JP2021059991A - High pressure fuel supply pump - Google Patents

High pressure fuel supply pump Download PDF

Info

Publication number
JP2021059991A
JP2021059991A JP2019183466A JP2019183466A JP2021059991A JP 2021059991 A JP2021059991 A JP 2021059991A JP 2019183466 A JP2019183466 A JP 2019183466A JP 2019183466 A JP2019183466 A JP 2019183466A JP 2021059991 A JP2021059991 A JP 2021059991A
Authority
JP
Japan
Prior art keywords
core
fuel supply
pressure fuel
supply pump
guide member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019183466A
Other languages
Japanese (ja)
Other versions
JP7299817B2 (en
Inventor
雄太 笹生
Yuta Sasao
雄太 笹生
山田 裕之
Hiroyuki Yamada
裕之 山田
徳尾 健一郎
Kenichiro Tokuo
健一郎 徳尾
三冨士 政徳
Masanori Mifuji
政徳 三冨士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2019183466A priority Critical patent/JP7299817B2/en
Publication of JP2021059991A publication Critical patent/JP2021059991A/en
Application granted granted Critical
Publication of JP7299817B2 publication Critical patent/JP7299817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a high pressure fuel supply pump that downsizes a solenoid valve mechanism and improves a layout property.SOLUTION: A high pressure fuel supply pump 1 has a solenoid valve mechanism 300. The solenoid valve mechanism 300 is equipped with a fixed core 44, a moving core 45 disposed at a position opposite to the fixed core 44, a guide member 46 fixed so as to fix the moving core 45 to the fixed core 44 in a separating/contacting direction, and a housing 42 that stores the fixed core 44, the moving core 45, and the guide member 46. The guide member 46 has a collar portion 46c bulging outward in a diametrical direction, and the collar portion 46c is fixed by being held between the housing 42 and the fixed core 44.SELECTED DRAWING: Figure 3

Description

本発明は、自動車の内燃機関用の高圧燃料供給ポンプに関する。 The present invention relates to a high pressure fuel supply pump for an internal combustion engine of an automobile.

自動車の内燃機関用の高圧燃料供給ポンプでは、燃料流量の調整のために、電磁弁機構(電磁吸入弁ユニット)を用いているものがある。電磁弁機構は、コイルへの通電によって弁の開閉運動を制御するものである。 Some high-pressure fuel supply pumps for internal combustion engines of automobiles use a solenoid valve mechanism (solenoid intake valve unit) for adjusting the fuel flow rate. The solenoid valve mechanism controls the opening / closing motion of the valve by energizing the coil.

電磁弁機構では、コイルへの通電を開始すると、可動鉄心(可動コア)と固定鉄心(固定コア)との間に磁気吸引力が発生し、可動鉄心の固定鉄心側への移動が開始される。 In the solenoid valve mechanism, when energization of the coil is started, a magnetic attraction force is generated between the movable core (movable core) and the fixed core (fixed core), and the movement of the movable core to the fixed core side is started. ..

高圧燃料供給ポンプの従来技術として、特開2015−108409号公報(特許文献1)に記載された高圧燃料供給ポンプが知られている。従来、可動鉄心は、固定コアと可動コアとの間に形成された隙間の距離を移動すると、固定鉄心に衝突して停止することが一般的である。しかし、特許文献1の高圧燃料供給ポンプは、可動部品の移動量を規定する手段としての衝突部を、可動鉄心と固定鉄心の他に設けることで、可動鉄心と固定鉄心との衝突を避ける構造としたソレノイドバルブ(電磁弁機構)を備える(要約参照)。 As a prior art of a high-pressure fuel supply pump, a high-pressure fuel supply pump described in Japanese Patent Application Laid-Open No. 2015-108409 (Patent Document 1) is known. Conventionally, when the movable iron core moves the distance of the gap formed between the fixed core and the movable core, it generally collides with the fixed core and stops. However, the high-pressure fuel supply pump of Patent Document 1 has a structure that avoids a collision between the movable core and the fixed core by providing a collision portion as a means for defining the amount of movement of the moving parts in addition to the movable core and the fixed core. It is equipped with a solenoid valve (solenoid valve mechanism) (see summary).

具体的には、電磁弁機構は固定鉄心の内径側に圧入固定されたリング状部品を備え、リング状部品を可動鉄心の内径側に設けられたロッドと衝突させることで、可動鉄心と固定鉄心との衝突を避ける(段落0028及び図3,4参照)。 Specifically, the solenoid valve mechanism is provided with a ring-shaped component that is press-fitted and fixed on the inner diameter side of the fixed core, and the ring-shaped component collides with a rod provided on the inner diameter side of the movable core to cause the movable core and the fixed core. Avoid collisions with (see paragraphs 0028 and Figures 3 and 4).

特開2015−108409号公報Japanese Unexamined Patent Publication No. 2015-108409

特許文献1の電磁弁機構では、リング状部品が固定鉄心の径方向内側に圧入固定される構造となっている。このように、固定鉄心の径方向内側に部品(圧入部品)を圧入固定する構造では、圧入長を確保するため、圧入部品(特許文献1のリング状部品)、及び固定鉄心の部材長さを確保する必要があり、電磁弁機構が大型化し、高圧燃料供給ポンプのレイアウト性が低下するおそれがある。 The solenoid valve mechanism of Patent Document 1 has a structure in which a ring-shaped component is press-fitted and fixed inward in the radial direction of a fixed iron core. In this way, in the structure in which the part (press-fitted part) is press-fitted and fixed inside the fixed iron core in the radial direction, the press-fitted part (ring-shaped part of Patent Document 1) and the member length of the fixed iron core are set in order to secure the press-fitting length. It is necessary to secure it, and the solenoid valve mechanism may become large and the layout of the high-pressure fuel supply pump may be deteriorated.

本発明の目的は電磁弁機構の小型化を図り、レイアウト性を向上した高圧燃料供給ポンプを提供することにある。 An object of the present invention is to provide a high-pressure fuel supply pump having an improved layout by downsizing the solenoid valve mechanism.

上記目的を達成するために、本発明の高圧燃料供給ポンプは、
電磁弁機構を有する高圧燃料供給ポンプであって、
前記電磁弁機構は、
固定コアと、
前記固定コアと対向する位置に配置される可動コアと、
前記可動コアを前記固定コアに対して接離する方向に案内するよう固定されたガイド部材と、
前記固定コア、前記可動コア及び前記ガイド部材を収容するハウジングと、
を備え、
前記ガイド部材は、径方向外側に張り出すつば部を有し、前記つば部が前記ハウジングと前記固定コアとに挟持されて固定される。
In order to achieve the above object, the high pressure fuel supply pump of the present invention
A high-pressure fuel supply pump with a solenoid valve mechanism
The solenoid valve mechanism is
With a fixed core
A movable core arranged at a position facing the fixed core,
A guide member fixed so as to guide the movable core in a direction in which the movable core is brought into contact with or separated from the fixed core.
A housing that houses the fixed core, the movable core, and the guide member,
With
The guide member has a brim portion that projects outward in the radial direction, and the brim portion is sandwiched and fixed between the housing and the fixing core.

本発明によれば、電磁弁機構の固定コアの径方向内側に可動コアのガイド部材を備える高圧燃料供給ポンプにおいて、ガイド部材の固定部として非圧入部による固定部を設けることで電磁弁機構を小型化し、高圧燃料供給ポンプのレイアウト性を向上することができる。
上記以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, in a high-pressure fuel supply pump provided with a guide member of a movable core inside the fixed core of the solenoid valve mechanism in the radial direction, the solenoid valve mechanism is provided by providing a fixing portion by a non-press-fit portion as a fixing portion of the guide member. The size can be reduced and the layout of the high-pressure fuel supply pump can be improved.
Issues, configurations and effects other than the above will be clarified by the following description of the embodiments.

本発明の第1実施例に係る電磁弁機構を備えた高圧燃料供給ポンプを含む内燃機関の燃料供給システムを示す構成図である。It is a block diagram which shows the fuel supply system of the internal combustion engine including the high pressure fuel supply pump provided with the solenoid valve mechanism which concerns on 1st Embodiment of this invention. 本発明の第1実施例に係る電磁弁機構を備えた高圧燃料供給ポンプを示す断面図である。It is sectional drawing which shows the high pressure fuel supply pump provided with the solenoid valve mechanism which concerns on 1st Embodiment of this invention. 図2に示す電磁弁機構の拡大図である。It is an enlarged view of the solenoid valve mechanism shown in FIG. 図3に示す電磁弁機構における可動コアのガイド構造を示す概略図である。It is the schematic which shows the guide structure of the movable core in the solenoid valve mechanism shown in FIG. 本発明の第2実施例に係る電磁弁機構の拡大図である。It is an enlarged view of the solenoid valve mechanism which concerns on 2nd Embodiment of this invention.

以下、本発明の高圧燃料供給ポンプの一実施例について図面を用いて説明する。なお以下の説明では、上下方向を指定して説明する場合があるが、この上下方向は図1及び図2の上下方向に基づいており、高圧燃料供給ポンプの実装状態における上下方向を指定するものではない。 Hereinafter, an embodiment of the high-pressure fuel supply pump of the present invention will be described with reference to the drawings. In the following description, the vertical direction may be specified, but this vertical direction is based on the vertical direction of FIGS. 1 and 2, and specifies the vertical direction in the mounted state of the high-pressure fuel supply pump. is not it.

[実施例1]
(燃料供給システム)
まず、本発明の第1実施例に係る電磁弁機構を備えた高圧燃料供給ポンプ1の構成及び高圧燃料供給ポンプ1を含む内燃機関の燃料供給システムの構成を図1及び図2を用いて説明する。図1は本発明の第1実施例に係る電磁弁機構を備えた高圧燃料供給ポンプを含む内燃機関の燃料供給システムを示す構成図である。図2は本発明の第1実施例に係る電磁弁機構を備えた高圧燃料供給ポンプを示す断面図である。
[Example 1]
(Fuel supply system)
First, the configuration of the high-pressure fuel supply pump 1 provided with the solenoid valve mechanism and the configuration of the fuel supply system of the internal combustion engine including the high-pressure fuel supply pump 1 according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. To do. FIG. 1 is a configuration diagram showing a fuel supply system of an internal combustion engine including a high-pressure fuel supply pump provided with a solenoid valve mechanism according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view showing a high-pressure fuel supply pump provided with a solenoid valve mechanism according to the first embodiment of the present invention.

図1において、内燃機関の燃料供給システムは、例えば、燃料を貯留する燃料タンク101と、燃料タンク101内の燃料を汲み上げて送出するフィードポンプ102と、フィードポンプ102から送出された燃料を加圧して吐出する高圧燃料供給ポンプ1と、高圧燃料供給ポンプ1から圧送された高圧の燃料を噴射する複数のインジェクタ103と、を備えている。本システムは、内燃機関としてエンジンのシリンダ筒内に直接燃料を噴射するシステム、いわゆる、直噴エンジンシステムである。 In FIG. 1, the fuel supply system of the internal combustion engine pressurizes, for example, a fuel tank 101 for storing fuel, a feed pump 102 for pumping and delivering fuel in the fuel tank 101, and fuel sent from the feed pump 102. It includes a high-pressure fuel supply pump 1 for discharging the fuel, and a plurality of injectors 103 for injecting the high-pressure fuel pumped from the high-pressure fuel supply pump 1. This system is a so-called direct injection engine system that injects fuel directly into the cylinder cylinder of an engine as an internal combustion engine.

高圧燃料供給ポンプ1は、吸入配管104を介してフィードポンプ102に接続されていると共に、コモンレール105を介してインジェクタ103に接続されている。インジェクタ103は、エンジンの気筒数に応じた数だけコモンレール105に装着されており、エンジンコントロールユニット(以下、ECUという)107からの制御信号に応じて開弁または閉弁するように制御される。コモンレール105には、高圧燃料供給ポンプ1から吐出された燃料の圧力を検出する圧力センサ106が装着されている。圧力センサ106は、圧力の検出信号をECU107へ出力する。 The high-pressure fuel supply pump 1 is connected to the feed pump 102 via the suction pipe 104 and is connected to the injector 103 via the common rail 105. The injectors 103 are mounted on the common rail 105 in an number corresponding to the number of cylinders of the engine, and are controlled to open or close in response to a control signal from the engine control unit (hereinafter, referred to as an ECU) 107. The common rail 105 is equipped with a pressure sensor 106 that detects the pressure of the fuel discharged from the high-pressure fuel supply pump 1. The pressure sensor 106 outputs a pressure detection signal to the ECU 107.

高圧燃料供給ポンプ1は、燃料を加圧するための加圧室4を内部に有するポンプハウジング1aと、ポンプハウジング1aに組み付けられたプランジャ5と、電磁弁機構(電磁吸入弁ユニット)300と、吐出弁ユニット500と、を備えている。プランジャ5は、往復運動により加圧室4内の燃料を加圧するものである。電磁弁機構300は、加圧室4に吸入する燃料流量を調節する容量可変機構として機能するものであり、ECU107からの制御信号により制御される。吐出弁ユニット500は、プランジャ5により加圧された燃料をコモンレール105側へ吐出するものである。図示していないが、高圧燃料供給ポンプ1は、異常高圧になったコモンレール105側の燃料を加圧室4或いは低圧側の燃料通路にリリーフするリリーフ弁を備える。 The high-pressure fuel supply pump 1 includes a pump housing 1a having a pressurizing chamber 4 for pressurizing fuel inside, a plunger 5 assembled to the pump housing 1a, an electromagnetic valve mechanism (electromagnetic suction valve unit) 300, and discharge. It includes a valve unit 500 and. The plunger 5 pressurizes the fuel in the pressurizing chamber 4 by reciprocating motion. The solenoid valve mechanism 300 functions as a capacity variable mechanism for adjusting the flow rate of fuel sucked into the pressurizing chamber 4, and is controlled by a control signal from the ECU 107. The discharge valve unit 500 discharges the fuel pressurized by the plunger 5 to the common rail 105 side. Although not shown, the high-pressure fuel supply pump 1 includes a relief valve that relieves the fuel on the common rail 105 side that has become abnormally high pressure into the pressurizing chamber 4 or the fuel passage on the low-pressure side.

図1及び図2に示すように、ポンプハウジング1aの先端部側(図1及び図2中、上端部側)には、有底筒状(カップ状)のダンパカバー10が固定されている。ダンパカバー10には吸入ジョイント11が取り付けられており、吸入ジョイント11が高圧燃料供給ポンプ1の低圧燃料吸入口2aを形成している。吸入ジョイント11内には、吸入フィルタ12が取り付けられている。吸入フィルタ12は、燃料タンク101から低圧燃料吸入口2aまでの間に存在する異物が燃料の流れによって高圧燃料供給ポンプ1内に吸収されることを防ぐ役目がある。 As shown in FIGS. 1 and 2, a bottomed tubular (cup-shaped) damper cover 10 is fixed to the tip end side (upper end portion side in FIGS. 1 and 2) of the pump housing 1a. A suction joint 11 is attached to the damper cover 10, and the suction joint 11 forms a low-pressure fuel suction port 2a of the high-pressure fuel supply pump 1. A suction filter 12 is installed in the suction joint 11. The suction filter 12 has a role of preventing foreign matter existing between the fuel tank 101 and the low-pressure fuel suction port 2a from being absorbed into the high-pressure fuel supply pump 1 by the flow of fuel.

ポンプハウジング1aの先端部とダンパカバー10とによって、加圧室4の上流側に燃料流路の一部としての低圧燃料室2bが形成されている。低圧燃料室2bには、圧力脈動低減機構14が配置されている。圧力脈動低減機構14は、高圧燃料供給ポンプ1内で発生した圧力脈動が吸入配管104へ波及することを低減させるものであり、電磁弁機構300の上流側に形成されている。 A low-pressure fuel chamber 2b as a part of the fuel flow path is formed on the upstream side of the pressurizing chamber 4 by the tip end portion of the pump housing 1a and the damper cover 10. A pressure pulsation reducing mechanism 14 is arranged in the low pressure fuel chamber 2b. The pressure pulsation reducing mechanism 14 reduces the spread of the pressure pulsation generated in the high-pressure fuel supply pump 1 to the suction pipe 104, and is formed on the upstream side of the solenoid valve mechanism 300.

プランジャ5の先端側(図1中、下端側)には、エンジンのカム108の回転運動を直線的な往復運動に変換するタペット6が設けられている。プランジャ5は、プランジャ5の先端部に固定されたリテーナ7を介してばね8の付勢力によってタペット6に圧着されている。これにより、カム108の回転運動に伴いプランジャ5を往復運動させることができる。 A tappet 6 is provided on the tip end side (lower end side in FIG. 1) of the plunger 5 to convert the rotational motion of the cam 108 of the engine into a linear reciprocating motion. The plunger 5 is crimped to the tappet 6 by the urging force of the spring 8 via the retainer 7 fixed to the tip of the plunger 5. As a result, the plunger 5 can be reciprocated with the rotational movement of the cam 108.

ポンプハウジング1aの加圧室4の入口側には、電磁弁機構300が設けられている。電磁弁機構300の構成の詳細は後述するが、ECU107の制御信号に基づき吸入弁31が開閉するように構成されている。 A solenoid valve mechanism 300 is provided on the inlet side of the pressurizing chamber 4 of the pump housing 1a. The details of the configuration of the solenoid valve mechanism 300 will be described later, but the suction valve 31 is configured to open and close based on the control signal of the ECU 107.

図2に示すように、ポンプハウジング1aの加圧室4の出口側には吐出通路2cが形成されていて、吐出通路2c内に吐出弁ユニット500が設けられている。吐出通路2cにおける吐出弁ユニット500の下流側には、吐出ジョイント16が設けられており、吐出ジョイント16が高圧燃料供給ポンプ1の燃料吐出口2eを形成している。 As shown in FIG. 2, a discharge passage 2c is formed on the outlet side of the pressurizing chamber 4 of the pump housing 1a, and a discharge valve unit 500 is provided in the discharge passage 2c. A discharge joint 16 is provided on the downstream side of the discharge valve unit 500 in the discharge passage 2c, and the discharge joint 16 forms the fuel discharge port 2e of the high-pressure fuel supply pump 1.

吐出弁ユニット500は、吐出弁シート51と、吐出弁シート51と接離する吐出弁52と、吐出弁52を吐出弁シート51に向かって付勢する吐出弁ばね53と、吐出弁シート51の一部、吐出弁52及び吐出弁ばね53を収容する吐出弁ホルダ54と、から構成されている。吐出弁シート51は、例えば、ポンプハウジング1aの吐出通路2c内に圧入保持されている。吐出弁ユニット500では、吐出弁シート51と吐出弁ホルダ54が溶接により接合されることで、吐出弁シート51、吐出弁52、吐出弁ばね53及び吐出弁ホルダ54が一体のユニットを構成している。 The discharge valve unit 500 includes a discharge valve seat 51, a discharge valve 52 that comes into contact with and separates from the discharge valve seat 51, a discharge valve spring 53 that urges the discharge valve 52 toward the discharge valve seat 51, and a discharge valve seat 51. It is partially composed of a discharge valve holder 54 for accommodating a discharge valve 52 and a discharge valve spring 53. The discharge valve seat 51 is press-fitted and held in the discharge passage 2c of the pump housing 1a, for example. In the discharge valve unit 500, the discharge valve seat 51 and the discharge valve holder 54 are joined by welding to form a unit in which the discharge valve seat 51, the discharge valve 52, the discharge valve spring 53, and the discharge valve holder 54 are integrated. There is.

吐出弁ユニット500は、加圧室4と吐出ジョイント16の内部との間に燃料差圧が無い状態において、吐出弁ばね53の付勢力により吐出弁52が吐出弁シート51に押圧され閉弁状態となるように構成されている。一方、加圧室4の燃料圧力が吐出ジョイント16の内部の燃料圧力よりも大きくなると、吐出弁52が吐出弁ばね53の付勢力に逆らって開弁するように構成されている。また、吐出弁ホルダ54の内周面が吐出弁52をガイドし、吐出弁52が開弁および閉弁運動の際にリフト方向にのみ移動するように構成されている。以上の構成により、吐出弁ユニット500は、燃料の流通方向を一方向に制限して逆流を防止する逆止弁として機能する。 In the discharge valve unit 500, the discharge valve 52 is pressed against the discharge valve seat 51 by the urging force of the discharge valve spring 53 in a state where there is no fuel differential pressure between the pressurizing chamber 4 and the inside of the discharge joint 16, and the valve is closed. It is configured to be. On the other hand, when the fuel pressure in the pressurizing chamber 4 becomes higher than the fuel pressure inside the discharge joint 16, the discharge valve 52 is configured to open against the urging force of the discharge valve spring 53. Further, the inner peripheral surface of the discharge valve holder 54 guides the discharge valve 52, and the discharge valve 52 is configured to move only in the lift direction during the valve opening and closing movements. With the above configuration, the discharge valve unit 500 functions as a check valve that limits the fuel flow direction in one direction to prevent backflow.

本燃料供給システムにおいては、図1及び図2に示すように、燃料タンク101内の燃料がフィードポンプ102によって汲み上げられて適切なフィード圧力に加圧され、吸入配管104を通して高圧燃料供給ポンプ1の低圧燃料吸入口2aに送られる。低圧燃料吸入口2aを通過した燃料は、吸入フィルタ12を通過し、低圧燃料室2b内の圧力脈動低減機構14を介して電磁弁機構300に至る。電磁弁機構300に流入した燃料は、ECU107の制御信号に基づき開閉する吸入弁31を通過する。吸入弁31を通過した燃料は、往復運動するプランジャ5の下降行程で加圧室4へ吸入され、プランジャ5の上昇行程で加圧室4内において加圧される。加圧室4で加圧された燃料は、吐出弁ユニット500を通過して燃料吐出口2dを経てコモンレール105へ圧送される。コモンレール105内の高圧の燃料は、インジェクタ103によってエンジンのシリンダ筒内へ噴射される。高圧燃料供給ポンプ1では、ECU107から電磁弁機構300への制御信号に応じて所望の流量燃料を吐出する。 In this fuel supply system, as shown in FIGS. 1 and 2, the fuel in the fuel tank 101 is pumped by the feed pump 102 and pressurized to an appropriate feed pressure, and the high pressure fuel supply pump 1 passes through the suction pipe 104. It is sent to the low pressure fuel suction port 2a. The fuel that has passed through the low-pressure fuel suction port 2a passes through the suction filter 12 and reaches the solenoid valve mechanism 300 via the pressure pulsation reduction mechanism 14 in the low-pressure fuel chamber 2b. The fuel that has flowed into the solenoid valve mechanism 300 passes through the suction valve 31 that opens and closes based on the control signal of the ECU 107. The fuel that has passed through the suction valve 31 is sucked into the pressurizing chamber 4 in the descending stroke of the reciprocating plunger 5, and is pressurized in the pressurizing chamber 4 in the ascending stroke of the plunger 5. The fuel pressurized in the pressurizing chamber 4 passes through the discharge valve unit 500, is pumped to the common rail 105 through the fuel discharge port 2d. The high-pressure fuel in the common rail 105 is injected into the cylinder cylinder of the engine by the injector 103. The high-pressure fuel supply pump 1 discharges a desired flow rate fuel in response to a control signal from the ECU 107 to the solenoid valve mechanism 300.

次に、本発明の第1実施例に係る電磁弁機構300の構成及び構造の詳細を図3及び図4を用いて説明する。図3は、図2に示す電磁弁機構の拡大図である。図4は、図3に示す電磁弁機構における可動コアのガイド構造を示す概略図である。なお、図3は、電磁弁機構300に対して通電がない状態を示している。 Next, the configuration and details of the structure of the solenoid valve mechanism 300 according to the first embodiment of the present invention will be described with reference to FIGS. 3 and 4. FIG. 3 is an enlarged view of the solenoid valve mechanism shown in FIG. FIG. 4 is a schematic view showing a guide structure of a movable core in the solenoid valve mechanism shown in FIG. Note that FIG. 3 shows a state in which the solenoid valve mechanism 300 is not energized.

図3において、電磁弁機構300は、吸入弁31を含む弁機構部と、コイル41や可動コア45を含むソレノイド機構部と、に大別される。弁機構部は、吸入弁31、吸入弁シート部材32、吸入弁ストッパ33及び第1付勢ばね34を備えて構成されている。 In FIG. 3, the solenoid valve mechanism 300 is roughly classified into a valve mechanism portion including a suction valve 31 and a solenoid mechanism portion including a coil 41 and a movable core 45. The valve mechanism portion includes a suction valve 31, a suction valve seat member 32, a suction valve stopper 33, and a first urging spring 34.

吸入弁シート部材32は、例えば、一方側(図3中、右側)に開口する有底筒状の部材であり、中心軸線A1を有している。すなわち吸入弁シート部材32は、中心軸線A1を中心とする筒状部分(筒状部)32Aと、筒状部分32Aの固定コア44側の端部を塞ぐ底部32Bと、を有する。 The suction valve seat member 32 is, for example, a bottomed tubular member that opens on one side (right side in FIG. 3) and has a central axis A1. That is, the suction valve seat member 32 has a tubular portion (cylindrical portion) 32A centered on the central axis A1 and a bottom portion 32B that closes the end portion of the tubular portion 32A on the fixed core 44 side.

吸入弁シート部材32は、筒状部分32Aの軸方向(中心軸線A1に沿う方向)における中間位置に吸入弁31が着座可能な環状の弁シート部32aを有している。すなわち、吸入弁シート部材32の筒状部分32Aの内部には、吸入弁31が弁シート部32aに対して着座又は離座するように移動可能に配置されている。吸入弁シート部材32の筒状部分32Aには、低圧燃料室2b(図2参照)に連通する吸入ポート32bが周方向に間隔をあけて複数設けられている。 The suction valve seat member 32 has an annular valve seat portion 32a on which the suction valve 31 can be seated at an intermediate position in the axial direction (direction along the central axis A1) of the tubular portion 32A. That is, inside the tubular portion 32A of the suction valve seat member 32, the suction valve 31 is movably arranged so as to be seated or separated from the valve seat portion 32a. The tubular portion 32A of the suction valve seat member 32 is provided with a plurality of suction ports 32b communicating with the low pressure fuel chamber 2b (see FIG. 2) at intervals in the circumferential direction.

吸入弁シート部材32の底部32Bには、吸入弁シート32の中心軸線A1に沿って貫通するガイド孔32cが設けられている。ガイド孔32cを有する吸入弁シート部材32の底部32Bは、後述のロッド48を吸入弁シート部材32の中心軸線A1に沿って摺動可能に支持する(ガイドする)ロッドガイド部として機能する。吸入弁シート部材32の底部32Bにおけるガイド孔32cの外周側には、筒状部分の内部に貫通する貫通孔32dが設けられている。貫通孔32dは、後述の可動コア45の移動(変位)に伴う電磁弁機構300内の燃料の移動を可能とするための流路を構成する。 The bottom portion 32B of the suction valve seat member 32 is provided with a guide hole 32c that penetrates along the central axis A1 of the suction valve seat 32. The bottom portion 32B of the suction valve seat member 32 having the guide hole 32c functions as a rod guide portion that slidably supports (guides) the rod 48 described later along the central axis A1 of the suction valve seat member 32. On the outer peripheral side of the guide hole 32c in the bottom portion 32B of the suction valve seat member 32, a through hole 32d penetrating the inside of the tubular portion is provided. The through hole 32d constitutes a flow path for enabling the movement of fuel in the solenoid valve mechanism 300 with the movement (displacement) of the movable core 45 described later.

吸入弁シート部材32の開口部(底部32Bと反対側の端部)には、吸入弁ストッパ33が圧入固定されている。吸入弁ストッパ33は、弁シート部32aから離れる吸入弁31の変位を規制する機能を有している。吸入弁31と吸入弁ストッパ33との間には、第1付勢ばね34が配置されている。すなわち第1付勢ばね34は、一端側が吸入弁31に接触すると共に他端側が吸入弁ストッパ33に接触しており、吸入弁31を弁シート部32a側(閉弁する方向)へ付勢している。 A suction valve stopper 33 is press-fitted and fixed to the opening (the end opposite to the bottom portion 32B) of the suction valve seat member 32. The suction valve stopper 33 has a function of regulating the displacement of the suction valve 31 away from the valve seat portion 32a. A first urging spring 34 is arranged between the suction valve 31 and the suction valve stopper 33. That is, the first urging spring 34 has one end in contact with the suction valve 31 and the other end in contact with the suction valve stopper 33, and urges the suction valve 31 toward the valve seat portion 32a (in the direction of closing the valve). ing.

ソレノイド機構部は、例えば、環状に設けられたコイル41と、コイル41の径方向内側に配置されたハウジング42と、コイル41を取り囲みハウジング42の外周部に固定された環状のヨーク43と、ハウジング42内に収容された固定コア44と、可動コア45と、ガイド部材46と、被ガイド部材47と、ロッド48と、第2付勢ばね49と、で構成されている。コイル41には、図示しない端子を介してECU107(図1参照)からの制御信号が入力される。ソレノイド機構部では、ヨーク43、ハウジング42、固定コア44及び可動コア45が磁気回路を構成すると共に、可動コア45、被ガイド部材47及びロッド48が吸入弁31を駆動する可動部を構成する。可動部では、可動コア45と被ガイド部材47とが一体的に設けられているが、ロッド48は可動コア45及び被ガイド部材47と接離可能な別体構造である。本実施形態においては、可動コア45の移動を案内するガイド構造に特徴を有している。 The solenoid mechanism includes, for example, a coil 41 provided in an annular shape, a housing 42 arranged radially inside the coil 41, an annular yoke 43 surrounding the coil 41 and fixed to the outer peripheral portion of the housing 42, and a housing. It is composed of a fixed core 44 housed in the 42, a movable core 45, a guide member 46, a guided member 47, a rod 48, and a second urging spring 49. A control signal from the ECU 107 (see FIG. 1) is input to the coil 41 via a terminal (not shown). In the solenoid mechanism, the yoke 43, the housing 42, the fixed core 44, and the movable core 45 form a magnetic circuit, and the movable core 45, the guided member 47, and the rod 48 form a movable part that drives the suction valve 31. In the movable portion, the movable core 45 and the guided member 47 are integrally provided, but the rod 48 has a separate structure that can be brought into contact with and separated from the movable core 45 and the guided member 47. The present embodiment is characterized by a guide structure that guides the movement of the movable core 45.

ハウジング42は、例えば、一方側(図3中、右側、すなわち吸入弁31側)に開口する有底筒状の部材であり、中心軸線A2を有している。すなわちハウジング42は、固定コア44が圧入される筒状部42bと、筒状部42bの可動コア45とは反対側の端部を塞ぐ底部42aと、を有する有底筒状を成す。ハウジング42と吸入弁シート部材32とは、互いが同軸となるように固定されている。すなわちハウジング42は、その中心軸線A2が吸入弁シート部材32の中心軸線A1と一致するように配置される。ハウジング42の底部42aの内面が第2中心軸線A2に対して直交する平面に形成されている。ここで、中心軸線A1と中心軸線A2との一致、及び底部42aの内面と第2中心軸線A2との直交は、公差に基づくずれを含む。 The housing 42 is, for example, a bottomed tubular member that opens to one side (the right side in FIG. 3, that is, the suction valve 31 side), and has a central axis A2. That is, the housing 42 has a bottomed tubular shape having a tubular portion 42b into which the fixed core 44 is press-fitted and a bottom portion 42a that closes the end portion of the tubular portion 42b opposite to the movable core 45. The housing 42 and the suction valve seat member 32 are fixed so as to be coaxial with each other. That is, the housing 42 is arranged so that its central axis A2 coincides with the central axis A1 of the suction valve seat member 32. The inner surface of the bottom portion 42a of the housing 42 is formed in a plane orthogonal to the second central axis A2. Here, the coincidence between the central axis A1 and the central axis A2, and the orthogonality between the inner surface of the bottom portion 42a and the second central axis A2 include a deviation based on a tolerance.

ハウジング42内の底部42a側には、固定コア44が配置されている。固定コア44は、例えば、ハウジング42の軸方向(中心軸線A2に沿う方向)に延在するように形成され、その外周面がハウジング42内に圧入されることで固定されている。すなわち、固定コア44は中心軸線A2を中心とする円筒形状を成す部材であり、ハウジング42内に圧入固定されている。 A fixed core 44 is arranged on the bottom portion 42a side in the housing 42. The fixed core 44 is formed so as to extend in the axial direction of the housing 42 (direction along the central axis A2), and is fixed by press-fitting the outer peripheral surface thereof into the housing 42, for example. That is, the fixed core 44 is a member having a cylindrical shape centered on the central axis A2, and is press-fitted and fixed in the housing 42.

固定コア44の径方向内側の位置(径方向中心部)には、ガイド部材46の大部分を収容可能な収容部44aが設けられている。収容部44aは、例えば、軸方向に貫通する孔部として形成されている。固定コア44は、磁気回路の一部を構成するものであり、磁性材により形成されている。磁性材として、例えば、ビッカーズ硬さが200HV以下のものが用いられている。固定コア44におけるハウジング開口側(可動コア45側)の端面は、磁気吸引力が作用する磁気吸引面を構成している。 An accommodating portion 44a capable of accommodating most of the guide member 46 is provided at a position (diametrically central portion) inside the fixed core 44 in the radial direction. The accommodating portion 44a is formed as, for example, a hole portion penetrating in the axial direction. The fixed core 44 forms a part of a magnetic circuit and is made of a magnetic material. As the magnetic material, for example, a material having a Vickers hardness of 200 HV or less is used. The end surface of the fixed core 44 on the housing opening side (movable core 45 side) constitutes a magnetic attraction surface on which a magnetic attraction force acts.

ハウジング42内の開口側には、可動コア45が固定コア44に対向するように配置されている。可動コア45は、ハウジング42の内周面との間に隙間が生じるように形成されており、ハウジング42内で移動可能である。可動コア45は、固定コア44と共に磁気回路の一部を構成するものであり、磁性材により形成されている。磁性材として、固定コア44と同様に例えば、ビッカーズ硬さが200HV以下のものが用いられている。 On the opening side in the housing 42, the movable core 45 is arranged so as to face the fixed core 44. The movable core 45 is formed so as to form a gap between the movable core 45 and the inner peripheral surface of the housing 42, and is movable within the housing 42. The movable core 45 forms a part of a magnetic circuit together with the fixed core 44, and is made of a magnetic material. As the magnetic material, for example, a material having a Vickers hardness of 200 HV or less is used as in the case of the fixed core 44.

なお、磁気回路を構成するハウジング42及びヨーク43も、固定コア44及び可動コア45と同様に、磁性材により形成されている。 The housing 42 and the yoke 43 constituting the magnetic circuit are also made of a magnetic material like the fixed core 44 and the movable core 45.

可動コア45における固定コア44との対向面は、磁気吸引力が作用する磁気吸引面を構成している。可動コア45の径方向内側の位置(径方向中心部)には、被ガイド部材47が嵌合する嵌合部45aが形成されている。嵌合部45aは、例えば、ハウジング42の軸方向に貫通する孔部として形成されている。 The surface of the movable core 45 facing the fixed core 44 constitutes a magnetic attraction surface on which a magnetic attraction force acts. A fitting portion 45a into which the guided member 47 is fitted is formed at a position inside the movable core 45 in the radial direction (center portion in the radial direction). The fitting portion 45a is formed as, for example, a hole portion penetrating in the axial direction of the housing 42.

固定コア44の収容部44a内には、中心軸線A3を有するガイド部材46が配置されている。ガイド部材46は、可動コア45の径方向内側の位置(嵌合部45a内)で被ガイド部材47を介して可動コア45を支持し、ガイド部材46の中心軸線A3に沿って可動コア45を固定コア44に対して接離する方向に案内する。 A guide member 46 having a central axis A3 is arranged in the accommodating portion 44a of the fixed core 44. The guide member 46 supports the movable core 45 via the guided member 47 at a position inside the movable core 45 in the radial direction (inside the fitting portion 45a), and supports the movable core 45 along the central axis A3 of the guide member 46. It guides the fixed core 44 in the direction of contact and separation.

ガイド部材46は、固定コア44の径方向内側の収容部44aに挿入される基部46aと、基部46aよりも外径が大きく、ハウジング42の底部42aと固定コア44の反可動コア45側の端部(端面)44bとで挟み込まれて当接固定されるつば部46cと、基部46aよりも外径が小さく、基部46aから延在し被ガイド部材47を介して可動コア45を案内するガイド本体46bと、を含んで構成されている。すなわちガイド部材46は、基部46aにより構成される大径部と、ガイド本体46bにより構成される小径部と、大径部の外周面から径方向外側に張り出したつば部46cと、を有する。言い換えれば、ガイド部材46は、一端部につば部46cが設けられた基部46aと、基部46aの他端部から可動コア45の側に設けられ基部46aよりも小径のガイド本体46bと、を有し、ガイド本体46cの基部46aとは反対側の端部側で可動コア45を案内する。 The guide member 46 has a base portion 46a inserted into the accommodating portion 44a inside the fixed core 44 in the radial direction and an outer diameter larger than that of the base portion 46a, and the bottom portion 42a of the housing 42 and the end of the fixed core 44 on the anti-movable core 45 side. A guide body that has a smaller outer diameter than the base 46a and has a smaller outer diameter than the base 46a and extends from the base 46a to guide the movable core 45 via the guided member 47. It is configured to include 46b and. That is, the guide member 46 has a large-diameter portion formed of the base portion 46a, a small-diameter portion formed of the guide main body 46b, and a brim portion 46c protruding outward in the radial direction from the outer peripheral surface of the large-diameter portion. In other words, the guide member 46 includes a base portion 46a provided with a brim portion 46c at one end, and a guide body 46b provided on the side of the movable core 45 from the other end of the base portion 46a and having a diameter smaller than that of the base portion 46a. Then, the movable core 45 is guided on the end side of the guide body 46c opposite to the base portion 46a.

基部46a、ガイド本体46b及びつば部46cの軸方向(中心軸線A3に沿う方向)に垂直な断面は円形をなし、基部46a、ガイド本体46b及びつば部46cの各外周面は円筒面を成している。 The cross section perpendicular to the axial direction (direction along the central axis A3) of the base portion 46a, the guide main body 46b, and the brim portion 46c forms a circular shape, and the outer peripheral surfaces of the base portion 46a, the guide main body 46b, and the brim portion 46c form a cylindrical surface. ing.

ガイド部材46の基部46aを固定コア44の収容部44aに圧入して基部46aのみで固定コア44に固定する場合は、固定力を確保するために圧入長を確保する(長くする)必要があるが、ガイド部材46のつば部46cが、ハウジング42の底部42aと固定コア44の端部44bとで挟み込まれて当接固定されることで、ガイド部材46の軸方向長さを低減することが可能となる。すなわちつば部46cは、固定コア44の可動コア45とは反対側の端部とハウジング42の底部42aとの間に挟持される。 When the base portion 46a of the guide member 46 is press-fitted into the accommodating portion 44a of the fixed core 44 and fixed to the fixed core 44 only by the base portion 46a, it is necessary to secure (lengthen) the press-fitting length in order to secure the fixing force. However, the brim portion 46c of the guide member 46 is sandwiched between the bottom portion 42a of the housing 42 and the end portion 44b of the fixed core 44 and is abutted and fixed, so that the axial length of the guide member 46 can be reduced. It will be possible. That is, the brim portion 46c is sandwiched between the end portion of the fixed core 44 opposite to the movable core 45 and the bottom portion 42a of the housing 42.

また、固定コア44の径方向内側の収容部(内周)44aとガイド部材46の基部46aの外径(外周面)46dとの間に隙間S1が形成され、ハウジング42の内周部(内周面)42b1とガイド部材46のつば部46cの外径(外周)46eとの間には隙間S2が形成されるように、固定コア44、ガイド部材46及びハウジング42が配置されている。 Further, a gap S1 is formed between the accommodating portion (inner circumference) 44a inside the fixed core 44 in the radial direction and the outer diameter (outer peripheral surface) 46d of the base portion 46a of the guide member 46, and the inner peripheral portion (inner circumference) of the housing 42 is formed. The fixed core 44, the guide member 46, and the housing 42 are arranged so that a gap S2 is formed between the peripheral surface) 42b1 and the outer diameter (outer circumference) 46e of the brim portion 46c of the guide member 46.

上記のような隙間構造とすることで、ハウジング42にガイド部材46が圧入されるような構造に対し、圧入工程を無くすことができるため、組立性が向上する。 By adopting the gap structure as described above, the press-fitting process can be eliminated for the structure in which the guide member 46 is press-fitted into the housing 42, so that the assembling property is improved.

また、圧入構造ではハウジング42とガイド部材46との間に密閉空間S2ができてしまい、圧縮空気によりガイド部材46が浮か上がってしまうおそれがあるが、上記のように、隙間S1を形成すると共に固定コア44に対してガイド部材46を非固定とすることで、隙間S2は隙間S1を通じてハウジング42の開口側に連通する空気通路を確保することができる。これにより、ハウジング42とガイド部材46との間に密閉空間が生じないため、すなわち隙間S2が密閉空間とならず、ガイド部材46の浮き上がりを防止することができる。 Further, in the press-fitting structure, a closed space S2 is formed between the housing 42 and the guide member 46, and the guide member 46 may be lifted by the compressed air. However, as described above, the gap S1 is formed and the gap S1 is formed. By making the guide member 46 non-fixed to the fixed core 44, the gap S2 can secure an air passage communicating with the opening side of the housing 42 through the gap S1. As a result, a closed space is not created between the housing 42 and the guide member 46, that is, the gap S2 does not become a closed space, and the guide member 46 can be prevented from rising.

これをより確実にするためには、ガイド部材46のつば部46cの、固定コア44の端部44bと対向する面に、第2実施例で説明するような径方向に延設される溝部46fを設けてもよい。 In order to make this more reliable, the groove portion 46f extending in the radial direction as described in the second embodiment on the surface of the brim portion 46c of the guide member 46 facing the end portion 44b of the fixed core 44. May be provided.

ガイド本体46bの先端部(図3中、右端部)は、テーパ状に形成されている。ガイド部材46の軸方向一方側の基部46aの端面46a1は、中心軸線A3に対して直交する平面に形成されている。ガイド部材46は、基部46aの端面46a1がハウジング42の底部42aの内面に接触するように配置され、その中心軸線A3がハウジング42の中心軸線A2と一致するように固定される。ここで、中心軸線A2と中心軸線A3との一致、及び基部46aの端面46a1と第2中心軸線A3との直交は、公差に基づくずれを含む。 The tip end portion (right end portion in FIG. 3) of the guide main body 46b is formed in a tapered shape. The end surface 46a1 of the base portion 46a on one side in the axial direction of the guide member 46 is formed in a plane orthogonal to the central axis A3. The guide member 46 is arranged so that the end surface 46a1 of the base portion 46a is in contact with the inner surface of the bottom portion 42a of the housing 42, and the central axis A3 thereof is fixed so as to coincide with the central axis A2 of the housing 42. Here, the coincidence between the central axis A2 and the central axis A3 and the orthogonality between the end surface 46a1 of the base portion 46a and the second central axis A3 include a deviation based on a tolerance.

ガイド部材46は、可動部としての被ガイド部材47と接触する部分であるので、固定コア44や可動コア45よりも高硬度で耐摩耗性に優れた材料、例えば、オーステナイト系ステンレス鋼やマルテンサイト系ステンレス鋼によって形成されている。オーステナイト系ステンレス鋼を用いる場合には、浸炭などの処理を行うことで強度を高めることができる。マルテンサイト系ステンレス鋼を用いる場合には、焼き入れなどの熱処理によって強度を高めることができる。耐摩耗性に優れた材料として、例えば、ビッカーズ硬さが500〜800HV程度のものが用いられている。 Since the guide member 46 is a portion that comes into contact with the guided member 47 as a movable portion, a material having higher hardness and excellent wear resistance than the fixed core 44 or the movable core 45, for example, austenitic stainless steel or martensitic. It is made of austenitic stainless steel. When austenitic stainless steel is used, the strength can be increased by performing a treatment such as carburizing. When martensitic stainless steel is used, the strength can be increased by heat treatment such as quenching. As a material having excellent wear resistance, for example, a material having a Vickers hardness of about 500 to 800 HV is used.

可動コア45の嵌合部45aには、被ガイド部材47が圧入により可動コア45と一体に構成されている。被ガイド部材47は、一方側(図3中、左側、すなわち固定コア44側)に開口する有底筒状の部材であり、内部にガイド部材46が配置されガイド部材46に対して摺動可能な筒状部47aと、筒状部47aの固定コア44とは反対側(反固定コア側)の開口部を閉塞する閉塞部(底部)47bと、で構成されている。すなわち、被ガイド部材47は有底筒状を成す。 A guided member 47 is press-fitted into the fitting portion 45a of the movable core 45 to be integrally formed with the movable core 45. The guided member 47 is a bottomed tubular member that opens on one side (the left side in FIG. 3, that is, the fixed core 44 side), and the guide member 46 is arranged inside and is slidable with respect to the guide member 46. It is composed of a tubular portion 47a and a closing portion (bottom portion) 47b that closes an opening on the opposite side (anti-fixing core side) of the tubular portion 47a from the fixed core 44. That is, the guided member 47 has a bottomed tubular shape.

可動コア45は被ガイド部材47を介してガイド部材46に支持され、可動コア45と被ガイド部材47とが一体となってガイド部材46の中心軸線A3に沿って移動可能な構成となっている。被ガイド部材47の閉塞部47bには、貫通孔47cが設けられている。貫通孔47cは、被ガイド部材47の移動時の流体抵抗を低減して被ガイド部材47の移動を容易にするものである。被ガイド部材47は、筒状部47aの閉塞部47bとは反対側の端面(端部)が可動コア45の嵌合部45aの内部に位置するように配置されている。 The movable core 45 is supported by the guide member 46 via the guided member 47, and the movable core 45 and the guided member 47 are integrally movable along the central axis A3 of the guide member 46. .. A through hole 47c is provided in the closed portion 47b of the guided member 47. The through hole 47c reduces the fluid resistance when the guided member 47 moves and facilitates the movement of the guided member 47. The guided member 47 is arranged so that the end surface (end portion) of the tubular portion 47a opposite to the closing portion 47b is located inside the fitting portion 45a of the movable core 45.

被ガイド部材47は、ガイド部材46と摺動する部材であるので、ガイド部材46の材料と略同等程度の硬度を有する材料で形成されていることが好ましい。すなわち、被ガイド部材47は、ガイド部材46と同様に、オーステナイト系ステンレス鋼やマルテンサイト系ステンレス鋼のような耐摩耗性に優れた高強度材料よって形成されている。耐摩耗性に優れた材料として、ガイド部材46と同様に、ビッカーズ硬さが500〜800HV程度のものが用いられている。 Since the guided member 47 is a member that slides on the guide member 46, it is preferably formed of a material having substantially the same hardness as the material of the guide member 46. That is, the guided member 47 is formed of a high-strength material having excellent wear resistance, such as austenitic stainless steel and martensitic stainless steel, like the guide member 46. As a material having excellent wear resistance, a material having a Vickers hardness of about 500 to 800 HV is used as in the guide member 46.

ロッド48は、軸方向一方側端部(図3中、左側端部、すなわち可動コア45側端部)が被ガイド部材47の閉塞部47bに接離可能であると共に、軸方向他方側端部(図3中、右側端部、すなわち吸入弁31側端部)が吸入弁31に接離可能であるように構成されている。ロッド48は、吸入弁シート部材32のガイド孔32cに挿通されて摺動可能に吸入弁シート部材32に支持されている。すなわち、ロッド48の移動は、ガイド孔32cの内周壁面によって案内される。 The rod 48 has one end in the axial direction (the left end in FIG. 3, that is, the end on the movable core 45 side) that can be brought into contact with and separated from the closed portion 47b of the guided member 47, and the other end in the axial direction. (In FIG. 3, the right end portion, that is, the suction valve 31 side end portion) is configured to be in contact with and detached from the suction valve 31. The rod 48 is inserted into the guide hole 32c of the suction valve seat member 32 and slidably supported by the suction valve seat member 32. That is, the movement of the rod 48 is guided by the inner peripheral wall surface of the guide hole 32c.

第2付勢ばね49は、固定コア44の収容部44a内および可動コア45の嵌合部45a内で、かつ、ガイド部材46のガイド本体46bの径方向外側に配置されるように構成されている。第2付勢ばね49は、その一方側端部がガイド部材46の基部46aに接触すると共に、その他方側端部が被ガイド部材47の筒状部47aの端面に接触している。第2付勢ばね49は、被ガイド部材47を介して可動コア45を固定コア44から離間する方向に付勢している。 The second urging spring 49 is configured to be arranged in the accommodating portion 44a of the fixed core 44, in the fitting portion 45a of the movable core 45, and radially outside the guide main body 46b of the guide member 46. There is. One end of the second urging spring 49 is in contact with the base 46a of the guide member 46, and the other end is in contact with the end surface of the tubular portion 47a of the guided member 47. The second urging spring 49 urges the movable core 45 in a direction away from the fixed core 44 via the guided member 47.

第2付勢ばね49は、その付勢力が第1付勢ばね34の付勢力よりも大きくなるように構成されている。このため、コイル41への通電が無い状態では、第2付勢ばね49の付勢力と第1付勢ばね34の付勢力との差によって、一体的な可動コア45及び被ガイド部材47に接触しているロッド48が吸入弁31に接触して吸入弁31を吸入弁シート部材32の弁シート部32aから離れる方向へ付勢する。このとき吸入弁31は、加圧室4(図2参照)内の圧力に応じて開弁状態又は閉弁状態となる。 The second urging spring 49 is configured such that the urging force thereof is larger than the urging force of the first urging spring 34. Therefore, when the coil 41 is not energized, the difference between the urging force of the second urging spring 49 and the urging force of the first urging spring 34 causes the integral movable core 45 and the guided member 47 to come into contact with each other. The rod 48 is in contact with the suction valve 31 and urges the suction valve 31 in a direction away from the valve seat portion 32a of the suction valve seat member 32. At this time, the suction valve 31 is opened or closed depending on the pressure in the pressurizing chamber 4 (see FIG. 2).

ソレノイド機構部では、ガイド部材46と被ガイド部材47との摺動可能な長さ(ガイド長)Sが、コイル41への通電による可動コア45の固定コア44側への移動可能な距離G1、すなわち、可動コア45のストローク長よりも大きくなるように構成されている。本実施例において、距離G1は、コイル41への通電が無い状態において可動コア45と固定コア44との間に生じる空隙の長さに等しくなる。この構成により、可動コア45及び被ガイド部材47は、可動コア45のストローク長G1の範囲において確実にガイド部材46に摺動可能に支持される。 In the solenoid mechanism portion, the slidable length (guide length) S between the guide member 46 and the guided member 47 is a distance G1 that allows the movable core 45 to move toward the fixed core 44 side by energizing the coil 41. That is, it is configured to be larger than the stroke length of the movable core 45. In this embodiment, the distance G1 is equal to the length of the gap formed between the movable core 45 and the fixed core 44 when the coil 41 is not energized. With this configuration, the movable core 45 and the guided member 47 are reliably and slidably supported by the guide member 46 within the range of the stroke length G1 of the movable core 45.

また、ソレノイド機構部では、図4に示すように、被ガイド部材47の筒状部47aの内径D1とガイド部材46のガイド本体46bの外径d2との差が、ハウジング42の内径D3と可動コア45の外径d4との差よりも小さくなるように構成されている。この構成により、可動コア45は、ハウジング42の内周部42b1に摺動することなく、被ガイド部材47を介して確実にガイド部材46に支持される。 Further, in the solenoid mechanism portion, as shown in FIG. 4, the difference between the inner diameter D1 of the tubular portion 47a of the guided member 47 and the outer diameter d2 of the guide body 46b of the guide member 46 is movable with the inner diameter D3 of the housing 42. The core 45 is configured to be smaller than the difference from the outer diameter d4. With this configuration, the movable core 45 is reliably supported by the guide member 46 via the guided member 47 without sliding on the inner peripheral portion 42b1 of the housing 42.

(高圧燃料供給ポンプの動作)
次に、高圧燃料供給ポンプ1の動作を図2及び図3を用いて説明する。先ず、高圧燃料供給ポンプ1の吸入工程の動作について説明する。
(Operation of high-pressure fuel supply pump)
Next, the operation of the high-pressure fuel supply pump 1 will be described with reference to FIGS. 2 and 3. First, the operation of the suction process of the high-pressure fuel supply pump 1 will be described.

図2に示すプランジャ5が破線で示す上死点位置Tから下降する吸入行程では、電磁弁機構300のコイル41は非通電状態である。コイル41への通電が無い場合、図3に示す電磁弁機構300では、上述したように、第2付勢ばね49の付勢力と第1付勢ばね34の付勢力との差によって、可動コア45と一体に構成された被ガイド部材47を介してロッド48が吸入弁31側(図3中、右側)に付勢される。 In the suction stroke in which the plunger 5 shown in FIG. 2 descends from the top dead center position T indicated by the broken line, the coil 41 of the solenoid valve mechanism 300 is in a non-energized state. When the coil 41 is not energized, in the solenoid valve mechanism 300 shown in FIG. 3, as described above, the movable core is caused by the difference between the urging force of the second urging spring 49 and the urging force of the first urging spring 34. The rod 48 is urged to the suction valve 31 side (right side in FIG. 3) via a guided member 47 integrally formed with the 45.

これにより、ロッド48が接触した状態の吸入弁31が吸入弁シート部材32の弁シート部32aから離れ、図2に示す低圧燃料室2bと加圧室4とが連通する。このため、低圧燃料室2b内の燃料は、プランジャ5の下降により、吸入弁31と弁シート部32aとの隙間を経由して加圧室4内へ流入する。吸入弁31と弁シート部32aとの隙間を流れる燃料の圧力降下により、吸入弁31には開弁方向(図3中、右方向)に力が作用する。 As a result, the suction valve 31 in contact with the rod 48 is separated from the valve seat portion 32a of the suction valve seat member 32, and the low-pressure fuel chamber 2b and the pressurizing chamber 4 shown in FIG. 2 communicate with each other. Therefore, the fuel in the low-pressure fuel chamber 2b flows into the pressurizing chamber 4 through the gap between the suction valve 31 and the valve seat portion 32a as the plunger 5 descends. Due to the pressure drop of the fuel flowing through the gap between the suction valve 31 and the valve seat portion 32a, a force acts on the suction valve 31 in the valve opening direction (right direction in FIG. 3).

次に、高圧燃料供給ポンプ1の吐出工程の動作について説明する。プランジャ5が下死点を超え上昇を開始している状態において、ECU107(図1参照)からコイル41に通電が開始される。コイル41の周囲に発生した磁束が流れる、ヨーク43、固定コア44、ハウジング42及び可動コア45を通る磁気回路が形成され、可動コア45と固定コア44との対向面間に磁気吸引力が発生する。この磁気吸引力が第2付勢ばね49の付勢力と第1付勢弁ばねの付勢力との差を超えると、可動コア45が被ガイド部材47と共に、可動コア45と固定コア44との間の空隙の長さG1分を変位し、可動コア45が固定コア44と接触して可動コア45及び被ガイド部材47の動作が停止する。 Next, the operation of the discharge process of the high-pressure fuel supply pump 1 will be described. The coil 41 is energized from the ECU 107 (see FIG. 1) in a state where the plunger 5 has exceeded the bottom dead center and has started to rise. A magnetic circuit is formed through the yoke 43, the fixed core 44, the housing 42, and the movable core 45 through which the magnetic flux generated around the coil 41 flows, and a magnetic attraction force is generated between the facing surfaces of the movable core 45 and the fixed core 44. To do. When this magnetic attraction exceeds the difference between the urging force of the second urging spring 49 and the urging force of the first urging valve spring, the movable core 45, together with the guided member 47, joins the movable core 45 and the fixed core 44. The length G1 of the gap between them is displaced, and the movable core 45 comes into contact with the fixed core 44, and the operation of the movable core 45 and the guided member 47 is stopped.

このとき、可動コア45の径方向内側の嵌合部45aに一体に設けられた被ガイド部材47は、筒状部47aの内周面がガイド部材46の外周面に摺動し、ガイド部材46の延在方向に沿って固定コア44側へ移動する。すなわち、磁気吸引力による可動コア45の固定コア44側への移動は、被ガイド部材47を介してガイド部材46によって案内される。このように、本実施例においては、可動コア45に一体に設けた被ガイド部材47を介して、固定コア44に固定されたガイド部材46が可動コア45を支持して案内するように構成されている。 At this time, in the guided member 47 integrally provided with the fitting portion 45a on the inner side in the radial direction of the movable core 45, the inner peripheral surface of the tubular portion 47a slides on the outer peripheral surface of the guide member 46, and the guide member 46 Moves to the fixed core 44 side along the extending direction of. That is, the movement of the movable core 45 to the fixed core 44 side by the magnetic attraction force is guided by the guide member 46 via the guided member 47. As described above, in the present embodiment, the guide member 46 fixed to the fixed core 44 is configured to support and guide the movable core 45 via the guided member 47 integrally provided with the movable core 45. ing.

磁気吸引力によって可動コア45及び被ガイド部材47が固定コア44側に引き寄せられると、吸入弁31を弁シート部32aから離間させていた付勢力がなくなり、第1付勢ばね34の付勢力によって吸入弁31が弁シート部32a側への移動を開始する。吸入弁31は、第2付勢ばね49の付勢力と第1付勢ばね34の付勢力との差によって生じる吸入弁31と弁シート部32aとの間の空隙の長さG2分を変位し、閉弁状態となる。 When the movable core 45 and the guided member 47 are attracted to the fixed core 44 side by the magnetic attraction force, the urging force that separates the suction valve 31 from the valve seat portion 32a disappears, and the urging force of the first urging spring 34 causes the suction valve 31 to be separated from the valve seat portion 32a. The suction valve 31 starts moving toward the valve seat portion 32a. The suction valve 31 displaces the length G2 of the gap between the suction valve 31 and the valve seat portion 32a generated by the difference between the urging force of the second urging spring 49 and the urging force of the first urging spring 34. , The valve is closed.

このとき、吸入弁31の加圧室4側(図3中、右側)の隙間空間の圧力と低圧燃料室2bに連通する吸入ポート32b側の圧力との圧力差は、加圧室4内の圧力上昇に伴って、吸入弁31の加圧室4側の隙間空間の圧力が低圧燃料室2b側の圧力よりも高くなることで、吸入弁31の閉弁動作を助けている。その後、プランジャ5が引き続き上昇すると、加圧室4内の容積が減少して加圧室4内の圧力が上昇する。これにより、図2に示す吐出弁ユニット500の吐出弁52が吐出弁ばね53の付勢力に打ち勝って吐出弁シート51から離れ、燃料がコモンレール105(図1参照)を通してインジェクタ103(図1参照)に供給される。 At this time, the pressure difference between the pressure in the gap space on the pressurizing chamber 4 side (right side in FIG. 3) of the suction valve 31 and the pressure on the suction port 32b side communicating with the low pressure fuel chamber 2b is the pressure difference in the pressurizing chamber 4. As the pressure rises, the pressure in the gap space on the pressurizing chamber 4 side of the suction valve 31 becomes higher than the pressure on the low pressure fuel chamber 2b side, which helps the suction valve 31 to close. After that, when the plunger 5 continues to rise, the volume in the pressurizing chamber 4 decreases and the pressure in the pressurizing chamber 4 rises. As a result, the discharge valve 52 of the discharge valve unit 500 shown in FIG. 2 overcomes the urging force of the discharge valve spring 53 and separates from the discharge valve seat 51, and the fuel passes through the common rail 105 (see FIG. 1) and the injector 103 (see FIG. 1). Is supplied to.

吸入弁31が完全に閉弁して加圧室4内の圧力が上昇して高圧吐出が開始された後に、コイル41への通電を停止する。これにより、固定コア44と可動コア45の対向面間に発生していた磁気吸引力が消滅し、磁気吸引力が第2付勢ばね49の付勢力よりも小さくなる。このため、第2付勢ばね49の付勢力によって、可動コア45、被ガイド部、及びロッド48の可動部が吸入弁31側へ移動する。 After the suction valve 31 is completely closed, the pressure in the pressurizing chamber 4 rises, and high-pressure discharge is started, the energization of the coil 41 is stopped. As a result, the magnetic attraction force generated between the facing surfaces of the fixed core 44 and the movable core 45 disappears, and the magnetic attraction force becomes smaller than the urging force of the second urging spring 49. Therefore, the urging force of the second urging spring 49 moves the movable core 45, the guided portion, and the movable portion of the rod 48 toward the suction valve 31 side.

このとき、可動コア45に設けられた被ガイド部材47は、筒状部47aの内周面がガイド部材46の外周面に摺動し、ガイド部材46の延在方向に沿って吸入弁31側へ移動する。すなわち、第2付勢ばね49の付勢力による可動コア45の吸入弁31側への移動は、被ガイド部材47を介してガイド部材46によって案内される。 At this time, in the guided member 47 provided on the movable core 45, the inner peripheral surface of the tubular portion 47a slides on the outer peripheral surface of the guide member 46, and the suction valve 31 side is along the extending direction of the guide member 46. Move to. That is, the movement of the movable core 45 toward the suction valve 31 by the urging force of the second urging spring 49 is guided by the guide member 46 via the guided member 47.

可動コア45、被ガイド部、及びロッド48の可動部が移動し、ロッド48が吸入弁31に接触すると、可動部の動作(移動)が吸入弁31によって停止される。これは、加圧室4内の圧力による吸入弁31に作用する閉弁力が第2付勢ばね49の付勢力よりも大きいためである。したがって、ロッド48が吸入弁31を押しても、吸入弁31は開弁しない。この状態は、プランジャ5が上死点から下降方向へ転じた瞬間にロッド48が吸入弁31を開弁方向へ付勢する準備動作となる。 When the movable core 45, the guided portion, and the movable portion of the rod 48 move and the rod 48 comes into contact with the suction valve 31, the operation (movement) of the movable portion is stopped by the suction valve 31. This is because the valve closing force acting on the suction valve 31 due to the pressure in the pressurizing chamber 4 is larger than the urging force of the second urging spring 49. Therefore, even if the rod 48 pushes the suction valve 31, the suction valve 31 does not open. In this state, the rod 48 prepares to urge the suction valve 31 in the valve opening direction at the moment when the plunger 5 turns from the top dead center to the descending direction.

電磁弁機構300では、コイル41に通電するタイミングをECU107からの指令に基づき制御することで、高圧で吐出される燃料の流量を調節することができる。プランジャ5が下死点から上死点へと上昇動作に転じた直後に、吸入弁31が閉弁するよう通電タイミングを制御すれば、燃料の停留が少なく高圧吐出される燃料が多くすることができる。以上のように、高圧燃料供給ポンプ1は、コイル41への通電時間を制御することで、吸入弁31の閉弁時間を制御し所望の流量に吐出できるように構成されている。 In the solenoid valve mechanism 300, the flow rate of the fuel discharged at high pressure can be adjusted by controlling the timing of energizing the coil 41 based on the command from the ECU 107. If the energization timing is controlled so that the suction valve 31 closes immediately after the plunger 5 shifts from the bottom dead center to the top dead center, the fuel stays less and the amount of fuel discharged at high pressure increases. it can. As described above, the high-pressure fuel supply pump 1 is configured to control the closing time of the suction valve 31 by controlling the energization time of the coil 41 so that the suction valve 31 can be discharged to a desired flow rate.

本実施例の高圧燃料供給ポンプ1は、電磁弁機構300を有する高圧燃料供給ポンプ1であって、電磁弁機構300は、固定コア44と、固定コア44と対向する位置に配置される可動コア45と、可動コア45を固定コア44に対して接離する方向に案内するよう固定されたガイド部材46と、固定コア44、可動コア45及びガイド部材46を収容するハウジング42と、を備え、ガイド部材46は、径方向外側に張り出すつば部46cを有し、つば部46cがハウジング42と固定コア44とに挟持されて固定される。すなわち、ハウジング42の底部42aと固定コア44の端部44bとで挟み込まれて当接固定されるガイド部材46のつば部46c有する。これにより、ガイド部材46の軸方向長さを圧入構造に対して低減することが可能となり、電磁弁機構300を小型化することができ、高圧燃料供給ポンプ1のレイアウト性が向上する。 The high-pressure fuel supply pump 1 of this embodiment is a high-pressure fuel supply pump 1 having a solenoid valve mechanism 300, and the solenoid valve mechanism 300 is a fixed core 44 and a movable core arranged at a position facing the fixed core 44. A 45, a guide member 46 fixed so as to guide the movable core 45 in a direction in which the movable core 45 is brought into contact with the fixed core 44, and a housing 42 for accommodating the fixed core 44, the movable core 45, and the guide member 46 are provided. The guide member 46 has a brim portion 46c that projects outward in the radial direction, and the brim portion 46c is sandwiched and fixed between the housing 42 and the fixing core 44. That is, it has a brim portion 46c of a guide member 46 that is sandwiched between the bottom portion 42a of the housing 42 and the end portion 44b of the fixing core 44 and fixed by contact. As a result, the axial length of the guide member 46 can be reduced with respect to the press-fitting structure, the solenoid valve mechanism 300 can be miniaturized, and the layout of the high-pressure fuel supply pump 1 is improved.

[実施例2]
本発明の第2実施例に係る電磁弁機構300について図5を用いて説明する。図5は、本発明の第2実施例に係る電磁弁機構の拡大図である。第1実施例と同様の構成には第1実施例と同じ符号を付し、説明を省略する。以下、第1実施例と異なる構成について説明する。
[Example 2]
The solenoid valve mechanism 300 according to the second embodiment of the present invention will be described with reference to FIG. FIG. 5 is an enlarged view of the solenoid valve mechanism according to the second embodiment of the present invention. The same components as those in the first embodiment are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted. Hereinafter, a configuration different from that of the first embodiment will be described.

本実施例では、ガイド部材46の基部46aを固定コア44の径方向内側の収容部44aに圧入している。本実施例では、第1実施例と同様に、ガイド部材46のつば部46cが、ハウジング42の底部42aと固定コア44の端部44bとで挟み込まれて当接固定される。このため、ガイド部材46の基部46aの軸方向長さを長くする必要はなく、ガイド部材46の軸方向長さを低減することが可能となる。 In this embodiment, the base portion 46a of the guide member 46 is press-fitted into the accommodating portion 44a on the radial inner side of the fixed core 44. In this embodiment, similarly to the first embodiment, the brim portion 46c of the guide member 46 is sandwiched between the bottom portion 42a of the housing 42 and the end portion 44b of the fixing core 44 and is abutted and fixed. Therefore, it is not necessary to increase the axial length of the base portion 46a of the guide member 46, and it is possible to reduce the axial length of the guide member 46.

本実施例では、隙間S2をハウジング42の開口側に連通する空気通路を確保するため、ガイド部材46の基部46aの外周面46dに軸方向に延設される溝部46gを設けている。また、ガイド部材46のつば部46cの、固定コア44の端部44bと対向する面に、径方向に延設される溝部46fを設けている。すなわちガイド部材46は、基部46aの外周面46dに軸方向に延設される溝部46gを有し、つば部46cの固定コア44の端面(端面)44bと対向する端面46c1に径方向に延設される溝部46fを有し、基部46aが固定コア44の内周面(収容部)44aに圧入され、隙間S2は、溝部46f及び溝部46gを通じてハウジング42の開口側に連通する。 In this embodiment, in order to secure an air passage that communicates the gap S2 with the opening side of the housing 42, a groove portion 46g extending in the axial direction is provided on the outer peripheral surface 46d of the base portion 46a of the guide member 46. Further, a groove portion 46f extending in the radial direction is provided on the surface of the brim portion 46c of the guide member 46 facing the end portion 44b of the fixed core 44. That is, the guide member 46 has a groove portion 46g extending in the axial direction on the outer peripheral surface 46d of the base portion 46a, and extends in the radial direction on the end surface 46c1 facing the end surface (end surface) 44b of the fixed core 44 of the brim portion 46c. The groove portion 46f is formed, the base portion 46a is press-fitted into the inner peripheral surface (accommodation portion) 44a of the fixed core 44, and the gap S2 communicates with the opening side of the housing 42 through the groove portion 46f and the groove portion 46g.

上述した構成以外は、第1実施例と同様であり、第1実施例と同様な作用効果が得られる。特に本実施例では、ガイド部材46の基部46aを固定コア44の収容部(内周面)44aに圧入するため、ガイド部材46の軸心(中心軸線A3)と固定コア44の軸心(中心軸線A2)とハウジング42の軸心(中心軸線A1)との位置合わせが容易になり、可動コア45の外周面とハウジング42の内周部42b1との隙間を小さくすることができる。これにより、固定コア44と可動コア45との間に作用する磁気吸引力を大きくすることができ、電磁弁機構300の高速動作が可能になる、或いは電磁弁機構300の動作に要する投入電力を少なくすることができる。 Other than the above-described configuration, it is the same as that of the first embodiment, and the same action and effect as that of the first embodiment can be obtained. In particular, in this embodiment, since the base portion 46a of the guide member 46 is press-fitted into the housing portion (inner peripheral surface) 44a of the fixed core 44, the axial center of the guide member 46 (center axis A3) and the axial center of the fixed core 44 (center). The alignment of the axis A2) with the axis of the housing 42 (central axis A1) can be facilitated, and the gap between the outer peripheral surface of the movable core 45 and the inner peripheral portion 42b1 of the housing 42 can be reduced. As a result, the magnetic attraction force acting between the fixed core 44 and the movable core 45 can be increased, enabling high-speed operation of the solenoid valve mechanism 300, or reducing the input power required for the operation of the solenoid valve mechanism 300. Can be reduced.

なお、本発明は上述した実施の形態に限られるものではなく、様々な変形例が含まれる。上記した実施形態は本発明をわかり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. The above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. It is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.

例えば、上述した実施例のガイド部材46は一体構造であるが、別体構造のガイド部材であってもよい。 For example, the guide member 46 of the above-described embodiment has an integral structure, but may be a guide member having a separate structure.

1…高圧燃料供給ポンプ、42…ハウジング、42a…ハウジング42の底部、42b…ハウジング42の筒状部、44…固定コア、44a…固定コア44の内周面(収容部)、45…可動コア、46…ガイド部材、46a…ガイド部材の基部、46b…ガイド部材46のガイド本体、46c……ガイド部材のつば部、46c1…つば部46cの固定コア44の端面44bと対向する端面、46d…ガイド部材46の基部46aの外周面、46f…溝部、46g…溝部、S1…隙間、S2…隙間、300…電磁弁機構。 1 ... High-pressure fuel supply pump, 42 ... Housing, 42a ... Bottom of housing 42, 42b ... Cylindrical part of housing 42, 44 ... Fixed core, 44a ... Inner peripheral surface (accommodation part) of fixed core 44, 45 ... Movable core , 46 ... guide member, 46a ... base of guide member, 46b ... guide body of guide member 46, 46c ... brim of guide member, 46c1 ... end face of fixed core 44 of brim 46c facing end face 44b, 46d ... Outer peripheral surface of the base 46a of the guide member 46, 46f ... groove, 46g ... groove, S1 ... gap, S2 ... gap, 300 ... solenoid valve mechanism.

Claims (5)

電磁弁機構を有する高圧燃料供給ポンプであって、
前記電磁弁機構は、
固定コアと、
前記固定コアと対向する位置に配置される可動コアと、
前記可動コアを前記固定コアに対して接離する方向に案内するよう固定されたガイド部材と、
前記固定コア、前記可動コア及び前記ガイド部材を収容するハウジングと、
を備え、
前記ガイド部材は、径方向外側に張り出すつば部を有し、前記つば部が前記ハウジングと前記固定コアとに挟持されて固定されることを特徴とする高圧燃料供給ポンプ。
A high-pressure fuel supply pump with a solenoid valve mechanism
The solenoid valve mechanism is
With a fixed core
A movable core arranged at a position facing the fixed core,
A guide member fixed so as to guide the movable core in a direction in which the movable core is brought into contact with or separated from the fixed core.
A housing that houses the fixed core, the movable core, and the guide member,
With
The guide member is a high-pressure fuel supply pump having a brim portion that projects outward in the radial direction, and the brim portion is sandwiched and fixed between the housing and the fixed core.
請求項1に記載の高圧燃料供給ポンプにおいて、
前記ハウジングは、前記固定コアが圧入される筒状部と、前記筒状部の前記可動コアとは反対側の端部を塞ぐ底部と、を有する有底筒状を成し、
前記つば部は、前記固定コアの前記可動コアとは反対側の端部と前記ハウジングの前記底部との間に挟持されることを特徴とする高圧燃料供給ポンプ。
In the high-pressure fuel supply pump according to claim 1,
The housing has a bottomed tubular shape having a tubular portion into which the fixed core is press-fitted and a bottom portion of the tubular portion that closes an end opposite to the movable core.
A high-pressure fuel supply pump characterized in that the brim portion is sandwiched between an end portion of the fixed core opposite to the movable core and the bottom portion of the housing.
請求項2に記載の高圧燃料供給ポンプにおいて、
前記ガイド部材は、一端部に前記つば部が設けられた基部と、前記基部の他端部から前記可動コアの側に設けられ前記基部よりも小径のガイド本体と、を有し、
前記ガイド本体の前記基部とは反対側の端部側で前記可動コアを案内することを特徴とする高圧燃料供給ポンプ。
In the high-pressure fuel supply pump according to claim 2.
The guide member has a base portion provided with the brim portion at one end portion, and a guide body provided on the side of the movable core from the other end portion of the base portion and having a diameter smaller than that of the base portion.
A high-pressure fuel supply pump characterized in that the movable core is guided by an end side of the guide body opposite to the base portion.
請求項3に記載の高圧燃料供給ポンプにおいて、
前記固定コアの内周と前記ガイド部材の前記基部の外周との間に隙間を有することを特徴とする高圧燃料供給ポンプ。
In the high-pressure fuel supply pump according to claim 3,
A high-pressure fuel supply pump having a gap between the inner circumference of the fixed core and the outer circumference of the base portion of the guide member.
請求項3に記載の高圧燃料供給ポンプにおいて、
前記ガイド部材は、前記基部の外周面に軸方向に延設される溝部を有し、前記つば部の前記固定コアの前記端部と対向する端面に径方向に延設される溝部を有し、前記基部が前記固定コアの内周面に圧入されることを特徴とする高圧燃料供給ポンプ。
In the high-pressure fuel supply pump according to claim 3,
The guide member has a groove portion extending in the axial direction on the outer peripheral surface of the base portion, and has a groove portion extending in the radial direction on the end surface of the brim portion facing the end portion of the fixed core. A high-pressure fuel supply pump, characterized in that the base is press-fitted into the inner peripheral surface of the fixed core.
JP2019183466A 2019-10-04 2019-10-04 high pressure fuel supply pump Active JP7299817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019183466A JP7299817B2 (en) 2019-10-04 2019-10-04 high pressure fuel supply pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019183466A JP7299817B2 (en) 2019-10-04 2019-10-04 high pressure fuel supply pump

Publications (2)

Publication Number Publication Date
JP2021059991A true JP2021059991A (en) 2021-04-15
JP7299817B2 JP7299817B2 (en) 2023-06-28

Family

ID=75379796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019183466A Active JP7299817B2 (en) 2019-10-04 2019-10-04 high pressure fuel supply pump

Country Status (1)

Country Link
JP (1) JP7299817B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120419B2 (en) 2010-06-10 2013-01-16 株式会社アドヴィックス Normally closed solenoid valve
JP5517068B2 (en) 2010-12-27 2014-06-11 株式会社デンソー High pressure pump
JP7115328B2 (en) 2019-01-15 2022-08-09 株式会社デンソー solenoid valve

Also Published As

Publication number Publication date
JP7299817B2 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
US20180163683A1 (en) High pressure fuel supply pump with electromagnetic suction valve
JP2006207451A (en) Fuel pump and delivery valve equipped in fuel pump
US11542903B2 (en) High-pressure fuel supply pump provided with electromagnetic intake valve
JP6689178B2 (en) High pressure fuel supply pump
CN111373139B (en) High-pressure fuel pump
CN110537014B (en) High-pressure fuel pump
WO2021054006A1 (en) Electromagnetic suction valve and high-pressure fuel supply pump
CN110651117B (en) Valve mechanism, electromagnetic suction valve mechanism, and high-pressure fuel pump
JP7178504B2 (en) Fuel pump
JP7299817B2 (en) high pressure fuel supply pump
JP7115328B2 (en) solenoid valve
US20220131440A1 (en) Fuel Pump
CN113692509B (en) Solenoid valve mechanism and high-pressure fuel supply pump equipped with same
JP2017145731A (en) High pressure fuel supply pump
CN110678642B (en) High-pressure fuel supply pump
JP7024071B2 (en) Fuel supply pump
JP2019203437A (en) High-pressure fuel supply pump
JP7248794B2 (en) high pressure fuel pump
WO2017203812A1 (en) Fuel supply pump
EP4286680A1 (en) Electromagnetic valve mechanism and fuel pump
JP7110384B2 (en) Fuel pump
WO2023032253A1 (en) Fuel pump
WO2020085041A1 (en) Electromagnetic valve mechanism and high-pressure fuel pump
JP2023071061A (en) Fuel pump
JP2019086006A (en) High pressure pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230616

R150 Certificate of patent or registration of utility model

Ref document number: 7299817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150