WO2020090372A1 - Rotating tool - Google Patents

Rotating tool Download PDF

Info

Publication number
WO2020090372A1
WO2020090372A1 PCT/JP2019/039586 JP2019039586W WO2020090372A1 WO 2020090372 A1 WO2020090372 A1 WO 2020090372A1 JP 2019039586 W JP2019039586 W JP 2019039586W WO 2020090372 A1 WO2020090372 A1 WO 2020090372A1
Authority
WO
WIPO (PCT)
Prior art keywords
breaker
cutting edge
rotary tool
blade
chips
Prior art date
Application number
PCT/JP2019/039586
Other languages
French (fr)
Japanese (ja)
Inventor
恭也 山田
南 徹
神田 保之
Original Assignee
兼房株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兼房株式会社 filed Critical 兼房株式会社
Priority to JP2020553716A priority Critical patent/JPWO2020090372A1/en
Priority to CN201980063940.6A priority patent/CN112789131A/en
Publication of WO2020090372A1 publication Critical patent/WO2020090372A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/18Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing
    • B23B27/20Cutting tools of which the bits or tips or cutting inserts are of special material with cutting bits or tips or cutting inserts rigidly mounted, e.g. by brazing with diamond bits or cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D77/00Reaming tools

Definitions

  • the present invention relates to a rotary tool.
  • Some conventional rotary tools have breakers on the rake face of the blade to cut chips into shorter pieces and to reduce the curl diameter (Patent Documents 1 and 2, etc.). Without a breaker, there are problems that the chips will be connected for a long time and entangled with the tool, hindering automatic operation, damaging the work, or biting the blade tip to chip the blade tip, so the proper action can be exerted. It is desirable to have a breaker.
  • the present invention has been completed in view of the above circumstances, and it is an object to be solved to provide a rotary tool equipped with a high-performance breaker.
  • the present inventors have conducted intensive studies on the relationship between the shape of the breaker and the shape of the chips, and as a result, have completed the following invention.
  • a rotary tool of the present invention which solves the above-mentioned problems is a rotary tool main body and a blade portion made of polycrystalline diamond (PCD) or cubic boron nitride sintered body (CBN) and having a cutting edge provided on the rotary tool main body.
  • a breaker near the cutting edge on the rake face of the blade portion, and has at least one of the following configurations (i) and (ii).
  • the breaker is a recess having an R-shaped cross section in a direction perpendicular to the cutting edge.
  • the cutting edge is inclined with respect to the rotation axis of the rotary tool main body, and the breaker has an outer peripheral direction and / or an axial center of the rotary tool main body in both end portions in a direction parallel to the cutting edge. It is a dent that gradually becomes shallower toward the end of the direction.
  • the width of the breaker in the direction perpendicular to the cutting edge is preferably 0.15 mm to 0.5 mm.
  • the distance between the breaker and the cutting edge is preferably 0.01 mm to 0.05 mm.
  • the breaker has a texture formed by unevenness on the surface.
  • the inner surface of the breaker preferably has a surface roughness Rz of 2.0 ⁇ m or less.
  • the rotary tool of the present invention having the above-mentioned configuration can cut chips generated during cutting into short pieces. As a result, it is possible to suppress the entanglement of chips with the rotary tool and the like, and to prevent the chips from scratching the surface of the work, and further, it is possible to effectively prevent chipping of the blade portion.
  • the curl diameter of the generated chips can be reduced by making the cross-sectional shape of the breaker (cross-section in the direction perpendicular to the cutting edge) R-shaped.
  • both ends of the breaker are continuously shallower toward the outer peripheral direction and / or the axial center end of the rotary tool body, whereby the generated chips are It is possible to suppress the stress in the axial direction from being applied to the inner surface of the outer peripheral end of the breaker.
  • the application of stress in the axial direction to the chips is suppressed, it is possible to prevent the tips of the curled chips from being connected in a spiral shape due to the displacement in the axial direction, and it is possible to divide the generated chips into short pieces.
  • the effect of shortening the chips can be expected more by forming the shape in which both ends of the breaker become continuously shallower toward the ends.
  • FIG. 3 is a perspective view showing a rotary tool (reamer) according to the first embodiment.
  • FIG. 3 is an enlarged perspective view of a blade portion included in the reamer of the first embodiment. It is an expansion perspective view of a breaker which a blade part of Embodiment 1 has.
  • FIG. 4 is a schematic cross-sectional view taken along the line IV-IV of FIG. 3.
  • FIG. 6 is a perspective view showing a modification of the first embodiment.
  • FIG. 9 is an enlarged perspective view of a breaker (dimple) included in the blade portion of the second embodiment.
  • 7 is an enlarged photograph of a breaker (dimple) included in the blade of the second embodiment.
  • 7 is an enlarged photograph of a breaker (groove) included in the blade of the second embodiment.
  • FIG. 9A is an enlarged perspective view of a breaker (projection) included in the blade of the third embodiment.
  • FIG. 9B is a sectional view taken along line bb of FIG. 9A.
  • 9 is an enlarged photograph of a breaker (projection) included in the blade of the second embodiment. It is an expansion perspective view of the breaker which the blade part (a) of test 1 has. It is a figure which shows the simulation result of the test 1.
  • 3 is a photograph of chips generated in a cutting test (blade portion without breaker) of Test 1.
  • 3 is a photograph of chips produced in a cutting test of Test 1 (a blade portion having a breaker having an R-shaped cross section).
  • 3 is a photograph of chips generated in a cutting test of Test 1 (a blade portion having a breaker with a triangular cross section). 3 is a photograph of chips generated in a cutting test (blade portion without breaker) of Test 1. 3 is a photograph of chips produced in a cutting test of Test 1 (a blade portion having a breaker having an R-shaped cross section). 3 is a photograph of chips generated in a cutting test of Test 1 (a blade portion having a breaker with a triangular cross section). It is an expansion perspective view of the breaker which the blade part (a) of the test 2 has. It is a figure which shows the simulation result of the test 2. It is a SEM photograph of the inner surface of the breaker after cutting in the cutting test (condition 1) of test 3.
  • the rotary tool of the present embodiment is a tool that cuts a workpiece by coming into contact with a workpiece that is a workpiece while rotating the shaft, and cuts a workpiece made of a metal material, particularly a nonferrous metal such as aluminum or an aluminum alloy. It is a tool. For example, reamers, end mills, drills and the like.
  • the cutting speed of the rotary tool of this embodiment is not particularly limited. For example, it can be 50 m / min or more, 100 m / min or more, 150 m / min or more, 600 m / min or less, 500 m / min or less, 400 m / min or less, 300 m / min or less. These upper limit values and lower limit values can be arbitrarily combined.
  • the rotary tool of this embodiment has a rotary tool body and a blade.
  • One to a plurality of blades are arranged on the outer circumference of the rotary tool.
  • the blade can be fixed by brazing or welding. If necessary, a removable structure may be adopted.
  • the blade part has a cutting edge and a breaker near the cutting edge on the rake face.
  • the blade portion is formed of PCD or CBN.
  • the cutting edge may be inclined with respect to the rotation axis of the rotary tool body.
  • the rake face is a face against which chips cut by the cutting edge come into contact.
  • the breaker is preferably formed on the rake face slightly away from the cutting edge.
  • the breaker is a recess provided on the rake face. Chips come into contact with the inner surface of the breaker and act to curl the chips that are continuously generated.
  • the cutting edge side of the breaker be shaped so that the distance from the cutting edge is constant. That is, it is preferable that the width (the length in the direction perpendicular to the cutting edge) of the surface (land) between the cutting edge and the breaker is substantially constant.
  • the width of the land it is desirable to make it smaller than the feed amount of one blade of the rotary tool of this embodiment.
  • the lower limit value of the land width may be 0.01 mm or 0.02 mm
  • the upper limit value may be 0.05 mm or 0 mm. 0.04 mm and 0.03 mm can be exemplified, and the upper limit value and the lower limit value can be arbitrarily combined.
  • the width (length in the direction perpendicular to the cutting edge) of the breaker can be exemplified as a lower limit value of 0.15 mm and 0.2 mm, and as an upper limit value of 0.5 mm, 0.4 mm and 0.3 mm, and these upper limits can be exemplified.
  • the value and the lower limit value can be arbitrarily combined.
  • the cross-sectional shape of the breaker (perpendicular to the cutting edge) is an R shape that is recessed from the rake face.
  • the R shape is a shape having no bending point, that is, a change in curvature is smooth. In particular, it is a part of an arc, a part of a hyperbola, and the like.
  • the inner surface of the breaker and the land are preferably formed at an angle (obtuse angle) of about 15 ° to 20 ° (165 ° to 160 °). Further, the curvature of the R shape does not have to be constant, and the curvature may increase as the distance from the cutting edge increases.
  • the breaker When the cutting edge of the blade portion is inclined with respect to the rotation axis of the rotary tool body, the breaker is an end portion in the outer peripheral direction and / or the axial center direction of the rotary tool body among both end portions in the direction parallel to the cutting edge. It is preferable that the dents become shallower continuously as they go to.
  • both ends when the term “both ends” is used without particular limitation, it means both ends in the direction parallel to the cutting edge, and when the term “cross-sectional shape” is used without particular limitation, it is perpendicular to the cutting edge direction. Means a cross section in any direction.
  • the "width" of the breaker means the length in the direction perpendicular to the cutting edge, unless otherwise specified.
  • the central part where the cross-sectional shape does not change, and the conical body whose bottom surface has the cross-sectional shape of the central part as the part that becomes shallower toward both ends of the central part A combination shape with (both ends) can be adopted.
  • the inner surface of the breaker has a small surface roughness.
  • the value of the surface roughness Rz can be 2.0 ⁇ m or less or 1.5 ⁇ m or less. By reducing the surface roughness, it is possible to suppress the work material from welding to the surface of the blade portion (in particular, the inner surface of the breaker).
  • Rz in this specification shows a ten-point average roughness.
  • the inner surface of the breaker has a texture formed by unevenness.
  • the texture form include regularly arranged dimples (concave portions) and dots (convex portions).
  • a dimple may form a groove in which a plurality of dimples are connected, or a dot may form a rib-shaped projection in which a plurality of dimples are connected.
  • the friction reduction effect between the inner surface of the breaker and the chips and the flow of chips on the inner surface of the breaker can be controlled.
  • the friction between the chips and the inner surface of the breaker is reduced, the curling of the chips is promoted and the fragmentation of the chips can be promoted.
  • the dimples and dots can be expected to have a function of storing oil used for cutting. If the chip flow is deflected, the chips may spiral and become uninterrupted. Therefore, the flow of the chips is controlled so that the tip of the chips quickly contacts the work or the chips themselves, so that the cutting of the chips can be promoted.
  • friction reduction effect can be prioritized as the effect of dimples, and chip flow control effect can be expected as the effect of dots.
  • Breakers are molded by electrical discharge machining, electron beam machining, laser machining, grinding, etc.
  • the texture formed on the inner surface of the breaker can also be formed by electric discharge machining, electron beam machining, laser machining, grinding, or the like.
  • the texture may be formed at the same time as the breaker is formed, or may be formed independently of the breaker.
  • the rotary tool 1 of the present embodiment includes a rotary tool main body 10 and a blade portion 20 provided on the outer periphery of the rotary tool main body 10.
  • the rotary tool 1 is a reamer that rotates clockwise to perform cutting.
  • the rotary tool main body 10 has a substantially cylindrical shape, and a notch 11 is formed from the tip in the axial direction to the middle.
  • the blade 20 is fixed to the tip of the notch 11 by brazing.
  • the number of blades 20 provided is not particularly limited.
  • the blade portion 20 is made of PCD, and has a cutting edge 21 and a breaker 22 formed on the rake face 21a as shown in FIG.
  • the breaker 22 is formed near the cutting edge 21.
  • the breaker 22 has a width of about 0.2 mm to 0.3 mm.
  • the length of the central portion 22a of the breaker 22 in the direction parallel to the cutting edge 21 is set to a size that can accommodate the size of the chips generated by cutting. For example, since a chip having a size approximately equal to the cutting depth (working allowance) in the radial direction of the work is generated, the value can be made larger than the size of the working allowance (about 0.15 mm to 0.5 mm). ..
  • the position of the breaker 22 is also determined according to the position of the chips generated by cutting.
  • the length of the ends 22b and 22c of the breaker 22 in the direction parallel to the cutting edge 21 can be set to about 0.2 mm to 0.3 mm.
  • the shape of the breaker 22 on the side of the cutting edge 21 and the shape of the cutting edge 21 are parallel to each other, and the width x1 of the land 21a1 between them can be about 0.01 mm to 0.05 mm.
  • the breaker 22 includes a central portion 22a whose cross-sectional shape is a part of an arc, and end portions 22b and 22c at both ends thereof.
  • the end 22c is the end of the rotary tool body 10 in the outer peripheral direction.
  • the end 22b is a pyramid having a vertex 22b1 and a bottom surface having a cross section of the central portion 22a
  • the end 22c is a pyramid having a vertex 22c1 and a bottom having a cross section of the central portion 22a.
  • Both of the end portions 22b and 22c are recesses each having a shape that gradually becomes shallower toward both ends.
  • the cross section of the breaker 22 at the central portion 22a is a part of an arc, as shown in FIG.
  • the angle ⁇ between the land 21a1 and the central portion 22a can be about 15 ° to 20 °.
  • the rotary tool 2 of the present embodiment has a rotary tool main body 30 and blade portions 40 and 50 provided on the outer periphery of the rotary tool main body 30.
  • the rotary tool main body 30 has a substantially cylindrical shape, and a notch 31 is formed in a part in the midway from the front end to the rear end in the axial direction, and a notch 32 is further formed in a part toward the rear end. ing.
  • Four notches 31 and 32 are provided at every 90 ° in the circumferential direction of the rotary tool body 30.
  • the outer diameter of the rotary tool body 30 is slightly larger at the portion where the notch 32 is formed than at the portion where the notch 31 is formed.
  • Two blades 40 are provided at every 180 ° at the tip of the portion where the notch 31 is formed, and a blade 50 is provided at a portion that is offset by 90 ° from the blade 40 at the tip of the portion where the notch 32 is formed. Two of them are fixed by brazing.
  • the number of blades 40 and 50 provided is not particularly limited.
  • the blade portions 40 and 50 are made of PCD and have the same shape as that shown in FIG.
  • the rotary tool of the present embodiment is the same as that of the first embodiment except that a texture is formed on the inner surface of the breaker.
  • the blade 60 is shown in FIG.
  • the width x2 can be set to about 0.01 mm to 0.05 mm as in the first embodiment.
  • a dimple 63 is formed on the inner surface of the breaker 62 of the blade portion 60 included in the rotary tool of this embodiment.
  • the dimples 63 are provided so as to be aligned in the chip generation direction generated when the workpiece is cut by the cutting edge 61.
  • the size of the dimples 63 is not particularly limited, but can be, for example, a diameter of about 0.02 mm to 0.05 mm and a depth of 0.01 mm to 0.025 mm.
  • the number of the dimples 63 is not particularly limited, and may be set to a number that can evenly cover the inner surface of the breaker 62. For example, 4 to 6 pieces may be arranged in the width direction of the central portion 62a of the breaker 62, and about 6 to 8 pieces may be arranged in the length direction of the cutting edge 61 of the entire breaker 62.
  • FIG. 7 shows a micrograph of the breaker 62 of the blade 60.
  • FIG. 8 shows a micrograph of the breaker 72 portion of the blade portion 70 when the groove is used as the texture.
  • the groove 73 is formed so as to extend in a direction parallel to the cutting edge 71 at the central portion 72a, and to extend toward the vertices 72b1 and 72c1 at both end portions 72b and 72c.
  • the rotary tool of the present embodiment is the same as that of the first embodiment except that a texture is formed on the inner surface of the breaker.
  • the blade portion 80 is shown in FIG.
  • the width x3 of the land 81a1 of the rake face 81a can be set to about 0.01 mm to 0.05 mm as in the first embodiment.
  • a rib-shaped projection 83 is formed on the inner surface of the breaker 82 of the blade portion 80 included in the rotary tool of the present embodiment.
  • the protrusions 83 are provided so as to extend in the chip generation direction generated when the workpiece is cut by the cutting edge 81.
  • the width of the protrusion is not particularly limited, but the width may be wider or uniform as it goes to the central portion.
  • the maximum width is about 0.03 mm to 0.07 mm
  • the height from the bottom of the breaker is about 0.01 mm to the rake face 81a (for example, the depth of the deepest part of the breaker is
  • the upper limit of the height h of the protrusion is set to 0.1 mm. It is about half the depth of.
  • the length of the breaker 82 in the width direction can be made approximately the same as the width of the breaker 22.
  • the number of the projections 83 is not particularly limited, and may be set to a number that can evenly cover the inner surface of the breaker 82. For example, about 6 to 8 pieces can be arranged in the width direction of the central portion 82a of the breaker 82.
  • the protrusions 83 may or may not be arranged on the ends 82b and 82c of the breaker 82.
  • a photomicrograph of the breaker 82 portion of the blade 80 is shown in FIG.
  • Test 1 Examination of breaker shape. Shape of breaker inner surface
  • a blade portion not having a breaker (b) A blade portion having a breaker having an R-shaped cross section (corresponding to FIG. 3: land width x1 is 0.02 mm, breaker width is 0.3 mm, The radius of the cylinder forming the R shape of the inner surface is 0.3 mm, and (c) the blade having a breaker having a triangular sectional shape (Fig. 11: the width of the land 91a1 is 0.05 mm, the breaker width is 0.6 mm, the breaker is An analysis was performed on a reamer having three blade portions whose inner surface and the land 91a1 have an angle of 15 °.
  • the material of the cutting edge was PCD
  • the work material was aluminum alloy (A7075)
  • the cutting speed was 150 m / min
  • the feed rate per blade was 0.1 mm
  • the machining allowance was 0.2 mm.
  • the chips produced by the blade portions of (b) and (c) provided with the breaker are more likely to generate chips than the chips produced by the blade portion of (a) having no breaker.
  • the curl diameter has decreased.
  • the chips generated by the blade part of (b) have a smaller curl diameter than the chips generated by the blade part of (c), and the tips of the chips contact the surface of the work material promptly. It was That is, in the blade part of (b), the tip of the generated chips comes into contact with the surface of the work material more quickly than in the blade part of (c), so that it can be expected that the cutting of chips will be performed more quickly. I understood.
  • the rotary tool had a blade diameter of 12.5 mm, a total length of 100 mm, a blade length of 5 mm, and two blades.
  • Chips cut with a rotary tool equipped with the blade part of (b) have a small curl diameter, and spiral chips of about 8 to 10 turns are generated, and the chips were never wrapped around the rotary tool.
  • the chips cut by the blade part (a) where the breaker does not exist and the blade part (c) having the breaker having a triangular cross-section have long continuous chips and are wound around the rotary tool.
  • Chips cut with a rotary tool equipped with the blade part of (b) have a small curl diameter, and spiral chips (about 1 mm in length) of about half a turn to one turn are generated, and the chips may wind around the rotary tool. There was no.
  • chips cut with a rotary tool equipped with a blade part (a) without a breaker can be cut with one turn, but the curl diameter of the chips is large and the chip length is as long as about 10 mm. It was
  • the chips cut with a rotary tool equipped with a blade part (c) having a breaker with a triangular cross-section have spiral curls (the chips are deformed in the axial direction, although the curl diameter of the chips is small. It is speculated that) and long chips were generated.
  • the breakers provided on both blades each have a land width of 0.02 mm, a breaker width of 0.3 mm, and a radius of a cylinder forming the R shape of the inner surface of the breaker of 0.3 mm.
  • the cutting conditions are the same as in Test 1.
  • the analysis result is shown in FIG.
  • the chips generated at the blade portion of (a) are deformed to the left of the drawing (axial direction of the reamer), and spiral chips are generated as a whole.
  • the generated chips come into contact with the end surface 94a on the outer peripheral side of the inner surface of the breaker, so that the stress that deforms the chips toward the shaft side is applied, and the chips have a spiral shape. Conceivable.
  • Test 3 Influence of surface roughness of breaker inner surface
  • the shape of the breaker is the same as that of the breaker 22 shown in FIG. 3, and is the same as that of the blade part (b) of the test 2.
  • the land width was 0.02 mm
  • the breaker width was 0.3 mm
  • the length in the direction parallel to the cutting edge at the center of the breaker was 0.2 mm
  • the radius of the cylinder forming the R shape on the inner surface of the breaker was 0.3 mm.
  • a blade without a breaker (condition 4: blade of (a) of test 1) was also prepared.
  • the surface roughness of each blade was Condition 1: Rz 2.36 ⁇ m, Condition 2: Rz 1.95 ⁇ m, Condition 3: Rz 1.19 ⁇ m.
  • the surface roughness of the portion corresponding to the breaker in the blade portion without breaker (Condition 4) was Rz 0.12 ⁇ m.
  • the shape of the blade (reamer) is the same as in Fig. 1, with a blade diameter of 12.5 mm and two blades.
  • the test conditions were a cutting speed of 300 m / min, a single-blade feed amount of 0.1 mm, and a machining allowance of 0.2 mm, and the workpiece ADC12 was machined into 100 holes.
  • 17A (condition 1), 17b (condition 2), 17c (condition 3), and 17d (condition 4) are SEM photographs of the inner surface of each breaker after processing 100 holes.
  • the chips generated in the blade portions of (b) and (c) have a smaller curl diameter than the chips generated in the blade portion of (a), and the chips are divided. I found it easy. It is considered that this is because the presence of the dimples 96 and the grooves 98 can reduce the friction between the chips and the blade.
  • An inner surface of the breaker has an R-shaped cross section and a breaker having a part of a conical end portion (similar to FIG. 3), (b) a blade portion having a protrusion on the inner surface of the breaker (equivalent to FIG. 9) ) was analyzed for a reamer having two blades.
  • the breakers provided on both blades each have a land width of 0.02 mm, a breaker width of 0.3 mm, and a radius of a cylinder forming the R shape of the inner surface of the breaker of 0.3 mm.
  • the protrusion provided on the inner surface of the breaker of the blade portion of (b) has a width of 0.05 mm, and is provided every 0.07 mm in the direction parallel to the cutting edge 81.
  • the height of the protrusion is 0.01 mm from the bottom surface of the breaker (corresponding to FIG. 9B).
  • the cutting conditions are the same except that the width of the central portion is larger than that of the breaker provided on the blade portion of the reamer used in Test 1. The analysis result is shown in FIG.
  • the chips generated by the blade portion in (a) are deformed to the left side of the drawing (axial direction of the reamer).
  • the deformation to the left of the drawing is suppressed more than the chips generated in the blade part of (a). Since the cutting edge of the blade is inclined with respect to the rotation axis of the reamer, the rate of chip generation on the outer peripheral side is higher, and stress is originally applied to the chip to deform it on the shaft core side. It deforms in the axial direction. Under the present study conditions, the length of the central cutting edge in the parallel direction was made longer than in other tests, so the stress applied to the chips in the axial direction was large, and the chips tended to form a spiral shape. However, even under such a condition, it is possible to effectively suppress the spiral deformation of the chips by providing the protrusions and controlling the flow of the chips.
  • the rotary tool of the present embodiment has substantially the same configuration as the rotary tool of the first embodiment, except that the cutting edge is curved and the shape and the like are changed due to the bending of the cutting edge.
  • the cutting edge 21 of the blade portion 20 of the first embodiment is straight and is inclined with respect to the rotation axis of the rotary tool body 10.
  • the inclination direction of the cutting edge 21 is a direction in which the diameter is reduced toward the tip of the rotary tool.
  • the cutting edge 101 of the blade portion 100 of the present embodiment is reduced in diameter toward the tip of the rotary tool, as in the cutting edge 21 of the first embodiment, toward the tip of the rotary tool.
  • the shape of the cutting edge 101 is curved so that the degree of diameter reduction increases toward the tip of the rotary tool.
  • the shape of the cutting edge 101 is such that the vicinity of the center in the rotation axis direction of the rotary tool swells in the outer diameter direction.
  • the breaker 102 provided on the blade portion 100 of the present embodiment is also curved according to the curvature of the cutting edge 101.
  • the distance between the cutting edge 101 and the cutting edge of the breaker 102 is substantially constant.
  • the “land width” in the case where the cutting edge 101 is curved as in the present embodiment means the above-described definition (the width of the surface (land) between the cutting edge and the breaker (the direction perpendicular to the cutting edge). Length)), the length of the land in the direction perpendicular to the direction in which the cutting edge of the cutting edge 101 extends. Therefore, the direction in which the width of the land is measured changes as the cutting edge 101 bends.
  • the length in the same direction as the “land width” is the “breaker width”.
  • the width of the breaker 102 and the width of the land in the portion where the cutting edge 101 exists are set to be constant.
  • the preferable range of the width of the land and the width of the breaker in the portion where the object to be cut is cut is presented. That is, even if the cutting edge is formed and the breaker is formed, in the portion that does not cut the object to be cut, even if the "land width" or the "breaker width” can be defined, the above-mentioned preferable range or The preferred form may not apply.
  • an appropriate range is defined for the "land width” and the "breaker width” in the portion for cutting the object to be cut, but the reason why the cutting edge 101 is curved is to cut the object to be cut after cutting.
  • the shape of the cutting edge 101 is determined, it is also assumed that the object to be cut is cut over the entire area of the cutting edge 101. In such a case, a curved cutting edge can be cut. It is desirable to set an appropriate range of “land width” and “breaker width” in the entire area of the blade 101.
  • the width of the breaker is constant at the central portion 102a of the breaker 102, which corresponds to the part where the cutting edge 101 is formed (the part inside the straight line perpendicular to both ends of the cutting edge of the cutting edge 101).
  • An inner diameter end 102b of the central portion 102a is continuously shallowed toward the inner diameter direction, and an outer diameter end 102c of the central portion 102a is continuously shallowed toward the outer diameter direction. ..
  • the rotary tool of this embodiment has a cutting edge 121 as shown in FIG. Specifically, the width of the land is constant as in the fourth embodiment, but the width of the breaker becomes smaller toward the outer diameter direction.
  • the breaker 122 of the present embodiment is composed of a central portion 122a and end portions 122b and 122c as in the fourth embodiment, and the end portion 122c of the breaker 122 is adjacent to the cutting edge 121 and mainly exerts the function as a breaker. ..
  • the ends 122b and 122c become shallower toward both ends.
  • the reason why the width of the breaker becomes smaller as it goes in the outer diameter direction is as follows.
  • the direction in which the rotary tool of this embodiment advances during cutting is designated as direction A.
  • the blade 120 moves in parallel with the direction A as the cutting progresses.
  • the cutting allowance of the object to be cut becomes larger in the angle between the direction A and the cutting edge of the cutting edge 121 (hereinafter, may be referred to as “the inclination of the cutting edge”).
  • the inclination of the cutting edge 121 is smaller in the outer diameter direction, and thus the cutting allowance is smaller in the outer diameter direction.
  • the width of the breaker is set so as to correspond to the reduction of the cutting allowance of the cutting edge 121 toward the outer diameter direction. This can be said in other words that the width of the breaker is made smaller as the inclination of the cutting edge becomes smaller in the outer diameter direction.
  • the rotary tool of the present embodiment has substantially the same configuration as that of the rotary tool of the fourth embodiment, except that the curved shape of the cutting edge is different and the shape and the like are changed due to the change of the curved shape of the cutting edge.
  • the cutting edge 141 of the blade portion 140 of the present embodiment has a diameter that decreases toward the tip of the rotary tool toward the tip of the rotary tool, similar to the cutting edge 101 of the fourth embodiment.
  • the shape of the cutting edge 141 is curved so that the degree of diameter reduction becomes smaller toward the tip of the rotary tool.
  • the shape of the cutting edge 141 is such that the vicinity of the center in the rotation axis direction of the rotary tool swells in the inner diameter direction.
  • the breaker 142 provided on the blade 140 of the present embodiment is also curved according to the curvature of the cutting edge 141.
  • the distance between the cutting edge 141 and the cutting edge side of the breaker 142 is substantially constant.
  • the center part 142a of the breaker 142 which corresponds to the part where the cutting edge 141 is formed (the part inside the straight line perpendicular to both ends of the cutting edge of the cutting edge 141), has a constant breaker width.
  • the inner diameter direction end portion 142b of the central portion 142a is continuously shallowed in the inner diameter direction
  • the outer diameter direction end portion 142c of the central portion 142a is continuously shallowed in the outer diameter direction. ..
  • the rotary tool of this embodiment has a cutting edge 161 as shown in FIG. Specifically, the width of the land is constant as in the fifth embodiment, but the width of the breaker becomes smaller toward the inner diameter direction.
  • the breaker 162 according to the present embodiment has no or a slight central portion, and includes the end portions 162b and 162c. The end portion 162b of them is adjacent to the cutting edge 161. The ends 162b and 162c become shallower toward both ends.
  • the blade 160 moves in parallel with the direction A as the cutting progresses.
  • the cutting allowance of the work piece when the cutting edge 161 advances in the direction A increases as the inclination of the cutting edge 161 increases.
  • the width of the breaker is set to increase corresponding to the increase in the cutting allowance of the cutting edge 161 toward the outer diameter direction. This can be said in other words that the width of the breaker is increased as the inclination of the cutting edge increases in the outer diameter direction.
  • the material of the cutting edge is PCD
  • the work material is an aluminum alloy (A7075)
  • the cutting speed is 150 m / min or 300 m / min
  • the feed rate per tooth is 0.05 mm or 0.1 mm
  • the machining allowance is It was set to 0.1 mm or 0.2 mm. The results are shown in Table 1.
  • the width of the breaker could be set to 0.05 mm to 0.45 mm when the feed rate per blade was 0.075 mm or less.
  • the upper limit of the breaker width could be set to 0.55 mm.
  • the width of the breaker could be 0.125 mm to 0.45 mm (preferably 0.175 mm to 0.45 mm) when the single-blade feed amount was more than 0.075 mm.
  • the lower limit value of the breaker width could be 0.005 mm and the upper limit value could be 0.55 mm.
  • Test 7 Examination of appropriate land width
  • the width of the land could be 0.035 mm or less.
  • the upper limit of the land width is 0.055 mm at (3-1) cutting speed of 225 m / min or less, and 0.045 mm at (3-2) cutting speed of 225 m / min or more.
  • the width of the land could be 0.065 mm or less.
  • the width of the land is preferably 60% or less of the feed amount per blade so that the effect of the breaker can be sufficiently exerted, and more preferably 50% or less.
  • Rotating tool 10 Rotating tool main body 11 ... Notch 2 ... Blade portion 20 ... Blade portion 21 ... Cutting edge 21a ... Scooping surface 21a1 ... Land 22 ... Breaker 22a ... Central portion 22b ... End portion 22b1 ... Apex 22c ... End portion 22c1 ... Apex 30 ... Rotating tool body 31 ... Notch 31a ... Scoop face 32 ... Notch 40 ... Blade part 50 ... Blade part 60 ... Blade part 61 ... Cutting edge 61a ... Scoop face 61a1 ... Land 62 ... Breaker 62a ... Central part 63 ... Dimple 70 ... Blade portion 71 ... Cutting edge 71a ... Scooping surface 72a ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)
  • Drilling Tools (AREA)

Abstract

The present invention addresses the problem of providing a rotating tool comprising a high-performance breaker. This rotating tool is provided with a rotating tool body 10 and with an edge section 20 having a cutting edge which is formed of a polycrystalline diamond (PCD) or a cubic boron nitride sintered body (CBN) and which is provided to the rotating tool body 10. The rake face of the edge section 20 is provided with a breaker located near the cutting edge. The rotating tool has a configuration (i) and/or a configuration (ii) described below: (i) a cross-section of the breaker taken in the direction perpendicular to the cutting edge has a concave shape, and (ii) the cutting edge is tilted relative to the rotation axis of the rotating tool body 10, and the breaker has a recess which continuously becomes shallower toward an end, defined with respect to the outer peripheral direction of the rotating tool body 10 and/or the axial direction, of both ends of the breaker in the direction parallel to the cutting edge.

Description

回転工具Rotary tool
 本発明は、回転工具に関する。 The present invention relates to a rotary tool.
 従来の回転工具では、切屑を短く分断したり、カール径を小さくしたりするために、刃部のすくい面にブレーカを設けるものがある(特許文献1、2など)。ブレーカが無いと、切屑が長くつながって工具に絡まり、自動運転の妨げになったり、ワークを傷つけたり、刃部に噛み込んで刃先がチッピングしたりする問題があるため、適正な作用が発揮できるブレーカを設けることが望まれている。 Some conventional rotary tools have breakers on the rake face of the blade to cut chips into shorter pieces and to reduce the curl diameter ( Patent Documents 1 and 2, etc.). Without a breaker, there are problems that the chips will be connected for a long time and entangled with the tool, hindering automatic operation, damaging the work, or biting the blade tip to chip the blade tip, so the proper action can be exerted. It is desirable to have a breaker.
特開2017-94467号公報JP, 2017-94467, A 特許第4185370号公報Japanese Patent No. 4185370
 本発明は上記実情に鑑み完成したものであり、高性能なブレーカを備えた回転工具を提供することを解決すべき課題とする。 The present invention has been completed in view of the above circumstances, and it is an object to be solved to provide a rotary tool equipped with a high-performance breaker.
 上記課題を解決することを目的として本発明者らはブレーカの形状と切屑の形態との関係について鋭意検討を行った結果、以下の発明を完成した。 For the purpose of solving the above-mentioned problems, the present inventors have conducted intensive studies on the relationship between the shape of the breaker and the shape of the chips, and as a result, have completed the following invention.
 上記課題を解決する本発明の回転工具は、回転工具本体と、多結晶ダイヤモンド(PCD)又は立方晶窒化ホウ素焼結体(CBN)からなり前記回転工具本体に設けられた切れ刃を有する刃部とを有し、前記刃部のすくい面には、前記切れ刃近傍にブレーカを備えるものであり、以下の(i)及び(ii)のうちの少なくとも一方の構成を有する。
(i)前記ブレーカは、前記切れ刃と垂直方向での断面形状がR形状となる凹みである。
(ii)前記切れ刃は前記回転工具本体の回転軸に対して傾斜しており、前記ブレーカは、前記切れ刃と平行方向での両端部のうち前記回転工具本体の外周方向及び/又は軸芯方向の端部に行くに従い連続的に浅くなる凹みである。
A rotary tool of the present invention which solves the above-mentioned problems is a rotary tool main body and a blade portion made of polycrystalline diamond (PCD) or cubic boron nitride sintered body (CBN) and having a cutting edge provided on the rotary tool main body. And a breaker near the cutting edge on the rake face of the blade portion, and has at least one of the following configurations (i) and (ii).
(I) The breaker is a recess having an R-shaped cross section in a direction perpendicular to the cutting edge.
(Ii) The cutting edge is inclined with respect to the rotation axis of the rotary tool main body, and the breaker has an outer peripheral direction and / or an axial center of the rotary tool main body in both end portions in a direction parallel to the cutting edge. It is a dent that gradually becomes shallower toward the end of the direction.
 特に、前記ブレーカの前記切れ刃と垂直方向での幅が、0.15mm~0.5mmであることが好ましい。 Especially, the width of the breaker in the direction perpendicular to the cutting edge is preferably 0.15 mm to 0.5 mm.
 そして、前記ブレーカと前記切れ刃との間隔が、0.01mm~0.05mmであることが好ましい。 The distance between the breaker and the cutting edge is preferably 0.01 mm to 0.05 mm.
 また、前記ブレーカは、表面に凹凸により形成されたテクスチャをもつことが好ましい。更に、前記ブレーカの内面は、表面粗さRzの値が2.0μm以下であることが好ましい。 Also, it is preferable that the breaker has a texture formed by unevenness on the surface. Further, the inner surface of the breaker preferably has a surface roughness Rz of 2.0 μm or less.
 本発明の回転工具は上記構成を有することで切削する際に生成する切屑を短く分断することができる。その結果、回転工具などへの切屑の絡まりを抑制できると共に、切屑がワーク表面を傷付けることを抑制することが可能になり、更には刃部のチッピングが効果的に防止できる。 The rotary tool of the present invention having the above-mentioned configuration can cut chips generated during cutting into short pieces. As a result, it is possible to suppress the entanglement of chips with the rotary tool and the like, and to prevent the chips from scratching the surface of the work, and further, it is possible to effectively prevent chipping of the blade portion.
 ブレーカの断面形状(切れ刃と垂直方向での断面)をR形状にすることにより、生成した切屑のカール径を小さくすることができる。また、ブレーカの両端部(切れ刃と平行方向)が回転工具本体の外周方向及び/又は軸芯方向の端部に行くに従い連続的に浅くなっている形状にすることにより、生成した切屑が、ブレーカの外周方向の端部の内面に当たって、軸芯方向への応力が加わることが抑制できる。軸芯方向への応力が切屑に加わることを抑制すると、カールした切屑の先端が軸芯方向にずれることによりらせん状につながってしまうことが抑制でき、生成する切屑を短く分断することができる。特にブレーカの両端部共に端部に行くに従って連続的に浅くなっている形状にすることで切屑を短くする効果がより期待できる。 The curl diameter of the generated chips can be reduced by making the cross-sectional shape of the breaker (cross-section in the direction perpendicular to the cutting edge) R-shaped. In addition, both ends of the breaker (direction parallel to the cutting edge) are continuously shallower toward the outer peripheral direction and / or the axial center end of the rotary tool body, whereby the generated chips are It is possible to suppress the stress in the axial direction from being applied to the inner surface of the outer peripheral end of the breaker. When the application of stress in the axial direction to the chips is suppressed, it is possible to prevent the tips of the curled chips from being connected in a spiral shape due to the displacement in the axial direction, and it is possible to divide the generated chips into short pieces. In particular, the effect of shortening the chips can be expected more by forming the shape in which both ends of the breaker become continuously shallower toward the ends.
実施形態1における回転工具(リーマ)を表す斜視図である。FIG. 3 is a perspective view showing a rotary tool (reamer) according to the first embodiment. 実施形態1のリーマが備える刃部の拡大斜視図である。FIG. 3 is an enlarged perspective view of a blade portion included in the reamer of the first embodiment. 実施形態1の刃部がもつブレーカの拡大斜視図である。It is an expansion perspective view of a breaker which a blade part of Embodiment 1 has. 図3のIV-IV断面概略図である。FIG. 4 is a schematic cross-sectional view taken along the line IV-IV of FIG. 3. 実施形態1の変形態様を示す斜視図である。FIG. 6 is a perspective view showing a modification of the first embodiment. 実施形態2の刃部がもつブレーカ(ディンプル)の拡大斜視図である。FIG. 9 is an enlarged perspective view of a breaker (dimple) included in the blade portion of the second embodiment. 実施形態2の刃部がもつブレーカ(ディンプル)の拡大写真である。7 is an enlarged photograph of a breaker (dimple) included in the blade of the second embodiment. 実施形態2の刃部がもつブレーカ(溝)の拡大写真である。7 is an enlarged photograph of a breaker (groove) included in the blade of the second embodiment. 図9(a)は実施形態3の刃部がもつブレーカ(突起)の拡大斜視図である。図9(b)は、図9(a)のb-b断面図である。FIG. 9A is an enlarged perspective view of a breaker (projection) included in the blade of the third embodiment. FIG. 9B is a sectional view taken along line bb of FIG. 9A. 実施形態2の刃部がもつブレーカ(突起)の拡大写真である。9 is an enlarged photograph of a breaker (projection) included in the blade of the second embodiment. 試験1の刃部(a)がもつブレーカの拡大斜視図である。It is an expansion perspective view of the breaker which the blade part (a) of test 1 has. 試験1のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the test 1. 試験1の切削試験(ブレーカ無しの刃部)で生成した切屑の写真である。3 is a photograph of chips generated in a cutting test (blade portion without breaker) of Test 1. 試験1の切削試験(断面R形状のブレーカをもつ刃部)で生成した切屑の写真である。3 is a photograph of chips produced in a cutting test of Test 1 (a blade portion having a breaker having an R-shaped cross section). 試験1の切削試験(断面3角形のブレーカをもつ刃部)で生成した切屑の写真である。3 is a photograph of chips generated in a cutting test of Test 1 (a blade portion having a breaker with a triangular cross section). 試験1の切削試験(ブレーカ無しの刃部)で生成した切屑の写真である。3 is a photograph of chips generated in a cutting test (blade portion without breaker) of Test 1. 試験1の切削試験(断面R形状のブレーカをもつ刃部)で生成した切屑の写真である。3 is a photograph of chips produced in a cutting test of Test 1 (a blade portion having a breaker having an R-shaped cross section). 試験1の切削試験(断面3角形のブレーカをもつ刃部)で生成した切屑の写真である。3 is a photograph of chips generated in a cutting test of Test 1 (a blade portion having a breaker with a triangular cross section). 試験2の刃部(a)がもつブレーカの拡大斜視図である。It is an expansion perspective view of the breaker which the blade part (a) of the test 2 has. 試験2のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the test 2. 試験3の切削試験(条件1)で切削加工を行った後のブレーカの内面のSEM写真である。It is a SEM photograph of the inner surface of the breaker after cutting in the cutting test (condition 1) of test 3. 試験3の切削試験(条件2)で切削加工を行った後のブレーカの内面のSEM写真である。It is a SEM photograph of the inner surface of the breaker after cutting in the cutting test (condition 2) of test 3. 試験3の切削試験(条件3)で切削加工を行った後のブレーカの内面のSEM写真である。It is a SEM photograph of the inner surface of the breaker after cutting in the cutting test (condition 3) of test 3. 試験3の切削試験(条件4)で切削加工を行った後のブレーカに相当する部分のSEM写真である。It is a SEM photograph of the part corresponding to the breaker after cutting in the cutting test (condition 4) of test 3. 試験4の刃部(b)がもつブレーカの拡大斜視図である。It is an expansion perspective view of the breaker which the blade part (b) of the test 4 has. 試験4の刃部(c)がもつブレーカの拡大斜視図である。It is an expansion perspective view of the breaker which the blade part (c) of the test 4 has. 試験4のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the test 4. 試験5のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the test 5. 実施形態4のリーマが備える刃部の拡大斜視図である。It is an expansion perspective view of the blade part with which the reamer of Embodiment 4 is provided. 実施形態4の変形態様のリーマが備える刃部の拡大斜視図である。It is an expansion perspective view of a blade part with which a reamer of the modification of Embodiment 4 is provided. 実施形態5のリーマが備える刃部の拡大斜視図である。It is an expansion perspective view of the blade part with which the reamer of Embodiment 5 is provided. 実施形態5の変形態様のリーマが備える刃部の拡大斜視図である。It is an expansion perspective view of a blade part with which a reamer of the modification of Embodiment 5 is provided.
 本発明の回転工具について実施形態に基づき以下詳細に説明を行う。実施形態の説明にあたって適宜図面を参照するが、図面上の形態、寸法、相対的な位置関係などは発明の本質を外れない限り変更することが可能である。 The rotary tool of the present invention will be described in detail below based on the embodiments. Although the drawings are appropriately referred to in the description of the embodiments, the forms, dimensions, relative positional relationships and the like on the drawings can be changed without departing from the essence of the invention.
 本実施形態の回転工具は、軸回転しながら、被切削物であるワークに接触することによりワークを切削する工具であり、金属材料、特にアルミニウムやアルミニウム合金などの非鉄金属からなるワークを切削する工具である。例えば、リーマ、エンドミル、ドリルなどである。本実施形態の回転工具の切削速度は特に限定しない。例えば50m/分以上、100m/分以上、150m/分以上、600m/分以下、500m/分以下、400m/分以下、300m/分以下にすることができる。これらの上限値及び下限値は任意に組み合わせ可能である。 The rotary tool of the present embodiment is a tool that cuts a workpiece by coming into contact with a workpiece that is a workpiece while rotating the shaft, and cuts a workpiece made of a metal material, particularly a nonferrous metal such as aluminum or an aluminum alloy. It is a tool. For example, reamers, end mills, drills and the like. The cutting speed of the rotary tool of this embodiment is not particularly limited. For example, it can be 50 m / min or more, 100 m / min or more, 150 m / min or more, 600 m / min or less, 500 m / min or less, 400 m / min or less, 300 m / min or less. These upper limit values and lower limit values can be arbitrarily combined.
 本実施形態の回転工具は、回転工具本体と刃部とを有する。刃部は回転工具の外周に1乃至複数個配設される。刃部はろう付、溶接などの方法にて固定できる。必要ならば脱着自在な構成を採用しても良い。 The rotary tool of this embodiment has a rotary tool body and a blade. One to a plurality of blades are arranged on the outer circumference of the rotary tool. The blade can be fixed by brazing or welding. If necessary, a removable structure may be adopted.
 刃部は切れ刃をもち、すくい面の切れ刃近傍にはブレーカをもつ。刃部はPCD又はCBNから形成される。切れ刃は、回転工具本体の回転軸に対して傾斜していることもある。なお、すくい面は、切れ刃により切削された切屑が当接する面である。 The blade part has a cutting edge and a breaker near the cutting edge on the rake face. The blade portion is formed of PCD or CBN. The cutting edge may be inclined with respect to the rotation axis of the rotary tool body. The rake face is a face against which chips cut by the cutting edge come into contact.
 ブレーカは、すくい面上で切れ刃から僅かに離れて形成されることが好ましい。ブレーカは、すくい面に設けられた凹みである。ブレーカの内面には切屑が接触して、連続して生成される切屑をカールさせるように作用する。 The breaker is preferably formed on the rake face slightly away from the cutting edge. The breaker is a recess provided on the rake face. Chips come into contact with the inner surface of the breaker and act to curl the chips that are continuously generated.
 ブレーカの切れ刃側は、切れ刃との間隔が一定になるような形状とすることが好ましい。つまり、切れ刃とブレーカとの間の面(ランド)の幅(切れ刃と垂直方向の長さ)は、ほぼ一定であることが好ましい。 It is preferable that the cutting edge side of the breaker be shaped so that the distance from the cutting edge is constant. That is, it is preferable that the width (the length in the direction perpendicular to the cutting edge) of the surface (land) between the cutting edge and the breaker is substantially constant.
 ランドの幅の適正値としては、本実施形態の回転工具の一刃送り量よりも小さくすることが望ましい。一刃送り量として0.05mm~0.1mm程度の値を設定する場合にはランドの幅の値は、下限値として0.01mm、0.02mmが例示でき、上限値として0.05mm、0.04mm、0.03mmが例示でき、これらの上限値及び下限値は任意に組み合わせ可能である。特に一刃送り量の60%以下(特に50%以下)にランドの幅を設定することが好ましい。 As an appropriate value for the width of the land, it is desirable to make it smaller than the feed amount of one blade of the rotary tool of this embodiment. When a value of about 0.05 mm to 0.1 mm is set as the feed amount of one blade, the lower limit value of the land width may be 0.01 mm or 0.02 mm, and the upper limit value may be 0.05 mm or 0 mm. 0.04 mm and 0.03 mm can be exemplified, and the upper limit value and the lower limit value can be arbitrarily combined. In particular, it is preferable to set the width of the land to 60% or less (particularly 50% or less) of the feed amount per blade.
 ブレーカの幅(切れ刃と垂直方向の長さ)は、下限値として0.15mm、0.2mmが例示でき、上限値として0.5mm、0.4mm、0.3mmが例示でき、これらの上限値及び下限値は任意に組み合わせ可能である。 The width (length in the direction perpendicular to the cutting edge) of the breaker can be exemplified as a lower limit value of 0.15 mm and 0.2 mm, and as an upper limit value of 0.5 mm, 0.4 mm and 0.3 mm, and these upper limits can be exemplified. The value and the lower limit value can be arbitrarily combined.
 ブレーカの断面形状(切れ刃と垂直方向)は、すくい面から凹む方向のR形状である。R形状とは、屈曲点を有していない、すなわち曲率の変化が滑らかな形状である。特に、円弧の一部、双曲線の一部などである。ブレーカの内面とランドとは、15°~20°(165°~160°)程度の角度(鈍角)で形成することが好ましい。更に、R形状の曲率は一定でなくてもよく、切れ刃から離れるにつれて曲率が大きくなるようにしても良い。 The cross-sectional shape of the breaker (perpendicular to the cutting edge) is an R shape that is recessed from the rake face. The R shape is a shape having no bending point, that is, a change in curvature is smooth. In particular, it is a part of an arc, a part of a hyperbola, and the like. The inner surface of the breaker and the land are preferably formed at an angle (obtuse angle) of about 15 ° to 20 ° (165 ° to 160 °). Further, the curvature of the R shape does not have to be constant, and the curvature may increase as the distance from the cutting edge increases.
 刃部の切れ刃が回転工具本体の回転軸に対して傾斜している場合、ブレーカは、切れ刃と平行方向での両端部のうち回転工具本体の外周方向及び/又は軸芯方向の端部に行くに従い連続的に浅くなる凹みであることが好ましい。以下、ブレーカについて、特に限定せずに「両端」と称する場合には切れ刃と平行な方向での両端を意味し、特に限定せずに「断面形状」と称する場合には切れ刃方向と垂直な方向での断面を意味する。また、ブレーカの「幅」は、特に限定しない場合には切れ刃と垂直方向の長さを意味する。 When the cutting edge of the blade portion is inclined with respect to the rotation axis of the rotary tool body, the breaker is an end portion in the outer peripheral direction and / or the axial center direction of the rotary tool body among both end portions in the direction parallel to the cutting edge. It is preferable that the dents become shallower continuously as they go to. Hereinafter, with respect to the breaker, when the term “both ends” is used without particular limitation, it means both ends in the direction parallel to the cutting edge, and when the term “cross-sectional shape” is used without particular limitation, it is perpendicular to the cutting edge direction. Means a cross section in any direction. The "width" of the breaker means the length in the direction perpendicular to the cutting edge, unless otherwise specified.
 例えば、ブレーカの凹みの形状として、断面形状が変化しない部分である中央部と、その中央部の両端に向かうほど連続的に浅くなる部分として中央部の断面形状を底面とし一点に収束する錐体(両端部)との組み合わせ形状が採用できる。 For example, as the shape of the recess of the breaker, the central part where the cross-sectional shape does not change, and the conical body whose bottom surface has the cross-sectional shape of the central part as the part that becomes shallower toward both ends of the central part A combination shape with (both ends) can be adopted.
 ブレーカの内面は表面粗さが小さいことが好ましい。例えば、表面粗さRzの値が2.0μm以下や1.5μm以下にできる。表面粗さを小さくすることにより被削材が刃部(特にブレーカの内面)の表面に溶着することが抑制できる。なお、本明細書におけるRzは十点平均粗さを示す。 It is preferable that the inner surface of the breaker has a small surface roughness. For example, the value of the surface roughness Rz can be 2.0 μm or less or 1.5 μm or less. By reducing the surface roughness, it is possible to suppress the work material from welding to the surface of the blade portion (in particular, the inner surface of the breaker). In addition, Rz in this specification shows a ten-point average roughness.
 ブレーカの内面には、凹凸により形成されたテクスチャを持つことが好ましい。テクスチャの形態としては、規則的に配列された、ディンプル(凹部)、ドット(凸部)が例示される。ディンプルは複数個がつながった溝を形成しても良いし、ドットも複数個がつながったリブ状の突起を形成しても良い。溝としては、切れ刃と平行な方向に延在するように設けることで、摩擦係数の低減効果が向上できる。リブ状の突起については、ブレーカの幅方向に延在するように設けることで切屑の流れの制御性が向上できる。 -It is preferable that the inner surface of the breaker has a texture formed by unevenness. Examples of the texture form include regularly arranged dimples (concave portions) and dots (convex portions). A dimple may form a groove in which a plurality of dimples are connected, or a dot may form a rib-shaped projection in which a plurality of dimples are connected. By providing the groove so as to extend in the direction parallel to the cutting edge, the effect of reducing the friction coefficient can be improved. By providing the rib-shaped projection so as to extend in the width direction of the breaker, the controllability of the chip flow can be improved.
 ディンプルやドットがブレーカの内面に形成されると、ブレーカの内面と切屑との間の摩擦低減効果や、ブレーカの内面における切屑の流れを制御できることが期待できる。特に、切屑とブレーカ内面との間の摩擦が少なくなると、切屑のカールが促進されて切屑の分断を促進できる。また、ディンプルやドットには切削時に用いるオイルを貯める作用も期待できる。切屑の流れが偏向すると、切屑がらせん状になっていつまでも分断されないことがある。そこで切屑の流れを制御して切屑の先端が速やかにワークや、切屑自身に接触するようにすることにより切屑の分断が促進できる。 When dimples and dots are formed on the inner surface of the breaker, it can be expected that the friction reduction effect between the inner surface of the breaker and the chips and the flow of chips on the inner surface of the breaker can be controlled. In particular, when the friction between the chips and the inner surface of the breaker is reduced, the curling of the chips is promoted and the fragmentation of the chips can be promoted. In addition, the dimples and dots can be expected to have a function of storing oil used for cutting. If the chip flow is deflected, the chips may spiral and become uninterrupted. Therefore, the flow of the chips is controlled so that the tip of the chips quickly contacts the work or the chips themselves, so that the cutting of the chips can be promoted.
 ここで、ディンプルの作用としては摩擦低減作用が優先して期待でき、ドットの作用としては切屑の流れ制御の作用が優先的に期待できる。 ▽ Here, friction reduction effect can be prioritized as the effect of dimples, and chip flow control effect can be expected as the effect of dots.
 ブレーカは、放電加工、電子ビーム加工、レーザー加工、研削加工などによって成形される。ブレーカの内面に設けるテクスチャの成形についても放電加工、電子ビーム加工、レーザー加工、研削加工などにより行うことができる。テクスチャの成形はブレーカの成形と同時に行っても、ブレーカの成形とは独立して行っても何れでも良い。 Breakers are molded by electrical discharge machining, electron beam machining, laser machining, grinding, etc. The texture formed on the inner surface of the breaker can also be formed by electric discharge machining, electron beam machining, laser machining, grinding, or the like. The texture may be formed at the same time as the breaker is formed, or may be formed independently of the breaker.
(実施形態1)
 本実施形態の回転工具について以下図面に基づき詳細に説明を行う。図1に示すように、本実施形態の回転工具1は、回転工具本体10と、回転工具本体10の外周に設けられた刃部20とからなる。回転工具1は、右回りに回転して切削を行うリーマである。
(Embodiment 1)
The rotary tool of this embodiment will be described in detail below with reference to the drawings. As shown in FIG. 1, the rotary tool 1 of the present embodiment includes a rotary tool main body 10 and a blade portion 20 provided on the outer periphery of the rotary tool main body 10. The rotary tool 1 is a reamer that rotates clockwise to perform cutting.
 回転工具本体10は、概ね円筒形状であり、軸方向の先端から中途にかけて切り欠き11が形成されている。切り欠き11の先端には刃部20がろう付により固定されている。刃部20を設ける数としては特に限定されない。刃部20は、PCD製であり、図2に示すように、切れ刃21が形成され、すくい面21aにブレーカ22が形成されている。ブレーカ22は、切れ刃21の近傍に形成されている。ブレーカ22の幅は0.2mm~0.3mm程度としている。 The rotary tool main body 10 has a substantially cylindrical shape, and a notch 11 is formed from the tip in the axial direction to the middle. The blade 20 is fixed to the tip of the notch 11 by brazing. The number of blades 20 provided is not particularly limited. The blade portion 20 is made of PCD, and has a cutting edge 21 and a breaker 22 formed on the rake face 21a as shown in FIG. The breaker 22 is formed near the cutting edge 21. The breaker 22 has a width of about 0.2 mm to 0.3 mm.
 また、図3に示すように、ブレーカ22の中央部22aの切れ刃21と平行な方向での長さは、切削により生成する切屑の大きさが収まる大きさにする。例えば、ワークの半径方向での切り込み深さ(取り代)程度の大きさの切屑が生成されるため、取り代の大きさよりも大きな値(0.15mm~0.5mm程度)とすることができる。また、ブレーカ22の位置も切削により生成する切屑の位置に応じて決定される。 Further, as shown in FIG. 3, the length of the central portion 22a of the breaker 22 in the direction parallel to the cutting edge 21 is set to a size that can accommodate the size of the chips generated by cutting. For example, since a chip having a size approximately equal to the cutting depth (working allowance) in the radial direction of the work is generated, the value can be made larger than the size of the working allowance (about 0.15 mm to 0.5 mm). .. The position of the breaker 22 is also determined according to the position of the chips generated by cutting.
 ブレーカ22の端部22b及び22cの切れ刃21と平行な方向での長さは、0.2mm~0.3mm程度とすることができる。ブレーカ22の切れ刃21側の形状と、切れ刃21の形状とは平行であり、その間のランド21a1の幅x1は0.01mm~0.05mm程度とすることができる。 The length of the ends 22b and 22c of the breaker 22 in the direction parallel to the cutting edge 21 can be set to about 0.2 mm to 0.3 mm. The shape of the breaker 22 on the side of the cutting edge 21 and the shape of the cutting edge 21 are parallel to each other, and the width x1 of the land 21a1 between them can be about 0.01 mm to 0.05 mm.
 ブレーカ22は、断面形状が円弧の一部である中央部22aと、その両端にある端部22b及び22cからなる。ここで端部22cが回転工具本体10の外周方向の端部である。端部22bは、頂点22b1をもち底面が中央部22aの断面である斜錐体であり、端部22cは、頂点22c1をもち底面が中央部22aの断面である斜錐体である。端部22b及び22c共に両端に向かうにつれて連続的に浅くなっている形状の凹みである。 The breaker 22 includes a central portion 22a whose cross-sectional shape is a part of an arc, and end portions 22b and 22c at both ends thereof. Here, the end 22c is the end of the rotary tool body 10 in the outer peripheral direction. The end 22b is a pyramid having a vertex 22b1 and a bottom surface having a cross section of the central portion 22a, and the end 22c is a pyramid having a vertex 22c1 and a bottom having a cross section of the central portion 22a. Both of the end portions 22b and 22c are recesses each having a shape that gradually becomes shallower toward both ends.
 ブレーカ22の中央部22aでの断面は、図4に示すように、円弧の一部である。ランド21a1と中央部22aとの角度θは15°~20°程度とすることができる。 The cross section of the breaker 22 at the central portion 22a is a part of an arc, as shown in FIG. The angle θ between the land 21a1 and the central portion 22a can be about 15 ° to 20 °.
(実施形態1の変形態様)
 本実施形態の回転工具2は、図5に示すように、回転工具本体30と、回転工具本体30の外周に設けられた、刃部40及び50とを有する。回転工具本体30は、概ね円筒形状であり、軸方向の先端から後端に向けての中途にかけての一部分に切り欠き31が形成され、更に後端に向けての一部分に切り欠き32が形成されている。切り欠き31及び32は、回転工具本体30の周方向で90°毎に4つ設けられている。回転工具本体30の外径は切り欠き31が形成された部分よりも切り欠き32が形成された部分の方が僅かに大きくなっている。
(Modification of Embodiment 1)
As shown in FIG. 5, the rotary tool 2 of the present embodiment has a rotary tool main body 30 and blade portions 40 and 50 provided on the outer periphery of the rotary tool main body 30. The rotary tool main body 30 has a substantially cylindrical shape, and a notch 31 is formed in a part in the midway from the front end to the rear end in the axial direction, and a notch 32 is further formed in a part toward the rear end. ing. Four notches 31 and 32 are provided at every 90 ° in the circumferential direction of the rotary tool body 30. The outer diameter of the rotary tool body 30 is slightly larger at the portion where the notch 32 is formed than at the portion where the notch 31 is formed.
 切り欠き31が形成された部分の先端には180°毎に刃部40が2つ、切り欠き32が形成された部分の先端には刃部40とは90°ずれた部位に刃部50が2つ、それぞれろう付により固定されている。なお、刃部40及び50を設ける数としては特に限定されない。刃部40及び50は、PCD製であり、図2に示したものと同様の形状をもつ。 Two blades 40 are provided at every 180 ° at the tip of the portion where the notch 31 is formed, and a blade 50 is provided at a portion that is offset by 90 ° from the blade 40 at the tip of the portion where the notch 32 is formed. Two of them are fixed by brazing. The number of blades 40 and 50 provided is not particularly limited. The blade portions 40 and 50 are made of PCD and have the same shape as that shown in FIG.
(実施形態2)
 本実施形態の回転工具は、ブレーカの内面にテクスチャが形成された以外は実施形態1と同様である。刃部60について図6に示す。すくい面61aのランド61a1についても実施形態1と同様に幅x2が0.01mm~0.05mm程度とすることができる。
(Embodiment 2)
The rotary tool of the present embodiment is the same as that of the first embodiment except that a texture is formed on the inner surface of the breaker. The blade 60 is shown in FIG. As for the land 61a1 of the rake face 61a, the width x2 can be set to about 0.01 mm to 0.05 mm as in the first embodiment.
 本実施形態の回転工具が備える刃部60のブレーカ62には、その内面にディンプル63が形成されている。ディンプル63は、切れ刃61によりワークを切削する際に生成する切屑の生成方向に整列するように設けられる。ディンプル63の大きさは特に限定しないが、例えば直径0.02mm~0.05mm程度、深さ0.01mm~0.025mmにすることができる。ディンプル63の個数についても特に限定せずに、ブレーカ62の内面を満遍なく覆うことができる程度の数を設けることができる。例えば、ブレーカ62の中央部62aの幅方向に4~6個、ブレーカ62全体の切れ刃61の長さ方向に6~8個程度配置することができる。 A dimple 63 is formed on the inner surface of the breaker 62 of the blade portion 60 included in the rotary tool of this embodiment. The dimples 63 are provided so as to be aligned in the chip generation direction generated when the workpiece is cut by the cutting edge 61. The size of the dimples 63 is not particularly limited, but can be, for example, a diameter of about 0.02 mm to 0.05 mm and a depth of 0.01 mm to 0.025 mm. The number of the dimples 63 is not particularly limited, and may be set to a number that can evenly cover the inner surface of the breaker 62. For example, 4 to 6 pieces may be arranged in the width direction of the central portion 62a of the breaker 62, and about 6 to 8 pieces may be arranged in the length direction of the cutting edge 61 of the entire breaker 62.
 刃部60のブレーカ62部分の顕微鏡写真を図7に示す。また、テクスチャとして溝を採用した場合の刃部70のブレーカ72部分の顕微鏡写真を図8に示す。溝73は、中央部72aでは、切れ刃71と平行な方向に延在するように、両端部72b及び72cでは頂点72b1及び72c1に向けて延在するように形成されている。 Fig. 7 shows a micrograph of the breaker 62 of the blade 60. Further, FIG. 8 shows a micrograph of the breaker 72 portion of the blade portion 70 when the groove is used as the texture. The groove 73 is formed so as to extend in a direction parallel to the cutting edge 71 at the central portion 72a, and to extend toward the vertices 72b1 and 72c1 at both end portions 72b and 72c.
(実施形態3)
 本実施形態の回転工具は、ブレーカの内面にテクスチャが形成された以外は実施形態1と同様である。刃部80について図9に示す。すくい面81aのランド81a1についても実施形態1と同様に幅x3が0.01mm~0.05mm程度とすることができる。
(Embodiment 3)
The rotary tool of the present embodiment is the same as that of the first embodiment except that a texture is formed on the inner surface of the breaker. The blade portion 80 is shown in FIG. The width x3 of the land 81a1 of the rake face 81a can be set to about 0.01 mm to 0.05 mm as in the first embodiment.
 本実施形態の回転工具が備える刃部80のブレーカ82には、その内面にリブ状の突起83が形成されている。突起83は、切れ刃81によりワークを切削する際に生成する切屑の生成方向に延在するように設けられる。突起の幅は特に限定しないが、中央部に行くにつれて幅が広くなったり、幅が均一であったりすることができる。 A rib-shaped projection 83 is formed on the inner surface of the breaker 82 of the blade portion 80 included in the rotary tool of the present embodiment. The protrusions 83 are provided so as to extend in the chip generation direction generated when the workpiece is cut by the cutting edge 81. The width of the protrusion is not particularly limited, but the width may be wider or uniform as it goes to the central portion.
 突起の大きさとしては、例えば最大部の幅が0.03mm~0.07mm程度、ブレーカ底面からの高さが0.01mm~すくい面81aと同じ程度(例えばブレーカの最も深い部分の深さが0.1mmであった場合には突起の高さh(中央部82aの最も深い部分から突起83の頂点までの高さ)の上限を0.1mmにする。図では突起の高さhをブレーカの深さの半分程度にしている。)にすることができる。ブレーカ82の幅方向の長さは、ブレーカ22の幅と同程度とすることができる。突起83の個数についても特に限定せずに、ブレーカ82の内面を満遍なく覆うことができる程度の数を設けることができる。例えば、ブレーカ82の中央部82aの幅方向に6~8個程度配置することができる。ブレーカ82の端部82b及び82cには突起83を配置してもしなくてもよい。刃部80のブレーカ82部分の顕微鏡写真を図10に示す。 As for the size of the protrusion, for example, the maximum width is about 0.03 mm to 0.07 mm, the height from the bottom of the breaker is about 0.01 mm to the rake face 81a (for example, the depth of the deepest part of the breaker is When the height is 0.1 mm, the upper limit of the height h of the protrusion (the height from the deepest part of the central portion 82a to the apex of the protrusion 83) is set to 0.1 mm. It is about half the depth of. The length of the breaker 82 in the width direction can be made approximately the same as the width of the breaker 22. The number of the projections 83 is not particularly limited, and may be set to a number that can evenly cover the inner surface of the breaker 82. For example, about 6 to 8 pieces can be arranged in the width direction of the central portion 82a of the breaker 82. The protrusions 83 may or may not be arranged on the ends 82b and 82c of the breaker 82. A photomicrograph of the breaker 82 portion of the blade 80 is shown in FIG.
(試験1:ブレーカ形状の検討。ブレーカの内面の形状)
 (a)ブレーカを形成していない刃部、(b)断面形状がR形状のブレーカを有する刃部(図3に相当:ランド幅x1が0.02mm、ブレーカの幅が0.3mm、ブレーカの内面のR形状を形成する円筒の半径が0.3mm)、(c)断面形状が三角形のブレーカを有する刃部(図11:ランド91a1の幅が0.05mm、ブレーカ幅が0.6mm、ブレーカの内面とランド91a1との角度が15°)の3つの刃部をもつリーマについて解析を行った。
(Test 1: Examination of breaker shape. Shape of breaker inner surface)
(A) A blade portion not having a breaker, (b) A blade portion having a breaker having an R-shaped cross section (corresponding to FIG. 3: land width x1 is 0.02 mm, breaker width is 0.3 mm, The radius of the cylinder forming the R shape of the inner surface is 0.3 mm, and (c) the blade having a breaker having a triangular sectional shape (Fig. 11: the width of the land 91a1 is 0.05 mm, the breaker width is 0.6 mm, the breaker is An analysis was performed on a reamer having three blade portions whose inner surface and the land 91a1 have an angle of 15 °.
 切削条件としては、切れ刃の材質がPCD製、被削材がアルミニウム合金(A7075)、切削速度が150m/分、一刃送り量が0.1mm、取り代が0.2mmとした。解析結果を図12に示す。 As the cutting conditions, the material of the cutting edge was PCD, the work material was aluminum alloy (A7075), the cutting speed was 150 m / min, the feed rate per blade was 0.1 mm, and the machining allowance was 0.2 mm. The analysis result is shown in FIG.
 図12より明らかなように、ブレーカを設けた(b)及び(c)の刃部にて生成する切屑は、ブレーカを持たない(a)の刃部にて生成する切屑と比べて、切屑のカール径が小さくなった。特に、(b)の刃部により生成した切屑の方が、(c)の刃部により生成した切屑よりもカール径が小さく、速やかに切屑の先端が被削材の表面に接触することが分かった。つまり、(b)の刃部の方が、(c)の刃部よりも生成する切屑の先端が速やかに被削材の表面に接触することから切屑の分断が速やかに行われることが期待できることが分かった。 As is clear from FIG. 12, the chips produced by the blade portions of (b) and (c) provided with the breaker are more likely to generate chips than the chips produced by the blade portion of (a) having no breaker. The curl diameter has decreased. In particular, it has been found that the chips generated by the blade part of (b) have a smaller curl diameter than the chips generated by the blade part of (c), and the tips of the chips contact the surface of the work material promptly. It was That is, in the blade part of (b), the tip of the generated chips comes into contact with the surface of the work material more quickly than in the blade part of (c), so that it can be expected that the cutting of chips will be performed more quickly. I understood.
 以上の解析結果を確認するために以下の2条件にて実際に切削を行い生成される切屑の形状を観察した。回転工具は刃径12.5mm、全長100mm、刃長5mm、刃数2個とした。 In order to confirm the above analysis results, we actually cut under the following two conditions and observed the shape of the generated chips. The rotary tool had a blade diameter of 12.5 mm, a total length of 100 mm, a blade length of 5 mm, and two blades.
・条件1
 被削材としてはアルミニウム合金(A7075)を用い、切削速度は300m/分、一刃送り量0.10mm、取り代0.1mmとして上述の(a)~(c)の刃部を備えた回転工具にて切削を行った。結果を図13a~13cに示す。
Condition 1
Aluminum alloy (A7075) is used as the work material, the cutting speed is 300 m / min, the blade feed amount is 0.10 mm, and the machining allowance is 0.1 mm. The rotation includes the blade portions (a) to (c) described above. Cutting was performed with a tool. The results are shown in Figures 13a-13c.
 (b)の刃部を備える回転工具にて切削した切屑はカール径が小さく、8~10巻き程度のらせん状の切屑が生成し、切屑が回転工具に巻き付くことは無かった。それに対して、ブレーカが存在しない(a)の刃部や、断面形状が3角形のブレーカをもつ(c)の刃部にて切削した切屑は共に連続した長い切屑が生じ回転工具に巻き付いた。 Chips cut with a rotary tool equipped with the blade part of (b) have a small curl diameter, and spiral chips of about 8 to 10 turns are generated, and the chips were never wrapped around the rotary tool. On the other hand, the chips cut by the blade part (a) where the breaker does not exist and the blade part (c) having the breaker having a triangular cross-section have long continuous chips and are wound around the rotary tool.
・条件2
 被削材としてはアルミニウム合金(ADC12)を用い、切削速度は150m/分、一刃送り量が0.05mm、取り代0.2mmとして上述の(a)~(c)の刃部を備えた回転工具にて切削を行った。結果を図14a~14cに示す。
Condition 2
An aluminum alloy (ADC12) was used as the work material, the cutting speed was 150 m / min, the feed amount per tooth was 0.05 mm, and the cutting allowance was 0.2 mm, and the above-mentioned blade portions (a) to (c) were provided. Cutting was performed with a rotary tool. The results are shown in Figures 14a-14c.
 (b)の刃部を備える回転工具にて切削した切屑はカール径が小さく、半巻き~1巻き程度のらせん状の切屑(長さ1mm程度)が生成し、切屑が回転工具に巻き付くことは無かった。 Chips cut with a rotary tool equipped with the blade part of (b) have a small curl diameter, and spiral chips (about 1 mm in length) of about half a turn to one turn are generated, and the chips may wind around the rotary tool. There was no.
 それに対して、ブレーカが存在しない(a)の刃部を備える回転工具にて切削した切屑は、1巻きで切断はできてはいるものの、切屑のカール径が大きく切屑長さは10mm程度と長かった。 On the other hand, chips cut with a rotary tool equipped with a blade part (a) without a breaker can be cut with one turn, but the curl diameter of the chips is large and the chip length is as long as about 10 mm. It was
 断面形状が3角形のブレーカをもつ(c)の刃部を備える回転工具にて切削した切屑は、切屑のカール径は小さくなっているものの、らせん状の切屑(切屑が軸芯方向に変形したことが推察される)が生成し、長い切屑が生成した。 The chips cut with a rotary tool equipped with a blade part (c) having a breaker with a triangular cross-section have spiral curls (the chips are deformed in the axial direction, although the curl diameter of the chips is small. It is speculated that) and long chips were generated.
(試験2:ブレーカ形状の検討。ブレーカの端部の形状)
 (a)ブレーカの内面94としてR形状をもつ円筒の一部(図15:断面R形状。端部は切れ刃93に垂直な面。)である刃部をもつリーマ、(b)断面形状がR形状・端部が円錐の一部のブレーカを有する刃部(図3に相当)をもつリーマについてそれぞれ解析を行った。双方の刃部に設けられたブレーカは共に、ランド幅が0.02mm、ブレーカの幅が0.3mm、ブレーカの内面のR形状を形成する円筒の半径が0.3mmである。切削条件としては、試験1と同様である。解析結果を図16に示す。
(Test 2: Examination of breaker shape. Shape of breaker end)
(A) A reamer having a blade portion which is a part of a cylinder having an R shape as the inner surface 94 of the breaker (FIG. 15: R shape in cross section. The end portion is a surface perpendicular to the cutting edge 93.), and (b) has a cross sectional shape. An analysis was performed for each reamer having an R shape and a blade portion (corresponding to FIG. 3) having a breaker with a part of a conical end. The breakers provided on both blades each have a land width of 0.02 mm, a breaker width of 0.3 mm, and a radius of a cylinder forming the R shape of the inner surface of the breaker of 0.3 mm. The cutting conditions are the same as in Test 1. The analysis result is shown in FIG.
 図16より明らかなように、(a)の刃部にて生成する切屑は、図面左方(リーマの軸芯方向)に変形しており、全体としてらせん形状の切屑が生成している。(a)の刃部では、生成した切屑がブレーカの内面の外周側の端面94aに接触することで、切屑が軸芯側に変形する応力が加わって、切屑がらせん状になっているものと考えられる。 As is clear from FIG. 16, the chips generated at the blade portion of (a) are deformed to the left of the drawing (axial direction of the reamer), and spiral chips are generated as a whole. In the blade portion of (a), the generated chips come into contact with the end surface 94a on the outer peripheral side of the inner surface of the breaker, so that the stress that deforms the chips toward the shaft side is applied, and the chips have a spiral shape. Conceivable.
 それに対して、(b)の刃部では、生成した切屑がブレーカ22の内面22aから内面22cへと流れることができるため、軸芯方向への応力が切屑に加わらないためにらせん状にならないものと考えられる。更に、刃部の切れ刃はリーマの回転軸に対して傾斜しているため、外周側の方が切屑の生成速度が大きく、元々軸芯側に切屑が変形するように応力が加わっていることも切屑の軸芯方向への変形の一因であると考えられる。 On the other hand, in the blade portion of (b), since the generated chips can flow from the inner surface 22a of the breaker 22 to the inner surface 22c, a stress in the axial direction is not applied to the chips, so that the chips do not spiral. it is conceivable that. Further, since the cutting edge of the blade is inclined with respect to the rotation axis of the reamer, the rate of generation of chips is higher on the outer peripheral side, and stress is originally applied so that the chips deform toward the shaft core side. Is also considered to be a cause of the deformation of the chips in the axial direction.
 切屑がらせん状になると、切屑の先端が被削材や切屑自身に当接することがなくなるため、切屑の分断が生起しがたくなる。 When the chips become spiral, the tip of the chips does not come into contact with the work material or the chips themselves, making it difficult to divide the chips.
(試験3:ブレーカ内面の表面粗さの影響)
 ブレーカを成形する際の加工条件を変更し、同一形状のブレーカで、その表面粗さを変化させ、ブレーカの内面への被削材の溶着の程度を評価した。ブレーカが無い刃部についても評価を行った。
(Test 3: Influence of surface roughness of breaker inner surface)
The processing conditions for forming the breaker were changed, the surface roughness of the breaker having the same shape was changed, and the degree of welding of the work material to the inner surface of the breaker was evaluated. The evaluation was also performed on the blade portion without a breaker.
 ブレーカ形状は図3のブレーカ22と同じであり、試験2の(b)の刃部と同様である。ランド幅は0.02mm,ブレーカ幅は0.3mm,ブレーカ中央部の切れ刃と平行方向の長さは0.2mm、ブレーカ内面のR形状を形成する円筒の半径が0.3mmとした。比較用として、ブレーカなしの刃部(条件4:試験1の(a)の刃部)も準備した。 The shape of the breaker is the same as that of the breaker 22 shown in FIG. 3, and is the same as that of the blade part (b) of the test 2. The land width was 0.02 mm, the breaker width was 0.3 mm, the length in the direction parallel to the cutting edge at the center of the breaker was 0.2 mm, and the radius of the cylinder forming the R shape on the inner surface of the breaker was 0.3 mm. For comparison, a blade without a breaker (condition 4: blade of (a) of test 1) was also prepared.
 それぞれの刃部の表面粗さは、条件1:Rz2.36μm、条件2:Rz1.95μm、条件3:Rz1.19μmであった。ブレーカの無い刃部(条件4)におけるブレーカに相当する部分の面粗度はRz0.12μmであった。 The surface roughness of each blade was Condition 1: Rz 2.36 μm, Condition 2: Rz 1.95 μm, Condition 3: Rz 1.19 μm. The surface roughness of the portion corresponding to the breaker in the blade portion without breaker (Condition 4) was Rz 0.12 μm.
 刃物(リーマ)形状は図1と同じであり、刃径12.5mm、刃数2とした。試験条件は、切削速度が300m/min,一刃送り量が0.1mm,取り代が0.2mmとし、被削材ADC12を100穴加工した。100穴加工終了後の各ブレーカの内面のSEM写真を図17a(条件1)、17b(条件2)、17c(条件3)、17d(条件4)に示す。 The shape of the blade (reamer) is the same as in Fig. 1, with a blade diameter of 12.5 mm and two blades. The test conditions were a cutting speed of 300 m / min, a single-blade feed amount of 0.1 mm, and a machining allowance of 0.2 mm, and the workpiece ADC12 was machined into 100 holes. 17A (condition 1), 17b (condition 2), 17c (condition 3), and 17d (condition 4) are SEM photographs of the inner surface of each breaker after processing 100 holes.
 図より明らかなように、条件1の刃部(Rz 2.36μm)をもつ回転工具ではAlの明確な溶着が見られ、Alが分厚く堆積している箇所が確認された(図17a)。条件2,3,4については、うっすらと付着した様子が見られる程度であった(図17b~17d)。 As is clear from the figure, a clear welding of Al was observed in the rotary tool with the blade of condition 1 (Rz 2.36 μm), and a thick deposit of Al was confirmed (Fig. 17a). Regarding Conditions 2, 3 and 4, a slight adhesion was observed (FIGS. 17b to 17d).
 この結果より、Rzを2.0μm以下にすることで、ブレーカ内での被削材溶着を抑制することができることが分かった。ブレーカ内面での被削材の溶着を抑制できる結果、切り屑の詰まりが抑制でき、設計したとおりにブレーカの効果が充分に発揮できる。その結果、刃の欠損が生起し難くなる。つまり、ブレーカ内面の表面粗さを小さくすることにより、工具寿命を長くすることができる。 From these results, it was found that by setting Rz to 2.0 μm or less, welding of the work material inside the breaker can be suppressed. As a result of suppressing welding of the work material on the inner surface of the breaker, clogging of chips can be suppressed, and the effect of the breaker can be fully exerted as designed. As a result, the blade is less likely to be damaged. That is, the tool life can be extended by reducing the surface roughness of the inner surface of the breaker.
(試験4:テクスチャの検討)
 刃部のすくい面のテクスチャとして、(a)平面、(b)ディンプル:図18、(c)溝:図19の3つの刃部をもつリーマについて解析を行った。ブレーカ無しで検討した。(b)のディンプル96は、切れ刃95と平行方向、及び、切れ刃95と隣接する辺と平行方向のそれぞれについて等間隔でもうけられており、直径が0.04mm、切れ刃95と平行な方向で0.08mm毎、切れ刃95と隣接する辺と平行方向で0.08mm毎に設けている。(c)の溝98は、切れ刃97と平行方向に延設されており、溝98の幅が0.03mm、0.06mm毎に設けられている。切削条件としては、試験1と同様である。解析結果を図20に示す。
(Test 4: Examination of texture)
As the texture of the rake face of the blade portion, analysis was carried out on a reamer having three blade portions: (a) plane, (b) dimple: FIG. 18, (c) groove: FIG. I examined without a breaker. The dimples 96 in (b) are provided at equal intervals in the direction parallel to the cutting edge 95 and in the direction parallel to the side adjacent to the cutting edge 95, and have a diameter of 0.04 mm and are parallel to the cutting edge 95. It is provided every 0.08 mm in the direction and every 0.08 mm in the direction parallel to the side adjacent to the cutting edge 95. The groove 98 of (c) is extended in the direction parallel to the cutting edge 97, and the width of the groove 98 is provided every 0.03 mm and 0.06 mm. The cutting conditions are the same as in Test 1. The analysis result is shown in FIG.
 図20より明らかなように、(a)の刃部にて生成する切屑よりも、(b)及び(c)の刃部にて生成する切屑の方がカール径が小さく、切屑の分断がし易いことが分かった。これはディンプル96や、溝98の存在によって切屑と刃部との摩擦が低減できるためであると考えられる。 As is clear from FIG. 20, the chips generated in the blade portions of (b) and (c) have a smaller curl diameter than the chips generated in the blade portion of (a), and the chips are divided. I found it easy. It is considered that this is because the presence of the dimples 96 and the grooves 98 can reduce the friction between the chips and the blade.
(試験5:ブレーカ内面のテクスチャの検討。突起の影響について)
 (a)ブレーカの内面として断面形状がR形状・端部が円錐の一部のブレーカを有する刃部(図3に類似)、(b)ブレーカの内面に突起を有する刃部(図9に相当)の2つの刃部をもつリーマについて解析を行った。双方の刃部に設けられたブレーカは共に、ランド幅が0.02mm、ブレーカの幅が0.3mm、ブレーカの内面のR形状を形成する円筒の半径が0.3mmである。(b)の刃部のブレーカの内面に設けられた突起は、幅0.05mmで、切れ刃81に平行な方向で0.07mm毎に設けられている。突起の高さはブレーカ底面から0.01mm(図9(b)に相当)としている。
 切削条件としては、試験1で用いたリーマの刃部に設けたブレーカと比べて中央部の幅が大きくなっている以外は同様の条件である。解析結果を図21に示す。
(Test 5: Examination of texture on inner surface of breaker. Effect of protrusion)
(A) An inner surface of the breaker has an R-shaped cross section and a breaker having a part of a conical end portion (similar to FIG. 3), (b) a blade portion having a protrusion on the inner surface of the breaker (equivalent to FIG. 9) ) Was analyzed for a reamer having two blades. The breakers provided on both blades each have a land width of 0.02 mm, a breaker width of 0.3 mm, and a radius of a cylinder forming the R shape of the inner surface of the breaker of 0.3 mm. The protrusion provided on the inner surface of the breaker of the blade portion of (b) has a width of 0.05 mm, and is provided every 0.07 mm in the direction parallel to the cutting edge 81. The height of the protrusion is 0.01 mm from the bottom surface of the breaker (corresponding to FIG. 9B).
The cutting conditions are the same except that the width of the central portion is larger than that of the breaker provided on the blade portion of the reamer used in Test 1. The analysis result is shown in FIG.
 図21より明らかなように、(a)の刃部にて生成する切屑は、図面左方(リーマの軸芯方向)に変形している。それに対して、(b)の刃部では、(a)の刃部にて生成する切屑よりも図面左方への変形が抑制されている。刃部の切れ刃はリーマの回転軸に対して傾斜しているため、外周側の方が切屑の生成速度が大きく、元々軸芯側に切屑が変形するように応力が加わっていることで切屑の軸芯方向へ変形する。今回の検討条件では中央部の切れ刃の平行方向の長さを他の試験よりも長くしたことにより切屑に加わる軸芯方向への応力が大きくなっており、切屑の形状がらせん状になりやすくなっているが、そのような条件であっても、突起を設けて切屑の流れを制御することで切屑のらせん状の変形を効果的に抑制することができる。 As is clear from FIG. 21, the chips generated by the blade portion in (a) are deformed to the left side of the drawing (axial direction of the reamer). On the other hand, in the blade part of (b), the deformation to the left of the drawing is suppressed more than the chips generated in the blade part of (a). Since the cutting edge of the blade is inclined with respect to the rotation axis of the reamer, the rate of chip generation on the outer peripheral side is higher, and stress is originally applied to the chip to deform it on the shaft core side. It deforms in the axial direction. Under the present study conditions, the length of the central cutting edge in the parallel direction was made longer than in other tests, so the stress applied to the chips in the axial direction was large, and the chips tended to form a spiral shape. However, even under such a condition, it is possible to effectively suppress the spiral deformation of the chips by providing the protrusions and controlling the flow of the chips.
〔追加の実施形態〕
(実施形態4)
 本実施形態の回転工具は、切れ刃が湾曲していること及び切れ刃の湾曲に伴い形態などが変更されたこと以外、概ね実施形態1の回転工具と同様の構成をもつ。
[Additional Embodiment]
(Embodiment 4)
The rotary tool of the present embodiment has substantially the same configuration as the rotary tool of the first embodiment, except that the cutting edge is curved and the shape and the like are changed due to the bending of the cutting edge.
 実施形態1の刃部20の切れ刃21は真っ直ぐであり、回転工具本体10の回転軸に対して傾斜している。切れ刃21の傾斜方向は、回転工具の先端に向けて縮径する方向である。 The cutting edge 21 of the blade portion 20 of the first embodiment is straight and is inclined with respect to the rotation axis of the rotary tool body 10. The inclination direction of the cutting edge 21 is a direction in which the diameter is reduced toward the tip of the rotary tool.
 それに対し、図22に示すように、本実施形態の刃部100の切れ刃101は回転工具の先端に向けて実施形態1の切れ刃21と同様に回転工具の先端に向かうにつれて縮径しているが、切れ刃101の形状は、回転工具の先端に行くにつれて縮径の程度が大きくなるように湾曲している。換言すれば、切れ刃101の形状は回転工具の回転軸方向の中央付近が外径方向に膨らむような形状である。 On the other hand, as shown in FIG. 22, the cutting edge 101 of the blade portion 100 of the present embodiment is reduced in diameter toward the tip of the rotary tool, as in the cutting edge 21 of the first embodiment, toward the tip of the rotary tool. However, the shape of the cutting edge 101 is curved so that the degree of diameter reduction increases toward the tip of the rotary tool. In other words, the shape of the cutting edge 101 is such that the vicinity of the center in the rotation axis direction of the rotary tool swells in the outer diameter direction.
 本実施形態の刃部100に設けられたブレーカ102も切れ刃101の湾曲に合わせて湾曲している。切れ刃101とブレーカ102の切れ刃側との間隔がほぼ一定になっている。 The breaker 102 provided on the blade portion 100 of the present embodiment is also curved according to the curvature of the cutting edge 101. The distance between the cutting edge 101 and the cutting edge of the breaker 102 is substantially constant.
 ここで本実施形態のように切れ刃101が湾曲している場合の「ランドの幅」とは、上述した定義(切れ刃とブレーカとの間の面(ランド)の幅(切れ刃と垂直方向の長さ))から、切れ刃101の刃先が延びる方向と垂直な方向でのランドの長さを意味する。従って、切れ刃101の湾曲に伴い、ランドの幅を測定する方向は変化する。 Here, the “land width” in the case where the cutting edge 101 is curved as in the present embodiment means the above-described definition (the width of the surface (land) between the cutting edge and the breaker (the direction perpendicular to the cutting edge). Length)), the length of the land in the direction perpendicular to the direction in which the cutting edge of the cutting edge 101 extends. Therefore, the direction in which the width of the land is measured changes as the cutting edge 101 bends.
 「ブレーカの幅」についても「ランドの幅」と同じ方向での長さが「ブレーカの幅」となる。本実施形態では、切れ刃101が存在する部分でのブレーカ102の幅やランドの幅は一定に設定されている。 Regarding the “breaker width”, the length in the same direction as the “land width” is the “breaker width”. In the present embodiment, the width of the breaker 102 and the width of the land in the portion where the cutting edge 101 exists are set to be constant.
 ここで、上述した実施形態では被切削物を切削する部分におけるランドの幅やブレーカの幅の好ましい範囲を提示していた。つまり、切れ刃が形成され且つブレーカが形成されていても、被切削物を切削しない部分においては、「ランドの幅」や「ブレーカの幅」が規定できる部分であっても前述の好ましい範囲や好ましい形態が適用されない場合がある。 Here, in the above-described embodiment, the preferable range of the width of the land and the width of the breaker in the portion where the object to be cut is cut is presented. That is, even if the cutting edge is formed and the breaker is formed, in the portion that does not cut the object to be cut, even if the "land width" or the "breaker width" can be defined, the above-mentioned preferable range or The preferred form may not apply.
 本実施形態においても被切削物を切削する部分における「ランドの幅」や「ブレーカの幅」に適正な範囲が規定されるが、切れ刃101を湾曲させた理由として切削後の被切削物の形状にあわせるために、切れ刃101の形状を決定している場合には、切れ刃101の全域にわたって被切削物を切削することも想定され、このように想定される場合には、湾曲した切れ刃101の全域において適正な範囲の「ランドの幅」や「ブレーカの幅」が設定されることが望ましい。 In the present embodiment as well, an appropriate range is defined for the "land width" and the "breaker width" in the portion for cutting the object to be cut, but the reason why the cutting edge 101 is curved is to cut the object to be cut after cutting. In order to match the shape, when the shape of the cutting edge 101 is determined, it is also assumed that the object to be cut is cut over the entire area of the cutting edge 101. In such a case, a curved cutting edge can be cut. It is desirable to set an appropriate range of “land width” and “breaker width” in the entire area of the blade 101.
 切れ刃101が形成されている部位(切れ刃101の刃先の両端部に垂直な直線の内側の部位)に相当する、ブレーカ102の中央部102aはブレーカの幅が一定である。中央部102aの内径方向の端部102bは、内径方向に向かうにつれて連続的に浅くなっており、中央部102aの外径方向の端部102cは外径方向に向かうにつれて連続的に浅くなっている。 The width of the breaker is constant at the central portion 102a of the breaker 102, which corresponds to the part where the cutting edge 101 is formed (the part inside the straight line perpendicular to both ends of the cutting edge of the cutting edge 101). An inner diameter end 102b of the central portion 102a is continuously shallowed toward the inner diameter direction, and an outer diameter end 102c of the central portion 102a is continuously shallowed toward the outer diameter direction. ..
(実施形態4の変形態様)
 本実施形態の回転工具、ブレーカの形態以外は実施形態4と同様の構成を有する。
(Modification of Embodiment 4)
Except for the forms of the rotary tool and breaker of this embodiment, it has the same configuration as that of the fourth embodiment.
 本実施形態の回転工具は、図23に示すように、切れ刃121が構成される。具体的には、ランドの幅は実施形態4と同様に一定であるが、ブレーカの幅が外径方向に向かうにつれて小さくなっている。本実施形態のブレーカ122は、実施形態4と同様に中央部122a、端部122b及び122cからなり、そのうちの端部122cが切れ刃121に隣接してブレーカとしての機能を主に発揮している。端部122b及び122cは両端に向かうにつれて浅くなっている。ブレーカの幅が外径方向に向かうにつれて小さくなっている理由を説明すると以下の通りである。 The rotary tool of this embodiment has a cutting edge 121 as shown in FIG. Specifically, the width of the land is constant as in the fourth embodiment, but the width of the breaker becomes smaller toward the outer diameter direction. The breaker 122 of the present embodiment is composed of a central portion 122a and end portions 122b and 122c as in the fourth embodiment, and the end portion 122c of the breaker 122 is adjacent to the cutting edge 121 and mainly exerts the function as a breaker. .. The ends 122b and 122c become shallower toward both ends. The reason why the width of the breaker becomes smaller as it goes in the outer diameter direction is as follows.
 本実施形態の回転工具が、切削時に進行する方向(回転工具の回転軸と平行な方向である)を方向Aとする。切削の進行に伴い、刃部120は方向Aに平行移動する。切れ刃121が方向Aに進行して行く際の被切削物の削り代は、方向Aと切れ刃121の刃先との角度(以下、「切れ刃の傾斜」と称することがある)が大きくなるにつれて大きくなっていく。本実施形態では切れ刃121の傾斜は、外径方向に向かうにつれて小さくなっているため、削り代は外径方向に向かうにつれて小さくなる。 The direction in which the rotary tool of this embodiment advances during cutting (direction parallel to the rotary axis of the rotary tool) is designated as direction A. The blade 120 moves in parallel with the direction A as the cutting progresses. When the cutting edge 121 advances in the direction A, the cutting allowance of the object to be cut becomes larger in the angle between the direction A and the cutting edge of the cutting edge 121 (hereinafter, may be referred to as “the inclination of the cutting edge”). Grows bigger and bigger. In the present embodiment, the inclination of the cutting edge 121 is smaller in the outer diameter direction, and thus the cutting allowance is smaller in the outer diameter direction.
 ここで、後述する試験により削り代が小さい方がブレーカの幅を小さくできること、そして、ブレーカの幅は小さい方がブレーカの効果が高くなる傾向にあることが分かっている。 Here, it is known from the test described below that the smaller the cutting allowance is, the smaller the width of the breaker can be made, and the smaller the width of the breaker is, the higher the effect of the breaker tends to be.
 そのためブレーカの効果を充分に発揮させるために、切れ刃121の削り代が外径方向に向かうに従って小さくなることに対応して、ブレーカの幅も小さくなるように設定している。このことは、外径方向に向けて切れ刃の傾斜が小さくなるのに合わせてブレーカの幅も小さくしているとも換言できる。 Therefore, in order to fully exert the effect of the breaker, the width of the breaker is set so as to correspond to the reduction of the cutting allowance of the cutting edge 121 toward the outer diameter direction. This can be said in other words that the width of the breaker is made smaller as the inclination of the cutting edge becomes smaller in the outer diameter direction.
(実施形態5)
 本実施形態の回転工具は、切れ刃の湾曲の形態が異なること及び切れ刃の湾曲の変更に伴い形態などが変更されたこと以外、概ね実施形態4の回転工具と同様の構成をもつ。
(Embodiment 5)
The rotary tool of the present embodiment has substantially the same configuration as that of the rotary tool of the fourth embodiment, except that the curved shape of the cutting edge is different and the shape and the like are changed due to the change of the curved shape of the cutting edge.
 図24に示すように、本実施形態の刃部140の切れ刃141は回転工具の先端に向けて実施形態4の切れ刃101と同様に回転工具の先端に向かうにつれて縮径しているが、切れ刃141の形状は、回転工具の先端に行くにつれて縮径の程度が小さくなるように湾曲している。換言すれば、切れ刃141の形状は回転工具の回転軸方向の中央付近が内径方向に膨らむような形状である。 As shown in FIG. 24, the cutting edge 141 of the blade portion 140 of the present embodiment has a diameter that decreases toward the tip of the rotary tool toward the tip of the rotary tool, similar to the cutting edge 101 of the fourth embodiment. The shape of the cutting edge 141 is curved so that the degree of diameter reduction becomes smaller toward the tip of the rotary tool. In other words, the shape of the cutting edge 141 is such that the vicinity of the center in the rotation axis direction of the rotary tool swells in the inner diameter direction.
 本実施形態の刃部140に設けられたブレーカ142も切れ刃141の湾曲に合わせて湾曲している。切れ刃141とブレーカ142の切れ刃側との間隔がほぼ一定になっている。 The breaker 142 provided on the blade 140 of the present embodiment is also curved according to the curvature of the cutting edge 141. The distance between the cutting edge 141 and the cutting edge side of the breaker 142 is substantially constant.
 切れ刃141が形成されている部位(切れ刃141の刃先の両端部に垂直な直線の内側の部位)に相当する、ブレーカ142の中央部142aはブレーカの幅が一定である。中央部142aの内径方向の端部142bは、内径方向に向かうにつれて連続的に浅くなっており、中央部142aの外径方向の端部142cは外径方向に向かうにつれて連続的に浅くなっている。 The center part 142a of the breaker 142, which corresponds to the part where the cutting edge 141 is formed (the part inside the straight line perpendicular to both ends of the cutting edge of the cutting edge 141), has a constant breaker width. The inner diameter direction end portion 142b of the central portion 142a is continuously shallowed in the inner diameter direction, and the outer diameter direction end portion 142c of the central portion 142a is continuously shallowed in the outer diameter direction. ..
(実施形態5の変形態様)
 本実施形態の回転工具、ブレーカの形態以外は実施形態5と同様の構成を有する。
(Modification of Embodiment 5)
Except for the forms of the rotary tool and breaker of the present embodiment, it has the same configuration as that of the fifth embodiment.
 本実施形態の回転工具は、図25に示すように、切れ刃161が構成される。具体的には、ランドの幅は実施形態5と同様に一定であるが、ブレーカの幅が内径方向に向かうにつれて小さくなっている。本実施形態のブレーカ162は、実施形態5とは異なり中央部が無いかあっても僅かであり、端部162b及び162cからなる。そのうちの端部162bが切れ刃161に隣接する。端部162b及び162cは両端に向かうにつれて浅くなっている。 The rotary tool of this embodiment has a cutting edge 161 as shown in FIG. Specifically, the width of the land is constant as in the fifth embodiment, but the width of the breaker becomes smaller toward the inner diameter direction. Unlike the fifth embodiment, the breaker 162 according to the present embodiment has no or a slight central portion, and includes the end portions 162b and 162c. The end portion 162b of them is adjacent to the cutting edge 161. The ends 162b and 162c become shallower toward both ends.
 本実施形態の回転工具が、切削時に進行する方向である方向Aを基準として考えると、切削の進行に伴い、刃部160が方向Aに平行移動することになる。切れ刃161が方向Aに進行して行く際の被切削物の削り代は、切れ刃161の傾斜が大きくなるにつれて大きくなっていく。 Considering the direction A, which is the direction in which the rotary tool of the present embodiment advances during cutting, as a reference, the blade 160 moves in parallel with the direction A as the cutting progresses. The cutting allowance of the work piece when the cutting edge 161 advances in the direction A increases as the inclination of the cutting edge 161 increases.
 そのためブレーカの効果を充分に発揮させるために、切れ刃161の削り代が外径方向に向かうに従って大きくなることに対応して、ブレーカの幅も大きくなるように設定している。このことは、外径方向に向けて切れ刃の傾斜が大きくなるのに合わせてブレーカの幅も大きくしているとも換言できる。 Therefore, in order to fully exert the effect of the breaker, the width of the breaker is set to increase corresponding to the increase in the cutting allowance of the cutting edge 161 toward the outer diameter direction. This can be said in other words that the width of the breaker is increased as the inclination of the cutting edge increases in the outer diameter direction.
〔追加の試験〕
(試験6:ブレーカ幅の適正値の検討)
 断面形状がR形状のブレーカを有する刃部(図3に相当:ランド幅x1が0.02mm、ブレーカの幅が0.1mm~0.6mm、ブレーカの一部(図3のブレーカ22の中央部22aに相当)のR形状を形成する円筒の半径がブレーカ幅と同じ)をもつリーマについてCAE解析を行った。解析は切削により生成した切屑がブレーカの一部に接触している場合に「〇:優」又は「△:良」、接触していない場合には「×:可~不可」とした。切屑がブレーカの内面に接触している場合でも、詰まり気味になっている場合には「△」、詰まり気味になっていない場合には「〇」とした。詰まり気味になっているかどうかは切屑の長さにより評価した。具体的には切屑の長さは、ブレーカの幅以外が同一条件下ではブレーカの幅が小さいほど短くなるが、ブレーカの幅が小さくなっても切屑の長さが長くなっている場合に「△」とした。
[Additional test]
(Test 6: Examination of appropriate value of breaker width)
A blade portion having a breaker with an R-shaped cross-section (corresponding to FIG. 3: land width x1 is 0.02 mm, breaker width is 0.1 mm to 0.6 mm, part of the breaker (central portion of breaker 22 in FIG. 3 CAE analysis was performed on a reamer having a radius of a cylinder forming the R shape (corresponding to 22a) is the same as the breaker width). In the analysis, when the chips generated by cutting contacted a part of the breaker, “◯: excellent” or “Δ: good”, and when not contacted, “x: acceptable to unacceptable”. Even when the chips were in contact with the inner surface of the breaker, it was evaluated as "△" when it was clogged and "○" when it was not clogged. Whether or not it was clogged was evaluated by the length of the chips. Specifically, the chip length becomes shorter as the breaker width becomes smaller under the same conditions except for the breaker width, but when the chip length becomes longer even if the breaker width becomes smaller, “△” "
 切削条件としては、切れ刃の材質がPCD製、被削材がアルミニウム合金(A7075)、切削速度が150m/分又は300m/分、一刃送り量が0.05mm又は0.1mm、取り代が0.1mm又は0.2mmとした。結果を表1に示す。 As the cutting conditions, the material of the cutting edge is PCD, the work material is an aluminum alloy (A7075), the cutting speed is 150 m / min or 300 m / min, the feed rate per tooth is 0.05 mm or 0.1 mm, and the machining allowance is It was set to 0.1 mm or 0.2 mm. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表より明らかなように、ブレーカの幅の適正値の決定には、一刃送り量及び取り代の値が大きく寄与することが分かった。 As is clear from the table, it was found that the single blade feed amount and the value of the machining allowance greatly contribute to the determination of the appropriate value of the breaker width.
 表1の結果から、(1)一刃送り量を0.075mm以下とした場合にはブレーカの幅は0.05mm~0.45mmとすることができた。取り代を0.15mm以下にすると、ブレーカの幅の上限値を0.55mmとすることができた。
(2)一刃送り量を0.075mm超とした場合にはブレーカの幅は0.125mm~0.45mm(好ましくは0.175mm~0.45mm)とすることができた。取り代を0.15mm以下にすると、ブレーカの幅の下限値を0.005mm、上限値を0.55mmとすることができた。
From the results in Table 1, (1) the width of the breaker could be set to 0.05 mm to 0.45 mm when the feed rate per blade was 0.075 mm or less. When the stock removal was set to 0.15 mm or less, the upper limit of the breaker width could be set to 0.55 mm.
(2) The width of the breaker could be 0.125 mm to 0.45 mm (preferably 0.175 mm to 0.45 mm) when the single-blade feed amount was more than 0.075 mm. When the machining allowance was 0.15 mm or less, the lower limit value of the breaker width could be 0.005 mm and the upper limit value could be 0.55 mm.
(試験7:ランド幅の適正値の検討)
 ブレーカ幅及びブレーカ半径を0.3mmとして、ランド幅の検討を行う試験を試験6と同様の試験にて行った。結果を表2に示す。
(Test 7: Examination of appropriate land width)
A test for examining the land width was performed in the same test as Test 6 with the breaker width and the breaker radius set to 0.3 mm. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表より明らかなように、ランドの幅の適正値の決定には、一刃送り量及び取り代の値が大きく寄与することが分かった。 As is clear from the table, it has been found that the value of the single-blade feed amount and the machining allowance greatly contribute to the determination of the proper value of the land width.
 表2の結果から、(3)一刃送り量を0.075mm以下とした場合にはランドの幅は0.035mm以下とすることができた。取り代を0.15mm超にすると、ランドの幅の上限値を、(3-1)切削速度225m/分以下では0.055mm、(3-2)切削速度225m/分超では0.045mmとすることができた。
(4)一刃送り量を0.075mm超とした場合にはランドの幅は0.065mm以下にすることができた。
From the results in Table 2, (3) when the single-blade feed amount was 0.075 mm or less, the width of the land could be 0.035 mm or less. When the machining allowance exceeds 0.15 mm, the upper limit of the land width is 0.055 mm at (3-1) cutting speed of 225 m / min or less, and 0.045 mm at (3-2) cutting speed of 225 m / min or more. We were able to.
(4) When the single-blade feed amount was more than 0.075 mm, the width of the land could be 0.065 mm or less.
 更にランドの幅は一刃送り量の60%以下にすることでブレーカの効果を充分に発揮させることができるため好ましく、50%以下であることが更に好ましいことが分かった。 Further, it has been found that the width of the land is preferably 60% or less of the feed amount per blade so that the effect of the breaker can be sufficiently exerted, and more preferably 50% or less.
1…回転工具  10…回転工具本体  11…切り欠き  2…刃部  20…刃部  21…切れ刃  21a…すくい面  21a1…ランド  22…ブレーカ  22a…中央部  22b…端部  22b1…頂点  22c…端部  22c1…頂点  30…回転工具本体  31…切り欠き  31a…すくい面  32…切り欠き  40…刃部  50…刃部  60…刃部  61…切れ刃  61a…すくい面  61a1…ランド  62…ブレーカ  62a…中央部  63…ディンプル  70…刃部  71…切れ刃  71a…すくい面  72a…中央部  72b…端部  72b1…頂点  72c…端部  72c1…頂点  73…溝  80…刃部  81a…すくい面  81a1…ランド  82…ブレーカ  82a…中央部  82b…端部  82c…端部  83…突起  91a1…ランド  94a…端面  95…切れ刃  96…ディンプル  97…切れ刃  98…溝 1 ... Rotating tool 10 ... Rotating tool main body 11 ... Notch 2 ... Blade portion 20 ... Blade portion 21 ... Cutting edge 21a ... Scooping surface 21a1 ... Land 22 ... Breaker 22a ... Central portion 22b ... End portion 22b1 ... Apex 22c ... End portion 22c1 ... Apex 30 ... Rotating tool body 31 ... Notch 31a ... Scoop face 32 ... Notch 40 ... Blade part 50 ... Blade part 60 ... Blade part 61 ... Cutting edge 61a ... Scoop face 61a1 ... Land 62 ... Breaker 62a ... Central part 63 ... Dimple 70 ... Blade portion 71 ... Cutting edge 71a ... Scooping surface 72a ... Central portion 72b ... End portion 72b1 ... Apex 72c ... End portion 72c1 ... Apex 73 ... Groove 80 ... Blade portion 81a ... Scooping surface 81a1 ... Command 82 ... breaker 82a ... middle portion 82b ... end 82c ... end 83 ... projections 91a1 ... land 94a ... end surface 95 ... cutting edge 96 ... dimples 97 ... cutting edge 98 ... groove

Claims (8)

  1.  回転工具本体と、多結晶ダイヤモンド又は立方晶窒化ホウ素焼結体からなり前記回転工具本体に設けられた切れ刃を有する刃部とを有し、
     前記切れ刃は前記回転工具本体の回転軸に対して傾斜しており、
     前記刃部のすくい面には、前記切れ刃近傍にブレーカを備え、
     前記ブレーカは、前記切れ刃と垂直方向での断面形状がR形状となり、且つ、前記切れ刃と平行方向での両端部のうち前記回転工具本体の外周方向及び軸芯方向の端部に行くに従い連続的に浅くなる凹みである回転工具。
    A rotary tool body, and a blade portion having a cutting edge made of polycrystalline diamond or cubic boron nitride sintered body and provided in the rotary tool body,
    The cutting edge is inclined with respect to the rotation axis of the rotary tool body,
    The rake face of the blade portion is provided with a breaker near the cutting edge,
    The breaker has an R-shaped cross-sectional shape in a direction perpendicular to the cutting edge, and goes to the outer peripheral end and the axial center end of the rotary tool main body in both end portions in the parallel direction to the cutting edge. A rotating tool that is a dent that becomes shallower continuously.
  2.  回転工具本体と、多結晶ダイヤモンド又は立方晶窒化ホウ素焼結体からなり前記回転工具本体に設けられた切れ刃を有する刃部とを有し、
     前記刃部のすくい面には、前記切れ刃近傍にブレーカを備え、
     前記ブレーカは、前記切れ刃と垂直方向での断面形状がR形状となる凹みである回転工具。
    A rotary tool body, and a blade portion having a cutting edge made of polycrystalline diamond or cubic boron nitride sintered body and provided in the rotary tool body,
    The rake face of the blade portion is provided with a breaker near the cutting edge,
    The breaker is a rotary tool that is a recess having a cross-sectional shape in an R shape in a direction perpendicular to the cutting edge.
  3.  回転工具本体と、多結晶ダイヤモンド又は立方晶窒化ホウ素焼結体からなり前記回転工具本体に設けられた切れ刃を有する刃部とを有し、
     前記切れ刃は前記回転工具本体の回転軸に対して傾斜しており、
     前記刃部のすくい面には、前記切れ刃近傍にブレーカを備え、
     前記ブレーカは、前記切れ刃と平行方向での両端部のうち前記回転工具本体の外周方向及び/又は軸芯方向の端部に行くに従い連続的に浅くなる凹みである回転工具。
    A rotary tool body, and a blade portion having a cutting edge made of polycrystalline diamond or cubic boron nitride sintered body and provided in the rotary tool body,
    The cutting edge is inclined with respect to the rotation axis of the rotary tool body,
    The rake face of the blade portion is provided with a breaker near the cutting edge,
    The breaker is a rotary tool that is a dent that becomes shallower continuously as it goes to an end portion in the outer peripheral direction and / or the axial center direction of the rotary tool body of both end portions in the direction parallel to the cutting edge.
  4.  前記ブレーカの前記切れ刃と垂直方向での幅が、0.15mm~0.5mmである請求項1~3の何れか1項に記載の回転工具。 The rotary tool according to any one of claims 1 to 3, wherein a width of the breaker in a direction perpendicular to the cutting edge is 0.15 mm to 0.5 mm.
  5.  前記ブレーカと前記切れ刃との間隔が、0.01mm~0.05mmである請求項1~4の何れか1項に記載の回転工具。 The rotary tool according to any one of claims 1 to 4, wherein a distance between the breaker and the cutting edge is 0.01 mm to 0.05 mm.
  6.  前記ブレーカの内面は、表面粗さRzの値が2.0μm以下である請求項1~5の何れか1項に記載の回転工具。 The rotary tool according to any one of claims 1 to 5, wherein the inner surface of the breaker has a surface roughness Rz value of 2.0 µm or less.
  7.  前記ブレーカの内面は、凹凸により形成されたテクスチャをもつ請求項1~6の何れか1項に記載の回転工具。 The rotary tool according to any one of claims 1 to 6, wherein an inner surface of the breaker has a texture formed by unevenness.
  8.  請求項1~7の何れか1項に記載の回転工具を用い、
     前記ブレーカと前記切れ刃との間隔が一刃送り量の60%以下である、
     金属材料からなる被切削物を切削加工する切削加工方法。
    Using the rotary tool according to any one of claims 1 to 7,
    The distance between the breaker and the cutting edge is 60% or less of the feed amount of one blade,
    A cutting method for cutting an object to be cut made of a metal material.
PCT/JP2019/039586 2018-10-30 2019-10-08 Rotating tool WO2020090372A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020553716A JPWO2020090372A1 (en) 2018-10-30 2019-10-08 Rotating tool
CN201980063940.6A CN112789131A (en) 2018-10-30 2019-10-08 Rotary tool

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018204495 2018-10-30
JP2018-204495 2018-10-30
JP2019-008073 2019-01-21
JP2019008073 2019-01-21

Publications (1)

Publication Number Publication Date
WO2020090372A1 true WO2020090372A1 (en) 2020-05-07

Family

ID=70464033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039586 WO2020090372A1 (en) 2018-10-30 2019-10-08 Rotating tool

Country Status (3)

Country Link
JP (1) JPWO2020090372A1 (en)
CN (1) CN112789131A (en)
WO (1) WO2020090372A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066046A1 (en) * 2019-10-03 2021-04-08 旭ダイヤモンド工業株式会社 Rotary cutting tool
JP2021115636A (en) * 2020-01-22 2021-08-10 トヨタ自動車株式会社 Drill
WO2023188007A1 (en) * 2022-03-29 2023-10-05 株式会社アイシン Cutting tool
EP4169643A4 (en) * 2020-06-22 2023-12-20 Sumitomo Electric Hardmetal Corp. Tool and tool production method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54117590U (en) * 1978-01-31 1979-08-17
JPS59141519A (en) * 1983-01-31 1984-08-14 Otsuka Pharmaceut Co Ltd Protein having carcinostatic action
JPH0362706U (en) * 1989-10-23 1991-06-19
JPH04109805U (en) * 1991-01-23 1992-09-24 三菱マテリアル株式会社 Throwaway tip for milling tools
JPH08294805A (en) * 1995-04-25 1996-11-12 Toshiba Tungaloy Co Ltd Tip for cutting tool
JP2008543585A (en) * 2005-06-24 2008-12-04 マパル ファブリック フュール プラツィジョンズベルクゼウグ ドクトル.クレス カーゲー Reamer with cutting plate
WO2014046260A1 (en) * 2012-09-20 2014-03-27 株式会社タンガロイ Cutting insert and rotary cutting tool with replaceable tool edge
WO2016035490A1 (en) * 2014-09-05 2016-03-10 住友電工ハードメタル株式会社 Throwaway tip
WO2017090297A1 (en) * 2015-11-26 2017-06-01 住友電工ハードメタル株式会社 Rotating tool

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045635A (en) * 2010-08-24 2012-03-08 Mitsubishi Materials Corp Cutting insert with excellent deposition resistance
WO2018116524A1 (en) * 2016-12-20 2018-06-28 住友電工ハードメタル株式会社 Cutting tool and method for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54117590U (en) * 1978-01-31 1979-08-17
JPS59141519A (en) * 1983-01-31 1984-08-14 Otsuka Pharmaceut Co Ltd Protein having carcinostatic action
JPH0362706U (en) * 1989-10-23 1991-06-19
JPH04109805U (en) * 1991-01-23 1992-09-24 三菱マテリアル株式会社 Throwaway tip for milling tools
JPH08294805A (en) * 1995-04-25 1996-11-12 Toshiba Tungaloy Co Ltd Tip for cutting tool
JP2008543585A (en) * 2005-06-24 2008-12-04 マパル ファブリック フュール プラツィジョンズベルクゼウグ ドクトル.クレス カーゲー Reamer with cutting plate
WO2014046260A1 (en) * 2012-09-20 2014-03-27 株式会社タンガロイ Cutting insert and rotary cutting tool with replaceable tool edge
WO2016035490A1 (en) * 2014-09-05 2016-03-10 住友電工ハードメタル株式会社 Throwaway tip
WO2017090297A1 (en) * 2015-11-26 2017-06-01 住友電工ハードメタル株式会社 Rotating tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066046A1 (en) * 2019-10-03 2021-04-08 旭ダイヤモンド工業株式会社 Rotary cutting tool
JP2021058941A (en) * 2019-10-03 2021-04-15 旭ダイヤモンド工業株式会社 Rotary cutting tool
JP7023263B2 (en) 2019-10-03 2022-02-21 旭ダイヤモンド工業株式会社 Rotary cutting tool
JP2021115636A (en) * 2020-01-22 2021-08-10 トヨタ自動車株式会社 Drill
EP4169643A4 (en) * 2020-06-22 2023-12-20 Sumitomo Electric Hardmetal Corp. Tool and tool production method
WO2023188007A1 (en) * 2022-03-29 2023-10-05 株式会社アイシン Cutting tool

Also Published As

Publication number Publication date
CN112789131A (en) 2021-05-11
JPWO2020090372A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
WO2020090372A1 (en) Rotating tool
JP4850301B2 (en) Inserts used for milling blade replacement type rotary tools
JP6344391B2 (en) Multi-blade ball end mill
CN105636729A (en) Roughing end mill
JP7341058B2 (en) End mill body and end mill
WO2015104732A1 (en) End mill
JP4975395B2 (en) Ball end mill
JPWO2019073752A1 (en) Rotary cutting tool
JP7125611B2 (en) end mill
WO2013118829A1 (en) Multiple-edged ball end mill
JP4125909B2 (en) Square end mill
JP5470796B2 (en) Overall cutter
JP2016005860A (en) Scanline processing method using ball end mill
JP6791985B2 (en) A drill and a method for manufacturing a machined product using it
JP2024023943A (en) ball end mill
JP7481617B2 (en) Processing method and mold manufacturing method
JP7417112B2 (en) end mill
WO2018074542A1 (en) Cutting insert and cutting edge-interchangeable rotary cutting tool
JP2007075993A (en) Radius cutter, especially ball cutter or annular cutter
JP4561054B2 (en) Ball end mill
JP5126205B2 (en) Ball end mill
JP5612382B2 (en) Cutting insert
CN111545816A (en) End mill with flat relief angle for enhanced rigidity
JP6930404B2 (en) End mill
JP2008000840A (en) Cutting insert and rotary cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880771

Country of ref document: EP

Kind code of ref document: A1