WO2020090371A1 - Fuel pump - Google Patents

Fuel pump Download PDF

Info

Publication number
WO2020090371A1
WO2020090371A1 PCT/JP2019/039577 JP2019039577W WO2020090371A1 WO 2020090371 A1 WO2020090371 A1 WO 2020090371A1 JP 2019039577 W JP2019039577 W JP 2019039577W WO 2020090371 A1 WO2020090371 A1 WO 2020090371A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel pump
end surface
coil
fuel
axially outer
Prior art date
Application number
PCT/JP2019/039577
Other languages
French (fr)
Japanese (ja)
Inventor
雅史 根本
悟史 臼井
斉藤 淳治
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020553715A priority Critical patent/JP7110384B2/en
Publication of WO2020090371A1 publication Critical patent/WO2020090371A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/34Varying fuel delivery in quantity or timing by throttling of passages to pumping elements or of overflow passages, e.g. throttling by means of a pressure-controlled sliding valve having liquid stop or abutment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

According to the present invention, a magnetic circuit of a solenoid valve is made compact and has a structure that efficiently generates a magnetic force, and both miniaturization and low costs thereof are achieved. To this end, a fuel pump according to the present invention comprises: a fixed core that suctions a movable core through a magnetic suction force generated by conducting a coil; a spring member that is disposed in a recess part formed in the inner diameter side of the fixed core and biases a rod driven by the movable core; and a magnetic member that is disposed on the outer peripheral side of the coil and forms a magnetic circuit, wherein an axial outer spring end surface of the spring member is disposed axially outward of an axial outer end surface of the magnetic member.

Description

燃料ポンプFuel pump
 本発明は車両用部品について、特に燃料を高圧にしてエンジンに供給する燃料ポンプに関する。 The present invention relates to vehicle parts, and more particularly to a fuel pump that supplies high pressure fuel to an engine.
 自動車等のエンジン(内燃機関)燃焼室へ燃料を直接、噴射する直接噴射型エンジンにおいては、燃料を高圧するための高圧燃料供給ポンプが広く用いられている。この高圧燃料供給ポンプの従来技術として、たとえば、特開2018-087548号公報(特許文献1)に示すものがある。この特許文献1には、「加圧室11の上流側の流路の開閉を行う吸入弁30と、吸入弁30を開閉制御するための電磁コイル43とを有する吸入弁機構300を備えた高圧燃料供給ポンプにおいて、吸入弁機構300に形成された溝39cと、溝39cに挿入固定されることにより磁記回路を構成するヨーク(第二ヨーク44)を固定する固定部材(環状部材47)とを備えた。」と開示されている(要約参照)。 In a direct injection engine that directly injects fuel into a combustion chamber of an engine (internal combustion engine) of an automobile or the like, a high-pressure fuel supply pump for increasing the pressure of fuel is widely used. As a conventional technique of this high-pressure fuel supply pump, for example, there is one disclosed in Japanese Unexamined Patent Application Publication No. 2018-087548 (Patent Document 1). In Patent Document 1, "High-pressure provided with an intake valve mechanism 300 having an intake valve 30 for opening and closing a flow path on the upstream side of the pressurizing chamber 11 and an electromagnetic coil 43 for controlling the opening and closing of the intake valve 30. In the fuel supply pump, a groove 39c formed in the intake valve mechanism 300, and a fixing member (annular member 47) for fixing the yoke (second yoke 44) constituting the magnetic circuit by being inserted and fixed in the groove 39c. Was disclosed. ”(See summary).
特開2018-087548号公報JP, 2008-087548, A
 燃料ポンプはエンジン内の狭いスペースに搭載されるものであるため、可能な限り小型であることが望ましい。吸入弁機構300はポンプボディに径方向外側から挿入されるものであり、ポンプボディの径方向外側へ出っ張る機構であるため、これの軸方向の小型化が求められる。そこで本発明は、電磁吸入弁機構の特に軸方向長さを短くし、燃料ポンプの小型化を図ることを目的とする。 The fuel pump is installed in a narrow space inside the engine, so it is desirable to be as small as possible. The suction valve mechanism 300 is a mechanism that is inserted into the pump body from the outside in the radial direction, and is a mechanism that projects outward in the radial direction of the pump body. Therefore, an object of the present invention is to shorten the length of the electromagnetic suction valve mechanism, particularly in the axial direction, and to reduce the size of the fuel pump.
 前記した課題を解決するため、本発明の燃料ポンプは、コイルを通電することで発生する磁気吸引力により可動コアを吸引する固定コアと、前記固定コアの内径側に形成された凹み部に配置され、前記可動コアにより駆動されるロッドと付勢するばね部材と、前記コイルの外周側に配置され、磁気回路を形成する磁性部材と、を備え、前記ばね部材の軸方向外側ばね端面が前記磁性部材の軸方向外側端面よりも軸方向外側に配置される。 In order to solve the above-mentioned problems, the fuel pump of the present invention is arranged in a fixed core that attracts a movable core by a magnetic attraction force generated by energizing a coil, and a recess formed on the inner diameter side of the fixed core. A spring member for urging the rod driven by the movable core, and a magnetic member arranged on the outer peripheral side of the coil to form a magnetic circuit, and the axially outer spring end surface of the spring member is The magnetic member is arranged axially outside of the axially outer end surface.
 このように構成した本発明によれば、電磁吸入弁機構の特に軸方向長さを短くし、燃料ポンプの小型化を図ることが可能となる。上記した内容以外の本発明の構成、作用、効果については以下の実施例において詳細に説明する。 According to the present invention having such a configuration, it is possible to shorten the length of the electromagnetic suction valve mechanism, particularly in the axial direction, and to downsize the fuel pump. The configuration, action, and effect of the present invention other than those described above will be described in detail in the following embodiments.
燃料ポンプが適用されたエンジンシステムの構成図を示す。The block diagram of the engine system to which the fuel pump was applied is shown. 燃料ポンプの縦断面図である。It is a longitudinal cross-sectional view of a fuel pump. 燃料ポンプの上方から見た水平方向断面図である。It is a horizontal direction sectional view seen from the upper part of a fuel pump. 燃料ポンプの図2と別方向から見た縦断面図である。FIG. 3 is a vertical cross-sectional view of the fuel pump seen from a different direction from FIG. 2. 本発明の実施例の電磁吸入弁機構3を説明するための軸方向の断面図である。It is an axial sectional view for explaining electromagnetic suction valve mechanism 3 of an example of the present invention. 本発明の実施例の電磁吸入弁機構3を拡大した図面である。It is the drawing which expanded the electromagnetic suction valve mechanism 3 of the Example of this invention. 本発明の実施例の電磁吸入弁機構3の主要部品を分解して示した図面である。It is the drawing which decomposed | disassembled and showed the main components of the electromagnetic suction valve mechanism 3 of the Example of this invention.
以下、本発明の実施形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 まず本発明の実施例について図1~7を用いて詳細に説明する。図1に示すエンジンシステムの全体構成図を用いてシステムの構成と動作を説明する。破線で囲まれた部分が高圧燃料供給ポンプ(以下、燃料ポンプと呼ぶ)の本体を示し、この破線の中に示されている機構・部品はボディ1(ポンプボディと呼んでも良い)に一体に組み込まれていることを示す。 First, an embodiment of the present invention will be described in detail with reference to FIGS. The configuration and operation of the system will be described using the overall configuration diagram of the engine system shown in FIG. The part surrounded by the broken line shows the main body of the high-pressure fuel supply pump (hereinafter referred to as the fuel pump), and the mechanism and parts shown in the broken line are integrated with the body 1 (may be called the pump body). Indicates that it is installed.
 燃料タンク103の燃料は、エンジンコントロールユニット101(以下ECUと称す)からの信号に基づきフィードポンプ102によって燃料タンク103から汲み上げられる。この燃料は適切なフィード圧力に加圧されて燃料配管104を通して燃料ポンプの低圧燃料吸入口10aに送られる。 The fuel in the fuel tank 103 is pumped up from the fuel tank 103 by the feed pump 102 based on a signal from the engine control unit 101 (hereinafter referred to as ECU). This fuel is pressurized to an appropriate feed pressure and sent to the low-pressure fuel intake port 10a of the fuel pump through the fuel pipe 104.
 吸入配管5(図1には図示無)の低圧燃料吸入口10aから流入した燃料は圧力脈動低減機構9、吸入通路10dを介して容量可変機構である電磁吸入弁機構3の吸入ポート3kに至る。 The fuel that has flowed in from the low-pressure fuel intake port 10a of the intake pipe 5 (not shown in FIG. 1) reaches the intake port 3k of the electromagnetic intake valve mechanism 3, which is a variable capacity mechanism, via the pressure pulsation reducing mechanism 9 and the intake passage 10d. ..
 電磁吸入弁機構3に流入した燃料は、吸入弁3bを通過し、ボディ1に形成された吸入通路1aを流れた後に加圧室11に流入する。エンジンのカム機構91によりプランジャ2に往復運動する動力が与えられる。プランジャ2の往復運動により、プランジャ2の下降行程には吸入弁3bから燃料を吸入し、上昇行程には、燃料が加圧される。加圧室11の圧力が設定値を超えると、吐出弁機構8が開弁し、圧力センサ105が装着されているコモンレール106へ高圧燃料が圧送される。そしてECU101からの信号に基づきインジェクタ107がエンジンへ燃料を噴射する。本実施例はインジェクタ107がエンジンのシリンダ筒内に直接、燃料を噴射する、いわゆる直噴エンジンシステムに適用される燃料ポンプである。燃料ポンプは、ECU101から電磁吸入弁機構3への信号により、所望の供給燃料の燃料流量を吐出する。 The fuel flowing into the electromagnetic suction valve mechanism 3 passes through the suction valve 3b, flows through the suction passage 1a formed in the body 1, and then flows into the pressurizing chamber 11. Power for reciprocating motion is applied to the plunger 2 by the cam mechanism 91 of the engine. Due to the reciprocating motion of the plunger 2, fuel is sucked from the suction valve 3b during the downward stroke of the plunger 2 and pressurized during the upward stroke. When the pressure in the pressurizing chamber 11 exceeds the set value, the discharge valve mechanism 8 opens and high-pressure fuel is pressure-fed to the common rail 106 on which the pressure sensor 105 is mounted. Then, based on the signal from the ECU 101, the injector 107 injects fuel into the engine. The present embodiment is a fuel pump applied to a so-called direct injection engine system in which the injector 107 injects fuel directly into the cylinder of the engine. The fuel pump discharges a desired fuel flow rate of the supplied fuel in response to a signal from the ECU 101 to the electromagnetic suction valve mechanism 3.
 図2は本実施例の燃料ポンプの垂直方向の断面で見た縦断面図を示し、図3は燃料ポンプを上方から見た水平方向断面図である。また図4は燃料ポンプを図2と別の垂直方向断面で見た縦断面図である。本実施例の燃料ポンプはボディ1に設けられた取付けフランジ1e(図3)を用いエンジン(内燃機関)の燃料ポンプ取付け部90(図2、4)に密着し、図示しない複数のボルトで固定される。 FIG. 2 is a vertical cross-sectional view of the fuel pump of this embodiment as seen in a vertical cross section, and FIG. 3 is a horizontal cross-sectional view of the fuel pump as seen from above. FIG. 4 is a vertical cross-sectional view of the fuel pump as viewed in a vertical direction different from that of FIG. The fuel pump of this embodiment uses a mounting flange 1e (FIG. 3) provided on the body 1 to be in close contact with a fuel pump mounting portion 90 (FIGS. 2 and 4) of an engine (internal combustion engine) and fixed with a plurality of bolts (not shown). To be done.
 図2、4に示すように燃料ポンプ取付け部90とボディ1との間のシールのためにOリング93がボディ1に嵌め込まれ、エンジンオイルが外部に漏れるのを防止する。ボディ1にはプランジャ2の往復運動をガイドし、ボディ1と共に加圧室11を形成するシリンダ6が取り付けられている。また燃料を加圧室11に供給するための電磁吸入弁機構3と加圧室11から吐出通路に燃料を吐出するための吐出弁機構8が設けられている。 As shown in FIGS. 2 and 4, an O-ring 93 is fitted into the body 1 for a seal between the fuel pump mounting portion 90 and the body 1 to prevent engine oil from leaking to the outside. A cylinder 6 that guides the reciprocating motion of the plunger 2 and forms a pressurizing chamber 11 together with the body 1 is attached to the body 1. Further, an electromagnetic suction valve mechanism 3 for supplying fuel to the pressurizing chamber 11 and a discharge valve mechanism 8 for discharging fuel from the pressurizing chamber 11 to the discharge passage are provided.
 シリンダ6はその外周側においてボディ1と圧入される。またボディ1を内周側(径方向内側)へ変形させることでシリンダ6の固定部6aを図中上方向へ押圧し、シリンダ6の上端面で加圧室11にて加圧された燃料が低圧側に漏れないようシールしている。すなわち、加圧室11は、ボディ1、電磁吸入弁機構3、プランジャ2、シリンダ6、吐出弁機構8にて構成される。 The cylinder 6 is press-fitted with the body 1 on the outer peripheral side. Further, by deforming the body 1 to the inner peripheral side (inward in the radial direction), the fixing portion 6a of the cylinder 6 is pressed upward in the drawing, and the fuel pressurized in the pressurizing chamber 11 at the upper end surface of the cylinder 6 is released. Sealed to prevent leakage to the low pressure side. That is, the pressurizing chamber 11 is composed of the body 1, the electromagnetic suction valve mechanism 3, the plunger 2, the cylinder 6, and the discharge valve mechanism 8.
 プランジャ2の下端には、エンジンのカムシャフトに取り付けられたカム91の回転運動を上下運動に変換し、プランジャ2に伝達するタペット92が設けられている。プランジャ2はリテーナ15を介してばね18にてタペット92に圧着されている。これによりカム91の回転運動に伴い、プランジャ2を上下に往復運動させることができる。 At the lower end of the plunger 2, there is provided a tappet 92 that converts the rotational movement of a cam 91 attached to the camshaft of the engine into vertical movement and transmits it to the plunger 2. The plunger 2 is pressed against the tappet 92 by the spring 18 via the retainer 15. This allows the plunger 2 to reciprocate up and down with the rotational movement of the cam 91.
 また、シールホルダ7の内周下端部に保持されたプランジャシール13がシリンダ6の図中下方部においてプランジャ2の外周に摺動可能に接触する状態で設置されている。これにより、プランジャ2が摺動したとき、副室7aの燃料をシールしエンジン内部へ流入するのを防ぐ。同時にエンジン内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がボディ1の内部に流入するのを防止する。 The plunger seal 13 held at the lower end of the inner circumference of the seal holder 7 is installed in a slidable contact with the outer circumference of the plunger 2 at the lower part of the cylinder 6 in the figure. As a result, when the plunger 2 slides, the fuel in the sub chamber 7a is sealed and prevented from flowing into the engine. At the same time, it prevents lubricating oil (including engine oil) that lubricates sliding parts in the engine from flowing into the body 1.
 図2、3に示すリリーフ弁機構4は、シート部材4e、リリーフ弁4d、リリーフ弁ホルダ4c、リリーフばね4b、及びばね支持部材4aで構成される。ばね支持部材4aはリリーフばね4bを内包しリリーフ弁室を形成するリリーフボディとしても機能する。リリーフ弁機構4のばね支持部材4a(リリーフボディ)がボディ1に形成された横孔に圧入されて固定される。リリーフばね4bは、一端側がばね支持部材4aに当接し、他端側がリリーフ弁ホルダ4cに当接している。リリーフ弁4dは、リリーフばね4bの付勢力がリリーフ弁ホルダ4cを介して作用してリリーフ弁シート(シート部材4e)に押圧されることで燃料を遮断する。リリーフ弁4dの開弁圧力は、リリーフばね4bの付勢力によって決定される。本実施例ではリリーフ弁機構4は、リリーフ通路を介して加圧室11に連通しているが、これに限定されるわけではなく、低圧通路(低圧燃料室10又は吸入通路10d等)に連通するようにしても良い。リリーフ弁機構4は、コモンレール106やその先の部材に何らかの問題が生じ、コモンレール106が異常に高圧になった場合に作動するよう構成された弁である。 The relief valve mechanism 4 shown in FIGS. 2 and 3 includes a seat member 4e, a relief valve 4d, a relief valve holder 4c, a relief spring 4b, and a spring support member 4a. The spring support member 4a also functions as a relief body that contains the relief spring 4b and forms a relief valve chamber. The spring support member 4a (relief body) of the relief valve mechanism 4 is press-fitted and fixed in the lateral hole formed in the body 1. One end of the relief spring 4b is in contact with the spring support member 4a and the other end is in contact with the relief valve holder 4c. The relief valve 4d shuts off the fuel by the urging force of the relief spring 4b acting via the relief valve holder 4c and being pressed against the relief valve seat (seat member 4e). The valve opening pressure of the relief valve 4d is determined by the urging force of the relief spring 4b. In the present embodiment, the relief valve mechanism 4 communicates with the pressurizing chamber 11 via the relief passage, but is not limited to this, and communicates with the low pressure passage (the low pressure fuel chamber 10 or the suction passage 10d, etc.). It may be done. The relief valve mechanism 4 is a valve configured to operate when a problem occurs in the common rail 106 or a member ahead of the common rail 106 and the common rail 106 becomes abnormally high in pressure.
 つまりリリーフ弁機構4は、リリーフ弁4dの上流側と下流側との差圧が設定圧力を超えた場合に、リリーフばね4bの付勢力に抗してリリーフ弁4dが開弁するように構成される。コモンレール106やその先の部材内の圧力が高くなった場合に開弁し、燃料を加圧室11または低圧通路(低圧燃料室10又は吸入通路10d等)に戻すという役割を有する。なお、図2、3においてはリリーフ弁機構4は開弁した場合に加圧室11に戻す構造を示している。そのため、所定の圧力以下では閉弁状態を維持する必要があり、高圧に対抗するために非常に強力なリリーフばね4bを有している。 That is, the relief valve mechanism 4 is configured to open the relief valve 4d against the biasing force of the relief spring 4b when the differential pressure between the upstream side and the downstream side of the relief valve 4d exceeds the set pressure. It It has a role of opening the valve when the pressure in the common rail 106 or a member beyond it becomes high and returning the fuel to the pressurizing chamber 11 or the low pressure passage (the low pressure fuel chamber 10 or the suction passage 10d). 2 and 3 show a structure in which the relief valve mechanism 4 returns to the pressurizing chamber 11 when the valve is opened. Therefore, it is necessary to maintain the valve closed state at a predetermined pressure or less, and a very strong relief spring 4b is provided to counter the high pressure.
 図3、4に示すようにボディ1の側面部には吸入配管5が取り付けられている。吸入配管5は、車両の燃料タンク103からの燃料を供給する低圧配管104に接続されており、燃料はここから燃料ポンプ内部に供給される。吸入配管5の先の吸入流路5a内の吸入フィルタ17は、燃料タンク103から低圧燃料吸入口10aまでの間に存在する異物を燃料の流れによって燃料ポンプ内に吸収することを防ぐ。低圧燃料吸入口10aを通過した燃料は、圧力脈動低減機構9、低圧燃料流路10dを介して電磁吸入弁機構3の吸入ポート3kに至る(図2参照)。 As shown in FIGS. 3 and 4, a suction pipe 5 is attached to the side surface of the body 1. The intake pipe 5 is connected to a low-pressure pipe 104 that supplies fuel from a fuel tank 103 of the vehicle, and the fuel is supplied from here to the inside of the fuel pump. The suction filter 17 in the suction passage 5a at the tip of the suction pipe 5 prevents foreign matter existing between the fuel tank 103 and the low-pressure fuel suction port 10a from being absorbed into the fuel pump by the flow of fuel. The fuel that has passed through the low-pressure fuel intake port 10a reaches the intake port 3k of the electromagnetic intake valve mechanism 3 via the pressure pulsation reducing mechanism 9 and the low-pressure fuel flow path 10d (see FIG. 2).
 カム91の回転により、プランジャ2がカム91の方向に移動する吸入行程の場合、加圧室11の容積は増加し加圧室11内の燃料圧力が低下する。吸入行程では電磁コイル3gは無通電状態であり、ロッド付勢ばね3によりロッド3iが開弁方向(図3、4の右方向)に付勢されることで、ロッド3iの先端部で可動コア3hを付勢する。この行程で加圧室11内の燃料圧力が吸入ポート3kの圧力よりも低くなって、吸入弁3bの前後差圧よりもロッド付勢ばね3の付勢力が大きくなると、吸入弁3bは吸入弁シート部3aから離れ開弁状態になる。これにより燃料は吸入弁3bの開口部3fを通り、加圧室11に流入する。なお、ロッド付勢ばね3により付勢されたロッド3iはストッパ3nに衝突して開弁方向への動作が規制される。 When the plunger 2 moves in the direction of the cam 91 due to the rotation of the cam 91, the volume of the pressurizing chamber 11 increases and the fuel pressure in the pressurizing chamber 11 decreases. In the intake stroke, the electromagnetic coil 3g is in the non-energized state, and the rod urging spring 3 urges the rod 3i in the valve opening direction (rightward in FIGS. 3 and 4), so that the tip of the rod 3i moves the movable core. Energize 3h. In this process, when the fuel pressure in the pressurizing chamber 11 becomes lower than the pressure in the suction port 3k, and the biasing force of the rod biasing spring 3 becomes larger than the differential pressure across the suction valve 3b, the suction valve 3b becomes The valve is opened from the seat portion 3a. As a result, the fuel flows into the pressurizing chamber 11 through the opening 3f of the intake valve 3b. The rod 3i urged by the rod urging spring 3 collides with the stopper 3n and its operation in the valve opening direction is restricted.
 プランジャ2が吸入行程を終了した後、プランジャ2が上昇運動に転じ上昇行程に移る。ここで電磁コイル3gは無通電状態を維持したままであり磁気付勢力は作用しない。ロッド付勢ばね3mは、無通電状態において吸入弁3bを開弁維持するのに必要十分な付勢力を有するよう設定されている。加圧室11の容積は、プランジャ2の圧縮運動に伴い減少するが、この状態では、一度、加圧室11に吸入された燃料が、再び開弁状態の吸入弁3bの開口部3fを通して吸入通路10dへと戻されるので、加圧室の圧力が上昇することは無い。この行程を戻し行程と称する。 After the plunger 2 finishes the inhalation stroke, the plunger 2 starts to move up and moves to the upstroke. Here, the electromagnetic coil 3g remains in the non-energized state, and the magnetic biasing force does not act. The rod urging spring 3m is set so as to have a urging force necessary and sufficient for keeping the intake valve 3b open in the non-energized state. The volume of the pressurizing chamber 11 decreases with the compressive movement of the plunger 2. In this state, the fuel once sucked into the pressurizing chamber 11 is sucked again through the opening 3f of the intake valve 3b in the valve open state. Since it is returned to the passage 10d, the pressure in the pressurizing chamber does not rise. This process is called a return process.
 この状態で、エンジンコントロールユニット101(以下ECUと呼ぶ)からの制御信号が電磁吸入弁機構3に印加されると、電磁コイル3gには端子16を介して電流が流れる。電磁コイル3gに電流が流れると固定コア3e(磁性コア)と可動コア3hとの間に磁気吸引力が作用し、固定コア3e及び可動コア3hが磁気吸引面で接触する。磁気吸引力はロッド付勢ばね3mの付勢力に打ち勝って可動コア3hを付勢し、可動コア3hがロッド凸部3jと係合して、ロッド3iを吸入弁3bから離れる方向に移動させる。 In this state, when a control signal from the engine control unit 101 (hereinafter referred to as ECU) is applied to the electromagnetic suction valve mechanism 3, a current flows through the electromagnetic coil 3g via the terminal 16. When a current flows through the electromagnetic coil 3g, a magnetic attraction force acts between the fixed core 3e (magnetic core) and the movable core 3h, and the fixed core 3e and the movable core 3h come into contact with each other on the magnetic attraction surface. The magnetic attraction force overcomes the urging force of the rod urging spring 3m to urge the movable core 3h, and the movable core 3h engages with the rod protrusion 3j to move the rod 3i in the direction away from the suction valve 3b.
 よって、吸入弁付勢ばね3lによる付勢力と燃料が吸入通路10dに流れ込むことによる流体力により吸入弁3bが閉弁する。閉弁後、加圧室11の燃料圧力はプランジャ2の上昇運動と共に上昇し、燃料吐出口12aの圧力以上になると、吐出弁機構8を介して高圧燃料の吐出が行われ、コモンレール106へと供給される。この行程を吐出行程と称する。なお、ボディ1の横穴に吐出ジョイント12が挿入され、吐出ジョイント12の内部空間により燃料吐出口12aが形成される。なお、吐出ジョイント12は溶接部12bにより溶接でボディ1の横穴に固定される。 Therefore, the suction valve 3b is closed by the urging force of the suction valve urging spring 3l and the fluid force of the fuel flowing into the suction passage 10d. After the valve is closed, the fuel pressure in the pressurizing chamber 11 rises with the ascending movement of the plunger 2, and when the pressure becomes equal to or higher than the pressure of the fuel discharge port 12a, the high pressure fuel is discharged through the discharge valve mechanism 8 to the common rail 106. Supplied. This process is called a discharge process. The discharge joint 12 is inserted into the lateral hole of the body 1, and the fuel discharge port 12a is formed by the internal space of the discharge joint 12. The discharge joint 12 is fixed to the lateral hole of the body 1 by welding at the welded portion 12b.
 すなわち、プランジャ2の下始点から上始点までの間の上昇行程は、戻し行程と吐出行程からなる。そして、電磁吸入弁機構3のコイル3gへの通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。電磁コイル3gへ通電するタイミングを早くすれば、上昇行程中の、戻し行程の割合が小さく、吐出行程の割合が大きい。つまり、吸入通路10dに戻される燃料が少なく、高圧吐出される燃料は多くなる。一方、通電するタイミングを遅くすれば上昇行程中の、戻し行程の割合が大きく吐出行程の割合が小さい。すなわち、吸入通路10dに戻される燃料が多く、高圧吐出される燃料は少なくなる。電磁コイル3gへの通電タイミングは、ECU101からの指令によって制御される。 That is, the ascending stroke from the lower start point to the upper start point of the plunger 2 consists of the return stroke and the discharge stroke. Then, by controlling the timing of energizing the coil 3g of the electromagnetic suction valve mechanism 3, the amount of high-pressure fuel discharged can be controlled. If the timing of energizing the electromagnetic coil 3g is advanced, the proportion of the return stroke during the ascending stroke is small and the proportion of the discharge stroke is large. That is, less fuel is returned to the suction passage 10d, and more fuel is discharged under high pressure. On the other hand, if the timing of energization is delayed, the proportion of the return stroke is large and the proportion of the discharge stroke is small during the rising stroke. That is, much fuel is returned to the suction passage 10d, and less fuel is discharged under high pressure. The timing of energizing the electromagnetic coil 3g is controlled by a command from the ECU 101.
 以上のように電磁コイル3gへの通電タイミングを制御することで、高圧吐出される燃料の量をエンジンが必要とする量に制御することが出来る。ボディ1の加圧室11出口側の吐出弁機構8は、吐出弁シート8a、吐出弁シート8aと接離する吐出弁8b、吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8c、及び吐出弁8bのストローク(移動距離)を決める吐出弁ストッパ8dから構成されている。吐出弁ストッパ8dは燃料の外部への漏洩を遮断するプラグ8eに圧入されている。プラグ8eは溶接部8fで溶接により接合される。吐出弁8bの二次側には、吐出弁室8gが形成され、この吐出弁室8gがボディ1に水平方向に形成される横穴を介して燃料吐出口12aと連通する。 By controlling the energization timing to the electromagnetic coil 3g as described above, the amount of fuel discharged at high pressure can be controlled to the amount required by the engine. The discharge valve mechanism 8 on the outlet side of the pressurizing chamber 11 of the body 1 includes a discharge valve seat 8a, a discharge valve 8b that contacts and separates from the discharge valve seat 8a, and a discharge valve spring that biases the discharge valve 8b toward the discharge valve seat 8a. 8c and a discharge valve stopper 8d that determines the stroke (movement distance) of the discharge valve 8b. The discharge valve stopper 8d is press-fitted into a plug 8e that blocks the leakage of fuel to the outside. The plug 8e is joined by welding at the welded portion 8f. A discharge valve chamber 8g is formed on the secondary side of the discharge valve 8b, and the discharge valve chamber 8g communicates with the fuel discharge port 12a through a lateral hole formed in the body 1 in the horizontal direction.
 加圧室11と吐出弁室8gの間に燃料差圧が無い状態では、吐出弁8bは吐出弁ばね8cの付勢力により吐出弁シート8aに圧着され閉弁状態となっている。加圧室11の燃料圧力が吐出弁室8gの燃料圧力よりも大きくなった時に初めて、吐出弁8bは吐出弁ばね8cの付勢力に逆らって開弁する。吐出弁8bが開弁すると、加圧室11内の高圧の燃料は、吐出弁室8g、燃料吐出口12aを経てコモンレール106(図1参照)へ吐出される。以上のような構成により、吐出弁機構8は、燃料の流通方向を制限する逆止弁として機能する。 When there is no fuel pressure difference between the pressurizing chamber 11 and the discharge valve chamber 8g, the discharge valve 8b is pressed against the discharge valve seat 8a by the urging force of the discharge valve spring 8c and is in the closed state. Only when the fuel pressure in the pressurizing chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 8g, the discharge valve 8b opens against the biasing force of the discharge valve spring 8c. When the discharge valve 8b is opened, the high-pressure fuel in the pressurizing chamber 11 is discharged to the common rail 106 (see FIG. 1) via the discharge valve chamber 8g and the fuel discharge port 12a. With the configuration as described above, the discharge valve mechanism 8 functions as a check valve that limits the flow direction of fuel.
 低圧燃料室10には燃料ポンプ内で発生した圧力脈動が燃料配管104へ波及するのを低減させる圧力脈動低減機構9が設置されている。一度、加圧室11に流入した燃料が、容量制御のため再び開弁状態の吸入弁体3bを通して吸入通路10dへと戻される場合、吸入通路10dへ戻された燃料により低圧燃料室10には圧力脈動が発生する。しかし、低圧燃料室10に設けた圧力脈動低減機構9は、波板状の円盤型金属板2枚をその外周で張り合わせ、内部にアルゴンのような不活性ガスを注入した金属ダイアフラムダンパで形成されており、圧力脈動はこの金属ダンパが膨張・収縮することで吸収低減される。 The low pressure fuel chamber 10 is provided with a pressure pulsation reducing mechanism 9 for reducing the pressure pulsation generated in the fuel pump from spreading to the fuel pipe 104. When the fuel once flowing into the pressurizing chamber 11 is returned to the suction passage 10d through the suction valve body 3b which is in the open state again for the capacity control, the fuel returned to the suction passage 10d causes the fuel to flow into the low pressure fuel chamber 10. Pressure pulsation occurs. However, the pressure pulsation reducing mechanism 9 provided in the low-pressure fuel chamber 10 is formed by a metal diaphragm damper in which two corrugated disc-shaped metal plates are bonded together at their outer periphery and an inert gas such as argon is injected into the inside. Therefore, the pressure pulsation is absorbed and reduced as the metal damper expands and contracts.
 プランジャ2は、大径部2aと小径部2bを有し、プランジャの往復運動によって副室7aの体積は増減する。副室7aは燃料通路10eにより低圧燃料室10と連通している。プランジャ2の下降時は、副室7aから低圧燃料室10へ、上昇時は、低圧燃料室10から副室7aへと燃料の流れが発生する。このことにより、ポンプの吸入行程もしくは、戻し行程におけるポンプ内外への燃料流量を低減することができ、燃料ポンプ内部で発生する圧力脈動を低減する機能を有している。 The plunger 2 has a large diameter portion 2a and a small diameter portion 2b, and the volume of the sub chamber 7a increases or decreases due to the reciprocating motion of the plunger. The sub chamber 7a communicates with the low pressure fuel chamber 10 through the fuel passage 10e. When the plunger 2 descends, the fuel flows from the sub chamber 7a to the low pressure fuel chamber 10, and when the plunger 2 rises, the fuel flows from the low pressure fuel chamber 10 to the sub chamber 7a. As a result, the fuel flow rate into and out of the pump during the suction stroke or the return stroke of the pump can be reduced, and the pressure pulsation generated inside the fuel pump can be reduced.
 以下、図5、6、7に基づいて本実施例の燃料ポンプについて具体的に説明する。図5は本実施例の電磁吸入弁機構3の軸方向における断面図を示し、図6は電磁吸入弁機構3を拡大した図面であり、図7はこの電磁吸入弁機構3の主要部品を分解して示した図面である。図5に示すように、本実施例の燃料ポンプは、固定コア3e又は可動コア3hの径方向外側に配置され、コイル3gが巻かれるボビン3pを備え、端子部材16は、切欠き3raに対応する位置において、ボビン3pと接続される。具体的には、燃料ポンプは、コイル3g及びカバー部材3rの径方向外側に配置されるカップ形状のヨーク3qを備え、端子部材16は、ヨーク3qの円筒側面部よりも径方向内側において、ボビン3pと接続される。カバー部材3rは皿ばね3sにより軸方向内側に付勢され、Cリング3tは固定コア3eの小径部3eaに形成された溝部に嵌められることで、皿ばね3sが付勢された状態で維持されるように皿ばね3sを保持する。 Hereinafter, the fuel pump of the present embodiment will be specifically described with reference to FIGS. 5 is an axial sectional view of the electromagnetic suction valve mechanism 3 of the present embodiment, FIG. 6 is an enlarged view of the electromagnetic suction valve mechanism 3, and FIG. 7 is an exploded view of main parts of the electromagnetic suction valve mechanism 3. It is the drawing shown. As shown in FIG. 5, the fuel pump of this embodiment includes a bobbin 3p arranged radially outside the fixed core 3e or the movable core 3h, around which a coil 3g is wound, and the terminal member 16 corresponds to the cutout 3ra. The bobbin 3p is connected to the bobbin 3p. Specifically, the fuel pump includes a cup-shaped yoke 3q arranged on the outside in the radial direction of the coil 3g and the cover member 3r, and the terminal member 16 includes a bobbin on the inside in the radial direction of the cylindrical side surface portion of the yoke 3q. It is connected to 3p. The cover member 3r is biased inward in the axial direction by the disc spring 3s, and the C ring 3t is fitted in the groove formed in the small diameter portion 3ea of the fixed core 3e, so that the disc spring 3s is maintained in the biased state. So that the disc spring 3s is held.
 図7に示すようにボビン3pはヨーク3qの円筒側面部に対し、径方向内側から径方向外側まで配置される突出部3paを有し、この突出部3paにより端子部材16が固定される。ボビン3p及び突出部3paは樹脂モールドやプラスチックなど非導電性材料により一体に構成される。ヨーク3qの底面には孔3qcが形成され、この孔3qcの内周部がアンカーガイド部3uの外周部に圧入される。アンカーガイド部3uの内周部はアンカー3hの外周部をガイドする。アンカーガイド部3uの内周部はアンカー3hと軸方向反対側において、シート部材3vの小径部の外周部に圧入される。シート部材3vは図2及び3のシート部3aを形成するとともに、径方向中心に長孔が形成され、この長孔の内周部でロッド3iをガイドする。 As shown in FIG. 7, the bobbin 3p has a protruding portion 3pa arranged from the radially inner side to the radially outer side with respect to the cylindrical side surface of the yoke 3q, and the terminal member 16 is fixed by the protruding portion 3pa. The bobbin 3p and the protrusion 3pa are integrally formed of a non-conductive material such as resin mold or plastic. A hole 3qc is formed on the bottom surface of the yoke 3q, and the inner peripheral portion of the hole 3qc is press-fitted into the outer peripheral portion of the anchor guide portion 3u. The inner peripheral portion of the anchor guide portion 3u guides the outer peripheral portion of the anchor 3h. The inner peripheral portion of the anchor guide portion 3u is press-fitted into the outer peripheral portion of the small diameter portion of the seat member 3v on the axially opposite side to the anchor 3h. The seat member 3v forms the seat portion 3a shown in FIGS. 2 and 3, and also has an elongated hole formed at the center in the radial direction, and the rod 3i is guided by the inner peripheral portion of the elongated hole.
 また、コイル3gはヨーク3qの径方向外側において、端子部材16と接続される。具体的には端子部材16はワイヤ接続部16aにおいて、コイル3gからのワイヤを挟み込み、圧着することでワイヤを固定する。つまりワイヤ接続部16aにおいてコイル3gからのワイヤが端子部材16と溶接される。なお図6においてはこのコイル3gからのワイヤは図示していない。またボビン3pはコイル3gの軸方向(図5の左右方向)に沿うように形成される突起3pb、又は溝(図示なし)を有し、コイル3gのワイヤは、突起3pb、又は溝に接触した状態で、端子部材16に巻かれるように形成されることが望ましい。また、ボビン3pにはボビン3pに巻かれたコイル3gをコイル3gの軸方向外側に配置するための切欠き3pcが形成され、ボビン3pの切欠き3pcの軸方向内側(図5の右方向)から軸方向外側(図5の左方向)に配置されたコイル3gは、径方向外側に位置する突起3pb、又は溝に向かって形成される。 Also, the coil 3g is connected to the terminal member 16 on the outside in the radial direction of the yoke 3q. Specifically, the terminal member 16 fixes the wire by sandwiching and crimping the wire from the coil 3g at the wire connecting portion 16a. That is, the wire from the coil 3g is welded to the terminal member 16 at the wire connecting portion 16a. The wire from the coil 3g is not shown in FIG. The bobbin 3p has a protrusion 3pb or a groove (not shown) formed along the axial direction of the coil 3g (the left-right direction in FIG. 5), and the wire of the coil 3g contacts the protrusion 3pb or the groove. In this state, it is desirable that the terminal member 16 be wound. Further, the bobbin 3p is formed with a notch 3pc for disposing the coil 3g wound around the bobbin 3p on the axially outer side of the coil 3g, and the bobbin 3p has the axially inner side of the notch 3pc (rightward in FIG. 5). The coil 3g arranged axially outside (to the left in FIG. 5) is formed toward the protrusion 3pb or the groove located radially outside.
 ここで図5、6に示すように本実施例の燃料ポンプは、コイル3gを通電することで発生する磁気吸引力により可動コアを吸引する固定コア3eと、コイル3gの外周側に配置され、磁気回路を形成する磁性部材(カバー部材3r)とを備える。なお、磁性部材は固定コア3eの軸方向外側に配置される。またばね部材3mは、固定コア3eの内径側に形成された凹み部3ecに配置され、可動コア3hにより駆動されるロッド3iと付勢する。そして、ばね部材3mの軸方向外側ばね端面3maが磁性部材の軸方向外側端面(軸方向外側カバー端面3rc)よりも軸方向外側(図5中左側)に配置される。また固定コア3eの凹み部3ecの底面3edが磁性部材の軸方向外側端面(軸方向外側カバー端面3rc)よりも軸方向外側に配置されることが望ましい。 Here, as shown in FIGS. 5 and 6, the fuel pump of the present embodiment is arranged on the outer peripheral side of the fixed core 3e that attracts the movable core by the magnetic attraction force generated by energizing the coil 3g, and on the outer peripheral side of the coil 3g. And a magnetic member (cover member 3r) forming a magnetic circuit. The magnetic member is arranged outside the fixed core 3e in the axial direction. Further, the spring member 3m is arranged in the recessed portion 3ec formed on the inner diameter side of the fixed core 3e, and urges the rod 3i driven by the movable core 3h. The axially outer spring end surface 3ma of the spring member 3m is arranged axially outer (left side in FIG. 5) than the axially outer end surface (axial outer cover end surface 3rc) of the magnetic member. Further, it is desirable that the bottom surface 3ed of the recessed portion 3ec of the fixed core 3e is arranged axially outside of the axially outer end surface (axial outer cover end surface 3rc) of the magnetic member.
 ここで上記した磁性部材は、固定コア3eの軸方向外側に配置されるカバー部材3rであり、カバー部材3rの軸方向外側カバー端面と上記した磁性部材の軸方向外側端面とが同一面である。なお、本実施例において固定コア3eはFeをベースにしてC 0.18wt%,Mo,Si,Al 12wt%以下,Cu 2wt%,Ni 4wt%,Cr 9~20wt%,Ti 0.5wt%以下及びその他不純物元素を含むフェライト系の磁性素材であって,硬度がHmv350~450程度に調整されたもので構成される。 Here, the above-mentioned magnetic member is the cover member 3r arranged on the axially outer side of the fixed core 3e, and the axially outer cover end surface of the cover member 3r and the axially outer end surface of the magnetic member are the same surface. .. In the present embodiment, the fixed core 3e is based on Fe and has C 0.18 wt%, Mo, Si, Al 12 wt% or less, Cu 2 wt%, Ni 4 wt%, Cr 9 to 20 wt%, Ti 0.5 wt% or less. And a ferrite-based magnetic material containing other impurity elements, the hardness of which is adjusted to about Hmv 350 to 450.
 図5、6においては、固定コア3eと磁性部材(カバー部材3r)とが別部材で構成されているが、本発明はこれに限定されず、これらは一体の部材であっても良い。つまり、この場合、大径部3eaとカバー部材3rが一体の部材で形成され、この一体となった大径部の軸方向外側端面が上記したカバー部材3rの軸方向外側カバー端面3rcのことを示す。これにより、従来に比べばね部材3mの位置を軸方向外側に移動することが可能となる。したがって固定コア3eの軸方向長さを短くすることができるためコスト低減を図ることができる。 In FIGS. 5 and 6, the fixed core 3e and the magnetic member (cover member 3r) are formed as separate members, but the present invention is not limited to this, and they may be an integral member. That is, in this case, the large diameter portion 3ea and the cover member 3r are formed as an integral member, and the axially outer end surface of the integrated large diameter portion is referred to as the axial outer cover end surface 3rc of the cover member 3r. Show. As a result, the position of the spring member 3m can be moved outward in the axial direction as compared with the conventional case. Therefore, since the axial length of the fixed core 3e can be shortened, the cost can be reduced.
 なお、図5、6においては、固定コア3eとカバー部材3rとは別部材で構成されるが、カバー部材3rも同様に磁気部材である。そして、カバー部材3rの軸方向外側カバー端面3rcと固定コア3eの軸方向外側端面とが同一面を示す。これによりカバー部材3rの中心部に形成された孔のスペースを有効利用することができ、固定コア3eの軸方向長さを短くすることができる。また、カバー部材3rがコイル3gに近づくことになるため、磁気回路の小型化を図ることができ、結果として磁気回路の効率を向上することが可能となる。 In FIGS. 5 and 6, the fixed core 3e and the cover member 3r are separate members, but the cover member 3r is also a magnetic member. The axially outer cover end surface 3rc of the cover member 3r and the axially outer end surface of the fixed core 3e are flush with each other. Thereby, the space of the hole formed in the central portion of the cover member 3r can be effectively used, and the axial length of the fixed core 3e can be shortened. Further, since the cover member 3r approaches the coil 3g, the magnetic circuit can be downsized, and as a result, the efficiency of the magnetic circuit can be improved.
 図6は電磁吸入弁機構3を拡大した図面である。固定コア3eは大径部3eaと小径部3ebとを有し、カバー部材3rは、小径部3ebの径方向外側で大径部3eaの軸方向外側に配置される。固定コア3eの小径部3ebは、カバー部材3rの軸方向外側カバー端面3rcから小径部3ebの軸方向外側小径端面3eeまでの長さL1がカバー部材3rの軸方向内側カバー端面3rdから大径部3eaの軸方向内側大径端面3efまでの長さL2に対し、同等以上となるように構成される。また固定コア3eの小径部3ebは、ヨーク3qの軸方向外側ヨーク端面3qaから小径部3ebの軸方向外側小径端面3eeまでの長さL3がカバー部材3rの軸方向外側カバー端面3rcからヨーク3qの軸方向外側ヨーク端面3qaまでの長さL4に対し、大きくなるように構成される。つまりL3の長さを確保することでばね部材3mから受ける荷重に耐えるための強度を確保することができる。 FIG. 6 is an enlarged view of the electromagnetic suction valve mechanism 3. The fixed core 3e has a large diameter portion 3ea and a small diameter portion 3eb, and the cover member 3r is arranged radially outside the small diameter portion 3eb and axially outside the large diameter portion 3ea. The small diameter portion 3eb of the fixed core 3e has a length L1 from the axial outer cover end surface 3rc of the cover member 3r to the axial outer small diameter end surface 3ee of the small diameter portion 3eb from the axial inner cover end surface 3rd of the cover member 3r to the large diameter portion. The length L2 up to the axially inner large-diameter end face 3ef of 3ea is equal to or more than the length L2. Further, in the small diameter portion 3eb of the fixed core 3e, the length L3 from the axially outer yoke end surface 3qa of the yoke 3q to the axially outer small diameter end surface 3ee of the small diameter portion 3eb is set from the axial outer cover end surface 3rc of the cover member 3r to the yoke 3q. It is configured to be larger than the length L4 up to the axially outer yoke end surface 3qa. That is, by securing the length of L3, it is possible to secure the strength for withstanding the load received from the spring member 3m.
 給電用の端子部材16はコイル3gと電気的に接続され、コネクタ17の内部に配置される。そして固定コア3eは、小径部3ebの軸方向外側小径端面3eeがコネクタ17の軸方向外側コネクタ端面17bに対し、軸方向外側に配置されるように構成される。また端子部材16はコネクタ17の内部に配置されるとともに、コイル3gの軸方向(図面6の左右方向)と交差する方向(図面6の上下方向)に沿うように配置され、コイル3gと電気的に接続される。またばね部材3mは、カバー部材3rの径方向内側に配置され、ばね部材3mの軸方向外側ばね端面3maが端子部材とコイル3gとの接続部位(ワイヤ接続部16a)に対し、軸方向外側に配置されるように配置される。これによりL3の長さを確保でき、ばね部材3mから受ける荷重に耐えるための強度を確保することができる。 The terminal member 16 for power supply is electrically connected to the coil 3g and is arranged inside the connector 17. The fixed core 3e is configured such that the axially outer small-diameter end surface 3ee of the small-diameter portion 3eb is arranged axially outside with respect to the axially outer connector end surface 17b of the connector 17. The terminal member 16 is arranged inside the connector 17 and along the direction (vertical direction in FIG. 6) intersecting the axial direction of the coil 3g (horizontal direction in FIG. 6) and electrically connected to the coil 3g. Connected to. Further, the spring member 3m is arranged radially inward of the cover member 3r, and the axially outer spring end surface 3ma of the spring member 3m is axially outward with respect to the connecting portion (wire connecting portion 16a) between the terminal member and the coil 3g. Arranged to be arranged. Thereby, the length of L3 can be secured, and the strength for withstanding the load received from the spring member 3m can be secured.
 また図7に示すようにヨーク3qは、円筒形状に形成されるとともに、ヨーク3qの軸方向外側端面3qaの周方向の一部から軸方向内側に向かう切欠き3qbが形成される。また端子部材16はヨーク3qの径方向内側から切欠き3qbを通過して、ヨーク3qの径方向外側に亘って形成される。これにより端子部材16を径方向に突出させることができるので、端子部材16を軸方向に突出させることに比べ、軸方向の長さを短くすることができ、燃料ポンプの設置時に邪魔とならないようにすることができる。またコネクタ17は、径方向長さL5が軸方向長さL6に対し大きくなるように形成されるとともに、径方向長さL6がコネクタ17の長手方向(径方向)の全領域においてほぼ一定となるように形成されることが望ましい。 Further, as shown in FIG. 7, the yoke 3q is formed in a cylindrical shape, and a notch 3qb extending inward in the axial direction is formed from a part of the axially outer end surface 3qa of the yoke 3q in the circumferential direction. Further, the terminal member 16 is formed so as to pass from the radially inner side of the yoke 3q through the notch 3qb to the radially outer side of the yoke 3q. Since this allows the terminal member 16 to be projected in the radial direction, the length in the axial direction can be made shorter than that in which the terminal member 16 is projected in the axial direction, so that it does not become an obstacle when installing the fuel pump. Can be Further, the connector 17 is formed such that the radial length L5 is larger than the axial length L6, and the radial length L6 is substantially constant in the entire region of the connector 17 in the longitudinal direction (radial direction). It is desirable to be formed as follows.
 以上の本実施例の構成によれば、コイル3gの通電時に可動コア3hが磁気的に吸引される吸引力を向上させることが可能となり、かつ電磁吸入弁機構3を小型化にすることができる。すなわち本実施例によれば磁気回路を効率良く形成できるので、通電電流を低下させても、必要な磁気吸引力を発生できるようになり、消費電力を低減できる。 According to the configuration of the present embodiment described above, it is possible to improve the attractive force with which the movable core 3h is magnetically attracted when the coil 3g is energized, and the electromagnetic suction valve mechanism 3 can be downsized. .. That is, according to the present embodiment, the magnetic circuit can be efficiently formed, so that the required magnetic attraction force can be generated even if the energization current is reduced, and the power consumption can be reduced.
1 ボディ
2 プランジャ
3 電磁吸入弁機構
4 リリーフ弁機構
5 吸入配管
5a 吸入配管取付部位
6 シリンダ
7 シールホルダ
8 吐出弁機構
9 圧力脈動低減機構
10a 低圧燃料吸入口
11 加圧室
12 吐出ジョイント
13 プランジャシール
 
1 Body 2 Plunger 3 Electromagnetic Suction Valve Mechanism 4 Relief Valve Mechanism 5 Suction Pipe 5a Suction Pipe Mounting Site 6 Cylinder 7 Seal Holder 8 Discharge Valve Mechanism 9 Pressure Pulsation Reduction Mechanism 10a Low Pressure Fuel Suction Port 11 Pressurization Chamber 12 Discharge Joint 13 Plunger Seal

Claims (10)

  1.  コイルを通電することで発生する磁気吸引力により可動コアを吸引する固定コアと、
     前記固定コアの内径側に形成された凹み部に配置され、前記可動コアにより駆動されるロッドと付勢するばね部材と、
     前記コイルの外周側に配置され、磁気回路を形成する磁性部材と、を備え、
     前記ばね部材の軸方向外側ばね端面が前記磁性部材の軸方向外側端面よりも軸方向外側に配置される燃料ポンプ。
    A fixed core that attracts the movable core by a magnetic attraction force generated by energizing the coil,
    A spring member arranged in a recess formed on the inner diameter side of the fixed core and biasing the rod driven by the movable core;
    A magnetic member arranged on the outer peripheral side of the coil to form a magnetic circuit,
    A fuel pump in which an axially outer spring end surface of the spring member is arranged axially outer than an axially outer end surface of the magnetic member.
  2.  コイルを通電することで発生する磁気吸引力により可動コアを吸引する固定コアと、
     前記固定コアの内径側に形成された凹み部に配置され、前記可動コアにより駆動されるロッドと付勢するばね部材と、
     前記コイルの外周側に配置され、磁気回路を形成する磁性部材と、を備え、
     前記固定コアの前記凹み部の底面が前記磁性部材の軸方向外側端面よりも軸方向外側に配置される燃料ポンプ。
    A fixed core that attracts the movable core by a magnetic attraction force generated by energizing the coil,
    A spring member arranged in a recess formed on the inner diameter side of the fixed core and biasing the rod driven by the movable core;
    A magnetic member arranged on the outer peripheral side of the coil to form a magnetic circuit,
    A fuel pump in which the bottom surface of the recess of the fixed core is arranged axially outside of the axially outer end surface of the magnetic member.
  3.  請求項1又は2記載の高圧燃料ポンプにおいて、
     前記磁性部材は、前記固定コアの軸方向外側に配置されるカバー部材であり、
     前記カバー部材の軸方向外側カバー端面と前記磁性部材の前記軸方向外側端面とが同一面である燃料ポンプ。
    The high-pressure fuel pump according to claim 1 or 2,
    The magnetic member is a cover member arranged on the outer side in the axial direction of the fixed core,
    A fuel pump in which an axially outer cover end surface of the cover member and an axially outer end surface of the magnetic member are flush with each other.
  4.  請求項3に記載の燃料ポンプにおいて、
     前記固定コアは大径部と小径部とを有し、
     前記カバー部材は、前記小径部の径方向外側で前記大径部の軸方向外側に配置される燃料ポンプ。
    The fuel pump according to claim 3,
    The fixed core has a large diameter portion and a small diameter portion,
    In the fuel pump, the cover member is arranged radially outside the small diameter portion and axially outside the large diameter portion.
  5.  請求項4に記載の燃料ポンプにおいて、
     前記固定コアの前記小径部は、前記カバー部材の軸方向外側カバー端面から前記小径部の軸方向外側小径端面までの長さが前記カバー部材の軸方向内側カバー端面から前記大径部の軸方向内側大径端面までの長さに対し、同等以上となるように構成された燃料ポンプ。
    The fuel pump according to claim 4,
    The small diameter portion of the fixed core has a length from an axially outer cover end surface of the cover member to an axially outer small diameter end surface of the small diameter portion to an axially inner cover end surface of the cover member in the axial direction of the large diameter portion. A fuel pump configured to have a length equal to or greater than the length up to the inner large-diameter end surface.
  6.  請求項4に記載の燃料ポンプにおいて、
     前記固定コアの前記小径部は、前記ヨークの軸方向外側ヨーク端面から前記小径部の軸方向外側小径端面までの長さが前記カバー部材の軸方向外側カバー端面から前記ヨークの前記軸方向外側ヨーク端面までの長さに対し、大きくなるように構成された燃料ポンプ。
    The fuel pump according to claim 4,
    The small diameter portion of the fixed core has a length from the axially outer yoke end surface of the yoke to the axially outer small diameter end surface of the small diameter portion to the axial outer yoke end of the yoke from the axial outer cover end surface of the cover member. A fuel pump configured to be larger than the length to the end face.
  7.  請求項4に記載の燃料ポンプにおいて、
     コイルと電気的に接続され、コネクタの内部に配置される給電用の端子部材を備え、
     前記固定コアは、前記小径部の軸方向外側小径端面が前記コネクタの軸方向外側コネクタ端面に対し、軸方向外側に配置されるように構成された燃料ポンプ。
    The fuel pump according to claim 4,
    A terminal member for power supply, which is electrically connected to the coil and is arranged inside the connector,
    The fixed core is a fuel pump configured such that an axially outer small-diameter end surface of the small-diameter portion is arranged axially outside with respect to an axially outer connector end surface of the connector.
  8.  請求項3に記載の燃料ポンプにおいて、
     コネクタの内部に配置されるとともに、前記コイルの軸方向と交差する方向に沿うように配置され、前記コイルと電気的に接続される端子部材を備え、
     前記ばね部材は、前記カバー部材の径方向内側に配置され、
     前記ばね部材の軸方向外側ばね端面が前記端子部材と前記コイルとの接続部位に対し、軸方向外側に配置されるように配置された燃料ポンプ。
    The fuel pump according to claim 3,
    A terminal member that is disposed inside the connector and that is disposed along a direction that intersects the axial direction of the coil, and that is electrically connected to the coil,
    The spring member is arranged radially inside the cover member,
    A fuel pump arranged such that an axially outer spring end surface of the spring member is arranged axially outside with respect to a connection portion between the terminal member and the coil.
  9.  請求項8に記載の燃料ポンプにおいて、
     前記ヨークは、円筒形状に形成されるとともに、前記ヨークの前記軸方向外側端面の周方向の一部から軸方向内側に向かう切欠きが形成され、
     前記端子部材は前記ヨークの径方向内側から前記切欠きを通過して、前記ヨークの径方向外側に亘って形成された燃料ポンプ。
    The fuel pump according to claim 8,
    The yoke is formed in a cylindrical shape, and a notch extending inward in the axial direction is formed from a part of the axially outer end surface of the yoke in the circumferential direction,
    The fuel pump is formed such that the terminal member passes through the notch from a radial inner side of the yoke and extends radially outward of the yoke.
  10.  請求項8に記載の燃料ポンプにおいて、
     前記コネクタは、径方向長さが軸方向長さに対し大きくなるように形成されるとともに、前記径方向長さが前記コネクタの長手方向の全領域においてほぼ一定となるように形成された燃料ポンプ。
    The fuel pump according to claim 8,
    The fuel pump is formed such that the radial length of the connector is larger than the axial length of the connector, and the radial length of the connector is substantially constant over the entire longitudinal region of the connector. ..
PCT/JP2019/039577 2018-10-31 2019-10-08 Fuel pump WO2020090371A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553715A JP7110384B2 (en) 2018-10-31 2019-10-08 Fuel pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018204675 2018-10-31
JP2018-204675 2018-10-31

Publications (1)

Publication Number Publication Date
WO2020090371A1 true WO2020090371A1 (en) 2020-05-07

Family

ID=70464078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039577 WO2020090371A1 (en) 2018-10-31 2019-10-08 Fuel pump

Country Status (2)

Country Link
JP (1) JP7110384B2 (en)
WO (1) WO2020090371A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216466A (en) * 2009-02-18 2010-09-30 Denso Corp High-pressure pump
JP2012082849A (en) * 2010-10-07 2012-04-26 Hitachi Automotive Systems Ltd Electromagnetic drive mechanism, solenoid valve using the electromagnetic drive mechanism and variable flow rate high-pressure fuel supply pump having solenoid inlet valve using the solenoid valve
JP2014025389A (en) * 2012-07-26 2014-02-06 Denso Corp Electromagnetic drive unit and high pressure pump using the same
WO2018123323A1 (en) * 2016-12-28 2018-07-05 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump provided with electromagnetic intake valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216466A (en) * 2009-02-18 2010-09-30 Denso Corp High-pressure pump
JP2012082849A (en) * 2010-10-07 2012-04-26 Hitachi Automotive Systems Ltd Electromagnetic drive mechanism, solenoid valve using the electromagnetic drive mechanism and variable flow rate high-pressure fuel supply pump having solenoid inlet valve using the solenoid valve
JP2014025389A (en) * 2012-07-26 2014-02-06 Denso Corp Electromagnetic drive unit and high pressure pump using the same
WO2018123323A1 (en) * 2016-12-28 2018-07-05 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump provided with electromagnetic intake valve

Also Published As

Publication number Publication date
JPWO2020090371A1 (en) 2021-09-09
JP7110384B2 (en) 2022-08-01

Similar Documents

Publication Publication Date Title
JP2010019263A (en) High pressure fuel pump
JP6689178B2 (en) High pressure fuel supply pump
JPWO2018061471A1 (en) High pressure fuel supply pump
WO2021054006A1 (en) Electromagnetic suction valve and high-pressure fuel supply pump
CN110799746B (en) High-pressure fuel supply pump
US20220131440A1 (en) Fuel Pump
JP7178504B2 (en) Fuel pump
WO2020090371A1 (en) Fuel pump
JP7284348B2 (en) high pressure fuel supply pump
JP2009108783A (en) High pressure fuel pump
JP6770193B2 (en) High pressure fuel supply pump
JP7019816B2 (en) Fuel pump
JP2004169685A (en) Solenoid valve
WO2023062684A1 (en) Electromagnetic suction valve and fuel supply pump
WO2024084567A1 (en) Fuel pump
JP7248783B2 (en) Solenoid valve mechanism and high-pressure fuel supply pump provided with the same
CN112243474B (en) Electromagnetic valve and high-pressure fuel supply pump
JP7077212B2 (en) High pressure fuel pump
JP5370438B2 (en) High pressure pump
WO2022269977A1 (en) Electromagnetic suction valve mechanism and fuel pump
JP6932629B2 (en) High pressure fuel pump
WO2019207906A1 (en) High-pressure fuel supply pump
JP2021059991A (en) High pressure fuel supply pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553715

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878862

Country of ref document: EP

Kind code of ref document: A1