WO2020090399A1 - Substrate processing device and substrate processing method - Google Patents

Substrate processing device and substrate processing method Download PDF

Info

Publication number
WO2020090399A1
WO2020090399A1 PCT/JP2019/039950 JP2019039950W WO2020090399A1 WO 2020090399 A1 WO2020090399 A1 WO 2020090399A1 JP 2019039950 W JP2019039950 W JP 2019039950W WO 2020090399 A1 WO2020090399 A1 WO 2020090399A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gas
cup
processing apparatus
shielding
Prior art date
Application number
PCT/JP2019/039950
Other languages
French (fr)
Japanese (ja)
Inventor
奥谷 洋介
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2020090399A1 publication Critical patent/WO2020090399A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method.
  • the substrate processing apparatus described in Patent Document 1 performs chemical liquid processing on a substrate.
  • the substrate processing apparatus includes a liquid receiver.
  • the liquid receiving portion includes a cup portion.
  • the cup portion rises, and the periphery of the substrate held by the spin chuck is surrounded by the guide portion of the cup portion.
  • the substrate is rotated together with the spin chuck, and the chemical liquid is supplied from the ejection head to the upper surface of the substrate.
  • the chemical liquid flows along the upper surface of the substrate due to the centrifugal force generated by the rotation of the substrate, and is scattered laterally from the edge portion of the substrate.
  • the chemical liquid scattered from the edge portion of the substrate flows down along the inner wall surface of the guide portion of the cup portion and is discharged from the waste groove.
  • the liquid receiving part further includes a liquid collecting part.
  • the liquid collecting part is arranged inside the guide part of the cup part.
  • the inner peripheral surface of the liquid collecting portion has a plurality of grooves. Each groove extends along the vertical direction. Therefore, the droplets of the processing liquid scattered from the edge portion of the substrate first adhere to the inner peripheral surface of the liquid collecting portion. Most of the droplets attached to the inner peripheral surface flow along the semicircular curved surface in each groove and join with other attached droplets.
  • the droplet after merging flows down along the extending direction of the groove due to its own weight which is relatively larger than that of the droplet before merging.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a substrate processing apparatus and a substrate processing method capable of effectively suppressing the retention of droplets on the inner wall surface of the cup portion.
  • the substrate processing apparatus includes a substrate holding unit, a substrate rotating unit, a shielding unit, a shielding unit operating mechanism, a processing liquid supply unit, and a cup unit.
  • the substrate holding unit holds the substrate horizontally.
  • the substrate rotating unit integrally rotates the substrate and the substrate holding unit about a central axis extending in the vertical direction.
  • the shield part faces the upper surface of the substrate.
  • the shield operating mechanism operates the shield.
  • the processing liquid supply unit supplies the processing liquid to the substrate.
  • the cup part is arranged around the substrate holding part and receives the processing liquid.
  • the shielding part has a gas outlet through which gas toward the inner wall surface of the cup part flows out.
  • the gas outlet is located at a peripheral portion of the shielding portion.
  • the cup portion has an upper end portion of the cup located above the substrate.
  • the gas outlet is preferably close to the upper end of the cup.
  • the shielding section covers the entire upper surface of the substrate to shield the upper side of the substrate. It is preferable that the gas outlet port faces the inner wall surface of the cup portion.
  • the shielding section has a shielding plate facing the upper surface of the substrate. It is preferable that the shielding plate has a facing wall surface facing the inner wall surface of the cup portion.
  • the gas outlet is preferably provided on the facing wall surface.
  • the shielding plate has the gas outlet, a gas inlet into which the gas flows, and a gas flow path.
  • the gas flow passage preferably connects the gas inlet and the gas outlet.
  • the inner wall surface of the cup portion has a cup inclined surface that is inclined downward as it goes radially outward from the central axis. It is preferable that the inner surface forming the gas flow path has a flow path inclined surface that is inclined downward as it goes outward in the radial direction. It is preferable that the inclination angle of the flow channel inclined surface with respect to the horizontal direction is equal to or less than the inclination angle of the cup inclined surface with respect to the horizontal direction.
  • the substrate processing apparatus of the present invention preferably further includes a gas supply unit that supplies the gas. It is preferable that the gas supplied from the gas supply unit flows into the gas inlet.
  • the gas inlet is located on the upper surface of the shielding plate.
  • the gas flow path preferably connects the gas inflow port and the gas outflow port.
  • the gas supply unit has a fan that sends the gas to the gas inlet. The fan is preferably arranged on the upper surface of the shield plate.
  • the shield section further has a shaft section fixed to the shield plate. It is preferable that the shaft portion rotates together with the shielding plate about the central axis. It is preferable that the fan be inserted into the shaft portion and eject the gas sucked from above the shielding plate in a radial direction with respect to the central axis.
  • the gas supply unit further has a nozzle facing the fan. It is preferable that the nozzle ejects the gas from the upper surface side of the shielding plate toward the fan.
  • the shield section further has a shaft section fixed to the shield plate. It is preferable that the shaft portion rotates together with the shielding plate about the central axis. It is preferable that the shield has a hole that penetrates the shaft and the shield and extends along the central axis. It is preferable that the treatment liquid supply unit has a circulation unit through which the treatment liquid flows. It is preferable that the circulation portion is arranged in the hole portion. It is preferable that the gas supply unit supplies the gas to a gap between an outer surface of the circulation unit and a wall surface forming the hole. The gas inlet is preferably provided on the wall surface forming the hole.
  • the gas supply unit has a fan filter unit.
  • the fan filter unit is preferably arranged on the top plate portion of the substrate processing apparatus. It is preferable that the fan filter unit generate a downflow from above the shielding plate toward the substrate holding unit.
  • the shielding section has a shielding plate and a nozzle.
  • the shield plate preferably faces the upper surface of the substrate.
  • the nozzle is preferably arranged on the upper surface of the shield plate. It is preferable that the opening of the nozzle is the gas outlet and faces the inner wall surface of the cup portion.
  • the shield operating mechanism includes a shield moving mechanism that raises or lowers the shield.
  • the shield operating mechanism includes a shield rotating mechanism that rotates the shield.
  • the shielding section has a plurality of engaging sections that engage with the substrate holding section. It is preferable that the shielding unit rotates integrally with the substrate holding unit by the plurality of engaging units engaging with the substrate holding unit.
  • a substrate processing method is a holding step of holding a substrate by a substrate holding section, a shielding section approaching step of bringing the substrate holding section and a shielding section close to each other, and the substrate together with the substrate holding section. It includes a rotating step of rotating, an air flow generating step of causing a gas to flow out from a gas outlet of the shielding part to generate an air flow toward an inner wall surface of the cup part, and a processing process of processing the substrate with a processing liquid.
  • the gas in the airflow generating step, may flow out from the gas outlet located at the peripheral portion of the shielding portion and flow along the inner wall surface of the cup portion. preferable.
  • the cup portion has a cup upper end portion located above the substrate.
  • the gas flow out from the gas outlet close to the upper end of the cup toward the upper end of the cup.
  • the present invention it is possible to provide a substrate processing apparatus and a substrate processing method that can effectively prevent liquid droplets from accumulating on the inner wall surface of the cup portion.
  • FIG. 1 is a schematic plan view showing a substrate processing system according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing the substrate processing apparatus according to the first embodiment.
  • FIG. 3A is a schematic cross-sectional view showing a shield part and a cup part of the substrate processing apparatus according to the first embodiment.
  • FIG. 3B is a schematic plan view showing a shielding unit of the substrate processing apparatus according to the first embodiment. It is a schematic cross section which expands and shows a shield part and a part of cup part shown to Fig.3 (a).
  • 3 is a flowchart showing a substrate processing method according to the first embodiment.
  • FIG. 3 is a flowchart showing a substrate processing method according to the first embodiment.
  • FIG. 7A is a schematic cross-sectional view showing a shielding part, a cup part, and a fan of the substrate processing apparatus according to the first modified example of the first embodiment.
  • FIG. 9B is a schematic plan view showing a shielding unit and a fan of the substrate processing apparatus according to the first modification.
  • FIG. 7 is a schematic cross-sectional view showing a shielding part, a cup part, and a gas supply mechanism of the substrate processing apparatus according to the second modified example of the first embodiment.
  • FIG. 9 is a schematic cross-sectional view showing a shield part, a cup part, and a gas supply mechanism of the substrate processing apparatus according to the third modified example of the first embodiment.
  • FIG. 9 is a schematic cross-sectional view showing a shield part and a cup part of the substrate processing apparatus according to the fourth modified example of the first embodiment. It is a typical sectional view showing a substrate processing device concerning Embodiment 2 of the present invention.
  • FIG. 6 is a schematic side view showing a processing liquid supply unit of the substrate processing apparatus according to the second embodiment.
  • the X axis, the Y axis, and the Z axis are orthogonal to each other, the X axis and the Y axis are parallel to the horizontal direction, and the Z axis is parallel to the vertical direction.
  • the substrate processing system 100 processes a substrate W.
  • the substrate W is, for example, a semiconductor wafer, a liquid crystal display device substrate, a plasma display substrate, a field emission display (FED) substrate, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask.
  • the substrate W has, for example, a substantially disc shape.
  • FIG. 1 is a schematic plan view showing a substrate processing system 100.
  • the substrate processing system 100 includes an indexer unit U1 and a processing unit U2.
  • the indexer unit U1 includes a plurality of substrate containers C and an indexer robot IR.
  • the processing unit U2 includes a plurality of substrate processing apparatuses 1, a transfer robot CR, and a delivery section PS.
  • Each of the substrate containers C stores a plurality of substrates W in a stacked manner.
  • the indexer robot IR takes out the unprocessed substrate W from any one of the plurality of substrate containers C and transfers the substrate W to the transfer part PS. Then, the substrate W taken out from the substrate container C is placed on the delivery section PS.
  • the transfer robot CR receives the unprocessed substrate W from the delivery unit PS and carries the substrate W into any one of the plurality of substrate processing apparatuses 1.
  • the substrate processing apparatus 1 processes the unprocessed substrate W.
  • the substrate processing apparatus 1 is a single-wafer type that processes the substrates W one by one. In the first embodiment, the substrate processing apparatus 1 processes the substrate W with the processing liquid.
  • the transfer robot CR takes out the processed substrate W from the substrate processing apparatus 1 and transfers the substrate W to the delivery section PS. Then, the substrate W processed by the substrate processing apparatus 1 is placed on the delivery section PS.
  • the indexer robot IR receives the processed substrate W from the delivery unit PS and stores the substrate W in any one of the plurality of substrate containers C.
  • FIG. 2 is a schematic cross section showing the substrate processing apparatus 1.
  • the substrate processing apparatus 1 includes a chamber 3, a substrate holding unit 5, a substrate rotating unit 7, a processing liquid supply unit 9, a plurality of cup units 11, and a plurality of cup moving mechanisms 15.
  • the discharge port 17, the shielding portion 19, and the shielding portion operating mechanism 21 are provided.
  • the chamber 3 has a substantially box shape.
  • the chamber 3 has a top plate portion 3a.
  • the chamber 3 accommodates the substrate holding unit 5, the substrate rotating unit 7, the processing liquid supply unit 9, the plurality of cup units 11, the shielding unit 19, and the shielding unit operating mechanism 21.
  • the substrate holding unit 5 holds the substrate W horizontally.
  • the substrate holding unit 5 has a spin base 51 and a plurality of chuck members 53.
  • the plurality of chuck members 53 are provided on the spin base 51.
  • the plurality of chuck members 53 hold the substrate W in a horizontal posture.
  • the spin base 51 has a substantially disc shape, and supports the plurality of chuck members 53 in a horizontal posture.
  • the substrate rotating unit 7 integrally rotates the substrate W and the substrate holding unit 5 around the central axis AX.
  • the central axis AX extends in the vertical direction of the substrate W.
  • the substrate rotating unit 7 has a motor 71 and a shaft 73.
  • the shaft 73 is coupled to the spin base 51.
  • the motor 71 rotates the spin base 51 about the central axis AX via the shaft 73.
  • the substrate W held by the plurality of chuck members 53 rotates about the central axis AX.
  • the processing liquid supply unit 9 supplies the processing liquid to the substrate W.
  • the composition of the processing liquid is not particularly limited as long as the substrate W can be processed.
  • the treatment liquid may be a chemical liquid or a rinse liquid.
  • the chemical liquid is, for example, a polymer removing liquid or an etching liquid.
  • the rinse liquid is, for example, pure water or carbonated water.
  • the processing liquid supply unit 9 has a processing liquid nozzle 91 and a processing liquid supply mechanism 93.
  • the treatment liquid supply mechanism 93 is connected to the treatment liquid nozzle 91 and supplies the treatment liquid nozzle 91 with the treatment liquid.
  • the processing liquid supply mechanism 93 has, for example, a valve and a pipe.
  • the processing liquid flows through the processing liquid nozzle 91.
  • the processing liquid nozzle 91 discharges the processing liquid toward the upper surface Wa of the substrate W while the substrate W is rotating.
  • the treatment liquid nozzle 91 corresponds to an example of a “circulation unit”.
  • Each of the plurality of cup portions 11 receives the processing liquid scattered from the substrate W.
  • the plurality of cup portions 11 are arranged around the substrate holding portion 5 and have a shape that is rotationally symmetric with respect to the central axis AX.
  • each of the plurality of cup portions 11 has a substantially cylindrical shape.
  • Each of the plurality of cup portions 11 moves up or down between the liquid receiving position and the retracted position.
  • the liquid receiving position indicates a position where the cup portion 11 faces the substrate W in the radial direction RD.
  • the cup portion 11 receives the processing liquid scattered from the substrate W.
  • the radial direction RD indicates the radial direction with respect to the central axis AX, and is orthogonal to the central axis AX.
  • the retracted position indicates a position below the liquid receiving position.
  • At least one cup portion 11 is located at the liquid receiving position. Then, the substrate W is rotated integrally with the substrate holder 5, and the processing liquid is supplied from the processing liquid nozzle 91 to the upper surface Wa of the substrate W. The processing liquid flows along the upper surface Wa of the substrate W due to the centrifugal force generated by the rotation of the substrate W, and is scattered outward from the edge portion of the substrate W in the radial direction RD. The cup portion 11 receives the processing liquid scattered from the edge portion of the substrate W. Then, the treatment liquid flows down along the inner wall surface 110 of the cup portion 11 and is discharged from the discharge port 17.
  • the plurality of cup moving mechanisms 15 are arranged corresponding to the plurality of cup portions 11, respectively.
  • the cup moving mechanism 15 raises or lowers the corresponding cup portion 11 between the liquid receiving position and the retracted position.
  • the cup moving mechanism 15 includes, for example, an electric motor and a ball screw.
  • the shielding portion 19 faces the upper surface Wa of the substrate W in the axial direction AD.
  • the shielding unit 19 covers the entire upper surface Wa of the substrate W and shields the upper side of the substrate W.
  • the axial direction AD indicates a direction parallel to the central axis AX.
  • the shielding portion 19 has a shielding plate 19a, a shaft portion 19b, and a hole portion Sb.
  • the shield plate 19a extends outward in the radial direction RD around the central axis AX.
  • the shielding plate 19a has a substantially disc shape.
  • the shield plate 19a faces the upper surface Wa of the substrate W in the axial direction AD.
  • the shielding plate 19a covers the entire upper surface Wa of the substrate W and shields the upper side of the substrate W.
  • the shaft portion 19b is fixed to the shield plate 19a.
  • the shaft portion 19b rotates with the shield plate 19a about the central axis AX.
  • the shaft portion 19b has, for example, a substantially cylindrical shape.
  • the hole Sb penetrates the shaft 19b and the shield plate 19a and extends along the central axis AX.
  • the processing liquid nozzle 91 is arranged in the hole Sb.
  • the shield operating mechanism 21 operates the shield 19.
  • the shield operating mechanism 21 includes a shield moving mechanism 21a and a shield rotating mechanism 21b.
  • the shield moving mechanism 21a raises or lowers the shield 19 along the axial direction AD. Specifically, the shield moving mechanism 21a raises or lowers the shield 19 between the close position and the retracted position.
  • the close position indicates a position where the shielding unit 19 descends and comes close to the upper surface Wa of the substrate W at a predetermined interval. In FIG. 2, the shield portion 19 is located at the close position.
  • the retracted position is above the proximity position, and indicates the position where the shield 19 is lifted and separated from the substrate W.
  • the shield moving mechanism 21a moves the shield 19 to the close position.
  • the shield moving mechanism 21a includes, for example, an electric motor and a ball screw.
  • the shield rotation mechanism 21b rotates the shield 19 about the central axis AX. Specifically, the shield rotation mechanism 21b rotates the shield 19 in synchronization with the substrate holder 5. Synchronous rotation indicates that the substrate holder 5 rotates in the same direction and at the same rotation speed.
  • the shield rotation mechanism 21b includes, for example, an electric motor.
  • the substrate processing apparatus 1 may further include a gas supply mechanism 22 and a fan filter unit 24.
  • the chamber 3 houses the gas supply mechanism 22.
  • the gas supply mechanism 22 supplies gas to the hole Sb.
  • the gas is, for example, an inert gas such as nitrogen.
  • the gas supply mechanism 22 includes, for example, a valve and a pipe.
  • the fan filter unit 24 supplies gas into the chamber 3. Specifically, the fan filter unit 24 is arranged on the top plate portion 3 a of the substrate processing apparatus 1. Then, the fan filter unit 24 generates a downflow from above the shielding plate 19a toward the substrate holding unit 5. More specifically, the fan filter unit 24 has a fan and a filter. Then, the fan filter unit 24 takes in the outside air of the substrate processing apparatus 1 with a fan and supplies the outside air into the chamber 3 through the filter. The outside air is clean air.
  • the substrate processing apparatus 1 is installed in a clean room.
  • the fan filter unit 24 corresponds to an example of “gas supply unit”.
  • FIG. 3A is a schematic sectional view showing the shielding portion 19 and the cup portion 11.
  • FIG. 3B is a schematic plan view showing the shielding unit 19.
  • the shield part 19 is planarly viewed.
  • the plan view indicates that the object is viewed from the axial direction AD.
  • the shielding portion 19 has a gas outlet 191. Then, the gas AR flowing toward the inner wall surface 110 of the cup portion 11 flows out from the gas outlet 191. Therefore, on the inner wall surface 110 of the cup part 11, an air flow flowing from the upper part to the lower part can be generated by the gas AR.
  • the droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be smoothly flowed down by the air flow. That is, it is possible to effectively prevent the droplet LQ from staying on the inner wall surface 110 of the cup portion 11. Therefore, as compared with the case where the gas outlet 191 is not provided, the generation of particles on the inner wall surface 110 of the cup portion 11 and the contamination of the substrate W due to the splashback phenomenon can be effectively suppressed.
  • the particles are substances generated by solidifying the liquid droplets LQ attached to the inner wall surface 110 of the cup portion 11.
  • the splashback phenomenon means that the new processing liquid scattered from the substrate W toward the cup portion 11 collides with the droplet LQ made of the old processing liquid adhering to the inner wall surface 110 of the cup portion 11, and the processing liquid becomes It is a phenomenon of bouncing back toward the substrate W.
  • the gas outlet 191 is located at the peripheral edge 19c of the shield 19. Therefore, the gas AR flowing out from the gas outlet 191 is likely to be directed to the inner wall surface 110 of the cup portion 11.
  • the gas AR can effectively generate an airflow flowing from the upper portion to the lower portion, and the droplet LQ attached to the inner wall surface 110 can be further smoothly flowed down by the airflow.
  • the gas outlet 191 faces the inner wall surface 110 of the cup 11. Therefore, on the inner wall surface 110, the airflow flowing from the upper portion to the lower portion can be more effectively generated by the gas AR. As a result, the droplet LQ attached to the inner wall surface 110 can be more smoothly flown down by the air flow.
  • the shielding portion 19 can be easily arranged so that the gas outlet 191 faces the inner wall surface 110 of the cup portion 11 by the shielding portion moving mechanism 21a.
  • the shield part rotation mechanism 21b causes the shield part 19 to rotate about the central axis AX. Therefore, the rotation of the shielding portion 19 can effectively generate the airflow of the gas AR flowing out from the gas outlet 191. As a result, the liquid droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be more smoothly flown down by the gas AR.
  • the shielding plate 19a of the shielding unit 19 has a base member 201, an upper member 203, and a plurality of columns 205. Note that the column 205 is not shown in FIG.
  • the base member 201 and the upper member 203 are opposed to each other with a gap in the axial direction AD.
  • Each of the plurality of columns 205 projects upward from the base member 201.
  • the plurality of columns 205 are arranged on the base member 201 along the circumferential direction CD with respect to the central axis AX.
  • the plurality of columns 205 support the upper member 203. That is, the plurality of columns 205 connect the base member 201 and the upper member 203.
  • the base member 201 has a substantially disk shape and the upper member 203 has a substantially circular band shape in plan view.
  • the shielding plate 19a has a gas outlet 191, a gas inlet 193, and a gas flow passage 195.
  • each of the gas outlet 191 and the gas inlet 193 has a substantially annular shape in plan view.
  • the gas inlet 193 is located on the upper surface portion 196 of the shielding plate 19a. Gas flows into the gas inlet 193. For example, the gas flows from the gas inlet 193 by the rotation of the shield plate 19a.
  • the fan filter unit 24 (FIG. 2) supplies gas to the gas inflow port 193. Therefore, the gas supplied from the fan filter unit 24 flows into the gas inflow port 193. That is, the airflow of the gas AR flowing out from the gas outlet 191 can also be generated by the downflow generated by the fan filter unit 24. As a result, the liquid droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be more smoothly flown down by the gas AR.
  • the gas flow path 195 is formed by the space between the base member 201 and the upper member 203.
  • the gas flow path 195 connects the gas inflow port 193 and the gas outflow port 191. Therefore, according to the first embodiment, the gas can be taken in from the gas inlet 193, the gas can be caused to flow in the gas flow path 195, and the gas AR can be made to flow out from the gas outlet 191 toward the inner wall surface 110 of the cup portion 11. it can.
  • the gas outlet 191 is open toward the outside of the central axis AX in all directions in the radial direction RD. Therefore, the gas AR can be evenly blown to the inner wall surface 110 of the cup portion 11 in the circumferential direction CD. As a result, the liquid droplet LQ attached to the inner wall surface 110 can be more smoothly flown by the gas AR.
  • FIG. 4 is an enlarged schematic cross-sectional view showing the shielding portion 19 and a part of the cup portion 11 shown in FIG.
  • the shielding plate 19a of the shielding portion 19 has a facing wall surface 190.
  • the facing wall surface 190 faces the inner wall surface 110 of the cup portion 11 in the radial direction RD.
  • the opposing wall surface 190 is the surface of the peripheral edge portion 19c.
  • the gas outlet 191 is provided on the facing wall surface 190. Therefore, according to the first embodiment, the gas AR flowing out from the gas outlet 191 can easily flow toward the inner wall surface 110 of the cup portion 11, and the gas AR can flow the droplet LQ more smoothly.
  • the inner surface 1951 of the shielding plate 19a that constitutes the gas flow path 195 has a flow path inclined surface 1951a.
  • the flow channel inclined surface 1951a is inclined downward as it goes outward in the radial direction RD.
  • the cup part 11 has an inclined part 11a and a side wall part 11b.
  • the inclined portion 11a is inclined upward toward the central axis AX with respect to the side wall portion 11b.
  • the inclined portion 11a has a hollow, generally frustoconical shape that is open at the top and bottom.
  • the side wall portion 11b extends along the central axis AX.
  • the side wall portion 11b has a substantially cylindrical shape.
  • the cup portion 11 has a cup upper end portion 111.
  • the cup upper end 111 is the upper end of the inclined portion 11a.
  • the upper end portion 111 of the cup is located above the substrate W.
  • the gas outlet 191 is close to the cup upper end 111 with a gap. Therefore, according to the first embodiment, on the inner wall surface 110, a relatively strong airflow flowing from the upper portion to the lower portion can be generated by the gas AR. As a result, the droplet LQ can be more smoothly flown down by the air flow.
  • the inner wall surface 110 of the cup portion 11 has a cup inclined surface 113.
  • the cup inclined surface 113 is an inner wall surface of the inclined portion 11 a of the inner wall surface 110 of the cup portion 11.
  • the cup inclined surface 113 inclines downward as it goes outward from the central axis AX in the radial direction RD.
  • the inclination angle ⁇ 1 of the flow passage inclined surface 1951a of the shielding plate 19a with respect to the horizontal direction is equal to or less than the inclination angle ⁇ 2 of the cup inclined surface 113 of the cup portion 11 with respect to the horizontal direction. Therefore, according to the first embodiment, the gas AR flowing out along the flow channel inclined surface 1951a is effectively blown to the cup inclined surface 113, and the airflow downward from the cup inclined surface 113 can be effectively generated. As a result, the droplet LQ can be more smoothly flown down by the air flow.
  • FIG. 5 is a flowchart showing the substrate processing method according to the first embodiment. As shown in FIG. 5, the substrate processing method includes steps S1 to S5.
  • step S1 the substrate processing apparatus 1 holds the substrate W by the substrate holding unit 5.
  • the step S1 corresponds to an example of a “holding step”.
  • step S2 the substrate processing apparatus 1 brings the substrate holding unit 5 and the shielding unit 19 close to each other.
  • the step S2 corresponds to an example of a “shielding section approaching step”.
  • step S3 the substrate processing apparatus 1 rotates the substrate W together with the substrate holder 5.
  • Process S3 is equivalent to an example of a "rotation process.”
  • step S4 the substrate processing apparatus 1 causes the gas to flow out from the gas outlet 191 of the shielding part 19 to generate an airflow toward the inner wall surface 110 of the cup part 11.
  • step S5 corresponds to an example of "air flow generation step”.
  • step S5 the substrate processing apparatus 1 processes the substrate W with the processing liquid.
  • the step S5 corresponds to an example of “processing step”.
  • step S4 the gas AR flows out from the gas outlet 191 located at the peripheral edge portion 19c of the shielding portion 19 and flows along the inner wall surface 110 of the cup portion 11. Specifically, in step S4, the gas AR flows out toward the cup upper end 111 from the gas outlet 191 that is close to the cup upper end 111. Therefore, the droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be further smoothly flowed down by the air flow based on the gas AR.
  • the gas AR is flown out from the gas outlet 191 in parallel with supplying the processing liquid to the substrate W in step S5. Therefore, the droplet LQ resulting from the processing liquid scattered during the processing of the substrate W can be effectively flown down along the inner wall surface 110 of the cup portion 11 by the air flow based on the gas AR.
  • step S4 is performed before step S5
  • the execution order of steps S2 to S4 may be appropriately changed, and some or all of steps S2 to S4 may be performed in parallel. May be executed.
  • a substrate processing apparatus 1 according to a first modification of the first embodiment will be described with reference to FIGS. 6A and 6B.
  • the first modification mainly differs from the first embodiment described with reference to FIGS. 1 to 5 in that the substrate processing apparatus 1 has a fan 31 for generating an air flow.
  • differences between the first modification and the first embodiment will be mainly described.
  • FIG. 6A is a schematic cross-sectional view showing the shielding unit 19, the cup unit 11, and the fan 31 of the substrate processing apparatus 1 according to the first modification.
  • the shield 19 is located at the close position.
  • FIG. 6B is a schematic plan view showing the shielding unit 19 and the fan 31 of the substrate processing apparatus 1 according to the first modification. In FIG. 6B, the shield 19 and the fan 31 are seen in a plan view.
  • the substrate processing apparatus 1 further includes a fan 31 in addition to the configuration of the substrate processing apparatus 1 shown in FIG.
  • the fan 31 is arranged on the upper surface portion 196 of the shielding plate 19a of the shielding portion 19.
  • the fan 31 supplies gas to the gas inflow port 193. Therefore, the gas supplied from the fan 31 flows into the gas inlet 193.
  • a strong air flow can be generated by the gas AR flowing out from the gas outlet 191 and the liquid on the inner wall surface 110 of the cup portion 11 is generated by the air flow.
  • the droplet LQ can flow down more smoothly.
  • the fan 31 corresponds to an example of a “gas supply unit”.
  • the shielding plate 19a further has a recess 192.
  • the recess 192 is formed in the upper surface portion 196 of the shield plate 19a.
  • the fan 31 is arranged in the recess 192. Then, the fan 31 sends out the gas to the gas inlet 193 located on the upper surface portion 196 of the shielding plate 19a. Specifically, the fan 31 sends out the gas to the gas inlet 193 located in the recess 192 of the shielding plate 19a.
  • the fan 31 is inserted into the shaft portion 19b and ejects the gas sucked from above the shielding plate 19a in the radial direction RD with respect to the central axis AX. Therefore, according to the first modified example, a gas having a relatively strong airflow can flow into the gas inlet 193, and the gas AR having a relatively strong airflow can be ejected from the gas outlet 191. As a result, on the inner wall surface 110, a relatively strong airflow flowing from the upper portion to the lower portion can be generated by the gas AR, and the droplet LQ on the inner wall surface 110 can flow down more smoothly.
  • the fan 31 is, for example, a sirocco fan.
  • the substrate processing apparatus 1 according to the second modified example of the first embodiment will be described with reference to FIG. 7.
  • the second modification mainly differs from the first modification in that the substrate processing apparatus 1 has a nozzle 33 for generating an air flow.
  • the differences between the second modified example and the first modified example will be mainly described below.
  • FIG. 7 is a schematic cross-sectional view showing the shielding unit 19, the cup unit 11, and the gas supply mechanism 35 of the substrate processing apparatus 1 according to the second modification.
  • the shielding portion 19 is located at the close position.
  • the substrate processing apparatus 1 further includes a gas supply mechanism 35 in addition to the configuration of the substrate processing apparatus 1 shown in FIG.
  • the gas supply mechanism 35 supplies gas to the gas inlet 193. Then, the gas supplied from the gas supply mechanism 35 flows into the gas inlet 193.
  • the gas supply mechanism 35 corresponds to an example of a “gas supply unit”.
  • the gas supply mechanism 35 has a fan 31 and a nozzle 33.
  • the fan 31 is similar to the fan 31 according to the first modification.
  • the nozzle 33 faces the fan 31 in the axial direction AD.
  • the nozzle 33 ejects gas toward the fan 31 from the upper surface side of the shielding plate 19a.
  • the fan 31 sends the gas from the nozzle 33 to the gas inflow port 193. Therefore, as compared with the case where the nozzle 33 is not provided, a gas having a strong air flow can be flown into the gas inflow port 193, and the gas AR having a strong air flow can be ejected from the gas outflow port 191.
  • the nozzle 33 ejects an inert gas such as nitrogen toward the fan 31.
  • the substrate processing apparatus 1 according to the third modified example of the first embodiment will be described with reference to FIG.
  • the third modification is mainly different from the first embodiment described with reference to FIGS. 1 to 5 in that the gas inflow port 193 is located in the hole Sb of the shielding part 19. ..
  • the differences between the third modification and the first embodiment will be mainly described below.
  • FIG. 8 is a schematic cross-sectional view showing the shielding unit 19, the cup unit 11, and the gas supply mechanism 22 of the substrate processing apparatus 1 according to the third modification.
  • the shielding portion 19 is located at the close position.
  • the gas supply mechanism 22 supplies gas to the gas inflow port 193. Then, the gas supplied from the gas supply mechanism 22 flows into the gas inlet 193.
  • the gas supply mechanism 22 corresponds to an example of a “gas supply unit”.
  • the gas supply mechanism 22 supplies gas to the gap GP between the outer surface 91a of the treatment liquid nozzle 91 and the wall surface WL forming the hole Sb.
  • the gas is supplied toward the substrate W before the substrate W is treated with the treatment liquid, so that the space above the substrate W has a predetermined atmosphere. Further, after the space above the substrate W becomes a predetermined atmosphere, the gas is filled in the gap GP.
  • the gas inflow port 193 is provided on the wall surface WL forming the hole Sb. Therefore, the gas supplied by the gas supply mechanism 22 also flows into the gas inlet 193.
  • the gas inflow port 193 is connected to the gas outflow port 191 by the gas flow path 195.
  • the gas supplied to the gap GP can be taken in from the gas inflow port 193, the gas can be made to flow in the gas flow path 195, and the gas AR can be made to flow out from the gas outflow port 191 toward the inner wall surface 110 of the cup part 11. ..
  • the gas AR can generate an air flow that flows from the upper portion to the lower portion, and the droplet LQ attached to the inner wall surface 110 can smoothly flow down by the air stream.
  • the gas supply mechanism 22 supplies gas to the gas inlet 193. That is, the gas supplied to the substrate W or the gas filled in the gap GP is diverted, and the gas is taken into the gas inlet 193. Therefore, it is not necessary to provide a dedicated gas supply mechanism for supplying gas to the gas inlet 193, and the manufacturing cost of the substrate processing apparatus 1 can be reduced.
  • a substrate processing apparatus 1 according to a fourth modification of the first embodiment will be described.
  • the fourth modification mainly differs from the first embodiment described with reference to FIGS. 1 to 5 in that the opening of the nozzle 39 is the gas outlet 191.
  • the differences between the fourth modified example and the first embodiment will be mainly described below.
  • FIG. 9 is a schematic cross-sectional view showing the shielding portion 19A and the cup portion 11 of the substrate processing apparatus 1 according to the fourth modified example.
  • the shield portion 19A is located at the close position.
  • the substrate processing apparatus 1 has a shielding section 19A instead of the shielding section 19 of the substrate processing apparatus 1 shown in FIG.
  • the shield portion 19A has a shield plate 19x, a shaft portion 19b, and a nozzle 39.
  • the shield plate 19x has the same configuration as the shield plate 19a shown in FIG. However, the shielding plate 19x does not have the gas outlet 191, the gas inlet 193, and the gas passage 195 shown in FIG.
  • the shield plate 19x has a substantially disc shape.
  • the nozzle 39 is arranged on the upper surface portion 196 of the shielding plate 19x.
  • the opening 390 of the nozzle 39 is the gas outlet 191 and faces the inner wall surface 110 of the cup portion 11. Therefore, the nozzle 39 ejects the gas AR toward the inner wall surface 110.
  • the nozzle 39 ejects an inert gas such as nitrogen toward the inner wall surface 110.
  • the nozzle 39 can eject the gas AR having a strong air flow toward the inner wall surface 110. Therefore, on the inner wall surface 110, a strong airflow flowing from the upper portion to the lower portion can be generated by the gas AR. As a result, the droplet LQ on the inner wall surface 110 can smoothly flow down. Further, with respect to FIG. 9 of the fourth modified example, it is more effective that the nozzle 39 also rotates by rotating the shielding plate 19x of the upper surface portion 196. It is more preferable that the upper surface portion 196 and the nozzle 39 have the same structure.
  • FIGS. 10 and 11 A substrate processing apparatus 1A according to a second embodiment of the present invention will be described with reference to FIGS. 10 and 11.
  • the second embodiment mainly differs from the first embodiment in that the substrate processing apparatus 1A rotates the shielding unit 19B by the substrate rotating unit 7.
  • differences between the second embodiment and the first embodiment will be mainly described.
  • FIG. 10 is a schematic sectional view showing a substrate processing apparatus 1A according to the second embodiment.
  • the substrate processing apparatus 1A includes a gas supply mechanism 37 instead of the gas supply mechanism 22 of the substrate processing apparatus 1 shown in FIG.
  • the gas supply mechanism 37 will be described later.
  • the substrate holding part 5A of the substrate processing apparatus 1A further has a plurality of engaging parts 41B in addition to the configuration of the substrate holding part 5 shown in FIG.
  • the plurality of engaging portions 41B are arranged on the outer peripheral portion of the upper surface of the spin base 51 in the circumferential direction CD at substantially equal angular intervals around the central axis AX.
  • the plurality of engaging portions 41B are arranged outward of the plurality of chuck members 53 in the radial direction RD. Each of the plurality of engaging portions 41B projects substantially vertically from the upper surface of the spin base 51 upward.
  • the shielding unit 19B of the substrate processing apparatus 1A has the same gas outlet 191 as the shielding unit 19 (FIG. 4) according to the first embodiment. Therefore, according to the second embodiment, similarly to the first embodiment, the droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be smoothly flown down by the air flow. That is, it is possible to effectively prevent the droplet LQ from staying on the inner wall surface 110 of the cup portion 11.
  • the second embodiment has the same effects as the first embodiment.
  • the shielding portion 19B further has a plurality of engaging portions 41A and a flange portion 19d in addition to the configuration of the shielding portion 19 shown in FIG.
  • the plurality of engaging portions 41A are arranged in the circumferential direction CD on the outer peripheral portion of the lower surface of the shielding plate 19a at substantially equal angular intervals around the central axis AX.
  • the plurality of engaging portions 41A respectively face the plurality of engaging portions 41B in the axial direction AD.
  • Each of the plurality of engaging portions 41A projects downward from the lower surface of the shielding plate 19a in a substantially vertical manner.
  • Each of the plurality of engaging portions 41A has a recess (not shown) that is recessed upward.
  • the plurality of engaging portions 41A of the shielding portion 19B engage with the substrate holding portion 5A.
  • the shielding portion 19B rotates integrally with the substrate holding portion 5A when the plurality of engaging portions 41A engage with the substrate holding portion 5A. Therefore, the airflow of the gas AR flowing out from the gas outlet 191 can be effectively generated by the rotation of the shielding portion 19B. As a result, the liquid droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be more smoothly flown down by the gas AR.
  • the plurality of engaging portions 41B of the board holding portion 5A are fitted in the recesses of the plurality of engaging portions 41A of the shielding portion 19B, respectively.
  • the shielding unit 19B rotates in synchronization with the substrate holding unit 5 as the substrate holding unit 5 rotates.
  • the flange portion 19d extends annularly outward from the upper end of the shaft portion 19b in the radial direction RD.
  • the flange portion 19d has, for example, a substantially annular plate shape centered on the central axis AX.
  • the shielding unit operating mechanism 21 of the substrate processing apparatus 1A has a shielding unit moving mechanism 21X instead of the shielding unit moving mechanism 21a shown in FIG. Further, the shield part operating mechanism 21 of the substrate processing apparatus 1A does not have the shield part rotating mechanism 21b shown in FIG.
  • the shield moving mechanism 21X raises or lowers the shield 19B along the axial direction AD. Specifically, the shield moving mechanism 21X raises or lowers the shield 19B between the proximity position and the retracted position.
  • the close position and the retracted position are the same as the close position and the retracted position of the first embodiment, respectively.
  • the shielding portion 19B is located at the close position.
  • the plurality of engaging portions 41A are engaged with the plurality of engaging portions 41B, respectively.
  • the shielding portion 19B is located at the retracted position, the plurality of engaging portions 41A are separated from the plurality of engaging portions 41B, respectively.
  • the shield moving mechanism 21X moves the shield 19B to the close position.
  • the shielding part moving mechanism 21X has a holding part 61 and an elevating mechanism 62.
  • the elevating mechanism 62 raises or lowers the shielding portion 19B together with the holding portion 61.
  • the elevating mechanism 62 includes, for example, an electric motor and a ball screw.
  • the holding unit 61 holds the shielding unit 19B.
  • the holding portion 61 has a holding portion main body 611, a main body supporting portion 612, a flange supporting portion 613, and a supporting portion connecting portion 614.
  • the holding portion main body 611 covers the upper portion of the flange portion 19d of the shielding portion 19B.
  • the main body support portion 612 is a bar-shaped arm that extends substantially horizontally. One end of the main body support 612 is connected to the holder main body 611, and the other end is connected to the lifting mechanism 62.
  • the supporting portion connecting portion 614 connects the flange supporting portion 613 and the holding portion main body 611 around the flange portion 19d.
  • the flange support portion 613 comes into contact with and supports the flange portion 19d of the shield portion 19B from below when the shield portion 19B is located at the retracted position. On the other hand, as shown in FIG. 10, the flange support portion 613 is separated from the flange portion 19d of the shield portion 19B when the shield portion 19B is located at the close position. As a result, the shielding unit 19B becomes rotatable.
  • FIG. 11 is a schematic side view showing the processing liquid supply unit 9.
  • the treatment liquid nozzle 91 of the treatment liquid supply unit 9 has a treatment liquid passage 931 and two gas passages 371.
  • the processing liquid channel 931 is connected to the processing liquid supply mechanism 93.
  • the two gas flow paths 371 are connected to the gas supply mechanism 37.
  • the processing liquid supply mechanism 93 supplies the processing liquid to the processing liquid nozzle 91. Specifically, the processing liquid supply mechanism 93 supplies the processing liquid to the processing liquid channel 931. The processing liquid supplied to the processing liquid channel 931 is discharged downward from the discharge port 931 a provided on the lower end surface of the processing liquid nozzle 91.
  • the gas supply mechanism 37 supplies gas to the processing liquid nozzle 91. Specifically, the gas supply mechanism 37 supplies gas to the two gas flow paths 371.
  • the gas supply mechanism 37 supplies an inert gas such as nitrogen to the two gas flow paths 371, for example.
  • the gas supply mechanism 37 includes, for example, a valve and a pipe.
  • the gas supplied to the gas flow path 371 in the central portion of the processing liquid nozzle 91 is jetted downward from the lower surface jet port 371 a provided on the lower end surface of the processing liquid nozzle 91.
  • the gas supplied to the gas flow path 371 at the outer peripheral portion of the treatment liquid nozzle 91 is ejected to the surroundings from the plurality of side face ejection ports 371b provided on the side face of the treatment liquid nozzle 91. Therefore, according to the second embodiment, the gas can be effectively supplied to the substrate W. Further, the gap GP between the outer surface 91a of the treatment liquid nozzle 91 and the wall surface WL forming the hole Sb can be effectively filled with gas.
  • the present invention has been described above with reference to the drawings. However, the present invention is not limited to the above embodiment, and can be implemented in various modes without departing from the gist thereof. Further, the plurality of constituent elements disclosed in the above embodiments can be modified as appropriate. For example, one of all the constituent elements shown in one embodiment may be added to a constituent element of another embodiment, or some constituent elements of all the constituent elements shown in one embodiment may be added. Elements may be removed from the embodiments.
  • each component schematically show each component as a main component, and the thickness, length, number, interval, etc. of each illustrated component are the same as those in the drawings. It may be different from the actual one due to the circumstances. Further, the configuration of each component shown in the above embodiment is an example and is not particularly limited, and it goes without saying that various modifications can be made without substantially departing from the effects of the present invention. ..
  • the gas outlet 191 is provided on the inner wall surface 110 of the cup portion 11.
  • the shapes, the numbers, and the arrangements of the gas outlets 191, the gas inlets 193, and the gas passages 195 are not particularly limited as long as the directed gas AR flows out.
  • the gas inlet 193 and the gas flow passage 195 may be formed so that the plurality of gas flow passages 195 radially extend outward in the radial direction RD.
  • the gas inlet 193 and the gas passage 195 may be formed so that one gas passage 195 extends outward in the radial direction RD.
  • the number of each of the gas outlet 191, the gas inlet 193, and the gas flow passage 195 may be one or may be plural. Further, the shielding portion 19 may have a plurality of gas outlets 191 having different injection angles corresponding to the shapes of the plurality of cup portions 11. Further, the number of gas outlets 191 may be changed according to the number of cup portions 11.
  • the gas supply mechanism 35 is a fan. 31 may not be included.
  • the shield portion 19B may have the shield plate 19a and the shaft portion 19b of the shield portion 19 described with reference to FIG.
  • the gas ejected from the plurality of side surface ejection ports 371b of the treatment liquid nozzle 91 shown in FIG. 11 flows into the gas inflow port 193 shown in FIG.
  • the gas supply mechanism 37 corresponds to an example of a “gas supply unit”.
  • the shielding plate 19a is formed according to the shape of the cup portion 11.
  • the direction of the gas outlet 191 may be variable.
  • the cup moving mechanism 15 may swing the cup portion 11 up and down. In this case, the droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be more effectively flowed down.
  • the present invention relates to a substrate processing apparatus and a substrate processing method, and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A substrate processing device (1) includes: a substrate holding part (5); a substrate rotating part (7); a shielding part (19); a shielding part actuating mechanism (21); a processing liquid supplying unit (9); and a cup part (11). The substrate holding part (5) holds a substrate (W) horizontally. The substrate rotating part (7) integrally rotates the substrate (W) and the substrate holding part (5) about a central axis (AX) extending in the vertical direction. The shielding part (19) opposes an upper surface (Wa) of the substrate (W). The shielding part actuating mechanism (21) actuates the shielding part (19). The processing liquid supplying part (9) supplies a processing liquid to the substrate (W). The cup part (11) is disposed around the substrate holding part (5) and receives the processing liquid. The shielding part (19) has a gas outflow port (191) from which gas (AR) directed towards an inner wall surface (110) of the cup part (11) flows out.

Description

基板処理装置及び基板処理方法Substrate processing apparatus and substrate processing method
 本発明は、基板処理装置及び基板処理方法に関する。 The present invention relates to a substrate processing apparatus and a substrate processing method.
 特許文献1に記載されている基板処理装置は、基板に対して薬液処理を行う。基板処理装置は液受け部を備える。液受け部はカップ部を備える。基板に対して薬液処理を行うときには、カップ部が上昇し、スピンチャックに保持された基板の周囲がカップ部の案内部によって取り囲まれる。そして、基板がスピンチャックとともに回転され、吐出ヘッドから基板の上面に薬液が供給される。薬液は基板の回転による遠心力によって基板の上面に沿って流れ、基板の端縁部から側方に向けて飛散される。基板の端縁部から飛散した薬液は、カップ部の案内部の内壁面を伝って流下し、廃棄溝から排出される。 The substrate processing apparatus described in Patent Document 1 performs chemical liquid processing on a substrate. The substrate processing apparatus includes a liquid receiver. The liquid receiving portion includes a cup portion. When performing the chemical treatment on the substrate, the cup portion rises, and the periphery of the substrate held by the spin chuck is surrounded by the guide portion of the cup portion. Then, the substrate is rotated together with the spin chuck, and the chemical liquid is supplied from the ejection head to the upper surface of the substrate. The chemical liquid flows along the upper surface of the substrate due to the centrifugal force generated by the rotation of the substrate, and is scattered laterally from the edge portion of the substrate. The chemical liquid scattered from the edge portion of the substrate flows down along the inner wall surface of the guide portion of the cup portion and is discharged from the waste groove.
 特に、液受け部は集液部をさらに備える。集液部は、カップ部の案内部の内側に配置される。集液部の内周面は複数の溝を有する。各溝は鉛直方向に沿って延在する。従って、基板の端縁部から飛散した処理液の液滴は、まず集液部の内周面に付着する。内周面に付着した液滴の大部分は、各溝における半円状の曲面に沿って流動し、他の付着した液滴と合流する。合流後の液滴は、合流前の液滴に比べて相対的に大きな自重により溝の延在方向に沿って流下する。 Especially, the liquid receiving part further includes a liquid collecting part. The liquid collecting part is arranged inside the guide part of the cup part. The inner peripheral surface of the liquid collecting portion has a plurality of grooves. Each groove extends along the vertical direction. Therefore, the droplets of the processing liquid scattered from the edge portion of the substrate first adhere to the inner peripheral surface of the liquid collecting portion. Most of the droplets attached to the inner peripheral surface flow along the semicircular curved surface in each groove and join with other attached droplets. The droplet after merging flows down along the extending direction of the groove due to its own weight which is relatively larger than that of the droplet before merging.
 従って、カップ部の内壁面に液滴が滞留することを抑制できる。その結果、カップ部の内壁面に液滴が滞留した状態を放置することに起因する基板の汚染を低減できる。 Therefore, it is possible to prevent the droplets from staying on the inner wall surface of the cup portion. As a result, it is possible to reduce contamination of the substrate caused by leaving the liquid droplets on the inner wall surface of the cup portion.
特開2018-56151号公報Japanese Patent Laid-Open No. 2018-56151
 しかしながら、近年、カップ部の内壁面に液滴が滞留することを更に抑制することが要望されている。 However, in recent years, it has been desired to further suppress the retention of droplets on the inner wall surface of the cup portion.
 本発明は上記課題に鑑みてなされたものであり、その目的は、カップ部の内壁面に液滴が滞留することを効果的に抑制できる基板処理装置及び基板処理方法を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a substrate processing apparatus and a substrate processing method capable of effectively suppressing the retention of droplets on the inner wall surface of the cup portion.
 本発明の一局面によれば、基板処理装置は、基板保持部と、基板回転部と、遮蔽部と、遮蔽部動作機構と、処理液供給部と、カップ部とを有する。基板保持部は、基板を水平に保持する。基板回転部は、上下方向に延びる中心軸を中心として前記基板と前記基板保持部とを一体に回転させる。遮蔽部は、前記基板の上面に対向する。遮蔽部動作機構は、前記遮蔽部を動作させる。処理液供給部は、前記基板に処理液を供給する。カップ部は、前記基板保持部の周囲に配置されて、前記処理液を受ける。前記遮蔽部は、前記カップ部の内壁面に向かう気体が流出する気体流出口を有する。 According to one aspect of the present invention, the substrate processing apparatus includes a substrate holding unit, a substrate rotating unit, a shielding unit, a shielding unit operating mechanism, a processing liquid supply unit, and a cup unit. The substrate holding unit holds the substrate horizontally. The substrate rotating unit integrally rotates the substrate and the substrate holding unit about a central axis extending in the vertical direction. The shield part faces the upper surface of the substrate. The shield operating mechanism operates the shield. The processing liquid supply unit supplies the processing liquid to the substrate. The cup part is arranged around the substrate holding part and receives the processing liquid. The shielding part has a gas outlet through which gas toward the inner wall surface of the cup part flows out.
 本発明の基板処理装置において、前記気体流出口は、前記遮蔽部の周縁部に位置していることが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the gas outlet is located at a peripheral portion of the shielding portion.
 本発明の基板処理装置において、前記カップ部は、前記基板よりも上方に位置するカップ上端部を有することが好ましい。前記気体流出口は、前記カップ上端部と近接していることが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the cup portion has an upper end portion of the cup located above the substrate. The gas outlet is preferably close to the upper end of the cup.
 本発明の基板処理装置において、前記遮蔽部は、前記基板の上面全体を覆って、前記基板の上方を遮蔽することが好ましい。前記気体流出口は、前記カップ部の内壁面に向いていることが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the shielding section covers the entire upper surface of the substrate to shield the upper side of the substrate. It is preferable that the gas outlet port faces the inner wall surface of the cup portion.
 本発明の基板処理装置において、前記遮蔽部は、前記基板の上面と対向する遮蔽板を有することが好ましい。前記遮蔽板は、前記カップ部の内壁面と対向する対向壁面を有することが好ましい。前記気体流出口は、前記対向壁面に設けられることが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the shielding section has a shielding plate facing the upper surface of the substrate. It is preferable that the shielding plate has a facing wall surface facing the inner wall surface of the cup portion. The gas outlet is preferably provided on the facing wall surface.
 本発明の基板処理装置において、前記遮蔽板は、前記気体流出口と、前記気体が流入する気体流入口と、気体流路とを有することが好ましい。気体流路は、前記気体流入口と前記気体流出口とを連通させることが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the shielding plate has the gas outlet, a gas inlet into which the gas flows, and a gas flow path. The gas flow passage preferably connects the gas inlet and the gas outlet.
 本発明の基板処理装置において、前記カップ部の内壁面は、前記中心軸から径方向の外方へ向かうにつれて下方に向けて傾斜するカップ傾斜面を有することが好ましい。前記気体流路を構成する内面は、前記径方向の外方に向かうにつれて下方に向けて傾斜する流路傾斜面を有することが好ましい。前記流路傾斜面の水平方向に対する傾斜角度は、前記カップ傾斜面の水平方向に対する傾斜角度以下であることが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the inner wall surface of the cup portion has a cup inclined surface that is inclined downward as it goes radially outward from the central axis. It is preferable that the inner surface forming the gas flow path has a flow path inclined surface that is inclined downward as it goes outward in the radial direction. It is preferable that the inclination angle of the flow channel inclined surface with respect to the horizontal direction is equal to or less than the inclination angle of the cup inclined surface with respect to the horizontal direction.
 本発明の基板処理装置は、前記気体を供給するガス供給部を更に有することが好ましい。前記ガス供給部から供給される前記気体が前記気体流入口に流入することが好ましい。 The substrate processing apparatus of the present invention preferably further includes a gas supply unit that supplies the gas. It is preferable that the gas supplied from the gas supply unit flows into the gas inlet.
 本発明の基板処理装置において、前記気体流入口は、前記遮蔽板の上面部に位置することが好ましい。前記気体流路は、前記気体流入口と前記気体流出口とを連通することが好ましい。前記ガス供給部は、前記気体を前記気体流入口に送り出すファンを有することが好ましい。前記ファンは、前記遮蔽板の上面部に配置されていることが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the gas inlet is located on the upper surface of the shielding plate. The gas flow path preferably connects the gas inflow port and the gas outflow port. It is preferable that the gas supply unit has a fan that sends the gas to the gas inlet. The fan is preferably arranged on the upper surface of the shield plate.
 本発明の基板処理装置において、前記遮蔽部は、前記遮蔽板に固定される軸部をさらに有することが好ましい。前記軸部は、前記中心軸を中心として前記遮蔽板と共に回転することが好ましい。前記ファンは、前記軸部に挿通されて、前記遮蔽板の上方から吸入した前記気体を、前記中心軸に対する径方向に噴き出すことが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the shield section further has a shaft section fixed to the shield plate. It is preferable that the shaft portion rotates together with the shielding plate about the central axis. It is preferable that the fan be inserted into the shaft portion and eject the gas sucked from above the shielding plate in a radial direction with respect to the central axis.
 本発明の基板処理装置において、前記ガス供給部は、前記ファンに対向するノズルを更に有することが好ましい。前記ノズルは、前記遮蔽板の上面側から前記ファンに向けて前記気体を噴き出すことが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the gas supply unit further has a nozzle facing the fan. It is preferable that the nozzle ejects the gas from the upper surface side of the shielding plate toward the fan.
 本発明の基板処理装置において、前記遮蔽部は、前記遮蔽板に固定される軸部をさらに有することが好ましい。前記軸部は、前記中心軸を中心として前記遮蔽板と共に回転することが好ましい。前記遮蔽部は、前記軸部及び前記遮蔽板を貫通して前記中心軸に沿って延びる穴部を有することが好ましい。前記処理液供給部は、前記処理液が流通する流通部を有することが好ましい。前記流通部は、前記穴部に配置されていることが好ましい。前記ガス供給部は、前記流通部の外面と前記穴部を構成する壁面との間の隙間に前記気体を供給することが好ましい。前記気体流入口は、前記穴部を構成する前記壁面に設けられることが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the shield section further has a shaft section fixed to the shield plate. It is preferable that the shaft portion rotates together with the shielding plate about the central axis. It is preferable that the shield has a hole that penetrates the shaft and the shield and extends along the central axis. It is preferable that the treatment liquid supply unit has a circulation unit through which the treatment liquid flows. It is preferable that the circulation portion is arranged in the hole portion. It is preferable that the gas supply unit supplies the gas to a gap between an outer surface of the circulation unit and a wall surface forming the hole. The gas inlet is preferably provided on the wall surface forming the hole.
 本発明の基板処理装置において、前記ガス供給部は、ファンフィルタユニットを有することが好ましい。ファンフィルタユニットは、前記基板処理装置の天板部に配置されることが好ましい。前記ファンフィルタユニットは、前記遮蔽板の上方から前記基板保持部に向かうダウンフローを発生させることが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the gas supply unit has a fan filter unit. The fan filter unit is preferably arranged on the top plate portion of the substrate processing apparatus. It is preferable that the fan filter unit generate a downflow from above the shielding plate toward the substrate holding unit.
 本発明の基板処理装置において、前記遮蔽部は、遮蔽板と、ノズルとを有することが好ましい。遮蔽板は、前記基板の上面と対向することが好ましい。ノズルは、前記遮蔽板の上面部に配置されることが好ましい。前記ノズルの開口が、前記気体流出口であり、前記カップ部の内壁面と対向することが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the shielding section has a shielding plate and a nozzle. The shield plate preferably faces the upper surface of the substrate. The nozzle is preferably arranged on the upper surface of the shield plate. It is preferable that the opening of the nozzle is the gas outlet and faces the inner wall surface of the cup portion.
 本発明の基板処理装置において、前記遮蔽部動作機構は、前記遮蔽部を上昇又は下降させる遮蔽部移動機構を含むことが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the shield operating mechanism includes a shield moving mechanism that raises or lowers the shield.
 本発明の基板処理装置において、前記遮蔽部動作機構は、前記遮蔽部を回転させる遮蔽部回転機構を含むことが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the shield operating mechanism includes a shield rotating mechanism that rotates the shield.
 本発明の基板処理装置において、前記遮蔽部は、前記基板保持部と係合する複数の係合部を有することが好ましい。前記遮蔽部は、前記複数の係合部が前記基板保持部と係合することにより前記基板保持部と一体となって回転することが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the shielding section has a plurality of engaging sections that engage with the substrate holding section. It is preferable that the shielding unit rotates integrally with the substrate holding unit by the plurality of engaging units engaging with the substrate holding unit.
 本発明の他の局面に係る基板処理方法は、基板を基板保持部によって保持する保持工程と、前記基板保持部と遮蔽部とを接近させる遮蔽部接近工程と、前記基板を前記基板保持部と共に回転させる回転工程と、前記遮蔽部の気体流出口から気体を流出させて、カップ部の内壁面に向かう気流を発生させる気流発生工程と、前記基板を処理液で処理する処理工程とを含む。 A substrate processing method according to another aspect of the present invention is a holding step of holding a substrate by a substrate holding section, a shielding section approaching step of bringing the substrate holding section and a shielding section close to each other, and the substrate together with the substrate holding section. It includes a rotating step of rotating, an air flow generating step of causing a gas to flow out from a gas outlet of the shielding part to generate an air flow toward an inner wall surface of the cup part, and a processing process of processing the substrate with a processing liquid.
 本発明の基板処理方法において、前記気流発生工程では、前記気体は、前記遮蔽部の周縁部に位置している前記気体流出口から流出して、前記カップ部の内壁面に沿って流れることが好ましい。 In the substrate processing method of the present invention, in the airflow generating step, the gas may flow out from the gas outlet located at the peripheral portion of the shielding portion and flow along the inner wall surface of the cup portion. preferable.
 本発明の基板処理方法において、前記カップ部は、前記基板よりも上方に位置するカップ上端部を有することが好ましい。前記気流発生工程では、前記気体は、前記カップ上端部と近接している前記気体流出口から、前記カップ上端部に向けて流出することが好ましい。 In the substrate processing method of the present invention, it is preferable that the cup portion has a cup upper end portion located above the substrate. In the airflow generating step, it is preferable that the gas flow out from the gas outlet close to the upper end of the cup toward the upper end of the cup.
 本発明によれば、カップ部の内壁面に液滴が滞留することを効果的に抑制できる基板処理装置及び基板処理方法を提供できる。 According to the present invention, it is possible to provide a substrate processing apparatus and a substrate processing method that can effectively prevent liquid droplets from accumulating on the inner wall surface of the cup portion.
本発明の実施形態1に係る基板処理システムを示す模式的平面図である。1 is a schematic plan view showing a substrate processing system according to Embodiment 1 of the present invention. 実施形態1に係る基板処理装置を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing the substrate processing apparatus according to the first embodiment. (a)は、実施形態1に係る基板処理装置の遮蔽部及びカップ部を示す模式的断面図である。(b)は、実施形態1に係る基板処理装置の遮蔽部を示す模式的平面図である。FIG. 3A is a schematic cross-sectional view showing a shield part and a cup part of the substrate processing apparatus according to the first embodiment. FIG. 3B is a schematic plan view showing a shielding unit of the substrate processing apparatus according to the first embodiment. 図3(a)に示す遮蔽部とカップ部の一部とを拡大して示す模式的断面図である。It is a schematic cross section which expands and shows a shield part and a part of cup part shown to Fig.3 (a). 実施形態1に係る基板処理方法を示すフローチャートである。3 is a flowchart showing a substrate processing method according to the first embodiment. (a)は、実施形態1の第1変形例に係る基板処理装置の遮蔽部、カップ部、及びファンを示す模式的断面図である。(b)は、第1変形例に係る基板処理装置の遮蔽部及びファンを示す模式的平面図である。FIG. 7A is a schematic cross-sectional view showing a shielding part, a cup part, and a fan of the substrate processing apparatus according to the first modified example of the first embodiment. FIG. 9B is a schematic plan view showing a shielding unit and a fan of the substrate processing apparatus according to the first modification. 実施形態1の第2変形例に係る基板処理装置の遮蔽部、カップ部、及びガス供給機構を示す模式的断面図である。FIG. 7 is a schematic cross-sectional view showing a shielding part, a cup part, and a gas supply mechanism of the substrate processing apparatus according to the second modified example of the first embodiment. 実施形態1の第3変形例に係る基板処理装置の遮蔽部、カップ部、及びガス供給機構を示す模式的断面図である。FIG. 9 is a schematic cross-sectional view showing a shield part, a cup part, and a gas supply mechanism of the substrate processing apparatus according to the third modified example of the first embodiment. 実施形態1の第4変形例に係る基板処理装置の遮蔽部及びカップ部を示す模式的断面図である。FIG. 9 is a schematic cross-sectional view showing a shield part and a cup part of the substrate processing apparatus according to the fourth modified example of the first embodiment. 本発明の実施形態2に係る基板処理装置を示す模式的断面図である。It is a typical sectional view showing a substrate processing device concerning Embodiment 2 of the present invention. 実施形態2に係る基板処理装置の処理液供給部を示す模式的側面図である。FIG. 6 is a schematic side view showing a processing liquid supply unit of the substrate processing apparatus according to the second embodiment.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、図中、同一または相当部分については同一の参照符号を付して説明を繰り返さない。また、本発明の実施形態において、X軸、Y軸、及びZ軸は互いに直交し、X軸及びY軸は水平方向に平行であり、Z軸は鉛直方向に平行である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference symbols and description thereof will not be repeated. Further, in the embodiment of the present invention, the X axis, the Y axis, and the Z axis are orthogonal to each other, the X axis and the Y axis are parallel to the horizontal direction, and the Z axis is parallel to the vertical direction.
 (実施形態1)
 図1~図5を参照して、本発明の実施形態1に係る基板処理システム100を説明する。基板処理システム100は基板Wを処理する。基板Wは、例えば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、電界放出ディスプレイ(Field Emission Display:FED)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、又は、太陽電池用基板である。基板Wは、例えば、略円板状である。
(Embodiment 1)
A substrate processing system 100 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 5. The substrate processing system 100 processes a substrate W. The substrate W is, for example, a semiconductor wafer, a liquid crystal display device substrate, a plasma display substrate, a field emission display (FED) substrate, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask. Substrate, ceramic substrate, or solar cell substrate. The substrate W has, for example, a substantially disc shape.
 まず、図1を参照して基板処理システム100を説明する。図1は、基板処理システム100を示す模式的平面図である。図1に示すように、基板処理システム100は、インデクサーユニットU1と、処理ユニットU2とを有する。インデクサーユニットU1は、複数の基板収容器Cと、インデクサーロボットIRとを含む。処理ユニットU2は、複数の基板処理装置1と、搬送ロボットCRと、受渡部PSとを含む。 First, the substrate processing system 100 will be described with reference to FIG. FIG. 1 is a schematic plan view showing a substrate processing system 100. As shown in FIG. 1, the substrate processing system 100 includes an indexer unit U1 and a processing unit U2. The indexer unit U1 includes a plurality of substrate containers C and an indexer robot IR. The processing unit U2 includes a plurality of substrate processing apparatuses 1, a transfer robot CR, and a delivery section PS.
 基板収容器Cの各々は、複数枚の基板Wを積層して収容する。インデクサーロボットIRは、複数の基板収容器Cのうちのいずれかの基板収容器Cから未処理の基板Wを取り出して、基板Wを受渡部PSに渡す。そして、受渡部PSには、基板収容器Cから取り出された基板Wが載置される。搬送ロボットCRは、受渡部PSから未処理の基板Wを受け取って、複数の基板処理装置1のうちのいずれかの基板処理装置1に基板Wを搬入する。 Each of the substrate containers C stores a plurality of substrates W in a stacked manner. The indexer robot IR takes out the unprocessed substrate W from any one of the plurality of substrate containers C and transfers the substrate W to the transfer part PS. Then, the substrate W taken out from the substrate container C is placed on the delivery section PS. The transfer robot CR receives the unprocessed substrate W from the delivery unit PS and carries the substrate W into any one of the plurality of substrate processing apparatuses 1.
 そして、基板処理装置1は、未処理の基板Wを処理する。基板処理装置1は、基板Wを1枚ずつ処理する枚葉型である。実施形態1では、基板処理装置1は、処理液によって基板Wを処理する。 Then, the substrate processing apparatus 1 processes the unprocessed substrate W. The substrate processing apparatus 1 is a single-wafer type that processes the substrates W one by one. In the first embodiment, the substrate processing apparatus 1 processes the substrate W with the processing liquid.
 基板処理装置1による処理後に、搬送ロボットCRは、処理済みの基板Wを基板処理装置1から取り出して、基板Wを受渡部PSに渡す。そして、受渡部PSには、基板処理装置1で処理された基板Wが載置される。インデクサーロボットIRは、受渡部PSから処理済みの基板Wを受け取って、複数の基板収容器Cのうちのいずれかの基板収容器Cに基板Wを収容する。 After the processing by the substrate processing apparatus 1, the transfer robot CR takes out the processed substrate W from the substrate processing apparatus 1 and transfers the substrate W to the delivery section PS. Then, the substrate W processed by the substrate processing apparatus 1 is placed on the delivery section PS. The indexer robot IR receives the processed substrate W from the delivery unit PS and stores the substrate W in any one of the plurality of substrate containers C.
 次に、図2を参照して基板処理装置1を説明する。図2は、基板処理装置1を示す模式的断面である。図2に示すように、基板処理装置1は、チャンバー3と、基板保持部5と、基板回転部7と、処理液供給部9と、複数のカップ部11と、複数のカップ移動機構15と、排出ポート17と、遮蔽部19と、遮蔽部動作機構21とを有する。 Next, the substrate processing apparatus 1 will be described with reference to FIG. FIG. 2 is a schematic cross section showing the substrate processing apparatus 1. As shown in FIG. 2, the substrate processing apparatus 1 includes a chamber 3, a substrate holding unit 5, a substrate rotating unit 7, a processing liquid supply unit 9, a plurality of cup units 11, and a plurality of cup moving mechanisms 15. The discharge port 17, the shielding portion 19, and the shielding portion operating mechanism 21 are provided.
 チャンバー3は略箱形状を有する。チャンバー3は天板部3aを有する。チャンバー3は、基板保持部5、基板回転部7、処理液供給部9、複数のカップ部11、遮蔽部19、及び遮蔽部動作機構21を収容する。 The chamber 3 has a substantially box shape. The chamber 3 has a top plate portion 3a. The chamber 3 accommodates the substrate holding unit 5, the substrate rotating unit 7, the processing liquid supply unit 9, the plurality of cup units 11, the shielding unit 19, and the shielding unit operating mechanism 21.
 基板保持部5は、基板Wを水平に保持する。具体的には、基板保持部5は、スピンベース51と、複数のチャック部材53とを有する。複数のチャック部材53はスピンベース51に設けられる。複数のチャック部材53は基板Wを水平な姿勢で保持する。スピンベース51は、略円板状であり、水平な姿勢で複数のチャック部材53を支持する。 The substrate holding unit 5 holds the substrate W horizontally. Specifically, the substrate holding unit 5 has a spin base 51 and a plurality of chuck members 53. The plurality of chuck members 53 are provided on the spin base 51. The plurality of chuck members 53 hold the substrate W in a horizontal posture. The spin base 51 has a substantially disc shape, and supports the plurality of chuck members 53 in a horizontal posture.
 基板回転部7は、中心軸AXを中心として基板Wと基板保持部5とを一体に回転させる。中心軸AXは基板Wの上下方向に延びる。具体的には、基板回転部7は、モーター71と、シャフト73とを有する。シャフト73はスピンベース51に結合される。モーター71は、シャフト73を介して中心軸AXを中心としてスピンベース51を回転させる。その結果、複数のチャック部材53に保持された基板Wが中心軸AXを中心として回転する。 The substrate rotating unit 7 integrally rotates the substrate W and the substrate holding unit 5 around the central axis AX. The central axis AX extends in the vertical direction of the substrate W. Specifically, the substrate rotating unit 7 has a motor 71 and a shaft 73. The shaft 73 is coupled to the spin base 51. The motor 71 rotates the spin base 51 about the central axis AX via the shaft 73. As a result, the substrate W held by the plurality of chuck members 53 rotates about the central axis AX.
 処理液供給部9は、基板Wに処理液を供給する。基板Wを処理できる限りにおいては、処理液の組成は特に限定されない。例えば、処理液は、薬液であってもよいし、リンス液であってもよい。薬液は、例えば、ポリマー除去液又はエッチング液である。リンス液は、例えば、純水又は炭酸水である。具体的には、処理液供給部9は、処理液ノズル91と、処理液供給機構93とを有する。処理液供給機構93は、処理液ノズル91に接続され、処理液ノズル91に処理液を供給する。処理液供給機構93は、例えば、バルブ及び配管を有する。処理液ノズル91には処理液が流通する。そして、処理液ノズル91は、基板Wの回転中に、基板Wの上面Waに向けて処理液を吐出する。処理液ノズル91は、「流通部」の一例に相当する。 The processing liquid supply unit 9 supplies the processing liquid to the substrate W. The composition of the processing liquid is not particularly limited as long as the substrate W can be processed. For example, the treatment liquid may be a chemical liquid or a rinse liquid. The chemical liquid is, for example, a polymer removing liquid or an etching liquid. The rinse liquid is, for example, pure water or carbonated water. Specifically, the processing liquid supply unit 9 has a processing liquid nozzle 91 and a processing liquid supply mechanism 93. The treatment liquid supply mechanism 93 is connected to the treatment liquid nozzle 91 and supplies the treatment liquid nozzle 91 with the treatment liquid. The processing liquid supply mechanism 93 has, for example, a valve and a pipe. The processing liquid flows through the processing liquid nozzle 91. Then, the processing liquid nozzle 91 discharges the processing liquid toward the upper surface Wa of the substrate W while the substrate W is rotating. The treatment liquid nozzle 91 corresponds to an example of a “circulation unit”.
 複数のカップ部11の各々は、基板Wから飛散した処理液を受ける。複数のカップ部11は、基板保持部5の周囲に配置され、中心軸AXに対して回転対称となる形状を有している。例えば、複数のカップ部11の各々は略円筒形状を有する。 Each of the plurality of cup portions 11 receives the processing liquid scattered from the substrate W. The plurality of cup portions 11 are arranged around the substrate holding portion 5 and have a shape that is rotationally symmetric with respect to the central axis AX. For example, each of the plurality of cup portions 11 has a substantially cylindrical shape.
 複数のカップ部11の各々は、受液位置と退避位置との間で上昇又は下降する。受液位置は、カップ部11が基板Wと径方向RDに対向する位置を示す。カップ部11は、受液位置に位置するときに、基板Wから飛散した処理液を受ける。径方向RDは中心軸AXに対する径方向を示し、中心軸AXに直交する。一方、退避位置は、受液位置よりも下方の位置を示す。 Each of the plurality of cup portions 11 moves up or down between the liquid receiving position and the retracted position. The liquid receiving position indicates a position where the cup portion 11 faces the substrate W in the radial direction RD. When positioned at the liquid receiving position, the cup portion 11 receives the processing liquid scattered from the substrate W. The radial direction RD indicates the radial direction with respect to the central axis AX, and is orthogonal to the central axis AX. On the other hand, the retracted position indicates a position below the liquid receiving position.
 具体的には、基板Wを処理液で処理するときには、少なくとも1つのカップ部11が受液位置に位置する。そして、基板Wが基板保持部5と一体に回転され、処理液ノズル91から基板Wの上面Waに処理液が供給される。処理液は基板Wの回転による遠心力によって基板Wの上面Waに沿って流れ、基板Wの端縁部から径方向RD外方に向けて飛散される。カップ部11は、基板Wの端縁部から飛散した処理液を受ける。そして、処理液は、カップ部11の内壁面110を伝って流下し、排出ポート17から排出される。 Specifically, when processing the substrate W with the processing liquid, at least one cup portion 11 is located at the liquid receiving position. Then, the substrate W is rotated integrally with the substrate holder 5, and the processing liquid is supplied from the processing liquid nozzle 91 to the upper surface Wa of the substrate W. The processing liquid flows along the upper surface Wa of the substrate W due to the centrifugal force generated by the rotation of the substrate W, and is scattered outward from the edge portion of the substrate W in the radial direction RD. The cup portion 11 receives the processing liquid scattered from the edge portion of the substrate W. Then, the treatment liquid flows down along the inner wall surface 110 of the cup portion 11 and is discharged from the discharge port 17.
 複数のカップ移動機構15は、それぞれ、複数のカップ部11に対応して配置される。カップ移動機構15は、受液位置と退避位置との間で、対応するカップ部11を上昇又は下降させる。カップ移動機構15は、例えば、電動モーター及びボールねじを含む。 The plurality of cup moving mechanisms 15 are arranged corresponding to the plurality of cup portions 11, respectively. The cup moving mechanism 15 raises or lowers the corresponding cup portion 11 between the liquid receiving position and the retracted position. The cup moving mechanism 15 includes, for example, an electric motor and a ball screw.
 遮蔽部19は、基板Wの上面Waに対して軸方向ADに対向する。そして、遮蔽部19は、基板Wの上面Wa全体を覆って、基板Wの上方を遮蔽する。軸方向ADは中心軸AXに平行な方向を示す。 The shielding portion 19 faces the upper surface Wa of the substrate W in the axial direction AD. The shielding unit 19 covers the entire upper surface Wa of the substrate W and shields the upper side of the substrate W. The axial direction AD indicates a direction parallel to the central axis AX.
 具体的には、遮蔽部19は、遮蔽板19aと、軸部19bと、穴部Sbとを有する。遮蔽板19aは、中心軸AXを中心として、径方向RD外方に拡がっている。遮蔽板19aは略円板状である。遮蔽板19aは、基板Wの上面Waに対して軸方向ADに対向する。そして、遮蔽板19aは、基板Wの上面Wa全体を覆って、基板Wの上方を遮蔽する。軸部19bは遮蔽板19aに固定される。軸部19bは、中心軸AXを中心として遮蔽板19aと共に回転する。軸部19bは、例えば、略円筒状である。穴部Sbは、軸部19b及び遮蔽板19aを貫通して中心軸AXに沿って延びる。処理液ノズル91は穴部Sbに配置されている。 Specifically, the shielding portion 19 has a shielding plate 19a, a shaft portion 19b, and a hole portion Sb. The shield plate 19a extends outward in the radial direction RD around the central axis AX. The shielding plate 19a has a substantially disc shape. The shield plate 19a faces the upper surface Wa of the substrate W in the axial direction AD. The shielding plate 19a covers the entire upper surface Wa of the substrate W and shields the upper side of the substrate W. The shaft portion 19b is fixed to the shield plate 19a. The shaft portion 19b rotates with the shield plate 19a about the central axis AX. The shaft portion 19b has, for example, a substantially cylindrical shape. The hole Sb penetrates the shaft 19b and the shield plate 19a and extends along the central axis AX. The processing liquid nozzle 91 is arranged in the hole Sb.
 遮蔽部動作機構21は遮蔽部19を動作させる。具体的には、遮蔽部動作機構21は、遮蔽部移動機構21aと、遮蔽部回転機構21bとを有する。 The shield operating mechanism 21 operates the shield 19. Specifically, the shield operating mechanism 21 includes a shield moving mechanism 21a and a shield rotating mechanism 21b.
 遮蔽部移動機構21aは、軸方向ADに沿って遮蔽部19を上昇又は下降させる。具体的には、遮蔽部移動機構21aは、近接位置と退避位置との間で、遮蔽部19を上昇又は下降させる。近接位置は、遮蔽部19が下降して基板Wの上面Waに所定間隔をあけて近接する位置を示す。図2では、遮蔽部19は近接位置に位置する。退避位置は、近接位置よりも上方であって、遮蔽部19が上昇して基板Wから離間している位置を示す。基板Wを処理液で処理するときには、遮蔽部移動機構21aは、遮蔽部19を近接位置に移動する。遮蔽部移動機構21aは、例えば、電動モーター及びボールねじを含む。 The shield moving mechanism 21a raises or lowers the shield 19 along the axial direction AD. Specifically, the shield moving mechanism 21a raises or lowers the shield 19 between the close position and the retracted position. The close position indicates a position where the shielding unit 19 descends and comes close to the upper surface Wa of the substrate W at a predetermined interval. In FIG. 2, the shield portion 19 is located at the close position. The retracted position is above the proximity position, and indicates the position where the shield 19 is lifted and separated from the substrate W. When processing the substrate W with the processing liquid, the shield moving mechanism 21a moves the shield 19 to the close position. The shield moving mechanism 21a includes, for example, an electric motor and a ball screw.
 遮蔽部回転機構21bは、中心軸AXを中心として遮蔽部19を回転させる。具体的には、遮蔽部回転機構21bは、遮蔽部19を基板保持部5と同期回転させる。同期回転は、基板保持部5と同じ方向に同じ回転速度で回転することを示す。遮蔽部回転機構21bは、例えば、電動モーターを含む。 The shield rotation mechanism 21b rotates the shield 19 about the central axis AX. Specifically, the shield rotation mechanism 21b rotates the shield 19 in synchronization with the substrate holder 5. Synchronous rotation indicates that the substrate holder 5 rotates in the same direction and at the same rotation speed. The shield rotation mechanism 21b includes, for example, an electric motor.
 基板処理装置1は、ガス供給機構22と、ファンフィルタユニット24とをさらに有していてもよい。チャンバー3はガス供給機構22を収容する。 The substrate processing apparatus 1 may further include a gas supply mechanism 22 and a fan filter unit 24. The chamber 3 houses the gas supply mechanism 22.
 ガス供給機構22は気体を穴部Sbに供給する。気体は、例えば、窒素等の不活性ガスである。ガス供給機構22は、例えば、バルブ及び配管を含む。 The gas supply mechanism 22 supplies gas to the hole Sb. The gas is, for example, an inert gas such as nitrogen. The gas supply mechanism 22 includes, for example, a valve and a pipe.
 ファンフィルタユニット24は、気体をチャンバー3の内部に供給する。具体的には、ファンフィルタユニット24は、基板処理装置1の天板部3aに配置される。そして、ファンフィルタユニット24は、遮蔽板19aの上方から基板保持部5に向かうダウンフローを発生させる。更に具体的には、ファンフィルタユニット24はファン及びフィルタを有する。そして、ファンフィルタユニット24は、ファンによって基板処理装置1の外部空気を取り込み、フィルタを介してチャンバー3の内部に外部空気を供給する。外部空気はクリーンエアーである。なお、基板処理装置1はクリーンルームに設置されている。ファンフィルタユニット24は、「ガス供給部」の一例に相当する。 The fan filter unit 24 supplies gas into the chamber 3. Specifically, the fan filter unit 24 is arranged on the top plate portion 3 a of the substrate processing apparatus 1. Then, the fan filter unit 24 generates a downflow from above the shielding plate 19a toward the substrate holding unit 5. More specifically, the fan filter unit 24 has a fan and a filter. Then, the fan filter unit 24 takes in the outside air of the substrate processing apparatus 1 with a fan and supplies the outside air into the chamber 3 through the filter. The outside air is clean air. The substrate processing apparatus 1 is installed in a clean room. The fan filter unit 24 corresponds to an example of “gas supply unit”.
 次に、図3(a)及び図3(b)を参照して遮蔽部19を説明する。図3(a)は、遮蔽部19及びカップ部11を示す模式的断面図である。図3(a)では、遮蔽部19は近接位置に位置している。図3(b)は、遮蔽部19を示す模式的平面図である。図3(b)では、遮蔽部19を平面視している。本明細書において、平面視は、軸方向ADから対象物を見ることを示す。 Next, the shielding unit 19 will be described with reference to FIGS. 3 (a) and 3 (b). FIG. 3A is a schematic sectional view showing the shielding portion 19 and the cup portion 11. In FIG. 3A, the shielding portion 19 is located at the close position. FIG. 3B is a schematic plan view showing the shielding unit 19. In FIG.3 (b), the shield part 19 is planarly viewed. In the present specification, the plan view indicates that the object is viewed from the axial direction AD.
 図3(a)に示すように、遮蔽部19は気体流出口191を有する。そして、気体流出口191から、カップ部11の内壁面110に向かう気体ARが流出する。従って、カップ部11の内壁面110において、気体ARによって上部から下部へ流れる気流を発生できる。 As shown in FIG. 3A, the shielding portion 19 has a gas outlet 191. Then, the gas AR flowing toward the inner wall surface 110 of the cup portion 11 flows out from the gas outlet 191. Therefore, on the inner wall surface 110 of the cup part 11, an air flow flowing from the upper part to the lower part can be generated by the gas AR.
 その結果、実施形態1によれば、カップ部11の内壁面110に付着した液滴LQを、気流によって円滑に流下できる。つまり、カップ部11の内壁面110に液滴LQが滞留することを効果的に抑制できる。従って、気体流出口191を設けない場合と比較して、カップ部11の内壁面110にパーティクルが発生することと、スプラッシュバック現象によって基板Wが汚染させることとを効果的に抑制できる。パーティクルとは、カップ部11の内壁面110に付着した液滴LQが固化することによって発生する物質のことである。スプラッシュバック現象とは、基板Wからカップ部11に向けて飛散する新たな処理液とカップ部11の内壁面110に付着していた古い処理液からなる液滴LQとが衝突し、処理液が基板Wに向けて跳ね返る現象のことである。 As a result, according to the first embodiment, the droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be smoothly flowed down by the air flow. That is, it is possible to effectively prevent the droplet LQ from staying on the inner wall surface 110 of the cup portion 11. Therefore, as compared with the case where the gas outlet 191 is not provided, the generation of particles on the inner wall surface 110 of the cup portion 11 and the contamination of the substrate W due to the splashback phenomenon can be effectively suppressed. The particles are substances generated by solidifying the liquid droplets LQ attached to the inner wall surface 110 of the cup portion 11. The splashback phenomenon means that the new processing liquid scattered from the substrate W toward the cup portion 11 collides with the droplet LQ made of the old processing liquid adhering to the inner wall surface 110 of the cup portion 11, and the processing liquid becomes It is a phenomenon of bouncing back toward the substrate W.
 特に、実施形態1では、気体流出口191は、遮蔽部19の周縁部19cに位置している。従って、気体流出口191から流出する気体ARは、カップ部11の内壁面110に向かい易い。その結果、内壁面110において、気体ARによって上部から下部へ流れる気流を効果的に発生できて、内壁面110に付着した液滴LQを気流によって更に円滑に流下できる。 In particular, in the first embodiment, the gas outlet 191 is located at the peripheral edge 19c of the shield 19. Therefore, the gas AR flowing out from the gas outlet 191 is likely to be directed to the inner wall surface 110 of the cup portion 11. As a result, on the inner wall surface 110, the gas AR can effectively generate an airflow flowing from the upper portion to the lower portion, and the droplet LQ attached to the inner wall surface 110 can be further smoothly flowed down by the airflow.
 加えて、実施形態1では、気体流出口191は、カップ部11の内壁面110に向いている。従って、内壁面110において、気体ARによって上部から下部へ流れる気流を更に効果的に発生できる。その結果、内壁面110に付着した液滴LQを気流によって更に円滑に流下できる。 In addition, in the first embodiment, the gas outlet 191 faces the inner wall surface 110 of the cup 11. Therefore, on the inner wall surface 110, the airflow flowing from the upper portion to the lower portion can be more effectively generated by the gas AR. As a result, the droplet LQ attached to the inner wall surface 110 can be more smoothly flown down by the air flow.
 特に、実施形態1では、遮蔽部移動機構21aによって気体流出口191がカップ部11の内壁面110に向くように、遮蔽部19を容易に配置できる。 In particular, in the first embodiment, the shielding portion 19 can be easily arranged so that the gas outlet 191 faces the inner wall surface 110 of the cup portion 11 by the shielding portion moving mechanism 21a.
 また、実施形態1では、遮蔽部回転機構21bによって遮蔽部19が中心軸AXを中心として回転する。従って、遮蔽部19の回転によって、気体流出口191から流出する気体ARの気流を効果的に発生できる。その結果、カップ部11の内壁面110に付着した液滴LQを、気体ARによって更に円滑に流下できる。 Further, in the first embodiment, the shield part rotation mechanism 21b causes the shield part 19 to rotate about the central axis AX. Therefore, the rotation of the shielding portion 19 can effectively generate the airflow of the gas AR flowing out from the gas outlet 191. As a result, the liquid droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be more smoothly flown down by the gas AR.
 図3(a)及び図3(b)に示すように、遮蔽部19の遮蔽板19aは、ベース部材201と、上部部材203と、複数の支柱205とを有する。なお、図3(a)には、支柱205は表れていない。 As shown in FIGS. 3A and 3B, the shielding plate 19a of the shielding unit 19 has a base member 201, an upper member 203, and a plurality of columns 205. Note that the column 205 is not shown in FIG.
 ベース部材201と上部部材203とは、軸方向ADに間隔をあけて対向している。複数の支柱205の各々は、ベース部材201から上方に突出している。複数の支柱205は、中心軸AXに対する周方向CDに沿ってベース部材201に配置される。複数の支柱205は上部部材203を支持する。つまり、複数の支柱205は、ベース部材201と上部部材203とを結合している。実施形態1では、平面視において、ベース部材201は略円板状であり、上部部材203は略円帯状である。 The base member 201 and the upper member 203 are opposed to each other with a gap in the axial direction AD. Each of the plurality of columns 205 projects upward from the base member 201. The plurality of columns 205 are arranged on the base member 201 along the circumferential direction CD with respect to the central axis AX. The plurality of columns 205 support the upper member 203. That is, the plurality of columns 205 connect the base member 201 and the upper member 203. In the first embodiment, the base member 201 has a substantially disk shape and the upper member 203 has a substantially circular band shape in plan view.
 遮蔽板19aは、気体流出口191と、気体流入口193と、気体流路195とを有する。実施形態1では、気体流出口191及び気体流入口193の各々は、平面視において、略円環状である。気体流入口193は、遮蔽板19aの上面部196に位置する。気体流入口193には、気体が流入する。例えば、遮蔽板19aの回転によって、気体流入口193から気体が流入する。 The shielding plate 19a has a gas outlet 191, a gas inlet 193, and a gas flow passage 195. In the first embodiment, each of the gas outlet 191 and the gas inlet 193 has a substantially annular shape in plan view. The gas inlet 193 is located on the upper surface portion 196 of the shielding plate 19a. Gas flows into the gas inlet 193. For example, the gas flows from the gas inlet 193 by the rotation of the shield plate 19a.
 例えば、ファンフィルタユニット24(図2)は、気体を気体流入口193に供給する。従って、ファンフィルタユニット24から供給される気体が気体流入口193に流入する。つまり、ファンフィルタユニット24が発生するダウンフローによっても、気体流出口191から流出する気体ARの気流を発生できる。その結果、カップ部11の内壁面110に付着した液滴LQを、気体ARによって更に円滑に流下できる。 For example, the fan filter unit 24 (FIG. 2) supplies gas to the gas inflow port 193. Therefore, the gas supplied from the fan filter unit 24 flows into the gas inflow port 193. That is, the airflow of the gas AR flowing out from the gas outlet 191 can also be generated by the downflow generated by the fan filter unit 24. As a result, the liquid droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be more smoothly flown down by the gas AR.
 気体流路195は、ベース部材201と上部部材203との間の空間によって形成される。気体流路195は、気体流入口193と気体流出口191とを連通させる。従って、実施形態1によれば、気体流入口193から気体を取り込んで、気体を気体流路195に流し、気体ARを気体流出口191からカップ部11の内壁面110に向けて流出させることができる。 The gas flow path 195 is formed by the space between the base member 201 and the upper member 203. The gas flow path 195 connects the gas inflow port 193 and the gas outflow port 191. Therefore, according to the first embodiment, the gas can be taken in from the gas inlet 193, the gas can be caused to flow in the gas flow path 195, and the gas AR can be made to flow out from the gas outlet 191 toward the inner wall surface 110 of the cup portion 11. it can.
 特に、実施形態1では、気体流出口191は、径方向RDの全方位にわたって中心軸AXの外方に向かって開口している。従って、カップ部11の内壁面110に対して、周方向CDに均等に気体ARを吹き付けることができる。その結果、内壁面110に付着した液滴LQを、気体ARによって更に円滑に流下できる。 In particular, in the first embodiment, the gas outlet 191 is open toward the outside of the central axis AX in all directions in the radial direction RD. Therefore, the gas AR can be evenly blown to the inner wall surface 110 of the cup portion 11 in the circumferential direction CD. As a result, the liquid droplet LQ attached to the inner wall surface 110 can be more smoothly flown by the gas AR.
 次に、図4を参照して遮蔽部19を詳細に説明する。図4は、図3(a)に示す遮蔽部19とカップ部11の一部とを拡大して示す模式的断面図である。図4に示すように、遮蔽部19の遮蔽板19aは対向壁面190を有する。対向壁面190はカップ部11の内壁面110と径方向RDに対向する。対向壁面190は周縁部19cの表面である。気体流出口191は対向壁面190に設けられる。従って、実施形態1によれば、気体流出口191から流出する気体ARは、カップ部11の内壁面110に向かい易く、気体ARによって液滴LQを更に円滑に流下できる。 Next, the shielding unit 19 will be described in detail with reference to FIG. FIG. 4 is an enlarged schematic cross-sectional view showing the shielding portion 19 and a part of the cup portion 11 shown in FIG. As shown in FIG. 4, the shielding plate 19a of the shielding portion 19 has a facing wall surface 190. The facing wall surface 190 faces the inner wall surface 110 of the cup portion 11 in the radial direction RD. The opposing wall surface 190 is the surface of the peripheral edge portion 19c. The gas outlet 191 is provided on the facing wall surface 190. Therefore, according to the first embodiment, the gas AR flowing out from the gas outlet 191 can easily flow toward the inner wall surface 110 of the cup portion 11, and the gas AR can flow the droplet LQ more smoothly.
 また、遮蔽板19aの気体流路195を構成する内面1951は、流路傾斜面1951aを有する。流路傾斜面1951aは、径方向RDの外方に向かうにつれて下方に向けて傾斜する。 The inner surface 1951 of the shielding plate 19a that constitutes the gas flow path 195 has a flow path inclined surface 1951a. The flow channel inclined surface 1951a is inclined downward as it goes outward in the radial direction RD.
 一方、カップ部11は、傾斜部11aと、側壁部11bとを有する。傾斜部11aは、側壁部11bに対して、中心軸AXの側に上方に向かって傾斜している。傾斜部11aは、上下が開口した中空の略円錐台形状を有する。側壁部11bは中心軸AXに沿って延びている。側壁部11bは略円筒形状を有している。 On the other hand, the cup part 11 has an inclined part 11a and a side wall part 11b. The inclined portion 11a is inclined upward toward the central axis AX with respect to the side wall portion 11b. The inclined portion 11a has a hollow, generally frustoconical shape that is open at the top and bottom. The side wall portion 11b extends along the central axis AX. The side wall portion 11b has a substantially cylindrical shape.
 カップ部11はカップ上端部111を有している。カップ上端部111は傾斜部11aの上端部である。カップ上端部111は、基板Wよりも上方に位置する。そして、気体流出口191は、間隔をあけてカップ上端部111と近接している。従って、実施形態1によれば、内壁面110において、気体ARによって上部から下部へ流れる比較的強い気流を発生できる。その結果、気流によって液滴LQを更に円滑に流下できる。 The cup portion 11 has a cup upper end portion 111. The cup upper end 111 is the upper end of the inclined portion 11a. The upper end portion 111 of the cup is located above the substrate W. The gas outlet 191 is close to the cup upper end 111 with a gap. Therefore, according to the first embodiment, on the inner wall surface 110, a relatively strong airflow flowing from the upper portion to the lower portion can be generated by the gas AR. As a result, the droplet LQ can be more smoothly flown down by the air flow.
 また、カップ部11の内壁面110は、カップ傾斜面113を有する。カップ傾斜面113は、カップ部11の内壁面110うち、傾斜部11aの内壁面である。カップ傾斜面113は、中心軸AXから径方向RDの外方へ向かうにつれて下方に向けて傾斜する。 Further, the inner wall surface 110 of the cup portion 11 has a cup inclined surface 113. The cup inclined surface 113 is an inner wall surface of the inclined portion 11 a of the inner wall surface 110 of the cup portion 11. The cup inclined surface 113 inclines downward as it goes outward from the central axis AX in the radial direction RD.
 そして、遮蔽板19aの流路傾斜面1951aの水平方向に対する傾斜角度θ1は、カップ部11のカップ傾斜面113の水平方向に対する傾斜角度θ2以下である。従って、実施形態1によれば、流路傾斜面1951aに沿って流出する気体ARがカップ傾斜面113に効果的に吹き付けられて、カップ傾斜面113から下方に向かう気流を効果的に発生できる。その結果、気流によって液滴LQを更に円滑に流下できる。 The inclination angle θ1 of the flow passage inclined surface 1951a of the shielding plate 19a with respect to the horizontal direction is equal to or less than the inclination angle θ2 of the cup inclined surface 113 of the cup portion 11 with respect to the horizontal direction. Therefore, according to the first embodiment, the gas AR flowing out along the flow channel inclined surface 1951a is effectively blown to the cup inclined surface 113, and the airflow downward from the cup inclined surface 113 can be effectively generated. As a result, the droplet LQ can be more smoothly flown down by the air flow.
 次に、図2及び図5を参照して、実施形態1に係る基板処理方法を説明する。基板処理方法は基板処理装置1によって実行される。図5は、実施形態1に係る基板処理方法を示すフローチャートである。図5に示すように、基板処理方法は、工程S1~工程S5を含む。 Next, the substrate processing method according to the first embodiment will be described with reference to FIGS. 2 and 5. The substrate processing method is executed by the substrate processing apparatus 1. FIG. 5 is a flowchart showing the substrate processing method according to the first embodiment. As shown in FIG. 5, the substrate processing method includes steps S1 to S5.
 図2及び図5に示すように、工程S1において、基板処理装置1は、基板Wを基板保持部5によって保持する。工程S1は、「保持工程」の一例に相当する。 As shown in FIGS. 2 and 5, in step S1, the substrate processing apparatus 1 holds the substrate W by the substrate holding unit 5. The step S1 corresponds to an example of a “holding step”.
 工程S2において、基板処理装置1は、基板保持部5と遮蔽部19とを接近させる。工程S2は、「遮蔽部接近工程」の一例に相当する。 In step S2, the substrate processing apparatus 1 brings the substrate holding unit 5 and the shielding unit 19 close to each other. The step S2 corresponds to an example of a “shielding section approaching step”.
 工程S3において、基板処理装置1は、基板Wを基板保持部5と共に回転させる。工程S3は、「回転工程」の一例に相当する。 In step S3, the substrate processing apparatus 1 rotates the substrate W together with the substrate holder 5. Process S3 is equivalent to an example of a "rotation process."
 工程S4において、基板処理装置1は、遮蔽部19の気体流出口191から気体を流出させて、カップ部11の内壁面110に向かう気流を発生させる。工程S5は、「気流発生工程」の一例に相当する。 In step S4, the substrate processing apparatus 1 causes the gas to flow out from the gas outlet 191 of the shielding part 19 to generate an airflow toward the inner wall surface 110 of the cup part 11. Step S5 corresponds to an example of "air flow generation step".
 工程S5において、基板処理装置1は、基板Wを処理液で処理する。工程S5は、「処理工程」の一例に相当する。 In step S5, the substrate processing apparatus 1 processes the substrate W with the processing liquid. The step S5 corresponds to an example of “processing step”.
 以上、図2及び図5を参照して説明したように、実施形態1に係る基板処理方法によれば、工程S4において気体流出口191からの気体ARに基づく気流が、内壁面110の上部から下部に向かって内壁面110に沿って流れる。従って、カップ部11の内壁面110に付着した液滴LQを円滑に流下できる。つまり、カップ部11の内壁面110に液滴LQが滞留することを効果的に抑制できる。 As described above with reference to FIGS. 2 and 5, according to the substrate processing method of the first embodiment, the air flow based on the gas AR from the gas outlet 191 from the upper part of the inner wall surface 110 in step S4. It flows along the inner wall surface 110 toward the lower part. Therefore, the liquid droplet LQ attached to the inner wall surface 110 of the cup portion 11 can smoothly flow down. That is, it is possible to effectively prevent the droplet LQ from staying on the inner wall surface 110 of the cup portion 11.
 特に、実施形態1においては、工程S4では、気体ARは、遮蔽部19の周縁部19cに位置している気体流出口191から流出して、カップ部11の内壁面110に沿って流れる。具体的には、工程S4では、気体ARは、カップ上端部111と近接している気体流出口191から、カップ上端部111に向けて流出する。従って、カップ部11の内壁面110に付着した液滴LQを、気体ARに基づく気流によって更に円滑に流下できる。 In particular, in the first embodiment, in step S4, the gas AR flows out from the gas outlet 191 located at the peripheral edge portion 19c of the shielding portion 19 and flows along the inner wall surface 110 of the cup portion 11. Specifically, in step S4, the gas AR flows out toward the cup upper end 111 from the gas outlet 191 that is close to the cup upper end 111. Therefore, the droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be further smoothly flowed down by the air flow based on the gas AR.
 また、実施形態1では、工程S5において処理液を基板Wに供給することと並行して、気体流出口191から気体ARが流出される。従って、基板Wの処理中に飛散する処理液に起因する液滴LQを、気体ARに基づく気流によって、カップ部11の内壁面110に沿って効果的に流下できる。 Further, in the first embodiment, the gas AR is flown out from the gas outlet 191 in parallel with supplying the processing liquid to the substrate W in step S5. Therefore, the droplet LQ resulting from the processing liquid scattered during the processing of the substrate W can be effectively flown down along the inner wall surface 110 of the cup portion 11 by the air flow based on the gas AR.
 なお、工程S4が工程S5の前段で実行される限りにおいては、工程S2~工程S4の実行順序は適宜変更されてよいし、工程S2~工程S4のうちの一部又は全部の工程は並行して実行されてよい。 As long as step S4 is performed before step S5, the execution order of steps S2 to S4 may be appropriately changed, and some or all of steps S2 to S4 may be performed in parallel. May be executed.
 (第1変形例)
 図6(a)及び図6(b)を参照して、実施形態1の第1変形例に係る基板処理装置1を説明する。基板処理装置1が気流発生のためのファン31を有している点で、第1変形例は図1~図5を参照して説明した実施形態1と主に異なる。以下、第1変形例が実施形態1と異なる点を主に説明する。
(First modification)
A substrate processing apparatus 1 according to a first modification of the first embodiment will be described with reference to FIGS. 6A and 6B. The first modification mainly differs from the first embodiment described with reference to FIGS. 1 to 5 in that the substrate processing apparatus 1 has a fan 31 for generating an air flow. Hereinafter, differences between the first modification and the first embodiment will be mainly described.
 図6(a)は、第1変形例に係る基板処理装置1の遮蔽部19、カップ部11、及びファン31を示す模式的断面図である。図6(a)では、遮蔽部19は近接位置に位置している。図6(b)は、第1変形例に係る基板処理装置1の遮蔽部19及びファン31を示す模式的平面図である。図6(b)では、遮蔽部19及びファン31を平面視している。 FIG. 6A is a schematic cross-sectional view showing the shielding unit 19, the cup unit 11, and the fan 31 of the substrate processing apparatus 1 according to the first modification. In FIG. 6A, the shield 19 is located at the close position. FIG. 6B is a schematic plan view showing the shielding unit 19 and the fan 31 of the substrate processing apparatus 1 according to the first modification. In FIG. 6B, the shield 19 and the fan 31 are seen in a plan view.
 図6(a)及び図6(b)に示すように、基板処理装置1は、図2に示す基板処理装置1の構成に加えて、ファン31をさらに有する。ファン31は、遮蔽部19の遮蔽板19aの上面部196に配置されている。ファン31は、気体を気体流入口193に供給する。従って、ファン31から供給される気体が気体流入口193に流入する。その結果、第1変形例によれば、ファン31を設けない場合と比較して、気体流出口191から流出する気体ARによって強い気流を発生できて、気流によってカップ部11の内壁面110の液滴LQを更に円滑に流下できる。ファン31は、「ガス供給部」の一例に相当する。 As shown in FIGS. 6A and 6B, the substrate processing apparatus 1 further includes a fan 31 in addition to the configuration of the substrate processing apparatus 1 shown in FIG. The fan 31 is arranged on the upper surface portion 196 of the shielding plate 19a of the shielding portion 19. The fan 31 supplies gas to the gas inflow port 193. Therefore, the gas supplied from the fan 31 flows into the gas inlet 193. As a result, according to the first modification, as compared with the case where the fan 31 is not provided, a strong air flow can be generated by the gas AR flowing out from the gas outlet 191 and the liquid on the inner wall surface 110 of the cup portion 11 is generated by the air flow. The droplet LQ can flow down more smoothly. The fan 31 corresponds to an example of a “gas supply unit”.
 特に、第1変形例では、遮蔽板19aは凹部192をさらに有する。凹部192は遮蔽板19aの上面部196に形成される。ファン31は凹部192に配置される。そして、ファン31は、遮蔽板19aの上面部196に位置する気体流入口193に気体を送り出す。具体的には、ファン31は、遮蔽板19aの凹部192に位置する気体流入口193に気体を送り出す。 In particular, in the first modification, the shielding plate 19a further has a recess 192. The recess 192 is formed in the upper surface portion 196 of the shield plate 19a. The fan 31 is arranged in the recess 192. Then, the fan 31 sends out the gas to the gas inlet 193 located on the upper surface portion 196 of the shielding plate 19a. Specifically, the fan 31 sends out the gas to the gas inlet 193 located in the recess 192 of the shielding plate 19a.
 更に具体的には、ファン31は、軸部19bに挿通されて、遮蔽板19aの上方から吸入した気体を、中心軸AXに対する径方向RDに噴き出す。従って、第1変形例によれば、気体流入口193に比較的強い気流の気体を流入できて、比較的強い気流の気体ARを気体流出口191から噴き出すことができる。その結果、内壁面110において、気体ARによって上部から下部へ流れる比較的強い気流を発生できて、内壁面110の液滴LQを更に円滑に流下できる。ファン31は、例えば、シロッコファンである。 More specifically, the fan 31 is inserted into the shaft portion 19b and ejects the gas sucked from above the shielding plate 19a in the radial direction RD with respect to the central axis AX. Therefore, according to the first modified example, a gas having a relatively strong airflow can flow into the gas inlet 193, and the gas AR having a relatively strong airflow can be ejected from the gas outlet 191. As a result, on the inner wall surface 110, a relatively strong airflow flowing from the upper portion to the lower portion can be generated by the gas AR, and the droplet LQ on the inner wall surface 110 can flow down more smoothly. The fan 31 is, for example, a sirocco fan.
 (第2変形例)
 図7を参照して、実施形態1の第2変形例に係る基板処理装置1を説明する。基板処理装置1が気流を発生するためのノズル33を有している点で、第2変形例は第1変形例と主に異なる。以下、第2変形例が第1変形例と異なる点を主に説明する。
(Second modified example)
The substrate processing apparatus 1 according to the second modified example of the first embodiment will be described with reference to FIG. 7. The second modification mainly differs from the first modification in that the substrate processing apparatus 1 has a nozzle 33 for generating an air flow. The differences between the second modified example and the first modified example will be mainly described below.
 図7は、第2変形例に係る基板処理装置1の遮蔽部19、カップ部11、及びガス供給機構35を示す模式的断面図である。図7では、遮蔽部19は近接位置に位置している。図7に示すように、基板処理装置1は、図2に示す基板処理装置1の構成に加えて、ガス供給機構35をさらに有する。ガス供給機構35は、気体を気体流入口193に供給する。そして、ガス供給機構35から供給される気体が気体流入口193に流入する。ガス供給機構35は、「ガス供給部」の一例に相当する。 FIG. 7 is a schematic cross-sectional view showing the shielding unit 19, the cup unit 11, and the gas supply mechanism 35 of the substrate processing apparatus 1 according to the second modification. In FIG. 7, the shielding portion 19 is located at the close position. As shown in FIG. 7, the substrate processing apparatus 1 further includes a gas supply mechanism 35 in addition to the configuration of the substrate processing apparatus 1 shown in FIG. The gas supply mechanism 35 supplies gas to the gas inlet 193. Then, the gas supplied from the gas supply mechanism 35 flows into the gas inlet 193. The gas supply mechanism 35 corresponds to an example of a “gas supply unit”.
 具体的には、ガス供給機構35は、ファン31と、ノズル33とを有する。ファン31は、第1変形例に係るファン31と同様である。ノズル33は、ファン31に対して軸方向ADに対向する。ノズル33は、遮蔽板19aの上面側からファン31に向けて気体を噴き出す。さらに、ファン31は、ノズル33からの気体を気体流入口193に送り出す。従って、ノズル33を設けない場合と比較して、気体流入口193に強い気流の気体を流入できて、強い気流の気体ARを気体流出口191から噴き出すことができる。その結果、内壁面110において、気体ARによって上部から下部へ流れる強い気流を発生できて、内壁面110の液滴LQを更に円滑に流下できる。なお、第2変形例では、ノズル33は、窒素等の不活性ガスをファン31に向けて噴き出す。 Specifically, the gas supply mechanism 35 has a fan 31 and a nozzle 33. The fan 31 is similar to the fan 31 according to the first modification. The nozzle 33 faces the fan 31 in the axial direction AD. The nozzle 33 ejects gas toward the fan 31 from the upper surface side of the shielding plate 19a. Further, the fan 31 sends the gas from the nozzle 33 to the gas inflow port 193. Therefore, as compared with the case where the nozzle 33 is not provided, a gas having a strong air flow can be flown into the gas inflow port 193, and the gas AR having a strong air flow can be ejected from the gas outflow port 191. As a result, on the inner wall surface 110, a strong airflow flowing from the upper portion to the lower portion can be generated by the gas AR, and the droplet LQ on the inner wall surface 110 can flow down more smoothly. In the second modified example, the nozzle 33 ejects an inert gas such as nitrogen toward the fan 31.
 (第3変形例)
 図8を参照して、実施形態1の第3変形例に係る基板処理装置1を説明する。基板処理装置1では、遮蔽部19の穴部Sbに気体流入口193が位置している点で、第3変形例は、図1~図5を参照して説明した実施形態1と主に異なる。以下、第3変形例が実施形態1と異なる点を主に説明する。
(Third modification)
The substrate processing apparatus 1 according to the third modified example of the first embodiment will be described with reference to FIG. In the substrate processing apparatus 1, the third modification is mainly different from the first embodiment described with reference to FIGS. 1 to 5 in that the gas inflow port 193 is located in the hole Sb of the shielding part 19. .. The differences between the third modification and the first embodiment will be mainly described below.
 図8は、第3変形例に係る基板処理装置1の遮蔽部19、カップ部11、及びガス供給機構22を示す模式的断面図である。図8では、遮蔽部19は近接位置に位置している。図8に示すように、ガス供給機構22は、気体を気体流入口193に供給する。そして、ガス供給機構22から供給される気体が気体流入口193に流入する。ガス供給機構22は、「ガス供給部」の一例に相当する。 FIG. 8 is a schematic cross-sectional view showing the shielding unit 19, the cup unit 11, and the gas supply mechanism 22 of the substrate processing apparatus 1 according to the third modification. In FIG. 8, the shielding portion 19 is located at the close position. As shown in FIG. 8, the gas supply mechanism 22 supplies gas to the gas inflow port 193. Then, the gas supplied from the gas supply mechanism 22 flows into the gas inlet 193. The gas supply mechanism 22 corresponds to an example of a “gas supply unit”.
 具体的には、ガス供給機構22は、処理液ノズル91の外面91aと穴部Sbを構成する壁面WLとの間の隙間GPに気体を供給する。気体は、基板Wを処理液で処理する前に、基板Wに向けて供給されて、基板Wの上方空間を所定の雰囲気にする。また、基板Wの上方空間が所定の雰囲気となった後、気体は隙間GPに充填される。第3変形例において、気体流入口193は、穴部Sbを構成する壁面WLに設けられる。従って、ガス供給機構22が供給した気体は、気体流入口193にも流入する。そして、気体流入口193は、気体流路195によって気体流出口191と連通されている。従って、隙間GPに供給された気体を気体流入口193から取り込んで、気体を気体流路195に流し、気体ARを気体流出口191からカップ部11の内壁面110に向けて流出させることができる。その結果、内壁面110において、気体ARによって上部から下部へ流れる気流を発生できて、内壁面110に付着した液滴LQを気流によって円滑に流下できる。 Specifically, the gas supply mechanism 22 supplies gas to the gap GP between the outer surface 91a of the treatment liquid nozzle 91 and the wall surface WL forming the hole Sb. The gas is supplied toward the substrate W before the substrate W is treated with the treatment liquid, so that the space above the substrate W has a predetermined atmosphere. Further, after the space above the substrate W becomes a predetermined atmosphere, the gas is filled in the gap GP. In the third modification, the gas inflow port 193 is provided on the wall surface WL forming the hole Sb. Therefore, the gas supplied by the gas supply mechanism 22 also flows into the gas inlet 193. The gas inflow port 193 is connected to the gas outflow port 191 by the gas flow path 195. Therefore, the gas supplied to the gap GP can be taken in from the gas inflow port 193, the gas can be made to flow in the gas flow path 195, and the gas AR can be made to flow out from the gas outflow port 191 toward the inner wall surface 110 of the cup part 11. .. As a result, on the inner wall surface 110, the gas AR can generate an air flow that flows from the upper portion to the lower portion, and the droplet LQ attached to the inner wall surface 110 can smoothly flow down by the air stream.
 特に、第3変形例では、ガス供給機構22によって気体流入口193に気体を供給している。つまり、基板Wに供給する気体又は隙間GPに充填される気体を流用して、気体流入口193に気体を取り込んでいる。従って、気体流入口193に気体を供給するための専用のガス供給機構を設けなくてもよく、基板処理装置1の製造コストを低減できる。 In particular, in the third modification, the gas supply mechanism 22 supplies gas to the gas inlet 193. That is, the gas supplied to the substrate W or the gas filled in the gap GP is diverted, and the gas is taken into the gas inlet 193. Therefore, it is not necessary to provide a dedicated gas supply mechanism for supplying gas to the gas inlet 193, and the manufacturing cost of the substrate processing apparatus 1 can be reduced.
 (第4変形例)
 図9を参照して、実施形態1の第4変形例に係る基板処理装置1を説明する。基板処理装置1では、ノズル39の開口が気体流出口191である点で、第4変形例は図1~図5を参照して説明した実施形態1と主に異なる。以下、第4変形例が実施形態1と異なる点を主に説明する。
(Fourth modification)
With reference to FIG. 9, a substrate processing apparatus 1 according to a fourth modification of the first embodiment will be described. In the substrate processing apparatus 1, the fourth modification mainly differs from the first embodiment described with reference to FIGS. 1 to 5 in that the opening of the nozzle 39 is the gas outlet 191. The differences between the fourth modified example and the first embodiment will be mainly described below.
 図9は、第4変形例に係る基板処理装置1の遮蔽部19A及びカップ部11を示す模式的断面図である。図9では、遮蔽部19Aは近接位置に位置している。図9に示すように、基板処理装置1は、図2に示す基板処理装置1の遮蔽部19に代えて、遮蔽部19Aを有する。遮蔽部19Aは、遮蔽板19xと、軸部19bと、ノズル39とを有する。遮蔽板19xは、図4に示す遮蔽板19aと同様の構成を有する。ただし、遮蔽板19xは、図4に示す気体流出口191、気体流入口193、及び気体流路195を有していない。遮蔽板19xは、略円板状である。 FIG. 9 is a schematic cross-sectional view showing the shielding portion 19A and the cup portion 11 of the substrate processing apparatus 1 according to the fourth modified example. In FIG. 9, the shield portion 19A is located at the close position. As shown in FIG. 9, the substrate processing apparatus 1 has a shielding section 19A instead of the shielding section 19 of the substrate processing apparatus 1 shown in FIG. The shield portion 19A has a shield plate 19x, a shaft portion 19b, and a nozzle 39. The shield plate 19x has the same configuration as the shield plate 19a shown in FIG. However, the shielding plate 19x does not have the gas outlet 191, the gas inlet 193, and the gas passage 195 shown in FIG. The shield plate 19x has a substantially disc shape.
 ノズル39は、遮蔽板19xの上面部196に配置される。そして、ノズル39の開口390が、気体流出口191であり、カップ部11の内壁面110と対向する。従って、ノズル39は、内壁面110に向けて気体ARを噴き出す。第4変形例では、ノズル39は、窒素等の不活性ガスを内壁面110に向けて噴き出す。 The nozzle 39 is arranged on the upper surface portion 196 of the shielding plate 19x. The opening 390 of the nozzle 39 is the gas outlet 191 and faces the inner wall surface 110 of the cup portion 11. Therefore, the nozzle 39 ejects the gas AR toward the inner wall surface 110. In the fourth modified example, the nozzle 39 ejects an inert gas such as nitrogen toward the inner wall surface 110.
 第4変形例によれば、ノズル39によって、強い気流の気体ARを内壁面110に向けて噴き出すことができる。従って、内壁面110において、気体ARによって上部から下部へ流れる強い気流を発生できる。その結果、内壁面110の液滴LQを円滑に流下できる。また、第4変形例の図9に関しては、上面部196の遮蔽板19xが回転することでノズル39も回転した方がより効果的である。上面部196およびノズル39は同一構造体の方がより好ましい。 According to the fourth modification, the nozzle 39 can eject the gas AR having a strong air flow toward the inner wall surface 110. Therefore, on the inner wall surface 110, a strong airflow flowing from the upper portion to the lower portion can be generated by the gas AR. As a result, the droplet LQ on the inner wall surface 110 can smoothly flow down. Further, with respect to FIG. 9 of the fourth modified example, it is more effective that the nozzle 39 also rotates by rotating the shielding plate 19x of the upper surface portion 196. It is more preferable that the upper surface portion 196 and the nozzle 39 have the same structure.
 (実施形態2)
 図10及び図11を参照して、本発明の実施形態2に係る基板処理装置1Aを説明する。基板処理装置1Aが基板回転部7によって遮蔽部19Bを回転させる点で、実施形態2は実施形態1と主に異なる。以下、実施形態2が実施形態1と異なる点を主に説明する。
(Embodiment 2)
A substrate processing apparatus 1A according to a second embodiment of the present invention will be described with reference to FIGS. 10 and 11. The second embodiment mainly differs from the first embodiment in that the substrate processing apparatus 1A rotates the shielding unit 19B by the substrate rotating unit 7. Hereinafter, differences between the second embodiment and the first embodiment will be mainly described.
 図10は、実施形態2に係る基板処理装置1Aを示す模式的断面図である。図10に示すように、基板処理装置1Aは、図2に示す基板処理装置1のガス供給機構22に代えて、ガス供給機構37を備える。ガス供給機構37については後述する。 FIG. 10 is a schematic sectional view showing a substrate processing apparatus 1A according to the second embodiment. As shown in FIG. 10, the substrate processing apparatus 1A includes a gas supply mechanism 37 instead of the gas supply mechanism 22 of the substrate processing apparatus 1 shown in FIG. The gas supply mechanism 37 will be described later.
 基板処理装置1Aの基板保持部5Aは、図2に示す基板保持部5の構成に加えて、複数の係合部41Bをさらに有する。複数の係合部41Bは、中心軸AXを中心として略等角度間隔にて、スピンベース51の上面の外周部に周方向CDに配置される。複数の係合部41Bは、複数のチャック部材53よりも径方向RDの外方に配置される。複数の係合部41Bの各々は、スピンベース51の上面から上方に向かって略垂直に突出する。 The substrate holding part 5A of the substrate processing apparatus 1A further has a plurality of engaging parts 41B in addition to the configuration of the substrate holding part 5 shown in FIG. The plurality of engaging portions 41B are arranged on the outer peripheral portion of the upper surface of the spin base 51 in the circumferential direction CD at substantially equal angular intervals around the central axis AX. The plurality of engaging portions 41B are arranged outward of the plurality of chuck members 53 in the radial direction RD. Each of the plurality of engaging portions 41B projects substantially vertically from the upper surface of the spin base 51 upward.
 基板処理装置1Aの遮蔽部19Bは、実施形態1に係る遮蔽部19(図4)と同様の気体流出口191を有する。従って、実施形態2によれば、実施形態1と同様に、カップ部11の内壁面110に付着した液滴LQを、気流によって円滑に流下できる。つまり、カップ部11の内壁面110に液滴LQが滞留することを効果的に抑制できる。その他、実施形態2では、実施形態1と同様の効果を有する。 The shielding unit 19B of the substrate processing apparatus 1A has the same gas outlet 191 as the shielding unit 19 (FIG. 4) according to the first embodiment. Therefore, according to the second embodiment, similarly to the first embodiment, the droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be smoothly flown down by the air flow. That is, it is possible to effectively prevent the droplet LQ from staying on the inner wall surface 110 of the cup portion 11. In addition, the second embodiment has the same effects as the first embodiment.
 また、遮蔽部19Bは、図2に示す遮蔽部19の構成に加えて、複数の係合部41Aと、フランジ部19dとをさらに有する。 Further, the shielding portion 19B further has a plurality of engaging portions 41A and a flange portion 19d in addition to the configuration of the shielding portion 19 shown in FIG.
 複数の係合部41Aは、中心軸AXを中心として略等角度間隔にて、遮蔽板19aの下面の外周部に周方向CDに配置される。複数の係合部41Aは、それぞれ、複数の係合部41Bと軸方向ADに対向している。複数の係合部41Aの各々は、遮蔽板19aの下面から下方に向かって略垂直に突出する。複数の係合部41Aの各々は、上方に向かって凹む凹部(不図示)を有している。 The plurality of engaging portions 41A are arranged in the circumferential direction CD on the outer peripheral portion of the lower surface of the shielding plate 19a at substantially equal angular intervals around the central axis AX. The plurality of engaging portions 41A respectively face the plurality of engaging portions 41B in the axial direction AD. Each of the plurality of engaging portions 41A projects downward from the lower surface of the shielding plate 19a in a substantially vertical manner. Each of the plurality of engaging portions 41A has a recess (not shown) that is recessed upward.
 具体的には、遮蔽部19Bの複数の係合部41Aは、基板保持部5Aと係合する。遮蔽部19Bは、複数の係合部41Aが基板保持部5Aと係合することにより基板保持部5Aと一体となって回転する。従って、遮蔽部19Bの回転によって、気体流出口191から流出する気体ARの気流を効果的に発生できる。その結果、カップ部11の内壁面110に付着した液滴LQを、気体ARによって更に円滑に流下できる。 Specifically, the plurality of engaging portions 41A of the shielding portion 19B engage with the substrate holding portion 5A. The shielding portion 19B rotates integrally with the substrate holding portion 5A when the plurality of engaging portions 41A engage with the substrate holding portion 5A. Therefore, the airflow of the gas AR flowing out from the gas outlet 191 can be effectively generated by the rotation of the shielding portion 19B. As a result, the liquid droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be more smoothly flown down by the gas AR.
 更に具体的には、遮蔽部19Bの複数の係合部41Aの凹部に、それぞれ、基板保持部5Aの複数の係合部41Bが嵌合する。その結果、遮蔽部19Bは、基板保持部5の回転にともなって基板保持部5と同期回転する。 More specifically, the plurality of engaging portions 41B of the board holding portion 5A are fitted in the recesses of the plurality of engaging portions 41A of the shielding portion 19B, respectively. As a result, the shielding unit 19B rotates in synchronization with the substrate holding unit 5 as the substrate holding unit 5 rotates.
 フランジ部19dは、軸部19bの上端部から径方向RD外方に環状に広がる。フランジ部19dは、例えば、中心軸AXを中心とする略円環板状である。 The flange portion 19d extends annularly outward from the upper end of the shaft portion 19b in the radial direction RD. The flange portion 19d has, for example, a substantially annular plate shape centered on the central axis AX.
 基板処理装置1Aの遮蔽部動作機構21は、図2に示す遮蔽部移動機構21aに代えて、遮蔽部移動機構21Xを有する。また、基板処理装置1Aの遮蔽部動作機構21は、図2に示す遮蔽部回転機構21bを有していない。 The shielding unit operating mechanism 21 of the substrate processing apparatus 1A has a shielding unit moving mechanism 21X instead of the shielding unit moving mechanism 21a shown in FIG. Further, the shield part operating mechanism 21 of the substrate processing apparatus 1A does not have the shield part rotating mechanism 21b shown in FIG.
 遮蔽部移動機構21Xは、軸方向ADに沿って遮蔽部19Bを上昇又は下降させる。具体的には、遮蔽部移動機構21Xは、近接位置と退避位置との間で、遮蔽部19Bを上昇又は下降させる。近接位置及び退避位置は、それぞれ、実施形態1の近接位置及び退避位置と同様である。図10では、遮蔽部19Bは近接位置に位置する。遮蔽部19Bが近接位置に位置する場合には、複数の係合部41Aは、それぞれ、複数の係合部41Bに係合している。一方、遮蔽部19Bが退避位置に位置する場合には、複数の係合部41Aは、それぞれ、複数の係合部41Bから離間している。基板Wを処理液で処理するときには、遮蔽部移動機構21Xは、遮蔽部19Bを近接位置に移動する。 The shield moving mechanism 21X raises or lowers the shield 19B along the axial direction AD. Specifically, the shield moving mechanism 21X raises or lowers the shield 19B between the proximity position and the retracted position. The close position and the retracted position are the same as the close position and the retracted position of the first embodiment, respectively. In FIG. 10, the shielding portion 19B is located at the close position. When the shielding portion 19B is located at the close position, the plurality of engaging portions 41A are engaged with the plurality of engaging portions 41B, respectively. On the other hand, when the shielding portion 19B is located at the retracted position, the plurality of engaging portions 41A are separated from the plurality of engaging portions 41B, respectively. When processing the substrate W with the processing liquid, the shield moving mechanism 21X moves the shield 19B to the close position.
 具体的には、遮蔽部移動機構21Xは、保持部61と、昇降機構62とを有する。昇降機構62は、遮蔽部19Bを保持部61と共に、上昇又は下降させる。昇降機構62は、例えば、電動モーター及びボールねじを含む。 Specifically, the shielding part moving mechanism 21X has a holding part 61 and an elevating mechanism 62. The elevating mechanism 62 raises or lowers the shielding portion 19B together with the holding portion 61. The elevating mechanism 62 includes, for example, an electric motor and a ball screw.
 保持部61は遮蔽部19Bを保持する。保持部61は、保持部本体611と、本体支持部612と、フランジ支持部613と、支持部接続部614とを有する。保持部本体611は、遮蔽部19Bのフランジ部19dの上方を覆う。本体支持部612は、略水平に延びる棒状のアームである。本体支持部612の一方の端部は保持部本体611に接続され、他方の端部は昇降機構62に接続される。支持部接続部614は、フランジ支持部613と保持部本体611とをフランジ部19dの周囲にて接続する。フランジ支持部613は、遮蔽部19Bが退避位置に位置するときに、遮蔽部19Bのフランジ部19dに下側から接して支持する。一方、図10に示すように、フランジ支持部613は、遮蔽部19Bが近接位置に位置するときに、遮蔽部19Bのフランジ部19dから離間する。その結果、遮蔽部19Bが回転可能になる。 The holding unit 61 holds the shielding unit 19B. The holding portion 61 has a holding portion main body 611, a main body supporting portion 612, a flange supporting portion 613, and a supporting portion connecting portion 614. The holding portion main body 611 covers the upper portion of the flange portion 19d of the shielding portion 19B. The main body support portion 612 is a bar-shaped arm that extends substantially horizontally. One end of the main body support 612 is connected to the holder main body 611, and the other end is connected to the lifting mechanism 62. The supporting portion connecting portion 614 connects the flange supporting portion 613 and the holding portion main body 611 around the flange portion 19d. The flange support portion 613 comes into contact with and supports the flange portion 19d of the shield portion 19B from below when the shield portion 19B is located at the retracted position. On the other hand, as shown in FIG. 10, the flange support portion 613 is separated from the flange portion 19d of the shield portion 19B when the shield portion 19B is located at the close position. As a result, the shielding unit 19B becomes rotatable.
 次に、図11を参照して処理液供給部9を説明する。図11は、処理液供給部9を示す模式的側面図である。図11に示すように、実施形態2では、処理液供給部9の処理液ノズル91は、処理液流路931と、2つのガス流路371とを有する。処理液流路931は、処理液供給機構93に接続される。2つのガス流路371は、ガス供給機構37に接続される。 Next, the processing liquid supply unit 9 will be described with reference to FIG. FIG. 11 is a schematic side view showing the processing liquid supply unit 9. As shown in FIG. 11, in the second embodiment, the treatment liquid nozzle 91 of the treatment liquid supply unit 9 has a treatment liquid passage 931 and two gas passages 371. The processing liquid channel 931 is connected to the processing liquid supply mechanism 93. The two gas flow paths 371 are connected to the gas supply mechanism 37.
 処理液供給機構93は処理液を処理液ノズル91に供給する。具体的には、処理液供給機構93は処理液を処理液流路931に供給する。処理液流路931に供給された処理液は、処理液ノズル91の下端面に設けられた吐出口931aから下方へと吐出される。 The processing liquid supply mechanism 93 supplies the processing liquid to the processing liquid nozzle 91. Specifically, the processing liquid supply mechanism 93 supplies the processing liquid to the processing liquid channel 931. The processing liquid supplied to the processing liquid channel 931 is discharged downward from the discharge port 931 a provided on the lower end surface of the processing liquid nozzle 91.
 ガス供給機構37は気体を処理液ノズル91に供給する。具体的には、ガス供給機構37は、2つのガス流路371に気体を供給する。ガス供給機構37は、例えば、2つのガス流路371に、窒素等の不活性ガスを供給する。ガス供給機構37は、例えば、バルブ及び配管を含む。 The gas supply mechanism 37 supplies gas to the processing liquid nozzle 91. Specifically, the gas supply mechanism 37 supplies gas to the two gas flow paths 371. The gas supply mechanism 37 supplies an inert gas such as nitrogen to the two gas flow paths 371, for example. The gas supply mechanism 37 includes, for example, a valve and a pipe.
 処理液ノズル91の中央部のガス流路371に供給された気体は、処理液ノズル91の下端面に設けられた下面噴射口371aから下方に向けて噴射される。一方、処理液ノズル91の外周部のガス流路371に供給された気体は、処理液ノズル91の側面に設けられた複数の側面噴射口371bから周囲に噴射される。従って、実施形態2によれば、気体を基板Wに効果的に供給できる。また、処理液ノズル91の外面91aと穴部Sbを構成する壁面WLとの間の隙間GPに気体を効果的に充填できる。 The gas supplied to the gas flow path 371 in the central portion of the processing liquid nozzle 91 is jetted downward from the lower surface jet port 371 a provided on the lower end surface of the processing liquid nozzle 91. On the other hand, the gas supplied to the gas flow path 371 at the outer peripheral portion of the treatment liquid nozzle 91 is ejected to the surroundings from the plurality of side face ejection ports 371b provided on the side face of the treatment liquid nozzle 91. Therefore, according to the second embodiment, the gas can be effectively supplied to the substrate W. Further, the gap GP between the outer surface 91a of the treatment liquid nozzle 91 and the wall surface WL forming the hole Sb can be effectively filled with gas.
 以上、図面を参照して本発明の実施形態について説明した。ただし、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施できる。また、上記の実施形態に開示される複数の構成要素は適宜改変可能である。例えば、ある実施形態に示される全構成要素のうちのある構成要素を別の実施形態の構成要素に追加してもよく、または、ある実施形態に示される全構成要素のうちのいくつかの構成要素を実施形態から削除してもよい。 The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to the above embodiment, and can be implemented in various modes without departing from the gist thereof. Further, the plurality of constituent elements disclosed in the above embodiments can be modified as appropriate. For example, one of all the constituent elements shown in one embodiment may be added to a constituent element of another embodiment, or some constituent elements of all the constituent elements shown in one embodiment may be added. Elements may be removed from the embodiments.
 また、図面は、発明の理解を容易にするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚さ、長さ、個数、間隔等は、図面作成の都合上から実際とは異なる場合もある。また、上記の実施形態で示す各構成要素の構成は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能であることは言うまでもない。 Further, in order to facilitate understanding of the invention, the drawings schematically show each component as a main component, and the thickness, length, number, interval, etc. of each illustrated component are the same as those in the drawings. It may be different from the actual one due to the circumstances. Further, the configuration of each component shown in the above embodiment is an example and is not particularly limited, and it goes without saying that various modifications can be made without substantially departing from the effects of the present invention. ..
 (1)図2~図10を参照して説明した実施形態1(第1変形例~第4変形例を含む。)及び実施形態2において、気体流出口191からカップ部11の内壁面110に向かう気体ARが流出する限りにおいては、気体流出口191、気体流入口193、及び気体流路195の形状、数、及び配置は特に限定されない。例えば、平面視において、複数の気体流路195が径方向RD外方に放射状に延びるように、気体流入口193及び気体流路195を形成してもよい。例えば、平面視において、1つの気体流路195が径方向RD外方に延びるように、気体流入口193及び気体流路195を形成してもよい。気体流出口191、気体流入口193、及び気体流路195の各々の数は、1つでもよいし、複数でもよい。また、遮蔽部19は、複数のカップ部11の形状に対応して、噴射角度の異なる複数の気体流出口191を有していてもよい。さらに、カップ部11の数に応じて、気体流出口191の数を変更してもよい。 (1) In the first embodiment (including the first modified example to the fourth modified example) and the second embodiment described with reference to FIGS. 2 to 10, the gas outlet 191 is provided on the inner wall surface 110 of the cup portion 11. The shapes, the numbers, and the arrangements of the gas outlets 191, the gas inlets 193, and the gas passages 195 are not particularly limited as long as the directed gas AR flows out. For example, in a plan view, the gas inlet 193 and the gas flow passage 195 may be formed so that the plurality of gas flow passages 195 radially extend outward in the radial direction RD. For example, in plan view, the gas inlet 193 and the gas passage 195 may be formed so that one gas passage 195 extends outward in the radial direction RD. The number of each of the gas outlet 191, the gas inlet 193, and the gas flow passage 195 may be one or may be plural. Further, the shielding portion 19 may have a plurality of gas outlets 191 having different injection angles corresponding to the shapes of the plurality of cup portions 11. Further, the number of gas outlets 191 may be changed according to the number of cup portions 11.
 (2)図7を参照して説明した実施形態1の第2変形例において、気体流出口191からカップ部11の内壁面110に向かう気体ARが流出する限りにおいては、ガス供給機構35はファン31を有していなくてもよい。 (2) In the second modified example of the first embodiment described with reference to FIG. 7, as long as the gas AR flowing from the gas outlet 191 toward the inner wall surface 110 of the cup portion 11 flows out, the gas supply mechanism 35 is a fan. 31 may not be included.
 (3)図10を参照して説明した実施形態2において、遮蔽部19Bは、図8を参照して説明した遮蔽部19の遮蔽板19a及び軸部19bを有していてもよい。この場合は、図11に示す処理液ノズル91の複数の側面噴射口371bから噴射される気体が、図8に示す気体流入口193に流入する。この場合、ガス供給機構37が「ガス供給部」の一例に相当する。 (3) In the second embodiment described with reference to FIG. 10, the shield portion 19B may have the shield plate 19a and the shaft portion 19b of the shield portion 19 described with reference to FIG. In this case, the gas ejected from the plurality of side surface ejection ports 371b of the treatment liquid nozzle 91 shown in FIG. 11 flows into the gas inflow port 193 shown in FIG. In this case, the gas supply mechanism 37 corresponds to an example of a “gas supply unit”.
 (4)図2~図10を参照して説明した実施形態1(第1変形例~第4変形例を含む。)及び実施形態2において、遮蔽板19aは、カップ部11の形状に応じて気体流出口191の向きが可変するように構成されていてもよい。また、カップ移動機構15は、カップ部11を上下に揺動させてもよい。この場合、カップ部11の内壁面110に付着した液滴LQを更に効果的に流下させることができる。 (4) In the first embodiment (including the first modified example to the fourth modified example) and the second embodiment described with reference to FIGS. 2 to 10, the shielding plate 19a is formed according to the shape of the cup portion 11. The direction of the gas outlet 191 may be variable. Further, the cup moving mechanism 15 may swing the cup portion 11 up and down. In this case, the droplet LQ attached to the inner wall surface 110 of the cup portion 11 can be more effectively flowed down.
 本発明は、基板処理装置及び基板処理方法に関するものであり、産業上の利用可能性を有する。 The present invention relates to a substrate processing apparatus and a substrate processing method, and has industrial applicability.
 1、1A  基板処理装置
 5、5A  基板保持部
 7  基板回転部
 9  処理液供給部
 11  カップ部
 19、19A、19B  遮蔽部
 19a、19x  遮蔽板
 19b  軸部
 21  遮蔽部動作機構
 21a、21X  遮蔽部移動機構
 21b  遮蔽部回転機構
 22  ガス供給機構(ガス供給部)
 24  ファンフィルタユニット(ガス供給部)
 31  ファン(ガス供給部)
 33  ノズル
 35  ガス供給機構(ガス供給部)
 39  ノズル
 41A  係合部
 91  処理液ノズル(流通部)
 111  カップ上端部
 113  カップ傾斜面
 190  対向壁面
 191  気体流出口
 193  気体流入口
 195  気体流路
 1951a  流路傾斜面
 W  基板
1, 1A Substrate processing apparatus 5, 5A Substrate holding section 7 Substrate rotating section 9 Processing liquid supply section 11 Cup section 19, 19A, 19B Shield section 19a, 19x Shield plate 19b Shaft section 21 Shield operation mechanism 21a, 21X Shield section movement Mechanism 21b Shield rotation mechanism 22 Gas supply mechanism (gas supply section)
24 Fan filter unit (gas supply unit)
31 fan (gas supply unit)
33 nozzle 35 gas supply mechanism (gas supply unit)
39 Nozzle 41A Engagement Part 91 Treatment Liquid Nozzle (Distribution Part)
111 cup upper end 113 cup inclined surface 190 facing wall surface 191 gas outlet 193 gas inlet 195 gas channel 1951a channel inclined surface W substrate

Claims (20)

  1.  基板を水平に保持する基板保持部と、
     上下方向に延びる中心軸を中心として前記基板と前記基板保持部とを一体に回転させる基板回転部と、
     前記基板の上面に対向する遮蔽部と、
     前記遮蔽部を動作させる遮蔽部動作機構と、
     前記基板に処理液を供給する処理液供給部と、
     前記基板保持部の周囲に配置されて、前記処理液を受けるカップ部と
     を有し、
     前記遮蔽部は、前記カップ部の内壁面に向かう気体が流出する気体流出口を有する、基板処理装置。
    A board holding unit for holding the board horizontally,
    A substrate rotating unit that integrally rotates the substrate and the substrate holding unit about a central axis extending in the vertical direction;
    A shielding portion facing the upper surface of the substrate,
    A shield operating mechanism for operating the shield,
    A processing liquid supply unit for supplying a processing liquid to the substrate,
    A cup portion that is arranged around the substrate holding portion and receives the processing liquid,
    The substrate processing apparatus, wherein the shielding part has a gas outlet through which gas toward the inner wall surface of the cup part flows out.
  2.  前記気体流出口は、前記遮蔽部の周縁部に位置している、請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the gas outlet is located at a peripheral portion of the shielding portion.
  3.  前記カップ部は、前記基板よりも上方に位置するカップ上端部を有し、
     前記気体流出口は、前記カップ上端部と近接している、請求項2に記載の基板処理装置。
    The cup portion has a cup upper end portion located above the substrate,
    The substrate processing apparatus according to claim 2, wherein the gas outlet is close to the upper end of the cup.
  4.  前記遮蔽部は、前記基板の上面全体を覆って、前記基板の上方を遮蔽し、
     前記気体流出口は、前記カップ部の内壁面に向いている、請求項1~請求項3のいずれか1項に記載の基板処理装置。
    The shielding portion covers the entire upper surface of the substrate to shield the upper portion of the substrate,
    The substrate processing apparatus according to claim 1, wherein the gas outlet faces the inner wall surface of the cup portion.
  5.  前記遮蔽部は、前記基板の上面と対向する遮蔽板を有し、
     前記遮蔽板は、前記カップ部の内壁面と対向する対向壁面を有し、
     前記気体流出口は、前記対向壁面に設けられる、請求項1~請求項4のいずれか1項に記載の基板処理装置。
    The shielding portion has a shielding plate facing the upper surface of the substrate,
    The shielding plate has a facing wall surface facing the inner wall surface of the cup portion,
    The substrate processing apparatus according to any one of claims 1 to 4, wherein the gas outlet is provided on the facing wall surface.
  6.  前記遮蔽板は、
     前記気体流出口と、
     前記気体が流入する気体流入口と、
     前記気体流入口と前記気体流出口とを連通させる気体流路と
     を有する、請求項5に記載の基板処理装置。
    The shielding plate is
    The gas outlet,
    A gas inlet into which the gas flows,
    The substrate processing apparatus according to claim 5, further comprising: a gas flow path that connects the gas inlet and the gas outlet.
  7.  前記カップ部の内壁面は、前記中心軸から径方向の外方へ向かうにつれて下方に向けて傾斜するカップ傾斜面を有し、
     前記気体流路を構成する内面は、前記径方向の外方に向かうにつれて下方に向けて傾斜する流路傾斜面を有し、
     前記流路傾斜面の水平方向に対する傾斜角度は、前記カップ傾斜面の水平方向に対する傾斜角度以下である、請求項6に記載の基板処理装置。
    The inner wall surface of the cup portion has a cup inclined surface that inclines downward as it extends radially outward from the central axis,
    The inner surface forming the gas flow path has a flow path inclined surface that is inclined downward as it goes outward in the radial direction,
    The substrate processing apparatus according to claim 6, wherein an inclination angle of the flow channel inclined surface with respect to the horizontal direction is equal to or less than an inclination angle of the cup inclined surface with respect to the horizontal direction.
  8.  前記気体を供給するガス供給部を更に有し、
     前記ガス供給部から供給される前記気体が前記気体流入口に流入する、請求項6又は請求項7に記載の基板処理装置。
    Further comprising a gas supply unit for supplying the gas,
    The substrate processing apparatus according to claim 6, wherein the gas supplied from the gas supply unit flows into the gas inflow port.
  9.  前記気体流入口は、前記遮蔽板の上面部に位置し、
     前記気体流路は、前記気体流入口と前記気体流出口とを連通し、
     前記ガス供給部は、前記気体を前記気体流入口に送り出すファンを有し、
     前記ファンは、前記遮蔽板の上面部に配置されている、請求項8に記載の基板処理装置。
    The gas inlet is located on the upper surface of the shielding plate,
    The gas flow path communicates the gas inflow port and the gas outflow port,
    The gas supply unit has a fan that sends the gas to the gas inlet.
    The substrate processing apparatus according to claim 8, wherein the fan is arranged on an upper surface portion of the shielding plate.
  10.  前記遮蔽部は、前記遮蔽板に固定される軸部をさらに有し、
     前記軸部は、前記中心軸を中心として前記遮蔽板と共に回転し、
     前記ファンは、前記軸部に挿通されて、前記遮蔽板の上方から吸入した前記気体を、前記中心軸に対する径方向に噴き出す、請求項9に記載の基板処理装置。
    The shielding portion further has a shaft portion fixed to the shielding plate,
    The shaft portion rotates together with the shielding plate about the central axis,
    The substrate processing apparatus according to claim 9, wherein the fan is inserted into the shaft portion and ejects the gas sucked from above the shielding plate in a radial direction with respect to the central axis.
  11.  前記ガス供給部は、前記ファンに対向するノズルを更に有し、
     前記ノズルは、前記遮蔽板の上面側から前記ファンに向けて前記気体を噴き出す、請求項9又は請求項10に記載の基板処理装置。
    The gas supply unit further has a nozzle facing the fan,
    The substrate processing apparatus according to claim 9, wherein the nozzle ejects the gas from the upper surface side of the shielding plate toward the fan.
  12.  前記遮蔽部は、前記遮蔽板に固定される軸部をさらに有し、
     前記軸部は、前記中心軸を中心として前記遮蔽板と共に回転し、
     前記遮蔽部は、前記軸部及び前記遮蔽板を貫通して前記中心軸に沿って延びる穴部を有し、
     前記処理液供給部は、前記処理液が流通する流通部を有し、
     前記流通部は、前記穴部に配置されており、
     前記ガス供給部は、前記流通部の外面と前記穴部を構成する壁面との間の隙間に前記気体を供給し、
     前記気体流入口は、前記穴部を構成する前記壁面に設けられる、請求項8に記載の基板処理装置。
    The shielding portion further has a shaft portion fixed to the shielding plate,
    The shaft portion rotates together with the shielding plate about the central axis,
    The shielding portion has a hole portion that penetrates the shaft portion and the shielding plate and extends along the central axis,
    The treatment liquid supply unit has a circulation unit through which the treatment liquid flows,
    The circulation portion is arranged in the hole portion,
    The gas supply unit supplies the gas to a gap between an outer surface of the flow unit and a wall surface forming the hole,
    The substrate processing apparatus according to claim 8, wherein the gas inflow port is provided on the wall surface forming the hole.
  13.  前記ガス供給部は、前記基板処理装置の天板部に配置されるファンフィルタユニットを有し、
     前記ファンフィルタユニットは、前記遮蔽板の上方から前記基板保持部に向かうダウンフローを発生させる、請求項8~請求項12のいずれか1項に記載の基板処理装置。
    The gas supply unit has a fan filter unit arranged on a top plate of the substrate processing apparatus,
    The substrate processing apparatus according to any one of claims 8 to 12, wherein the fan filter unit generates a downflow from above the shielding plate toward the substrate holding unit.
  14.  前記遮蔽部は、
     前記基板の上面と対向する遮蔽板と、
     前記遮蔽板の上面部に配置されるノズルと
     を有し、
     前記ノズルの開口が、前記気体流出口であり、前記カップ部の内壁面と対向する、請求項1~請求項4のいずれか1項に記載の基板処理装置。
    The shield is
    A shielding plate facing the upper surface of the substrate,
    A nozzle arranged on the upper surface of the shielding plate,
    The substrate processing apparatus according to claim 1, wherein an opening of the nozzle is the gas outlet and faces an inner wall surface of the cup portion.
  15.  前記遮蔽部動作機構は、前記遮蔽部を上昇又は下降させる遮蔽部移動機構を含む、請求項1~請求項14のいずれか1項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 14, wherein the shield operating mechanism includes a shield moving mechanism that raises or lowers the shield.
  16.  前記遮蔽部動作機構は、前記遮蔽部を回転させる遮蔽部回転機構を含む、請求項1~請求項15のいずれか1項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 15, wherein the shield operating mechanism includes a shield rotating mechanism that rotates the shield.
  17.  前記遮蔽部は、前記基板保持部と係合する複数の係合部を有し、
     前記遮蔽部は、前記複数の係合部が前記基板保持部と係合することにより前記基板保持部と一体となって回転する、請求項1~請求項15のいずれか1項に記載の基板処理装置。
    The shielding portion has a plurality of engaging portions that engage with the substrate holding portion,
    The substrate according to any one of claims 1 to 15, wherein the shield part rotates integrally with the substrate holding part by the plurality of engaging parts engaging with the substrate holding part. Processing equipment.
  18.  基板を基板保持部によって保持する保持工程と、
     前記基板保持部と遮蔽部とを接近させる遮蔽部接近工程と、
     前記基板を前記基板保持部と共に回転させる回転工程と、
     前記遮蔽部の気体流出口から気体を流出させて、カップ部の内壁面に向かう気流を発生させる気流発生工程と、
     前記基板を処理液で処理する処理工程と
     を含む、基板処理方法。
    A holding step of holding the substrate by the substrate holding part,
    A shielding portion approaching step of bringing the substrate holding portion and the shielding portion closer to each other,
    A rotating step of rotating the substrate together with the substrate holder,
    An air flow generating step of causing a gas to flow out from the gas outlet of the shielding part to generate an air flow toward the inner wall surface of the cup part;
    And a treatment step of treating the substrate with a treatment liquid.
  19.  前記気流発生工程では、前記気体は、前記遮蔽部の周縁部に位置している前記気体流出口から流出して、前記カップ部の内壁面に沿って流れる、請求項18に記載の基板処理方法。 19. The substrate processing method according to claim 18, wherein in the airflow generating step, the gas flows out from the gas outlet located at the peripheral portion of the shielding portion and flows along the inner wall surface of the cup portion. ..
  20.  前記カップ部は、前記基板よりも上方に位置するカップ上端部を有し、
     前記気流発生工程では、前記気体は、前記カップ上端部と近接している前記気体流出口から、前記カップ上端部に向けて流出する、請求項19に記載の基板処理方法。
    The cup portion has a cup upper end portion located above the substrate,
    20. The substrate processing method according to claim 19, wherein, in the airflow generating step, the gas flows out from the gas outlet close to the upper end of the cup toward the upper end of the cup.
PCT/JP2019/039950 2018-11-02 2019-10-10 Substrate processing device and substrate processing method WO2020090399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018207248A JP7187268B2 (en) 2018-11-02 2018-11-02 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP2018-207248 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020090399A1 true WO2020090399A1 (en) 2020-05-07

Family

ID=70463964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039950 WO2020090399A1 (en) 2018-11-02 2019-10-10 Substrate processing device and substrate processing method

Country Status (3)

Country Link
JP (1) JP7187268B2 (en)
TW (1) TWI732320B (en)
WO (1) WO2020090399A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI799866B (en) * 2021-01-26 2023-04-21 巨臣科技股份有限公司 Semiconductor process equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244130A (en) * 2011-05-24 2012-12-10 Tokyo Electron Ltd Liquid processing apparatus and washing method of the same
JP2013153135A (en) * 2011-12-28 2013-08-08 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2014086638A (en) * 2012-10-25 2014-05-12 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2018164031A (en) * 2017-03-27 2018-10-18 株式会社Screenホールディングス Substrate processing device and substrate processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9242279B2 (en) * 2011-05-24 2016-01-26 Tokyo Electron Limited Liquid processing apparatus and liquid processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244130A (en) * 2011-05-24 2012-12-10 Tokyo Electron Ltd Liquid processing apparatus and washing method of the same
JP2013153135A (en) * 2011-12-28 2013-08-08 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2014086638A (en) * 2012-10-25 2014-05-12 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2018164031A (en) * 2017-03-27 2018-10-18 株式会社Screenホールディングス Substrate processing device and substrate processing method

Also Published As

Publication number Publication date
TWI732320B (en) 2021-07-01
JP2020072228A (en) 2020-05-07
JP7187268B2 (en) 2022-12-12
TW202025360A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
US9318365B2 (en) Substrate processing apparatus
US9666456B2 (en) Method and apparatus for treating a workpiece with arrays of nozzles
US9508567B2 (en) Cleaning jig and cleaning method for cleaning substrate processing apparatus, and substrate processing system
TWI556876B (en) Substrate processing apparatus and substrate processing method
JP5536009B2 (en) Substrate processing equipment
TWI687971B (en) Substrate processing device and substrate processing method
KR101975143B1 (en) Substrate processing method and substrate processing apparatus
WO2020090399A1 (en) Substrate processing device and substrate processing method
KR101770535B1 (en) Substrate processing device
JP2013051286A (en) Substrate processing apparatus and substrate processing method
JP2009117826A (en) Substrate processing apparatus and method
JP5844092B2 (en) Substrate processing equipment
TW201832314A (en) Substrate process apparatus and method capable of reducing adhesion of processing liquid
JP5824225B2 (en) Substrate processing equipment
JP5967948B2 (en) Substrate processing apparatus and substrate processing method
KR101582566B1 (en) Apparatus and method for treating a substrate
JP2023045549A (en) Substrate processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880190

Country of ref document: EP

Kind code of ref document: A1