検知した際に、ロス未発生のIFグループにおいてバースト発生有が最小のIFグループを、バッファリングの未発生時間が最長のIFグループと見做して選択できる。この選択のための計算は、選択のアルゴリズムが簡単であるため、単純な計算式で実現できる。このため、IF割当を行う際に、単純な推定計算でロスを未然に防止できるようにIF割当を行うことができる。
(6)IF割当部23は、推定部22で推定されたトラフィック特性のIFグループにおいて、ロス未発生のIFグループの存在を検知しない場合、当該推定された全IFグループからロスが一番小さいIFグループを選択してIF割当を行う構成とした。
この構成によれば、推定部22で推定されたトラフィック特性のIFグループにおいて、パケットのロスが最小限となるようにバッファに応じて利用すべきIFを割り当てることができる。
その他、具体的な構成について、本発明の主旨を逸脱しない範囲で適宜変更が可能である。
10C 転送装置
11a~11n バッファ
a1~a4,b1~b4,n1~n4 IF(インタフェース)
12B 転送制御部
20 リソース割当制御部
21 リソース管理部
22 リソース推定部
23 IF割当部
11a~11n バッファ
a1~a4,b1~b4,n1~n4 IF(インタフェース)
12B 転送制御部
20 リソース割当制御部
21 リソース管理部
22 リソース推定部
23 IF割当部
Claims (7)
- パケット転送用の複数のIF(interface)をIF数よりも少数単位でグループ化した数のグループに分かれ、且つそのグループ単位のIFを搭載し、搭載されるIF数に応じてバッファ容量が定められた複数のバッファを有し、バッファ毎のIFを介してネットワークとの間でパケット転送を行い、パケット転送時のトラフィック量がIFの最大転送容量を超えた際に、超えたトラフィック量のパケットをバッファにバッファリングする転送装置であって、
転送装置の全IFグループ中に、単位時間当たり、IFでのパケット転送時にパケット廃棄を示すロスの未発生のIFグループが存在する場合、ロス未発生のIFグループ内から、前記バッファリングの未発生時間が最長のIFグループを選択し、選択されたIFグループのIFにパケットのトラフィックを割り当てるIF割当を行うIF割当部
を備えることを特徴とする転送装置。 - 前記IF割当は、前記選択されたIFグループのバッファに搭載された未使用のIFを使用状態とするIF増設、IFのネットワークへの接続を他のバッファのIFに変更するIF接続先変更、及び、当該選択されたバッファにおいて使用中のIFを増加又は減少させるIF増減設の何れか1つの事前処理が実行された後のIFに、トラフィックを割り当てる処理である
ことを特徴とする請求項1に記載の転送装置。 - 前記IFでのパケット転送時のトラフィック量がIFの最大転送容量を超えた際のバーストトラヒック発生であるバースト発生の有無を検知し、この検知したバースト発生有無の情報を、バースト発生有無の時間情報に対応付けて、IFグループ単位で記憶部に記憶すると共に、前記IFでのパケット転送時の前記ロスの発生有無を検知し、検知したロス発生有無の情報を、ロス発生有無の時間情報に対応付けて、IFグループ単位で記憶部に記憶する管理部を備え、
前記IF割当部は、記憶部に記憶された前記ロス発生有無の情報を基にロス未発生のIFグループの存在を検知した際に、前記バースト発生有無の情報を基に、ロス未発生のIFグループにおいてバースト発生有が最小のIFグループを、前記バッファリングの未発生時間が最長のIFグループと見做して選択する
ことを特徴とする請求項1又は2に記載の転送装置。 - 前記IF割当部は、転送装置の全IFグループ中に、単位時間当たり、IFでのパケット転送時に前記ロスが未発生のIFグループが存在しない場合、当該全IFグループからロスが一番小さいIFグループを選択してIF割当を行う
ことを特徴とする請求項1又は2に記載の転送装置。 - バースト発生有無の時間情報が対応付けられたバースト発生有無の情報及びロス発生有無の時間情報が対応付けられたロス発生有無の情報を、前記事前処理を実行後の各IFグループのトラフィック特性から推定する推定部を備え、
前記IF割当部は、前記推定部で推定されたトラフィック特性のIFグループにおいて、ロス未発生のIFグループの存在を検知した際に、ロス未発生のIFグループにおいてバースト発生有が最小のIFグループを、前記バッファリングの未発生時間が最長のIFグループと見做して選択する
ことを特徴とする請求項2に記載の転送装置。 - 前記IF割当部は、前記推定部で推定されたトラフィック特性のIFグループにおいて、ロス未発生のIFグループの存在を検知しない場合、当該推定された全IFグループからロスが一番小さいIFグループを選択してIF割当を行う
ことを特徴とする請求項5に記載の転送装置。 - パケット転送用の複数のIFをIF数よりも少数単位でグループ化した数のグループに分かれ、且つそのグループ単位のIFを搭載し、搭載されるIF数に応じてバッファ容量が定められた複数のバッファを有し、バッファ毎のIFを介してネットワークとの間でパケット転送を行い、パケット転送時のトラフィック量がIFの最大転送容量を超えた際に、超えたトラフィック量のパケットをバッファにバッファリングする転送装置によるリソース割当方法であって、
前記転送装置は、
当該転送装置の全IFグループ中に、単位時間当たり、IFでのパケット転送時にパケット廃棄を示すロスの未発生のIFグループが存在するか否かを検知するステップと、
前記IFグループが存在すると検知された場合に、ロス未発生のIFグループ内から、前記バッファリングの未発生時間が最長のIFグループを選択するステップと、
前記選択されたIFグループのIFにパケットのトラフィックを割り当てるIF割当を行うステップと
を実行することを特徴とするリソース割当方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/290,397 US11303585B2 (en) | 2018-10-30 | 2019-10-18 | Transmission device and resource allocation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-204334 | 2018-10-30 | ||
JP2018204334A JP6977699B2 (ja) | 2018-10-30 | 2018-10-30 | 転送装置及びリソース割当方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020090529A1 true WO2020090529A1 (ja) | 2020-05-07 |
Family
ID=70464071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/041190 WO2020090529A1 (ja) | 2018-10-30 | 2019-10-18 | 転送装置及びリソース割当方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11303585B2 (ja) |
JP (1) | JP6977699B2 (ja) |
WO (1) | WO2020090529A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11340987A (ja) * | 1998-05-22 | 1999-12-10 | Mitsubishi Electric Corp | 衛星atm通信のアクセス制御装置 |
JP2004241835A (ja) * | 2003-02-03 | 2004-08-26 | Nippon Telegr & Teleph Corp <Ntt> | 品質保証型データストリームを転送するための受付判定方法、閉域ip網、そのプログラム |
JP2009010834A (ja) * | 2007-06-29 | 2009-01-15 | Fujitsu Ltd | パケット伝送負荷分散制御方法及び装置 |
JP2010258660A (ja) * | 2009-04-23 | 2010-11-11 | Fujitsu Ltd | ネットワーク装置 |
JP2013179427A (ja) * | 2012-02-28 | 2013-09-09 | Nippon Telegr & Teleph Corp <Ntt> | パケット転送装置およびパケットスケジューリング方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040210623A1 (en) | 2003-03-06 | 2004-10-21 | Aamer Hydrie | Virtual network topology generation |
JP4547341B2 (ja) * | 2005-09-05 | 2010-09-22 | アラクサラネットワークス株式会社 | 通信品質制御機能を備えるパケット中継装置 |
EP3026853A3 (en) | 2011-04-27 | 2016-10-19 | Nec Corporation | Communication device, communication system, method for detecting abnormal traffic |
US10445280B2 (en) * | 2016-10-12 | 2019-10-15 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | PCIe switch for aggregating a large number of endpoint devices |
US10540101B1 (en) * | 2017-08-02 | 2020-01-21 | Innovium, Inc. | Transmit buffer device for operations using asymmetric data widths |
US11159455B1 (en) * | 2018-12-28 | 2021-10-26 | Innovium, Inc. | Reducing power consumption in an electronic device |
US11277357B2 (en) * | 2019-01-25 | 2022-03-15 | Dell Products L.P. | Multi-port queue group system |
US10938715B2 (en) * | 2019-06-11 | 2021-03-02 | Mellanox Technologies Tlv Ltd. | Throughput in a crossbar network element by modifying mappings between time slots and ports |
US11700209B2 (en) * | 2019-09-30 | 2023-07-11 | Intel Corporation | Multi-path packet descriptor delivery scheme |
-
2018
- 2018-10-30 JP JP2018204334A patent/JP6977699B2/ja active Active
-
2019
- 2019-10-18 WO PCT/JP2019/041190 patent/WO2020090529A1/ja active Application Filing
- 2019-10-18 US US17/290,397 patent/US11303585B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11340987A (ja) * | 1998-05-22 | 1999-12-10 | Mitsubishi Electric Corp | 衛星atm通信のアクセス制御装置 |
JP2004241835A (ja) * | 2003-02-03 | 2004-08-26 | Nippon Telegr & Teleph Corp <Ntt> | 品質保証型データストリームを転送するための受付判定方法、閉域ip網、そのプログラム |
JP2009010834A (ja) * | 2007-06-29 | 2009-01-15 | Fujitsu Ltd | パケット伝送負荷分散制御方法及び装置 |
JP2010258660A (ja) * | 2009-04-23 | 2010-11-11 | Fujitsu Ltd | ネットワーク装置 |
JP2013179427A (ja) * | 2012-02-28 | 2013-09-09 | Nippon Telegr & Teleph Corp <Ntt> | パケット転送装置およびパケットスケジューリング方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6977699B2 (ja) | 2021-12-08 |
US20210359960A1 (en) | 2021-11-18 |
US11303585B2 (en) | 2022-04-12 |
JP2020072346A (ja) | 2020-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9106577B2 (en) | Systems and methods for dropping data using a drop profile | |
US9813529B2 (en) | Effective circuits in packet-switched networks | |
KR100875739B1 (ko) | Ip 네트워크 시스템에서의 패킷 버퍼 관리 장치 및 방법 | |
US20110096689A1 (en) | Systems and methods for determining the bandwidth used by a queue | |
US9042355B2 (en) | Quality of service (QoS) for satellite communications network | |
EP3907944A1 (en) | Congestion control measures in multi-host network adapter | |
KR101226177B1 (ko) | 멀티 프로세서 환경에서 효율적인 데이터 전송을 위한 방법및 시스템 | |
US7245626B1 (en) | Systems and methods for permitting queues to oversubscribe | |
JP3615048B2 (ja) | データ伝送装置 | |
CN101127704A (zh) | 一种动态带宽分配的方法和装置 | |
CN111131061B (zh) | 一种数据传输方法及网络设备 | |
WO2020090529A1 (ja) | 転送装置及びリソース割当方法 | |
JP2003348144A (ja) | パケット転送装置、パケット転送方法及びコンピュータプログラム | |
JP4472687B2 (ja) | パケット中継方法およびパケット中継装置 | |
JP6829156B2 (ja) | ネットワーク負荷分散装置および方法 | |
KR20120088299A (ko) | 동적 라우팅 비용 할당 서버, 장치 및 방법 | |
JP2005210347A (ja) | 通信制御装置、および通信制御方法、並びにコンピュータ・プログラム | |
Zitkovich et al. | Input Buffer in Dynamic Elastic Optical Networks | |
JP3317874B2 (ja) | 送信可能レート決定方法および装置ならびにatmノード | |
JP4128096B2 (ja) | 共有資源分散制御装置 | |
CN116846978A (zh) | 云计算系统的资源调度方法、应用识别方法以及相关设备 | |
JP2015231137A (ja) | 転送制御装置、計算機システム及び管理装置 | |
JP2024051195A (ja) | ネットワークオーケストレーション装置、ネットワークオーケストレーションシステム及びネットワークオーケストレーション方法 | |
CN117955911A (zh) | 一种基于多接口时隙调度的数据传输方法及网络芯片 | |
JP2018121307A (ja) | 中継装置および中継方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19877617 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19877617 Country of ref document: EP Kind code of ref document: A1 |